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Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7519-380-9
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Welcome

The 10th International Modelica Conference is the main event for our community. Users, library developers,
tool vendors, and language designers will gather to share their knowledge and learn about the latest scientific
and industrial progress related to Modelica and FMI (Functional Mockup Interface).

This 10th milestone conference returns to Lund, where the first event took place in 2000. Since then, Modelica
has matured from an idea among a small number of dedicated enthusiasts to a widely accepted standard
language for the modeling and simulation of cyber-physical systems. Modelica is now used in many industries
including automotive, energy and process, aerospace, and industrial equipment. Modelica has even been tapped
for one-of-a-kind systems engineering designs such as the ESS (European Spallation Source) which is currently
being built nearby in Lund. Modelica is the language of choice for modeling and simulation of complex system
interactions.

The addition of the FMI standard to the project portfolio under the stewardship of the Modelica Association
has greatly strengthened Modelica. FMI provides a complementary standard that enables deployment of high
quality models to a larger number of engineers working with system design and verification.

Conference highlights:

• 2 Keynote speeches

• 114 papers in 5 parallel tracks

• 23 posters

• 6 tutorials

• 5 libraries for the Modelica Library Award

• 6 vendor sessions presenting the latest Modelica and FMI tools

• A fully booked exhibition area featuring 18 exhibitors

• Electronic proceedings including all papers and some associated Modelica libraries and models

The conference also presents new initiatives from the Modelica Association. Since the last conference, there
has been a major effort to improve the standards compliance process for the Modelica language, the Modelica
Libraries developed by the Modelica association, and the FMI standard.

• The latest Modelica Standard Library release (MSL 3.2.1) has been enhanced and modified to be fully
compliant with the Modelica Language Standards version 3.2 rev2, and is now solely based on open source
code under the Modelica License version 2.0.

• MSL 3.2.1 has also been improved to significantly simplify comparisons of simulations of the same model
across multiple Modelica environments. Tools to support such comparisons are now available through the
Modelica Association.

• The Modelica language version 3.2rev 2 fixed many ambiguities in the specification.

• A Modelica Compliance Test Library has been carefully designed and implemented to verify that a Mod-
elica tool is compliant to the Modelica specification. It has been tested with many tools, with agreed-upon
reference results.

• A set of FMI Cross Check Rules was established in July 2013 and has been used by many vendors to
verify tool quality and interoperability. All results are publically presented in a dynamic, online, tabular
reference.

These combined efforts have helped to increase the industrial acceptance, commitment to, and use of Modelica
and FMI as central standards for analytic model based systems engineering.

Finally, we want to acknowledge the support we received from the program board and program committee.
Special thanks to this year’s organizers, the Modelica Association, Modelon AB, and Amelie Rönng̊ard from
Anagram. Last but not least, let us thank all authors for their contributions to this conference.

We wish all participants an enjoyable and successful conference.

West Hartford and Lund, February 10th 2014

Hubertus Tummescheit and Karl-Erik Årzén
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Prof. Manfred Hajek, TU Munich, Munich, Germay
Peter Harman, CyDesign, Coventry, United Kingdom
Dr. Andreas Heckmann, DLR, Munich, Germany
Anton Haumer, Technical consultant, St. Andrae-Woerdern, Austria
Dr. Dan Henriksson, Dassault Systèmes, Lund, Sweden
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Fröjd, Karin 675
Fuchs, Marcus 125
Fugate, David 989
Führer, Claus 819
Furic, Sébastien 693, 1237
Galindo, Eduardo 89
Gall, Leo 1067
Gallardo Yances, Stephanie 777, 809
Gao, Jianbo 1123
Garcia, Humberto 767, 979
Geletu, Abebe 999
Gerada, Chris 523, 737
Gerl, Johannes 335
Ghidaglia, Jean-Michel 799

DOI
10.3384/ECP14096

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

13



Giangrande, Paolo 523, 737, 757
Gissing, Jörg 401
Gohl, Jesse 235, 409, 1265
Gomez Esperon, Daniel 707
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Köhler, Jürgen 867
Kosenko, Ivan 1143
Koutsoukos, Xenofon 353

Kral, Christian 135, 145, 155
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Walther, Andrea 1017
Walther, Marcus 1213
Wang, Peng 929
Waurich, Volker 1213
Weidemann, Dirk 617
Wellner, Kai 667
Wernersson, Karl 53
Wetter, Michael 311, 647
Wiesmann, Hansjürg 515
Wihlfahrt, Urs 939
Windahl, Johan 959
Winkler, Dietmar 543, 969
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Modelica Evolution – From My Perspective 

Hilding Elmqvist 

Dassault Systèmes 
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Hilding.Elmqvist@3DS.com 

Abstract 

This paper intends to tell the story of Modelica 

(www.Modelica.org) from the author’s perspective. 

It is a fantastic saga that for me started in April 1976. 

The saga includes studying the needs, the original 

idea, the development of a solution, waiting for ma-

ture hardware technology, a start-up company, a fan-

tastic collaboration, an automotive company caring 

for its software supplier, how to get momentum by 

standards collaboration, forming the right team, and 

the magic phone call from the right company.  

Keywords: Simnon; Dymola; Modelica; Physical 

Modeling; DAE; Modelica Association 

1 Introduction 

In order to describe Modelica evolution it is im-

portant to start by describing Dymola, Dynamic 

Modeling Language, since many of the original fea-

tures of Modelica are taken from Dymola. 

The paper then describes forming the company 

Dynasim and the important initial research collabora-

tions. The initial Modelica design work and the 

Modelica community are then discussed. The paper 

ends with a discussion about Modelica future. Most 

of the material is presented in chronological order. 

For an overview of other simulation tools, see 

(Åström, et.al., 1998). 

I propose that other key contributors to Modelica 

evolution, Martin Otter, Peter Fritzson and many 

others, write similar papers from their perspectives in 

particular since this paper has a focus on the work 

before Modelica and gives my perspective. 

2 Dynamic Modeling Language 

When looking for a master thesis project in autumn 

1971, the Automatic Control Department, Lund In-

stitute of Technology wanted to develop a simulation 

program where the user could input the models using 

mathematical expressions. I was just studying com-

piler technology, so I considered this project perfect 

for me. The result was Simnon (SIMulation of NON-

linear systems): (Elmqvist, 1975, 1977a). A novel 

feature was that a mixture of continuous time and 

discrete time systems could be simulated, i.e. perfect 

for simulation of sampled data control systems 

which were becoming very important at that time. 

However, I was not satisfied with the approach as 

a basis for my PhD thesis, since it was based on 

submodels with inputs and outputs. I therefore want-

ed to investigate the fundamentals of modeling 

which my professor Karl Johan Åström supported. In 

April 1976, I was studying a report with about 200 

pages about a drum-boiler model written by Sture 

Lindahl (Lindahl, 1976). The report was very sys-

tematic, showing how the equations were organized 

for the drum, the super heaters, the turbines, etc., i.e. 

the approach was object oriented. The modeling 

started by stating the relationships as general equa-

tions. Then the derivations were shown how to put 

them into state space form in order to be able to sim-

ulate using Simnon. These derivations involved 

manual symbolic manipulation of individual equa-

tions to solve for the unknown, solving linear sys-

tems of equations (see excerpt from report below), 

unrolling Newton´s algorithm a fix number of times 

to solve nonlinear systems of equations, and differ-

entiating certain equations when there were con-

straints between differentiated variables (nowadays 

called index reduction). 
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Just before Easter 1976, I realized what I needed to 

do: design a new language allowing general equa-

tions, having a class concept for object oriented 

modeling (I was used to Simula so that was natural) 

and having a structured feature to describe interac-

tion between submodels (called cut). The language 

was called Dymola for DYnamic MOdeling LAn-

guage (Elmqvist, 1977a, 1978, 1979a, 1979b). 

An example in the Dymola language of an elec-

trical component is shown below. It describes a pin 

A characterized by an across variable Va and a 

through variable I. Pin B has correspondingly Vb. 

The through variable of B is also I but with a preced-

ing minus sign showing that the currents of pins A 

and B sum to zero. In Dymola, all variables were of 

real type. The der operator is the same as in Modeli-

ca. The path concept was introduced in order to al-

low operators for series-, parallel- and loop-

connections. Such a concept is not used in Modelica 

since connections are typically drawn graphically.  

 

 
 

Consider the following electrical circuit: 

 
Using a library of “model types”: resistor, capacitor, 

voltage and Common, the circuit could be described 

as follows; 

 

 
 

The “to” operator means series connection and “par” 

means parallel connection. 

The trouble was then to figure out how to simu-

late such a model. I had used the symbolic package 

REDUCE and started to write symbolic manipula-

tions in LISP. But how to know what variable to 

solve for in each equation? The naïve approach is: 

look for equations with only one unknown, mark 

those as known and repeat. The problem is that there 

can be mutual dependencies, i.e. algebraic loops for 

which this approach does not work. And mutual de-

pendencies were normal in the way Lindahl did his 

modeling, so the language could not be restricted to 

avoid algebraic loops. I invented my own algorithms 

using binary incidence matrices. However, these 

were O(n^3), so they would not scale.  

At that time one had to go to the university li-

brary to get help in doing a computerized literature 

search (no Alta Vista or Google being available). I 

found that graph theoretical algorithms were O(n). 

The graphs are bipartite, i.e. consists of two types of 

nodes corresponding to equations and variables. An 

edge between a variable and an equation means that 

the variable appears in that equation. A report from 

the University of Umeå analyzed several algorithms 

for Assignment or matching which corresponded to 

finding out what variable to solve for in each equa-

tion. Furthermore, Tarjans algorithm would find 

strongly connected components in a directed graph 

corresponding to minimal systems of simultaneous 

equations and sort them into a sequence suitable for 

solving one system at a time, i.e. the incidence ma-

trix becomes block lower triangular (BLT).  

Lindahl sometimes differentiated equations when 

potential states were constrained. The Jacobian is 

then always singular. I designed an algorithm to find 

what equations to differentiate  and tested it success-

fully on some small examples. Fortunately, Costas 

Pantelides and Sven Erik Mattsson later figured out 

suitable algorithms, (Pantelides (1988), (Mattsson, 

Söderlind, 1993).  

To test the language ideas and the algorithms, I 

wrote a program in the object oriented programming 

language Simula, which is included in my thesis, 

(Elmqvist, 1978). I tested it successfully on a few 

examples from different domains: electronics, me-

chanical, thermodynamics, and electrical power dis-

tribution. As an example, the program found one 

system of equations for solving accelerations and 

forces of mechanical systems corresponding to the 

need to invert the mass matrix. The drum boiler 

model could now be formulated in 15 pages using 

original equations defined only once for each class 

and no need for manual symbolic manipulation of 

the equations. The total model had about 250 non-

trivial equations and 11 systems of simultaneous 

equations. 

But there was one big problem: lack of computer 

memory for symbolic manipulation. I was barely 

able to translate the drum boiler model on a Univac 

1108 computer having only 64 kWords of 36 bits of 
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memory accessible for the user and the garbage col-

lector had to work hard. So the hardware technology 

at that time was not mature enough for realistic in-

dustrial problems. 

After my thesis in May 1978 (Elmqvist, 1978), I 

spent one year as a post doc at Computer Science 

Department at Stanford University. I took all the 

courses in languages and compilers given by John 

Hennessy (who later became President of Stanford 

University). Working in a compiler project regarding 

parametric types, (Hennessy, Elmquist, 1982) was a 

very useful experience. 

I then returned to the Automatic Control depart-

ment for a project on Languages for Implementation 

of Control Systems (LICS), (Elmqvist, 1985). In ad-

dition to language elements, we also considered the 

relations to graphics and were able to acquire a 

mouse. That gave valuable knowhow which later 

became meta comments in Dymola and adopted in 

Modelica as graphical annotations. In order to 

achieve sufficient speed for navigating in hierar-

chical structures, we developed special raster 

graphics hardware and a font generation program. 

The LICS program was developed on a VAX-11 

computer and ported to an Apollo DN 600 work-

station and demonstrated at the second IEEE Com-

puter Aided Control Systems Design Symposium in 

1983 at MIT with high interest since it showed sev-

eral novel interaction principles such as “information 

zooming”. 

During this project, we also translated the Dymo-

la program from Simula to Pascal since there was no 

Simula compiler on the VAX. This enabled handling 

larger models due to the linear address space of the 

VAX. Francois Cellier got a copy of the Pascal ver-

sion. The importance will be clear later. 

The LICS project got an industrial follow-up 

since I worked for the company SattControl 1984-

1992. We developed a distributed control system 

called SattLine (Elmqvist, 1991a, 1991b, 1992). This 

experience later influenced the design of hybrid fea-

tures of Modelica.  

3 The Company Dynasim  

In August 1991, an important thing happened. I was 

working in Toronto for two years and attended a 

seminar at the university by a colleague of Francois 

Cellier. Francois had moved to Tucson, Arizona and 

we had lost contact. During our renewed contacts I 

learnt that Francois was writing a book: Continuous 

Systems Modeling (Cellier, 1991). I got the manu-

script and was overwhelmed! It described Dymola 

and used Dymola for modeling of many examples.    

I also met Peter Fritzson in the summer 1991 at a 

computer language conference in Toronto and be-

came aware of his work on designing a modeling 

language, ObjectMath, which combined features of 

Computer Algebra languages and Object Oriented 

Programming. I successfully converted some Ob-

jectMath models to Dymola. 

These were two of the tipping points that made 

me resume the work on Dymola since I understood 

that there was finally an interest in equation based 

modeling. The third tipping point was the release of 

Windows 3.0 since the memory barrier of 640 

kBytes linear memory was removed. 

Cellier and I started to work together and we 

wrote a paper for a CACE conference in Napa, Cali-

fornia (Cellier, Elmqvist, 1992) which later became 

an article in IEEE Control Systems (Cellier, 

Elmqvist, 1993). I continued to make development 

on the Pascal version of Dymola for some time and 

used the p2c (Pascal to C) translator to facilitate us-

ing a C compiler. Sven Erik Mattsson had given me 

a copy of the article by Costas Pantelides about in-

dex reduction, (Pantelides, 1988). I incorporated this 

in Dymola for the paper. 

At the same conference, Sven Erik presented the 

dummy derivative method including automatic state 

selection after index reduction based on Pantelides 

algorithm (Mattsson, 1992).  

In Napa, I met Georg Grübel, DLR (Deutsches 

Zentrum für Luft- und Raumfahrt) and learnt that 

Cellier would spend the summer 1992 at DLR in 

Oberpfaffenhofen, Germany. It was decided that Cel-

lier would introduce the Dymola technology at DLR. 

Martin Otter immediately got hooked and started to 

implement a library of MultiBody components which 

was later published in (Otter, et.al., 1996). Francois 

remembers: “Four weeks into my visit, Martin came 

to my office on Monday morning, telling me that he 

now could throw away his program "myRobot" that 

he had previously developed for the simulation of 

tree-structured robots. Over the weekend, he had re-

implemented his robot model in Dymola, which 

turned out to be much more elegant and flexible.” 

I moved back to Sweden and started the company 

Dynasim in August 1992. DLR realized the potential 

of the Dymola technology but also the needs to ex-

tend the Dymola language and the tool. For example, 

Dymola did not have matrix support then which is 

essential for MultiBody modeling. Fortunately, DLR 

could support further development financially which 

gave Dynasim important initial funding. Martin Otter 

and I have worked in close collaboration since then. 

We met for the first time at DLR Oberpfaffenhofen 

in August 1993 after one year of collaboration via e-

mail. 
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We made a design for modeling hybrid systems 

in order to be able to model power electronics and 

phenomena such as friction, (Cellier, et.al., 1993) 

and (Otter, 1994). The concepts of instantaneous 

equations and event iterations were then introduced. 

In July 1993, Dag Brück was employed especial-

ly to develop a graphical user interface enabling 

creating components and connecting them by drag 

and drop. Dag had worked in the Omola project at 

the Automatic Control Department, Lund. 

A missing piece of the technology was to handle 

that the blocks corresponding to systems of simulta-

neous equations often got large but sparse. Tearing is 

a static technique to handle this problem. Our first 

attempt was to help the translator by introducing 

hints in the form of a residue operator, (Elmqvist, 

Otter, 1994). Shortly afterwards, Martin Otter and 

myself figured out an algorithm to automatically per-

form tearing, and the algorithm was introduced in 

Dymola. Dymola would then, for example, for a tree 

structured multibody model find a large linear sys-

tem of equations involving accelerations, forces and 

torques and discover that it could be reduced to in-

verting a linear matrix of size equal to the number of 

degrees of freedom. 

The efficiency of the code could be enhanced if 

structural and symbolic processing is made not only 

on the model equations but also on the discretization 

equations of the numerical integrator. We called it 

inline integration, (Elmqvist, et.al., 1995). This be-

came very important for hardware-in-the-loop simu-

lation. For example, this technique allows efficient 

use of implicit methods for multibody models since 

it combines inverting the mass matrix and solving 

the non-linear systems of equations.  

The early adopters of this equation and object 

based modeling technology can be seen from the 

Dymola license numbers: 

 

101: Francois Cellier, University of Arizona 

102: Martin Otter, DLR 

103: Rafael Huber, Dept. Ing. Sistemas, ESAII, Bar-

celona, Spain 

104: Sebastian Dormido, Depto. De Informatica y 

Automatica, UNED, Spanien 

105: Michael Grimsberg, Lund Institute of Technol-

ogy 

106: Dieter Kraft, Dept of Mechanical Engineering, 

University of München 

107: Jochen Seibold, Rechenzentrum University of 

Stuttgart 

 

Ingrid Bausch-Gall early understood the potential 

of Dymola and Bausch-Gall GmbH became distrib-

utor in German speaking countries in September 

1995. This was very important for growing the inter-

est in the technology in Germany. 

Bengt Jacobson, Machine and Vehicle Design, 

Chalmers Technical University was among the early 

adopters and started to use Dymola for powertrain 

development in a collaborative project with Volvo 

and Saab in 1995. 

Jan Tuszynski at Sydkraft Konsult in Malmö, 

Sweden deployed Dymola for thermal power sys-

tems in 1995.  

Sebastian Dormido organized a workshop in Avi-

la, Spain summer 1996. Francois Cellier and I pre-

sented the principles of object-oriented equation 

based modeling. 

Akira Ohata and Yutaka Hirano, Toyota Motor 

Corporation heard about Dymola during a presenta-

tion in Japan by Georg Grübel, DLR. They got 

Dymola licenses in middle of 1996 and started to use 

it for the Toyota Prius development. The multi-

engineering modeling capability was necessary for 

the hybrid car development. However, they realized 

that the maturity of the Dymola software was not 

sufficient for large scale deployment and provided 

funding during 2 years starting end of 1997 regard-

ing general GUI enhancements, GUI for Modelica, 

symbolic solver capabilities, etc. This was an essen-

tial funding allowing for expansion of Dynasim. In 

the end of 1998, Toyota Techno Service Corporation 

became distributor of Dymola in Japan with Takashi 

Matsuba and Rui Gao as technical support. In 2007, 

Rui Gao came to work for Dassault Systèmes.  

Martin Otter visited Dynasim for two months in 

September and October 1996 and gave a lecture se-

ries on object oriented modeling of mechanical sys-

tems at the Automatic Control department at Lund 

Institute of Technology. We worked in particular on 

real-time simulation of hybrid systems such as auto-

matic gearboxes. Martin was the main author of the 

Dymola standard library containing Blocks, Elec-

trical, Rotational, and MultiBody components. 

Hans-Jürg Wiessmann and Bernhard Bachmann, 

ABB, Baden-Dättwil in Switzerland became users of 

Dymola in 1996 for power electronics modeling and 

HILS (Hardware-In-the-Loop Simulation). Bernhard 

spent 4 weeks at Dynasim in March 1998. He then 

proposed a simple state selection algorithm which 

was used in Dymola before the dummy derivative 

algorithm of Sven Erik Mattsson was included. 

Peter Beater, then at University of Paderborn, 

started to develop a Hydraulics library beginning of 

1997. This was later converted to Modelica and sold 

to Modelon in 2006. 

Rüdiger Franke (then at University of Ilmenau) 

started to use Dymola with partial Modelica support 

in 1997 for optimization of thermodynamic systems.   
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I started to completely rewrite the symbolic en-

gine of Dymola in July 1997. Until then the old ver-

sion converted to C from my thesis had been used. I 

used C++ Standard Template Library successfully on 

several hundred thousands of equations and Dag 

Brück implemented counted pointers to handle allo-

cation and de-allocation of memory automatically. 

Martin Otter held his first modeling course based 

on Dymola at Technical University of Munich for 

students of electrical and mechanical engineering in 

the year 1997. 

Mike Dempsey (then at Rover) started to evaluate 

Dymola in 1998 for powertrain modeling. 

Sven Erik Mattsson was employed in August 

1998. He had a perfect background from the Omola  

project (Andersson, 1994) since he implemented the 

symbolic engine of OmSim. 

Hans Olsson was employed in January 1999 and 

had a complementing background regarding numeric 

and GODESS solvers. So now, the dream team was 

formed with Dag, Sven Erik, Hans and me together 

with collaboration with Martin Otter. 

 

 
Sven Erik, Dag, Hilding, Hans 

 

Roger Larsson was utilized as a consultant from 

June 2004 to accelerate building the business side of 

Dynasim. 

4 Modelica Language Design 

In spring 1996, I had lunch with Prof Karl Johan 

Åström and Sven Erik Mattson from the Automatic 

Control department, Lund University. Sven Erik was 

the project leader of the Omola project (Andersson, 

1994). We discussed the need for unification of our 

efforts on Omola and Dymola. 

In May 1996, I attended a workshop in Brussels 

regarding simulation methodologies organized by 

Hans Vangheluwe. I then, for the first time, met Per 

Sahlin, Bris Data AB, Stockholm (later renamed to 

Equa AB) and Alexandre Jeandel, Gas de France, 

Paris who both were working on equation oriented 

modeling languages: NMF and Allan respectively. 

I then realized that it was time for a global uni-

fied language design initiative. Modeling requires 

reuse of stored knowledge, i.e. there must be a stand-

ard language. It does not make sense that various 

tool vendors invent their own language and that a 

new language is created for every Ph.D. thesis on 

modeling. 

So, I initially phoned Sven Erik Mattsson, Martin 

Otter, Per Sahlin and Alexander Jeandel to discuss 

starting a collaborative language design effort. We 

agreed to meet in Lund on September 2-4, 1996. The 

participants are seen below, from left to right: Martin 

Otter, Alexandre Jeandel, Per Sahlin, Sven Erik 

Mattsson, Bernt Nilsson and me. Dag Brück partici-

pated partially and took the photo. 

 

 
 

 

 

The picture below shows participants of the 75
th
 

Modelica design meeting in Lund May 2012. 

 

 
 

You might wonder about the name Modelica. The 

name was invented during one of the lunches of the 

first meeting. I don’t recall who said it first. We 

quickly checked the usage in Alta Vista. It is used in 

Spanish for a role model. 

Sven Erik Mattsson organized a COSY workshop 

in Lund the week after with about 20 participants. 
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Our language design ideas were then presented, i.e. it 

got some immediate attention. We met Costas Pan-

telides at this workshop and convinced him to ar-

range the 3
rd

 design meeting in London. One of the 

goals was to get in closer contact and cooperate to-

gether. Unfortunately, Costas decided later to not 

join the Modelica development and continued with 

his own modeling language, gPROMS.   

The language design effort initially got a small 

travel funding from the ESPRIT project "Simulation 

in Europe Basic Research Working Group (SiE-

WG)". It was later organized as the EuroSim Model-

ica Technical Committee 1 and the Technical Chap-

ter on Modelica within Society for Computer Simu-

lation. I was the chairman for 3 years and then hand-

ed over to Martin Otter, the present chairman. 

In the year 2000, the non-profit Modelica Associ-

ation was formed in Linköping, Sweden to formalize 

the continually evolving Modelica language and the 

development of the free Modelica Standard Library. 

Modelica 1.0 was released after one year design 

in September 1997. It had classes, inheritance, class 

parameters (replaceable classes and components) 

equations, blocks, connectors, functions, etc. I re-

member an intense debate at the release meeting 

when Peter Fritzson, who joined the Modelica effort 

early 1997, argued for including functions and I ar-

gued to wait until the next release. Thank you Peter 

for pushing. Hybrid modeling features were included 

in version 1.1 released in December 1998. 

Dag Brück started to implement a Modelica com-

piler immediately after the first design meeting. It 

initially output Dymola code in order that the Model-

ica models could be simulated. Dymola has been 

used as a platform for the design group to test all 

features during Modelica evolution. The first version 

of Dymola which officially supported Modelica 

was version 4.0 released July 1, 1999. We worked all 

night until 6.10 A.M in the morning since we wanted 

it to be released first half of 1999 (in at least some 

part of the world). The meaning of Dymola then had 

to be changed to DYnamic MOdeling LAboratory. It 

also had a conversion option to convert Dymola 

models and packages to Modelica. Martin Otter was 

the main author of the Modelica Standard Library 

(MSL). Later, many people contributed to the devel-

opment of MSL and the current version of MSL has 

Modelica models from about 30 people. 

Michael Tiller, then at Ford, became aware of 

Dymola (the language) but got really interested in 

Modelica due to the open specification. He became 

the first Dymola/Modelica power user in beginning 

of 1999 and helped us test our Modelica translator. 

He also wrote the first book about Modelica: Intro-

duction to Physical Modeling with Modelica, (Tiller, 

2001). We provided a demo version of Dymola 

which was shipped with the book. Ford was also in-

terested in converting Adams models, so we made a 

translator from adm-files to Modelica MultiBody. 

Andreas Möller (now my son-in-law) developed a 

supporting Modelica library. To handle these large 

models, we had to enhance the internal data struc-

tures of Dymola. In May 2000, we could simulate an 

entire vehicle, (Bowles, et.al., 2001).  

Sven Erik Mattsson invited Hubertus 

Tummescheit in 1998 to make a Ph.D. thesis at the 

Automatic Control department, Lund. Hubertus and 

Jonas Eborn developed a comprehensive Modelica 

library for thermo-dynamical systems which broad-

ened the applicability of Modelica. Hubertus orga-

nized the first Modelica Workshop in Lund in 2000 

with 80 participants. Gerhard Schmitz and his group 

in Hamburg utilized this library for building a library 

for air-conditioning modeling. DaimlerChrysler, 

BMW, Volkswagen and Audi wanted to standardize 

on a modeling format to allow them to exchange 

models with their suppliers. During the autumn 2003 

there was intense work including benchmarking var-

ious tools. However, we needed to form an organiza-

tion that could supply and support these customers. 

Hubertus and Jonas then worked at UTRC, USA. I 

called Hubertus in December 2003 and asked him to 

come back to Lund and help organizing the effort. 

He was back before Christmas. This led to founding 

of Modelon AB by Hubertus Tummescheit, Jonas 

Eborn, Magnus Gäfvert, Johan Andreasson and me 

in 2004. 

Peter Fritzson made a formal specification of 

Modelica in 1998 which later led to the open source 

implementation OpenModelica, (Fritzson, 2002). 

Hans Olsson took the responsibility in 2000 of 

being the editor of the Modelica specification, i.e. to 

organize the process of resolving all change requests. 

Peter Fritzson wrote the book Principles of Ob-

ject Oriented Modeling and Simulation with 

Modelica 2.1 which was published in 2003, 

(Fritzson, 2003). 

5 Dassault Systèmes 

Francois Bichet, Dassault Systèmes called in No-

vember 2005 and asked if he and Dominique Flo-

rack, VP of R&D could visit Dynasim. I made a 

presentation of the company and the technology and 

got invited to Paris for presentations to a larger 

group at Dassault Systèmes and for further discus-

sions. I then got the question if Dynasim was for 

sale. I considered such a deal as a perfect marriage 

since I believe systems engineering, modeling and 
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simulation must be married to 3D and CAD. An in-

tense period of meetings and discussions led to a let-

ter of intent signed before Christmas 2005. The deal 

was closed on April 2, 2006 and announced at the 

Dassault Systèmes DevCon Conference in June, 

2006. 

The first years of joining such a big company 

were somewhat turbulent for us. Dymola and Model-

ica represented a new world for some of the manag-

ers at Dassault Systèmes HQ and the Dynasim team 

was too remote from HQ. The situation was correct-

ed in the beginning of 2010 with new manager for 

CATIA Systems, I was appointed as Chief Technol-

ogy Officer for Systems reporting to Philippe Laufer, 

now CEO of CATIA. Dan Henriksson became man-

ager of the Dassault Systèmes Lund team and Martin 

Malmheden relocated to Dassault Systèmes in Paris 

to help in the technology transfer. This enabled me to 

focus on technical aspects and in particular, together 

with Sven Erik Mattsson, to work on new features 

such as the synchronous extensions to Modelica and 

multi core simulation. 

6 Modelica Community 

The Modelica community is now growing rapidly. 

There are 9 tools having at least partial support for 

the Modelica language, see www.Modelica.org/tools. 

There are more than 1300 models in the Modelica 

Standard Library. A Modelica compliance test suit 

with more than 1000 tricky models is available for 

checking tool compliance. It is planned that a web 

page with compliance status will be available. 

We are now organizing the 10
th
 Modelica Confer-

ence. More than 22 Ph.D. theses, 800 papers and ar-

ticles have been published related to Modelica. 

Several large EU projects have been activated: 

RealSim, EuroSysLib, Modelisar, OpenProd, and 

Modrio with more than 100 man-years of effort.  

The Modelica Association is also growing, now 

having more than 100 individual members and more 

than 10 industrial members. People from the syn-

chronous language community have joined after 

Philippe Laufer suggested I should attend a meeting 

with them in Paris in October 2010. The synchro-

nous Modelica features were developed with the help 

of Albert Benveniste, Marc Pouzet, Francois Dupont 

and others, (Elmqvist, et.al., 2012). 

The scope of Modelica Association is also grow-

ing to also incorporate the FMI development.   

7 Modelica Future 

This section discusses a few possible directions for 

the future of Modelica. In most cases it is a matter of 

both tool support and various extensions to Modeli-

ca. 

As mentioned before, systems engineering also 

need to take 3D aspects into account, such as mass 

and inertia calculated from actual shape and materi-

als, collision handling, etc. It is also important to 

have consistent parameterization of the behavior 

model and the shapes. It should be possible to initial-

ly use a simplified model for concept studies and 

gradually replace submodels when CAD parts or a 

kinematic model become available as illustrated be-

low: 

 
 

Modelica gives the possibility to compose more and 

more detailed models since model components can 

be reused. This means that simulation needs to be 

faster. One possibility is then to use multi-core tech-

nology. Recent advances with more than 1000 cores 

(www.Kalray.com) show the potential. The problem 

is then how to utilize this enormous processing pow-

er in a user friendly way. Partitioning needs to be 

made automatically. Modelica gives good possibility 

to automatically partition the model equation execu-

tion into separate threads since it is a declarative lan-

guage based on equations. Early developments are 

described in (Aronsson, et.al. 2002). A new paper 

(Elmqvist, Mattsson, 2014) describes a method to 

automatically parallelize model equations imple-

mented in Dymola. A speed-up of 3.4 times has been 

achieved using 4 cores/8 threads. 

Modelica models and simulations is one part of 

systems engineering. It is important to enable vari-

ous tool chains including sensitivity analysis, opti-

mization, Monte Carlo simulations, linear analysis, 

code generation, etc. It should be possible to define a 

process flow that can be reused if some early re-

quirements or designs need to be changed. It is im-

portant with standardized interfaces. A subgroup of 

Modelica Association is working on defining an 

XML format for various levels of Modelica repre-

sentation, source, flattened, solved, etc. This will 

enable various backend tools such as fault tree analy-

sis and code generation. Another subgroup is work-

ing on how to store meta information in a standard-
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ized way, for example, for optimization (Zimmer, 

et.al., 2014). 

A subtask within the MODRIO project is to ena-

ble modeling of multi-mode and stochastic sys-

tems, for example, to model failing components. A 

generalization of synchronous state machines to con-

tinuous time and that the number of states of a sys-

tem can change at events is proposed, (Elmqvist, 

et.al., 2014). 

Modelica now has quite limited data structures, 

i.e. only arrays and records are allowed. It is not pos-

sible to define recursive data structures or maps. 

Such advanced data structures are, for example, 

needed for advanced controllers, scripting, and meta 

information for work flows. MetaModelica has suc-

cessfully incorporated such features already 2005 

(Fritzson, 2005).  

We in the Modelica Association also want to de-

fine more features of Modelica using a Modelica 

Kernel language. This would enable, for example, 

defining connection semantics, state machine seman-

tics, etc. in the Modelica Kernel language. A prereq-

uisite for this approach is that more advanced data 

structures are available in the Modelica Kernel lan-

guage. 

Most Modelica tools allow several views of a 

model or library such as Diagram, Icon, Modelica 

Text, Documentation, Package tree view. However, 

SysML offers several additional useful views such 

as inheritance tree, component hierarchy, etc. Such 

views can be automatically generated from Modeli-

ca. For example a Block Definition Diagram (bdd) of 

SysML for the CoupledClutches example might look 

as shown below using a Layered Digraph layout al-

gorithm.  

 

 
 

The question about standardization of Modelica as 

ANSI or IEEE standard is frequently raised. The 

members of Modelica Association want to wait be-

cause we feel there are some unifications and en-

hancements that need to be made first, such as sim-

plification and extension of generics (redeclare) and 

Modelica Kernel language. 

8 Conclusions 

The Modelica effort is a truly multi-disciplinary 

challenge involving compiler technology, graph the-

ory, computer algebra, numerical mathematics, etc. 

Furthermore, Modelica library development requires 

skills from many engineering domains such as elec-

tronics, mechanics, and thermo-dynamics. The beau-

ty of Modelica is that it enables them all to express 

themselves in the same language. 

An important driving force behind Modelica is to 

enable storing engineering knowledge in a form that 

can be reused. This enables more realistic simula-

tions of the complex systems now being designed. It 

gives the engineers a more interesting work place 

since tedious manual model development is not 

needed. This also has the effect that many manual 

errors are avoided and the simulation results can be 

better trusted. 

Another driving force has been and is the joy of 

being part of a community with the desire to change 

the design methodology to become model based. 

Many hard problems have had to be solved which 

means that there has been many exciting moments of 

success. 

It seems fair to state that Modelica has already 

been proven as a means for storing engineering 

knowhow in a reusable form. The equation orienta-

tion means that equations from engineering books 

can often be reused directly. There is no need to 

manually transform the equations since the tools do 

that for you. It is a neutral form which already is 

supported by many tools. So a good stable platform 

has been established. 
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Abstract 

The demand for model exchange between develop-
ment partners will grow during the next years. The 
Functional Mockup Interface (FMI) is a well re-
ceived tool independent approach for model ex-
change. The Original Equipment Manufacturers 
(OEM) have committed themselves to support FMI 
as exchange format for simulation models. There-
fore, the FMI is a promising candidate to become the 
industry standard for model exchange and cross-
company collaboration. In this paper, the FMI stand-
ard is evaluated from an industrial perspective.  
 

Keywords: FMI, industrial perspective, problem 
classification 

1 Introduction 

There is a strong trend of virtualization in engineer-
ing, where simulation replaces real testing in order to 
develop faster, cheaper and with more system under-
standing. Therefore, system simulation is used in 
different phases of product development und gains 
importance within the entire product development 
cycle. The design of future products is done on the 
basis of simulation models. 
 

1.1 Modeling and Simulation at Bosch 

However, the simulation landscape in the field of 
system and component design in industry is very 
heterogeneous. At Bosch, there are more than 100 
simulation tools with incompatible model representa-
tions in use, some of them are preferred tools for dif-
ferent physical or engineering domains. The picture 
becomes even more complex when looking at exter-
nal partners such as Original Equipment Manufac-
turers (OEM) with a different set of preferred simu-
lation tools. Today, there exist only proprietary ex-

change formats that are limited in functionality and 
only applicable to a limited number of tool combina-
tions. 

1.2 Approaches for modeling of complex sys-
tems and model exchange 

There are two complementary approaches for model-
ing complex systems: 

White box modeling: Modeling the entire system 
with one modeling language. This requires a model-
ing language that is suitable for different physical 
domains. This approach offers the possibility for 
deep system understanding by equation-based, ob-
ject-oriented modeling and symbolic manipulation. 
MODELICA is an example for that approach. 

Black box model exchange: Defining an interface 
for model exchange for standardized, tool-
independent exchange format for simulation models 
is a complementary approach. It offers a way to cope 
with a heterogeneous simulation tool environment 
and allows using specialized tools for different phys-
ical domains. This approach offers also the possibil-
ity for know-how protection for model exchange in 
distributed collaborative system engineering. The 
Functional Mockup Interface (FMI) is a promising 
candidate to become the industry standard for this 
kind of model exchange and cross-company collabo-
ration. 

In the following, the black box model exchange 
with FMI is evaluated from an industrial perspective. 
Requirements on such an interface for industrial ap-
plications are  

 standardization of the model interface (in or-
der to be tool-independent), 

 availability of a significant number of support-
ing tools, 

 easy-of-use of the interface for simulation en-
gineers, 

 adoption of the standard in the specific indus-
try domain, 
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 accompanying documentation and a reference 
process for the exchange of such black box 
models, and 

 maturity of such an interface, i.e., 
 no errors when importing FMUs from 

other sources and 
 reliable simulation results when using 

such an interface.  

1.3 The Functional Mockup Interface for black 
box model exchange 

The Functional Mockup Interface [1-4] has been de-
veloped to meet the requirements listed above. The 
requirement standardization and tool-independence 
is fulfilled by design. There is growing support for 
FMI by simulation tools (i.e., more than 40 listed on 
the FMI website), so the availability is given (alt-
hough some often used simulation tools are still 
missing). The easy-of-use to some extent is also by 
design (e.g., XML-file for model information) and is 
realized quite well by the majority of exporting and 
importing simulation tools. The Global Automotive 
Advisory Group (GAAG) has committed itself to 
support FMI as exchange format for simulation 
models [5]. Thus, the broad adoption is at least 
planned. The accompanying documentation is ad-
dressed in the ProSTEP Smart Systems Engineering 
Project [6]. In the following the paper will focus on 
the maturity of the FMI standard or the maturity of 
the implementation respectively.  

2 The Maturity of FMI 

2.1 Maturity of FMI after the end of the 
MODELISAR project 

As a result of the MODELISAR project, the FMI 
standard 1.0 was published and it was implemented 
by a growing number of modeling and simulation 
tools. In the MODELISAR project, requirements for 
FMI were derived from the beginning and tested for 
industrial applications. The performance of the FMI 
approach was demonstrated in 24 industrial applica-
tions [4]. Additional successful applications have 
been reported at the 8th and 9th MODELICA Confer-
ence, see e.g. [7-10]. However, these examples were 
realized in some fixed combinations of FMU-
exporting and importing tools. 

In 2012, an internal benchmark at Bosch with 
three exporting tools (12 test FMUs exported) and 
five importing tools showed quite different results. 
The test examples range from a “model” containing a 
sine generator only, a bouncing ball, a spring-damper 

system, an RC circuit to a thermal network. While 
some combinations worked quite well, other combi-
nations did not work at all. Typical problems at that 
time were 

 formal errors in the XML-file, 
 errors during initialization, 
 memory leakage, and 
 different simulation results in different import-

ing tools. 
 

Test results for the bouncing ball example are as de-
picted in Figure 1. The model was created in tool 1. 
Then, it was exported as a Functional Mockup Unit 
(FMU) for model exchange. The import of the FMU 
in the same simulation tool was possible, but the 
simulation results were erroneous, see Figure 1. The 
simulation of the FMU was also not possible in four 
other simulation tools due to different errors, e.g., 

 failed assertions, 
 two importing tools crashed during simulation, 

or 
 unspecified error at import. 
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(b) FMU simulation result in tool 1 

 
Figure 1: Comparison of simulation results for a bouncing 

ball example (status March 2012) 

 
At the same time, every tool could be listed on the 
FMI website in “green” and claim to support FMI as 
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depicted in Figure 2. The number of these tools in-
creased very rapidly, but did not reflect the experi-
ence of the internal benchmark. 

 

 
 

Figure 2: Beginning of list of tools supporting FMI 
(source: https://www.fmi-standard.org, March 2012) 

2.2 A classification of possible problems in 
FMI-based simulation 

The challenges encountered in the benchmark are 
classified and ordered with increasing maturity of the 
FMI standard: 

I. Inconsistencies of the standard 
 Source of problem: Standard 
 Examples: Ambiguities regarding naming 

conventions and structure of ZIP-file, 
XML model-description file 

II. Formal errors in the FMU-File 
 Source of problem: Exporting tool 
 Examples: Errors in XML and internal di-

rectory structure of ZIP-file 
III. Formal interaction of importing tool with 

FMU 
 Source of problem: Exporting or import-

ing tool 
 Examples: Errors in calling functions; 

memory leakage 

IV. Simulation of one FMU (with solver of import-
ing tool in case of model exchange) 
 Source of problem: Exporting or import-

ing tool 
 Examples: Incorrect initialization; incor-

rect simulation result; incorrect event 
handling 

V. Simulation of multiple connected FMUs with 
solver for model exchange 
 Source of problem: Solver or master al-

gorithm of exporting/importing tool, 
overall system divided into several FMUs 
at unsuitable location   

 Examples: Incorrect treatment of algebra-
ic loops; numerical problems with FMUs 
with different time constants (stiffness) 

 

These problem categories are summarized and or-
dered in Figure 3. The problem classes correspond to 
different stages in the simulation process. If an error 
occurs in one problem class, typically the simulation 
fails or the results are not reliable. 

At the beginning of 2012, the FMI standard 1.0 
was quite mature so that problem class I was not a 
big issue. But there occurred several problems corre-
sponding to problem classes II to IV for exchanging 
even single FMUs between different tools and simu-
lating them. Only the problem classes I to IV are 
FMI-specific; problem class V corresponds to typical 
simulation challenges of modular simulation with 
causal interfaces or co-simulation. Some of the prob-
lems in FMI-based simulation might be observed for 
the first time, because models have neither be ex-
changed nor been coupled in the past. 

3 Implemented measures to improve 
maturity 

The maturity issues of FMI-based simulation were 
addressed to the FMI community at the 
MODELICA/FMI meetings beginning early 2012. 
The discussions and input from other companies and 
users resulted in the call for quotation of an FMU 

Simulation 
of one
FMU

Simulation 
of multiple 
FMUs

Location of problems in 3/2012

Inconsis-
tencies 
of FMI 
standard

Formal 
errors in 
FMU

Import of 
FMUI. II. III. IV. V.

Figure 3: Classification of problems in FMI-based simulation 
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Compliance Checker and later of FMI Cross Check-
ing rules. Bosch’s application for membership in the 
FMI Steering Committee was accepted in January 
2013. Since then Bosch is actively contributing at 
FMI design and steering committee meetings. 

3.1 FMU Compliance Checker  

The FMU Compliance Checker [11] is a software 
tool that was initiated by the MODELICA Associa-
tion by a call in 04/2012 and was implemented by 
the company MODELON AB. It addresses problem 
classes II, III, and also partly IV (the tool contains 
only a very simple solver). In the first release only 
one FMU could be called and no inputs to the FMU 
could be provided. With a later release inputs to 
FMUs can be provided as CSV-files. The FMU 
Compliance Checker is a very valuable tool to check 
for formal errors of the FMU (see Figure 4).   

 
 

Simulation 
of one
FMU

Simulation 
of multiple 
FMUs

Inconsis-
tencies 
of FMI 
standard

Formal 
errors in 
FMU

Import of 
FMUI. II. III. IV. V.

FMU Compliance 
Checker

Cross Checking status 2013
 

Figure 4: Focus of FMU Compliance Checker 
 and FMI Cross Checking 

3.2 FMI Cross Checking 

The FMI Cross Check Rules [12] were approved in 
February 2013 and focus on testing the quality of 
implementations of exporting and importing tools. It 
is defined how many FMUs an exporting tool must 
publish and for how many of these FMUs an import-
ing tool must publish simulation results in order to 
get listed as “available” on the FMI-tools web-
site [3]. As at the moment only single FMUs are 
tested, FMI Cross Checking at the moment focuses 
on problem class III and IV as depicted in Figure 4. 
As a side effect it will also show problems of class I 
and II.  

Figure 5 shows a screenshot of the FMI Tools 
website [3] and an entry in green refers to an export-
ing or importing tool that has successfully passed 
FMI Cross Checking. An entry in orange shows that 
the corresponding FMI export or import is claimed to 
be available but is not tested according to the FMI 
Cross Check Rules. 

 
Figure 5: Beginning of list of tools supporting FMI 

(source https://www.fmi-standard.org, status 11/08/2013) 

 
At first glance, it is disappointing that there are so 

many “orange” entries of exporting tools that have 
not yet provided test FMUs and of importing tools 
that have not yet published simulation results. On the 
other hand this makes it transparent that there are 
combinations of FMU-exporting and importing tools 
that are tested and other that are not. This is exactly 
what was intended with the FMI Cross Checking 
rules and helps the user to select tools that he can 
rely on. 

 

 
Figure 6: Results of FMI Cross Checking,  

(source https://www.fmi-standard.org, status 11/8/2013) 

 
For the tools that participate in FMI Cross Check-

ing, detailed results are published on the FMI web-
site, as depicted in Figure 6. Thus, FMI Cross 
Checking is very valuable for industrial users, as 
they are supported with information, which combina-
tions of exporting and importing tools have already 
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been tested successfully for some applications.  
FMI Cross Checking is a source to detect improve-
ment potential of the simulation tools.  

4 Proposed next steps 

The actions that we have seen until now address 
mainly the problem classes II to IV. In order to ad-
dress “real-life problems”, FMI Cross Checking 
should be extended to more tools and for multiple 
FMUs. The (co-)simulation techniques for importing 
tools should be improved and the improvements of 
FMI 2.0 should be implemented soon. 
 

4.1 Extension of FMI Cross Check Rules 

There should be more exported test FMUs provided 
by much more exporting tools und much more re-
sults of importing tools be published. FMI Cross 
Checking should be extended to connected FMUs. 
These FMUs could come from different exporting 
tools. 

A simple test case is shown in Figure 7: An elec-
trical motor with a gear and load torque (plant mod-
el) with PI controller (model of the software). The 
plant model and the control model are created in dif-
ferent MODELICA based simulation tools, then 
(separately) exported as FMUs and re-imported in 
different tools. This is a simple test example for a 
closed loop control, where the control software FMU 
might come from a different source than the plant 
model FMU. In some cases this worked already well 
from the beginning (2012), in other cases bugs have 
been fixed. 
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Figure 7: Example of connected FMUs  
exported from a MODELICA model 

 

Further test examples of connected FMUs should be 
provided, e.g.,  

 a stiff mechanical system consisting of various 
spring and damper elements exported as sev-
eral FMUs, or 

 a hybrid powertrain containing of different 
FMUs: 
 Simple map-based model of a combustion 

engine, 
 mechanical powertrain with gears and 

clutches, 
 electrical machine, 
 power electronics, and 
 control software model for the electrical 

machine. 
 

 

Simulation 
of one
FMU

Simulation 
of multiple 
FMUs

Inconsis-
tencies 
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standard

Formal 
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FMU

Import of 
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FMU Compliance 
Checker

FMI 2.x

Extended Cross Checking for multiple FMUs
 

Figure 8: Focus of FMI 2.x, FMU Compliance Checker 
and extended FMI Cross Checking 

4.2 Extension of test cases to multiple connect-
ed FMUs 

In order to test multiple connected FMUs in different 
tools easily a standardized file format for the defini-
tion of the set-up is proposed. This file should con-
tain the following information: 

 Simulation settings (e.g., simulation dura-
tion), 

 list of the included FMUs,  
 parameters of the included FMUs, and 
 list of connections (i.e., which output of an 

FMU is connected to which input of another 
FMU). 

 
Such a file should be preferably implemented as an 
XML file. All stimuli can also be defined in FMUs 
or provided as CSV file, as it is already possible for 
single FMUs within cross-checking. All files for a 
particular test should be either provided in a ZIP-file 
or a directory. With the help of such a standardized 
file describing the connections of multiple FMUs, 
the testing of connected FMUs can be done automat-
ically in batch runs. 
 

     Stimuli            Control         Drive 

 

 

 

 
 

 

 

 

 

   MODELICA model of a motor drive with control and stimuli 
 

 

 

 

 

 

 

 

 

Stimuli-FMU   Control-FMU                 Drive-FMU 

    Corresponding FMI-based model consisting of three FMUs 
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4.3 Improvement of (co-)simulation techniques 
of importing tools 

New co-simulation techniques and master algorithms 
are proposed in the scientific community, see e.g. 
[13-15]. These new methods will improve co-
simulation techniques. Also for model exchange new 
solver techniques should be developed that can han-
dle multi-rate systems divided in several FMUs. The 
(co-)simulation capabilities of the importing tools for 
multiple FMUs can be compared by extended FMI 
Cross Checking. 

4.4 Improvements of the FMI standard with  
FMI 2.0 

Problem class I is addressed by bug fixes of the FMI 
standard. Maturity issues of the FMI standard 1.0 are 
not considered problematic, but additionally to new 
features, there will be some minor inconsistencies 
eliminated. FMI Cross Checking is an integral part 
of the introduction phase of FMI standard 2.0. 
Hence, it is expected that possible problems in the 
standard (problem class I) and the implementations 
(problem classes II to IV) will be detected at an early 
stage. FMI standard 2.0 will be only released, when a 
significant number of test implementations are avail-
able.  

5 Outlook  

5.1 Usage of FMI at Bosch 

FMI enables the exchange of models between tools 
where this either had not been possible in the past or 
only by proprietary exchange formats (resulting in 
some cases in additional license fees). Additionally, 
FMI could replace existing in-house solutions of tool 
couplings and co-simulation. The use of a widely 
accepted standard is much more effective than de-
veloping and maintaining special interfaces. 

5.2 FMI-based collaboration with OEMs 

One motivation of support FMI is the increasing de-
mand to exchange simulation models between OEM 
and suppliers [10]. While FMI as a technical stand-
ard is right on track, there are other points to be ad-
dressed such as model exchange process and accom-
panying documentation. This is developed in the 
ProSTEP Smart Systems Engineering Project (SSE) 
[6] in cooperation with OEMs.  The main question 
there is how collaborative simulation-based engi-
neering based on FMI can work. FMI is the best 

available approach for tool-independent model ex-
change and co-simulation. FMU Compliance Check-
ing and FMI Cross Checking address technical prob-
lems that existed in the past. FMI Cross checking 
should be extended to more complicated examples 
and also with multiple FMUs. Then, FMI can be-
come the technical basis for model-based collabora-
tive engineering in a heterogeneous tool environment 
with different partners. 
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An FMI-Based Tool for Robust Design of Dynamical Systems
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Abstract

Concepts from quality sciences, such as robust design,
six-sigma, and design-of-experiments have had a large
impact on product development in industry. These
concepts are increasingly used in a model-based en-
gineering context where data is gathered from simu-
lation models rather than laboratory setups or proto-
types.

This paper presents a framework to apply such ideas
to analysis of dynamical systems. A set of tools
that can be used for uncertainty analysis of dynam-
ical Modelica models is presented. These tools are
made available in the FMI Toolbox for MATLAB. The
workflow and tools are demonstrated on a cooling loop
design problem.

Keywords: Design-of-experiments, Robust design,
Controls, Modelica, FMI

1 Introduction

Model-based engineering is a key technology for com-
petitive product development. However, implement-
ing, parameterizing, and validating simulation models
of physical systems is time-consuming and costly. To
make modeling efforts pay off, it is necessary to sys-
tematically consider tools, practices, and workflows to
get the most use out of a model portfolio.

In this paper, we present a tool-chain and a method-
ology to efficiently integrate concepts from robust de-
sign and design-of-experiments to design and analy-
sis of dynamical systems. Robust design is a well-
established methodology that aims to design products
and systems such that they are inherently robust to
variations in components and operating conditions. A
large amount of research has been directed towards
robust design methodologies, that includes concepts
such as design of experiments, quality engineering,
critical parameter management, and six sigma [8, 5].
In the last years, there has been a growing interest in
applying these kinds of techniques to analyze detailed
simulation models, see e.g. [1, 2, 6, 7, 10, 4].

The tools presented in the paper are integrated into
the FMI toolbox for MATLAB. Functional Mockup
Interface (FMI) is a standard that allows importing and
exporting dynamical models between different tools.
First released in 2010, the standard has quickly been
adopted in industry and is currently supported by a
large range of tools used for physical systems mod-
eling. FMI is a powerful standard for deploying tool-
independent workflows and processes. Together with
physical dynamical simulation models from Modelica,
it provides a suitable platform for applying robust de-
sign concepts to analysis of dynamical systems.

The paper starts by discussing typical applications
of simulation models, and providing an overview of
design-of-experiments (DoE) concepts. The ideas be-
hind the design of the new DoE tools in the FMI tool-
box for MATLAB are then described. The use of the
tools is then illustrated for the design of a cooling sys-
tem, including both static analysis to size the compo-
nents, and dynamic analysis to design a controller.

2 Applications of simulation models

Simulation model development represents a signifi-
cant strategical investment in industries such as pro-
cess, automotive, aerospace, and energy. Simulation
models are, however, never an end in themselves but
rather a means to answer questions in the engineering
design process. Such questions may be:

• Hardware optimization: find dimensions, set-
tings, and operating points for physical compo-
nents

• Verification: check that performance meets specs
in entire operating envelope

• Quality: check probabilistically that system specs
are satisfied given tolerances on components

• Controls: design, analyze, and test control algo-
rithms
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Simulation models should ideally be developed
such that they can provide answers to all of these ques-
tions. In the literature that address model-based engi-
neering, it is interesting to note that there is a substan-
tial cultural difference between research publications
in the control community compared to the first three
items in the list.

Robust design methodologies generally consider
coarse large-scale mathematical and statistical models
of complex systems. The models may be based on data
from physical experiments or supplier spec sheets, and
are generally steady-state [10]. The literature is heav-
ily focused on processes, workflows, and tools.

Control engineering literature has a strong mathe-
matical and analytical focus. Dynamics are central,
and simplified mathematical model classes are ana-
lyzed with rigor. Much research is focused on mathe-
matical analysis but there is surprisingly little written
on processes and practices for control design in the
product development process. It is commonly noted
that there is a significant gap between much of the
mathematically-oriented control research community
and industrial practice.

In practice, control design is often based on lin-
earization at a single operating point. For the design to
be successful, this operating point needs to be repre-
sentative of the dynamics across the operating range.
It is normally difficult to know how the dynamics of
the process vary with operating points and parame-
ter uncertainty. Control design methods that go be-
yond linear models are often cumbersome to use and
require a detailed understanding of which nonlinear ef-
fects or other process uncertainty that will be relevant.
In-depth domain experience or trial-and-error is gen-
erally needed to find these dominant effects.

In practice, PID controllers based on simple exper-
iments or linearized models are widely applied in in-
dustry, even though all real-world processes have some
amount of nonlinearity or uncertainty. It is not uncom-
mon to find controllers that perform poorly, with slow
responses or oscillations at off-design operating con-
ditions.

In this paper, we suggest how approaches from the
robust design field can be applied to analysis of dy-
namical simulation models and control design. In or-
der to use information on process nonlinearities and
uncertainty in control design, it is imperative that tools
be designed so that the relevant information can be ex-
tracted in a convenient and intuitive format.

3 Design-of-experiments

The term design-of-experiments (DoE) denotes
methodologies to gather information from a system
or process in a systematic way. Originally, it was
introduced as a means to collect statistically sound ex-
perimental data sets for establishing cause-and-effects
relationships.

In recent years, there has been an increasing interest
in applying DoE techniques to extract data from simu-
lation models [2, 1].

3.1 Terminology and designs

In the DoE terminology, a factor denotes a quantity
that is to be varied in the data set. An experiment is
the procedure of testing the system with a particular
choice of factor settings. A response is an outcome
that is measured in the experiment. A test matrix is a
list of factor setting combinations to be tested.

Selecting an appropriate test matrix is key to design-
of-experiments. Figure 1 shows examples of possi-
ble test matrices in two dimensions. The first plot to
the left shows a design based on one-factor-at-a-time
(OFAT). Here, a nominal operating point is chosen,
and off-nominal behavior is checked by varying one
factor at a time. This is generally not an effective way
to gather information on the system, since no interac-
tions between the variables are considered. Neverthe-
less, this approach is often applied in an ad-hoc man-
ner to test robustness.

The second plot shows a full-factorial test matrix
design. This is equivalent to a multi-dimensional grid,
where two or more different levels are chosen for each
factor and the test matrix is then assembled from all
combinations of the different levels. This method may
work well in two dimensions but scales poorly with the
number of factors. Other designs that are still based
on fixed factor levels but that only select a subset of
combinations are often preferred. Examples of such
designs are fractional factorial designs, Box-Behnken
designs, or central composite designs.

When DoE is applied to physical experiments, it can
be advantageous to use a limited set of levels for each
factor. For example, each different value of the factor
could involve building a separate prototype. In simu-
lation models, however, these constraints are generally
not present and the test matrix can be constructed by
spreading the test points freely in the ranges of inter-
est. Monte-Carlo simulations spread the test points ac-
cording to statistical distributions of the factors, which
allows to get statistical estimates on distributions of
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Figure 1: Example of test designs in two dimensions. OFAT = one-factor-at-a-time, FF = full factorial. Each of
the four examples contain 100 test points.

the estimates. The third plot in Fig. 1 shows points
that have been randomly sampled from uniform inde-
pendent distributions for x1 and x2.

To maximize the information that can be extracted
from the process in a limited number of simulations,
the points should fill the space spanned by the fac-
tors. Quasi-Monte Carlo designs use space-filling al-
gorithms to spread the test points in a way that cov-
ers the space better than random sampling. The right-
most plot in Fig. 1 shows a DoE design based on
the Sobol space-filling algorithm. The advantages
of using space-filling QMC designs instead of ran-
dom sampling can be substantial in higher dimensions
where corner-case are poorly covered by random sam-
pling [3].

3.2 Meta-models

The results of a DoE experiment consist of a list of
pairs of factor values and response values {xi,yi}i=1..N
where N is the number of experiments. In some cases,
it may be sufficient to verify that all yi fulfill specifi-
cations, or to pick one xi that give the desired outcome
of the response. Often, however, we are interested in
finding a factor combination x∗ in a continuous set X
that optimizes some criteria defined by x and y. That
is, it is necessary to interpolate between the points in
the test matrix. To do that, some regularity on the map
from x to y is assumed.

One way to find x∗ is to perform sequential DoE in
refined factor ranges close to the expected optimum.
To limit the number of required experiments, it is gen-
erally better to use the existing data to generate a meta-
model of the mapping from x to y. A meta-model is a
simple empirical model that is obtained by fitting the
data to some generic model structure, e.g. using linear
regression, splines, neural networks or gaussian pro-
cesses. Meta-models may also be referred to as surro-
gate models or emulators.

The role of meta-models is to replace the real sys-

tem with a simpler representation for analysis such as
optimization or verification.

4 FMI tools for dynamical systems
DoE

4.1 Modelica and FMI as a platform

Modelica has several attractive features as a platform
for robust design of dynamical systems. Modelica
component models normally have a sufficient level
of detail to study influence of component variability,
while still being simple enough to run large batches of
experiments. From the nonlinear DAE models, infor-
mation on the effect of both design parameters, oper-
ating conditions, and actuator settings can be investi-
gated.

The FMI standard provides increased flexibility
when model development and model analysis can be
separated to different tools. The strengths of differ-
ent tools and the skills engineering teams have devel-
oped using specific tools can be put to use more effi-
ciently than if each tool needs to provide features for
each potential modeling application. This facilitates
cross-team use of the same model portfolio for differ-
ent purposes.

MATLAB/Simulink is widely used as an environ-
ment for control design and implementation, and is
thus a natural tool for analysis of model dynamics.

4.2 Tool requirements

The objective of a Modelica-based DoE tool is to re-
move the hurdles that make engineers resort to ad-hoc
one-factor-at-a-time robustness testing.

The user wants to get a general sense of how sensi-
tive the system is to parametric uncertainty. To do this,
the user should be in charge of problem formulation,
and provide the following input:
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Figure 2: Workflow

• FMU model to be used

• FMU parameters, inputs, and outputs that are fac-
tors in the DoE

• Ranges or distributions for FMU parameters

• Number of experiments in the test matrix

• Type of DoE design

• Response variables to analyze or visualize

From this information, the tools should handle the
back-end work:

• Construct a test matrix based on the desired DoE
design and factor ranges or distributions

• Set FMU parameters

• Simulate the FMU at all points in test matrix,
finding steady-state

• If the user specifies values for FMU outputs, find
inputs that give these outputs

• Catching errors so that an entire batch of results
is not waisted by a single test point that failed to
simulate

• Linearizing the system at all points in the test ma-
trix

• Provide convenient methods to visualize the re-
sults

• Construct suitable meta-models for analysis

4.3 DoE features in the FMI toolbox for
MATLAB

The DoE tools in the FMI toolbox for MATLAB were
introduced in release 1.6 with the purpose to make it
easy and intuitive to perform DoE batch experiments
on FMU models. The workflow is summarized in
Fig. 2. The user specifies the names and distribu-
tions of DoE factors in either an Excel spreadsheet or
a MATLAB file.

A class, FMUDoESetup holds the information on the
FMU model to be simulated, the factor distributions,
and simulation options. A batch of experiments is
run by calling methods of FMUDoESetup that corre-
spond to different DoE designs: full factorial, Sobol-
sequence based, or Monte Carlo random simulation.
There is also a possibility to use a custom test matrix.
The DoE factors can be both FMU parameters, FMU
inputs, or FMU outputs. If outputs are defined as fac-
tors, an equivalent number of inputs must be defined
as ’free’ inputs with min- max- and nominal values.
These inputs are then optimized iteratively to obtain
the specified outputs at each test point.

These methods return an object of the class
FMUDoEResult that stores experiment results, includ-
ing input-, output-, and state data, simulation status,
and linearization at all test points. Data can be visual-
ized by calling methods of the FMUDoEResult class to
plot the main effects between the factors and reponses,
or to generate Bode diagrams or step responses for the
ensemble of linearized systems at all test points.

In the future, support for meta-models may be
added. An interesting application of meta-models gen-
erated from the DoE is to provide simplified subsys-
tem models that can be used as a substitute for the full
Modelica subsystem model in simulations of larger
systems.
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5 An example

This section demonstrates a detailed example on how
the tools are used in the design of an engine cooling
system with feedback control. The design process con-
sists of the following steps:

• Verifying feasibility of the suggested cooling
loop architecture

• Sizing the components

• Verifying the design for worst-case heat load

• Designing a robust controller for the system

• Verifying the closed-loop dynamics

Note that the example is chosen to illustrate the tools
and methodology; the architecture and parameter val-
ues do not directly correspond to any existing system.

5.1 Model and specs

We consider a cooling loop architecture where the
coolant temperature is actively regulated through an
electronically controlled coolant pump. Active control
of coolant temperature is achieved through modulat-
ing the coolant pump speed, as opposed to the con-
ventional cooling system architecture where a passive
thermostat valve adjusts the coolant flow to maintain
safe coolant temperature. Better control of coolant
temperature can help the engine management system
achieve better over-all fuel economy [9].

A Dymola model of the cooling loop is shown in
Fig. 3. The model is an example model provided in
the Modelon Liquid Cooling Modelica library. Inputs
and outputs were added to the model (inputs: heat flow
from engine, pump speed, and air mass flow through
radiator, outputs: pump mass flow, liquid temperature
drop over radiator, temperature of liquid after the en-
gine, and temperature of the liquid at the pump en-
trance).

The following specifications are set for the system

• The engine-out coolant temperature Tcoolant must
not exceed 100 ◦C (373.15 K).

• The system should handle a heat load of Q f low=
100 kW

• The ambient temperature operating range is
Tambient ∈ [-20◦C, 45◦C]

Figure 3: The cooling system model in Dymola

Three design parameters are considered: the maxi-
mum pump speed Npump, the heat exchange efficiency
η of the radiator, and the capacity of a fan that circu-
lates air through the radiator when the ram air flow is
not sufficient to provide coolin.

5.2 Sizing the system

The first step in the design process is to screen the
design space to see if there exist some combination
of parameters that meet the specifications. For this
task, we look at the worst-case heat-load: maximum
engine heat load and maximum ambient temperature.
We let the three design parameters be factors in the
DoE setup, and choose wide ranges for these factors
to get a sense of feasibility of the design. The setup is
summarized in Table 1.

Table 1: Experiment setup for screening the design
space

variable dist min max value
Q_flow [W] constant 1e5
T_ambient [K] constant 318.15
N_pump [rpm] uniform 50 2000
mflow_gas [kg/s] uniform 0.5 5
efficiency uniform 0.4 0.9

We run a batch of 100 experiments with a Sobol
QMC-design where the three factors are uniformly
distributed between their maximum and minimum val-
ues in a cube. Figure 4 shows the resulting steady-state
temperature plotted against each of the DoE factors.
The green dots represent test points where the speci-
fication on engine-out coolant temperature is fulfilled,
and the red dots represent test points that do not meet
the specification. Not surprisingly, the test points that
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Figure 4: Result of screening design

fulfill the specs have a high pump speed, a high radia-
tor gas flow, and a high heat exchanger efficiency.

The next step is to zoom in the design variables
to a narrower range to find appropriate component
specifications that meet the subsystem specification on
engine-out coolant temperature. The DoE setup for
this sizing task is given in Table 2. A new set of uni-
formly distributed test points in the new factor ranges
was generated, and the effects on coolant temperature
are shown in Fig. 5.

Table 2: Experiment setup for sizing the system
variable dist min max value
Q_flow [W] constant 1e5
T_ambient [K] constant 318.15
N_pump [rpm] uniform 800 1200
mflow_gas [kg/s] uniform 2 4
efficiency uniform 0.6 0.8

From Fig. 5, we can now decide on a set of compo-
nent specs on the pump and radiator that would meet
subsystem specification. This would normally involve
a trade-off between cost and availability of compo-
nents. We will here choose the design

Nmax
pump = 650rpm

η ≥ 0.65

m f low ≥ 3kg/s

(1)

At worst-case conditions in terms of heat load
and ambient temperature, this design gives Tcoolant =
96.8◦C.
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Figure 5: Result of sizing experiments

5.3 Dynamics

In the next step, we examine the dynamic response
from pump speed command to engine-out coolant tem-
perature. The DoE factor setup is given in Table 3. The
factors were chosen to represent a range of operating
conditions for the system.

Figure 6 shows the Bode diagram of the linearized
systems at each point in the test matrix. It can be seen
that the system is nonlinear: there is a large difference
in the frequency response at different operating points.

We can now investigate the influence of the DoE
factors on the dynamic response. Figure 7 shows the
influence of the DoE factors on the steady-state gain of
the linearized systems. The pump speed is the factor
that has the largest influence on the steady-state gain.

5.4 Control design

The Bode diagram for the ensemble of linearizations
in Fig. 6 can be used to design linear controllers that
will have sufficient phase margins at all linearization
points.

For nonlinear systems, there are no general guaran-
tees that a controller that stabilizes each possible lin-
earization will globally stabilize the closed-loop non-
linear system. In many cases, however, this is more of
an academic concern. The alternative to looking at the
ensemble of linearization may be to look at lineariza-
tion in a single point. The ensemble of linearizations
provides significantly more information.

A PI-controller with K =−50 and Ti = 100 was de-
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Table 3: Experiment setup for evaluating the design
variable dist min max nominal
Q_flow [W] free 0 1e5 1e4
T_ambient [K] uniform 253.15 318.15
N_pump [rpm] uniform 20 650
mflow_gas [kg/s] uniform 3 10
efficiency uniform 0.65 0.8
T_engine_out [K] uniform 350 370
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Figure 6: Ensemble Bode diagram showing the mag-
nitude and phase for linearizations at all points in the
test matrix.
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signed based on the ensemble Bode diagram.
Figure 8 shows the ensemble step response of the

closed-loop systems corresponding to the lineariza-
tions at each point in the test matrix.

6 Conclusions

We have presented tools and workflows to apply robust
design methods to dynamical models. The tools are
available in the FMI Toolbox for MATLAB. The aim
in developing these tools has been to provide meth-
ods to work with parametric uncertainty in dynamical
models in a lightweight and intuitive manner.

Each of the analysis and design steps in the cooling
loop example involve less than ten MATLAB com-
mands. By taking care of back-end work, the tools
allow engineers to get answers from models in a sys-
tematic fashion rather than ad-hoc testing.

It would be interesting to see an increased academic
focus on design process, tools, and workflows for con-
trol design. In this context, Modelica and the FMI
standard provide a powerful platform.
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Abstract

The Functional Mockup Interface (FMI) standard en-
ables hybrid simulation of models from different tools.
Such tools can have different underlying behavioral
semantics, creating challenges when models are com-
bined. A case in point is the combination of the Rhap-
sody tool, widely used to describe and implement dis-
crete control behavior, and Modelica, widely used to
describe continuous plant behavior.

This paper describes a plugin we developed for ex-
porting Functional Mockup Units (FMUs) from Rhap-
sody, and the results of combining generated FMUs
with continuous models. When a Rhapsody FMU is
used in a different environment, some basic assump-
tions on its behavior are challenged. We describe the
semantic mismatches between the tools, to what ex-
tent they can be overcome, and what modelers need to
do in order to preserve the intended semantics of an
exported FMU.
Keywords: FMI, Rhapsody, SysML, Hybrid simulation

1 Motivation and Overview

Complex cyber-physical systems are composed out of
components and subcomponents, often designed and
manufactured by different organizations. Each compo-
nent can come from a wide range of different engineer-
ing domains, including mechanical, electrical, control,
and software. Each engineering domain uses its own
languages and tools; these are often not integrated with
each other. This makes it difficult to perform analysis,
verification, and design-space exploration at the model
level, resulting in errors that are discovered late in the
process (typically during integration), and are expen-
sive to fix.

In some cases there is ad-hoc integration between
a pair of tools; for example, organizations commonly
create connections using ad-hoc scripts. However, this
is expensive, brittle, and sometimes wrong. Func-

tional Mockup Interface (FMI)1 is an open interna-
tional standard for the integration of models between
different tools that may use different underlying se-
mantics (e.g., discrete state machines and differen-
tial algebraic equations). It specifies an interface that
encapsulates a model as a Functional Mockup Unit
(FMU), for communicating with hosting tools. The
standard defines two types of export: model exchange
and co-simulation. The main difference between them
is that the former uses a solver of the hosting tool,
while the latter includes its own solver and the hosting
tool only orchestrates the simulation (transfers vari-
ables values, orders FMUs invocation, and selects the
next communication step size).

SysML2 and UML3 are modeling languages stan-
dardized by the OMG to describe structure and behav-
ior of systems at various levels of abstraction. State-
charts [6] are a popular formalism for specifying be-
havior in SysML and UML; they are an extension of
finite-state machines, and enable very concise decrip-
tions of finite-state models. They are used to describe
reactive systems at a wide range of abstraction, from
the details of embedded controllers to high-level man-
ufacturing processes. Some tools, such as IBM Ratio-
nal Rhapsody®,4 can execute statechart models, and,
in the case of software applications, to synthesize pro-
duction code from these models. Model execution
(sometimes called “simulation”) can be used to ana-
lyze and verify the design.

However, many modern systems are cyber-physical
and include physical models whose behavior is mod-
eled in other languages and tools. In the example
of Section 2, a statechart is used to model the con-
troller of a heating system; other aspects of the sys-
tem, such as the thermal plant, sensors, and actua-

1https://www.fmi-standard.org.
2http://www.omgsysml.org.
3http://www.uml.org.
4http://www-03.ibm.com/software/products/en/

ratirhapfami.
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tors, are modeled in Modelica®.5 In order to simulate
the whole system, it is therefore necessary to combine
the discrete-event simulation of the statechart model in
Rhapsody with the continuous dynamics described in
Modelica. This paper describes the way in which an
FMU that encapsulates the statechart can be exported
from Rhapsody and used inside FMI-compliant tools.6

In Section 3 we analyze the semantic differences be-
tween the behavior of a SysML block in Rhapsody and
that of the exported FMU. We highlight subtle, but in
some cases significant differences. The naive expec-
tation is for two communicating statecharts from the
same Rhapsody model to retain their behavior when
each is exported as an FMU and composed in the same
way in a hosting tool. Because of the different concep-
tual semantics of Rhapsody statecharts and the FMI
standard, this is very challenging. It follows that de-
signers of SysML models that participate in hybrid
simulations as FMUs need to be aware of this and de-
sign appropriately. We present a set of guidelines in
Section 3.6.

2 Example

This section presents an example of a hybrid model, in
which a controller specified as a statechart is exported
as an FMU and used in a Modelica model. Figure 1
shows a Modelica model of a heater7 in the Simula-
tionX tool.8 The model consists of the heater plant
(bottom), a temperature sensor (displayed as a ther-
mometer), a controller (top, in black) that receives the
sensor input and a parameter specifying the desired
temperature, and two actuators that can turn on or off
two heating elements (lower left, in blue). A switch
(labeled “booleanStep1” in the middle of the dia-
gram) turns the heating system on or off.

The plant is specified in Modelica using a set of dif-
ferential algebraic equations, and the sensor and actu-
ators are also simple Modelica models. The controller,
however, is specified as a SysML statechart in Rhap-
sody; it is shown in Figure 2. The controller starts
in state OFF; it moves to ON when the switch signal
changes to true, and moves back when it changes to
false.

In state ON, the controller keeps track of the num-

5https://www.modelica.org.
6See https://www.fmi-standard.org/tools for a list of

tools that support FMI.
7Based on the ControlledTemperature example from the Mod-

elica Standard Library.
8http://www.simulationx.com.

HController2

«Block,FMUExport»

«FMUIgnore» activeHeaters:int=0

heater1:bool=false

heater2:bool=false

measuredTemp:float=0

refTemp:float=0

«FMUParameter» switchingTimeout:int=1000

«FMUParameter» tempDiff1:float=5

«FMUParameter» tempDiff2:float=10

turnOn:bool=false

turnOn:bool

activeHeaters:int

heater2:bool

heater1:bool

«FMUContinuous» measuredTemp:float

refTemp:float

turnOn:bool

activeHeaters:int

heater2:bool

heater1:bool

«FMUContinuous» measuredTemp:float

refTemp:float

Figure 3: The interface of the controller block.

ber of active heaters (between 0 and 2); in the ini-
tial sub-state, NoHeating, this is set to zero, and both
heaters are turned off. Each of the three states has a
timeout transition (labeled tm(switchingTimeout)),
it is used to sample the temperature sensor period-
ically. The operation tempDiff() returns the dif-
ference between the reference temperature (provided
as the top input in Figure 1) and the measured tem-
perature (bottom input). The model has two param-
eters, tempDiff1 and tempDiff2. Whenever the
temperature difference is more than tempDiff1, the
first heater is turned on; if the difference exceeds
tempDiff2, both heaters are turned on. This is
achieved by the transitions between the states, which
check the temperature difference. These transitions
have just a condition (specified in brackets) but no trig-
ger. They are checked each time the state is entered;
that is, periodically whenever the timeout expires.

The interface of the controller is a SysML block,
shown in Figure 3. It has three inputs, which are
SysML flow ports: the boolean-valued turnOn, for the
on/off switch, and two float-valued input ports, one for
the reference temperature, and one for the measured
temperature. The last is annotated with the stereotype
«FMUContinuous» to indicate that it is a continuous
input; by default, inputs are assumed to be discrete
(see Section 3.5). Each flow port is associated with
a block attribute of the same name (shown inside the
block); each of these has an associated initial value.
The block has three output flow ports: the first two
are boolean-valued signals that turn the heaters on and
off, and the third is an integer-valued signal that carries
the number of currently active heaters. In addition, the
block has three parameters, for the switching timeout
and the temperature thresholds.

Figure 4 shows the essential parts of the model de-
scription in the FMU generated by the plugin from this
block. It starts with a type definition describing the
float type associated with the block’s inputs. Since

Simulating Rhapsody SysML Blocks in Hybrid Models with FMI

44 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409643



Figure 1: The heater model in SimulationX.

this type defines single-precision floating-point num-
bers, while the FMI standard defines real numbers us-
ing double precision, it is translated into an FMI real
type with a constrained range. Following the type def-
inition are the specifications of the model variables.
First are the three inputs, the first with a boolean type
and the others with the constrained type. All inputs
have input causality and discrete variability, except for
measuredTemp, which is continuous. Following those
are the two output booleans, and the three parameters.

In order to let the plugin know how to treat the vari-
ous block elements, we defined a UML profile contain-
ing a set of stereotypes. For example, the «FMUPa-
rameter» stereotype denotes the three block attributes
that are to be treated as parameters (Figure 3). The
signal activeHeaters is not exported to the FMU, as
indicated by the stereotype «FMUIgnore» annotating
the block attribute of the same name. The model of
Figure 1 defines how these inputs and outputs are con-
nected to the rest of the model when the exported FMU
is imported into the SimulationX environment. Inside
SimulationX, the imported FMUs are represented as
regular Modelica blocks, so they can be naturally in-

Figure 5: Simulation results with the Rhapsody FMU
in SimulationX.

cluded in any Modelica model.
Figure 5 shows the results of the simulation using

the exported controller FMU in SimulationX. The top
graph shows the ramp1 variable from the block at the
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ON

SingleHeater

Reactions

  setActiveHeaters(1); setHeater1(true); setHeater2(false);

tm(switchingTimeout)

DoubleHeater

Reactions

  setActiveHeaters(2); setHeater1(true); setHeater2(true);

[tempDiff()<tempDiff2]

[tempDiff()>tempDiff2]

tm(switchingTimeout)

NoHeating

Reactions

  setActiveHeaters(0); setHeater1(false); setHeater2(false);

[tempDiff()>tempDiff1]

tm(switchingTimeout)

[tempDiff()<0]

OFF

Reactions

  setActiveHeaters(0); setHeater1(false); setHeater2(false);

chTurnOn[turnOn] chTurnOn[!turnOn]

Figure 2: The heater controller in Rhapsody.

top right of Figure 1; this variable represents the am-
bient temperature, which starts at 0 and climbs to 20
degrees during the second minute. The second graph
shows the on/off switch, with is turned on 5 seconds
after the simulation starts. The next two graphs show
the signals that the controller sends to activate the
heaters. When the switch is initially turned on, the
measured temperature is zero, and both heaters are ac-
tivated. The second heater is deactivated after a few
seconds, while the first heater is turned on and off
according to the measured temperature. The bottom
graph shows the values measured by the temperature
sensor; the value climbs from 0 to a little over 20 de-
grees, then seesaws as a result of the activation of the
heaters. Toward the end of the second minute, once the
ambient temperature is high enough, both heaters are
turned off, and the sensed temperature climbs slowly,
as expected.

3 FMI for SysML

This section describes the FMU export functional-
ity we developed for Rhapsody as a plugin, and dis-
cusses the design decisions and their implications. The
FMI standard defines two export modes: model ex-
change and co-simulation. The major difference be-

tween them is that model exchange requires a host-
ing tool to provide an ordinary differential equation
(ODE) solver to perform the simulation, and there-
fore the models needs to expose all internal equations.
Rhapsody models are discrete and do not need an ODE
solver, so co-simulaton would be appropriate; this in
turn could enable the use of the FMU in environments
that do not provide ODE solvers. Unfortunately, FMI
for co-simulation cannot handle discrete events effi-
ciently [2]. For example, the co-simulation API, un-
like the model exchange API, does not provide a way
to report the next event time. We have therefore cho-
sen to use the model-exchange mode for our plugin.
In any case, most of the points discussed in this paper
apply to co-simulation as well.

The elements of the SysML block that are exported
currently limited to atomic flow ports and attributes.
As we saw in the example, input flow ports of the
SysML block are exposed as inputs of the FMU, and
output flow ports become outputs. Values of attributes
of the block that have corresponding flow ports are
considered by Rhapsody as storage for the values of
the ports, and are therefore represented by the same
input or output variables. Other attributes will become
FMI discrete internal variables; if they are annotated
with «FMUParameter», they will become FMI param-
eters. Initial values of attributes will be translated into
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<TypeDefinitions>

<Type name="real32_Type">

<RealType min="-3.4028234663852886E38" max="3.4028234663852886E38"/>

</Type>

</TypeDefinitions>

<ModelVariables>

<ScalarVariable name="turnOn" valueReference="2" variability="discrete" causality="input">

<Boolean start="false"/>

</ScalarVariable>

<ScalarVariable name="refTemp" valueReference="0" variability="discrete" causality="input">

<Real declaredType="real32_Type" start="0.0"/>

</ScalarVariable>

<ScalarVariable name="measuredTemp" valueReference="1" variability="continuous" causality="input">

<Real declaredType="real32_Type" start="0.0"/>

</ScalarVariable>

<ScalarVariable name="heater1" valueReference="0" variability="discrete" causality="output">

<Boolean start="false"/>

</ScalarVariable>

<ScalarVariable name="heater2" valueReference="1" variability="discrete" causality="output">

<Boolean start="false"/>

</ScalarVariable>

<ScalarVariable name="switchingTimeout" valueReference="0" variability="parameter"

causality="internal">

<Integer start="1000"/>

</ScalarVariable>

<ScalarVariable name="tempDiff1" valueReference="2" variability="parameter" causality="internal">

<Real declaredType="real32_Type" start="5.0"/>

</ScalarVariable>

<ScalarVariable name="tempDiff2" valueReference="3" variability="parameter" causality="internal">

<Real declaredType="real32_Type" start="10.0"/>

</ScalarVariable>

</ModelVariables>

Figure 4: The modelDescription.xml file of the generated FMU (excerpt).

a start value of the corresponding FMU variable. How-
ever, the «FMUIgnore» stereotype will prevent any el-
ement from being exposed. This gives the user fine
control over what parts of the block are to be exposed
externally.

Not all SysML elements are currently supported. In
particular, the following are challenging, because of
mismatches between SysML and the FMI standard:

• Bi-directional flow ports, since the FMI standard
does not allow variables that are both inputs and
outputs. This restriction may be lifted in future,
by artificially creating two variables, one for each
direction of a bi-directional port. However, there
are various issues such as naming of ports and
variables, and synchronizing the values of the in-
put and output variables correctly.

• SysML standard ports, since they carry SysML
events (these are not to be confused with FMI

events), which are not supported by the FMI stan-
dard.

The FMU export functionality is based on the FMU
SDK provided by QTronic,9 which provides a skeleton
implementation of the FMI API. The implementation
of the exported FMU consists of the code normally
generated by Rhapsody for the block, with an addi-
tional wrapper that adapts it to the requirements of the
FMI standard. The FMU export process consists of the
main steps described in Algorithm 1.

The first step collects the various elements to be ex-
posed according to the rules described above; it also
checks for illegal or unsupported combinations and
reports them to the user (such reports can be sup-
pressed by using the «FMUIgnore» stereotype). The
second step creates the modelDescription.xml file,
which describes the interface of the generated FMU.

9http://www.qtronic.de/en/fmusdk.html.
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Algorithm 1 Generate FMU Wrapper

1. Analyze the SysML model to identify input and
output ports and internal varibles, discover and
report errors.

2. Generate the FMU model description file.

3. Apply the standard Rhapsody code generation.

4. Generate the code for the FMU wrapper.

5. Compile and package the FMU.

Algorithm 2 fmiEventUpdate

1. Set Rhapsody time based on the time received in
the last fmiSetTime call.

2. Set the block’s input variables based on the pre-
vious set of fmiSetXXX calls.

3. Invoke the Rhapsody-generated code to execute a
behavioral step.

4. Update the wrapper’s variables corresponding to
the FMU outputs.

5. Set the next event time to the earliest timeout ac-
tive in the block.

The third step invokes Rhapsody’s code-generation fa-
cilities to create the implementation of the behavior
of the block to be exported. The fourth step creates
the code that adapts Rhapsody’s implementation to the
FMI standard. This wrapper code is discussed in most
of the rest of this section. Finally, the code is compiled
and packaged in the .fmu file.

3.1 The FMU Wrapper

The FMU Wrapper generated in step 4 of the FMU
export algorithm supports the FMI interface (currently
version 1.0 for Model Exchange) and translates it to
the Rhapsody interface. The wrapper keeps a set
of variables corresponding to the FMU variables, to-
gether with a set of other internal variables (for ex-
ample, the current simulation time). Most of the
FMI functions are implemented by reading or set-
ting these variables; the real work is done by the
fmiEventUpdate function. The wrapper algorithm
implements this function as described by Algorithm 2.

This algorithm seems quite straightforward, but it

hides many subtle semantic issues. When a block is
exported as an FMU, its behavior can be changed by
the way that the hosting tool delivers variable changes
to the wrapper, using the FMI interface calls, and by
the way that the wrapper handles these calls. While
the former is out of the control of the Rhapsody FMU
export plugin, the latter behavior is, and there are a
number of different ways to create the wrapper, each
of which yields somewhat different semantics. There
are two issues that need to be addressed. The first is
communication: the way inputs are transferred to the
FMU and outputs are received from it. The second
is scheduling: when communication takes place, and
how much activity the FMU encapsulating the SysML
block allows the block to perform before it considers
the step to be completed.

Ideally, Rhapsody blocks exported as FMUs would
retain their behavioral semantics, and blocks written
without consideration for their context could be used
as FMUs. At the very least, the naive expectation
could be that if two or more Rhapsody blocks are ex-
ported as FMUs out of the same model, and are con-
nected in the hosting environment in exactly the same
way they were connected in the Rhapsody model, their
behavior will not change. However, context does mat-
ter, in simulation as well as in physical realizations.
Full preservation of semantics between two exported
blocks is challenging; see Section 3.2. In the context
of non-Rhapsody models, the different semantics of
the FMI standard and of Rhapsody create other diffi-
culties, as discussed in Sections 3.3–3.5.

3.2 Quoted Out of Context

In this section we consider the case of two blocks from
a single Rhapsody model, both of which are exported
as FMUs, and connected in the external tool in the
same way as they were in the original model. How
does the implementation of the wrapper change the se-
mantics of the joint model?

The Rhapsody semantics [7] describes the behavior
of a statechart as consisting of a series of steps; each
step may consist of several state changes, and may pro-
duce several variable-change and other events. There
is a strict order between these events.

Changing the value of a SysML flow port in Rhap-
sody might also create an internal change event (such
as chTurnOn in Figure 2); this event can trigger one
or more transitions. The value of the attribute corre-
sponding to the port is changed immediately. How-
ever, all events in Rhapsody are sent asynchronously;
events sent to each port (from whatever source) are
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queued, and delivered in order. In particular, updat-
ing several variables consecutively creates one event
for each, and these are handled one by one. The order
is therefore significant; the block may perform arbi-
trary actions in response to each event; for example, a
typical response to an event is for the statechart is to
move to a new state. Such actions can change how the
block responds to the next event.

As mentioned above, the FMI standard allows
changing any number of variables in a single event-
processing cycle, and the changes are semantically si-
multaneous. This is a consequence of the synchronous
semantics on which the FMI standard is based. A
Rhapsody block can perform a sequence of discrete
changes in response to a single event. For example,
a single transition might include a series of actions
that sequentially change a number of outputs. This im-
plies that, in order to ensure that the order of the corre-
sponding Rhapsody events is preserved, these discrete
changes must be delivered one by one to the FMU
interface. However, this could cause an inconsistecy
between the values, if several related variables (such
as current and resistance) are not changed simultane-
ously.

The wrapper can implement this strategy by end-
ing step 3 of Algorithm 2 inside each of the setter
functions for the output variables in the Rhapsody-
generated code, and continuing with steps 4–5. In the
next event-processing cycle, the wrapper would allow
Rhapsody to continue from the point it was stopped.
All of these events, except for the last one, will require
another event-iteration cycle by returning fmiFalse in
the iteractionConverged field of the return value of
the fmiEventUpdate function; this does not advance
the simulation time.

This strategy allows other FMUs to generate new
inputs after each output is reported. These inputs can
be delivered by the wrapper to Rhapsody immediately;
that would be consistent with the Rhapsody semantics,
since it represents an execution of the Rhapsody model
in which each block is run in a separate thread and out-
put generation happens to be fully synchronized be-
tween threads. However, Rhapsody semantics allows
other behaviors; for example, those where one thread
is significantly faster than the others.

In this strategy, the exported FMU behaves in ac-
cordance with the original semantics of the SysML
blocks in Rhapsody. Any strategy that batches con-
secutive outputs may violate the semantics, since the
generated FMU can be used in a context in which the
order of these output updates is significant. However,

as mentioned above, the Rhapsody semantics may
expose inconsistent value. Furthermore, this strat-
egy could potentially be very inefficient, forcing the
whole simulation to receive and react to each discrete
change separately. Because of these issues, the cur-
rent implementation of the FMU wrapper delivers all
variable-change events simultaneously; the modeler of
the SysML block should be aware of this and introduce
small delays between sequential changes when the or-
der is important. This strategy takes the other extreme,
in that it allows the block to perform all its possible be-
havior in a single cycle, and only stops when it reaches
a wait for some timeout or event.

A related issue is the treatment of multiple changes
to the same variable. In the example, the command to
turn the first heater on is given by the signal heater1;
the command is recognized when the signal changes
value from false to true. It is possible that some
path in the statechart contains a series of transitions in
the same step, containing the action setVar(false)

followed by setVar(true). In Rhapsody, both ac-
tions will be communicated to the connected element,
resulting in two changes in the value of the signal, with
two corresponding change events, causing the com-
mand to be recognized. However, if this signal is ex-
ported as an FMU output, the behavior will depend on
how the wrapper treats multiple changes to the same
variable. In the implemented version of the wrapper,
the second change will override the first, causing the
signal to retain its previous value without change. The
other block will therefore receive only the last value
update, which contains the variable’s original value;
this might result in different behavior.

In the other strategy, both changes will be delivered
separately, and the command will be recognized. A
third scheduling strategy, in the middle between these
two extremes, is to present changes to different vari-
ables together, as in the implemented version, but sep-
arate changes to the same variable. This can be done
by having the wrapper divide the stream of events re-
ceived from Rhapsody into segments, each starting
with a change to a variable that already has another
change in a previous segment. All the events in a sin-
gle segment will be presented at once, but different
segments will be presented separately.

On input (step 2 of Algorithm 2), the wrapper must
be ready to accept simultaneous changes of discrete
variables, even if it only produces them one at a time,
since inputs may be provided by other types of FMUs.
There are a number of ways to treat multiple such
events. The first is for the wrapper to issue the events
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Table 1: Two behaviors of the rounding strategy.
FMI Time Rhapsody Time x1 x2 x3 y

(sec.) (msec.)
Scenario 1

0.0000 0 1 2 3 2
0.0050 5 −1 2 3 2
0.0100 10 1 2 3 2

Scenario 2
0.0000 0 1 2 3 2
0.0050 5 −1 2 3 2
0.0096 10 −1 2 −3 −2
0.0100 10 1 2 3 −2

to Rhapsody in an arbitrary order, and require model-
ers of SysML blocks to be exported to ensure that the
order does not matter; this is the option currently taken
by the plugin. A second option is to impose a specific
order on the events; this order can be specified by a
SysML stereotype.

3.3 A Question of Time

In the current FMI standard, time is measured as a
double-precision floating-point value in units of sec-
onds, whereas in Rhapsody time is represented as an
integer, in units of milliseconds. This mismatch is an-
other cause for semantic incompatibilities. (The same
problem would exist even if the standard used inte-
gral units at a different time resolution, such as mi-
croseconds.) How should the FMU wrapper handle
fmiSetTime calls that set the time between two Rhap-
sody clock ticks?

Of course, a perfect match of the time-lines is im-
possible. An obvious candidate strategy is to round
times to the nearest integral value. However, this strat-
egy causes strange phenomena, where the addition
of an unrelated fmiEventUpdate call can completely
change the behavior. For example, consider a SysML
block with three discrete inputs, x1, x2, and x3, and
one discrete output, y. The behavior of the block is
very simple; periodically every 10 milliseconds, it up-
dates y to be either x2 or −x2, depending on whether
x1 > 0 or not. Input x3 is not used at all and should not
influence this behavior in any way.

Table 1 displays two possible behaviors of this
block, under the rounding strategy. In the first sce-
nario, y is updated at time 0.0, and again at time 0.01.
The change of x1 at time 0.005 does not update the
value of y, since the block is still waiting for its time-
out. The second scenario starts in the same way, ex-
cept that at FMI time 0.0096, variable x3 gets a new

value. Because this time is rounded to Rhapsody time
10, the block is activated and updates the value of y.
When x1 is changed back to 1 at FMI time 0.01, the
block is already waiting for its next timeout, at (Rhap-
sody) time 20, and y is not updated again. The result
is a different value for y, due to a spurious update of
x3. For continuous systems, due to numerical issues,
such differences might be acceptable. For discrete sys-
tem, working at precise clocks, however, this type of
behavior is obviously unacceptable.

Because of this issue, the FMU export plugin uses
truncation rather than rounding. With truncation, such
undesirable behaviors cannot occur, since intermedi-
ate event updates such as the one in the example will
not trigger the FMU’s timeout and will not advance its
internal clock. In the example, FMI time 0.0096 will
be translated to Rhapsody time 9, will not trigger the
timeout transition, and will not change the value of y.

It is common in continuous systems to consider a
discrete unit of time strictly as a sampling interval,
by ignoring all changes that occur between two sam-
pling points except for the last one. However, this ap-
proach can result in counterintuitive behavior for dis-
crete models; for example, a slight shift in the timing
of a discrete signal change can cause it to be ignored.

3.4 Types

A Rhapsody model can employ the full type system
of the target language (which, in this paper, we con-
sider to be C). The FMI standard defines a different
set of types; these only contain scalar types (real, inte-
ger, boolean, string, and enumeration). Each of these
can be customized; for example, real and integer types
can have an associated range, as shown in the type
definition of Figure 4. The FMU export plugin at-
tempts to define the closest possible FMI type for the
C type used in the block. Obviously, integral C types
are expressed as FMI integers, and floating-point types
(float, double) as FMI reals. Ranges are applied
in the FMI types based on the ranges of the C types;
however, not all types can be accurately represented
in this way. For example, in the 32-bit FMI platform,
fmiInteger is defined as a C int; this means that the
C type unsigned int has a wider range than that ad-
mitted by an FMI integer, which is always signed.

3.5 Discrete or Continuous?

Rhapsody is based on a discrete-time model; triggers
for transitions between states are all discrete events,
and variables are modified in a discrete way (that is,
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signals are piecewise constant). Modelers in Rhapsody
therefore think of all variables as discrete. However,
when a Rhapsody FMU is used in a hybrid model,
some of its inputs may be connected to continuous sig-
nals. This places restrictions on the way such inputs
may be used in the statechart.

Transitions in a statechart are activated by triggers,
which are discrete events. Triggers include variable-
update events (such as chTurnOn in Figure 2, which
signals a change in the turnOn input). The time of
a change event for a continuous variable is not well
defined, because at a call of fmiEventUpdate all FMI
variables are updated, whether relevant or not (as in the
second scenario of Table 1). This can cause the behav-
ior of the statechart to become unpredictable. Model-
ers must therefore avoid change events for continuous
inputs. The use of continuous inputs in other places is
not restricted. For example, checking the value of an
input in a transition guard (such as tempDiff()<0)
does not cause a problem, even if the input is con-
tinuous, since the guard is only evaluated at timeout
events. The same holds for using a continuous input in
an action.

3.6 Guidelines for Exportable Blocks

Based on the previous discussion, the following points
should be considered when designing a Rhapsody
model to be exported as an FMU. First, change events
must not be used for continuous signals, although
their values can be freely used otherwise. Second, if
the order of changes in output variables is important,
non-zero delay should be introduced between changes.
Third, non-zero delay should be introduced between
changes of the same variable if all intermediate values
need to be observed. Finally, to preserve communi-
cation semantics between Rhapsody blocks or include
features that are not yet supported by the FMU export
functionality, the composition of the blocks should be
exported as a single FMU.

4 Related work

Modeling and simulation of hybrid systems is an ac-
tive research topic [5, 3]. Carloni et al. [4] pro-
vide a detailed analysis and comparison of the se-
mantics of commonly-used tools. They conclude that
there is a strong need to allow integration of different
tools, and suggest leveraging the Hybrid Systems In-
terchange Format (HSIF) to mediate model semantics
between tools. This approach is very different from

the FMI code-generation-based approach used in our
work, since FMI is mainly focused on the standardiza-
tion of a model execution API, and exposes only the
model information required for this purpose (for ex-
ample, whether variables are discrete or continuous,
and dependencies between variables).

Other interesting approaches for integrating SysML
and Modelica are based on extensions of SysML such
as the SysML-Modelica Transformation standard,10 or
of ModelicaML [10] where Modelica could be de-
scribed using the UML profile extension mechanism.
Specifically, Schamai et al. [11] suggest a formal ap-
proach to modeling UML statecharts using Modelica,
and highlight various semantic differences. For ex-
ample, in ModelicaML, all available events are pro-
cessed in parallel in the next evaluation of the state ma-
chine, while in Rhapsody statechart events are queued
and processed in order according to the UML run-to-
completion semantics [7].

In practice, changing languages or tools is a major
undertaking, and users are reluctant to do so. Our work
therefore concentrates on using the popular Rhapsody
tool in new contexts. As discussed in Section 3, this
requires some attention to modeling details that might
differ in other contexts, but there is no need to change
the tool itself. This is similar to the approach taken by
Sakairi et al. [9] to integrate Rhapsody and Simulink®,
except that they use a proprietary S-function inter-
face.11 Because we use the FMI standard, our ap-
proach is not limited to integration with a single tool or
language, but can work with any FMI-complaint sim-
ulator.

Pohlmann et al. [8] export FMUs for Mechatron-
icUML [1] instead of Rhapsody SysML. They do not
describe any semantic differences between Mecha-
tronicUML and the generated FMU. They do say
that “a discrete port implements an array of message
queues,” since communication in MechatronicUML is
asynchronous; it seems, therefore, that the same issues
described in Section 3.2 are relevant there as well.

5 Conclusions

The FMI standard can be used for hybrid simulation
of systems modeled using several tools. We described
the Rhapsody plugin that exports FMUs enapsulat-
ing SysML blocks whose behavior is defined using
statecharts, and demonstrated it on an example that

10http://www.omg.org/spec/SyM/1.0.
11http://www.mathworks.com/help/simulink/sfg/

what-is-an-s-function.html.
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combines the SysML model with a Modelica model.
We highlighted subtle but important semantic differ-
ences between Rhapsody and FMI, causing the com-
positional behavior of the FMUs to differ from that of
the original blocks, and provided guidelines that will
prevent such behavioral differences. Since different
tools come with their own semantics, we expect that
such mismatches are common, especially when con-
necting continuous-time with discrete models, and that
our guidelines will generalize to many such cases.
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Abstract 

In this paper we propose a method how to automati-

cally utilize continuous-time Modelica models di-

rectly in nonlinear state estimators. The approach is 
based on an extended FMI 2.0 Co-Simulation Inter-

face [1] that interacts with the state estimation algo-

rithms implemented in a Modelica library [2]. Be-
sides a short introduction to Kalman Filter based 

state estimation, we give details on a generic inter-

face to cooperate with FMUs in Modelica, an im-
plementation of nonlinear state estimation based on 

this interface, and the Dymola prototype used for the 

evaluation. Finally we show first results in a tire load 

estimation application [3] for DLR’s robotic electric 
research platform ROMO [4]. 

Keywords: FMI 2.0 Co-Simulation, FMU, Inline In-

tegration, Kalman Filter, State Estimation, Moving 

Horizon Estimation, Tire Load Estimation 

1 Introduction 

With the raise of computational power in the last 
decades the possibilities to implement complex con-

trol strategies in real world applications enhanced 

tremendously. For most of them a good knowledge 
of the actual states is necessary. Often these are not 

directly measurable due to cost limitations or miss-

ing sensors (for example, it is not practical to meas-

ure in-tire forces). In the ITEA2 project MODRIO 
[5] one aim is to develop state estimation technolo-

gies for plants that use the knowledge of complex 

models of the controlled system itself. These models 
are often designed, parameterized and optimized as 

multidomain models in Modelica. To re-use these 

models for estimation and control purposes the Func-

tional Mockup Interface [1] turns out to be very use-
ful. Three years ago, we presented a concept for state 

estimation [2], [6] using FMI 1.0 Model Exchange 

[7], using Modelica function pointers to separate the 
prediction model from the observer algorithms and 

to create an easy reconfigurable framework for state 

estimation purposes. This approach had several limi-

tations and difficulties that we want to overcome 
based on a slightly extended FMI 2.0 Co-Simulation 

Interface [1] . Furthermore we introduced a different 

way how the user interacts with the prediction model 
and the desired state estimation method. 

One goal of the research performed in MODRIO is 
to build-up a complete tool chain so that an end-user 

can utilize a complex model in a state estimation al-

gorithm and download the estimator to an embedded 
target. To our knowledge such tool chains are not 

available today. There are toolboxes available for the 

estimation algorithms, such as [8], [9], but it is non-
trivial and time-consuming to utilize them for a con-

crete application with a nonlinear model and down-

load the result to a real-time target. 

The following sections are organized as follows. In 

Section 2 we briefly recap the well-known Extended 

Kalman Filter, Unscented Kalman Filter and the 
Moving Horizon estimator algorithms. From these 

descriptions we deduce the requirements on a gener-

ic interface for nonlinear models. Afterwards, Sec-
tion 3 gives a closer look into the Modelica imple-

mentation, as well as a proposal for a user-friendly 

configuration interface. Moreover, we show how the 
FMI 2.0 Co-Simulation needs to be extended to fit 

the requirements of the prediction steps sketched in 

Section 2. As a use-case we show an automotive tire 

load estimation application [3] in Section 4. To vali-
date this approach measurement data acquired with 

DLR’s ROboMObil [4] are used.  
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2 Model Evaluations in 

State Estimation Algorithms 

It is assumed that the plant model to be used in state 
estimation is naturally described as nonlinear contin-

uous-time state space system: 

 

 ̇   (   )  
   ( )  

     ( )       ( )       ( )       

(1) 

where   is time,  ( ) is the vector of inputs,  ( ) is 

the vector of states and  ( ) is the vector of outputs. 

Such a model shall be provided as a Functional 
Mockup Unit (FMU) [1]. In this paper plant models 

are defined in Modelica and exported as FMUs using 

Dymola. However, all the results are also valid if 
FMUs are generated by other tools and/or non-

Modelica environments, as long as the FMU sup-

ports a slightly extended FMI 2.0 Co-Simulation In-

terface according to our proposal. 

Model (1) cannot be utilized directly in a sampled 
data system. Instead a discrete-time representation is 

needed for use in a discrete-time state estimator. The 

following discrete-time version of (1) with additive 

Gaussian noise is used in the sequel: 

            (         )        

       (  )      
      (    )  
      (    )  

(2) 

Here    is the  -th sample time instant of a periodi-

cally sampled data system,       (  ),       (  ), 
      (  ),   ,    is Gaussian noise, and 

              ∫  (      )   

  

    

  (3) 

A tool chain has to support (3) because it is non-
trivial to transform the natural description (1) in (2). 

2.1 The Estimation Prediction Step 

In this section, we briefly summarize the steps of 

Kalman Filter based state estimation and will then 
have a closer look to the prediction step (compare 

Figure 1) of the Extended Kalman Filter (EKF), the 

Unscented Kalman Filter (UKF), and a more com-
plex Kalman Filter based algorithm the so-called 

Moving Horizon Estimation (MHE) [10]. Here the 

need of an efficient and reliable way for the feed 
forward model simulation rises tremendously. For 

further information regarding Kalman Filter tech-

niques, see especially the standard textbook [11]. 

This section is based on [12], [11] and [2].  

In Figure 1 a cycle flow diagram of a recursive Kal-

man Filter algorithm is depicted. The filter is initial-

ized with the initial state vector guess  ̂ 
  and the 

initial guess of the state covariance matrix   
 . These 

can be seen as a stochastic expectation for believe in 

the first guess of the estimation task.  

Time Update 

(Predict)

Measurement 

Update 

(Correct)

 ̂0
+,  0

+ 

 ̂ 
−,   

− 

 ̂ 
+,   

+ 

  
𝑚  

 
Figure 1: Principle of Kalman Filter based Estimation, 

  
  denotes the vector of measured outputs 

Afterwards the cycle of the two steps Predict and 

Correct begins and is executed with a predetermined 
static sample time   . The additive Gaussian noise 

assumption in Eq. (2) is handled by the tuning covar-

iance matrices    . These enable the user to tune the 
filter to the specific task. For nonlinear model state 

estimation the widely used EKF algorithm is given 

as pseudo code in Table 1. 

Table 1: Extended Kalman Filter Algorithm 
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The red marked sections indicate where the evalua-
tion of the underlying system model equations (2) is 

necessary. The calculation of  ̂ 
  is performed by in-

tegrating model (1) from     to   ,       is the state-

transitions matrix of   with respect to   at  ̂   
  and 

   is the partial derivative matrix of   with respect 

to   at  ̂ 
 . The Jacobians      and    must either be 

provided directly, or they can be determined numeri-
cally, for example with a forward difference quo-

tient:  

                   √    

(    )  
 ( ̂             ) −  ( ̂        )

 
 

 

(4) 
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2.2 UKF Sigma Point Approach 

The so called Sigma Point Transformation is based 

on the idea that it is easier to approximate a Gaussian 

distribution, than it is to approximate an arbitrary 
nonlinear function or transformation [13], [11]. The 

parts of the UKF algorithm, where model evaluations 

are necessary, are given in Table 2. The selection of 
the Sigma Points in matrix   is performed via a stat-

ic scaling factor  (     ) and the matrix square root 

of the a posteriori covariance matrix. The number of 
states is denoted by     ,   is the spread around 

the last state value  ̂   
  and   is a parameter for the 

stochastic distribution assumption. In total      

points must be created and then used as initial values 
for      simulations from      to    to compute 

      . 

Table 2: UKF Prediction Step 

     [ ̂     ̂     √    
   ̂   −   √    

 ] 
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The predicted values  ̂ 
    ̂ 

     
  are calculated via 

weighted sums with the predetermined weights 

  
   (     ). We define   ̂    ̂  ̂    ̂        and 

in our notation a vector depending function (e.g. 

       or  ) with a matrix argument returns a matrix 

with columns that are equal to the evaluated columns 

of the matrix argument.  

It can be shown that the nonlinear approximation 

accuracy of the UKF is minimum twice higher com-
pared to an EKF. This becomes important in case of 

strong nonlinearities in the prediction model (for a 

detailed proof see [14] – Appendix A). 

2.3 MHE with NLG Method 

The Moving Horizon Estimator (MHE) is very close-

ly connected to Model Predictive Control (MPC). 

Instead of predicting future control inputs we have a 
sliding window (with   steps to the past) that moves 

every    one step ahead. Therefore, all past   meas-

urements are taken into account. 
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Figure 2: Moving window in MHE application 

In this way the estimate gets more robust against ex-

ternal disturbances, delayed measurements can be 
incorporated and also constraints can be imposed 

directly [10]. Neglecting the last two points, the op-

timization objective can be written as follows: 

Table 3: MHE Optimization Objective 

   
  

   (  ) 

 

   (    
        

      
 )  

          ̂   
  

              (             )   (   −        ) 

 (  )        −  ̂   
  

    
 

  

 ∑    
 −  (  )     

 

 

     

 ∑    −           
 

 

       

  

The initial constraint (first line in definition of 

 (  )) is calculated via a Kalman Filter step i.e. an 

EKF from Table 1, wherein the information matrix 

     
  (  − 

 )− .  

For its solution a Nonlinear Decent Search (NLG) is 

useful, because only the first derivatives of the sys-
tem functions are needed, which is an important con-

straint for the available interfaces of FMI 2.0 (com-

pare [1]). The algorithm of the unconstrained NLG is 
given in Table 4, for details please see [15]: 

Table 4: MHE Optimization Algorithm 

1. Set     and define  𝒌
  (        

          
 )

 
 

2. Decent direction: 

   −  (  
 
) 

3. Line search to determine the step size: 

      𝑚  
   

 (  
 
     ) 

4. Optimization step: 

  
   

   
 
      

5. If stop criterion not reached: 

       and go to step 2;  

In step 1 an initial solution  𝒌
  is needed. A good ap-

proach for its calculation is the open loop integration 

of the prediction model from      to   . The gradi-
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ent   (  
 
) of the decent direction can be calculated 

as shown in Table 5 (again, all parts that need a 

model evaluation are marked in red).  

Table 5: MHE Gradient Calculation 

   (   )        (   )   
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  (    

 ) )(    −  ̂   
 ) 
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         −          

    (     )   (       )   
  (  )

   

    (  −       ) −  
  (  )

 

   

  (  
 −  (  )) 

2.4 Summary of Needed Model Evaluations 

In Table 6 all needed evaluations of the prediction 

model (compare Eq. (1), (2)) for state estimation ap-

plications are summarized. A tool chain has to pro-
vide these model evaluations. In the right column the 

name of the Modelica function is listed to trigger the 

corresponding evaluation in the tool chain proposed 
by this article, for details see section 3.3. 

Table 6: Model evaluations for nonlinear state estimation 
(in the right column the name of the Modelica functions 

are defined to trigger the evaluations in the tool chain 

proposed in this article, see section 3.3). 

Required model evaluations Modelica 

Integration  

between two 
sample points: 

            

  ∫  (      )   

  

    

 

inte-

grator 

Derivative 

evaluation:  
 ̇   (   ) f 

Output 

evaluation: 
   ( ) h 

Optional model evaluations 
(if not provided, computed numerically by 

difference quotients) 
 

State Jacobian 

matrix: 

  

  
(   ) fx 

Output Jacobi-

an matrix: 

  

  
( ) hx 

3 Nonlinear Kalman Filters and FMI 

In Section 2 different state estimation algorithms are 

summarized. The goal of this paper is to provide a 

tool chain for nonlinear state estimation based on the 

model equations of a Modelica model. In [2] it is 

explained why a pure Modelica solution to reach this 

goal is currently not possible. Using FMI helps to 

overcome this situation. In [2] we concentrated on 
FMI 1.0 for Model Exchange with the drawback that 

the integration algorithm for performing prediction 

steps of a Kalman Filter has to be implemented in 
Modelica, a non-trivial task. FMI 2.0 for Co-

Simulation [1] simplifies the implementation signifi-

cantly because the integration algorithm, including 
event handling, is embedded inside the FMU. Still 

some features are missing. In a Dymola prototype 

these have been added in order that the “required” 

functions from Table 6 are supported. 

The overall process of using a state estimator in 
Modelica is illustrated in Figure 3:  

FMU 

Container 

Package

FMU 

Modelica 

Package

Individual 

Filter 

Model

FMU 2.0

Co-Sim.
Import to

Modelica

Generic 

Filter 

Model

Include

in

User Model

Individual 

Filter 

Model

Instan-

tiate
Extend

Generate

Figure 3: Process flow to generate a state estimator based 

on an FMU 
An FMU (usually exported from a Modelica model) 

is imported into the Modelica environment by ex-

tending the package FMUImportTemplate. The im-
ported package can be included in an FMU container 

package to collect several FMUs for easy access. For 

such an FMU package an Individual Kalman Filter 
model is generated that provides variable names on 

buses and user convenient parameter menus. The 

algorithmic part of the state estimation is provided in 
a Generic Filter Model. Finally, the individual filter 

model can be instantiated in the user’s application 

model. An example is shown in the next figure: 

pendulumEstimator

EKFx

y

u
y
m

  
Figure 4: Instance of an individual EKF Kalman filter 

model generated by the process from Figure 3. The bus on 

the left side contains the individual input and measure-

ment variables of the FMU and the bus on the right side 

contains the individual estimated state and output varia-
bles of the FMU. 

In the following sub-sections, the details of the pro-

cess from Figure 3 are described. 
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3.1 FMI for State Estimation with Dymola 

The standard FMI Co-Simulation Interface allows 

integrating (1) from sample instant      to    with 

function fmiDoStep(..) and therefore computing 
(2). In standard co-simulation the continuous-time 

states of a model are hidden in the co-simulation 

slave. However, for state estimation the states need 
to be explicit and it must be possible to reset the 

states at sample instants, see Section 2. In order to 

achieve this, Dymola 2014 FD01, that has already 
support for FMI 2.0 Co-Simulation according to [1], 

has been extended in a prototype with the needed 

features. Especially,  

 the continuous-time states are reported in the 

modelDescription.xml file under element 

ModelStructure,  

 it is possible to explicitly set the continuous-time 

states with fmiSetReal(..) before 

fmiDoStep(..) is called, 

 it is possible to inquire the actual values of all 

variables with fmiGetReal(..) after fmi-

SetReal(..) was called, without an 

fmiDoStep(..) in between, 

 when importing an FMU for Co-Simulation in to 

Modelica, Dymola generates the Modelica code 

optionally according to the FMUImportTem-

plate package shown in the next section. This 

package serves as interface to access the needed 

FMI functionality from a Modelica model or 
function. 

3.2 FMUImportTemplate package 

Importing an FMU means to generate a package that 
contains all the functionality needed to simulate the 

FMU or use it in a state estimator. For this the tem-

plate package FMUImportTemplate is provided, see 
code and figure below. The imported FMU extends 

from the FMUImportTemplate and redeclares all 

elements. 

partial package FMUImportTemplate  

  constant Integer nx=1; 

  …   

  constant Integer id_x[nx]; 

  … 

  constant String stateNames[nx]; 

  … 

  replaceable model SimulationModel 

  end SimulationModel; 

 

  replaceable model InitializationModel 

    fmiModel fmi; 

    parameter Real fmiInitOk(fixed=false); 

  end InitializationModel; 

  

 

 

  replaceable partial class fmiModel 

    extends ExternalObject; 

    function constructor 

      … 

    end constructor; 

  … 

  end fmiModel; 

 

  replaceable function fmiDoStep 

      input fmiModel fmi; 

      … 

  end fmiDoStep;     

  … 

end FMUImportTemplate; 

Important dimensions 
of the FMU such as the 

number of continuous 

states nx, inputs nu and 

outputs ny are set in 

the imported FMU 

package.  Furthermore, 

the FMI references are 
available by the vec-

tors id_x, id_dx, 

id_u and id_y for 
state, state derivative, 

input and output varia-

bles. It is also im-
portant to get variable 

names for states, inputs 

and outputs. Otherwise 
the order of the com-

ponents in the vectors 

x, u, y would be only 

visible by user-
unfriendly reference 

values instead of vari-

able names. The names 
are used in the parame-

ter GUIs of the filter model in the next subsection 

and in the input and output bus of a filter model. 

The imported FMU package contains two models: 

SimulationModel and InitializationModel. 

The model SimulationModel is a fully operating 

Modelica model (with inputs and outputs) that wraps 

the FMU for Co-Simulation whereas in Initiali-

zationModel only the FMU is instantiated by the 

external object fmiModel and the FMI initialization 

phase is executed. The InitializationModel is 

used in a Kalman Filter model; the Simulation-

Model is contained for completeness to use the im-

ported FMU package also for other applications like 

a “real” FMU for Co-Simulation in the Modelica 
simulation environment.  
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The FMU package 

provides interface 

functions to all (or 

at least most) of the 
functions defined in 

the FMI Co-Simulation standard 2.0. For a user-

convenient handling of the FMU import process, it is 
desirable to import an FMU as a sub-package into an 

existing Modelica package. The default package is 

the package FMUContainer that hosts several im-
ported FMUs, see figure above. 

3.3 Model Functions for State Estimators 

The state estimator algorithms are implemented with 

Modelica functions that provide the needed model 

evaluations. In partial package BaseFunctions the 

interfaces of these functions are defined and in pack-

age SystemFunctions the function prototypes are 
collected. The latter are replaceable functions that 

provide the needed functionality of Table 6 (the right 

column of this table lists the name of the function). 

For example, partial function fBase is defined as: 

partial function fBase "Base class of the 

          state equation dx/dt = f(x,u,t)" 

  input Integer nx "Number of states"; 

  input Integer nu "Number of inputs"; 

  input Real x[nx] "States"; 

  input Real u[nu] "Inputs"; 

  input Modelica.SIunits.Time t "Time"; 

  output Real dxdt[nx] "Derivatives"; 

end fBase; 
The dimensions nx, nu are conceptually not neces-

sary, because the dimensions could be determined by 

the size of the vectors x and u. Currently, Dymola 
does not support arrays with non-fixed sizes in func-

tion calls of translated Modelica models. The func-

tion prototypes are collected in package System-

Functions: 

partial package SystemFunctions 

  replaceable function f 

    extends fBase; 

  end f; 

  … 

  replaceable function integrator 

     extends integratorBase; 

  end integrator; 

end SystemFunctions; 
For a particular model, an implementation of the 

SystemFunctions functions has to be provided. For 
FMUs, this is performed with the generic package 

FMISystemFunctions. The implementation is based 

on the FMUImportTemplate package and holds 

therefore for every FMU that extends from this tem-
plate package. 

 

 

package FMISystemFunctions 

  extends SystemFunctions; 

  replaceable package FMU  

           constrainedby FMUImportTemplate; 

  redeclare function extends f 

   input FMU.fmiModel fmi; 

  algorithm  

    FMU.fmiSetReal(fmi, FMU.id_u, u); 

    FMU.fmiSetReal(fmi, FMU.id_x, x); 

    dxdt := FMU.fmiGetReal(fmi, FMU.id_dx); 

  end f; 

  … 

  redeclare function extends integrator 

    input FMU.fmiModel fmi; 

  algorithm  

    FMU.fmiSaveFMUState(fmi); 

    FMU.fmiSetReal(fmi, FMU.id_u, u); 

    FMU.fmiSetReal(fmi, FMU.id_x, x); 

    FMU.fmiDoStep(fmi, t, dt, 0); 

    xNew := FMU.fmiGetReal(fmi, FMU.id_x); 

    FMU.fmiRestoreFMUState(fmi); 

  end integrator; 

end FMISystemFunctions; 

The system functions f, h, integrator can be di-

rectly implemented with functions provided in 

FMUImportTemplate. The Jacobians fx and hx are 

implemented by computing them numerically with 

finite difference quotients. Once Dymola supports 
directional derivatives for imported FMUs for the 

extended Co-Simulation case, that is function 

fmiGetDirectionalDerivatives, then this func-

tion can be directly called and will provide a more 
efficient and reliable evaluation of the Jacobians. 

The Dymola prototype supports two techniques for 

the FMI function fmiDoStep. Either the Sundials 

solvers [16] are used (that are integrators with varia-

ble step size and error control) to numerically inte-
grate the model equations, or Inline integration [17] 

is applied, that means fixed step solvers are embed-

ded in the model equations. The Kalman Filter li-
brary works with both techniques. For real-time ap-

plications, fixed-step methods have to be used and 

therefore a Kalman filter will usually utilize Inline 
integration. 

The functions fmiSave/RestoreFMUState in the 
above code fragments are auxiliary functions that 

call the FMI functions fmiGet/Set/FreeFMUstate 

to enable several calls of fmiDoStep starting at the 
same time instant, as needed, for example, for the 

UKF. 

3.4 Tailored Kalman Filter Models in Modelica 

Based on the imported FMU package an individual 

Kalman Filter model has to be generated. In the cur-

rent version of the Kalman Filter Library this can be 

performed automatically by use of a Modeli-
ca/Dymola scripting function. The idea is to define 

an input bus InBus and an output bus OutBus for 
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exchanging variables between the filter model and 

higher level models. The names of the bus variables 

correspond to the variable names of the imported 

FMU – only “.”, “,”, “[”, “]” and “ ” are replaced by 
“_” due to Modelica syntax. The bus definitions for 

the use-case example in Section 4 are listed below: 

encapsulated expandable connector InBus 

  import Modelica; 

  extends Modelica.Icons.SignalBus; 

  // Model Inputs 

  Real u; 

  // Measured Model Outputs 

  Real accBody; 

  Real sRel; 

  Real accArmUp; 

end InBus; 
encapsulated expandable connector OutBus 

  import Modelica; 

  extends Modelica.Icons.SignalBus; 

  // Estimated Model States 

  Real mass_wheel_s; 

  Real mass_wheel_v; 

  Real mass_body_s; 

  Real mass_body_v; 

  Real …FirstOrderShapingFilter_s; 

  // Estimated Model Outputs 

  Real accBody; 

  Real sRel; 

  Real accArmUp; 

end OutBus; 

The advantage of this approach is that not vectors of 
anonymous variables are defined, but bus variables 

with meaningful names tailored to each individual 

FMU. The main state estimation algorithms are im-
plemented in sub-functions and in a partial filter 

model, e.g. for an UKF (see Section 2.2). This model 

defines several variables and parameters for the filter 

algorithm that is called at each sample point of a 
sampled integration time interval. In the filter model 

also an instance of InitializationModel of the 
imported FMU package is included. Together with 

the package FMISystemFunction all necessary parts 
are put together to run FMI based Kalman Filter al-

gorithms within a Modelica model.  

 
Figure 5: Parameter menu for output variances with 

names of output variables 

A further improvement of the user interface com-

pared to [2] are the filter parameters like state and 

output variances that are shown in lists with names 

of the respective variables – instead of indices of 

vectors, see Figure 5. Basically, a matrix is defined 

and via Dymola specific annotations row and column 
headings can be added to the parameter menu. For 

example the menu in Figure 5 is defined in the fol-

lowing way: 

  parameter Real yData[FMUPackage.ny,1] 

    annotation(Dialog( 

      __Dymola_columnHeadings = 

        {"R[i,i] (outputVariance^2)"}, 

      __Dymola_rowHeadings =  

        {"accBody", "sRel", "accArmUp"})); 

In the parameter menu of the filter in Figure 6 the 

user can press the button on the right side of yData 

to get the menu of Figure 5. Also the model parame-

ters of the FMU may be modified by clicking on the 

button on the right side of ModelParameters.  

 
Figure 6: Menu of a UKF SR Kalman Filter model 

4 Example: Vehicle Vertical  

Dynamics States Estimation 

As an example application, the above described 
Kalman Filter Library is used to develop an ad-

vanced state estimator for the vertical dynamics of 

the ROboMObil. A more detailed version of this ap-

plication case is available in [3]. This section is 
based on [3], but now the method and software from 

Section 3 are used. The ROboMObil is a robotic 

electric vehicle concept (see Figure 7) developed at 
the Robotics and Mechatronics Center of the German 

Aerospace Center DLR. It is comprised of four 

Wheel Robots (Figure 8 – left), which integrate trac-

tion motor, steering, brake system, spring and semi-
active damper. Further details on the ROboMObil 

can be found in [4].  
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Figure 7: ROMO on the four-post test rig 

In contrast to fully active suspension systems they 
need far less energy [19]. Therefore a diversity of 

control strategies for semi-active dampers is present-

ed in literature. An overview about these control 
strategies can be found in [20] and [21]. As most of 

these strategies need state feedback, but not all states 

can be measured, state estimation becomes an im-

portant topic during the design of semi-active sus-
pension systems. 

 
Figure 8: Left: the “Wheel Robot” concept, right: nonlin-

ear two mass system [3] 

The DLR Kalman Filter Library as presented in Sec-

tion 3 offers an easy to use framework for the devel-

opment of state estimators for nonlinear systems like 
this semi-active suspension system. Especially a 

square root utilizing implementation of the UKF 

(Subsection 2.2) algorithm SR-UKF is well suited 
for highly nonlinear systems, because of its higher 

order linearization accuracy of mean and covariance. 

Furthermore the nonlinear parts can be taken into 

account more easily than in an EKF algorithm (Sub-
section. 2.1) since no derivatives and Jacobians are 

needed. 

4.1 The Nonlinear Quarter Vehicle Model  

The suspension system of the Wheel Robot is mod-

eled as a nonlinear two mass system (see Figure 8 – 

right) as described in [3]. The corresponding imple-
mentation in Modelica is shown in Figure 9. The 

model consists of the two masses mass_body and 

mass_wheel, a linear spring damper component, 

which approximates the wheel behavior, a road mod-

el as explained in [18] or [22] and the body_spring 

and body_damper.  

 
Figure 9: Nonlinear two mass system in Modelica 

As the motion of these two components are connect-

ed to the wheel and body motion by a push rod-

rocker kinematic (compare Figure 8 – left), the mo-
tion and the force of these components is scaled by a 

transmission ratio. Details on the nonlinear charac-

teristic of the body_damper are shown in [3]. 

The third main nonlinearity of the two mass system 

besides the transmission ratio and the damper char-
acteristic is the friction of the suspension system. It 

covers the friction of the damper and of all joints of 

the suspension system. For the state estimation the 

friction force    is modeled without stiction by a 

smooth     -switching function: 

                (    ⁄ ). (5) 

Here          represents a constant sliding friction. 

The direction of the friction force is determined ac-

cording to the current velocity difference    between 

body and wheel. The parameter    is used to define 

the transitional behavior of the     -function.  

4.2 Experimental Setup and Results 

The nonlinear two mass system described in Section 
4.1 is integrated in an SR-UKF state estimator using 

the DLR Kalman Library including the FMI 2.0 for 

Co-Simulation interface and Inline-integration as 
described in Section 3. Subsequently the resulting 

estimators are applied to the measurement data rec-

orded with the ROboMObil on a four-post test rig. 
Figure 10 shows the Modelica model of the SR-UKF 
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estimator. On the left-hand side the measurement 

data is read by a CombiTimeTable and on the right-

hand side the estimator, called Filter, and its corre-

sponding settings block observerControl can be 
found. The estimator uses three measurement inputs: 

the acceleration of the body above the wheel, the 

wheel acceleration and the damper deflection. 

 
Figure 10: SR-UKF estimator in Modelica 

The parameters of the estimators, as well as the sys-

tem covariances, are tuned according to the optimi-

zation procedure presented in [3]. The measurement 
covariances are set according to the sensor noise. 

The experimental setup is shown in Figure 11. 

The performance of the estimator, subject to a sine 

sweep excitation, is shown in Figure 11 by compar-

ing the measured and the estimated tire contact forc-
es in the last plot. Please notice that the tire force 

         
 is only available on the four-post test rig 

(Figure 7). It is used for validating the estimator per-

formance and not as a measurement output    to it 
(compare experimental setup in Figure 10). Addi-

tionally the measurements are compared to the esti-

mated measurements. It can be seen that the estima-

tor reproduces the measurements and the tire contact 
force with a good accuracy. 

SR-UKF

damper map 
(Fd(x))

„Wheel Robot“

y

𝑥  𝑥0 

 
Figure 11: State estimator setup with measurement data 
from the four-post test rig 

As the body accelerometer has the largest noise lev-

el, the weighting of its measurements accBody was 
chosen in such a way that the estimator relies more 

on the damper deflection sRel and the wheel acceler-

ation accArmUp. 
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Figure 12: Comparison of measurements to estimated 

measurement (plot 1-3) and contact force estimation  

(plot 4) on the four-post test rig – “sine sweep” excitation 

5 Conclusions and Outlook 

In this paper we have shown how the FMI 2.0 stand-
ard for Co-Simulation [1] can be extended to use its 

capabilities for modern state estimation problems. 

We discussed the parts of the different estimation 

algorithm in detail, the needed evaluation of the sys-
tem functions and integration between two sample 

instants via the FMI interface. Furthermore, we gave 

implementation details on a user friendly workflow 
as well as a set of necessary Modelica models and 

functions. The use case example of our vertical dy-

namics state estimation [3] application for our RO-
boMObil [4] showed good results in accuracy and 

computational efficiency. As a next step we plan to 

test them on a commercial real-time platform for 

stability and deterministic execution. 
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Abstract

To cope with demands for future low carbon society,
development of new-type small electric vehicles
(EVs) becomes very active. To reduce the energy
consumption in various actual driving conditions,
considering overall running resistance such as aero-
dynamic resistance, tire rolling resistance including
cornering drag, mechanical and electrical losses, etc.
will be necessary. On the other hand, to cope with
reduced stability against external disturbances such as
side wind because of the light weight, it was clarified
that additional control of direct yaw moment is effec-
tive. In this paper, model-based development of a
new electric vehicle using Modelica is described. Full
vehicle model considering both vehicle dynamics and
energy consumption was developed and utilized to
investigate the best possible solutions for both basic
design of the vehicle and design of the control system.

Keywords: Future electric vehicles; Stability and
Handling Performance; Energy Consumption

1 Introduction

To cope with future mobility society, development of
many new concept vehicles is increasingly active in
recent years. Figure 1 shows a new EU regulation
about light weight vehicles [1]. Those vehicles have
characteristics of smaller size, lighter weight, less
number of passengers than conventional vehicles.
Also those vehicles tend to be equipped with lower
RRC (Rolling Resistance Coefficients) tires and new
driving systems mainly using electric motors to
achieve less emission and less energy consumption.
On the other hand, Toyota has a vision about future
eco-cars as shown in Figure 2. Toyota thinks EVs are

suitable as short-distance mobility though there is a
possibility of extending the driving range using range
extender devices such as small combustion engine,
additional battery and so on. In this paper, model-
based-development of a new vehicle using Modelica
is described. The models were developed based on
Vehicle Dynamics Library (VDL) of Dymola.

Figure 1: New EU Regulation "Light-category vehi-
cles" [1]

Figure 2: Toyota’s scenario about future eco-cars
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2 Modeling and simulation studies of
the future vehicle

2.1 Target vehicle

Table 1: Specifications of the target vehicle

Target plan L7Be

Vehicle weight < 600 kg < 400* kg

Passengers 4 2

Max. Payload
incl. passengers

300 kg 200 kg

Rated power 25 kW < 15 kW

Max. speed 120 km/h > 45 km/h

Driving range > 100 km -

(* weight without batteries)

Table 1 shows comparison of specifications between
our plan and EU regulation L7Be. Our aim is to de-
velop a heavier and more powerful vehicle with more
passengers than L7Be considering actual usefulness.

2.2 Simulation studies about basic specifications

To consider energy consumption, handling, stability,
ride comfort and NVH (noise, vibration, harshness)
performances of holistic vehicle, a full-vehicle model
including mechanics, electronics, vehicle dynamics
and control was made using Dymola. Moreover, a
model of a new drive train system such as torque vec-
toring differential gear was developed and connected
into the full-vehicle model. Figure 3 shows an exam-
ple of the full-vehicle model. Details of the model
will be explained later.

Top layer

ControllerController
Torque vectoringTorque vectoring
differential geardifferential gear

Suspension and tiresSuspension and tires

Figure 3: An example of full-vehicle model

Power consumption of each system was calculated
simultaneously and was used for the investigation of
good balance of energy consumption and vehicle per-
formances. At first, total power of resistances acting
on the vehicle was calculated by following equations
[2].

Total resistance power:

sxsyarrrv PPPPP  (1)

Rolling resistance power:

VmgP rrr   (2)

Aerodynamic resistance power:

VVACP Dar  2/2 (3)

Cornering resistance power:
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Longitudinal resistance power:

VmgmAP xsx  )sin(  (5)

Here

r : rolling resistance coefficient (RRC) ,

g: acceleration of gravity [m/s2],,

m: vehicle mass [kg],

V: vehicle speed [m/s],

 : air density [kg/m3],

A: vehicle frontal area [m2],

DC : aerodynamic resistance coefficient,

fd : front weight distribution ratio,

rd : rear weight distribution ratio,

pfC : front normalized cornering power [1/rad],

prC : rear normalized cornering power [1/rad],

pC : average normalized cornering power [1/rad],

yA : lateral acceleration [m/s2],

xA : longitudinal acceleration [m/s2],

 : road inclination [rad].
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Figure 4: Comparison of resistance powers while
driving straight and cornering (V = 30[km/h]) by
simulation
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Figure 5: Simulation results of parameter study for
stability against side wind between conventional ve-
hicle and the new small vehicle

Figure 4 shows an example of a comparison of resis-
tance powers between straight driving and cornering.
It became clear that rolling resistance and cornering
resistance were rather big and reducing those resis-
tances was essential to reduce the power consumption.

From equations (2), (4) and (5), it is understood that
decreasing vehicle mass and tire RRC and also in-
creasing tire cornering power (CP, normalized by tire
contact load) are effective to reduce the total resis-
tance power and improve the energy consumption of
the vehicle. However, in general, decreasing RRC
tends to result in decrease of CP for ordinary tires.
Moreover, it is expected that decreasing vehicle mass

will result in reduced vehicle stability against external
disturbances such as side wind. Figure 5 shows a re-
sult of parameter study for evaluating stability against
side wind by Dymola. Evaluation criteria (Y45[m]) in
Figure 5 is the lateral deviation while driving at 120
km/h and pass a zone of 45m length with the side
wind of 20m/s. In Figure 5, comparison between con-
ventional vehicle (m = 1050[kg]) and the new small

vehicle (m = 600[kg]) are shown. Also for the new
small vehicle, some levels of normalized CP were
researched. It became clear that the light-weight small
vehicle is affected more than the conventional vehicle
by side wind, and sensitivity of normalized CP value
against the disturbance is very small. From above
investigations it is indicated that developing new tire
which can realize both low RRC and high CP value is
necessary for reducing energy consumption. Also for
coping with improving vehicle stability against exter-
nal disturbances for such small vehicles, additional
control of vehicle dynamics such as direct yaw mo-
ment control is considered to be necessary.

3 Development of necessary items to
improve holistic performance of the
new small vehicle

3.1 New suspension system using tires with low
RRC and high CP value

As mentioned in the previous section, the develop-
ment of new tires for which both low RRC and high
CP value can be realized will be necessary for reduc-
ing overall energy consumption. For this purpose, a
new concept of tires called Large and Narrow (L&N)
Concept was developed by Bridgestone [3]. It has
characteristics of larger overall diameter, narrower
section width and higher inflation air pressure than
conventional tires. Figure 6 (cited from [3]) shows
comparison of RRC and CP measurement data be-
tween ordinary reference tire, L&N tire and L&W
(Large and Wide) tire representing current high per-
formance tire. It can be seen that L&N tire has good
balance of lower RRC and higher CP at high inflation
pressure of 320 kPa. Thus, it was decided to adopt
L&N tires for our new vehicle. Figure 7 shows a
comparison of overall cornering resistance force (Cr)
calculated by the equation (6) when running on a con-
stant radius corner at lateral acceleration of 0.4G.
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Figure 6: Measurement data of RRC and CP at
Load=3.5kN [3]
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py CgmACr /2 [N] (6)

Comparison is done between conventional vehicle
and new small vehicle with ordinary tire, low RRC
(but low CP) tire and L&N tire. The effect of low
weight and L&N tire to reduce the cornering resis-
tance and thus energy consumption was proved by the
simulation.
However, there still are remaining problems for ap-
plying L&N tires for the new vehicle. Because of lar-
ger overall size, it has larger rotating inertia resulting
in larger drive-train vibration and less controllability
of driving torque than conventional vehicle. Also
higher inflation pressure results in higher vertical
stiffness and it is suggested to affect ride comfort and
NVH (Noise, Vibration and Harshness). Thus, new
suspension design is supposed to be necessary. To
cope with those problems are future works.

3.2 Active yaw moment control by torque vec-
toring system

As mentioned above, it became clear that active yaw
moment control to cope with external disturbances
was indispensable for small light-weight vehicles. To
research the best solution of this function, bench-
marking of existing torque vectoring systems were
performed using simulation by Dymola at first. Con-
sidering the space for mounting and also controllabil-
ity, TUM:MUTE type system[4] was investigated
further. In this system, a main motor connected to
outer ring gear of the differential planetary gear set
controls total driving torque. On the other hand, a
control motor connected with an input shaft of control
gear sets controls torque distribution of left and right
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wheel. The function of torque distribution was con-
firmed by Dymola simulation as shown in Figure 8. It
became clear that torque distribution ratio can be
changed from 50:50 to both of 0:100 and 100:0 and
more by increasing the input torque of the control
motor. By this simulation, also energy consumption
of both main motor and control motor was able to
calculate as well as mechanical transient motion.
Finally an example of desired yaw rate feedback con-
trol for the torque distribution ratio was tested. Main
motor torque (Tm) was decided by PI feedback con-
trol of difference between desired value and actual
value of the vehicle speed by following equation.

  dtVVKVVKT refiVrefpVm )()( (7)

where

KpV: Proportional feedback gain
KiV: Integral feedback gain
Vref: Desired vehicle speed
V: Actual vehicle speed

On the other, control motor torque (Tc) was calcu-
lated by PI feedback control of difference between
desired yaw rate and actual yaw rate as following
equation.

  dtrrKrrKT refirrefprc )()( (8)
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Figure 8: Simulation result of torque distribution ratio
VS control motor power for torque vectoring differ-
ential gear system of MUTE type

where

Kpr: Proportional feedback gain
Kir: Integral feedback gain
rref: Desired yaw rate
r: Actual yaw rate

and the desired yaw rate was calculated as below.
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Here,

δs : Steering input angle at front tire
af : Longitudinal distance between front wheel and
CG (Centre of gravity)
ar : Longitudinal distance between rear wheel and
CG
cf : Cornering stiffness of front two tyres
cr : Cornering stiffness of rear two tyres.

Figure 9 shows a simulation result of the side wind
test. Lateral deviation against the side wind (Y45) and
energy consumption of main motor and control motor
were calculated for the cases of no control, only P
feedback control and PI feedback control. The con-
tradiction between vehicle stability and energy con-
sumption of the control motor was confirmed. Finally,
development of a new torque vectoring differential
gear based on parallel planetary gear sets was decided.
Numerical consideration as above will enable us to
design the best solution for the practical design of the
systems both in mechanical aspect and electrical as-
pect.
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3.3 Electric regeneration system of braking
force
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Figure 11: Comparison of driving and breaking en-
ergy for some examples of driving modes

Utilizing electric regeneration of braking force by
motor is effective to improve the energy consumption.
In the planning phase of a new vehicle, it is necessary
to decide proper size of battery capacity for the re-
generation. For this purpose, realistic simulation of
actual driving scenes is necessary. IPG CarMaker was
used to calculate the vehicle speed, longitudinal and
lateral acceleration, road decline and corner radius for
actual roads. Using above data, necessary driving
power and overall resistance power by the equation

Model-based Development of Future Small EVs using Modelica

68 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409663



(1) were calculated. Figure 10 shows an example of
resistance power of each resistance force while driv-
ing on a winding circuit road. Using these results,
overall driving energy and braking energy for some
examples of driving mode were calculated as shown
in Figure 11. Here, JC08 and US06 are regulation of
driving modes for measuring fuel consumption in
Japan and USA respectively. Figure 12 shows distri-
bution of vehicle speed and longitudinal acceleration
for both modes. As seen in Figure 12, US06 mode
uses higher vehicle speed and acceleration than JC08
mode and results in more driving power and braking
power appearing in Figure 11. Also in Figure 11,
comparison of two driving styles for a winding circuit
road is shown. It is observed that the defensive driv-
ing style needs less power than the normal driving
style. It is assumed that breaking power less than
15kWcan be recuperated by the regeneration of motor
in this example. It was understood that there is re-
mained braking power which can be recuperated if
the regeneration ability of battery system is large
enough in the case of circuit road driving. In this ex-
ample of Figure 11, these braking powers are con-
sumed by the mechanical breaks and wasted. Figure
13 shows a result of simulation to calculate possible
electricity consumption value in the cases of using
battery systems whose regeneration ability are 15kW,
40kW and 70kW respectively. It became possible to
estimate how large battery capacity was necessary to
improve the energy consumption in each driving cas-
es.

Consequently it was proved that these simulations
were very useful to decide the proper specifications
of a new vehicle in the planning phase.

4 Conclusions

For the investigation of overall vehicle specifications
and system structures, a holistic vehicle model in-
cluding mechanics, electrics, electronics, vehicle dy-
namics and control was made and utilized. It was
proved that such a holistic model was very useful to
investigate the proper specifications and system con-
structions in the phase of early stage of vehicle devel-
opment. Modelica was very suited to make such a
multi-discipline and multi-domain investigation by
model-based development.
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tion for JC08 and US06 modes
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Abstract 

 This paper focuses on modeling of the elec-

tric axle drive system (eAxle) used for improving 

vehicle stability and handling performance by means 

of a torque vectoring (TV) feature as well as improv-

ing vehicle traction  and reducing CO2 emissions by 

means of an electric traction feature. The function, 

construction and benefits of the eAxle will be ex-

plained within these contexts. An overview of the 

modeling of the eAxle in Dymola® will be shown. 

Several simulation cases are conducted to verify the 

effectiveness of the system for reducing fuel con-

sumption and improving longitudinal and lateral dy-

namics. A co-simulation was developed between 

Dymola® and Abaqus® to simulate the power loss 

and ascertain the temperature behavior on the hous-

ing of the eAxle . Finally, the eAxle with a vehicle 

model was driven over a special realistic handling 

course using an open source software called Blend-

er®. The dynamic behavior of the whole vehicle 

model (with eAxle) will be validated by means of an 

optical measurement process or what so called (Ob-

ject Tracking).  

 

Keywords: Electric axle drive system (eAxle); torque 

vectoring (TV); CO2 emission reduction. 

1 Introduction 

 Nowadays, electric and hybrid vehicles are 

becoming increasingly important for many reasons, 

such as increasing oil prices and environmental pol-

lution. Other contributory factors are legislation like, 

CO2 emission reduction, taxes and zero emission 

zones. Nonetheless, e-mobility vehicles are much 

more efficient than conventional vehicles because 

they can regenerate, store and reuse kinetic energy. 

 

 The Schaeffler Group develops three types 

of eAxle: A high-voltage (HV) eAxle, which is very 

suitable for electric and full-hybrid vehicles. This 

model has two electric motors (traction and TV). The 

second type is a 48-volt (48V) eAxle, which is opti-

mally suited for mild- hybrid vehicles. It also has 

electric traction and TV  motors. The third type is an 

(48V+TV) eAxle, which has just one 48V electric 

motor that is used in traction mode until a predefined 

speed limit and it then uses as a TV motor. This type 

has 3 planetary gear stages, two for traction mode 

and the third for TV mode. The last type of eAxle is 

a huge step forward in the development of the eAxle. 

A HV eAxle [Figure 1] is presented in this paper. 

 

 The HV eAxle has a traction motor with a 

maximum power and torque of 65 kW and 160 Nm 

respectively. With two planetary gear stages, the 

traction motor can drive the vehicle in full electric 

mode or assist the internal combustion engine (ICE).   

 

 
Figure 1: HV electric axle drive system 

 

 The TV motor has a maximum power of 6 

kW, which is transmitted via a planetary transmis-

sion to supply up to 1100 Nm of delta torque be-

tween the left and right wheels. 

 The dynamics and agility of the vehicle can 

be significantly improved with the TV function. The 

steering characteristics are very responsive because 
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there is less vibration and the driver has an improved 

feel of the road conditions through steering feedback. 

Traction is improved especially with regard to criti-

cal road conditions like μ-split. The  most important 

benefit of the TV function is the improvement to the 

stability and safety without any adverse effects on 

the longitudinal dynamics and traction. This means 

no power losses or velocity decrease in comparison 

with other stability technologies that use a brake-

split on different wheels. 

An advantage of eAxle is the high potential for 

reducing fuel consumption and emissions because it 

is driven by electrical energy. 

2 Modeling of the eAxle 

 The Schaeffler eAxle is a mechatronic sys-

tem that contains mechanical parts (such as the 

transmission ), electrical parts (electric motors) and 

thermal and control systems. It therefore requires a 

modeling approach that allows modeling of multi-

domain systems. The modeling language Modelica® 

offers this facility and at the same time allows the 

model to be used on different simulation platforms. 

Therefore, the following model of the Schaeffler 

eAxle has been modeled using Modelica 

(www.modelica.org) in Dymola® which is a 

Modelica-platform tool. 

2.1 Transmission model 

 The mechanics of the transmission [Figure 

2] have been modeled with the 1D mechanics of the 

Modelica Standard Library (MSL). As an interface to 

the entire vehicle model, the transmission model has 

connectors for the torque vectoring motor, traction 

connector (which can be connected to the traction 

motor or ICE depending on the type of eAxle) and 

two output connectors (which are connected to the 

shafts of the left and right wheels). A deeper model 

level divides the model into the components "plane-

tary gear sets", “differential" and "overlay gear set". 

The torsional rigidity of these components is deter-

mined by FEM analysis and mapped as linear springs 

in the model. The mass inertia is derived for all 

components from the CAD data and implemented as 

a rotating mass in the model.  

 The power losses in the traction path are im-

plemented by means of a simulated map that has 

been calculated using the WTplus® program. This 

map is just a 3D matrix that depends on the torque, 

angular velocity and temperature (which will be cal-

culated in Abaqus and imported back into Dymola 

by co-simulation).   

The traction gear ratios are 12.34 for first gear and 

4.22 for second gear. The TV gear ratio is -37.72. 

2.2 eAxle model  

 The transmission model is then integrated 

with the traction, TV motors and gearing signal into 

the eAxle model. The eAxle model has 3 input sig-

nals (throttle of the traction motor, which comes 

from the driver; throttle of the TV motor, which is 

regulated by the TV controller; and the required 

gear, which depends on the hybrid strategy). 

 

Figure 2: Transmission model 

 The efficiency-map and torque-over-angular 

velocity map of both motors (traction and TV) have 

been measured. The models of these motors have 

been implemented based on these maps (not a physi-

cal model) 

 The losses of the motors and transmission 

have been totalized to enable calculation of the actu-

al temperature of the transmission and the tempera-

ture behavior on the eAxle housing by means of co-

simulation with Abaqus. 

 The derating function of the electric motors 

has been defined by the motor supplier depending on 

thermal measurements of the motors. Thus, the 

derating function supplies a time-interval (for exam-

ple, the traction motor is allowed to run with the 

maximum possible power for up to 5 seconds (over-

load time) and then has to run with less than or equal 
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the nominal power for at least 20 seconds (relief-

time)). This function has been implemented with 

help of StateGraph library of MSL as shown in [Fig-

ure 3]. 

Figure 3: Derating model 

2.3 TV controller 

 The TV controller is the unit responsible for 

defining the required torque of the TV motor in order 

to produce the necessary and effective yaw torque 

for the vehicle. [Figure 4] shows a diagram of the 

TV controller.   

 The TV controller calculates the desired yaw 

rate depending on the steering angle and some vehi-

cle conditions as follows. 

 ),,,(  yxd avf
 

where, 


d  is the required yaw rate,   is the steering 

angle at the wheel, xv is the longitudinal velocity, 

ya is the lateral acceleration and  is the side slip 

angle. 

The required yaw torque is calculated by comparing 

the required and the actual yaw rate. 

 ),(_

 actualddyaw fT   

Finally, the required vectoring torques that should be  

supplied by the TV motors are calculated in the fol-

lowing equations.   
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where, FATv , RATv :Torque of TV motor of front/rear 

axle respectively,  : Fraction ratio of TV between 

front/rear axle (if  =0 only rear axle TV is active, if 

 =1 only front axle TV is active, otherwise the TV 

of both axles is active with that fraction ratio), b is 

the vehicle track base, R is the wheel radius and 

RF nn ,  are the TV gear ratio of the front/rear axle 

respectively.  

Figure 4:Diagram of TV controller 

2.4 Vehicle model  

 The HV eAxle model was inserted into a 

drive train model and integrated together with a ve-

hicle, driver and road models from the Vehicle Dy-

namics Library developed by Modelon®. 

 For the consumption analysis, the eAxle 

model was integrated with the rest of the vehicle 

model, driver and street models of the Power Train 

library developed by the DLR Institute of System 

Dynamics and Control. 

2.5 Co-simulation between Dymola and 

Abaqus  

 A detailed thermal model of the eAxle has 

been modeled in Abaqus in order to carry out an ad-

equate thermal analysis of the power losses in the 

eAxle due to the traction motor, TV motor and 

transmission. A co-simulation between Dymola and 

Abaqus is then used. 

 The Abaqus co-simulation technique can be 

used to solve complex systems that include electron-
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ics such as control systems, electro-mechanics, hy-

draulics, heat transfer and pneumatics by coupling 

Abaqus with Dymola, a general-purpose logical 

modeling software distributed by Dassault  Systems. 

Structural responses computed by  Abaqus/Standard 

or Abaqus/Explicit are coupled at run time with solu-

tions provided by Dymola [6].  

 The Abaqus modeling method called “physi-

cal modeling” is the complementary modeling meth-

od to “logical modeling”. Physical modeling is An 

FEM application, which uses a precise knowledge of 

the geometry to mimic the real world at a fine-grain 

level. 

 The Abaqus-Dymola coupled simulation  

capability targets simulations involving compliant  

response of a component or subassembly embedded 

in a larger, more complex system. All Abaqus fea-

tures, including nonlinear materials, nonlinear geo-

metric effects, and contact are available for use. In 

fact, any time-domain Abaqus model can be  used  as  

an Abaqus-Dymola co-simulation  model  with very 

few simple modifications[6]. 

 The power losses of the eAxle in the Dymola 

model are defined with the same name as the actua-

tors in the Abaqus model (Actuators are sources used 

to actuate the physical model). A virtual sensor is 

defined in the Abaqus model to measure the tem-

peratures at some points and send them to Dymola. 

This sensor should have the same name as the input 

signal in the Dymola model. The Dymola model is 

then translated and the dymosim.dll file is selected 

by the plug-ins option in Abaqus.  

Figure 5: Co-simulation between Dymola and 

Abaqus, with a special realistic road. 

 In order to ensure a high level of actuation in 

the traction and TV motors, a special handling 

course road is used. The handling course road is im-

ported as an image into Blender® in order to prepro-

cess and generate the Modelica road file for imple-

mentation in the Dymola model [Figure 5]. The ve-

hicle model is then simulated on the handling course 

road and the power losses of the eAxle are sent to 

Abaqus at every simulation step. Abaqus calculates 

the temperature values and sends them back to 

Dymola to run the next simulation step. These tem-

perature values are necessary to calculate the power 

losses of the transmission. 

3 Simulation Results 

 The consumption analysis and dynamic sim-

ulation of the vehicle have been calculated according 

to the vehicle data in Table 1.  

Some comparisons have been made between the 

conventional vehicle model (without an eAxle) and 

the hybrid vehicle model (with an eAxle). The hy-

brid vehicle model is 80 kg heavier than the conven-

tional vehicle model (weight of eAxle) for all follow-

ing simulation cases.   

 

Table 1: Vehicle specifications 
Vehicle mass 2105 kg 

Dynamic tire radius 0.3186 m 

Frontal area 2.42 m^2 

Friction coefficient of road 0.9 

Moments of inertia of the vehicle Ixx=709  

Iyy=3281 

Izz=3358 

kg.m^2 

Distance CG to the front, rear axle 1.269, 1.308 m 

Vehicle track base  1.532 m 

Mass of eAxle  80 kg 

 

Traction 

motor 

Pmax 65 kW 

Tmax, Tnom 160, 140 Nm 

Speed max 14000 rpm 

 

TV motor 

Pmax 6 kW 

Tmax 30 Nm 

Speed max 14000 rpm 

 

Battery 

Energy 10 kWh 

Vmax, Vmin 365, 267 Volt 

SOCmax, SOCmin 0.8, 0.2 

3.1 Fuel consumption analysis  

 To determine the save fuel by using the 

eAxle model, the vehicle model is driven in the New 

European Driving Cycle (NEDC) for 100 km with 

four different cases: Conventional, hybrid with a ful-
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ly charged battery, hybrid with a half charged battery 

and hybrid with a flat battery. The last case has been 

considered to specify the fuel saved in the case when 

the eAxle is used with no power in the battery, which 

means the eAxle can be driven only with the energy 

recuperated by braking. [Figure 6] shows the vehicle 

driving in two sequentially cycles of the NEDC. The 

eAxle firstly starts to recuperate the kinetic energy 

by braking and using it after that to drive the vehicle 

using electric power only for some period of time. 

 

 
Figure 6: Hybrid vehicle driving in the NEDC with 

flat battery at beginning. 

 Although the eAxle makes the vehicle 80kg 

heavier, it allows a reduction in fuel consumption of 

at least 18% compared with a conventional drive. If 

the battery is pre-charged, the eAxle enables a reduc-

tion in fuel consumption of up to 38% depending on 

the state of charge of the battery.  

The fuel consumption over time and the percentage 

of fuel saved by the hybrid vehicle in comparison 

with a conventional vehicle when driving up to 100 

km are shown in [Figure 7]. 

 

 
Figure 7: Fuel consumption in liters over time and 

percentage of overall fuel saving in a hybrid and 

conventional drive. 

3.2 Dynamic analysis 

3.2.1 Longitudinal dynamic 

 

 The eAxle almost makes a normal car into a 

sports car by using the 65kW traction motor to assist 

the ICE. 

Simulation results show that the vehicle model with-

out an eAxle takes about 6.6 seconds to accelerate 

from 0 to 100 km/h, while the hybrid vehicle took 

about 5.1 seconds, which means the eAxle can im-

prove the longitudinal acceleration of the vehicle by 

29% on average as shown in [Figure 8]. 

 

 
Figure 8: Acceleration from 0 to 100 km/h for both a 

conventional and a hybrid vehicle. i) Vehicle veloci-

ties. ii) Longitudinal acceleration up to the 1
st
second. 

 

 The eAxle can quickly supply a high traction 

torque even at low angular velocities, which gives 

the vehicle instantaneous high longitudinal accelera-

tion. This fast response also gives the ICE a chance 

to supply a high torque in a shorter time because the 

eAxle drives the vehicle to a relatively high velocity 

which means the ICE runs with sufficient angular 

velocity to supply a high torque (ICE supplies low 

torques at low angular velocities). This explains the 

dramatic increase in longitudinal acceleration of the 

hybrid vehicle up to the 1
st
 second in comparison 

with a conventional vehicle, as shown in [Figure 8].      

 

3.2.2 Lateral dynamics     

 

The TV feature has a big influence on the 

lateral dynamics performance because the TV motor 

with a maximum torque of 30 Nm can be used in 

conjunction with the TV gear to provide the vehicle 

Electric drive Recuperation Conventional 
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with a torque difference of up to 1100 Nm between 

the right and left wheels. 

The vehicle is more stable and safer when it is driven 

in curves and can also be driven with a higher veloci-

ty. The driver will also notice the softer ride and ease 

of driving using the TV (driving pleasure). 

Two simulation cases show the advantages of TV for 

the lateral dynamics, steering step response and cor-

nering performance.     

3.2.2.1 Steering step response 

 To verify the advantages of TV on the steer-

ing, the driver steers to 60 degree with 400 de-

gree/sec while driving at 90 km/h. [Figure 9] shows 

the steering angle, while part b shows the yaw rate of 

the vehicle with and without TV. It is so clear that 

the yaw rate of the vehicle has a smaller overshoot 

when using the TV because it increases the torque on 

the outer wheel and decreases torque on the inner 

wheel. The yaw rate also has less fluctuation and 

reaches a steady state faster because the TV compen-

sates the fluctuation by biasing the difference in 

torque between the wheels.  

 

 

Figure 9: Step response test of a vehicle driven at 90 

km/h. i) Steering angle. ii) Yaw rate with and with-

out TV. 

3.2.2.2 Cornering performance 

A circular road with a 40 m radius curvature 

has been used to simulate the vehicle model with and 

without the TV function. The vehicle is driven at 65 

km/h. 

The simulation results [Figure 10] show that:  

 TV decreases the gradient of the steering an-

gle (δ) over the lateral acceleration of the 

vehicle [region1]. This means the steady-

state behavior of the cornering performance 

of the vehicle is improved by using TV. 

 The maximum level of lateral acceleration 

can be extended by using TV [region2], 

which gives the vehicle a wider range of sta-

bility.  

 The TV decreases the necessary steering an-

gle at high lateral acceleration, which is re-

flected in increased safety and driving pleas-

ure.   

 

 

Figure 10: Steering angle over lateral acceleration 

with a 40 m radius curvature at 65 km/h. 

 

The vehicle takes 8.2 seconds to negotiate 

the curve using TV and 8.3 seconds without TV. In 

addition, the total energy used by the traction and TV 

motor to negotiate the curve with TV is 1% less than 

the energy required when the TV is switched off 

(traction motor only) as shown in [Figure 11]. 

 A reduction in fuel consumption of approx-

imately 1.9%  could be achieved by using the ICE 

instead of the traction motor of the eAxle (This con-

figuration is suitable for special designs of low-

voltage eAxle). This means the TV feature not only 

improves the lateral dynamic performance, but also 

saves some fuel. 

     

 

Figure 11: Energy consumption during cornering 

with and without TV.  

1 
2 
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3.3 Dymola-Abaqus co-simulation  

 The vehicle is driven at 60 km/h on the han-

dling course road and Abaqus calculates the tem-

peratures on the housing of eAxle depending on the 

power losses [Figure 12]. 

These temperatures are used to define the conditions 

of the electric or hybrid strategy. 

 

 

 

 

Figure 12: Temperatures on the eAxle housing a) on 

the traction motor. b) on the transmission and c) on 

the TV motor.  

3.4 Validation of vehicle model  

 The entire vehicle model was validated on 

the basis of the lane-change test (ISO standard 3888-

2) by using an optical measurement process. The 

measurement process analyzes the motion of optical 

markings [Figure 13.a] in a video recording of the 

driving maneuver (object tracking). With the corre-

sponding software Blender®, the variation in vehicle 

position and orientation on the test track can be de-

termined over time[3]. A comparison between roll 

angle of the test vehicle by the object tracking and 

simulation result is presented in [Figure 13.b]. 

    

 

  

a.  

 
b. 

Figure 13: a) Test vehicle with tracking markers. b) 

Roll angles in simulation and object-tracking valida-

tion. 

4 Conclusions and Outlook 

The modeling of a multi-domain system in 

Modelica, and the concept of building an electric 

active drive system for reducing fuel consumption , 

improving traction and providing yaw stability con-

trol have been discussed. 

Modelica has a major advantage for dealing 

with a model that has many components from differ-

ent disciplines. 

Simulation results, which prove the ad-

vantages of the eAxle system in terms of dynamics 

and consumption are presented. A co-simulation has 

been developed between Dymola and Abaqus to in-

vestigate the thermal effects on the eAxle.  

A realistic road has been constructed and 

preprocessed with other animation tools and can be 

easily and flexibly exported to Dymola . 

 

Another simulation case has been started to 

investigate the effect of recuperation and the extra 

weight of the eAxle on the fuel consumption by con-

sidering the influence of elevation when the vehicle 

is driven on a road with a gradient. Unfortunately, 

the model of the driver in the PowerTrain library is 

unable to maintain the vehicle’s velocity close to the 

a b c 

  Inertial system.      Vehicle 
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requirement when the vehicle is driven downhill, 

which leads to non comparable consumption results. 

 

Vehicle object tracking for validation the 

vehicle performance has been presented. A validated 

case between simulation result and reconstructed 

data from object tracking has been compared and 

shown.   
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Abstract

The paper introduces a new concept of modeling the
overall control unit of hybrid electric vehicles in Mod-
elica. The work focuses on a structure which can sim-
ulate substantially different vehicle concepts without
changing the structure of the control unit. Based on
this universal implementation different scenarios can
be simulated rapidly and consequently cheaply, in-
cluding fundamentally different drive trains ranging
from conventional to purely electrical including hybrid
versions.

Keywords: object-oriented control unit modeling;
control unit template modeling; object-oriented elec-
trified vehicle modeling

1 Introduction

Ever increasing demands on fuel efficiency are re-
quested from both politicians and customers. This
should happen without increasing the costs and with-
out compromising on performance of the vehicle [2].
Therefore, simulation in the concept stage of a vehicle
development is getting more and more important, be-
cause with the aid of simulation design decisions can
be supported in a more efficient overall process that is
consequently resulting in cost savings [4]. This is es-
pecially true when designing complex systems which
are state-of-the-art in the form of hybrid electric vehi-
cles (HEV).

Nowadays, several different HEV topologies are
state-of-the-art, for example series hybrid, parallel hy-
brid or power split hybrid. Furthermore, from ev-
ery topology multiple modification levels are avail-
able. Until now, if a rough layout of a HEV has to
be simulated, a very specific CU (control unit), spe-
cially adapted to each different vehicle topology has
been modeled. This process is error-prone, time con-
suming and in turn associated with high costs. Due

to these facts the manufacturers postulate the develop-
ment of a universal CU for simulations.

Implementations of individual HEV topologies have
been discussed many times in literature, but the imple-
mentation of a standardized template for a universal
CU has not yet been provided.

Examples are given in [8] and in [9], where fuel
consumption simulations - on basis of two commer-
cial Modelica libraries: the PowerTrain library [5], [7]
and the SmartElectricDrives library [1] - of different
HEVs are discussed.

Another example of a library for simulation of
HEVs is given in [3]. The used library is called eVehi-
cleLib and can be used for fuel and energy consump-
tion simulations as well as other purposes.

Both, the PowerTrain- and the eVehicleLib library
contain models for process control, i.e. for the oper-
ating strategy but no template of a universal CU for
different vehicle topologies. The concept presented in
the paper fulfills this request of the manufacturers.

The paper focuses on HEV structures, what is rea-
sonable as purely electric or conventional drive trains
may be treated as a simplification of suitable hybrid
versions. An example will be demonstrated in Sec-
tion 5 where the hybrid car (BMW i8) is simulated as
a conventional vehicle by just changing controller pa-
rameters.

2 Hybrid Electric Vehicles

Basically, HEVs can be classified on either the type
of the power train or by their degree of hybridization.
Speaking of type of power train, one can distinguish
between series-, parallel- and power-split hybrids. The
classification by degree of hybridization contains mi-
cro, mild and full hybrid.

Due to the fact that a HEV, in contrast with a con-
ventional vehicle, has two energy converting systems -
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usually a combustion engine (CE) and an electric ma-
chine (EM) - more degrees of freedom in generating
traction energy are available. Which possibilities are
available depends on the arrangement of the CE and
the EM in the drive line, i.e. on the HEV topology [2].

3 Modeling Approach

To design a template of a universal CU, which can be
used to simulate different kinds of HEVs, it must first
be understood how the CU interacts with the remain-
der of the entire vehicle system. Therefore, a decom-
position of an entire vehicle system into basic objects
is necessary. The first division is done into four main
parts: a drive environment, an environment, a vehicle
itself and the control unit.

The drive environment emulates the human driver,
i.e. it influences the vehicle in longitudinal direction
with the accelerator and brake pedal (lateral direction
is neglected). The schematic function of the drive en-
vironment is illustrated in Figure 1. Depending on
a reference velocity (supplied by the driving cycle)
and an actual velocity (supplied by the vehicle) the
accelerator- and brake pedal position is computed by
the driver. These signals are sent to the CU which
computes signals for the vehicle. Therefore, a direct
interaction between the CU and the drive environment
is given.

Reference velocity Deviation
Accelerator pedal

Brake pedal

Actual velocity

Vehicle

Control Unit

Drive Environment

Figure 1: Schematic structure of the drive environment

In the vehicle it is distinguished between objects
which are required for generating traction energy and
the ones which are not, i.e. the vehicle is grouped into
a drive line and auxiliary units, see in Figure 2. The
CU provides on the one hand signals for the drive line,
e.g. torque requirements for the CE and the EMs and
on the other hand for the auxiliary units, e.g. the avail-
able power for the auxiliary units. Furthermore, sensor
signals from the drive line are necessary in the CU, e.g.
the actual vehicle speed. Therefore, the CU has a di-
rect interaction between the objects from the vehicle.

The environment includes all effects from outside
of the entire vehicle system and provides it to the ve-

Control Unit

Auxiliary Units Drive Line

Vehicle Resistance

Chassis

Axle

Gearbox

Combustion Engine

Electric Machine

Range Extender

Battery

DC-DC Converter

Air Conditioning

DC/DC Converter S12V.

Power Steering

....

Figure 2: Schematic structure of the Vehicle

hicle, see Figure 3. The CU requires signals from the
environment which as well influence the vehicle and
therefore, an indirect interaction between the CU and
the environment exists.

Vehicle

Environment

Air Temperature

Atmospheric Pressure

Wind Speed

Figure 3: Schematic structure of the environment

Figure 4 shows the decomposition of the entire sys-
tem in summarized form, whereas the interaction be-
tween the objects is indicated by arrows.

Driving Cycle DriverDrive
Environment

Control
Unit

Vehicle Auxiliary Unit Vehicle

Environment Environment

Control Unit

Figure 4: Schematic structure of an entire system

The interaction between the CU and the rest of the
entire vehicle system is clearly defined. Now, the de-
composition of the CU has to be carried out in a way
that it can be reused for different HEV topologies. To
make the structure flexible enough a controller with
two levels is introduced (see Figure 5). In the pri-
mary layer the HCU (hybrid control unit) determines
the current driving mode. Depending on the output of
the primary layer the second level of hierarchy com-
putes the desired signal for the corresponding drive
line component (see Figure 5).

• BCU (brake control unit)

• ESCU (electric storage control unit)

• CCU (clutch control unit)

• GBCU (gearbox control unit)
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• ECU (engine control unit)

• EDCU (electric drive control unit)

Primary

Secondary

HCU

BCU ESCU CCU GBCU ECU EDCU

Figure 5: Schematic structure of the CU

To test the controller three parts are necessary, of
which the first is to design a template for the overall
system, which is shown in Figure 6. For this purpose a
library with basic components was created to replace
the corresponding parts of the template. As the focus
of this paper is to present the structure of the controller
the models for testing (Drive Environment, Vehicle and
Environment in Figure 6) are not discussed here in
more detail. Moreover a considerable amount of at-
tention was paid to the fact that well defined interfaces
of each model were used in the template and therefore
every component model can be adapted or changed
easily, thanks to Modelica’s object-orientation. In the
following section we will focus on the implementation
of the universal control structure that is shown in the
Control Blocks part of Figure 6.

Control Blocks Drive Environment

Vehicle Environment

1 3 5

2 4

Driver

v

t
Cycle

EnvironmentD-Line

data

RR

A-Unit

0 1 0 1
1 0 1 0
0 1 0 1

Control-Unit

Figure 6: Template of the entire system

4 Universal Control Unit Modeling

Manufacturers tend to protect the control strategy as
trade-secret because it represents one of their core
knowledge. Therefore, the implementation of each
part of the CU must be created in a way that it can
easily be adapted and/or replaced. The structure of the

implementation of the CU is based on Figure 5 and its
implementation is shown in Figure 7.

Primary Control Level

Secondary Control Level

0 1 0 1
1 0 1 0
0 1 0 1

ECU

0 1 0 1
1 0 1 0
0 1 0 1

GBCU

0 1 0 1
1 0 1 0
0 1 0 1

CCU

0 1 0 1
1 0 1 0
0 1 0 1

BCU

Signals

0 1 0 1
1 0 1 0
0 1 0 1

HCU

0 1 0 1
1 0 1 0
0 1 0 1

EDCU

data

Results

Figure 7: Template of the universal CU

4.1 Bus Structure

Looking at Figure 7 one can easily see, that the im-
plementation is heavily relying on a bus structure. It
was applied to the massive amount of control signals
within the controller that have to be dealt with. More-
over it enhances the flexibility and maintainability of
the overall controller. To reduce errors within connect-
ing signals from the bus and as well enhancing main-
tainability connectors are introduced that only feed
values from the bus to a signal connector of suitable
type (Real, Integer, Boolean). Although those adapter
models are very simple they are valuable in certain
cases. When e.g. a variable on the bus is renamed
only the connector has to be modified in contrast to
every single connection relying on that variable.

In the current implementation the bus has a flat
structure without any grouping of variables. After it
turned out that the bus has close to 100 variables it
would be well worth the effort to restructure the bus
with a hierarchy related to e.g. Figure 4.

4.2 Primary Control Level

The primary control level solely consists of the HCU
as shown in Figure 7. It is the centerpiece of the CU
as it supervises all the other control units of the sec-
ondary control level. To implement a universal HCU
it is necessary to consider all possible driving modes
of all HEV topologies. These are

1. Standstill with CE off (StandStill)
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2. Standstill with CE on (StandStillEngine)

3. Electric Driving (ElectricDriving)

4. Friction braking (Braking)

5. Regenerative braking (RegenerativeBraking)

6. Boosting (Boosting)

7. Shifting of the Operation Point (Shifting-
OperationPoint)

8. Conventional Driving (ConventionalDriving)

whereas the names in the brackets denote the variable
names used in the model itself.

Control Strategy

0 1 0 1
1 0 1 0
0 1 0 1

Controller

rising

driveModi

OR

standStill

from BUS

standStillEngine

from BUS

electricDriving

from BUS

braking

from BUS

regenerativeBraking

from BUS

boosting

from BUS

shiftingOperationPoint

from BUS

conventionalDriving

from BUS
DriveModi

to BUS

data

rising

rising

rising

rising

rising

rising

rising

Figure 8: Implementation of the HCU

The HCU (Figure 8) has to decide which of those
driving modes is active e.g. depending on driver inputs
or internal states of the vehicle. The first prerequisite
to be able to take that decision is to know which of
those driving modes are available in the current vehicle
configuration. Therefore parameters to activate driv-
ing modes independently of each other are provided in
the data record shown in Figure 8.

In the current implementation independent models
are used to decide which driving mode is active as
shown in Figure 9. All of them have Boolean outputs
each one representing a possible driving mode. This
implementation guarantees maximum flexibility but is
not the most straight-forward implementation.

0P1P0P1
1P0P1P0
0P1P0P1

ElectricDriving

0P1P0P1
1P0P1P0
0P1P0P1

Braking

0P1P0P1
1P0P1P0
0P1P0P1

Boosting

0P1P0P1
1P0P1P0
0P1P0P1

ShiftingTheO

0P1P0P1
1P0P1P0
0P1P0P1

ConvDriving

standStill

toPBUS standStillEngine

toPBUS

ElectricDriving

toPBUS

braking

toPBUSRegenerativebraking

toPBUS

Boosting_

toPBUS

shiftingOperationPoint1

toPBUS

ConventionalDriving

toPBUS

0P1P0P1
1P0P1P0
0P1P0P1

StartStop

0P1P0P1
1P0P1P0
0P1P0P1

RangeExt

rangeExtender1

toPBUS

bus

Figure 9: Implementation of the Control Strategy
within the HCU

To have distinct behavior it has to be ensured that in
each time step only one driving mode is active within
the HCU. To ensure that, the modeling is done via the
state graph 2 library1. The implementation shown in
Figure 10 is a combination of eight parallel loops, one
for each driving mode. This model is used named
driveModi in Figure 8. The loops consist of an acti-
vate and a deactivate transition and therefore of an on
and an off step. The output of the HCU is an inte-
ger variable that is put to the bus indicating the cur-
rent drive mode. This drive mode is then utilized by
the secondary level controllers (Figure 7) to generate
input signals for the drive train components. As a re-
sult of this structure it is not only possible to simulate
HEVs of different structure, but also purely electric ve-
hicles and conventional vehicles. Therefore, the mod-
eler can simply choose a hybrid vehicle topology and
based on that the possible and desired driving modes
are enabled in the HCU.

The range extender operation is an exception to that
rule. This mode can be interpreted using a source
of power for the battery without any power directly

1For further information it is referred to [6]
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transferred to the power train. Alternatively it could
be seen as part of the auxiliary units as it does not
generate traction force. It can therefore not be inte-
grated in the integer variable that represents the driv-
ing mode, as some other driving mode has to be active
to compute the control signals for the components of
the drive train. Then the integer value for the driving
mode would have to take two values. It is therefore
represented by an additional Boolean variable on the
bus.

entry

RegenerativeBrakingON

StandStillON

StandStillEngineON

ElectricDrivingON

BrakingON

BoostingON

ShiftingOperationPointON

DrivingMode

ConventionelDrivingON

RegenerativeBrakingOFF

StandStillOFF

StandStillEngineOFF

ElectricDrivingOFF

BrakingOFF

BoostingOFF

ShiftingOperationPointOFF

ConventionelDrivingOFF

1 = StandStill
2 = StandStillEngine
3 = ElectricDriving
4 = Braking
5 = RegenerativeBraking
6 = Boosting
7 = ShiftingOperationPoint
8 = ConventionalDriving

m
ultiS

w
itch

{1
2
3
4

5
6
7
8}

Figure 10: Driving mode selection via state graphs

Consequently the driving modes are represented by
an integer variable (driving mode 1 - 8), which is
computed via the state graphs and a Boolean variable
(driving mode 9), which is computed in the Controller
block.

Modifications

The driving modes are simple to adapt or to replace as
only the Boolean output has to be fed with a meaning-
ful value. If an additional driving mode should be im-
plemented a new driving mode controller in the Con-
troller block and an additional loop in the DriveModes
block has to be implemented.

4.3 Secondary Control Level

In the following sections the second layer controllers
are shown starting with the engine control unit that is
discussed in a bit more detail whereas the others shall
be described only briefly.

4.3.1 Engine Control Unit

The ECU is responsible to calculate the normalized
torque request of the CE. Furthermore, the signals for
the starter generator and the signals to bring the CE
into idle mode or switch it off are computed in this
controller. The main areas of functionality are shown
on the left side of Figure 11. These are

• Conventional Driving

• Shifting the Operating Point and

• Boosting

represented by different paths through the model
within the left three boxes in the model.

Shifting the Operation Point

Boosting

Conventional Driving

During Shift

Start/Stop/Idle

CE

modifiedAcceleratorPedalCE

fromBUS

accelearationCE

to BUS

=
6

driveModi

fromBUS

B

R

=
7

B

R
SOP

=
8

B

R

BST

D
S
T

k

limiter

uMax=1

limiter

data

1 = StandStill
2 = StandStillEngine
3 = ElectricDriving
4 = Braking
5 = RegenerativeBraking
6 = Boosting
7 = ShiftingOperationPoint
8 = ConventionalDriving

Figure 11: One possible controller of the combustion
engine

They compute an output signal that represent the
combustion engine’s torque demand depending on the
variable driveModi that is taken from the bus via the
adapter shown in the lower part of Figure 11. The
combination of compare block, Boolean to real con-
verter and multiplication with the output basically act
as an activation and deactivation of the single path.
The SOP and BST blocks represent implementations
of the functionality indicated by their name.

The additional blocks for Start/Stop/Idle and Dur-
ing Shift take responsibility that the CE acts like one
would expect during the operation states indicated by
their name.
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Flexibility is granted by the possibility to replace
the blocks for SOP, BST etc. or by replacing the over-
all ECU (Engine Control Unit) within the CU. Which
possibility is more suitable has to be decided within
the application that is targeted.

4.3.2 E-Drive Control Unit

The EDCU is responsible to calculate the normalized
torque requests of the EMs. Furthermore, in this con-
troller it is ensured that the computed signals are sent
to the corresponding EM (in case more than one EM
is available).

The implementation of the EDCU is split into dif-
ferent areas, i.e. one for each driving mode where
an EM is involved. By this structure it is clearly de-
fined how the normalized torque request signal for the
EM is calculated in every driving mode. Moreover,
by this implementation there is a clear separation en-
abling simple replacement of strategies depending on
driving modes.

Due to the bigger amount of driving modes that the
electric drives are included compared to the combus-
tion engine the model gets more complex than the one
in Figure 11 as one can see from Figure 12.

4.3.3 Gearbox Control Unit

The task of the GBCU is to evaluate the moment of
shifting a gear up or down. In a real vehicle the shift-
ing is dependent on different parameters, e.g. vehicle
speed, slope of the road, actual gear level. To sim-
plify the implementation it is assumed that the shifting
is only dependent on the actual vehicle speed, i.e. the
gear shift depends on predefined threshold values. The
output is the actual gear level and is represented by an
integer variable.

4.3.4 Clutch Control Unit

The CCU is responsible for opening and closing the
clutches. The implementation is similar to the EDCU
and ECU. That means that the CCU is split into differ-
ent areas and, therefore, it is easy to adapt, expand or
replace the controller.

4.3.5 Brake Control Unit

The BCU has the task to split the required brake torque
into a recuperation brake and a friction brake amount.
Two different regenerative braking strategies are im-

EM CE

Recuperation

EDrive

Boosting

Shifting the operation point 1 = StandStill
2 = StandStillEngine
3 = ElectricDriving
4 = Braking
5 = RegenerativeBraking
6 = Boosting
7 = ShiftingOperationPoint
8 = ConventionalDriving

Start Up

=
5

B

R

x2
m1

w1

w

w1

=
3

B

R

k=6T1

shiftBetw eenEMandCE

fromBUS

driveModi

fromBUS

modifiedAcceleratorPedalEM

fromBUS

ModifiedRegenerativBrake

fromBUS

=
6

B

R

modifiedAcceleratorPedalCE

fromBUS

=
7

B

R

k=6T1

SOP

BST

EM 1

EM 2

torqueEMStart

fromBUS

torqueEM1

to BUS

torqueEM2

to BUS

data

limiter

uMax=1

limiter

limiter

uMax=1

T1

Figure 12: One possible controller of the electric ma-
chine

plemented: the series-2 and the parallel3 recuperation
strategy.

4.4 Other Models

In Figure 7 models besides the primary and secondary
control level. These will be discussed in this section.

4.4.1 Signals

For simulation of a conventional vehicle the acceler-
ator pedal position can be directly used to scale the

2As long as the required deceleration is not higher than the pro-
vided generator deceleration, the generator brake is solely used.
When the required deceleration increases, the friction brake is
added.

3The generator and the friction brake are acting together in a
fixed ratio.
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maximum torque of the CE. In comparison to that,
HEVs have at least two energy converting systems.
Therefore the accelerator pedal position must be used
to scale the maximum available torque for forward mo-
tion, which in most cases results from a combination
of the torques of the CE and the EM.

In this block the conversion of the accelerator- and
brake pedal position into normalized input signals is
implemented.

4.4.2 Results

The Results block is for the computation or display of
values which are necessary for evaluating the simula-
tion, for example the fuel consumption.

4.5 Auxiliary Units

The auxiliary units are all power units, which are
not primarily needed for generating traction energy.
Therefore they are not part of the HCU directly as it
focuses on components for traction energy generation.
Still in modern vehicles a multitude of auxiliary units
can be found, e.g. an air conditioning system or a lube
oil pump. The power controlling of the auxiliary units
is realized via a priority list, i.e. the available electric
power is shared depending on the driving mode.

Figure 13 illustrates the schematic function of the
priority list. The required power from the drive line
and from the auxiliary units is sent to the priority list
block. This block splits the available power depending
on the drive mode and sends the results to each block.

Needed power drive line

Needed power auxiliary unit

Priority list

Power drive line

Power auxiliary unit
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Figure 13: Schematic function of the priority list

5 Simulation

To demonstrate the universal applicability of the de-
signed controller, two different vehicles are simulated.
One target of simulations like these could be to judge

their fuel consumption during common drive cycles.
The intention was to pick one vehicle with very high
complexity, which is why the BMW i84 was chosen.
Additionally the BMW i8 was operated as it is in-
tended to and as a conventional vehicle by deactivating
the hybrid operation modes. The BMW i35 was picked
due to its very different structure that has to be covered
with the same controller.

The driving modes in shown the simulation results
in Figures 15, 16 and 18 are referring to the ones listed
in Section 4.2.

It is important, that not all parameters for the models
were exactly known which make the absolute results
differ from real world values. Still relative compar-
isons based on different operating strategies are fea-
sible and demonstrate the flexibility of the designed
controller.

5.1 BMW i8

It is exemplarily shown how a comparison between the
fuel consumption of the BMW i8, used as a conven-
tional vehicle, and the BMW i8, used as an HEV could
be made (driving cycle: NEDC).

At first a fuel consumption simulation of the BMW
i8 as a conventional vehicle is run. For that solely the
conventional driving mode is enabled in the HCU, i.e.
only stand still with engine on, friction braking, and
conventional driving are possible.

The second step is to run the fuel consumption sim-
ulation of the BMW i8 as an HEV. Therefore, the suit-
able driving modes are enable in the HCU, i.e. start-
stop automatic, regenerative braking, electric driving,
boosting, shifting of the operation point and conven-
tional driving.

The changes between the simulations come down
to selecting the boolean parameters that enable or dis-
able the driving modes mentioned above within the pa-
rameter window. No modifications of the single con-
trollers in any level of hierarchy is necessary.

Result

The results of the fuel consumption simulations utiliz-
ing the NEDC are shown in Figure 14, whereby the
dashed line represents the BMW i8 as a conventional
vehicle and the constant line in the BMW i8 as a HEV.
More important regarding this paper is how the con-
troller behaves with respect to the driving modes that

4Is a special case of a parallel structure, called through the road
hybrid or axle split hybrid.

5Is available as a purely electric vehicle or as series HEV
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are activated. This is presented in Figure 15 and 16. In
Figure 15 mainly the modes 1 (StandStill), 3 (Electric-
Driving) and 5 (RegenerativeBraking) are active dur-
ing the first 800 seconds of simulation. Afterwards
the highway cycle starts, where 7 (ShiftingOperation-
Point), and 8 (ConventionalDriving) are active.

If the BMW i8 is configured by a few clicks to be
operated as a conventional vehicle only the modes 2, 4
and 8 are available resulting in Figure 16.

The fuel consumption of the BMW i8 as a con-
ventional vehicle is 0.98 l

NEDC (8.89 l
100 km ) and as an

HEV 0.61 l
NEDC (5.53 l

100 km ). In other words, the use
of the BMW i8 as an HEV instead as a conventional
vehicle effects a fuel saving of approximately 38 %.

BMW i3

This investigation focuses on the effect of a range ex-
tender (10 l tank volume) on the driving range of the
BMW i3 (driving cycle: WLTP).

At first a driving range simulation with the BMW i3,
used as a purely electric vehicle, is carried out. There-
fore, the available driving modes are enabled in the
HCU, i.e. start-stop automatic, electric driving and
regenerative braking. Afterwards, the second drive
range simulation is executed, with the difference that
the range extender mode is additionally enabled in the
HCU.

Result

The results of the driving range simulations are illus-
trated in Figure 17. The upper curve is driving range
of the BMW i3 as a purely electric vehicle and the
lower curve the driving range of the BMW i8 with an
additional range extender.

The driving range of the purely electric vehicle
is 112.4 km and with the additional range extender
287.7 km. This links to a surplus of driving range of
approximately 175 km.

Figure 18 shows the driving modes that are active
during the simulation of a WLTP cycle for the purely
electrically driven BMW i3 without range extender. It
shows that only the modes 1 (StandStill), 3 (Electric-
Driving) and 5 (RegenerativeBreaking) are active in
this case. The controller structure was the same as
for the simulations carried out with the BMW i8, with
necessary changes to the secondary level controllers
due to other components used.

6 Conclusion

To summarize, the presented controller structure can
be seen as a good starting basis for manufacturers for
the simulation in the early design phase of a vehicle
propulsion system. The presented implementation of
a universal control unit provides a simple and time
saving possibility to quickly simulate fundamental de-
sign changes in the system, which was the target for
this development. Additionally the unification of the
controller structure comes with other advantages like
quicker orientation in non-familiar projects.

The presented implementation is in a prototype sta-
dium and there are several parts that could be en-
hanced. These are e.g. the integration of the range
extender mode that could be added to the auxiliary
components instead of the driving modes. Another
thing that should be reviewed thoroughly is the mix-
ture of boolean and integer variables that are determine
the driving mode. The current implementation goes
for maximum flexibility but most likely more intuitive
possibilities exist to solve this problem.
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Abstract 

In this work, we use an acausal multi-domain physi-
cal system model to study the interaction between an 
internal combustion engine operation and a range of 
cooling scenarios. Although the model can be used 
for modelling a wide range of scenarios, in this paper 
we concentrate on the application of “thermal 
shock”. An internal combustion engine is load-
controlled on a dynamometer and coolant tempera-
ture transients are imposed on the engine system. 
Using freely available and commercial Modelica 
Libraries within the Dymola environment, the whole 
system integration of the coolant rig and engine dy-
namometer is achieved. This allows the user to de-
velop and define control strategies for the tests from 
desktop, prior to engaging in the real tests.  
 

Keywords: Engine testing, thermal-shock, control 
system development 

1 Introduction 

Engines need to work under a variety of temperature 
conditions. Some engine failure modes are caused by 
temperature cycling which in turn causes thermal 
expansion and contraction. This phenomenon can 
induce mechanical stresses which in extreme cases 
can lead to component failure. 
 
When an engine starts working it generates heat. 
This waste heat causes the engine components as 
well as the oil and coolant temperatures to rise. A 
thermostatic valve is used to ensure the engine and 
its fluids reach and maintain the optimum operating 
temperature for the duration of its use. 
 

 
 
The thermostatic valve [1] remains closed during 
initial engine operation until the coolant temperature 
exceeds a set point. The thermostat then opens com-
pletely and a certain amount of cold coolant flows 
into the engine. Repeated hot/cold thermal cycles are 
the cause of the head gaskets failure.  
If the cylinder head is kept cooler than the cylinder 
block, the block and the head will expand at different 
rates. These non-homogeneous head contractions and 
block expansions produce strain stresses on the head 
gasket. Even if the cooling system works well, re-
peated power on/off cycles will produce cracks on 
the head gasket surface. The head gasket is the most 
vulnerable part of any engine and a head gasket fail-
ure may result in catastrophic damage to the engine.   

 
The non-homogeneous expansions and contractions 
of the engine block and head are especially signifi-
cant with aluminium cylinder heads because alumin-
ium expands approximately two times as much as 
cast iron when heated. The difference in thermal ex-
pansion rates between aluminium head and cast iron 
block combined with the stress caused by thermal 
cycles can cause the cylinder head gasket failure. 
 

2 Thermal Shock Testing 

Many manufacturers carry out thermal shock tests to 
understand and prevent component failure, as well as 
to accelerate durability testing of engines and engine 
components, including cylinder-head gaskets. 

Thermo-mechanical fatigue is the term used to de-
scribe the type of fatigue in which temperature is 
varied through a cycle. The maximum tensile strain 
occurs at the same time as the maximum tempera-
ture. Maximum compressive strain occurs at the min-
imum temperature. The main factor causing thermo 
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mechanical failure is a large number of temperature 
cycles. 

As in fatigue testing, it is possible to acceler-
ate thermal cycling failure modes by increasing the 
frequency or amplitude of the thermal cycles. These 
thermal tests are used to simulate critical conditions 
inside the engine circulating a coolant flow with very 
large temperature gradients in short periods of time 
(e.g. 30ºC to 120 ºC). This is repeated cyclically.  

The main task to be performed is to simulate 
repeated hot/cold thermal cycles. The engine is cy-
cled between rated power and low idle. The coolant 
is also cycled between hot and cold respectively by 
means of an external conditioning unit. 

 

 
 

Figure 1: Example of an engine thermal shock cycle. Engine 
speed shown in red and coolant outlet temperature from engine 
shown in blue (ºC). 

 
The temperature gradient in the warm up and cooling 
down cycles is critical to the mechanical stresses 
applied to the engine due to the thermal shock. 
 
These kinds of tests allow manufacturers to repro-
duce the whole life of an engine in about 500 hours 
for a light duty passenger car and 2000 hours for a 
heavy duty vehicle. 
 
Manufactures expend great efforts in obtaining a 
good correlation between specific tests and the actual 
life time of an engine. Once the correlation is com-
pleted, the test must be performed as accurately as 
possible to preserve this correlation.  

3 Necessity of a Simulation Model 

The interaction of an engine cooling system and 
coolant over time leads to complex equations which 
need to be integrated versus time in order to predict 
the cooling and heating ramps the engine will expe-
rience. 
Adding the thermal shock equipment responsible for 
the temperature cycle control increases the complexi-
ty of the problem. 

The requirement to design a system capable of fol-
lowing a specific temperature profile over time with 
high accuracy, guaranteeing fast temperature gradi-
ents, implies the need to develop simulation models 
capable of dealing with this problem. 
Existing simulation tools available within AVL (e.g. 
AVL boost) do not cater for multi-domain systems 
engineering where various systems performing dif-
ferent functions are integrated with one another. 
They are more specialised tools used for simulation 
particular types of system. When there is the need to 
simulate such diverse types of systems integration, 
Dymola through the Modelica language serves its 
purpose. 

4 Case Study 

A thermal shock unit is designed to test different 
Diesel engines with powers rating from 8kW to 150 
kW and weights rating from 125kg to 556 kg. 

Thermal shock must be performed measuring engine 
coolant outlet temperature and cycling from 30ºC to 
120ºC. 

4.1 Thermal Shock Equipment Concept 

The equipment consists of two coolant tanks each 
with a capacity of 1500 litres. One tank is are held at 
a high temperature (120ºC) and one at low tempera-
ture (30ºC). Two additional tanks installed in prox-
imity of the engine and serve as an engine outlet 
pressure control. Pumps and valves control flow 
which is circulated and bypassed in the engine creat-
ing the thermal shocking of the engine.  
 

 

 
 

Figure 2: Example of an engine thermal shock rig showing the 
main components and routing, including the equipment split 
between the technical floor and the test cell. 
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4.2 Thermal Shock Testing Equipment 

The unit is divided in two main modules, one in-
stalled in the technical floor containing the main 
tanks. 

 

 
 
Figure 3: Thermal shock rig (technical floor side) with hot (left) 
and cold (right) tanks. 

 

A second one installed in the test cell with the 
switching valves and the pumps. 

 
 
 

 
 

Figure 4: Thermal shock rig (test cell side) with test bed (blue), 
routing valves and pipes on the left. 
 

5 Model Development 

5.1 Engine Model 

The engine model is based on the Claytex Engines 
library which offers a wide range of engine configu-
rations and component detail scenarios [2], [3], [4], 
[5]. 

The engine model used in this example is a 2.2l 
common rail turbo-diesel inline 4 cylinder engine. It 
is a Mean Value engine model where the intake and 
exhaust air paths are modelled [6] as well as the 
emissions, pressure charging, torque generation and 
fuelling. The engine mechanics is multi-body in type 
utilising the efficient rotational 3d components from 
the Claytex library. The Claytex rotational 3d library 
components allow multi-body modelling with com-
parable computational efforts to a 1d mechanical 
system, and have been used throughout our projects. 
 

 
 

Figure 5: Mean Value engine model with replaceable mechani-
cal and fluidic subsystems. 

 
The engine is coupled to a torque based Engine Con-
trol Unit which specifies the fuelling and torque re-
quired but also controls ancillaries such as the turbo-
charger wastegate. 
 
The engine heat release to coolant has been defined 
as a fraction of the crank power and varies depend-
ing on engine speed and load. The fraction value is 
determined from steady state tests by calculating the 
power to coolant required for the coolant tempera-
ture change between the coolant inlet and outlet of 
the engine. The coolant path within the engine is rep-
resented by a single pipe having average diameter of 
the passageways and the measured total engine cool-
ant pathway volume and surface area. The pipe di-
ameter is adjusted to achieve the required coolant 
flow speed through the engine.   
 
The engine thermal mass in this case is a lumped 
thermal mass and is not split by component. More 
detailed models are available within the Claytex En-
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gines library for studies which require higher level of 
engine thermal mass discretisation. 
 
The engine dynamometer is controlled via a rig con-
troller which can load or motor the engine according 
to the experiment requirements.  
 
The turbocharger system is Stodola/Ellipse [7] based 
and yields a dynamic response. The heat release 
from the combustion is channelled through 1d ther-
mal ports to the engine coolant system and rig.  
The coolant pump of the engine is replaced by elec-
tric coolant pumps within the rig which can be con-
trolled to deliver specific flows or flow profiles. 
  

 
 

Figure 6: Mean Value engine model mounted on test bench 
with coolant system based on thermal shock test rig. 

 

The heat transfer from the engine to the coolant is 
calculated by means of a Nusselt Number correla-
tion, calculated specifically for this engine. The 
Nusselt Number correlation is then used within the 
pipe model which represents the coolant path within 
the engine. Due to the fact that the thermal mass of 
the engine is of lumped type, the volume model used 
to represent the mass of coolant within the engine 
has one thermal node. The same Nu correlation can 
be implemented with multiple node fluid pipes de-
rived from the Modelica.Fluid library should a more 
detailed thermal discretisation be required. The exact 
same Nusselt Number heat transfer approach is used 
for the heat exchangers in the rig model described in 
section 5.2.  

5.2 Rig Model 

The coolant rig must be able to supply precondi-
tioned engine coolant to the engine at two or more 
different temperatures.  The rig described in this pa-

per uses two 1500 litre tanks kept at temperatures 
with fixed set-points. One tank is kept at a high tem-
perature and the other at a lower temperature. Typi-
cally these temperatures are ambient and fully 
warmed up engine coolant temperatures. The tanks 
are required to also smooth out and absorb any tem-
perature fluctuations in the rig coolant. 
 

At particular points in the cycle two 3-way valves 
are controlled to channel either hot or cold coolant 
through the engine. This change in coolant tempera-
ture yields the required thermal shock for the engine 
to experience and operate through. The tanks should 
be sized big enough to be able to absorb any fluctua-
tions in coolant temperature even after switch over of 
the 3 way valves. 

 

 
 

Figure 7 Example of 3-way valves used in the rig to route the 
coolant from each of the tanks through the engine. 

 
The hot and cold tanks are controlled to their set-

points by the use of a water to water heat exchanger 
(for cooling the fluid down) and a heating element 
mounted in the tanks for increasing the tank coolant 
temperature. It is required that the tank temperatures 
are returned to their desired set-point prior to each 
tank circuit being re-routed through the engine water 
jacket. 

 
The rigs are modelled using the Modelica.Fluids 

and Modelica.Media libraries [7] with some custom-
ized components from the Claytex library which in-
corporates some advanced functionality within the 
components both for visualization and enhanced 
model efficiency. The fluid used matches that of the 
rig in terms of properties and is a mixture of 50% 
Ethylene Glycol and water with linear compressibil-
ity. 
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Figure 8: Thermal shock rig with hot (left) and cold (right) 
circuits. 

The controllers for the tank heaters and coolers are 
of PID type and tuned to account for the power of 
these components and the response required of the 
system.  

 

 
Figure 9: PID controllers for controlling the heat exchangers 
and heaters to maintain tank fluid temperatures close to the set-
point. 

 

If the tank fluid temperature has strayed from the set 
point, the heater and cooler and associated controller 
need to be sized and parameterised appropriately so 
that the set-point temperature can be restored prior to 
the next hot or cold cycle. 
 
To control the 3-way valves a Modelica.StateGraph 
model was created (Figure 10). At particular points 
in the cycle the valves are operated to route the hot 
or cold coolant through the engine. The same State-

Graph model controls the throttle pedal position 
which is cycled from 0-100% in a similar phase to 
the engine speed (Figure 10). 
 
The PIDs for the tank heaters and cooler control 
were optimised to achieve minimal deviations (1-3 
oC) during the cycles. 
 
 

 
 
Figure 10: StateGraph controllers for the 3-way valves. 

 

   
 

 
 

Figure 11: Resulting accelerator pedal position (top) and engine 
speed (bottom) for the thermal shock test. 

6 Results 

The integrated engine and coolant rig, as shown in 
Figure 5, yielded close results to those measured on 
the test bed with some minor discrepancies on the 
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hot part of the cycle when the engine is operating at 
full power. We analyse the engine coolant in and 
engine coolant out temperatures as shown in Figure 
12. Firstly we consider the accuracy of the inlet 
coolant temperature to the engine. If the temperature 
of the coolant at the engine inlet is not accurate then 
this will influence the exit temperature and potential-
ly reduce the accuracy of the model. Discrepancy in 
the coolant inlet temperature after ramp up and ramp 
down ranges from 0.4-0.85oC. This type of error is 
deemed acceptable and demonstrates that the condi-
tioning system is sized and modelled correctly. 

 

 
Figure 12: Engine coolant inlet temperatures for test data (blue) 
and simulated data (red dashed). 

 
Being satisfied with the coolant inlet results we 

now concentrate on the engine coolant outlet results. 
This is the coolant temperature exiting the engine. 
We notice the ramp downs (shown in Figure 13) at 
t~ 250s and t ~650s are offset in time. Initially we 
get a faster cooling of the modelled engine but as the 
coolant temperature approaches the cold circuit tem-
perature (27 oC) the modelled coolant temperature 
transient slows down. Nevertheless we note that the 
lower temperature is achieved prior to the coolant 
temperature increase ramps at t~470s and t~830s. On 
the temperature increase ramps the engine coolant 
heats up marginally quicker than the test shows and 
overshoots the test data at the higher coolant temper-
atures t~600s, t~950s by approximately 0.3-1oC.  

 
The high temperature sections correspond with 

the engine being at full load and speed. The over-
shoot tells us that there is excess heat being put into 
the coolant by the engine at maximum power in the 
model. 

 
 
 

 
 
Figure 13: Engine coolant outlet temperatures for test data 
(blue) and simulated data (red dashed). 

 
The minor discrepancy in the transients is be-

lieved to be linked to the correction required for heat 
rejection of the engine to the coolant and potentially 
the thermal mass of the engine itself. 

 
The whole system model on average is shown to 

run faster than real-time with both variable (Figure 
14) and fixed step (Figure 15) solvers, the latter mak-
ing it suitable for hardware-in-the-loop simulation. 
For fixed step solver the target turnaround time is 
1ms. There are occasional spikes denoting overruns 
(Figure 15) which can be accommodated for. Further 
improvements in event checking suppression should 
allow the reduction if not removal of these spikes.   

 
 

 
 
Figure 14: Model performance using Radau IIa variable stiff 
solver for stiff systems showing Real time (vertical axis) vs. 
simulation time (horizontal axis). 
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Figure 15: Model performance using Euler fixed step solver and 
implicit inline integration showing CPU time per calculation 
step (vertical axis) vs. simulation time (horizontal axis) 

7 Conclusions 

This paper shows how a highly complex multi-
domain system to reproduce engine thermal cycling 
scenarios such as “Thermal shock” can be created 
within Dymola. Detailed physical representation of 
the internal combustion engine as well as the coolant 
rig, valves and controllers has been achieved. The 
acausal and multi-domain properties of the Modelica 
language make it possible to simulate all these inte-
grated systems within one larger system model with-
out the need to interface with third-party tools. 

 
Despite the model complexity it will run faster 

than real-time. Symbolic manipulation plays a large 
factor in this reducing the number of equations to be 
solved from in excess of 27000 to just over 3700. 

 
The model will allow the user to specify and de-

fine appropriate components and control strategies 
used to test engines without actually having to use a 
real engine. This in turn reduces costs, pollutant 
emissions and the time involved in calibrating a rig 
and controller with the internal combustion engine 
fitted and run. 

 
Lastly, the model has been shown to achieve real-

time simulation with Euler fixed step solver and im-
plicit inline integration making it suitable for HIL 
applications. 
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Abstract 

Increasing energy prices as well as outdated building 

systems present the housing industry with the chal-

lenge of finding new complex system solutions in-

cluding renewable energy and storage systems. The 

municipality Lohmen and the local housing associa-

tion contracted EA Systems and IB Dr. Lerche to 

develop an integrative energy system concept for its 

historic town center. 

This paper deals with modeling and simulating dif-

ferent energy system variants for the existing build-

ing structure using the Modelica-based ‘Green Build-

ing’ library and SimulationX. The discussion illus-

trates the challenges of the modeling process, inno-

vative solutions and the simulation results. 

Keywords: Green Building, Building Simulation, 

Building Quarters, Building Complexes 

1 Introduction 

In Germany, most buildings were erected before any 

heat insulation regulations existed. Therefore, most 

of them had to be refurbished from time to time to 

reduce thermal energy consumption and to adapt to 

current legislative requirements (e.g. Energy Saving 

Ordinance). 

Especially in the East of Germany, last region-wide 

refurbishment measures were taken back in the 90s 

of the last century. Hence, most buildings there still 

meet current energetic requirements. However, the 

building energy systems installed at that time have a 

lifespan of about 20 years. Consequently, building 

owners today, whether they are private or public, 

have to think about new refurbishment measures. 

Conventional measures to replace existing, out-

dated heating systems with more efficient system 

components (e.g. gas-fired condensing boilers) con-

tribute to a significant reduction of energy consump-

tion. But rising energy prices and upcoming legisla-

tive requirements to reduce carbon dioxide emissions 

mean that these measures will not be sufficient. In-

novative ideas, like integrating renewable energy 

systems and storages, have to be tested for applica-

bility to specific building situations. 

To meet this challenge, the municipality of 

Lohmen and the local housing association contracted 

EA Systems and IB Dr. Lerche to develop an inte-

grative energy system concept for the historic town 

center. This requires local characteristics, especially 

the availability of renewable energy, to be scruti-

nized. In this regard, suitable energy system variants 

have to be derived and evaluated for energy efficien-

cy, economical requirements and further ecological 

aspects. 

The given complexity requires new analytical 

methods. The availability of renewable energy has to 
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be analyzed in combination with strongly usage-

dependent energy consumption profiles as well as 

state-specific applicability of partly new storage sys-

tems (e.g. batteries). For that reason, only dynamic 

simulations of different energy systems can provide 

sufficient results for an adequate system evaluation. 

As a newly developed simulation environment, 

the Modelica-based ‘Green Building’ library and 

SimulationX were used to fulfill the given engineer-

ing task. Since it was developed especially for such 

applications, ‘Green Building’ can be used to easily 

model complex energy systems including renewa-

bles, storages as well as complex building structures 

in one simulation environment. 

2 Green Building Simulation Library 

Modelica is an equation-based and cross-domain 

modeling language. It offers the possibility to model 

complex building energy systems with different do-

mains (e.g. heat, electricity, control) using differen-

tial-algebraic equations. These equation systems can 

be edited and solved within one simulation environ-

ment. 

That is why EA Systems used Modelica and the 

versatile CAE tool SimulationX to develop the 

‘Green Building’ library for the simulation of energy 

systems [4]. By adapting an approach widely used in 

the automotive industry, several elements for the 

production of renewable energy and heating systems 

were created as well as storages and electrical or 

thermal consumers [5]. Most of the models represent 

real world objects like vehicles, electrical inverters 

or valves. Granularity and complexity of each ele-

ment are thus in the same range while preserving a 

flexible yet easy modeling process (i.e. physical as 

well as phenomenological models [5]). The model-

ing focus lies on the interactive behavior of different 

energy system components with varying complexity 

in the context of building energy supply, be it ther-

mal or electrical (i.e. electrical systems modeled us-

ing RMS values [4]). Although the building itself 

can be modeled as a complex thermal and electrical 

energy consumer by using a number of thermal 

zones, a detailed thermal building simulation for dif-

ferent thermal conditions in one room, for example, 

requires a more specialized tool, like EnergyPlus 

(Green Building, for example, uses constant average 

temperatures in thermal zones [5]). 

Figure 1 shows the ‘Green Building’ simulation 

environment in ITI’s SimulationX with a relatively 

simple model of a single-family home including a 

heat pump as well as a micro-wind turbine and a 

photovoltaic system as renewable energy sources [6]. 

3 Municipal area of Lohmen 

The surveyed area in the municipality of Lohmen, 

a small town in the middle of the Free State of Saxo-

ny in Germany, includes altogether twelve buildings 

Fig. 1: Modelica model of a renewable energy system incl. the building in the simulation environment 
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and building complexes. Besides ten dwelling houses 

built in the 1960s and 70s, there are also the over 

500-year old Lohmen castle, the office of munici-

pality, as well as the school complex with four sepa-

rate buildings which are part of the study. 

Figure 2 shows the historic town center of 

Lohmen with all acting partners, its municipality, the 

housing association as well as a local owner commu-

nity. 

Intensive analyzes of available energy saving po-

tentials and existing renewable sources were the ba-

sis of the following modeling and simulation work. 

Initial analyzes dealt with conventional refurbish-

ment measures of existing heating systems and the 

usage of solar energy. Besides, Lohmen is directly 

situated at the river Wesenitz with a number of exist-

ing water power plants in the area of the historic 

town center. Hence, further analyzes mainly re-

volved around the integration of water power as well 

as water heat usage with heat pumps, for example. 

4 Modeling paradigms and simula-

tion results 

Basically, energy can be provided in two ways. Heat 

and electricity can be supplied to each house indi-

vidually. That means heat is produced by internal 

heating systems, like condensing boilers or micro-

cogeneration units. Electricity can be taken from the 

grid or from locally installed photovoltaic systems 

on each building’s rooftop. These basic approaches 

are single-building solutions which only replace or 

modify existing building energy supply concepts. 

That way, existing renewable energy potentials (e.g. 

river water heat) cannot be used in an economic way. 

Other solutions consider all existing buildings to-

gether. These quarters solutions enable an economi-

cal use of all available renewable energy potentials 

as well as existing synergy effects, e.g. electricity 

production with photovoltaic systems only on roof-

tops facing South. 

Basically, SimulationX’ ‘Green Building’ library 

was used to implement and to simulate adequate sys-

tem models. This simulation environment enables 

the user to simulate variable building energy systems 

including a building’s heating as well as the inhabit-

ants’ electricity consumption. The basic modeling 

idea though was a single-family home. That required 

some modifications of existing models and the de-

velopment of new, adequate modeling approaches 

for the project at hand. 

Figure 3 shows two of these newly developed 

modeling paradigms. The model on the left shows 

the school complex which consists of four building 

models for each part of the complex (elementary 

school, kindergarten, gym, historic school). Each of 

these building models is implemented as three 

‘Building Zones’ from the ‘Green Building’ library 

representing basement, classrooms and roof. Fur-

thermore, the school complex model includes do-

mestic water production, electricity consumption as 

Fig. 2: Historic town center of Lohmen 

Municipality of Lohmen 
-- Town Hall -- 

Housing Association Lohmen  
-- Schloßstraße 10-17 -- 

Owner Community 
 -- Schloßstraße 1-9 -- 

Housing Association 

-- Ringstraße 1-14 -- 

Municipality of Lohmen 
-- School Complex -- 
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well as heating system components (e.g. valves, 

pipes, etc.). 

The right side of figure 3 shows the implemented 

sub-model of a heat pump cascade to be used as a 

basic heating system for the quarters. It consists of 

‘Green Building’ heat pump models including con-

nected controllers as well as heat storages. Further-

more, a river model provides information about 

available water heat and renewable electrical power 

of existing water power plants. Heat supply to the 

district heating grid is represented by a convenient 

heat exchanger model. 

Both modeling approaches illustrate the basic 

modeling idea used during this project. Buildings 

and usage (domestic water consumption, electricity 

consumption, etc.) are implemented individually in 

sub-model components. That way, they can either be 

used for single-building simulations or for entire 

quarters simulations without the need for further 

model adaptations. 

4.1 Single-building simulation 

The following energy system configurations in-

cluding renewable energy usage were examined in 

single-building analyzes: 

 Condensing boilers 

 Micro-cogeneration 

 Photovoltaic systems 

 Solar thermal collectors 

 Gas-fired heat pumps with geothermal 

energy usage 

The replacement of existing condensing boilers 

always represents a basic strategy to lower natural 

gas consumption of each building. They are able to 

provide heat for buildings and domestic water supply 

at fairly high efficiency rates (higher than 95%). 

Adding small micro-cogeneration units to each 

building’s energy system allows for a combined heat 

and electricity production. That way, general elec-

tricity consumption, e.g. for heating pumps and 

hallway lighting, can be significantly reduced. Espe-

cially in Germany, cogeneration units are substan-

tially subsidized by the state. Hence, heat and elec-

tricity can be produced at relatively low operating 

expenses. 

 
Fig. 4: Specific renewable heat production of differ-

ent solar collectors at different residential buildings 

 

Photovoltaic systems provide renewable electrici-

ty to meet a building’s general electricity demand. In 

Lohmen, general electricity consumption is rather 

low. Therefore, local electricity production has to 

Fig. 3: Sub-model structure of the school complex and the heat pump cascade 
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account for these conditions. The inhabitants’ elec-

tricity consumption is much higher, but cannot be 

met easily by local electricity production, because of 

German tax legislation for housing associations. Fur-

thermore, electricity fed into the grid is not very 

profitable for newly constructed energy systems. 

Consequently, the main goal of energy system design 

is to minimize the amount of electricity fed into the 

grid while maximizing the production of renewable 

energy. 

Solar thermal collectors constitute another energy 

system configuration that uses solar energy as a 

source. They can provide a significant amount of a 

building’s domestic water consumption if they are 

installed in the right spot (e.g. south facing roofs). 

However, there are two different types of collectors: 

flat plate and CPC (Compound Parabolic Concentra-

tor) collectors. Figure 4 shows some sample results 

from simulation-based analyzes of the solar thermal 

energy potential of various residential buildings’ 

roofs. CPC collectors always represent a more effi-

cient system variant. Due to quite high system costs, 

a specific heat gain of at least 250 kWh/m
2
 is needed 

on average. Figure 4 shows that only CPC collectors 

on buildings with south facing roofs (e.g. Schloßstr. 

13-17) can provide enough solar energy input for the 

analyzed system configuration (domestic water pro-

duction with hot water boilers at 60°C). 

The third energy system configuration that was 

simulated and evaluated for each single building is 

based on gas-fired heat pumps. Compared to electric 

heat pumps, these comparatively new systems pro-

vide heat using geothermal energy as well as a 

smaller amount of natural gas. 

Figure 5 shows a complete single-building model 

of the school complex with a condensing boiler cas-

cade as a basic heat supply system, solar thermal 

collectors to support domestic water supply, and a 

photovoltaic system to provide renewable electricity. 

This sample model shows only one of nine simulated 

and examined system configurations for the school 

complex: 

 Existing building with two 15-year old 

condensing boilers 

 Refurbished energy system (e.g. in-

creased pump efficiency) with some ad-

aptations of the building insulation 

 New condensing boiler cascade with 

modulating working burners 

 Condensing boiler cascade with small 

Stirling CHP 

 Condensing boiler cascade with CHP 

Fig. 5: Single-building model of the school complex with condensing boiler cascade, heat storage, solar 

thermal collector and photovoltaic system 
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 Condensing boiler cascade with solar 

thermal system (CPC) 

 Condensing boiler cascade with CPC col-

lectors and small photovoltaic system 

 Condensing boiler cascade with small 

photovoltaic system 

 Condensing boiler cascade with large 

photovoltaic system 

Figure 6 shows results for simulated electricity 

and natural gas consumptions of the school complex’ 

analyzed system configurations. 

 
Fig. 6: Simulation results for different system vari-

ants of the school complex 

 

All results are compared against the results of an 

existing old condensing boiler cascade. All variants, 

except for the existing system, are simulated with 

simple refurbishments of the building’s heat transfer 

system (e.g. pumps) and the building’s insulation. It 

is evident that even simple refurbishment measures 

have a significant impact on the heat and electricity 

consumptions. However, variant 3 with the new con-

densing boiler cascade is the first energy system var-

iant suitable for long-term decisions due to the age of 

the existing boiler. 

Furthermore, it appears that system variant 5 with 

a large combined heat and power unit (CHP) could 

be the most interesting variant regarding energy con-

sumption and system efficiency, because the electric-

ity consumption can be reduced significantly without 

increasing the natural gas consumption too much. 

All in all, over 70 variants of different energy 

system configurations and different buildings were 

modeled and simulated using the ‘Green Building’ 

library and further presented modeling paradigms. 

Such energy supply variants for single-buildings, 

however,  have only limited potential to reduce the 

renewable energy usage and energy consumption. 

Further analyses have thus been conducted regarding 

a number of different energy system variants for the 

entire quarters. 

4.2 Simulation of the Quarters  

The basic idea is to combine all implemented 

building models (see right part of fig. 3) of ten resi-

dential buildings, Lohmen castle and the school 

complex into one large simulation model plus vari-

ous energy system configurations. The main part of 

the heat supply regards a district heating grid imple-

mented with ‘Green Building’ components. This dis-

trict heating grid includes volume flows as well as 

temperature behavior in single pipes to enable dy-

namic heat loss simulations (i.e. simulated heat loss-

es to ground using a static ground temperature model 

[7]). The layout of the circulation pump, however, 

(regarding pressure drops, for example) is configured 

during preprocessing in order to reduce the number 

of simulated system states. 

Figure 7 shows a sample district heating grid 

model with several centrally located condensing 

boiler cascades, a heat pump cascade using river wa-

ter and water power plants as heat and electricity 

source as well as two cogeneration units for overall 

domestic water supply located in the school com-

plex. 

Two different types of district heating grids were 

implemented and analyzed. A “small” district heat-

ing grid provides heat from two cogeneration units to 

meet domestic water requirements of each building. 

Mechanical space heating is still provided locally by 

several condensing boiler cascades. 

The “large” district heating grid solution includes 

cogeneration for domestic water supply as well as 

main heat power production by a 520 kW heat pump 

cascade. Heat pumps use river water as environmen-

tal heat source and electricity produced at local water 

power plants as electricity source. Both heat sources 

are connected to each building via a widespread dis-

trict heating grid. Further heating power demands are 

met by smaller peak-power condensing boiler cas-

cades. 

Modifications can be done by adding further, 

smaller photovoltaic systems. Additionally, some of 

the implemented condensing boilers can be replaced 

by gas-fired heat pump systems again. That way, the 

system can be optimized with respect to number and 

type of the required components. 

Such a complex energy system requires sufficient 

control algorithms to operate the appropriate system 

components. That way, standby losses of system 

components that are not in use (e.g. peak power con-

densing boilers at higher ambient temperatures) can 

be significantly reduced. Furthermore, renewable 

energy usage can be increased by avoiding simulta-

neous heat pump operation, for example. 
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‘Green Building’ enables the user to implement 

physical energy systems as well as corresponding 

controller behavior (mostly P controllers with hyste-

resis switch-on/off statements) in one large simula-

tion model within the SimulationX modeling envi-

ronment. Previously presented optimization tasks can 

thus be executed more easily. 

Each of the two types of energy system configu-

rations for the district heating grids were simulated 

with four and five different system component con-

figurations and/or control algorithm sets. All results 

were evaluated in comparison with the buildings’ 

existing energy supply infrastructure and the accu-

mulated results of single building simulations with 

condensing boilers as the basic heat supply variant. 

The simulation’s result analysis focused on the 

affordability of different energy system components. 

Cost analyses, however, are not a basic part of the 

‘Green Building’ simulation environment. Further 

result evaluations revealed some interesting aspects 

regarding energy saving potential as well as overall 

system sustainability. 

Figure 8 shows simulation results for the relative 

overall energy consumption of each simulated sys-

tem configuration, divided into natural gas and elec-

tricity consumption. 

The diagram is divided into three basic parts. The 

left side shows accumulated results of all analyzed 

single-building simulations. It illustrates the overall 

energy consumption of the quarters’ existing energy 

systems, simply refurbished energy systems as well 

as the basic “energy-concept” regarding the replace-

ment of old boiler systems by new condensing boil-

ers. 

The second part of the diagram shows results for 

the previously introduced “small” district heating 

grid variant. Besides basic system configurations, it 

was also simulated with a 14.5 kWp photovoltaic 

system on a suitable building roof. Furthermore, the 

integration of street lighting into the overall energy 

system concept was part of some analyses, and some 

of the integrated condensing boilers were replaced 

by new gas-fired heat pump systems. 

Most simulations for the quarters’ analyses were 

run for a second district heating grid system variant. 

This “large” variant mentioned earlier includes a 

heat pump cascade for main heating power supply. It 

was simulated with and without recognizing street 

lighting. However, most of the simulated results 

concern different optimization levels of energy man-

agement system. 

On the one hand, basic energy management sys-

tem algorithms forced the CHP cascade to provide 

heat for domestic water supply in residential build-

ings even in winter months when sufficient heat 

power is directly needed in the school complex. On 

the other hand, all peak power condensing boilers 

stay activated even in case of ambient temperature 

levels above the estimated bivalence point. Further-

more, all heating systems, even the heat pump cas-

cade, are operated at comparatively high flow tem-

perature levels. 

Evidently, the system does not work in an optimal 

way. Therefore, some optimization steps were taken 

Fig.7: Simulation model of the quarters with district heating grid, micro-cogeneration, heat pump cascade, 

peak power condensing boiler cascades and all involved building complexes 

 

 

 

  

Condensing Boiler 
Cascade 

Building Model with 
Domestic Water Supply 

District Heating 
Grid 

Heat Pump Cascade 
with River Water 
Cooling 

CHP for Domestic 
Water Supply 

Session 1C: Building Energy Applications 1

DOI
10.3384/ECP1409697

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

103



to improve the implemented energy management 

algorithms. First of all, the condensing boiler cas-

cades were shut down in case of ambient temperature 

levels rise above the bivalence point. Furthermore, 

the CHPs are only used to provide residential build-

ings with domestic water in transitory and summer 

periods. These measures are shown as optimization 

level 1 in figure 8. 

Optimization level 2 refers to the reduced opera-

tion of the heat pump system during the summer 

months. Heat pump systems are supposed to provide 

heat only to connected buildings. However, they are 

not intended to provide domestic water because of 

required higher temperature levels. Lowering the 

heat pump cascade thus reduces standby losses with-

out affecting any heat power needs. 

The third optimization level refers to reductions 

of preconfigured reference temperatures for all im-

plemented heating system components (i.e. heat 

pump cascades, peak-power condensing boilers). 

That way, reference temperatures could be reduced 

by about 5K to enable all components to run in better 

working ranges (e.g. COP of heat pumps). 

The last optimization level affected only switch-

on and switch-off times of the planned heat pump 

cascade. In the planned “large” district heating grid 

system variant, all heat pumps are equally used to 

provide heat (c.f. Tichelmann system in fig. 3). All 

previously presented energy management algorithms 

forced each heat pump to work mainly at the same 

time (i.e. control hysteresis was implemented in the 

same way). Hence, this control regime was adapted 

to sequentially drive the heat pump cascade. This 

way, electricity provided by the water power plant 

can be used more efficiently to power each heat 

pump. That enabled a reduction of the overall elec-

tricity consumption. 

Both variants of district heating grids offer mas-

sive reductions of energy consumption and a better 

use of available renewable energy. The “small” dis-

trict heating grid variant provides huge reductions of 

electricity (ca. 80%) consumption even in compari-

son to refurbished single-building system variants. 

This is mainly caused by comparatively huge 

amounts of electricity produced by the CHP system. 

However, the overall natural gas consumption in-

creases slightly because of partly simultaneous heat 

and electricity production. 

The “large” district heating grid shows opposite 

results. Using environmental energy as well as elec-

tricity to provide heat massively decreases the natu-

ral gas consumption (ca. 50%). However, existing 

power plants cannot generate all electricity required 

for the heat pumps’ operation. Hence, the overall 

Fig.8: Simulation results of different energy system variants for complete quarters solutions 
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electricity consumption can even exceed the existing 

electricity demand. Apparently, system optimization 

as well as iterative improvements of implemented 

energy management algorithms can sufficiently de-

crease these effects. 

Finally, both district heating grid solutions pro-

vide extensive reductions of energy consumption. 

This is mainly achieved by using huge amounts of 

renewable, environmental energy (e.g. water power) 

as well as synergies in the existing quarters. That 

way, providing electricity, which is produced by a 

newly installed CHP system, to street lighting would 

further decrease overall electricity consumption in a 

significant way. 

Furthermore, replacing some of the additionally 

needed peak-power condensing boilers by an ade-

quate number of gas-fired heat pumps using geo-

thermal energy as additional heat source can signifi-

cantly improve natural gas consumption as well. 

5 Conclusions 

This paper shows how the SimulationX ‘Green 

Building’ library was used to analyze and to evaluate 

different suitable building energy system variants of 

building quarters in the historic town center of 

Lohmen. Some selected modeling paradigms are 

presented to demonstrate how to use ‘Green Build-

ing’ for simulating larger building complexes. 

Furthermore, the developed analyses approach, be 

it the comparison of different energy system configu-

rations for single buildings or the evaluation of the 

given quarters as one unit, is presented as well. 

Some simulation results are illustrated for one 

single building evaluation process regarding the 

school complex. In comparison to that, both devel-

oped energy system variants representing a district 

heating grid are introduced with their specific char-

acteristics. Simulation results are evaluated in com-

parison to single-building analyses. Advantages and 

disadvantages of both variants and derived system 

configurations are discussed at the end. 

The simulation models are relatively complex. 

The simulation of a single building energy system 

took 0.5 to 4 hours for one year. In comparison to 

that, simulations of the quarters took between 3 and 

4 days to finish. It is thus evident that ‘Green Build-

ing’ can be used to economically analyze complex 

variants of building energy systems. Parallelization 

by using multi-core computing can further improve 

this aspect. 

Extensive engineering efforts yielded a compara-

tively high numerical stability of the Green Building 

library [6]. That way, simulating even complex, cou-

pled numerical systems (linear and nonlinear) does 

not affect convergence. The presented project, for 

instance, comprised complex quarter models with up 

to 3000 system states. Simulating these models for 

one year causes around one million event iterations. 

The presented results are part of a research study 

which is funded by KFW (Development Load Cor-

poration) and communal as well as private investors. 

The complete research project includes theoretical, 

Fig.9: Pictures of residential buildings (top left), historic school (bottom left) and ancient Lohmen castle 

(right) 
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simulation-based analyses of sufficient energy sys-

tem configurations. First approaches as well as initial 

simulation results were also shown in [3]. Acting 

partners (c.f. fig. 2) can decide which energy system 

variant meets their predefined requirements best with 

respect to affordability and sustainability. The cho-

sen energy system variant will be built in a second 

project part beginning in the middle of 2014. 
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Abstract 

In this study, the possibility to interface a commer-
cial building simulation tool with Modelica models 
is investigated. In this application, the zonal model 
VEPZO – modeled in Modelica – is coupled to the 
software TRNSYS – mainly programmed in Fortran 
– to be able to perform a dynamic co-simulation. The 
objective of this coupling is to obtain refined airflow 
and air temperature prediction, while retaining com-
putation effort low enough to allow for transient 
computation. In a first attempt, a coupling using FMI 
was tested without success due to a lack of adequate 
solvers for FMI export. Therefore, a script coupling 
was implemented. Further steps include a validation 
and evaluation of the programmed interface and the 
results of the coupled system in respect to computa-
tion time, quality of results, usability and further de-
velopment. 

Keywords: building simulation; zonal model; FMU, 
Dymola scripting, TRNSYS 

1 Introduction 

Building simulation tools are used to assess building 
energy consumption, building control strategies, sys-
tem performances, etc. on an annual or longer basis. 
In Modelica, the Buildings Library [1] and the In-
door Climate Library [2] contain models for the sim-
ulation of building energy performance. These librar-
ies allow the simulation of building models directly 
in Modelica. Beside these, various commercial and 
free non-Modelica building simulation software 
products are available on the market. User’s experi-
ence, knowledge of a specific tool and availability of 
tools in companies and institutes determine which 

software is used. Therefore coupling of different 
tools becomes interesting when a specific model 
reaches its limits. In the presented study, an interface 
has been established for TRNSYS and the VEPZO 
model [3; 4] (programmed in Modelica) in order to 
enhance the simulation of atria. 

 

1.1 TRNSYS 

TRNSYS (Transient Systems Simulation) develop-
ment started at the University of Wisconsin in 1975. 
The latest version 17 was released in 2010. TRNSYS 
code has a modular approach and is structured into 
types. Each type contains code for a specific task, 
usually representing a model of a specific component 
such as a part of an HVAC system. Types have a 
common structure and communicate via a given set 
of inputs, outputs and parameters. A central type for 
building performance simulations is the multizone 
building simulation environment (Type 56). It subdi-
vides a building into multiple zones with homogene-
ous properties and conditions. The computation in-
cludes heat flows due to radiation, convection, con-
duction and solar gains and enthalpy flows through 
ventilation and air leakages. The integrated code 
COMIS [5] allows the formation of an airflow net-
work by interconnecting zones. A schematic setup of 
the physical phenomena in an atrium is shown in 
Figure 1. 
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Figure 1: Schematic atrium model 

 

The assumption of a perfectly mixed zone reaches its 
limits when simulating atria, because solar heat gains 
through glazing and a considerable height lead to 
thermal stratification of air. The current solution 
method to simulate atria in TRNSYS is to subzone 
them. For this, several air nodes are created in the 
atrium connected to one another by a predefined 
mass flow. To set up the model properly, the model-
er requires prior knowledge of the airflow pattern – 
either from experience or from CFD simulations. 
However, even experienced modelers may fail to 
provide the proper airflow pattern. Due to a high re-
quirement in computational power, CFD simulations 
are currently applicable for only a few configurations 
of different boundary conditions and only under 
steady-state conditions. Therefore, the extension of 
TRNSYS by a simpler airflow model is of interest. 

 

1.2 VEPZO 

The velocity propagating zonal model (VEPZO) was 
developed to fill the gap between the computational-
ly cheap but inaccurate assumption of perfectly 
mixed air volumes and the slow but accurate CFD 
computation. Typically, a space is subdivided into 
101 to 102 zones exchanging air [6]. The main com-
ponents are a zone and a flow model which are con-
nected by ports (Figure 2). Zone models possess a 
heat port to exchange convective heat flows from 
walls, equipment, humans, etc. In the zone model, 
conservation of energy and mass are implemented. 

The flow model computes the airflow between adja-
cent zones resulting from pressure, momentum and 
height differences and losses. Velocity information is 
propagated through the models allowing the predic-
tion of temperature and velocity distributions without 
prior knowledge of the airflow pattern. Models from 
the Modelica.Media package are used to compute air 
properties. Dymola is used as compiler for VEPZO. 
Results of the VEPZO model are the airflow pattern 
and temperature distribution in the considered space. 
Hence, it is suited to give a quick estimation of flow 
and air temperature conditions in an atrium. 

 

 
Figure 2: VEPZO model in x-z direction (y not 
shown); cubes: zones; grey rectangles: flows; 
rhombs: airflow ports; red solid squares: heat ports. 

 

1.3 Model coupling 

TRNSYS and VEPZO are coupled to benefit from 
the respective strengths of the codes. The goal is to 
obtain a correct simulation of the energetic perfor-
mance and climatic conditions in an atrium without 
prior knowledge of the airflow pattern. 

TRNSYS has already been used for co-simulation 
with other tools such as ESP-r, Energy-Plus and 
Matlab [7; 8]. All couplings use TRNSYS as a mas-
ter and exchange data through a TRNSYS type 
which translates data into the required format. 

For the coupling of Modelica models to other simu-
lation environments several possibilities exist. A 
powerful tool is the Building Control Virtual Test 
Bed (BCVTB), an interface for building simulations 
developed by the Lawrence Berkeley National La-
boratory. It already provides an interface for Modeli-
ca and TRNSYS. However, the coupling currently 
does not allow for iterations between components 
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[9]. Therefore, it is not suitable for a dynamic co-
simulation as envisaged in this application. 

In recent years the FMI-standard has been estab-
lished for model exchange with other software envi-
ronments [10]. It has already found several applica-
tions in building simulation technology [11] and is 
especially suited for Modelica models. Another pos-
sibility to couple other software to Modelica (Dymo-
la) is the use of script files in the .mos-format which 
are automatically created and whose execution is 
launched in the command processor. 

2 Method 

TRNSYS and VEPZO communicate at the inner wall 
surface of the investigated atrium where TRNSYS 
passes the wall surface temperature to VEPZO. With 
this information, VEPZO computes the heat flow 
rate from the wall to the adjacent zone and hence 
resulting airflow and air temperature distributions. 
The heat flow rate is returned to TRNSYS to com-
pute the energy balance (Figure 3). This coupling is 
iterated until the total energy balance converges be-
low a defined threshold. 

 
Figure 3: Heat flows and temperatures computed by 
the two interfaced tools 

 

Both TRNSYS and the Modelica model VEPZO re-
quired some preparation before being interfaced. 
TRNSYS air nodes, which are required in the simu-
lation environment, are inactivated by setting con-
vective heat transfer coefficients to zero. The con-
vective heat flux is then replaced by the one obtained 
from VEPZO. 

VEPZO required TRNSYS convective heat transfer 
correlations to be implemented in the model. Input 
and output connectors were included to receive the 
surface air temperature and to deliver the heat flow. 

Furthermore, supply airflow rate and temperature as 
well as exhaust opening pressure were set as inputs. 

2.1 Model coupling via FMI 

First attempts to simulate VEPZO as an FMU 
showed that in spite of having set input values for air 
temperatures and pressures, the FMU instantiates 
with all inputs being zero. This generates an error in 
the air model from Modelica.Media as 0 K and 0 Pa 
are out of definition bounds. Therefore, temperature 
and pressure offsets were introduced in the model 
(273.15 K, 101325 Pa, Figure 4). Thus, the tempera-
ture input is in °C and the pressure input gives the 
deviation from standard pressure. 

 
Figure 4: Introduction of temperature and pressure 
offset prior to FMU export 

 

To allow the import of a VEPZO-FMU to TRNSYS, 
the new TRNSYS type was implemented (Figure 5). 
At the very first call the new type checks that the 
given FMU is suitable for co-simulation, retrieves 
the reference values of input and output parameters 
of the model and opens a result file which can be 
continuously accessed during the simulation. Then, 
the following steps are iterated: 

1. Receive input values and current time as 
well as time step size from TRNSYS 

2. Load the VEPZO-FMU 
3. Instantiate VEPZO-FMU 
4. Load values from the previous time step 

from internal storage 
5. Initialize VEPZO-FMU with values from the 

previous time step 
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6. Perform calculation from the current to the 
next time step 

7. Write results 
8. Pass output values to TRNSYS. 

 

 
Figure 5: Basic structure of the two coupled tools in 
the interface via FMI 

 

The coupling was implemented and simulation time 
showed to be significantly prolonged in comparison 
to VEPZO simulations in Dymola. When simulating 
a simple test case with a supply mass flow rate of 
0.1 kg/s, supply temperature of 10 °C and wall tem-
perature of 30 °C the air temperature predicted by 
the FMU showed an unstable range between 180 s 
and 500 s simulation time in comparison to the simu-
lation in Dymola (Figure 6). The reason for this is 
that VEPZO requires a fifth-order stiff Runge-Kutta 
solver in order to be solved for low supply mass flow 
rates. This solver is not available for export in the 
current version of Dymola, but will be implemented 
in future versions [12]. Hence the dynamic coupling 
of TRNSYS and VEPZO via FMU was discarded in 
this study. 

 
Figure 6: Comparison of Dymola and FMU simula-
tion of a simple test case in VEPZO 

2.2 Model coupling through scripting 

In a second approach TRNSYS and VEPZO were 
coupled using Dymola scripting. For this, another 
new TRNSYS Type was implemented. This type 
writes and executes a .mos-file containing wall tem-
peratures, simulation settings and code for export of 
computed wall heat flow rates into a .csv file. The 
new type reads the .csv file and uses it as input for 
the thermal building simulation (Figure 7).  

 

 
Figure 7: Basic structure of the two coupled tools in 
the interface via scripting 
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3 Atrium model 

To demonstrate the coupled simulation of TRNSYS 
and VEPZO an atrium is modeled and simulation 
results are compared to data from measurements and 
CFD simulations. The modeled atrium (Figure 8) is 
part of the Concordia University engineering build-
ing located in downtown Montreal (45.5°N, 74°W). 
In total, five atria each covering three floors are 
placed on top of each other. The considered atrium is 
of rectangular geometry and can be conditioned by 
both natural and mechanical ventilation. Mouriki 
[13] conducted measurements in this atrium at four 
days ranging from August to November 2007. Based 
on this data, Hussain [14] carried out several CFD 
simulations of this atrium with different turbulence 
models. 

 
Figure 8: Considered atrium 

 
To reduce the uncertainty of boundary conditions, a 
day with only mechanical ventilation (November 2nd 
2007) has been selected for comparison. It was a 
clear and cold day with ambient temperatures be-
tween -1.5 and 8 °C. The maximum global horizon-
tal radiation for a nearby weather station was 
480 W/m2 [15]. Measurement readings are available 
from 6am to midnight. Figure 9 shows the geometry 
of the considered atrium and the location of mechan-
ical ventilation inlet and outlet. The atrium air vol-
ume is divided into 5 x 5 x 6 (length, depth, height) 

VEPZO zones. To compare the coupled simulation 
to the classical TRNSYS approach using modeler’s 
experience, a second simulation model using only 
TRNSYS was set up. In this model, air is subdivided 
into three horizontal slices. Walls are discretized into 
a total of 20 facets in order to account for different 
wall temperatures due to varying solar radiation. For 
this work, we could not access construction plans of 
the atrium. The only hint to guess materials are pub-
lished pictures and transient temperature measure-
ments. Therefore, this information presents a consid-
erable source of error which is mainly reflected in 
the thermal capacity of the system. 

 

 
Figure 9: Geometry of considered atrium 

The boundary conditions obtained from measure-
ments are inner glazing surface temperatures, trans-
mitted solar radiation, ambient temperature and sup-
ply air conditions (Figure 10). To acquire a proper 
initialization of wall temperatures, four days prior to 
the considered day were simulated before the cou-
pled simulation was started. The coupled simulation 
took 4hr and 45min.  
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Figure 10: Supply air boundary conditions 

Figure 11 shows the comparison of measurement and 
coupled simulation for the average temperature in 
three heights of the atrium. Five main observations 
are made: 

• The results from the coupled simulation 
show an initial drop in air temperature which 
causes the further temperature profiles to be 
lower than measured. 

• The peak in temperature is reached by about 
one hour delay in the simulation but shows 
good coherence in the absolute value with 
the measured peaks. 

• The model is more sensitive to a change in 
airflow boundary condition than measure-
ments show. 

• A raise in temperature due to a lower cooling 
flow rate around 6.30pm can only be ob-
served at the lowest measurement position 
but is observed for all heights in the simula-
tion. The same is the case for the shut-down 
of the ventilation around 11pm. 

• As a result, the air temperature at the end of 
the simulation is about 2 K higher than 
measurement shows. 

 
Figure 11: Temperature at three different heights 
over the course of one day 

 

Figure 12 shows a comparison of measured air tem-
perature profile, coupled simulation results and CFD 
simulations [14] for 4pm. The coupled simulation 
shows considerably better agreement to measure-
ments than CFD simulations do. 

 

 
Figure 12: Comparison of simulated and measured 
temperatures over the height at 4pm 
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4 Discussion 

The higher rate of response of air temperature of the 
model to variations in air supply suggests that it does 
not contain enough thermal capacities dampening 
variations of boundary conditions or that the convec-
tive heat coefficient model is inaccurate. Additional 
capacities can for example be caused by furniture 
and other internal objects like stairs. The initial drop 
in temperature implies that the surface’s tempera-
tures are lower in the simulation than they are in re-
ality. This could be caused by a lower thermal mass 
of walls in the model or because the atrium gains 
energy from surrounding rooms during the night. 

Between 3 and 4pm relatively stable temperature 
conditions are present in the atrium. For this case, 
the coupled simulation gives better results than CFD 
computations. The reason is that it is very difficult to 
obtain a good prediction of airflow by CFD for such 
large volumes with comparatively small openings 
without an adequate benchmark case. 

The results from the dynamically coupled simulation 
in comparison to those obtained from a TRNSYS 
simulation show that very similar temperature pro-
files can be achieved for simple configurations 
where the airflow pattern can be predicted by experi-
ence. This implies that VEPZO results show a high 
dependence on the inputs obtained from TRNSYS. 

5 Conclusions and future work 

A dynamic coupling of the building simulation tool 
TRNSYS and the Modelica model VEPZO has been 
implemented successfully using Dymola scripting. A 
coupling through FMI was not successful due to 
missing solvers for FMI for co-simulation export. 

The results obtained from the dynamically coupled 
simulation show significant dependence on the 
TRNSYS model, especially on the proper knowledge 
and implementation of the building construction 
(materials, capacities, etc.). If those are modeled ac-
curately, coupled simulations can give good predic-
tions of airflow and air temperature as required in the 
building planning process. In comparison to CFD, 
results of the coupled simulation show better coher-
ence with measured data. 

The usability of the current coupling method should 
be improved by speeding up computation times and 
facilitating geometry specific scripting. It could be 
increased by using FMI once the required solvers are 
available for export. It would be helpful if FMI in-
stantiation could be performed at values different 

from zero to avoid error-prone preparation of the 
Modelica model. 

Further development of VEPZO as deduced from 
this study includes the implementation of heat trans-
fer correlations which take into account the wall ori-
entation and flow velocity. Additionally the feature 
of an artificial internal heat capacity will be integrat-
ed in order to be able to model furniture. 

Regarding the interface, a possible further develop-
ment is the integration of the multi-zonal model 
COMIS into the interface such that boundary condi-
tions at atrium openings can be obtained from a cou-
pled COMIS-TRNSYS simulation. Once the compu-
tation time of the coupling is reduced, the interface 
could moreover be utilized to optimize the design of 
atriums and large halls such as the best location and 
size of ventilation openings. 
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Abstract 
 

This paper presents the Modelica Thermal Model 

Generation Tool. The aim of this tool is to enable the 

user to set up a geometrically correct thermal model 

for complex geometries that allows predicting the 

impact of heated/heating devices and their location 

both in terms of airflow pattern and radiation 

distribution. Using a geometry file exported from 

CAD software, the tool distributes wall facets, air 

nodes and computes the long-wave radiant view 

factor matrix for obstructed and unobstructed 

surfaces. This information is exported as ready to use 

Modelica code. The zonal model VEPZO is used to 

model airflow within a domain (enclosed space). 

This model allows predicting airflow and air 

temperature distribution in space on a coarse mesh 

and thus computes faster than classical CFD 

computations. Walls are subdivided on the same grid 

as the zonal model is set upon. For each wall facet, 

the Modelica Thermal Model Generation Tool 

computes the view factors to the other facets in the 

domain.  

Comparison of simulated results with test data and 

application of the Modelica Thermal Model 

Generation Tool for a room with radiant heating and 

for the cooling of an aircraft cockpit are presented in 

this paper. 

 

Keywords: Thermal Model, VEPZO, Airflow 

Simulation, View Factor Calculation, Long-wave 

Radiant Heat Exchange, LowRad 

1 Introduction 

A number of codes for thermal simulation (e.g. 

Indoor Climate Library [1], Buildings Library [2]) 

have emerged in Modelica. These models are set up 

in a way to allow the user a comfortable 

parameterization with a moderate number of models. 

The resolution of these models is on room level. A 

typical model would consist of six rectangular 

enclosures, a perfectly mixed air volume and a 

radiation node estimating the view factors in a 

simplified way. Connecting a number of such basic 

elements and modelling an airflow network between 

rooms (e.g. the Multizone model of Buildings 

Library [3]) yields a building. To refine the airflow 

and temperature distribution within a room, zonal 

models have been implemented in Modelica ([1; 4]). 

The manual setup of these models is easy when only 

rectangular spaces are considered. Simple non-

rectangular spaces with a low number of inclined 

surfaces can still be set up manually, too. However, 

the manual setup of a thermal model for more 

complex geometries becomes increasingly time 

consuming and error prone with increasing “non-

rectangularity” of the geometry as surfaces and 

zones require a one-by-one parameterization of area, 

volume and location. Furthermore, the simplified 

radiation approach distributing radiation 

proportionally on surfaces (e.g. described in [5]) is 

only validated for building applications where 

typically temperature differences between surfaces 

are relatively small. In other configurations, the 

simplified approach may result in high errors of 

surface temperatures due to wrong estimation of 

view factors, which can further cause error in energy 

balance and estimation of comfort level.  

One of the purposes of creating the Modelica 

Thermal Model Generation Tool is to allow 

estimating the impact of the location of a very hot 

device or the development of local radiant or 

convective heating strategies. 

To achieve this goal, the Modelica Thermal Model 

Generation Tool combines two Modelica codes 

presented at the Modelica Conference 2012. The 

VEPZO model [6] computes the airflow and 

temperature distribution in space. Up to now, it has 

only been used on rectangular geometries. For non-

rectangular spaces, the geometry was manually 

approximated by rectangular elements. The Modelica 

Long-wave Radiation View Factor Model [7] allows 
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for view factor computation based on actual 

geometries and creates a more detailed radiation 

node model. The long-wave radiation view factor 

model presented in Modelica Conference 2012, was 

not considering the obstruction check for obstructed 

views. 

2 Method 

This section outlines the steps of the Modelica 

Thermal Model Generation Tool and used models.  

 

2.1 Modelica Thermal Model Generation Tool 

The Modelica Thermal Model Generation Tool 

(MThMGT) is a pre-processing tool developed in 

C++ language. It translates a CAD model exported 

into the .stl format to Modelica code that can be 

simulated in the Modelica simulation environment. 

The .stl format describes the geometry by a series of 

triangles and their normals. When opening the 

MThMGT GUI (Figure 1), the user selects the input 

.stl-file and determines a grid for the subdivision of 

the geometry into zones. The user can add heat 

sources and ventilation openings in the GUI.  

Based on the user-defined grid, the MThMGT 

distributes nodes and checks for each node whether it 

is within or outside the geometry. Furthermore, it 

checks whether two adjacent nodes are separated by 

a wall indicating that they belong to two different 

domains (i.e. room1 and room2). The nodes within 

one domain form the edges of the zones. The 

“classical” rectangular zone is thus determined by 

eight nodes. Zones adjacent to the geometry are 

defined by less than eight nodes as some nodes are 

outside the domain. For these zones, dedicated rules 

are applied approximating zone geometry and 

creating wall facets that approximate the actual 

geometry. Each zone is given a unique name to be 

identified for its connections to walls, heat sources, 

convection and radiation models and ventilation 

openings. To enable the user to assess the created 

thermal model, the geometry of created zones and 

wall facets is saved as .stl file in dedicated 

repositories. Figure 2 shows an example for the 

distribution of zones in geometry. 

 

 
Figure 1: GUI of the MThMGT - Zonal Part 

 

 
Figure 2: Example for created zonal grid  

 

View factor computation settings are entered in the 

second part of the GUI of MThMGT (Figure 3). 

First, the user needs to state whether view factors 

shall be computed and what kind the geometry is of. 

Unobstucted view means all the surfaces in one 

domain have complete view of each other if they are 

not in the same plane. If there is any obstruction in 

the view of one surface to another surface, the user 

must select computation method for obstructed 

views. Similarly, if the surface is self obstructed, for 

example a surface is shaped as an alphabate ‘S’, the 

user must select the computation method for self-

obstructed views. The aim of these selection 

possibilities is to obtain a quicker computation by 

avoiding unnecessary obstruction checks. 
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Figure 3: GUI of the MThMGT - Radiation Part 

 

Accuracy of view factor computation is directly 

proportional to the mesh quality of a surface. 

Therefore, mesh refinement is required. For this, the 

user can define a limiting area and a limiting length 

of facet edges for refined triangles. This ensures that 

all facets are refined below this threshold. Figure 4 

shows a refined mesh of the geometry shown in 

Figure 2. 

 

 

Figure 4: Refined meshing of created geometry 

for view factor computation. 

After computation of zonal grid and view factors, the 

MThMGT does all the appropriate connections 

between the zonal model, the radiation model, the 

convection models and  the wall models. It includes 

heat sources and ventilation openings to the model 

and connects them with the appropriate zone and 

radiation node. The MThMGT writes all the model 

descriptions and connections into a Modelica file 

(.mo file) which can be further used in a Modelica 

environment for thermal simulation. 

 

2.2 VEPZO zonal airflow model 

The two main components of the VEPZO model are 

a zone model and a flow model (Figure 5). The zone 

(cube) and the flow (grey rectangle) models are 

connected by ports to form a room. These ports 

allow the exchange of relevant information between 

the flow and the zone model. The flow models have 

two ports to connect adjacent zones. Each zone has 

six ports, one for each boundary. A boolean 

parameter is assigned to each port to make the 

distinction whether the port is connected to a flow 

model or whether there is no flow because the zone 

is adjacent to a room boundary surface. Furthermore, 

each zone has a heat port (red square) allowing heat 

exchanges with models of other components like  

heat sources or walls. 

With the MThMGT, these connection parameters are 

automatically set and ports are automatically 

connected to the respective models. 

 

Figure 5: Zonal model in x-z direction (y not 

shown); cubes: zones; grey rectangles: flows; 

rhombs: airflow ports; red solid squares: heat 

ports. 

The main task of the zone model is to compute mass 

and energy balances and air properties (density, 

enthalpy, pressure, temperature, etc) using air 

models of Modelica.Media. 
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(2) 

Where pressure is constant, V is the volume, ρ is the 

density, h is the enthalpy, m are entering and leaving 

airflows, and Q are heat flows in the zone. 

The main task of the flow model is to compute the 

airflow rate between two adjacent zones. For this, 

forces resulting from pressure, momentum and 

height difference and losses are summed yielding the 

acceleration of the airflow in the flow paths. A 

detailed set of equations for the flow path can be 

found in [6]. 

 

2.3 Long-wave Radiant Heat Exchange Model: 

LowRad  

The radiant heat exchange of a surface depends on 

the temperature T, the reflectivity ρ, the 

emissivity/absorptivity ε and for transparent surfaces 

the transmissivity τ. 

For an opaque surface i the incoming (Qi,in) and 

leaving (Qi,out) radiant heat flows are computed by: 

iniiiiiouti QTAQ ,

4

,    (3) 

  

j

out,jjiin,i QFQ  
(4) 

 

(1) 

with σ: Boltzmann number (5.67∙10
-8

 W/m²K
4
),      

Fi-j: view factor of surface j to i. 

Determination of the long-wave radiant heat 

exchange between surfaces requires the view factor 

matrix Fi-j. There are several analytical solutions 

available to calculate view factors for simple and 

known configurations. Many building simulation 

programs estimate the view factors in a simplified 

way, especially when complex geometries are 

involved. The simplified approach may result in high 

errors of surface temperatures, which can further 

cause error in energy balance. Hence it is important 

to determine accurate view factors. The purpose of 

creating this model is to calculate view factors 

between complex geometries for unobstructed, 

obstructed and self-obstructed views. 

 

2.3.1 View factor matrix integral 

To assess the radiative exchange between non-

obstructed surfaces, the corresponding view factors 

between the surfaces need to be computed. View 

factors between two surfaces are dependent on the 

geometry of the surfaces and their orientation. The 

view factor can be interpreted as the fraction of 

diffusive radiant heat exchange between surface i 

and surface j. The view factor between two surfaces 

is obtained from the integral over the view factors 

between the infinitesimal surface elements dAi and 

dAj (equation (5) and Figure 6): 
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AjAii
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coscos
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where r is the distance between the centres. 

 

 

Figure 6: View factor between two surfaces i & j 

It is sufficient to compute the upper triangle of the 

view factor matrix. The lower triangle can be 

constructed by the following relationship: 

jijiji FAFA   (6) 
 

 

2.3.2 View factor matrix computation 

The input for the computation of the view factor 

between two surfaces i and j is their triangulation in 

the .stl format. The MThMGT reads vertices and the 

normal vector of each triangular facet. The model 

calculates the centre and area of each triangle, the 

distance between each triangle and all the other 

triangles and similarly directional cosines for each 

triangle pair. For this, the discretization of equation 

(5) is used: 
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Required angles are determined by using following 

equations: 
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with l, m, n: directional components of the normals 

of dAi, dAj 

x, y, z: coordinates of the centers of the surface 

elements. 

Summing this discretized integral over all triangles 

forming the two surfaces yields the view factor 

between these two surfaces. Once the view factor Fij 

from surface i to surface j is known, the reciprocal 

view factor from surface j to i Fji can be calculated 

from equation (6). 

 

2.3.3 Obstruction check 

To check whether two surface elements are 

obstructed by a third element, the plane of eventual 

obstruction needs to be set up. 

 
Figure 7: Obstructed view factor between   

surface i and surface j 

The equation of plane is given by 

0DzCyBxA   (10) 

 obobob zCyBxAD   (11) 
 

 

Where xob, yob and zob are the vertices of the 

obstructing triangular facet (in this case only one 

facet is obstructing the view). The equation of the 

line connecting centers of facets on surface-i (i.e. 

centers of ds1i,ds2i,ds3i,ds4i) and surface-j (i.e. centers 

of dx1j,dx2j,dx3j) checks the relative position between 

the line and the obstructing plane. There are three 

possibilities: 

 The line can be parallel to the obstructing 

plane 

 The line can belong to the obstructing plane 

 The line can intersect the obstructing plane. 

For this, the relative position of the obstructing 

surface to the line is checked: 
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If the plane of obstruction is between surfaces i and 

j, the value of m is greater than 0 and less than 1. 

If the denominator of equation (12) is not zero, the 

point p of the intersection between the line and the 

plane can be found using: 
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Once the point p is known, the next step is to find 

out using barycentric technique if the point p is 

inside the obstructing triangle or not. If the point p is 

inside the triangular facet  the view factor is assumed 

to be zero.  

 

2.3.4 Radiation node model 

The radiation node model calculates long-wave 

radiant heat exchange between n surfaces. It contains 

n thermal ports, surface properties and the view 

factor matrix. Each port connects to the 

corresponding surface model. The incoming and 

outgoing radiations for each surface are computed 

using the view factor matrix, temperature at each 

thermal port and surface properties as per equations 

(3) and (4).                                                                                     

 

Figure 8: Incident radiation on two surfaces 

Application example of radiation model with   

obstructed view can be seen in Figure 8. There are 

two surfaces in front of radiant heat emitter (Globe). 
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Some part of surface-1 is obstructed by surface-2. 

Different colors represent difference in intensity of 

incident radiation. Due to the lower distance from 

the globe to surface-2, it has a higher incident 

radiation than surface-1. The view factor of the globe 

to the obstructed part of surface-1 is zero. Hence 

there is no direct radiant heating of the obstructed 

part.  

2.4 Walls and convection models 

Convection models are used from the Modelica 

Standard Library. Wall models are based on a suite 

of thermal capacitances and thermal resistances from 

the Modelica Standard Library. The parameterization 

of these models yields the different materials that can 

be used. 

The MThMGT exports the wall type for each domain 

with a “none” wall. This wall has no capacitance and 

no thermal resistance. In the exported code, the 

model type can be changed to the wall actually used 

in the geometry. 

3 Coupled Model Validation 

The coupled airflow, radiation and wall model 

generated with the MThMGT has been validated on 

a test bench. 

 

3.1 Test Setup 

 
Figure 9: Experimental Setup: Box with air 

conditioning system 

The experimental setup is composed of a box of size 

2m x 1.5m x 0.9 m connected to an air supply system 

and insulated with 10 cm thick Armaflex foam. The 

box contains two heat sources in a form of 

equipment simulators (EQS) (Figure 9). These are 

installed in a test zone in a manner to have air 

circulation around them. By hanging them with a 

thin non-metallic rod their support can be considered 

to be thermally insulated. Heating foils release a 

uniform heat flow on all surfaces of the EQS. 

Conditioned air is supplied to the simulation box 

with a pipe of 104 mm diameter. In order to get a 

well developped flow at the inlet a minimum pipe 

length of L=15xDhydraulic is used. This well 

developped flow is also required for a high inlet 

velocity measurement accuray. 

 
Figure 10: Sensor positions: green dots: location 

of air temperature sensors, red dots: location of 

surface temperature sensors 

Figure 10 shows the distribution of measurement 

locations that were used for model validation in this 

study. Table 1 describes four different validation test 

cases varying supply airflow rate and long-wave 

emissivity of the EQS. 

 

Table 1: Test Cases (TC1-4), Al: aluminium 

surface, B: black painted surface 

 TC1 TC2 TC3 TC4 

Inlet mass flow 

(kg/min) 
10 7.5 10 7.5 

Supply 

Temperature (K) 
283.15 283.15 283.15 283.15 

Pressure (hPa) 940 940 940 940 

Power EQS1  (W) 500 500 500 500 

Power EQS2  (W) 500 500 500 500 

Surface EQS1 Al Al B B 

Surface EQS2 Al Al Al Al 
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3.2 Results 

To validate the coupled model, simulated results of 

four different test cases were compared with actual 

test results. 

Figure 11 to Figure 13 show the comparison of 

simulated and measured air temperatures at the top 

left corner (TAi_OB), the center (TAi_M) and the 

bottom right corner of the box (TAi_UF) for TC1 

and TC2. In steady-state conditions, the model 

predicts air temperature with less than 0.5 K 

deviations. 

 

 
Figure 11: Air temperature at the top left corner 

of the box 

 
Figure 12: Air temperature at the center of the 

box 

 
Figure 13: Air temperature at the bottom right 

corner of the box 

Figure 14 and Figure 15 show the comparison of 

simulated and measured surface temperatures of 

EQS1 and EQS2. In the experimental setup, surface 

temperature sensors are placed on each face of the 

EQS. For model validation, these temperatures were 

averaged to obtain one representative surface 

temperature. At steady state, the deviation of 

measurement and simulation is less than 5 K. 

 

 
Figure 14: Surface temperature of EQS1 for TC1 

and TC2 

 
Figure 15: Surface temperature of EQS2 for TC1 

and TC2 
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To assess model validity for changed long-wave 

radiation properties, EQS1 was painted black for 

TC3 and TC4. Figure 16 and Figure 17 show the 

comparison of simulated and measured surface 

temperatures of EQS1 and EQS2. Due to higher 

radiative exchange, surface temperature of EQS1 is 

lower than that of EQS1 in TC1 and TC2. EQS2 

receives more radiation from EQS1 resulting in a 

higher surface temperature compared to TC1 and 

TC2. The accuracy of model predictions is in the 

range of 5 K for this setup, too. 

 

 
Figure 16: Surface temperature of EQS1 for TC3 

and TC4 

 

 
Figure 17: Surface temperature of EQS2 for TC3 

and TC4 

3.3 Discussion 

Comparison with validation test data shows that 

results of air temperatures show slight variations 

during transients but are accurate in steady state. The 

model predicts the surface temperature of EQS well 

for both transient and steady state conditions and for 

different emissivity. The impact of a higher radiative 

loss of the black EQS might have been visible even 

in a simplified radiation approach. However, the 

relatively higher surface temperature of the other 

EQS, still being low emissive, would not have been 

correctly predicted without the computed view factor 

matrix finding a considerable radiative heat 

exchange between both EQS. 

 

4 Application Examples 

This section shows two application examples that 

have been setup using the MThMGT. 

4.1 Radiant heating of a room 

In this example the MThMGT has been used to 

assess the impact of radiant heating. Figure 18 shows 

three sides of a room with a wall heater, a table and a 

sitting manikin. The table is located in the center of 

the room. It has been subdivided into ten parts, three 

on the right, three on the left and four on the lower 

side of the desk. The impact of using these parts as 

radiant heating sources by applying a heating foil on 

them is investigated. Zoning has been done such that 

each heat source lies in a separate zone.  

 

 

Figure 18: MThMGT application example of 

building room 

Figure 19 shows the result of different parts of the 

manikin. The temperatures of legs and thighs are 

higher than other body parts because of the radiant 

heating from the heating foils on the inner sides of 

the table. The temperature of the left hand is higher 

than that of the right hand, as the left hand is closer 

and in line of the wall heater. The left part of the 

chest is cooler than the left arm even though being in 

line with the heater due to the obstruction caused by 

left arm. 
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Figure 19: Temperatures of manikin body parts 

4.2 Cockpit Ventilation 

In order to determine the required ventilation 

performance of the aircraft air conditioning system, 

heat loads have to be balanced with the airflow 

requirements in the most challenging operating 

conditions. Major heat sources in the aircraft cabin 

are passengers, electrical devices, solar radiation, 

indirect heating from piping and additional driving 

factors such as hot and humid environmental 

conditions on ground or at low flight level. Lightings 

in the cabin and IFE are also major heat sources. The 

MThMGT allows investigating aircraft cooling 

strategies. 

 

Figure 20: CAD and Zonal Grid of an aircraft 

cockpit 

Figure 20 shows the CAD geometry of an aircraft 

cockpit (top). The cockpit is subdivided into 4x3x5 

zones assuring that each EQS is located in a separate 

zone (bottom). Heat productions of EQS1, EQS2 and 

EQS3 are set to 2.0, 1.0 and 1.5 kW respectively. 

 

 

Figure 21: Auto-Generated Thermal Model 

Figure 21 shows the generated thermal model 

connected to the airflow sources and the pressure 

sink. There are four airflow inlets in the cockpit: two 

at the top and two at the bottom. The outlet is located 

in the center of the rear side. The user needs to 

define boundary conditions such as inlet airflow rate, 

inlet air temperature, sink air pressure and exterior 

temperature and to select an appropriate wall model 

from a wall model package.  

Simulation results are exported into the Paraview 

visualization format for post-processing [8]. Figure 

22 shows simulated wall inner surface temperatures 

of the cockpit. The impact of radiation from 

equipment simulators is reflected in results. Facets 

A, B and D are in close vicinity to EQS1 and EQS2. 

Facet C and F are influenced by EQS3. Facet E 

receives radiation from both EQS2 and EQS3. 

 

Figure 22: Wall inner surface temperatures 

Figure 23 shows simulated air node temperatures in 

the cockpit. EQS1, EQS2 and EQS3 are located in 

zones A, B and C respectively. In these zones, air 

temperature is predicted to be higher than in the 

other, empty zones. 
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Figure 23: Air node temperatures  

5 Conclusion and Outlook 

A tool to model airflow and radiative heat transfer 

for complex geometries in 3D space has been 

outlined in the presented work. The Modelica 

Thermal Model Generation Tool closes the gap 

between the CAD model and the resulting Modelica 

thermal model. The exported model shows to 

correctly predict the interaction of radiative and 

convective heat transfer in an experimental 

validation case. The possibility to model the impact 

of radiative heating and to assess the impact of 

different airflow pattern on heating and cooling has 

been proved for both rectangular and irregular 

geometries. 

The disadvantage of the generated code is that it is 

plain text with only scarce use of the graphical 

programming possibilities of Modelica. Further 

customization or changes in the model therefore 

require a high level of expertise of the user both in 

terms of the logics of the generated model and the 

code of contained models. 

To keep the model accessible even for less 

experienced users, an export script allowing the 

visualization of simulation results in the open source 

post processing software ParaView has been written. 

From this visualization, the user can for example 

assess cooling and heating strategies or find local hot 

or cold spots. 

For the future, we intend to include a model which 

can calculate convective heat transfer coefficients 

considering local zonal airflow pattern, surface 

properties and its orientation. This development 

provides a tool to predict thermal comfort in 

enclosed 3D spaces. This tool will allow for better 

thermal modelling when considering thermal 

management in buildings, automobiles or aircrafts. 
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Abstract 

There are different options for modelling indoor and 
outdoor long-wave radiation exchange in thermal 
building models for simulations at urban scale. For 
improving these building models, a good trade-off 
between accuracy and simulation time is a major 
challenge. To evaluate different radiation models for 
thermal network building models, we compared four 
outdoor radiation and two indoor radiation models. 

For the comparison, we set-up three test cases on a 
generic room and a single family dwelling and 
analysed surface temperatures, heat demands, and 
simulation times. The results favoured an outdoor 
radiation exchange model according to the German 
Guideline VDI 6007 with modified parameter 
calculations. It includes important simplifications 
that lead to short computing time while keeping a 
sufficient accuracy. For indoor radiation exchange 
modelling at constant temperatures, a linear 
approach significantly reduces simulation time 
without any major accuracy losses. 

Keywords: thermal network building model, 
equivalent outdoor temperature, long-wave radiation 
exchange, building performance simulation 

1 Introduction 

One current challenge in the field of building 
simulation is the thermal simulation of entire city 
districts. For this task, simplified building models are 
an interesting approach as they require comparably 
low parameterization and computational efforts. A 
comprehensive discussion of this topic can be found 
in [1, 2], which summarize the state-of-the-art in 
dynamic building simulation. The approaches to 
simplify building models include thermal network 
models, which are based on analogies to electrical 
problems and have successfully been applied at 
urban scale [3, 4]. 

Thermal simulation at urban scale aims at 
understanding and efficiently directing energy flows 
between different subsystems like generation units 
and buildings. Of particular interest are holistic 
control strategies and heat storage effects, because 
they offer potential for improving the energy system 
without the need for high investment. To investigate 
such measures, dynamic simulations at variable time 
step seem more promising than static and quasi-static 
calculations. Nevertheless, traditional building 
simulation environments are often limited to an 
hourly time step. Thus, a growing community is 
developing model libraries to simulate building 
performance at building and urban scale using 
Modelica [5, 6, 7, 8], often using thermal network 
models to describe thermal building behaviour. 

Within common thermal network models, the long-
wave radiation heat fluxes on wall surfaces can be 
considered on different levels of detail. These heat 
fluxes are the result of temperature differences 
caused by indoor and outdoor sources such as 
heating systems and solar radiation. Different 
approaches exist for the calculation of radiative heat 
exchange. Some models use Stefan-Boltzmann law 
while others use linearized radiation equations. Thus, 
these models differ in the accuracy of their results as 
well as in computation time. So far, it has not been 
determined which of these models is best suited for 
thermal simulation at urban scale. 

In this paper, we present four approaches to consider 
long-wave radiation exchange in building simulation. 
The aim is to evaluate these approaches regarding 
their suitability for thermal network building models 
and urban-scale applications by means of a balanced 
trade-off between physical resolution and calculation 
time [9]. 

Firstly, we present the methodology and modelling 
assumptions. Afterwards, we implement four models 
and define a benchmark test case. Finally, we discuss 
the simulation results and end with conclusions. 
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2  Modelling approaches 

2.1 Building model validation 

Thermal network models describe heat transfer and 
storage problems with a number of thermal 
resistances and capacitances. While highly 
discretized models provide high spatial resolution, 
low order models require less computational effort at 
the cost of accuracy. 

 
Figure 1: Low order building model derived from VDI 6007 

In this study, we use a building model based on the 
German Guideline VDI 6007 [10] as seen in Figure 
1. The model divides the building mass into two 
capacitances representing all internal and external 
building elements respectively. The heat transfer 
through the outer wall is described by two 
resistances while another resistance is used to damp 
the adiabatic inner wall capacity. The indoor heat 
exchange between the walls and the air node can be 
calculated in different ways. While the VDI 6007 
defines a combined coefficient of heat transfer, we 
distinguish between radiative and convective heat 
transfer (Figure 1). Outdoor radiation sources like 
solar radiation are considered via an adapted 
equivalent outdoor air temperature ϑA,eq,av (in the 
following referred to as Teq). Substituting the outdoor 
air temperature with this equivalent outdoor air 
temperature is a way to incorporate the effects of 
long-wave radiation into the model. 

While we kept most parts of the theory and model 
description given in VDI 6007, we did not follow the 
given analytical equations [11]. We rather took 
advantage of Modelica’s abilities to formulate 
acausal equations in an object-oriented structure. We 
defined a sub-model for each element in Figure 1 
and connected them to the circuit shown in Figure 6. 
Each sub-model describes either heat transfer 
phenomena (resistance) or storage effects (capacity) 

In order to validate this thermal network model, we 
performed benchmark tests according to the 
American Standard ASHRAE 140 [12]. This 
standard provides a set of test cases and 

corresponding results of standard building models. If 
deviations in the validation process exceed given 
limits, the standard suggests further test procedures 
for each test case. In this way, the standard supports 
the identification of sub-models with optimisation 
potential. The tests gave valid results for most test 
cases. Nevertheless, the validation process identified 
problems with the handling of radiation exchange. 
One way to address this issue would be more 
detailed radiation exchange models, while potential 
simplifications should still be considered. Otherwise, 
radiation and building model could be out of balance 
by means of level of detail and required 
computational costs. 

We identified long-wave radiation exchange as one 
key part for optimization. It seems to have major 
influence on heat demand [13] and different 
modelling approaches are available. As the 
ASHRAE provides no test case solely for the effects 
of long-wave radiation heat exchange, we refined 
one ASHRAE in-depth test set-up to focus only on 
long-wave radiation. 

In the following sections, we will discuss and 
compare different approaches for outdoor as well as 
indoor long-wave radiation heat exchange. 

2.2 Outdoor long-wave radiation exchange 

According to VDI 6007, the heat flux due to ambient 
radiation sources on the outer walls can be 
considered in an equivalent adapted outdoor 
temperature.  

Figure 2 shows typical influences that need to be 
considered in the adapted outdoor temperature. 
Radiation can be divided into short-wave and long-
wave. In contrast to short-wave radiation, 
measurement data of long-wave radiation sources are 
rarely available. Furthermore, long-wave radiation 
has to be subdivided into atmospheric, ambient and 
partly reflected ground radiation. Thus, empirical 
methods are used to consider the long-wave heat 
flow as a function of outdoor temperature and cloud 
coverage [14, 15, 2]. 

 
Figure 2: Heat flows on the outer wall 
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According to Figure 2 a heat balance of the wall 
consists of: 

qcond= qshort-wave+ qlong-wave+ qconv    (1) 

Starting from this heat balance it is possible to 
implement models with different levels of 
simplifications (see Figure 3). 

 
Figure 3: Schematic diagram of investigated models and their 

level of simplification 

As a first simplification the outside wall can be 
considered as adiabatic, which leads to qcond = 0. In 
the following subsections we describe four ways to 
model long-wave radiation heat exchange. The 
meaning of the variables can be found in the 
nomenclature. 

2.2.1 Heat Balance 

The three occurring heat flows can be written as: 

qconv= αconv ·(Tair- Twall)     (2a) 

qlong-wave=σ· εwall·( ߮atm ·(Tatm
4 - Twall

4 ) +                                    

 ߮earth · ሺTearth
4 - Twall

4 ሻ + ߮amb · ሺTair
4 - Twall

4 ሻሻ  (2b) 

qshort-wave= aabs ·Isol      (2c) 

φi is a view factor between the wall and considered 
long-wave radiation source. The temperature of 
extra-terrestrial sources, also called sky temperature, 
can be calculated as a function of long-wave 
radiation heat flux. Furthermore, the earth 
temperature can be regarded as equivalent to the 
outdoor air temperature [16, 17]: 

Tatm=(
Eೌ
σ

)
0,25

			    (3a) 

Tearth=Tair     (3b) 

Inserting Equations 2 a-c and 3a/b in Equation 1 
provides the heat balance of the adiabatic outside 
wall. This heat balance can be iteratively solved for 
Twall. Without any further simplifications, this Heat 
Balance method provides a relatively detailed model. 

2.2.2 Equivalent air temperature according to VDI 
6007 

A widely used simplification is to describe the 
occurring heat flows with one equivalent heat flux 
[10, 18, 19]. Introducing a combined radiative and 
convective coefficient of heat transfer and an 
equivalent temperature leads to: 

 αcomb ·(Teq- Twall)  =   

	qshort-wave+ qlong-wave+ qconv     (4) 

Expressing the equivalent temperature according to 
VDI 6007 requires further assumptions. The long-
wave radiation heat exchange is linearized using Tatm 

and Tearth, the wall temperature is set equal to the 
outdoor air temperature and Tatm and Tearth are 
calculated from long-wave radiation heat flows. 

Tatm=(
Eatm

ఌearth∙ σ
)
0,25

			    (5a) 

Tearth=(
Eearth

ఌearth∙ σ
)
0,25

    (5b) 

αrad = 
Tatm

4 -Tatm
4

(Tatm- Tearth)
· σ ·	εwall    (5c) 

Transforming the equation (4) to Teq and apply the 
listed assumptions, the equivalent temperature can be 
solved as follows: 

Teq=	Tair+	
αrad

αcomb 
·      (6) 

ሺሺTatm- Tairሻ	· φatm+ ሺTearth- Tairሻ	· φearthሻ	+ 
qshort-wave

αcomb
  

2.2.3 Modified equivalent air temperature based 
on VDI 6007 

Equation 6 implies a constant combined coefficient 
of heat transfer. As a further improvement, αcomb is 
computed as the sum of constant αconv and a variable 
coefficient for long-wave radiation heat transfer αrad. 

In addition, both Tatm and Tearth are computed by 
dividing them through the emissivity factor of the 
earth. According to [16, 17], it is more accurate to 
calculate the sky temperature with Equation 3a. 
These changes from the originally VDI 6007-model 
are summarized under the variant name Mod VDI 
6007. 

2.2.4 Combined outdoor temperature according to 
VDI 2078 

The revised German Guideline VDI 2078 describes 
cooling load calculations and provides a combined 
outdoor temperature. Formally, this temperature 
originates from a similar approach as the VDI 6007. 
However, the VDI 2078-model is further simplified 
by neglecting any changes in sky emissivity or in the 
coefficient of long-wave radiation heat exchange. 
Sky emissivity is set to 0.74, which holds roughly 
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true for summer [20]. Besides, the air temperature is 
taken as the direct reference temperature for all 
calculated heat fluxes. As this model represents a 
further simplification, we include it in our study and 
compare its results to the other three models. 

Teq=	Tair	-	
σ·	εwall

αcomb 
· ((Tair,m)4+	(Tair- Tair,m) · 1.05) ∙

(1 - φatm · εatm - φearth · εearth)+ 
qshort-wave

αcomb
     (7) 

 

2.3 Indoor long-wave radiation exchange 

The long-wave radiation heat exchange within the 
building is commonly modelled in two different 
ways. One possibility, described in the VDI 6007 
guideline, suggests calculating this way of heat 
exchange with a constant coefficient of heat transfer 
between inner and outer wall. The guideline 
prescribes a value of 5 W/(m² K), which can also be 
found in [21]. It holds true for non-metallic materials 
with an emissivity factor of 0.8 and a mean 
temperature of 26.85°C. This method does not take 
into account the temperature dependency of long-
wave radiation heat exchange as formulated in the 
Stefan-Boltzmann law. 

Alternatively, a heat balance between inner wall, 
outer wall, indoor radiation sources and transmitted 
solar radiation can be formed. 

3 Implementation 

For this study, we use the Modelica Standard Library 
and self-developed building model libraries. An 
overview of these libraries is given in [6, 22]. 

As all radiation heat exchange models described in 
Section 2 derive from a similar theoretical approach, 
we are able to define a partial model as a general 
base class (Figure 4). 

 
Figure 4: UML diagram of equivalent air temperature base class 

The four different long-wave radiation exchange 
models all extend from this base class. This gives us 
the advantage to define a replaceable block for long-
wave radiation heat transfer (1) connected to our 
building physics model (2) which can then be set to 

use one of the four radiation models (Figure 5). The 
building model is connected via heat ports to the 
long-wave radiation heat transfer (a). Both are 
connected with a weather model, which provides 
solar radiation (b), outdoor air temperature, sky and 
terrestrial long-wave radiation (c). Furthermore, the 
building model needs additional information about 
infiltration rates (d), as well as about convective (e) 
and radiative (f) inner loads via heat ports. 

 
Figure 5: Implementation in Dymola 

Taking advantage of separated definitions of 
convective and radiative heat transfer (see Section 
1), we can easily change the definition of long-wave 
radiation heat exchange (see Figure 6). 

 
Figure 6: Zone model in Dymola 

In the context of city district simulations, the object-
oriented approach of Modelica is an important 
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advantage. It allows a fast and easy use of the same 
model in several instances while adapting the sub-
models to the requirements of each instance. 

A further advantage besides variable time step and 
object-orientation supported by Modelica in this 
context is acausal modelling. Energy supply systems 
at urban scale are relatively complex and flow 
directions for energy and mass flows are usually 
unknown. 

4 Test case and results 

4.1 Test case 

To figure out the differences between the models and 
identify the most promising approach for our 
building model, we developed three test cases. Test 
Case 1 and Test Case 2 are based on the “Case 220: 
In-Depth Series Base Case” from ASHRAE 140. As 
most ASHRAE 140 in-depth tests, it is based on a 
single room consisting of five light-weight outer 
walls only. We simulated 1st July of the typical 
meteorological year (TMY) provided with the 
standard [12]. Before and after the simulated day all 
initial temperatures are held constant. For Test Case 
1 the outside wall is only subject to outdoor air 
temperature and long-wave radiation. Convection 
and absorption of short-wave radiation are not 
considered. Thus Test Case 1 uses outdoor air 
temperature and long-wave radiation from the 
atmosphere and the earth as input-data. Test Case 2 
differs in the number of heat transfer mechanisms 
which affect the building envelope. Convection and 
absorption of short-wave radiation are additionally 
taken into account. Further inputs are thus solar 
radiation on tilted surfaces and combined as well as 
convective coefficients of heat transfer (set to 28.5 
W/(m² K) and 24.67 W/(m² K) for walls, and 16.37 
W/(m² K) for windows respectively). Only one day 
is simulated as well, all temperatures are held 
constant before and after that day. Other parameters 
of Test Cases 1 and 2 are listed in Table 1. 
Table 1: Boundary conditions of Test Case 1 and 2 

PARAMETER VALUE 
Infiltration  0 m³/h = const. 
Internal gains 0 W = const. 
Temperature of floor 
coupling 

Tair 

αabs 0.6 
εwall 0.90 
mech. equipment none 

 

The purpose of Test Case 3 is to emphasize on the 
inside long-wave radiation heat exchange, heat 

demand and simulation time. Since the simplified 
building model represents all outer and inner walls 
by one capacitance per class (see Section 2.1), 
radiation exchange can only occur if elements of 
both classes exist. We thus set up a test case with 
outer as well as inner walls. Test Case 3 is based on 
a two storey single-family dwelling with a living 
area of 150 m². The building has a high thermal mass 
and is well insulated according to German Energy 
Savings Ordinance 2009. A full year is simulated. 
Calculation of the equivalent air temperature is 
performed with convective and long-wave radiation 
heat transfer as well as short-wave absorption. 
Combined and convective coefficients of heat 
transfer are set to 25 W/(m² K) and 20 W/(m² K) 
respectively. The boundary conditions for this case 
can be found in Table 2. 
Table 2: Boundary conditions of Test Case 3 

PARAMETER VALUE 
Infiltration  0 m³/h = const. 
Internal gains 0 W = const. 
Temperature of floor 
coupling

10.36°C = const. 

αabs 0.38 
εwall 0.90 
mech. equipment ideal heater 
Thermostat strategy 22°C (6h – 20h) 

17°C (20h – 6h) 

 

All simulations are performed on a computer with 
following technical data (see Table 3). 
Table 3: Data of used equipment 

CHARACTERISTIC VALUE 
Operating system Windows 7 
Number of processors 4 
Clock speed 2.67 GHz 
Working memory 4 GB 

 

To quantify differences between the models, a root-
mean-square deviation (RMSD) is used. When 
comparing more than two models it is appropriate to 
form the RMSD between the minimum and the 
maximum of each hour. In this way a range within 
which the temperatures lie is calculated (RMSD-R). 

4.2 Limitations 

The major limitations in the presented work are: 

 Subject of this analysis are only single-zone 
buildings with specific characteristics  

 All models are based on assumptions; the re-
sults are compared between each other but 
not to measurements. 
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 Empirical equations are used to calculate 
long-wave radiation as a function of outdoor 
air temperature. Thus, all models are de-
pendent either directly or indirectly on out-
door air temperature. 

 Heat balances for the models relate to slight-
ly different locations (wall surface or nearby 
the surface) and cannot be harmonized. 

 Convective heat transfer αconv is regarded 
constant. In reality, it may vary over time 
depending on wind speed and direction. 

 Our presented analysis is limited to single 
days and overall yearly values. 

4.3 Outdoor long-wave radiation exchange 

To understand the differences between the models, 
we investigated the surface temperatures on the 
building envelope as direct model outputs. The 
results of Test Case 1 with long-wave radiation load 
can be obtained in Figure 7. While the temperature 
of the VDI 6007-model holds the highest values, the 
model of guideline VDI 2078 holds the lowest. The 
RMSD between these two models is 11.24 K. The 
high temperatures of the VDI 6007-model close to 
the outdoor air temperature are striking. In other 
investigations a rise above the outdoor air 
temperature was detected, which contradicts 
observation [23]. The Mod VDI 6007-model has a 
clearly lower course and converges to the most 
detailed Heat Balance-model. It is apparent that Mod 
VDI 6007 differs the most at high temperatures from 
Heat Balance. The RMSD between these two models 
is 0.54 K in contrast to 2.56 K for VDI 6007 and 
Heat Balance. 

 
Figure 7: Equivalent outdoor temperature on July,1. of TMY; 

long-wave load 

The comparably low temperatures of VDI 2078 can 
be explained by the handling of sky emissivity. The 

emissivity is assumed to be constant, which cannot 
be guaranteed for the investigated day. Sky 
conditions or reflection of long-wave radiation are 
not taken into account. Furthermore, the long-wave 
radiation heat transfer coefficient is not calculated 
dependent on ambient conditions.  

Modifications in Mod VDI 6007 compared to VDI 
6007 primarily concern long-wave radiation 
exchange. They cause a shift in the results towards 
the Heat Balance-model. Both models, Mod VDI 
6007 and Heat Balance, calculate the sky 
temperature in the same way. Small differences at 
high temperatures can be justified as the Mod VDI 
6007-model does not take a temperature depending 
emission of the wall into account.  

Test Case 2 is a more realistic test case as it takes 
convection and short-wave radiation into account 
(see Figure 8). The aim is to analyse the impact of 
long-wave radiation under real conditions. As 
expected, the differences between the models 
decrease due to the new influences. Mainly 
responsible for this is convective heat transfer. This 
heat flux is calculated with a constant coefficient of 
24.67 W/(m² K) for walls and 16.37 W/(m² K) for 
windows in all models, hence it is about 3-6 times 
higher than radiative heat transfer. However, the 
VDI 6007 and the VDI 2078 still represent the 
extremes. The RMSD between these two models 
decreases to 2.22 K. Especially the extreme rise of 
VDI 2078 in contrast to the first test case is striking. 
The difference in the temperature after 24 h amounts 
to over 10 K. On the one hand this shows the 
overestimation of long-wave radiation heat transfer 
of VDI 2078. On the other hand it displays the effect 
of convective heat transfer. Comparing Mod VDI 
6007 and the Heat Balance, a difference is hardly 
recognizable (RMSD: 0.1 K). All adapted 
temperatures rise over the ambient air temperature 
during the day, resulting from the short-wave 
radiation absorption.  

Regarding the given test cases, the results justify the 
implemented simplifications in the VDI 6007 and 
Mod VDI 6007-models. Only the VDI 2078 shows 
major differences to the most complex Heat Balance-
model. 

As expected, the convective heat transfer smoothes 
the equivalent temperatures of all models in Test 
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Figure 8: Equivalent outdoor temperature on July 1 of TMY; 

long-wave, short-wave and convective load 

An overestimation of long-wave radiation heat 
exchange of VDI 2078 can be clearly observed. The 
rise over air temperature during the day in all models 
is caused by short-wave radiation absorption of the 
wall. In both test cases the strong dependency on the 
air temperature can be monitored. 

In conclusion the Mod VDI 6007 model keeps the 
best accuracy compared to the complex Heat 
Balance-model while including important 
simplifications that lead to shorter computing times 
(see Figure 9). 

4.4 Indoor long-wave radiation exchange 

Besides the outdoor long-wave radiation heat 
exchange, different options exist to model indoor 
radiation exchange. In our analysis, we focus on heat 
demand and simulation time. 

Figure 9 shows the CPU-time for a one-year 
simulation of Test Case 3. We simulated each 
equivalent temperature model with both explicit heat 
balance following the Stefan-Boltzmann law and a 
linearized approach. The CPU-time decreases using 
the linearized approach for indoor radiation. The 
percentages of savings in simulation time for 
simplified outdoor models are particularly 
remarkable. For the VDI 6007-model the simulation 
time is 52.16% shorter compared to the detailed 
indoor heat balance. The differences in simulation 
time result from the removal of the heat balances 
calculated with the Stefan-Boltzmann law. These 
heat balances contain a dependency on T4, which is 
solved iteratively. This is also the reason for the 
massive increase of needed time using Heat Balance-
model for the outdoor heat exchange. 

 

 
Figure 9: Comparison of linear radiation model and Stefan-

Boltzmann law for indoor radiation exchange 

As we control the indoor temperatures on a level 
between 17°C and 22°C, the chosen coefficient of 
radiative heat transfer is justified (see Section 2.3). 
Hence, the different modelling approaches lead to no 
major differences in the simulated heat demand. 
Comparing the indoor models to each other the 
deviation over one year is below 2.1%. This suggests 
using a linear approach for indoor radiation when 
keeping the indoor temperature on a controlled level 
is a valid simplification. Nevertheless, it is important 
to choose a corresponding coefficient of radiative 
heat transfer. 

5 Conclusion 

There are different options for modelling the indoor 
and outdoor long-wave radiation exchange in 
thermal building models for simulations at urban-
scale. For improving these building models, a good 
trade-off between accuracy and simulation time is a 
major challenge. The main differences of common 
radiation modelling assumptions concern the impact 
of outdoor radiation sources and linearizing the 
Stefan-Boltzmann law. 

To evaluate different radiation models for thermal 
network building models, we compared four adapted 
outdoor air temperature models. In addition, we 
investigated the handling of indoor radiation 
exchange with the Stefan-Boltzmann law and a 
linear approach. 

For the comparison, we set-up three test cases on a 
generic room and a single family dwelling and 
analysed surface temperatures, heat demands and 
simulation times. We varied the number of radiation 
sources between the test cases to observe radiation 
heat exchange under generic and real conditions.  
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Modelica proved to be a promising modelling 
language for urban-scale building simulations. We 
identified three major prerequisites and advantages: 

 Allowing solvers with variable time steps 
 Use of object-oriented modelling approaches 
 Use of acausal modelling approaches 

The results of the test cases show promising potential 
for an outdoor radiation exchange model based on a 
modified approach from German guideline VDI 
6007. It includes important simplifications that lead 
to short computing time while keeping a sufficient 
accuracy. For indoor radiation exchange modelling 
at constant temperatures, a linear approach 
significantly reduces simulation time without major 
losses in accuracy. An additional comparison with 
measurement data could further help to validate this 
suggested approach. 
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Nomenclature 

aabs coefficient of short-
wave absorption 

W/(m² K) 

α coefficient of heat 
transfer 

W/(m² K) 

E long-wave radiation  W/m² 

ε emissivity factor - 

Isol solar radiation on  

tilted surface 

W/m² 

σ  Stefan-Boltzmann-
Factor 

W/(m² K4) 

T temperature K 

q heat flux of wall W/m² 

φ view factor of long-
wave radiation source 

- 

   

air outdoor air  

amb ambient source  

atm extraterrestrial source  

cond conduction  

conv convection  

comb combined  

earth terrestrial source  

eq equivalent  

m daily average  

rad long-wave radiation  
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Abstract

Electric machine theory and electric machine simulations
models are often limited to three phases. Up to the
Modelica Standard Libray (MSL) version 3.2 the provided
machine models were limited to three phases. Particularly
for large industrial drives and for redundancy reasons in
electric vehicles and aircrafts multi phase electric machines
are demanded. In the MSL 3.2.1 an extension of the
existing FundamentalWave library has been performed to
cope with phase numbers greater than or equal to three.
The developed machine models are fully incorporating
the multi phase electric, magnetic, rotational and thermal
domain. In this publication the theoretical background of
the machines models, Modelica implementation details, the
parametrization of the models and simulation examples are
presented.

Keywords: Modelica Standard Library, multi phase, elec-
tric machine models, induction machine, synchronous ma-
chine, synchronous reluctance machine

1 Introduction

Three phase induction, synchronous and synchronous reluc-
tance machines are state of the art solutions for industrial
applications, traction drives in electric vehicles, railways,
trams, and underground trains, as well as air craft motors
and generators. If a full leg of the supplying three phase
converter fails, the machine cannot be operated any more,
once stopped. In particular, the higher ambient tempera-
tures of traction machines may cause the power electronics
to fail. In order to overcome machine outage due to a single
converter leg failure, phase numbers greater than three may
be used for electric machines and power electronics. In the
following multi phase will indicate phase numbers greater
than three. If it is referred to only three phases, this will be
indicated explicitly.
Multi phase drives consist of the multi phase machine in-
cluding an inverter with power electronics plus control. A
phase number greater than three thus requires a higher num-
ber of power electronic switches, such as IGBTs or MOS-
FETs, etc. The higher phase numbers, however, increase

cost and add complexity to the drive structure.

However, phase numbers equal to 2n with integern are ex-
cluded from the actual implementation. The reason for ex-
cluding these phase numbers is that for example four or
eight phase machines have to be handled differently since
two phase are separated byπ/2, notπ. In general, two dif-
ferent philosophies of multi phase drives exist:

First, the number of phases is divisible by two. In industry,
typically, six phase machines are used to overcome maxi-
mum power limitations of power electronics supplying high
power machines in the Megawatt range [1]. In this case
maximum power of power electronics is doubled by using
two three phase converters supplying a six phase machine.
Usually, the phase winding orientations of the two three
phase are spatially shifted by 30◦ in order to additionally
reduce the magnitudes of space harmonics caused by the
winding magneto motive force (MMF) and to reduce the
torque ripple of the machine, respectively. The implemen-
tation of a six phase winding does not significantly increase
cost of the electric machine compared with a three phase
machine with the same power. Solely the additional wind-
ing ends have to be conducted to the terminal box. For six
phase drives, the cost of power electronics increases due the
double number of power electronic switches for the addi-
tional legs. For doubling the power of industrial drives the
double cost of power electronics is in line with doubling the
power. However, for traction machines six or nine phase
machines are used for redundancy reasons [2, 3]. In this
case several state of the art three phase converters can be
used. The redundancy concept is then realized with stan-
dard components which is cheaper than designing the indi-
vidual legs of the inverter. Yet, several three phase inverters
of smaller power rating are usually more expensive than a
three phase inverter of the same total power. Due to the
multiple three phase inverters installation space increases,
too. Yet, state of the art control for three phase drives can
be adapted with relatively low effort due to modularly using
three phase converters.

Second, the number of phases is not divisible by two. In this
case mostly five (or seven) phase drives are used [4–6]. The
drawback over a six phase inverter is that the modularity of
the power electronics design is lower and thus cost may be
higher and more design space may be required.
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For the sake of completeness one more redundancy concept
will be discussed here, even though it is not related with
multi phase electric machines. Redundant drives with three
phase machines may use modified topologies which either
use an additional leg or additional switches to operate the
machine in case of a failure. These topologies have the ca-
pability to be reconfigured when a failure occurs [7,8]. De-
pending on the actual topology even the full power rating
may be provided to the electric machine.
For controlling multi phase electric drives it is advantageous
to control current components which represent the funda-
mental wave MMF and magnetic voltage, respectively [9].
The pulse width modulation scheme for multi phase con-
verters with phase numbers not divisible by three has to be
adapted so that a symmetrical supply can be achieved. A
technical paper dealing in more detail with analysis of the
multi phase drive control is also submitted to the Modelica
2014 conference and will be cited properly, in case it gets
accepted.
In Modelica the first three phase electric machine models
have been introduced with the MSL 2.1 in 2004 [10, 11].
An alternative implementation with magnetic fundamen-
tal wave phasors was introduced in MSL 3.2 in 2010
[12]. Since then in these models copper loss, (eddy cur-
rent) core loss, friction loss, stray load loss, PM loss
and brush loss are taken into account. Multi phase elec-
tric machine models have already been published decades
ago [13, 14]. Yet, in most computer simulations tools
there are currently only three phase machine models avail-
able. However, in the MSL 3.2.1 version of the package
Modelica.Magnetic.FundamentalWave new multi phase
electric machine models are introduced. In general, arbi-
trary phase numbers for stator (and rotor) windings may
be used – excluding phase numbers equal to 2n with in-
tegern. This article provides the theoretical background,
details about the implementation, parametrization schemes
and some examples.

2 Fundamental Wave Theory

Multi phase electric machine theory often relies on phasor
transformations of currents, voltages and magnetic fluxes
[15, 16]. A typical transformation is the symmetrical com-
ponents of the instantaneous values. In case of fully sym-
metrical supply the machine equations based on the sym-
metrical components of instantaneous components can be
simplified extensively.
The FundamentalWave machine models only consider fun-
damental wave effects so there is also a complex phasor rep-
resentation of the fundamental wave of the magnetic flux
and magnetic potential (difference), respectively. The con-
nector definition of the FundamentalWave library shows:

connector MagneticPort
"Complex magnetic port"
Modelica.SIunits.

ComplexMagneticPotentialDifference V_m
"Complex magnetic potential difference";

flow Modelica.SIunits.
ComplexMagneticFlux Phi

"Complex magnetic flux";
end MagneticPort;

Please note, that the potential and flow variable of the con-
nector represent instantaneous quantitiesΦ = Φre + jΦim

andVm = Vm,re+ jVm,im. The complex magnetic quantities
represent a spatial distribution of magnetic flux and mag-
netic potential (difference):

Φ(ϕ) = Re[(Φre+ jΦim)e−jϕ]

= Φrecos(ϕ)+ Φim sin(ϕ)

Vm(ϕ) = Re[(Vm,re+ jVm,im)e−jϕ]

= Vm,recos(ϕ)+Vm,im sin(ϕ)

The complex potential (difference)Vm introduced in the
connector definition represents the total magnetic poten-
tial (difference) of all poles. This quantity can, thus, also
be seen as the complex magnetic potential difference of an
equivalent two pole machine. Physical interpretations of
the complex magnetic phasors are presented and discussed
in [12].

Voltages and currents are instantaneous quantities, so ar-
bitrary waveforms and operating conditions are covered.
Therefore, the machines can also be supplied with asym-
metric voltages or currents. It is yet assumed that only fun-
damental wave effects due to these asymmetries are consid-
ered. Supply voltage or current imbalance give rise to time
transient magnitudes of the magnetic flux and magnetic po-
tential (difference). Each of the spatial field distributions
can be interpreted as a forward and backward traveling fun-
damental wave component. Those effect of the two waves
is correctly taken in account by the proposed approach.

Particular supply imbalances and certain asymmetries may
cause magnetic flux and magnetic potential (difference)
phasors which are not related with the fundamental wave.
Those higher harmonic waves are not covered by the Fun-
damentalWave library. It is therefore the user’s responsi-
bility to consider these model limitations – with particular
focus on the supply conditions.

Any higher harmonic wave effects are also not taken into
account by the FundamentalWave library. In case of higher
harmonic waves an alternative implementation has to be
considered as presented in [17]. The impact of rotor
saliency on the fundamental wave components of magnetic
flux and magnetic potential (difference) is, however, con-
sidered in the presented implementation.

Concentrated windings and fractional slot windings, respec-
tively, are very common in PM synchronous machines due
to better field weakening capabilities, higher pole numbers
and higher power density. Such fractional slot windings can
be considered in the FundamentalWave library, as long as
the main power exchanging harmonic component is inter-
preted as fundamental wave. All higher harmonic waves
cause by fractional slot windings are not explicitly consid-
ered, but the total effect of those higher harmonics can be
taken into account by the total leakage inductance of the
stator winding.
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Figure 1: Coil of an equivalent two pole machine with ori-
entation; complex magnetic potential (difference) phasors
Vm; complex magnetic flux phasorΦ

3 Electromagnetic Coupling

3.1 Single Phase Electromagnetic Coupling

The coupling of fundamental wave magnetic flux
and magnetic potential (difference) interacting with
instantaneous voltages and currents is elementary
modeled in the electro magnetic coupling models
SinglePhaseElectroMagneticConverter . Figure 1
shows the magnetic phasors and a winding of an equivalent
two pole machine. In this case one magnetic pole covers
a spatial angle equal toπ. The displayed coil is skewed
and coil span is smaller thanπ. The coil can actually also
be seen as a distributed winding. Skewing and distributed
windings with respect to the fundamental wave are con-
sidered by the effective number of turns, represented by
the parametereffectiveTurns. The effective number of
turns of a real machine is determined by the real number
of turns, multiplied by the skewing factor and the chording
factor. A more detail investigation on common windings
and the determination of winding factors is published
in [10, 18]. A current through the investigated windings
gives rise to magnetic potential (difference) distribution
which magnitude is equal effective number of turns times
the current. The peak of accessory sinusoidal magnetic
potential (difference) caused by the current is in line with
theorientation of the winding axis.
In an electric machine several windings of stator and rotor
windings and permanent magnets contribute the total mag-
netic potential difference – depending on the type of ma-
chine. In the electromagnetic coupling model two physical
laws are implemented, i.e., Ampere’s law and the induction
law.

3.2 Ampere’s Law

Ampere’s law states that the total exciting magneto motive
force is equal to the magnetic potential difference. For the
investigated single phase winding it is useful to define the
complex number of turns:

final parameter Complex
N=effectiveTurns*Modelica.ComplexMath.exp(

Complex(0, orientation))
"Complex number of turns";

This complex quantity has the magnitude of the effective
number of turns and the phase angleorientation. The
magnetic potential (difference) of the coupling model,V_m,
and the current of the investigated winding,i, are then re-
lated by:

V_m = (2.0/pi)*N*i;

The factor2.0/pi is the consequence of averaging the sinu-
soidal fundamental wave flux waveform over one pole pair.

3.3 Induction Law

Induction law describes the the relationship between the
time derivative of the magnetic flux and the induced volt-
age of the investigated winding. The projection of the com-
plex magnetic flux onto theorientation times the effective
number of turns is equal to the negative terminal voltage.

-v = Modelica.ComplexMath.real(
Modelica.ComplexMath.conj(N)*
Complex(der(Phi.re),der(Phi.im)));

3.4 Multi Phase Electromagnetic Coupling

The multi phase electromagnetic coupling model is com-
posed of a vector ofm single phase electromagnetic coupling
models, wherem is the number of phases. Them electrical
pins of the single phase electromagnetic coupling model are
connected to them pins of the electrical multi phases con-
nector used by the multi phase coupling model.
Them magnetic fundamental wave ports of the single phase
electromagnetic coupling models are connected in series.
The magnetic series connection is a consequence of, first,
each winding being exposed to the same magnetic flux wave
– but being located spatially on different locations. Sec-
ond, the total magnetic potential (difference) excited by all
windings is determined by the sum of the magnetic poten-
tial (differences) of all individual windings.

4 Phase Orientations – Winding Axes

In the FundamentalWave library only symmetricalm phase
windings are considered. For multi phase systems and
windings with phase numbers greater than three two
different cases are distinguished, first, the number of
phases is divisible by three and second, the number of
phases is not divisible by three. The general function
symmetricOrientation for determining the orientations of
windings of anm phase electric machine is located in the
packageModelica.Electrical.MultiPhase.Functions:

function symmetricOrientation
extends Modelica.Icons.Function;
input Integer m "Number of phases";
output Modelica.SIunits.Angle
orientation[m]
"Orientation of the resulting
fundamental wave field phasors";

import Modelica.Constants.pi;
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Figure 2: Permanent magnet synchronous machine with op-
tional damper cage

algorithm
if mod(m, 2) == 0 then
// Even number of phases

if m == 2 then
// Special case two phase machine
orientation[1] := 0;
orientation[2] := +pi/2;

else
orientation[1:integer(m/2)] :=
symmetricOrientation(integer(m/2));

orientation[integer(m/2) + 1:m] :=
symmetricOrientation(integer(m/2))

- fill(pi/m, integer(m/2));
end if;

else
// Odd number of phases
orientation := {(k - 1)*2*pi/m

for k in 1:m};
end if;

symmetricOrientation;

So the function is designed recursively so that subsystems
are modularly designed. In the following some examples of
phase numbers will be discussed. Two, four, eight, sixteen,
thirty-two, etc. phase windings are currently not supported,
as in general phase numbers equal to 2n with integern are
not considered.
In order to summarize mathematical equations for dif-
ferent phase numbersm in the following, abbreviation
orientationk will be used to indicate the angles of
the orientation of the winding axes of a symmetricalm
phase winding. Soorientationk is the k-th element
(phase index) of the result vector returned by function
symmetricOrientation, called with argumentm.
The symmetrically supply voltages and currents, respec-
tively, have the phase angles

φk = −orientationk

Figure 3: Winding axes of symmetrical (a) three phase
winding and (b) five phase winding

Figure 4: Symmetrical phase angles of voltages and cur-
rents, respectively, of (a) three phase winding and (b) five
phase winding

The winding orientations and the phase shifts of the supply-
ing system have the same magnitudes for each phase index
k, but different signs. This is a general property of symmet-
rical systems supplying symmetrical windings, see Figs. 3–
6.
In the following only symmetrical winding axes will be as-
sumed. The phase angles of symmetrical voltage and cur-
rent supply are also presented, even though symmetric sup-
ply is not assumed in the FundamentalWave library.

4.1 Odd Phase Numbers

For all odd phase numbersm (not divisible by 2) the sym-
metrical orientations of the winding axes are

orientationk =
2π(k−1)

m
.

So this applies for the casem = 3, m = 5, m = 7, m = 9,
m= 11,m= 13,m= 15, etc., see Fig. 3–4.

4.2 Even Phase Numbers

For even phase numbers unequal to 2n with integern, the
m phase system is separated into two subsystems withm/2
phases. The winding orientations of the second sub sys-

tem lags the first sub system by
π
m

. This is then the

point where the recursive determination of phase angle
is initiated. For each of the two sub systems functions
symmetricOrientation is called, considering the lag angle
π
m

. It is important to explicitly note that the phase shift be-

tween the two sub systems is not
2π
m

, since in this case the
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Figure 5: Winding axes of symmetrical (a) six phase wind-
ing and (b) ten phase winding

Figure 6: Symmetrical phase angles of voltages and cur-
rents, respectively, of (a) six phase winding and (b) ten
phase winding

two sub systems where aligned at±π which does not make
sense in a technical system for redundancy reasons.
A six phase systemis then separated into two three phase
systems. The winding orientations of the second sub sys-
tems lags the first sub system byπ/6, see Figs. 5–6. The
phase sequences (1-2-3) and (4-5-6) of the two sub systems
are equal.
A ten phase systemconsists of two five phase systems with
the phase sequences (1-2-3-4-5) and (6-7-8-9-10). The sec-

ond sub systems lags the first sub system by
π
10

, see Figs. 5–

6.

4.3 Phase Numbers Divisible by Three

Phase numbers divisible by three are either covered by sub-
section 4.1 and 4.2. Therefore, from a formal point of view
no additional explanations are required to handle, for ex-
ample, nine phase machines. Yet, a typical engineering ap-
proach and functionsymmetricOrientation for numbering
the phase numbers are different and may require some ad-
ditional comments:
Practically, in most technical cases, electrical machines
with phase numbers divisible by three will be supplied by an
appropriate number of three phase inverters. For six phase
systems this has already been demonstrated in subsection
4.2. In the FundamentalWave library nine phase systems are
handled differently only in that sense, the sequence num-
bering the phase windings is most likely different from an
engineer who uses three three phase inverters. In the engi-
neering phases (1-2-3) are most likely assigned to the first
inverter, phases (4-5-6) are assigned to the second inverter
and phases (7-8-9) are assigned to the third inverters, see
Fig. 7(a). In the FundamentalWave library the phase are

Figure 7: Numbering of nine phase symmetrical winding
according to (a) an engineering approach using three three
phase inverters and (b) the scheme of the FundamentalWave
library

numbered according to Fig. 7(b). Even though the num-
bering is different the angles of the orientations are fully
identical.
For a fifteen phase a design engineer could always argue
whether such system can be seen as five three phase sys-
tems or as three five phase systems. However, from operat-
ing conditions point of view, there is no difference between
these two cases. The numbering scheme of the Fundamen-
talWave follows a formal scheme and the user decides how
the machine phases are supplied.

5 Magnetic Components

All the existing magnetic components of the Fundamen-
talWave library can be re-used for the multi-phase ma-
chine models, since the magnetic port representation did not
change. In the current implementation only linear magnetic
materials are considered. Saturation effects are not taken
into account.
In all electric machine models of the FundamentalWave li-
brary the total magnetic reluctance is concentrated in the air
gap model. An example of permanent magnet synchronous
machine with optional damper cage is displayed in Fig. 2.
In the actual implementation of the FundamentalWave li-
brary the magnetic reluctances of the stator, rotor and air
gap are not individually modeled. Even the linear charac-
teristic of the permanent magnet is represent by the total air
gap reluctance of the machine. The total reluctance takes
the variable reluctance of the air gap lengthδ into account.
A sketch of the air gap and the reciprocal function 1/δ are
shown in Fig. 8.
The effect of variable magnetic reluctance due to the un-
even shape of the air gap and the arrangement of magnets,
respectively, is called saliency. The effect of saliency on
fundamental wave forms is fully considered by unequal di-
rect (d) and quadrature (q) axis reluctances. For rotor fixed
magnetic fluxPhi and total magnetic potential difference
V_m the following relationship applies:

(pi/2.0)*V_m.re = Phi.re * R_m.d;
(pi/2.0)*V_m.im = Phi_im * R_m.q;

The d andq axis are, however, fixed with the rotor struc-
ture. Magnetic rotor excitation of synchronous machines is,
however, always aligned with thed axis.
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Figure 8: (a) Variable air gap lengthδ of a synchronous ma-
chine and (b) reciprocal air gap function 1/δ versus spatial
angleϕ of an equivalent two pole machine

Quantity ms = 3 ms ≥ 3
Nominal stator phase voltage V ′

sN VsN = V ′
sN

Nominal stator phase current I ′sN IsN = I ′sN
3
m

Nominal stator frequency f ′
sN fsN = f ′

sN
Nominal electrical torque τ′

N τN = τ′
N

Nominal electrical stator power P′
sN PsN = P′

sN

Table 1: Parameters of machines with phases numbers equal
and greater than three

In case that the saturation characteristics of the different
regions of the machine shall be considered in the future,
the magnetic equivalent circuit has to be adapted such way
that each region is then represented by one non-linear reluc-
tance.

6 Parametrization

Where do the parameters of a machine withms stator phases
come from? First, in the design stage of the machine, an
engineer determines these parameters from finite element
analysis or any other electromagnetic design software. Sec-
ond, the parameters of a three phase machine are known or
estimated and the users wants to determine the parameters
of an equivalentm phase machine. The equivalence then
often refers to equivalent speed, frequency, torque, power,
phase voltage, power factor and efficiency. For the second
case the exact calculations will be provided in the follow-
ing:
Assume, the nominal parameter of a three phase and arbi-
trarymphase machine as listed in Tab. 1. All the parameters
of a three phase machine are indicated with′. According to
the relationship between themphase nominal phase voltage
and current, all resistances and inductances of anm phase
machine are scaled withm/3. A list of relevant parameters
is summarized in Tab. 2.
The rotor winding of squirrel cage induction machines are
implemented as equivalentms phase windings – wherems

is the number of stator phases. Slip ring induction machines
may have different phases numbers of stator and rotor –
wheremr is the number of rotor phases. For synchronous
machines with permanent magnets, electrical excitation and
reluctance rotor, the optional damper cage is implemented

Quantity m= 3 m≥ 3

Stator resistance R′
s Rs= R′

s
m
3

Stator stray inductance L′
sσ Lsσ = L′

sσ
m
3

Main field inductance L′
m Lm = L′

m
m
3

Main field inductance,d-axis L′
md Lmd = L′

md
m
3

Main field inductance,q-axis L′
mq Lmq= L′

mq
m
3

Table 2: Stator parameters of three andms ≥ 3 phase ma-
chines

Quantity m= 3 m≥ 3
Induction machine with squirrel cage

Rotor cage resistance R′
r Rr = R′

r
ms

3
Rotor stray inductance L′

rσ Lrσ = L′
rσ

ms

3
Induction machine with slip ring rotor

Rotor cage resistance R′
r Rr = R′

r
mr

3
Rotor stray inductance L′

rσ Lrσ = L′
rσ

mr

3
All synchronous machines
Damper cage resistance,d-axis R′

rd Rrd = R′
rd

Damper cage resistance,q-axis R′
rq Rrq = R′

rq
Damper cage

stray inductance,d-axis L′
rσ,d Lrσ,d = L′

rσ,d

Damper cage
stray inductance,q-axis L′

rσ,q Lrσ,q = L′
rσ,q

Table 3: Rotor parameters of machines with three andms ≥
3 andmr ≥ 3 phases

with salient rotor parameters with respect to the direct (d)
and quadrature (q) axis. So there is no difference between
three and multi phase damper cage models and parameters.
The rotor cage parameters of all machine types are summa-
rized in Tab. 3.

7 Examples

In the FundamentalWave library there are examples for all
types of machines, comparing three phase and multi phase
(m= 5) machines. The three and five phase machines are
operated with equal nominal phase voltages. The parame-
ters of the five phase machine are parameterized such way
automatically that the phase number can be increased with-
out changing torques and powers for the multi phase ma-
chines. In a duplicate example the phase numbers can be
changed for from five to higher numbers.
The following examples are included in the Fundamental-
Wave library:

7.1 Induction Machine with Squirrel Cage

In model Examples.AIMC_DOL_MultiPhase two
asynchronous induction machines with squirrel cage rotor
are started directly on line (DOL) by means of an ideal
switch; see Figure 9. The machines start from standstill.
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Figure 9: Comparing a three and a multi phase (m = 5)
permanent magnet synchronous machine, operated on an
idealized voltage inverter

Figure 10: Simulation result of electrical torque of a three
and five phase squirrel cage induction machines; the torques
are equal

Figure 11: Simulation result of the quasi RMS currents of
a three and five phase squirrel cage induction machines; the
current ratio is five to three

Figure 12: Comparing a three and a multi phase (m = 5)
induction machine started directly on line , operated on an
idealized voltage inverter

The mechanical load is modeled by means of a quadratic
speed dependent load torque and an additional load inertia.
This example demonstrates equivalent dynamic behavior of
the three and five phase machine. Particularly, the electrical
torque, speed, and the particular losses are equal.

Both machines have the same nominal phase voltage, but
different nominal phase currents according to Tab. 1. In
Fig. 10 the two identical electric torques of the two ma-
chines are shown. The different quasi RMS currents of two
machines are displayed in Fig. 11. The current ratio is equal
to five over three.

7.2 Induction Machine with Slip Ring Rotor

Model Examples.BasicMachines.AIMS_Start-
_MultiPhase compares a three and a five phase slip ring
induction machine, operating the stator direct on line; see
Fig. 12 The number of stator phasesms = 5 and the number
of rotor phases,mr = 5, are equal. The multi phase ro-
tor windings of each machine are connected with a rheostat
which is shorted after a give time periodtRheostat =
1.0 second. The rheostat enables a greater starting torque
– but worse efficiency. Therefore, after one second, the
rheostats are shortened to achieve a higher efficiency and
speed of the machines. The user can copy the example and
change the rotor phase numbermr such way that it differs
from the stator phase number,ms. This case is also sup-
ported the FundamentalWave library. In Fig. 13 and 14 the
electromagnetic torques and the quasi RMS currents of the
two machines are compared. The torques are identical and
the current ratio is five to three according to Tab. 1.
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Figure 13: Simulation result of electrical torque of a three
and five phase slip ring induction machines; the torques are
equal

Figure 14: Simulation result of the quasi RMS currents of
a three and five phase slip ring induction machines; the cur-
rent ratio is five to three

7.3 Synchronous Generator with Electrical
Excitation

In exampleExamples.SMPM_Generator two mains
supplied electrical excited synchronous machine with three
and five stator phases are compared; see Fig. 16. For each
machine shaft speed is constant and slightly different than
synchronous speed. In this experiment each rotor is forced
to make a full revolution relative to the magnetic field. In
Fig. 16 the generated torques versus load angle are shown
for a fixed level of excitation. In addition to the sinusoidal
waveform of the torque a second harmonic component is
superimposed due to the saliency of the rotor. However, for
the investigated machines, the saliency effect is very small
so that the torque waveform almost appears as a pure sine
wave. The quasi RMS currents of the two machines are
compared in Fig. 17. The current ratios of the three and five
phase machine is five to three.

Figure 15: Comparing a three and a multi phase (m = 5)
permanent magnet synchronous machine, operated on an
idealized voltage inverter

Figure 16: Simulation result of electrical torque, comparing
a three and five phase

Figure 17: Simulation result of the quasi RMS currents of
a three and five phase synchronous machine with electric
excitation; the current ratio is five to three
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8 Conclusions

The paper presents an extension of the FundamentalWave
library towards multi phase stator (and rotor) windings with
phase numbers greater or equal than three. This library is
included in the MSL 3.2.1. Assumptions and limitations
of the presented implementation are explained. In the new
FundamentalWave library only symmetrical windings are
supported. The structures of symmetrical multi phase wind-
ings and supplies are introduced.
The parametrization of the multi phase machines is dis-
cussed. Conversion tables for parameterizing multi phase
machines equivalent to three phase machines are presented.
Simulation examples of three and equivalent five phase in-
duction and synchronous machines are presented and com-
pared.
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Abstract

A new quasi static fundamental wave machines library will
be included in the magnetic domain package of the next
Modelica Standard Library (MSL). The provided classes of
machine models omit all transient electrical effects, but me-
chanical dynamics are fully taken into account. By includ-
ing the new machine models new classes of problems can
be treated, enabling fast electric machine and drive simu-
lations. Yet, all the characteristic loss effects of transient
machine models are fully taken into account, where needed.
Phase numbers greater than three are supported. For each
machine type available in the MSL there will then exist both
a fully transient and a quasi static electric machine model.
The package structure of the quasi static fundamental
wave package and the concept of implementation will
be presented. All required assumptions and limitations
for operating the new machine models will be presented
and discussed. Deviating parameters compared to the
transient machine models will be discussed and explained.
Simulation examples will be presented and compared with
transient simulation experiments. Possible applicationsfor
the new machine models will be outlined.

Keywords: Quasi static fundamental wave electric machine
models, multi phase, transient effects, reference frame

1 Introduction

The investigation of electric machine transients is highly
relevant for designing drive controls and investigating com-
plex multi domain physical systems. Yet, in many appli-
cations the full electrical transients play a minor role. For
example, the investigation of electric driving cycles of full
or hybrid electric vehicles or railways or the assessment of
auxiliary drives or the superior control of multiple drivesin
an industrial environment do not require the full considera-
tion of all electrical transients. In such cases it is assumed
that machine control is designed and implemented such way
that electric transients have no significant impact either on
power and energy balance or on the overloading capability
or stability. Additionally, it may even be requested or re-
quired to reduce system complexity for such applications

by eliminating electrically transient phenomena. The newly
developed quasi static fundamental wave electric machines
library is closing the gap for fast, simple and accurate elec-
tric machine models in a Modelica simulation environment.
The new quasi static fundamental wave electric machines
library is designed in the style of the transient Fundamen-
talWave library [1] which is already included in the Mod-
elica Standard Library (MSL). The new library utilizes the
existing quasi static multi phase electric package as well
as the rotational mechanics and the thermal domain [2].
All machine models are strictly object oriented: Modelica
classes for windings, air gaps, linear magnetic reluctances,
losses, etc. are provided. From a didactic point of view the
quasi static magnetic field theory enables valuable insight
into electro magnetic and mechanic power conversion. Ad-
ditionally, the provided linear machine models are designed
such way that they can be extended towards non linear mag-
netic effects such as saturation or permanent magnet (PM)
demagnetization. When designing the new library it was in-
tended to include as much features as provided by the tran-
sient machine models. Therefore, phase numbers greater
than three and different phase numbers in the stator and the
slip ring rotor of induction machines are fully supported.
Yet the number of phases,m, being equal to 2n with integer
n are currently not included. The reason for omitting such
phase numbers is caused by the fundamental difference of
windings systems withm = 2n from other windings.
An alternative concept for modeling quasi static magnetic
machines in Modelica is presented in [3]. In this concept
an induction machine model is presented based solely on
electric and magnetic quasi static equivalent circuits. Elec-
tro mechanical power conversion in not yet included in this
proposal.

2 Connector Concept

From a formal point of view the connector concept of the
transient and the quasi static fundamental wave package
look very similar. The magnetic port consists of the com-
plex magnetic potential,V m = Vm,re+ jVm,im, and the com-
plex magnet flux,Φ = Φre+ jΦim.

connector MagneticPort
"Basic quasi static magnet connector"
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Figure 1: Stator and rotor fixed reference frame of an elec-
tric machine

Modelica.SIunits.ComplexMagneticPotential
V_m "Complex magnetic potential

at the node";
flow Modelica.SIunits.ComplexMagneticFlux

Phi "Complex magnetic flux flowing
into the pin";

end MagneticPort;

The complex magnetic potential and the complex magnetic
flux represent a spatial fundamental wave field distribution
given by:

Φ(ϕ) = Re[(Φre+ jΦim)e−jϕ]

= Φrecos(ϕ)+ Φim sin(ϕ)

Vm(ϕ) = Re[(Vm,re+ jVm,im)e−jϕ]

= Vm,recos(ϕ)+Vm,im sin(ϕ)

A visualization of the fundamental wave forms is illustrated
in [1].
The main difference is the reference angle included in both
the quasi static positive and negative connector class defini-
tion.

connector PositiveMagneticPort
"Positive magnetic port"
extends QuasiStaticFundamentalWave.

Interfaces.MagneticPort;
Modelica.Electrical.QuasiStatic.

Types.Reference reference "Reference";
end PositiveMagneticPort;

The reference angle represents the angle of the reference
frame that the connector refers to. In electric machines typ-
ically stator and rotor reference frames are used in which
the fundamental principles of Ampere’s law and induction
law apply. The stator of electric motors are either supplied
by a fixed or variable frequency source. Stator frequency
determines the stator reference angle. The frequency of the
induced voltages of the rotor depends on the machine type
and whether the winding is accessible from the outside. In
case of a synchronous generator stator frequency is deter-
mined by the rotational speed.
Stator and rotor reference frames with respect to a complex
magnetic flux phasor are depicted in Fig. 1. The complex
phasor consists of a real and imaginary part, in the respec-
tive reference frame. The different reference frames are,
however, indicated by the reference angle provided by the
connector. So when coupling the stator and rotor fixed ref-
erence frame over the air gap model the real and imaginary

parts of magnetic flux are the same. Only the reference an-
gles are different. The very same applies for the complex
magnetic potential difference.
In Fig. 1 (s) represents the stator fixed reference frame and
γs is the angle difference between connector reference frame
and the stator fixed reference frame. In the same way, (r)
represents the rotor fixed reference frame andγr is the angle
difference between connector reference frame and the rotor
fixed reference frame. The angle difference

γ = γs − γr

is equivalent to the rotational mechanical angle between sta-
tor and rotor, multiplied by the number of pole pairs,p.

3 Assumptions and Limitations

First, in the actual version of the quasi static fundamental
wave library the phase numberm must not be equal to 2n

for integern.
Second, the used electric connector is based on the
package Modelica.Electrical.QuasiStatic-
.MultiPhase. Therefore, only single frequency voltages
and currents are taken into account in the underlying
electrical connector concept.
The third limitation is that only symmetric voltages and cur-
rents are allowed for supplying and loading the machines.
This restriction is a consequence of the fact that unbalanced
voltage and current supply, respectively, cause forward and
backward spinning magnetic field waves. In the squirrel
cages of induction machines the backwards spinning field
waves give rise to slip dependent frequency components in
the voltages and currents which cannot be taken into ac-
count by the single supply frequency approach of the quasi
static multi phase connector. When investigating the power
flow and systemic behaviors of mains supplied electric ma-
chines any supply asymmetrical is usually of minor interest.
For variable speed inverter fed electric machines symmet-
rical voltage supply can be assumed due to the control of
the power electronics which strictly avoids voltage asym-
metries.
Fourth, all windings are assumed to be fully symmetrical.
So the numbers of turns are equal for all winding axes and
the winding axis orientations are strictly related with the
function shown in Listing 1.
Fifth, due to the assumed symmetry of supply voltages and
currents, zero voltages, zero currents and zero impedances
are not considered in the quasi static machine models.
Sixth, all the magnetic reluctances of the machine models
are assumed to be constant. This represents a strictly lin-
ear relationship between magnetic potential differences and
magnetic fluxes.

4 Library Structure and Compo-
nents

The structure of the new quasi static fundamental wave li-
brary is presented in Fig. 2. The key components such as
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Figure 2: Structure of the quasi static fundamental wave
library

the electro magnetic coupling, the salient air gap model
and the damper cage concept which will be presented in
the following subsections. The coupling models rely on the
symmetry of voltages and currents. Therefore, symmetri-
cal components are discussed in this section as well. Cage
models, the PM model, regular reluctance and eddy current
models are designed in the style of the transient fundamen-
tal wave library and need no particular attention in this pa-
per. More detailed model descriptions can be found in [1].
Parametrization rules for multi phase machines with phase
numbers greater or equal to three are described in [4].

4.1 Symmetrical Components

The orientations of the winding axes of anm-phase system
is defined by the function listed in Listing 1, which is also
used in the transient fundamental wave library.

Listing 1: Function symmetricOrientation
function symmetricOrientation

"Orientations of the resulting
fundamental wave field phasors"

extends Modelica.Icons.Function;

input Integer m "Number of phases";

output Modelica.SIunits.Angle
orientation[m]
"Orientation of the resulting
fundamental wave field phasors";

import Modelica.Constants.pi;

algorithm
if mod(m, 2) == 0 then
// Even number of phases
if m == 2 then

// Special case two phase machine
orientation[1] := 0;
orientation[2] := +pi/2;

else
orientation[1:integer(m/2)] :=

symmetricOrientation(integer(m/2));
orientation[integer(m/2) + 1:m] :=

symmetricOrientation(integer(m/2))
- fill(pi/m, integer(m/2));

end if;
else
// Odd number of phases
orientation :=

{(k - 1)*2*pi/m for k in 1:m};
end if;

end symmetricOrientation;

An arbitrarym-phase system of currentsi[k], for 1≤ k ≤ m,
can be transformed intom symmetrical components. In case
of a fully symmetrical system of currents, only the positive
sequence component is non-zero. The positive sequence
component is computed by means of multiplying the current
vector with the transformation matrix obtained from func-
tion symmetricOrientationMatrix. The design of
the transformation matrix relies on the recursive application
of the function presented in Listing 1.
As a consequence of assuming fully symmetrical volt-
ages and currents, respectively, only the positive se-
quence of voltages and currents arise. In case of even
phase numbers more than one positive sequence compo-
nent will arise. It is thus required to determine the in-
dexes of positive sequence components by means of func-
tionindexPositiveSequence. All other symmetrical
components are equal to zero. Their indexes are determined
by functionindexNonPositiveSequence.

4.2 Electromagnetic Coupling

The induction law and Ampere’s law are related with the
positive sequences of the symmetrical components of volt-
ages and currents. Due to the symmetry of the windings the
induced voltages of all positive sequence components are
identical. In the quasi static domain the time derivative of
the magnetic flux is replaced by a multiplication with the
imaginary unit and the angular frequency. The complex to-
tal magnetic potential difference is related with the sum of
all positive sequence currents, see Listing 2.

Listing 2: Electromagnetic coupling model incorporating
the induction law and Ampere’s law
model MultiPhaseElectroMagneticConverter

"Multi phase electro magnetic converter"
...
QuasiStationary.MultiPhase.Interfaces.
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PositivePlug
plug_p(final m=m) "Positive plug";

QuasiStationary.MultiPhase.Interfaces.
NegativePlug
plug_n(final m=m) "Negative plug";

Interfaces.PositiveMagneticPort port_p
"Positive complex magnetic port";

Interfaces.NegativeMagneticPort port_n
"Negative complex magnetic port";

Modelica.SIunits.ComplexVoltage
v[m] "Voltage drop";

Modelica.SIunits.ComplexCurrent
i[m] "Current";

...
SIunits.ComplexVoltage

vSymmetricalComponent[m] =
symmetricTransformationMatrix(m)*v
"Symmetrical components of voltages";

SIunits.ComplexCurrent
iSymmetricalComponent[m] =
symmetricTransformationMatrix(m)*i
"Symmetrical components of currents";

protected
final parameter Integer indexNonPos[:]=

indexNonPositiveSequence(m)
"Indices of all non positive seqeuence
componentes";

final parameter Integer indexPos[:]=
indexPositiveSequence(m)
"Indices of all positive seqeuence
componentes";

equation
// Magnetic flux and flux balance
// of the magnetic ports
port_p.Phi = Phi;
port_p.Phi + port_n.Phi = Complex(0,0);
// Magnetic potential difference
// of the magnetic ports
port_p.V_m - port_n.V_m = V_m;
// Voltage drop of electrical plugs
v = plug_p.pin.v - plug_n.pin.v;
// Current and current balance of plugs
i = plug_p.pin.i;
plug_p.pin.i + plug_n.pin.i =

{Complex(0,0) for k in 1:m};
// Amperes law
V_m.re = sqrt(2) * (2.0/pi) *

Modelica.ComplexMath.real(
N*iSymmetricalComponent[1])*m/2;

V_m.im = sqrt(2) * (2.0/pi) *
Modelica.ComplexMath.imag(

N*iSymmetricalComponent[1])*m/2;
for k in 1:size(indexNonPos,1) loop

iSymmetricalComponent[indexNonPos[k]] =
Complex(0,0);

end for;
// Induction law
for k in 2:size(indexPos,1) loop

vSymmetricalComponent[indexPos[1]] =
vSymmetricalComponent[indexPos[k]];

end for;
-sqrt(2) * Complex(

Modelica.ComplexMath.real(
vSymmetricalComponent[indexPos[1]]),

Modelica.ComplexMath.imag(
vSymmetricalComponent[indexPos[1]]))

= Modelica.ComplexMath.conj(N)*j*omega*Phi;
// Breakable connections of references
Connections.branch(

port_p.reference, port_n.reference);
port_p.reference.gamma =

port_n.reference.gamma;
Connections.branch(

plug_p.reference, plug_n.reference);
plug_p.reference.gamma =
plug_n.reference.gamma;

Connections.branch(
plug_p.reference, port_p.reference);

plug_p.reference.gamma =
port_p.reference.gamma;

...
end MultiPhaseElectroMagneticConverter;

The reference angles of both the electrical and the magnetic
domain are connected by means of breakable connections.
This concept breaks potential algebraic loops of the elec-
tric and magnetic domain. Additionally, both domains are
interconnected by a breakable connector as well.

4.3 Air Gap

The air gap model consists of two stator and two rotor mag-
netic ports and two rotational mechanic flanges representing
the stator and rotor, respectively. The complex magnetic
potential difference and flow quantities of the quasi static
fundamental wave stator and rotor connectors are identi-
cal. However, the reference angles are different according
to Fig. 1.
Rotor saliency is represent by different magnetic reluc-
tances in thed (direct) andq (quadrature) axis – with re-
spect to the rotor fixed reference frame. Therefore, the rela-
tionships between magnetic potential differences and fluxes
have to be expressed in the rotor fixed reference frame:
the rotor fixed complex magnetic potential differences and
fluxes are obtained by multiplying each of these quantities
by ejγr as shown in Listing 3.

Listing 3: Air gap model with rotor saliency
model RotorSaliencyAirGap "Air gap model

with rotor saliency"
Interfaces.PositiveMagneticPort
port_sp "Positive complex magnetic

stator port";
Interfaces.NegativeMagneticPort
port_sn "Negative complex magnetic

stator port";
Interfaces.PositiveMagneticPort port_rp
"Positive complex magnetic rotor port";

Interfaces.NegativeMagneticPort port_rn
"Negative complex magnetic rotor port";

Rotational.Interfaces.Flange_a flange_a
"Flange of the rotor";

Rotational.Interfaces.Flange_a support
"Support at which the reaction torque
is acting";

parameter ...
// Phasors of magn. potential differences
SIunits.ComplexMagneticPotentialDifference
V_ms
"Complex magnetic potential difference
of stator w.r.t. stator ref. frame";

SIunits.ComplexMagneticPotentialDifference
V_msr = V_ms *

ComplexMath.fromPolar(1,gammar)
"Complex magn. potential difference of
stator w.r.t. rotor fixed ref. frame";

...
Modelica.SIunits.Torque tauElectrical
"Electrical torque";

Modelica.SIunits.Angle gamma =
p*(flange_a.phi - support.phi)
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"Electr. angle betw. rotor and stator";
SIunits.Angle gammas =

port_sp.reference.gamma
"Angle in stator reference frame";

SIunits.Angle gammar =
port_rp.reference.gamma
"Angle in rotor reference frame";

equation
...
// Local balance of magneto motive force
// w.r.t. rotor fixed reference frame
(pi/2.0)*(V_mrr.re + V_msr.re) =

Phi_rr.re*R_m.d;
(pi/2.0)*(V_mrr.im + V_msr.im) =
Phi_rr.im*R_m.q;
// Torque
tauElectrical = -(pi*p/2.0)*

(Phi_s.im*V_ms.re - Phi_s.re*V_ms.im);
flange_a.tau = -tauElectrical;
support.tau = tauElectrical;
// Stator may be potential root

Connections.potentialRoot
(port_sp.reference);

Connections.branch(
port_sp.reference, port_sn.reference);

port_sp.reference.gamma =
port_sn.reference.gamma;

Connections.branch(
port_rp.reference, port_rn.reference);

port_rp.reference.gamma =
port_rn.reference.gamma;

Connections.branch(
port_sp.reference, port_rp.reference);

gammas = gammar + gamma;
if Connections.isRoot(port_sp.reference)
then

gammar=0;
end if;

end RotorSaliencyAirGap;

The references of the stator and rotor ports are linked
through breakable connections. In case of generator oper-
ation without mains connection the stator will have to be
treated as root.

4.4 Damper Cages

For operating mains supplied synchronous machines it is
required to enable the optional damper cage. Otherwise
the induced rotor voltage for electrical and PM excited syn-
chronous machines cannot perform the expected slow mo-
tion rotation. Since the load angle cannot change abruptly
due to rotor inertia, the damper cage is required for operat-
ing quasi static synchronous machines with mains supply.
The operating behavior of the quasi static machine model
is yet different since all transient electrical effects arenot
taken into account.

The optional damper cages of the synchronous machines
are equivalent two axis cages with different resistances and
inductances in the rotord (direct) andq (quadrature) axis.
The squirrel cage of the induction machine model, however,
has the same number of phases as the stator. Same stator
and rotor phase numbers are chosen since it is usual in en-
gineering approaches to model the squirrel cage equivalent
to the topology of the stator winding.

4.5 Example Machine Model

Figure 3 shows the permanent magnet synchronous ma-
chine model included in the quasi static fundamental wave
library. The quasi static electrical domain is colored in light
blue, the quasi static fundamental wave domain is light or-
ange. The rotational and the thermal domain are colored in
black and red, respectively.

The stray load loss model is directly part of the stator elec-
tric circuit. The voltage drop of this model is equal to zero,
and loss is considered as torque times angular frequency.
The stray load loss is also dissipated through the thermal
connector.

The stator winding represents the electro magnetic coupling
of the stator winding with magnetic field. The winding
model is depicted in Fig. 4. This model consists of sym-
metrical winding phase resistors, an ideal electromagnetic
coupling, a stray field reluctance in the magnetic domain
and a loss model representing solely eddy current core loss.
Thermal connectors for copper loss and eddy current loss
are provided. Winding resistances are modeled tempera-
ture dependent, eddy current loss is modeled independent
of temperature.

The air gap model couples the stator and rotor magnetic
parts of the model. The electromagnetic torque is transmit-
ted to the stator and rotor, respectively. Stator and rotor
torques have the same absolute value but different signs.
The magnetic saliency of the rotor is considered by differ-
ent stator inductances with respect to thed (direct) andq
(quadrature) axis. In the actual implementation the total in-
ductances of the two axes are associated to one reluctance
with respect to thed andq axis, respectively, only. Partial
reluctances of the stator and rotor teeth, slots, yokes, etc.
are currently not separated.

In the rotor magnetic circuit an optional damper cage is in-
cluded. The damper cage model is a two axis model with
cage resistances and stray inductances assigned to the two
axis – this is the usual parametrization that electrical en-
gineers are using. The damper cage also provides a ther-
mal connector to exchange heat and temperature with an
optional thermal model.

The permanent magnet model is currently not considering
temperature dependent magnet properties. The total induc-
tance of the machine already includes the reluctance of the
permanent magnet. The PM model is thus a constant source
of magnetic potential difference, rotated into the rotor fixed
reference frame such that the complex magnetic potential
difference phasor is aligned with thed axis. The mechani-
cal flanges of the PM model are required to model the PM
loss as equivalent mechanical loss torque times angular ve-
locity.

The inertias, the friction loss model and the heat port and
ambient models are the same for the quasi static and the
transient fundamental wave machine models.
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Figure 3: Quasi static model of a multi phase permanent
magnet synchronous machine with permanent magnet

5 Library Compatibility

5.1 Parameter Compatibility

The new quasi static fundamental wave library is almost
fully parameter compatible with the transient fundamental
wave library. The only incompatibility are the stator zero
inductances and the rotor zero inductance of the induction
machine with wound slip ring rotor. These zero inductances
are not implemented in quasi static machine models. In the
transient machine models the default values of the zero in-
ductances are the stray inductances. If the user does not
propagate an actual parameter for the zero inductance of a
transient machine model, the quasi static and transient ma-
chine models can be exchanged without parameter incon-
sistency.

In the current version of the quasi static fundamental wave
library the loss models are fully compatible with the tran-
sient machine models. This may change in future versions
where quasi static hysteresis loss may be included – which
are difficult to implement for transient magnetic fields. Sta-
tor core loss, friction loss, stray load loss, permanent mag-
net loss and brush loss are implemented with compatible
parameters and equal static state behavior.

5.2 Number of Phases

Parameter compatibility also includes the number of phases.
In the quasi static fundamental wave library multi phase ma-
chines with phase numbers greater than or equal to three are
supported.

Figure 4: Winding model including winding resistors, elec-
tromagnetic coupling, stray reluctances and eddy current
loss

5.3 Connector Compatibility

The electrical AC multi phase connectors of the transient
and quasi static machine model are not compatible due to
the different connector designs and properties. The analog
DC connector of the synchronous machine with electrical
excitation is yet connector compatible. The thermal con-
nectors and the rotational connectors of the shaft and the op-
tional housing, respectively, are connector compatible with
the transient machine models.

6 Examples

In the following examples of transient and quasi static fun-
damental wave electric machines are compared. Each of
the published examples is also available at the sub package
Examples.BasicMachines.

6.1 Induction Machine with Squirrel Cage
Rotor

Starting an induction machine with squirrel cage rotor di-
rect on line shows a transiently higher starting and and
a lower break down torque than the quasi static ma-
chine; see Fig. 5 and 6. The simulation result is not
plotted as a function of time, but as parametric plot
of torques versus speed. Both machines are loaded
with an idealized mechanical load, modeled as quadratic
speed dependent torque. The example is available at
Examples.BasicMachines.AIMC_DOL.
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Figure 5: Modelica model of both transient and quasi static
squirrel cage induction machine starting directly on line
(DOL)

6.2 Electrical Excited Synchronous Genera-
tor

In exampleExamples.BasicMachines.SMEE_Ge-
nerator a transient and quasi static synchronous gener-
ator with electrical excitation are compared for a very slow
load change. The shafts of both generator are spinning with
a rotational speed slightly different than synchronous speed,
see Fig. 7. Therefore, the rotor is moved over one full elec-
trical revolution – relative to the magnetic field. In the ac-
tual Modelica example the total real time of the experiment
is equal to 30s. Such an experiment can also be performed
in the lab for determining the full torque characteristic as
function of the load angle. In Fig. 8 the torques of both ma-
chines are displayed versus angleγr obtained by the quasi
static machine model. Angleγr and the load angleϑ are
related by

ϑ = γr −90◦.

The torques of both machines are identical due to small rela-
tive speed between rotor and magnetic field. The wave form
the toque is a sine wave superimposed with a sine wave of
half the period due to the rotor saliency of this machine.

7 Possible Applications

7.1 Long Periods of Simulation Time

The new quasi static fundamental wave models may be used
for all time domain simulations covering a large time span.
Neglecting electrical transient effects makes the simulation
models fast and robust. In particular, large periods of sim-
ulation time being in the range of minutes, hours and days,
require fast simulation models. In typical simulation ap-
plications it is important to model power and energy bal-
ances accurately. High accuracy of the actual efficiency is

Figure 6: Torque versus speed for an induction machine
with squirrel cage rotor, starting direct on line; comparing
transient (trans) and quasi static (QS) machine model; load
torque is quadratic speed dependent on speed

Figure 7: Modelica models of synchronous generators with
electrical excitation

Figure 8: Torques of the transient and quasi static generator
versus angleγr
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enabled by comprehensive loss models included in the ma-
chine models of the quasi static fundamental wave library.
Typical applications are:

• Drive cycles of full or hybrid electric vehicles

• Drive cycles of subway trains, tramways, and railway
trains

• Modeling of mechanical and electrical power and en-
ergy balances in industrial processes

• Robot drives for industrial use

• Auxiliary drives

7.2 Modularity of Simulation Concepts

Particularly for the simulation of electric machines includ-
ing power electronics (converter) and control quasi static
drive models are an interesting option. Quasi static and
transient electric machine models are different levels of ab-
straction. The two different machine models can be com-
bined with either a quasi static and transient converter mod-
els. Both the quasi static and the transient machine and
converter can be operated by one control algorithm [5–10].
This way, the level of modularity of electric drives can be
increased by means of the new quasi static fundamental
wave machine models. The increased modularity reduces
maintenance effort for drives libraries and reduces the de-
velopment time of new or alternative control algorithms, in
particular with respect to multi phase electric drives with
phase numbers greater than three.

8 Didactic Aspects

In the quasi static and the transient fundamental wave li-
brary a strictly object oriented modeling approach was pur-
sued. This includes the physical domains electrical, mag-
netic, rotational and thermal. Due to this approach the mod-
els of windings, the air gap and the permanent magnet, etc.,
can be clearly separated as different objects. In future ver-
sions it is even possible to separate the magnetic reluctances
of teeth, slots, yokes and magnets.
Quasi static machine models are also of particular interest
for high schools and universities to make virtual experi-
ments and to demonstrate the physical behavior of electric
machines. The different behavior and quality of quasi static
and transient machine models can be discussed and elabo-
rated in classes.

9 Conclusions

The new quasi static fundamental wave library for modeling
induction and synchronous electric machines is presented.
This package shall be included in the next version of the
MSL. The provided machine models allow phase number
equal to or greater than three. Fully symmetrical windings

and supply voltages and currents are required to fulfill quasi
static modeling assumptions.
Additional modeling assumptions and limitations of the li-
brary are presented. The compatibility of the quasi static
with the transient fundamental wave machine library is dis-
cussed. Simulation examples of quasi static and transient
machine models are compared.
The new package opens a new field of applications for mo-
bility and industry applications since the quasi static ma-
chine models have a very high simulation performance.
Possible application examples are presented and didactic
aspects of the library are discussed.
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Abstract

Simulation is an indispensable tool for the engineering
of systems containing electric drives. Depending on the
design phase and the engineering task different levels of
modeling details are required: proof of concept, investi-
gation of energy and power consumption, design of con-
trol, etc. The new EDrives library provides three levels
of abstraction for inverters: quasi static (neglecting elec-
trical transients), averaging (neglecting switching effects)
and switching – for serving different demands. The invert-
ers can feed the machine models of the Modelica Standard
Library: Modelica.Magnetic.FundamentalWave and the
new Modelica.Magnetic.QuasiStatic.FundamentalWave.
The EDrives library copes with arbitrary phase numbers and
can be easily extended to develop new control algorithms.
In this publication the structure of the library and the imple-
mented control principles are presented. Furthermore, ex-
amples comparing the three different levels of abstraction
are included.
Keywords: Electric machines and drives, power electron-
ics, control, multi phase, thermal behavior, switching, quasi
static, transient

1 Introduction

Engineering of systems containing electric drives is essen-
tially supported by simulation, allowing verification of the
overall concept with rapid prototyping against requirements
even in early design phases as shown in [1]. Different en-
gineering tasks require different level of modeling abstrac-
tion: An early proof of concept can be done without knowl-
edge of details like the control or switching algorithm of the
inverter. Determination of energy and power consumption
during driving cycles requires the accurate consideration of
losses and the interaction of the control with the whole sys-
tem. Yet, in such cases the switching effects can often be
neglected. For more sophisticated investigations of, e.g.,
the torque ripple, a more detailed model is needed taking
switching effects into account. Therefore a modular con-
cept supporting all tasks is indispensable. The new EDrives

library provides inverter models with three levels of abstrac-
tion:

• Quasi static inverters connected to quasi static ma-
chine models; electrical transients are neglected, but
losses are taken into account. The models have high-
est performance and robustness, making them suitable
for long term simulations.

• Averaging inverters connected to transient machine
models; the inverter models do not consider switching
effects. Interaction of control with the whole system
can be tested with high performance. Losses are taken
into account, power conversion of the power electron-
ics is based on power balance.

• Switching inverters provide the highest level of ab-
straction, resulting in lower simulation performance
(i.e. longer execution time). On this level of abstrac-
tion switching effects and new pulse width modulation
algorithms can be investigated.

The EDrives library supports arbitrary phase num-
bers m and is thus fully compatible with the
Modelica.Magnetic.FundamentalWave and the new
Modelica.Magnetic.QuasiStatic.FundamentalWave

library. Yet the number of phases, m, being equal to 2n

with integer n are currently not supported. The reasons
are discussed in [2] and [3]. Segregating the inverter and
the machine models allows the modular exchange with
more advanced models of machines, power electronics and
control. For example, an electric machine model can be
coupled with a thermal model and cooling circuit to study
the thermal behavior of the machine and system over a
whole driving cycle.
The parameters of the entire drive are compiled in a drive
parameter record. The drive parameter record contains a
record of the electric machine, the power electronics and
the control settings. This modular record structure enables
the user to handle and exchange parameter sets for different
machines and drives in a very convenient way.
In the actual version of the EDrives library control al-
gorithms are provided for permanent magnet (PM) syn-
chronous machines, solely. Control algorithms for in-
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Figure 1: Permanent magnet synchronous machine with in-
verter

duction machines, electrical excited synchronous and syn-
chronous reluctance machines as well as mains converters
feeding the DC intermediate circuit will be implemented
in upcoming versions. Therefore, all examples and mod-
els presented in this publication refer to permanent magnet
synchronous machines.

2 Drive Concepts
Each machine model provided in the EDrives library con-
sist of a machine model from the MSL including sensors
for temperatures and the rotor flange angular position. The
interface connectors are electrical, mechanical, thermal and
the sensor outputs. These sensor outputs are connected with
the inputs of the inverter model. The inverter consists of
the power electronics, i.e., a DC/AC converter, sensors for
electrical quantities and machine control and pulse width
modulation (PWM) if required. The electrical AC output of
the inverter is connected with a machine model and the DC
input is connected with an external power supply. The type
of DC power supply very much depends on the application.
The DC power supply may either be a battery or fuel cell
or an AC to DC converter supplied by the mains. An exam-
ple of a PM synchronous machine drive modeled with the
EDrives library is shown in Fig. 1. A detailed description
of the main drive components is presented in sections 3–6.

3 Machines and Sensors
The EDrives library will provide wrapper models for each
type of machine to encapsulate the machine model includ-
ing sensors, as shown in Fig. 2 for a PM synchronous ma-
chine. These wrapper models contain:

• an instance of a quasi static or transient machine model
of the MSL

• a terminal box, providing the desired terminal connec-
tion (star or polygon)

• a rotor angle sensor

• temperature sensors for making stator winding and ro-
tor (PM) temperatures accessible

Figure 2: Wrapper model for the transient machine

• the machine parameter record

The machine parameter record allows to propagate all ma-
chine parameters with one record. This is achieved by the
wrapper model propagating the elements of the parameter
record to the machine model. The concept of the wrapper
model enables the exchange of a quasi static by a transient
machine model in an application and vice versa. The pa-
rameter records and all connectors except for the electrical
connector are compatible in each wrapper model. This way
only the electrical machine supply has to be re-connected.
The mechanical flanges, the thermal connector as well as
the temperature sensors and angle sensor outputs are the
same for all wrapper models of permanent magnet syn-
chronous machines.
Both the quasi static and the transient machine models take
losses into account: temperature dependent copper loss,
(eddy current) core loss, friction loss, stray load loss and
PM loss – see [4, 5]. All these losses are dissipated ei-
ther to an internal thermal ambient with fixed operational
temperature, or exchanged with an external thermal model
through the thermal port. An external thermal model allows
to simulate the actual temperatures over a driving cycle as
discussed, e.g., in [6, 7].

4 Inverters and Parametrization
Each inverter model extends from the same base class since
they all have the same connectors except for the electrical
plug that has to be connected to the machine. However, each
inverter model uses the same drive parameter record. Thus,
it is possible to replace one inverter model by another in an
experiment with low effort. However, the level of abstrac-
tion of the machine model has to match level of abstraction
of the inverter model: a quasi static inverter can feed a quasi
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Figure 3: Switching inverter model

static machine; a transient machine can be supplied by an
averaging or by a switching inverter.
The inverter model converter shown in Fig. 3 can be one
of the following power converter models:

• Quasi static model: considers power balance between
DC and quasi static AC side

• Averaging model: provides power balance between
DC and transient AC side

• Switching model: the m phase converter bridge has
two electronic switches and two free-wheeling diodes
for each leg and phase, respectively

The sensing and signal conditioning of both DC and AC
quantities are encapsulated in two models. The DC sensing
model retrieves the actual DC current and voltage. Addi-
tionally, the filtered DC current, voltage and power are cal-
culated. The filter settings are automatically adapted to the
switching frequency of the application.
The AC sensing model acquires AC currents, voltages and
power, and calculates the space phasor d and q components
in the rotor fixed reference frame. These quantities get also
filtered to suppress switching frequency related effects. All
these quantities are fed to a signal bus, including the actual
rotor position.
Machine control is also included in the inverter, as shown
in Fig. 3 for a switching inverter model. All the signals
obtained by sensors and signal conditioning are provided
at the internal bus. Control strategies implemented in the
EDrives library rely on field oriented control (FOC). This
means that all electrical voltages, electrical currents and
magnetic fluxes are decomposed into a component aligned
with magnetic field of the PM (direct or d axis) and a
component perpendicular to the magnetic field orientation
(quadrature or q axis). Therefore, the sensed rotor flange

angular position is required to perform the space phasor de-
composition. The d and q components represent the real
and imaginary part of the respective space phasor in the ro-
tor fixed reference frame. The actual orientation and magni-
tude of the field is obtained by a controller internal machine
model. This model also provides the estimated electrical
torque. In a real drive application torque and field mag-
nitude and orientation are usually also modeled, not mea-
sured. Therefore, the quality of machine control is very
much determined by the quality of the controller internal
machine model.
For a machine with phase number greater than or equal to
three, the electrical voltages, currents and magnetic fluxes
are decomposed into space phasors, consisting of a d and
q component, each. In the EDrives library the signals ex-
changed between the different controllers are vectors with
two components, representing the d and q component of a
space phasor. This space phasor may either be an electric
voltage, current or magnetic flux.
Control is designed hierarchically. On each level of abstrac-
tion the control structure includes a torque-flux-controller,
see section 6.2. The output of the torque-flux-controller are
the commanded d and q currents, Îd and Îq. The current
of the q axis is proportional to the generated torque and
the d axis current is used the adjust the actual flux level.
These quantities are processed by a current controller. The
outputs of the current controller are the components of the
commanded voltage space phasor. This space phasor has
to be transformed into phase voltages to be provided to the
voltage generation of the inverter. Three different levels of
inverter abstraction are provided in the EDrives library. The
torque-flux-controller, however, is the same for all three lev-
els.

• The quasi static inverter contains a quasi static cur-
rent controller (section 6.3). The space phasor volt-
age components are transformed into quasi static phase
voltages which are fed to the quasi static power con-
verter.

• The averaging inverter uses a transient current con-
troller (section 6.3) which is also used in the switching
inverter model. A delay block is modeling the delay
caused by the switching period of a real drive. The
space phasor voltage components are transformed into
transient phase voltages which are fed to the averaging
power converter.

• The switching converter contains the same transient
current controller as the averaging inverter. The space
phasor voltage components represent the rotor fixed d
and q components. These components are transformed
into the voltage space phasor with respect to the sta-
tor fixed reference frame, which serves as input for
the PWM (pulse width modulation) algorithm. The
switching signals of the PWM are then fed to the m
phase power electronics converter.

The drive parameter record utilized in the inverter model
contains the machine parameter record and further param-
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Figure 4: Averaging converter model

eters of the drive configuration. The controller parame-
ters are calculated from the machine parameters and prop-
agated to the controller models. The user can tune the pre-
configured control parameters by means of tuning parame-
ters.

5 DC / AC Converter

Three different levels of abstraction for DC to AC convert-
ers are provided in the EDrives library.

• First, the quasi static converter is modeled as an ideal
quasi static voltage source. Power balance between
DC input and AC output is complied. This means the
efficiency of the quasi static converter is 100%.

• Second, in the averaging converter model (Fig. 4) the
space phasor voltages are transformed into transient
phase voltages. These voltages are fed to an ideal volt-
age source. Considering power balance between DC
input and AC output side, the converter efficiency is
100%.

• Third, the switching converter consists of m legs. Each
of them consists of two electronic switches and two
anti parallel free-wheeling diodes. Switch and diode
models are taken from the Modelica Standard Library
(IdealGTOThyristor and IdealDiode from package
Modelica.Electrical.Analog.Ideal). The inputs of
the switching converter are boolean switching signals
(on|off) for each leg.

6 Control
Machine control is based on FOC (field oriented control)
and consists of the following components:

• optional speed controller

• torque flux controller

• current controller

In each controller model, a space vector representation of
voltages and currents in the rotor fixed reference frame is
used. These phasors are also distributed to the machine bus.
The input for the torque-flux-controller is the commanded
torque which can be provided by the user or an optional
speed controller.

6.1 Optional Speed Controller
The external speed controller is implemented as limited
PI controller with anti windup. It feeds the commanded
torque via signal connector to the inverter and has to be
connected to the inverter via machine bus. The parametriza-
tion is defined by a record speedControllerData which
is a sub-record of the drive parameter record. The record
speedControllerData calculates the parameters for the PI
controller based on the symmetrical optimum method.The
subscripts iq refer to the settings of the current controller
with respect to the q axis [8]:

kp = kTune
(JMachine + JLoad)ωNominal

τNominal

2kTune,iq

Ti

Ti = Ti,iq
4

kTune,iq

6.2 Torque Flux Controller
The torque-flux-controller shown in Fig. 5 limits the com-
manded torque with the maximum speed dependent torque.
In the field weakening range torque is limited proportional
to one over speed. In the base speed range the maximum
torque is constant. The actual machine torque, magnetic
flux and stator voltage are determined by a controller inter-
nal machine model (section 6.4). The input quantities of
the controller internal machine model are the commanded
current space vector and the rotor angular position. In a
real drive, torque, magnetic flux and stator voltage are ei-
ther determined by an observer or an on-line model which
is implemented in the control software.
The deviation between the commanded and the modeled
torque is the input for a fast integrator controlling the q cur-
rent component.
The d current component is determined by the flux con-
troller which implements a simple flux control algorithm. It
can be replaced by a more sophisticated flux controller with
low effort. First, the actual voltage, calculated by the con-
troller internal machine model is compared with the maxi-
mum admissible voltage. This is the minimum of the max-
imum admissible machine voltage defined by a parameter

The New EDrives Library: A Modular Tool for Engineering of Electric Drives

158 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096155



Figure 5: Torque flux controller

and the maximum obtainable voltage according to the ac-
tual DC voltage. Second, the actual magnetic stator flux of
the machine is compared with the nominal magnetic flux.
Nominal flux is calculated by an auxiliary quasi static ma-
chine model to determine the nominal operating conditions
defined by the machine parameter record. If the actual volt-
age exceeds the maximum admissible voltage, field weak-
ening occurs. When the actual magnetic flux exceeds the
nominal magnetic flux, field weakening ends, entering the
base speed range where magnetic flux is kept constant.
In the constant flux region, the d current component is con-
trolled by a fast integrator to achieve constant magnetic flux.
In the field weakening region, the d current component is
determined by the same integrator to keep the voltage lim-
ited.
The outputs of the torque-flux-controller are the com-
manded d and q current component of the current space
phasor in the rotor fixed reference frame. These compo-
nents are limited to the maximum admissible machine cur-
rent, which is defined in the drive parameter record. The
limited current space phasor is equal to the commanded
current space phasor which is forwarded to the current con-
troller. The commanded current space phasor is also fed to
the controller internal machine model.

6.3 Current Controller

The current controller for the transient inverters (averaging
and switching) utilizes two limited PI controllers with anti
windup to determine the stator voltages Vd and Vq, respec-
tively. The stator voltage space phasor is determined such
way that the commanded currents, Îd and Îq, and the actual
currents, Id and Iq, coincide.
The voltage equations of the PM synchronous machine are

Vd = RsÎd−ωLq Îq + Ld
dÎd

dt
,

Vq = RsÎq + ωLd Îd + Lq
dÎq

dt
+VPM,

where ω is the angular rotor speed. Parameter Rs repre-
sents the stator resistance at rated operating temperature,
and Ld and Lq are the total inductances of the d and q axis.
The controller internal machine model determines the volt-
age drops RsÎd + ωLq Îq and Rs Îq + ωLd Îd +VPM, which are
added as feed forward signal to the PI controller outputs.
This way the PI controllers solely controls the transient cur-

rent deviations
dÎd

dt
and

dÎq

dt
; in literature this technique of-

ten is called “decoupling”. In the field weakening region
the desired voltage space phasor is limited to the maximum
admissible voltage (section 6.2).
Since the machine transfer function represents a first order
delay, the parametrization of the PI controllers is based on
the compensation method [8].

kp,id = kTune,idRs

Ti,id =
Ld

Rs

kp,iq = kTune,iqRs

Ti,iq =
Lq

Rs

These controller parameters are calculated by the drive pa-
rameter record.
The quasi static current controller is simpler: The voltages
to match the actual and commanded d and q currents are
calculated by the controller internal machine model. The
complex voltage is limited to the maximum admissible volt-
age and fed to the output.

6.4 Controller Internal Machine Model
The controller internal machine model shown in Fig. 6 is
used to calculate the stator voltage phasor, the magnetic
flux and torque related to the the commanded stator current
space phasor and rotor position. The actual stator wind-
ing temperature, however, is taken into account by the con-
troller internal machine model. This machine model is im-
plemented as the instance of a quasi static machine model
as described in [3].
Using a quasi static machine model to implement the con-
troller internal machine model is much more structured and
modular than an model just implementing text book equa-
tions describing the machine’s behavior. Additionally, all
improvements of the machine model from the MSL can be
utilized. Machine losses and temperature effects are fully
taken into account, resulting in a flexible and adaptive ma-
chine model.

6.5 Space Vector PWM
SVPWM (space vector pulse width modulation) is consid-
ered in literature as state of the art PWM, as discussed, e.g.,
in [9–13]. The PWM block included in the actual version
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Figure 6: Controller internal machine model
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Figure 7: SVPWM switching states in d-q-voltage plane
[p.u.] for m = 3 phases

of the EDrives library currently implements a SVPWM al-
gorithm for m = 3 phases. An extension to arbitrary num-
ber of phases is under development. The algorithm samples
the desired voltage space phasor and the actual DC voltage
according to the switching frequency. The possible space
phasor locations according to the switching states shown
in Fig. 7 are calculated by a function. First, the sector is
determined where the commanded voltage space phasor is
located. This voltage space phasor can be composed of the
two neighbored switching states and either of the two zero
switching states. The boolean switching states are fed to the
output, to control the electronics switches of the converter
(section 5).

7 Examples

The first example shown in Fig. 1 simulates a quasi static
synchronous machine with permanent magnets, fed by a

quasi static inverter. For the given drive configuration three
different levels of abstraction will be compared. First, the
original simulation based on the quasi static machine and
inverter is performed. Second, the permanent magnet syn-
chronous machine model smpm is redeclared as transient ma-
chine. Additionally, the inverter model smpmInverter feed-
ing the permanent magnet synchronous machine has to be
redeclared as averaging inverter. Then an additional simu-
lation run is be performed. Third, the averaging inverter is
redeclared by a switching inverter.
The machine parameters of the simulation example are de-
rived from the default MSL machine parameters summa-
rized in Tab. 1. No damper cage is used; copper losses are
caused by heat dissipation of the stator resistors. All other
losses are neglected in the preformed example. The ma-
chine is mechanically loaded by an inertia and a quadratic
speed dependent torque which reaches nominal torque at
nominal speed, representing a fan or a pump. The inverter
is connected to a DC voltage source with resistors, simu-
lating a battery. At t = 0.1 s a step from zero to nominal
torque is applied to the reference torque input. After accel-
erating, the drive reaches an equilibrium with the given load
characteristic.
The following figures compare the results of

• a transient synchronous machine fed by a switching
inverter,

• a transient synchronous machine fed by an averaging
inverter and

• a quasi static synchronous machine fed by a quasi
static inverter.

In Fig. 8 the actual torques of the three cases follow the
reference torque step very well. As expected, the quasi
static torque is nearly identical with the reference torque.
The switching case shows a torque ripple according to the
switching frequency (5 kHz). The speed trajectories in
Fig. 9 show only small differences. The plots of the RMS
stator currents in Fig. 10 reveal that the d current increases
at t = 0s to set the nominal magnetic flux. At t = 0.1s
the q current component is controlled to generate the ref-
erence torque. Again the quasi static case shows no tran-
sients, whereas the switching current is superimposed by a
rest of current ripple left by filtering. The unfiltered phase
currents at the end of the simulation are depicted in Fig. 11.
A fast Fourier transform (FFT) of phase current of phase 1
is shown in Fig. 12. Note that the largest harmonics – apart
from the fundamental wave – are located at multiples of
the switching frequency (5 kHz). The filtered stator RMS
voltages in Fig. 13 rise with speed since induced voltage in-
creases. Yet the maximum voltage of 100V is not exceeded.
The second example shown in Fig. 14 is derived from
the first example, but the number of phases is changed to
m = 5. The desired torque step is replaced by a speed
controller which input is a desired speed cycle, and the
parametrization of the speed controller is taken from the
record speedControllerData, embedded in the drive pa-
rameter record.
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number of phases m arbitrary
number of pole pairs p 2

rotor’s moment of inertia Jr kg ·m2 0.29
nominal frequency fs,Nominal Hz 50

open circuit voltage at nominal speed Vs,OpenCircuit V 112.3
nominal voltage per phase Vs,Nominal V 100
nominal current per phase Is,Nominal A 100 · m

3
stator resistance per phase at 20°C Rs Ω 0.03 · m

3
stator stray inductance per phase Lsσ H 0.1

2π fs,Nominal
· m

3

stator main field inductance per phase, d axis Lmd H 0.3
2π fs,Nominal

· m
3

stator main field inductance per phase, q axis Lmq H 0.3
2π fs,Nominal

· m
3

Table 1: Machine parameters
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Figure 8: Example 1: simulation results of electrical torque

The simulations results are obtained with a transient ma-
chine model and an averaging inverter model. Fig. 15 shows
the reference torque given by the speed controller and the
machine electrical torque. The actual speed follows refer-
ence speed very well, as shown in Fig. 16. Fig. 17 shows
the 5 phase currents during 1 second of the initial accelera-
tion. This proves that the control system works well in both
driving directions, both for motor and generator mode, and
for phase numbers m> 3.

8 Outlook
It is planned to release the new EDrives library as commer-
cial tool-independent library. The modular concept of the
library supports the following development steps:

• Enhancing the SVPWM algorithm to arbitrary num-
bers of phases m> 3.

• Extending both the switching converter model and the
SVPWM algorithm to multilevel inverter configura-
tions.

• Considering alternative flux control strategies.

• Implementing the control structures for induction ma-
chines with squirrel cage; power electronic converters
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Figure 9: Example 1: simulation results of speed

(quasi static, averaging and switching) as well as the
SVPWM algorithm can be re-used.

• Providing diode bridge converters as mains converters
(quasi static, averaging and switching).

• Developing active mains converters with voltage-
oriented control as described in [14]; power electronic
converters (quasi static, averaging and switching) as
well as the SVPWM algorithm can be re-used.

• In the current implementation, the switching power
converter models using the IdealGTOThyristor

and the IdealDiode model from package
Modelica.Electrical.Analog.Ideal take con-
duction losses into account. Enhancements include
implementation of switching losses for switching
power converters, and both conduction and switching
losses for averaging and quasi static power converters.
One particular focus of development is a user friendly
parametrization technique. Furthermore, thermal ef-
fects shall be considered, including a thermal port for
coupling the electrical models with thermal inverter
models and cooling circuits.

• Adaptive control techniques shall be considered, tak-
ing temperature dependencies and saturation effects
into account.
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Figure 10: Example 1: simulation results of stator RMS
current
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Figure 11: Example 1: simulation results of stator phase
currents

9 Conclusions
The new EDrives library for modeling inverter drives uti-
lizes the machine models from the MSL. The provided in-
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Figure 12: FFT of simulation of stator RMS current at equi-
librium
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Figure 13: Example 1: simulation results of filtered stator
RMS voltage

Figure 14: Example 2: speed controlled PM synchronous
machine drive

verter models allow phase numbers equal or greater than
3, like the Modelica.Magnetic.FundamentalWave and the
new Modelica.Magnetic.QuasiStatic.FundamentalWave.
The control structures are based on FOC. The parametriza-
tion of the controllers is described. Simulation examples
demonstrate the usage of matching inverter and machine
models with respect to different levels of abstraction.
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Figure 15: Example 2: simulation results of electrical
torque
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Figure 16: Example 2: simulation results of speed

1 1.2 1.4 1.6 1.8 2
−50

0

50

time [s]

p
h
a
s
e
 
c
u
r
r
e
n
t
s
 
[
A
]

Figure 17: Example 2: simulation results of phase currents

The new EDrives library opens a new field of applications
for mobility and industrial applications: Quasi static mod-
els with highest performance allow long term energy con-
sumption simulations. Averaging models enable testing the
interaction of the drive control with the whole system at
high performance. The most detailed switching models al-
low the investigation of ripple effects and the development
and customization of controller concepts and designs.
The package shall be released as a commercial library, the
first version comprises quasi static, averaging and switching
inverter models for synchronous machines. Enhancements
and extensions are currently under development.
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Abstract 

Within the Clean Sky project MoMoLib (Modelica 

Model Library Development for Media, Magnetic 

Systems and Wavelets) an extension for the Modeli-

ca.Magnetic.FluxTubes library has been developed. 

This extension mainly consists of new flux tubes 

elements for the consideration of the magnetic hyste-

resis in the transient simulation of electromagnetic 

networks, a materials library with hysteresis data of 

various magnetic materials and a new components 

package with models of one- and three-phase trans-

formers, which also account for the magnetic hyste-

resis of the core. This paper briefly presents the im-

plemented hysteresis models for the simulation of 

the static (ferromagnetic) and dynamic (eddy cur-

rents) hysteresis. It shows the accurate computation 

of the instantaneous hysteresis losses, which be-

comes increasingly important for the design of elec-

tromagnetic components with increasing require-

ments regarding energy efficiency and mass power 

densities. Furthermore, the new components of the 

library extension are introduced and the behavior of 

the implemented elements is verified and compared 

to measurements and steel sheet datasheets. 

Keywords: magnetic hysteresis; Tellinen; Prei-

sach; Modelica.Magneic.Fluxtubes; iron losses;  

1 Introduction 

The Modelica.Magnetic.FluxTubes library was orig-

inally developed at the Technische Universität Dres-

den and has been part of the Modelica Standard Li-

brary (MSL) [1] since 2009. The library is based on 

the well-known concept of magnetic flux tubes [2, 3] 

and allows modeling of magnetic fields with lumped 

networks. Due to the library elements for modeling 

of coils, non-linear core material, leakage flux and 

reluctance forces this library is well-suited for the 

rough design of electromagnetic components and 

devices, e.g. actuators, motors, transformers, or hold-

ing magnets. Important properties of magnetic com-

ponents, e.g. saturation behavior, residual magnetism 

and especially the iron losses are influenced or even 

determined by the magnetic hysteresis behavior of 

the involved ferromagnetic materials.  Particularly, 

the consideration of hysteresis losses gets increasing-

ly important during the design process of magnetic 

components due to increasing requirements on loss 

power minimization and high mass power densities. 

Well-known examples of this engineering trend are 

e.g. the electromobility and more electric aircraft. So 

far, the ferromagnetic hysteresis is not yet considered 

in the FluxTubes library. Within a Clean Sky project 

this issue has been addressed and an extension for 

the FluxTubes library has been developed. It in-

cludes hysteresis elements for the consideration of 

both static and dynamic hysteresis of ferromagnetic 

materials. At the Modelica 2012 conference first 

Modelica hysteresis models have been presented [4]. 

Now the work on the extension is almost finished 

and the extended Modelic.Magnetic.FluxTubes li-

brary will soon be integrated into the MSL. Two dif-

ferent hysteresis models have been implemented for 

modeling of static ferromagnetic hysteresis. On the 

one hand the rather simple but efficient Tellinen 

model [5], which is characterized by low computa-

tional effort and high numerical stability, and on the 

other hand the more complex but also more accurate 

and widely accepted Preisach hysteresis model [6]. 

Dynamic hysteresis is computed by the product of 

the classical eddy current factor [5, 7], which consid-

ers the electrical conductivity and the thickness of 

magnetic steel sheets, and the time derivative of the 

magnetic flux density, which causes the formation of 

eddy currents. To configure the hysteresis models 

and to adapt them to specific materials the Flux-

Tubes.Material package has also been extended with 

a package containing hysteresis properties of typical 

magnetic materials. This data is mainly based on in-

house measurements according to DIN EN 60404-2 

using a 25 cm Epstein frame. With a series of simu-

lations the behavior of the developed hysteresis 

models has been verified and compared to published 
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data of a steel sheet manufacturer as well as to in-

house measurements. 

2 Theory 

This section gives a short introduction to the two 

implemented static hysteresis models, the Tellinen 

and the Preisach model, and introduces the approach 

for consideration of eddy currents and hysteresis 

losses. 

2.1 The Tellinen Hysteresis Model 

The Tellinen hysteresis model [5] is a comparatively 

simple model for the description of ferromagnetic 

(static) hysteresis. Thus, it is easy to implement, nu-

merically stable and fast. Even though the model 

does not have a magnetic memory, its accuracy is 

sufficient for a wide range of simulations. 

To adapt the model to specific material properties 

(hysteresis shapes) only the hysteresis envelope 

curve, i.e. the rising R(H) and falling F(H) branches 

of the limiting hysteresis loop, must be provided (see 

Figure 1). Together with their corresponding slope 

functions r(H) and f(h), which define the slope of 

R(H) and F(H) with respect to the magnetic field 

strength H, the actual slope dB/dt of the current op-

eration point O(h, b) is given by equation (1). 

 

Figure 1: Rising R(H) and falling F(H) branch of the hys-

teresis envelope curve and their corresponding slope func-

tions r(H) and f(H) 
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2.2 The Preisach Hysteresis Model 

This section shows the implementation improve-

ments compared to the prior state of the model pre-

sented at the 9
th
 Modelica conference 2012 [4]. The 

Preisach model is described in more detail e.g. in [6, 

8]. The behavior of the Preisach model results from a 

superposition of an infinite set of elementary hyste-

resis operators     with the upper and lower switch-

ing limits of α and β, respectively. The operators 

output equals +1 for a magnetic field strength h 

greater than α and -1 for h less than β. For all h be-

tween α and β, the output     ( ) remains in the 

previous state (see equation (2) and Figure 2).   

 

    ( )  {

       ( )    

       ( )   
             

 (2) 

 

Figure 2: Elementary Preisach operator γαβ (hysteron). 

With the restriction that α is always greater than β, α 

and β span a right-triangular plane which is often 

referred to as Preisach plane (see Figure 3). 

 

Figure 3: Preisach plane 

For each point (α, β) of this region exactly one ele-

mentary hysteresis operator γαβ exists with the 

switching limits of exactly α and β. The Preisach 

distribution function P(α, β) is also defined over this 

Preisach plane and gives a specific weight to each 

operator (see Figure 4).  

The polarization j(t) of the model is then defined by 

the integral over all weighted operators outputs mul-

tiplied by the saturation polarization JS: 
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 ( )     ∬ (   )      ( )     

   

 (3) 

If one splits the Preisach plane into two regions S+ 

and S-, in which all the operators are in the +1 and -1 

state, respectively, equation (3) can be simplified to 

 ( )     (  ∬  (   )    

  ( )

  )  (4) 

It is evident from equation (4) that the Preisach dis-

tribution function defines the shape and the behavior 

of the hysteresis. 

 

Figure 4: Exemplary Preisach distribution function P(α, β) 

defined over the Preisach plane (α ≥ β). 

Normally, the double integral of P(α, β) is not ana-

lytically defined. A numerical double integration at 

every time step of the simulation would be too com-

putationally expensive. In the initial version of the 

Preisach flux tube element [4] that problem was 

solved by integrating the Preisach distribution func-

tion only once at the start of each simulation for each 

grid point of a fixed grid over the Preisach plane. 

The results had been stored in a two-dimensional 

array (CombiTable2D), which then was used during 

simulation for table lookup and interpolation to eval-

uate the integral. The improved version of the ele-

ment uses now another approach instead, which 

again improves simulation speed and numerical sta-

bility, namely an analytical description of the Everett 

function [9].  This Everett function EV(α, β) is de-

fined as the integral of P(α, β) over the region R: 

  (     )  ∬ (

 

   )                 

 ∫ ∫  (   )  

 

    

  

    

   

 (5) 

Figure 5 shows the region R with its integration lim-

its α’and β’. 

 

Figure 5: Region R over which the P(α, β) is integrated to 

compute the Everett function EV(α’, β’) 

The use of this Everett function allows the analytical 

computation of the Preisach model without numeri-

cal integration or a table lookup, thus considerably 

improving the performance of the developed 

Preisach flux tube model. The implemented analyti-

cal form of the Everett function can be adjusted with 

seven parameters and thus covers only a limited but 

a wide range of possible hysteresis shapes. 

2.3 Eddy Currents 

In addition to he previously described static hystere-

sis models this section explains modeling of dynamic 

hysteresis, i.e. consideration of eddy currents in a 

ferromagnetic core. An approach proposed in [5] has 

been implemented. The total magnetic field strength 

H(t) of an hysteresis element consists of a static 

Hstat(t) and a dynamic component Heddy(t): 

 ( )       ( )       ( ) (6) 

Hstat(t) results from the static Preisach or Tellinen 

hysteresis model. Heddy(t) is computed as product of 

the classical eddy current factor σcl [5, 7] and the 

change of the magnetic flux density in the core. 

     ( )      
  

  
 (7) 

σcl results from a homogenization approach. It con-

siders the real electrical conductivity σ and the 

thickness of individual steel sheets for computation 

of an adapted conductivity for a whole stack of lami-

nations: 

    
    

  
   (8) 

Figure 6 shows exemplarily a simulated hysteresis 

loop together with its ferromagnetic and its eddy cur-

rent components. The simulated network model is 

similar to the one shown in Figure 14. 
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Figure 6: Simulated biased hysteresis loop B(H) with its 

ferromagnetic component B(Hstat) and eddy current com-

ponent B(Heddy) for a sinusoidal voltage excitation at 

400 Hz 

2.4 Thermal Losses 

Continuous computation of the hysteresis and its 

static and dynamic components allows for accurate 

computation of the instantaneous hysteresis losses. 

The total power loss P consists of the static hystere-

sis loss Pstat and the eddy current loss Peddy and can 

be computed as follows: 

               ( )  
  ( )

  
    (9) 

V denotes the core volume. For Pstat and Peddy the 

equations (10) and (11) apply: 

           ( )  
  ( )

  
    (10) 

           ( )  
  ( )

  
       (

  ( )

  
)

 

    (11) 

According to the hysteresis plot of Figure 6, Figure 7 

shows the simulated time courses of the magnetic 

field strength and the core losses together with their 

static and dynamic components. The function of the 

magnetic core as an energy storage is easy to recog-

nize in Figure 7 (b). When the loss power is nega-

tive, energy is fed back into the system. Furthermore, 

the instantaneous computation of the power losses is 

advantageously, because the losses are computed 

correctly independent of the applied frequencies and 

waveforms. The total hysteresis losses can be passed 

to a conditional heat port as a heat flow. This allows 

for simple integration of the developed hysteresis 

elements into a thermal network model. 

 

Figure 7: Simulated time course of the magnetic field 

strength (a), the instantaneous hysteresis losses (b) and the 

averaged hysteresis losses (c) of a magnetic core element 

excited with a sinusoidal voltage at 400 Hz (according to 

the hysteresis plot of Figure 6). 

3 New Components in the Library 

Modelica.Magnetic.FluxTubes 

The FluxTubes library extension mainly consists of 

the developed hysteresis elements for modeling of 

ferromagnetic materials including permanent mag-

nets, an extended materials package and a new com-

ponents package with models of one- and three-

phase transformers. 

3.1 Package HysteresisAndMagnets 

The new hysteresis elements are grouped together in 

the package FluxTubes.Shapes.HysteresisAndMag-

nets (see Figure 8). There are four different Tellinen 

hysteresis models. The difference between these 

models is the definition of the static hysteresis be-

havior. The elements CuboidHystTellinenSoft and 

CuboidHystTellinenHard use very simple hyperbolic 

tangent shape functions to describe the envelope 

curve of the hysteresis directly. The shape functions 

are tailored to the description of soft and hard mag-

netic materials and can be easily adjusted with four 

meaningful parameters only (e.g. for the soft mag-

netic shape functions: saturation magnetization, co-

ercivity, remanence and a multiplier for the vacuum 

permeability to adjust the slope in the saturation re-
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gion). The elements CuboidHystTellinenEverett and 

CuboidHystPreisachEverett use the analytical de-

scription of the Everett function presented in section 

2.2. Several parameter sets to adjust the material be-

havior are available in the material package Hystere-

sisEverettParameter. An additional option to specify 

the hysteresis shape offers the element CuboidHyste-

resisTellinenTable. This element uses table data for 

the rising and falling branches of the limiting hyste-

resis loops, and thus allows for the definition of al-

most arbitrary hysteresis shapes. Two additional el-

ements for modeling permanent magnets are includ-

ed in the package: the CuboidLinearPermanentMag-

net for linear hard magnetic materials defined in Ma-

terial.HardMagnetic and the CuboidHystTellinen-

PermanentMagnet which also accounts for hysteresis 

and thus also for demagnetisation processes of a 

permanent magnet. 

 

Figure 8: New flux tube elements of package Shapes.-

HysteresisAndMagnets 

Most of these elements also allow for consideration 

of eddy currents and provide a conditional heat port, 

which simplifies delivery of the generated hysteresis 

losses to a thermal network model.   

3.2 Package Components 

Based on the hysteresis elements described above, 

package Components contains predefined models of 

single- and three-phase transformers of different to-

pologies (See Figure 9). The transformer models can 

be widely configured (e.g. core geometry, winding 

parameters, stray flux, material) and thus easily be 

adapted to specific needs. Consideration of both stat-

ic hysteresis and eddy currents allows for accurate 

computation of losses, saturation effects, inrush cur-

rents and frequency behavior. Again, a conditional 

heat port allows for connection of the magnetic mod-

el to a thermal network model. Besides the hysteresis 

losses also the copper losses of the windings are au-

tomatically considered. 

 

Figure 9: The new Components package of Modeli-

ca.Magnetic.FluxTubes. 

3.3 Extension of Package Material 

For a simple adaption of the developed hysteresis 

models to real magnetic materials two new material 

packages have been included in the library exten-

sion: the package HysteressisEverettParameter and 

the package HysteresisTableData. Since accurate 

hysteresis data is hardly available, a measurement 

setup has been developed and built for hysteresis 

characterization of magnetic materials according to 

the DIN EN 60404-2/4/6. Figure 10 shows the block 

diagram of the utilized measurement setup. The 

25 cm Epstein frame used for the characterization of 

30 mm x 280 mm magnetic steel sheet samples is 

shown in Figure 11. 

 

Figure 10: Block diagram of the hysteresis measurement 

setup 

The setup allows hysteresis measurements within a 

range of the magnetic field strength of ±10 kA/m. 

For the implementation of package material the static 

hysteresis characteristic of several steel sheet sam-

ples has been determined. Three exemplary hystere-

sis loops for three different steel sheet qualities are 

shown in Figure 12. For verification of the devel-

oped hysteresis models also dynamic loops have 

been measured. 
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Figure 11: Built-up 25 cm Epstein frame used for hystere-

sis characterization of magnetic steel sheets 

 

 

Figure 12: Exemplarily measured hysteresis loops of three 

different steel sheet qualities 

In package HysteresisTableData the measured hyste-

resis envelope curves are directly stored as table da-

ta. The data provided in this package can be used 

with the CuboidHystTellinenTable hysteresis ele-

ment. Since the hysteresis elements Cuboid-

HystTellinenEverett and CuboidHystPreisachEverett 

both need Everett function parameter sets for their 

configuration (see section 2.2), the package Hystere-

sisEverettParameter contains such predefined param-

eter sets. They have been identified using the hyste-

resis loops of package HysteresisTableData as refer-

ence. Figure 13 shows the content of package Hyste-

resisTableData. In Addition to the measured hystere-

sis data some data of cobalt-iron-alloys [10] have 

also been included in the library. It is planned to ex-

tend the material package when new data are availa-

ble. 

 

Figure 13: Current content of the hysteresis materials li-

brary of Modelica.Magneti.FluxTubes 

4 Verification Results 

To verify the correct simulation of the developed 

hysteresis models, several experiments have been 

carried out to compare the model behavior to meas-

urements and to steel sheet datasheets. 

4.1 Static and Dynamic Hysteresis Loops 

In a first experiment the Epstein frame of Figure 11 

was used to measure total hysteresis loops (superpo-

sition of static and dynamic loops) at several excita-

tion frequencies. 

 

Figure 14: Simple model of the measurement setup in-

cluding the Epstein frame shown in Figure 11 

In addition, the measurement setup has been mod-

eled with a simple model consisting of a sine voltage 

source, a series resistance, a primary and secondary 

winding and the magnetic core, latter being modeled 

with element CuboidHystTellinenTable (see Figure 

14). The stray flux of the magnetization coils is con-

sidered within the element pWinding. 
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Figure 15 shows the measured and the simulated 

B(H) loops of the magnetic core for identical excita-

tions at several frequencies. In principal, a good 

agreement can be seen. The deviations in the 200 Hz 

loops are likely due to neglection of excess eddy cur-

rents, which are not considered in the hysteresis 

models. 

 

Figure 15: Comparison of measured and simulated total 

B(H) loops using M330-50A steel sheets and the Cu-

boidHystTellinen hysteresis element for modeling of the 

core 

4.2 Time Course of Current and Power Losses 

 

Figure 16: Comparison of measured and simulated prima-

ry current and core losses of a transformer excited by a 

sinusoidal primary voltage of Upmax=25 V and f=50 Hz. 

 

In a second experiment a similar setup and model 

was used to compare the time course of the primary 

current and the iron losses. This has been done for a 

highly saturated core at an excitation frequency of 

f=50 Hz and a primary voltage magnitude of 

Upmax=25 V (see Figure 16) and for a moderately 

saturated core at f=100 Hz and Upmax=40 V (Figure 

17).  

 

Figure 17: Comparison of measured and simulated prima-

ry current and core losses of a transformer excited by a 

sinusoidal primary voltage Upmax=40 V and a frequency 

f=100 Hz 

4.3 Specific Core Losses 

In a third experiment the model of Figure 14 was 

used again. The sinusoidal primary voltage has been 

gradually increased at a fixed frequency of 50 Hz for 

two different core materials. For each step the peak 

value of the magnetic flux density as well as the av-

erage power loss of the core have been recorded. 

Based on the average power loss, the core volume 

and the density of the core material the specific total 

losses of the core material have been evaluated. Fig-

ure 18 shows the comparison of these values to man-

ufacturer data, which was extracted from the manu-

facturer datasheets of the investigated materials [11, 

12]. Again, a very good agreement over a wide range 

of magnetic excitations up to saturation is evident. 

5 Summary 

Within the Clean Sky project MoMoLib an extension 

of the library Modelica.Magnetic.FluxTubes has 

successfully been implemented. The extension main-

ly consists of hysteresis elements for modeling of 

ferromagnetic and dynamic hysteresis of magnetic 
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materials during transient simulation of electromag-

netic components with lumped network models. Two 

different hysteresis models, the Tellinen and the 

Preisach model have been implemented. Their static 

hysteresis characteristics can be parameterized in 

three different ways: with simple tanh() shape func-

tions, hysteresis table data or with parameter sets of 

an analytical Everett function. A material package, 

mainly based on in-house measurements, provides 

the hysteresis data of several magnetic materials for 

easy parameterization of the models. Dynamic hyste-

resis is considered with a dB/dt term. The considera-

tion of static and dynamic hysteresis during transient 

simulation allows for accurate determination of hys-

teresis losses. This becomes more and more im-

portant during design of electromagnetic actuators 

and systems due to increasing requirements in terms 

of power density and miniaturization. A series of 

experiments showed the correct behavior and the 

accuracy of the developed hysteresis elements. Addi-

tionally, based on the hysteresis elements, models for 

permanent magnets as well as single- and three-

phase transformer models have been implemented. 
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Abstract 
Annotations and attributes form an important part of 
the Modelica language. They are used to include var-
ious meta-information such as documentation, exter-
nal C-code, compilation hints, etc. Given the increas-
ingly wide field of potential applications the set of 
useful annotations becomes too large to be included 
in the language specification. Hence we present a 
proposal how a Modelica modeler may define his 
own annotations and how such custom annotations 
can be organized within Modelica libraries. In the 
long term, the goal is to move the definition of 
standardized annotation, as well as of attributes, 
from the Modelica specification to a standard library.  
Keywords: meta-information; custom annotations; 
optimization setup; Monte Carlo simulation setup; 
Kalman filter setup; uncertainty setup. 

1 Introduction 
The main purpose of Modelica is to enable the equa-
tion-based modeling of physical systems. In addition 
to this primary objective, the modeler has to care 
about the usability of his/her components. This in-
cludes a variety of tasks: documentation needs to be 
written, icons need to be drawn, a 3D visualization 
has to be provided, and compilers might need hints 
for generating more efficient code.  

All this is meta-information to the actual physical 
model but as Figure 1 shows, it can account for a 
major share of the code: For the FixedTranslation 
component (a rigid rod in 3D Mechanics), the physi-
cal modelling contributes only to 14% of all the 
code. Of course such a comparison is skewed since it 
is doubtful to compare manually typed equations 
with auto-generated code for graphical objects but 
nevertheless the handling of meta-information de-
serves to be a major concern for the future design of 
the Modelica language. 

An improved solution for meta-information in 
Modelica becomes necessary since there is a desire 
to include more and more information into the mod-
els. Especially, a model might be used not only in 
simulation, but in other analysis and synthesis meth-
ods, and then additional model-specific data is need-
ed. For example, sensitivity analysis needs uncertain-
ty data for model variables, Monte Carlo simulation 
needs stochastic distribution data on states and/or 
parameters, an optimization setup needs the infor-
mation which parameters and/or input signals shall 
be optimized, and in which range the optimization 
shall take place. 

To meet these demands, we propose an enhance-
ment to Modelica: custom annotations. But before 
we address the new proposal, let us look at the cur-
rent handling of meta-information in Modelica and 
its weak spots and then formulate the requirements 
for a new design. 

Figure 1: Percentage of characters devoted to 
certain tasks in Modelica.Mechanics.MultiBody.Parts. 
FixedTranslation. Source: (Zimmer 2008) 
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2 Handling of Meta-Information 

2.1 Meta-Information in Current Modelica 

The Modelica language (Modelica Association 2012) 
offers currently two devices that are used for meta-
information: annotations and attributes.  

Standard annotations are defined for a multitude 
of issues: graphical information for icons and dia-
grams, GUI-design, documentation, version han-
dling, etc. Here is a typical annotation in a Modelica 
code. It describes the representation of a parameter 
in the GUI of the modeling environment and advises 
the compiler to evaluate this parameter before gener-
ating code: 

parameter RotationSequence sequence 
  "Sequence of rotations " 
  annotation(Evaluate=true, 

Dialog(tab="Advanced",   
enable=not useQuaternions) 

   ); 

Since the information is mostly of no interest for the 
human reader and an inadvertent manipulation shall 
be prevented, most modeling environments for Mod-
elica hide annotations from the user by default. 

Attributes are also used for meta-information alt-
hough this information is mostly linked closer to the 
physical variables (or parameters) of the model: 
physical units, minimum and maximum boundaries 
or potential start values for iterative solvers are de-
scribed by this language construct. The following 
example contains attributes for the start value, 
whether they are used for as initial equations, and 
whether the variable shall be used as state-variable 
depending on another parameter. 
SI.AngularVelocity w_a[3] ( 
 start=Frames.resolve2(R_start,w_0_start), 
 fixed=fill(w_0_fixed, 3), 
 each stateSelect= 
   if enforceStates then 
     (if useQuaternions then 
        StateSelect.always 
      else StateSelect.never) 
   else StateSelect.avoid)  

The two listings above give a quick glance on how 
meta-information is stored within Modelica. The cur-
rent solution served fine for more than a decade but 
it has come to its limitations. We are confronted with 
two major weaknesses: rising complexity and ambi-
guity. 

The first weakness is simply the sheer amount of 
definitions that are needed. The current version of 
the specification devotes already 20 pages for more 
as 70 annotations and roughly 7 pages for about 10 
attributes. The specification is already a long docu-
ment and further inflation must be prevented. Also 

we have to keep in mind that the specification is 
primarily targeted for tool vendors and not for end-
users. Most end-users should not have to consult the 
specification but rather refer to other material. 

The second weak point is that the definition in the 
specification is often not complete. For example, it is 
usually not defined on which elements an annotation 
can be placed and only from context one might de-
duce that annotation “Evaluate” makes sense only 
for primitive data types, whereas annotation “docu-
mentation” might make sense at many places, but 
is actually in use only on classes and not on compo-
nents. 

The third weak spot is the ambiguity between the 
two different concepts. Whether some information 
belongs to an attribute or to an annotation is not al-
ways clear and has often be a discussion point in the 
design process of the language. For example, 
stateSelect is an attribute used to tell the compil-
er which variables shall form the state-space of the 
model. Evaluation is an annotation and used to tell 
the compiler which parameters to evaluate before-
hand.  

Such discussions are often influenced by the dif-
ferences in which way attributes and annotations can 
be accessed. Attributes can be set in (even nested) 
modifiers, annotations cannot. Vendors can specify 
their own annotations but they are not allowed to do 
this for attributes. 

2.2 Meta-Information in other Languages 

In (Zimmer 2008) the handling of meta-information 
(here denoted as multi-aspect modelling) is discussed 
for various other modeling languages such as 
VHDL-AMS or SPICE3. Then another approach is 
proposed based on the experimental language Sol 
(Zimmer 2009). Here the modeler is given the oppor-
tunity to define his/her own annotations by means of 
environment packages and then can use them by in-
stantiating the components of this package within 
pre-specified sections of his model. This is conven-
iently possible because in Sol components have first-
class status (Burstall and Strachey, 2000) unlike in 
current Modelica. 

Another (although similar) proposal is discussed 
in (Zimmer, 2012). It is based on another experi-
mental language called Hornblower. Also here anno-
tations can be defined within packages and then used 
within the models. This concept treats annotations 
like “loosely attached parameters”. These are param-
eters that can be set but do not have to be set. This is 
possible since such parameters were ensured to al-
ways have a reference to a default object. 

Custom Annotations: Handling Meta-Information in Modelica

174 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096173



Meta information can also be defined in certain 
programming languages, especially in Java (Coward 
2004): From http://en.wikipedia.org/wiki/Java_an-
notation: “Classes, methods, variables, parameters 
and packages may be annotated. Unlike Javadoc 
tags, Java annotations can be reflective in that they 
can be embedded in class files generated by the 
compiler and may be retained by the Java VM to be 
made retrievable at run-time. It is possible to create 
meta-annotations out of the existing ones in Java”.  

General programming languages often cope much 
better with meta-information than declarative model-
ing languages because they own suitable data-
structures and often contain already sufficient means 
for introspection. In Python, there are doc-strings for 
documentation but they are just predefined class 
members. Also class or function decorators are used 
to express a meta-construct on an item, but also these 
constructs are regular language constructs. In Python 
there is no need to have language constructs solely 
devoted to meta-information; instead the regular 
constructs prove to be sufficient. This shows to us 
that it is a good idea to reuse regular language con-
structs for meta-information in Modelica as much as 
reasonable feasible. 

3 Design Goals 
In concrete terms, the following goals shall be 
reached: 
• The modeler must be able to define annotations

by him- or herself.
• Existing annotations or attributes shall be de-

fined in the same way and removed from the
specification (at least as many as possible). This
will require to introduce more powerful data
structures in Modelica.

• The annotations shall be organized in packages
so that an end-user can browse through them and
do not need to address the specification any-
more.

• The modeler must be able to apply custom anno-
tations in (nested) modifiers.

• Annotation must never be required to be provid-
ed by the user. Annotations and its parts are al-
ways meta-information that can be given option-
ally.

• The proposed design must be backwards com-
patible so that current code is not broken.

• The proposed design can make some language
constructs obsolete that can then be removed
from the language in the future.

• It must be specified how the meta-information
contained in custom annotations is handled for
model-export (for instance FMI).

Based on these goals, we have developed a suitable 
design for a future version of the Modelica language: 
Custom annotations. 

4 Design Proposal 
The basic idea of our proposal is to use basic Model-
ica “records” to define custom annotations and then 
make them better applicable by enabling the use of 
annotations in modifiers. In this way, new features 
can be introduced without having to define many 
new language elements. Note, records are also the 
basis of nearly all built-in Modelica annotations. A 
similar concept in (Zimmer, 2012) served as addi-
tional starting point. However the transition from an 
experimental language to a heavily applied language 
like Modelica demanded several adaptations.  

4.1 Use of Records within Annotations 

Let us look at an example: Here the Modelica pack-
age OptimSetup shall be used to define an optimi-
zation setup for a model and contains the definition 
of three record classes that each can be applied as 
custom annotations. 
package OptimSetup 
  record Tuner "Parameter to be optimized" 
    parameter Boolean active = true  
    "= true, if parameter is optimized"; 
    parameter Real    min           
    "Optional minimum value"; 
    parameter Real    max
    "Optional maximum value"; 
  end Tuner; 

  record Minimize  
  "Signal that should be minimized" 
    parameter Boolean active = true 
    "= true, if used as criterion"; 
    parameter Real    demand = 1.0  
    "Value/demand is minimized"; 
  end Minimize; 

  record OptimOptions "Default options for 
     the optimization setup" 
    parameter String method 
    "Optional optimizer method"; 
    parameter Real   tolerance = 0.001 
    "Tolerance of optimization"; 
  end OptimizationOptions; 

  record SimOptions 
    "Default options for simulation setup" 
    parameter String method; 
    parameter Real   stopTime; 
  end SimulationOptions; 

end OptimSetup; 
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The record and type definitions of package Op-
timSetup can now be used to describe the setup of 
an optimization. For example, a parameter can be 
marked to be a “Tuner” that shall be optimized. The 
following statement 

parameter Real p1 
  annotation(OptimSetup.Tuner( 

active=true, min=-2)); 

indicates that for a default optimization setup for this 
model, parameter p1 shall be used as tuner and shall 
have a constraint p1 >= -2. A custom annotation is 
identified by the full path name of the Tuner record 
class. This defines a new instance of the record, to-
gether with a modifier on this record. So, conceptual-
ly, this custom annotation is equivalent to the follow-
ing declaration: 

OptimSetup.Tuner name(active=true, 
min=-2); 

and the name of the instance is not defined, because 
not needed (the identification of the data is via the 
class name). Exactly in the same way as in a stand-
ard declaration, an element of a record needs not to 
have a default value or a binding equation in its 
class, and also not in a modifier. 

The lookup of a class name inside an annotation 
is performed on global scope, so always full path 
names must be given. This simplifies and speeds up 
the lookup, especially once built-in annotations are 
defined as custom annotations in a second phase1. 
A custom annotation can be also defined on a class. 
Furthermore, custom and built-in annotations can be 
within the same annotation declaration, by using a 
comma-separated list as usual. For example: 

model ControlledDrive 
  ... 
  annotation (Documentation(info="..."), 
  OptimSetup( 

      OptimOptions(tolerance=1e-3), 
      SimOptions(stopTime=4.0, tol=1e-6) 
   )); 
end ControlledDrive; 

4.2 Enabling Annotations within Hierarchical 
Modifiers 

So far the only extension to the current Modelica 
language has been that regular Modelica records can 
be used within annotations. Taken for itself, this is 
already a progress but it does not suffice to provide 
the desired level of functionality. For many applica-

1 When built-in annotations are defined with custom annotations, 
it is proposed that they are placed, e.g., in ModelicaSer-
vices.Annotations, and that this package is inspected first and 
then the global scope. 

tions it is important that annotations can be applied 
within hierarchical modifiers. 

Hence we propose to enable the use of annotation 
statements within hierarchical modifiers. Here, cus-
tom annotations can be either newly constructed or 
an already defined custom annotation can be modi-
fied. Let us look at two corresponding examples: 
MyCar car(p1 annotation( 

OptimSetup.Tuner(active=false)), 
p2 annotation(  
OptimSetup(Tuner(max=4))), 

      p3(min=-3) = 5 annotation( 
OptimSetup.Tuner(min=-2, max=3)) 

); 

In this example, the already defined Tuner.active 
value of p1 is modified to false. Parameters p2 and 
p3 are assumed to be defined in MyCar without any 
annotation. The declarations above introduce new 
instances of custom annotation OptimSetup.-
Tuner, and modify these instances with the given 
values. 

Whereas in principle built-in annotations could be 
applied within hierarchical modifiers too, we pro-
pose to restrict this in a first phase because built-in 
annotations operate on data structures that are una-
vailable as the standard language elements and then a 
standard modifier cannot be applied. This is for in-
stance the case for the annotations describing icons 
that use case records as data elements. For the future, 
one may solve this problem by enriching Modelica 
with suitable data structures. This is a topic where 
discussion is ongoing in parallel. 

As with built-in annotations, it is not possible to 
read and/or use the value of a custom annotation in a 
Modelica class (only the translator can use the in-
formation contained within annotations by either 
performing appropriate actions or by passing them to 
its backend). 

4.3 About the Use of Hierarchical Records 

Since regular Modelica records can be used within 
annotations, this holds also true for hierarchical rec-
ords. This is per se not problematic but a few details 
require a discussion. 

Let us suppose we add a hierarchical record Op-
tions to our previously present OptimSetup pack-
age: 

package OptimSetup 

  record Tuner […] 

  record Minimize […] 

  record OptimOptions […] 
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  record SimOptions […] 

  record Options 
    OptimOptions optOpts = 
      OptimOptions(method=”sqp”); 
    SimOptions  simOpts; 
  end Options; 

end OptimSetup; 

The following example model shows a correct way 
of using the hierarchical record and a wrong way to 
do it: 

model ControlledDrive  
  ... 
  // correct Modelica code 
  annotation(OptimSetup.Options( 

   optOpts = OptimSetup.OptimOptions( 
     method=”pattern”),   

   simOpts(stopTime = 2) 
  );

  // wrong Modelica code  
  annotation(OptimSetup.Options( 
    optOpts(method=”pattern”),     
    simOpts = OptimSetup.SimOptions( 

stopTime=2) 
  )); 
end ControlledDrive; 

The record Options has two element record in-
stances: 

The first element optOpts is defined with a rec-
ord constructor. This means there is a binding equa-
tion to optOpts. Binding equations cannot be modi-
fied with a modifier. They can only be replaced by 
another binding equation. Therefore in the “correct” 
code, a record constructor is used to define modified 
elements. Note, a record constructor must return a 
complete record, and therefore all elements of the 
record must have a value (either defined in the con-
structor or the default values from the class). 

The second element simOpts is defined without a 
default value or a binding equation. When instantiat-
ing it in the “correct” code, a modifier to its elements 
is given. In this case, not all elements must be modi-
fied. In the “wrong” code, a record constructor is 
used to define modified elements. This would be fi-
ne, but element method has no default value in the 
SimOptions class, and the record constructor has no 
input argument for this element, and this is then an 
error. 

Please note that all this is already standard Mod-
elica semantics and holds for standard record decla-
rations, and therefore it shall hold for record declara-
tions in a custom annotation as well. We have just 
repeated these points for the sake of clarity.  

4.4 On Inherited Elements 

Since models can be inherited, both the superclass 
and the subclass may define the same custom 
annotation. Two cases need to be distinguished: 

Case 1: the additional custom annotation is defined 
in the extends clause, such as: 
model MyCar 
  extends Car( 
    p1 annotation(OptimSetup.Tuner( 

active=false )), 
    annotation(OptimSetup.OptimOptions( 

tolerance=1e-3)) 
  ); 

It seems natural to handle this case as modifier, if the 
custom annotation was already defined in one of the 
superclasses (otherwise, a new custom annotation is 
introduced). Therefore, the model can contain the 
same custom annotation on one element at most 
once, and the semantics is well-defined (the seman-
tics of a Modelica modifier). 

Case 2: the additional custom annotation is defined 
as class annotation, such as: 
model MyCar 
  extends Car;   
  annotation(OptimSetup.OptimOptions( 

tolerance=1e-4)); 
end MyCar; 

In this example it is assumed that in model Car the 
element tolerance is defined as 1e-3 and in model 
MyCar as 1e-4. This creates an ambiguity that needs 
to be resolved. The Modelica built-in annotations use 
two different semantics: For the “documentation” 
annotation, all superclass definitions are ignored. For 
the “Icon” and “Diagram” annotations, the subclass 
and superclass definitions are applied after each 
other (so all of them have an effect).  

It is hence proposed to support all these forms by 
allowing that the same class custom annotation can 
be used in super- and subclasses. The consequence 
of this is that an annotation may occur several times 
in a class. A vector of records can be used to 
represent the multiple occurences of one annotation 
in one class. The order of the vector elements 
thereby corresponds to the order of inheritance. In 
case of multiple inheritance, the order of the 
corresponding extends statements is used. 

When generating the standardized “output” format 
of custom annotations in case 2, such definitions can 
be represented as a vector of records. The target tool 
that is using this custom annotations has then to 
decide how to comprise the information contained in 
all vector elements. In general, useful strategies are: 
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• Only utilize the latest definition (last element of
the vector), and ignoring definitions in
superclasses.

• Only utilize the latest definition (last element of
the vector), and triggering an error, if equivalent
definitions are provided in superclasses (prior
elements of the vector).

• Utilizing all definitions by merging them
together (following the order of the vector).

4.5 Remaining Issues 

4.5.1 Handling of undefined annotations using 
parameters 

One problem arises from the point that it is often not 
possible to define a meaningful default value for a 
custom annotation element. For example, “method” 
of the optimization options defines the optimization 
method to be used and this depends on the optimiza-
tion environment where the model and the custom 
annotations will be imported. It is therefore not pos-
sible to define a meaningful default value. Further-
more, the modeler may decide to not define a value 
for the method in the custom annotation of the Mod-
elica model. For this reason, not all elements of a 
custom annotation record needs to have a value when 
it is actually used in an annotation. If an element, 
such as “method” is not explicitly set, then it is not 
present in the annotation and this implicitly means 
that the target environment has to cope with this un-
defined value in a target specific way. 

This is not an issue as long as custom annotations 
are specified directly in the textual layer but provid-
ing custom annotations in this way is often not con-
venient for a user. Instead special blocks or models 
might be defined where all the relevant information 
of the custom annotation can be defined in a menu. 
For example, the OptimOptions above might be 
defined as a partial model that is used via inher-
itance: 
  partial model OptimOptions 
    OptimSetup.OptimOptions optimOptions 

   annotation(Placement(..)); 
     annotation(OptimSetup.OptimOptions( 
       method    =optimOptions.method, 
       tolerance =optimOptions.tolerance), 
       Diagram(...); 
  end OptimOptions; 

  model DrumBoiler // shall be optimized 
    extends OptimOptions; 
    ... 
  end DrumBoiler; 

In the diagram layer of DrumBoiler, the optimOp-
tions are present with a record icon: 

and clicking on this icon opens a convenient parame-
ter menu for the definition of the options: 

This approach is welcomed by the user, but currently 
involves one severe drawback: the user has to pro-
vide a value also for optional elements, such as 
method, because this element is propagated to the 
annotation (above: OptimSetup.OptimOptions 
(method = optimOptions.method)). If no value 
would be provided, then the translator needs to trig-
ger an error. Therefore, the user can no longer ex-
press to not define such an optional custom annota-
tion. 

For this reason, it is considered to introduce a lim-
ited form of “undefined” handling of definitions and 
modifiers that is handled during the translation pro-
cess. The goal is 

• to remove annotations if they are defined with
“undefined” elements.

• to remove modifications performed in a lower
hierarchical level.

So far several approaches to this problem have been 
suggested but a sufficient level of maturity has yet to 
be reached. 

4.5.2 Restricting the application of annotations 
to certain types 

In the current proposal, any annotation might be ap-
plied to anything. Also meaningless applications are 
allowed. For instance the annotation for an optimiza-
tion tuner cannot only be applied to real numbered 
parameters but also to Boolean parameters or strings. 
Even an application to a model class is allowed. Also 
the annotation for the simulation setup cannot only 
be applied to model classes as originally intended but 
also to individual components or variables where it 
becomes meaningless. 

Taken for themselves, such meaningless or ill-
applied annotations are not harmful since the meta-
data cannot corrupt the main code but yet it might be 
better to restrict the applicability to annotation to 
give a better guidance where an annotation is sup-
posed to be used. 

How such a restriction is best imposed or if it shall 
be imposed at all, is still open for discussion. One 
way of doing it, could be to express the restriction by 
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annotations themselves in the corresponding annota-
tion record. A new built-in annotation Annota-
tionTarget could serve this purpose. It would con-
tain an enumeration listing for the various possibili-
ties where an annotation can be applied: 

record AnnotationTarget 
   type Target = Enumeration( 
     Any, 
     ClassDefinition, 
     ModelDefinition, 
     BlockDefinition, 
     ConnectorDefinition, 
     RecordDefinition, 
     FunctionDefinition, 
     TypeDefinition, 
     ComponentDeclaration, 
     ModelDeclaration, 
     BlockDeclaration, 
     ConnectorDeclaration, 
     RecordDeclaration, 
     FunctionDeclaration, 
     TypeDeclaration, 
     SimpleComponentDeclaration, 
     RealDeclaration, 
     IntegerDeclaration, 
     BooleanDeclaration, 
     StringDeclaration, 
     InitialEquationAndAlgorithm, 
     InitialEquation, 
     InitialAlgorithm, 
     EquationAndAlgorithm, 
     Equation, 
     Algorithm, 
     ConnectorEquation 
   ); 

   type Prefix = Enumeration( 
   Any, None, Constant, Parameter, 
   Discrete, Input, Output, Inner, 
   Outer, Flow, Stream); 

   Target target[:] = {Target.Any}; 
   Prefix prefix[:] = {Prefix.Any}; 
end AnnotationTarget; 

One can now use such an annotation to restrict the 
applicability of the Tuner annotation: 

record Tuner "Parameter to be optimized" 
  import A = AnnotationTarget; 
  parameter Boolean active = true; 
  parameter Real    min; 
  parameter Real    max; 
  annotation(AnnotationTarget(  
    target = {A.Target.RealDeclaration}, 
    prefix = {A.Prefix.Constant, 

A.Prefix.Parameter} 
  ); 
end Tuner; 

This definition states, that the Tuner record is only 
to be used in an annotation on a Real declaration 
that has a constant or parameter prefix. 

4.6 Summary 

In this proposal we reuse and generalize existing 
concepts from the Modelica language. By doing so, 
we enable the handling of custom annotations. Let us 
recapitulate our proposed extensions to the Modelica 
language: 
• Regular Modelica records can be used within

annotations.
• Custom annotations can be applied in hierar-

chical modifiers.
• Hierarchical records are automatically supported

in annotations.
For the moment, custom annotations are regarded as 
an additional feature but for the longer-term future 
an even extended concept shall be used to define also 
the standardized annotations. This would unify the 
language and reduce the complexity of the specifica-
tion. 

5 Using Meta-Information 
In the previous section it was proposed how to store 
meta-information in a Modelica model. Due to its 
definition, it is not allowed to use this information in 
the model itself. The question is how a user or a tool 
can inquire the stored meta-information. Of course, 
if meta-information is related closely to a simulation 
model, most likely the respective Modelica translator 
has to extract and use the information in a tool spe-
cific way (for example meta-information related to 
the graphical representation of the model in the tool). 

In this section, we analyze how to extract and uti-
lize user-defined custom annotations for two possible 
applications: storing meta-information in FMI format 
and using meta-information in scripting. Of course 
many further applications are possible. 

5.1 Storing Meta-Information in FMI Format 

The Functional Mockup Interface (FMI) (Blochwitz 
et.al., 2011 and 2012) is a tool independent standard 
to support both model exchange and co-simulation of 
dynamic models using a combination of XML-files 
and compiled C-code. For details see, 
https://www.fmi-standard.org/. Most Modelica tools 
support the export and import of models in FMI for-
mat. The FMI standard stores all static model infor-
mation in a file called modelDescription.xml in 
XML format. In particular, the information of all 
exposed variables are stored here, such as name, data 
type, unit, description text, variability, causality, etc. 
The FMI format 1.0 has been published in 2010 and 
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is supported by more as 40 tools. The release candi-
date of FMI 2.0 has been published in October 2013.  

Since custom annotation variables are basically 
standard Modelica variables with all the attributes of 
Modelica variables, it is proposed to just store them 
as standard FMI variables and mark the “custom an-
notation” property in the name. In particular, the 
name of a custom annotation variable shall be: 
  <ComponentName>.annotation.<Custom 
     AnnotationFullClassName>.<elementName> 

Note, “annotation” is a reserved keyword in Mod-
elica and therefore a name with “.annotation.” 
cannot be used as component name, so that a name 
clash between standard Modelica variable names and 
custom annotation variable names cannot occur.  

As previously mentioned, via inheritance the 
same custom annotation can be used several times in 
a class annotation. This is handled by always defin-
ing a class annotation with a vector name where the 
index defines the inheritance order (the post-
processing tool has then to define how to handle 
such vectors, e.g., to only use the first one, or utilize 
all definitions): 
  <ComponentName>.annotation[<i>].<Custom 
    AnnotationFullClassName>.<elementName> 

Example:  
The custom annotation proposal has been partially 
implemented in a Dymola prototype for evaluation. 
The Modelica model 
model Vehicle 
  parameter Real p1=2 annotation( 

OptimSetup.Tuner(min=-2)); 
  ... 
end Vehicle; 

model ControlledDrive 
  Vehicle car; 
  ... 
  annotation(OptimSetup.OptimOptions( 

tolerance=1e-3)); 
end ControlledDrive; 

is stored in the following way in  modelDescrip-
tion.xml file with the Dymola prototype: 
<?XML version="1.0" encoding="UTF-8"?> 
<fmiModelDescription 
  fmiVersion="2.0" 
  modelName="ControlledDrive" 
  ... 
  > 

  ... 

  <ModelVariables> 
    <ScalarVariable 
      name="car.p1" 
      valueReference=" 16777216" 
      description   ="..." 

      causality     ="parameter" 
      variability   ="fixed"> 
      <Real start   ="2"/> 

 </ScalarVariable> 

    <ScalarVariable 
      name="car.p1.annotation. 

OptimSetup.Tuner.min" 
      valueReference="0" 
      variability   = "constant"> 
      <Boolean start= "true" /> 
    </ScalarVariable> 

    <ScalarVariable 
      name="annotation[1].OptimSetup. 

OptimOptions.tolerance" 
      valueReference="0" 
      variability   = "constant"> 
      <Real start="1.0e-3" /> 
    </ScalarVariable 
    ... 
  </ModelVariables> 
</fmiModelDescription> 

The “annotation” in a name uniquely identifies the 
component to which this annotation is associated. 
For example “car.p1.annotation....” means 
that this variable is a custom annotation to variable 
“car.p1”. Usually, custom annotation variables are 
constants or parameters that are evaluated during 
translation and therefore these variables are stored 
with variability=”constant” and with a literal 
value in the xml file.  

However, the above scheme is not restricted to 
this case: A custom annotation may contain time 
varying variables. In such a case the XML file alone 
is not sufficient to store the information, but a full 
FMU (Functional Mockup Unit) is needed, because 
the code to compute a time-varying variable at a par-
ticular time instant needs to be evaluated by the 
compiled C-code of the FMU.  

If a tool already supports the export of a Modeli 
ca model in FMI format, then custom annotation var-
iables have just to be included and stored in the 
standard variable tree. 

5.2 Using Meta-Information in Scripting 
Environments 

Typically, user-defined custom annotations are used 
to setup special analysis or synthesis environments, 
like optimization, nonlinear model predictive con-
trol, Monte Carlo simulation or uncertainty analysis. 
For this, the underlying model is needed, as well as 
the analysis-specific custom annotations defined in 
the model. If the custom annotations are stored in 
FMI format as proposed in the previous sub-section, 
the further processing is, in principal, simple: The 
information is stored in an XML-file and there are 
many scripting environments available, such as Java, 
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JavaScript, Matlab, Python, Ruby, to very easily read 
XML files and deduce the desired information from 
it. Therefore, meta-information about non time-
varying custom annotations can be deduced in a 
straightforward way from all these scripting envi-
ronments. If also time varying variables shall be 
supported, a scripting environment with FMI support 
is needed. Typically, the scripting environment will 
be used, in which the analysis or synthesis task can 
be directly formulated.  

When using Dymola (Dassault Systèmes, 2014), 
there are scripts available to perform offline and 
online optimization, Monte Carlo simulation, cali-
bration and others. It is natural to simplify the setup 
of these tasks by defining the model specific parts 
already in the respective model using custom annota-
tions. Dymola uses the algorithmic part of Modelica 
as scripting language. Unfortunately, there is no API 
available to read XML files. This might also be not 
possible in a generic way, because the data structures 
supported by Modelica are not powerful enough for 
such applications. 

For this reason, a special new Dymola API func-
tion was designed and implemented to read the vari-
able information of an FMI 2.0 XML file (so the in-
formation about all exposed signals). The approach 
is demonstrated in the following code fragments: 

function generateXXXsetup 
  input String fileName; 
protected  
  ScalarVariable scalarVariable[:] = 

  importScalarVariables(fileName); 
algorithm  
  ... 
end generateXXXsetup 

Function generateXXXsetup is a user-defined 
Modelica function to read an FMI XML file and 
generate the setup for the respective analysis task. 
The core is the new Dymola API function im-
portScalarVariables that reads the <ScalarVari-
able> part of an FMI XML file and from this infor-
mation all custom annotations can be deduced. The 
function returns a vector of records that has a com-
plicated structure: Since Modelica does not have var-
iant records, the different parts of the variable de-
scription are just appended. Some parts of the record 
definition are given below: 

record ScalarVariable 
  import Records.InternalRecords.*; 
  import Records.Enumerations.*; 
  String name; 
  Integer valueReference; 
  Causality         causality; 
  Variability       variability; 
  Initial initialDefinition; 
  OptionalInteger   previous; 

  Type              variableType; 
  RealAttributes    realAttributes; 
  IntegerAttributes integerAttributes; 
  BooleanAttributes booleanAttributes; 
  StringAttributes  stringAttributes; 
  IntegerAttributes  

enumerattionAttributes; 
end ScalarVariable; 

record RealAttributes 
  OptionalString  declaredType; 
  OptionalString  quantity; 
  OptionalString  unit; 
  OptionalString  displayUnit; 
  OptionalReal    min; 
  OptionalReal    max; 
  Real  nominal; 
  Boolean         unbounded; 
  OptionalReal    start; 
  OptionalInteger derivative; 
  OptionalBoolean reinit; 
end RealAttributes; 

record OptionalReal 
  Boolean present; 
  Real    Value; 
end OptionalReal; 
  ... 

Many attributes of <ScalarVariable> are optional. 
There is no special data type in Modelica to support 
optional values. For this reason, records “Op-
tionalXXX” are used: Boolean element present de-
fines whether the Value is defined, or was not giv-
en. 

By inspecting all “scalarVariable[i].name” 
strings that have .annotation. in their name, the 
desired custom annotations can be deduced and can 
be utilized to generate the desired default setup of 
the respective environment. 

6 Conclusions 
There is a strong need to deal with  meta-information 
in equation-based languages. We presented here a 
first design in order to enable a better handling of 
meta-information in Modelica: custom annotations.  

These can be defined by the user and can be or-
ganized within packages. For the long term future, 
we hope to extend this concept to such a degree that 
a very high percentage of existing annotations can be 
covered by one unified concept and the specification 
can be simplified accordingly. For the near future, 
we are confident that the proposal will be the base 
for an enhancement of the Modelica language speci-
fication. 

It is important to note that the presented design is 
a design proposal and by no means a definitive de-
sign. Also the Modelica Association offers a new 
process called Modelica Change Proposal (MCP) to 
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work a proposal into the language specification. The 
desired design for custom annotations will undergo 
this process and thereby being reviewed and eventu-
ally improved. The aim of this publication is hence 
to inform the public about the ongoing efforts for 
handling meta-information in Modelica and not to 
announce a definitive design decision. 
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Abstract 
This paper describes a proposal for modeling sys-
tems with multiple operating modes, such as chang-
ing a controller from nominal operation to startup or 
shutdown or describing failure situations where the 
model structure is changing (e.g. an electrical line or 
a mechanical shaft breaks). This is achieved by ex-
tending the Modelica 3.3 synchronous state ma-
chines to continuous-time state machines having 
continuous-time models as “states”. Every model can 
be a “state” of a state machine, and in particular cer-
tain acausal models. Currently, no new language el-
ement is needed for Modelica, but a generalized se-
mantics for state machines has to be introduced, such 
as “merge semantics for differential equations“. 
Symbolic transformations are still handled during 
translation, so the generated code is efficient and 
there is no run-time interpreter. On the other, this 
feature restricts the class of multi-mode systems that 
can be handled. 
Keywords: Multi-mode, failure simulation, dynami-
cally changing states, continuous-time state ma-
chine, hybrid state machine. 

1 Introduction 
The intention is to extend the scope of Modelica and 
model and simulate systems with multiple operating 
modes1. Examples: 
 Changing a controller from nominal operation to

startup, shutdown or manual operation.
 Structural changes of a physical model (e.g.

modeling the separation mechanism of a two or
three stage rocket).

 Describing failure situations where the model
structure is changing (e.g. an electrical line or a
mechanical shaft breaks).

1 Section 1 and 2 of this article are an updated version of the 
internal report D4.1.2-M12 from the ITEA2 project MODRIO. 
The rest of this article is new material. 

 Describing failure situations where the model is
completely changing (e.g. the normal behavior
of a pump is a 0D model. In case of cavitation, a
1D model is needed to describe physics, requir-
ing to switch dynamically from a 0D to a 1D
model when cavitation occurs).

In general this means that the number of continuous-
time states of the model might change dynamically 
during the simulation. Such models cannot be de-
scribed with current Modelica, version 3.3 (Modelica 
Association, 2012), since in this case the basic re-
quirement is that the number of continuous-time 
states of a model is fixed during a simulation. 

The basic idea for multi-mode modeling is to ex-
tend the Modelica 3.3 synchronous state machines 
(Elmqvist et. al., 2012) to continuous-time state ma-
chines having continuous-time models as “states”. 
Every model can be a “state” of a state machine, in-
cluding acausal models, such as a capacitor, or a ro-
tational inertia. The number of continuous-time state 
variables can change at a transition of a state ma-
chine. No new Modelica language element is needed, 
but a generalized semantics for state machines has to 
be introduced, such as “merge semantics for differ-
ential equations“. The concepts have been evaluated 
with a Dymola prototype (Dassault Systèmes, 2014). 

A related paper (Bouissou et. al., 2014) discusses 
the use of continuous-time state machines in Modeli-
ca for the modeling of stochastic hybrid systems by 
means of Piecewise Deterministic Markov Processes 
(PDMP). It focuses on how to handle the case when 
the transitions on continuous-time state machines 
depend on stochastic transitions. 

Modeling state machines with differential equa-
tions in the states is a well-known approach in au-
tomata theory, called hybrid automata, see e.g. (Hen-
zinger 1996). Such an approach is only of limited use 
when modeling physical systems, even if the Ordi-
nary Differential Equations (ODEs) on a state are 
extended to Differential-Algebraic Equations 
(DAEs): The user has to enumerate all different con-
figurations of a system and has to provide the equa-
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tions for every configuration and also provide all the 
details to switch between these configurations, see 
also next section. 

MOSILAB (Bastian et. al., 2010) from Fraunho-
fer is an extension to Modelica by introducing con-
tinuous-time statecharts in Modelica and supporting 
DAEs on the states. This approach has similar draw-
backs as hybrid automata, but is more powerful as 
hybrid automata due to the usage of Modelica. 

Sol (Zimmer, 2010) is an experimental language 
to model variable structure systems with index 
changes. The large flexibility requires an interpreter 
for the simulation: Whenever the DAE index of a 
system is changed during simulation, the relevant 
equations of the model are newly symbolically pro-
cessed and especially also newly index-reduced. The 
advantage is that a very large class of physical sys-
tems with variable structure can be described. The 
drawback is that an interpreter is needed at run-time, 
considerably reducing the simulation efficiency. 

The approach presented in this paper introduces 
certain restrictions on what kind of changes can be 
made to the model at a mode change. This allows 
symbolic transformations still to be handled during 
translation, so the generated code is efficient and 
there is no run-time interpreter.  

2 Continuous-time state machines 
with causal blocks 

2.1 Synchronous state machines 

In Modelica 3.3 (Modelica Association, 2012) syn-
chronous state machines are defined. These state ma-
chines are only executed as sampled data systems. 
From the specification:  

Any Modelica block instance without continuous-
time equations or algorithms can potentially be a 
state of a state machine. A cluster of instances which 
are coupled by transition statements makes a state 
machine. All parts of a state machine must have the 
same clock. All transitions leaving one state must 
have different priorities. One and only one instance 
in each state machine must be marked as initial by 
appearing in an initialState statement. 

2.2 Continuous-time state machines 

In order to define multi-mode systems, the basic idea 
is to generalize the clocked state-machines from 
Modelica 3.3 to continuous-time. In a first step, two 
cases are distinguished: 

1. All states and transitions of one state machine 
are clocked and belong to the same clock 
(= semantics in Modelica 3.3). 

2. All states and transitions of one state machine 
are continuous-time (= new, additional seman-
tics; discussed below). 

In this section we only consider “causal” continuous-
time systems, that is, the “states” must be “blocks” 
with defined “input” and “output” variables. As a 
result, every “state” block can be separately symbol-
ically processed (such as BLT partitioning) assuming 
that all its inputs, pre(..) and arguments of 
der(..) are known and all other variables, especial-
ly outputs, der(..), and arguments of pre(..) are 
unknown. Therefore, from a conceptual point of 
view a “state” is a set of ordinary differential equa-
tions (ODE) with known inputs ܝ and states ܠ and of 
explicit algebraic equations with unknown outputs ܡ 
computed in the block: ܠሶ = ,ܠ) ,ܝ ܡ (ݐ = ,ܠ) ,ܝ  (ݐ
The outgoing transitions of the active state of a state 
machine are Boolean conditions that are continuous-
ly monitored and are transformed to event indicator 
signals (also called zero-crossing functions) that sig-
nal an event when the Boolean condition changes its 
value. At this time instant the numerical integration 
is stopped, the state machine switches to the new 
“state” and the ODE of this new state is either re-
started or continues from the previous value of its 
continuous-time state variables when the “state” was 
active the last time.  

As a simple example consider the continuous-
time state machine in Figure 1 with two “states”. 
This state machine consists of “states” that consist of 
completely unrelated blocks (in the upper “state” it is 
a drive train with clutches, and in the lower “state” it 
is a controlled electrical motor with load). At the 
start of the simulation the upper state is active and 
the drive train is simulated. At time = 1.5 s, the 
simulation of the drive train is stopped and the con-
trolled electrical motor block starts simulating. 

As can be seen, the number of continuous-time 
states changes dynamically during simulation and the 
state machine switches between unrelated models. 
There is the restriction that every “state” block needs 
to have a full initialization definition (e.g., starting 
from given start values of the continuous-time states, 
or starting from a steady-state condition which re-
quires to solve a nonlinear algebraic equation system 
when the block becomes active the first time). When 
a “state” block is activated the first time, the initiali-
zation equations are first evaluated before the simu-
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lation of the block is started. When a “state” block is 
re-entered, the block is re-initialized if the reset flag 
is set in the transition. Otherwise, the block contin-
ues from the values of the continuous-time variables 
state of the previous activation. 

 
Figure 1: Continuous-time state machine 

2.3 Hybrid automata 

The system in Figure 1 is practically not very useful, 
since signal values are not exchanged between the 
different “state” blocks. More useful state machines 
are the already mentioned hybrid automata, see for 
example (Henzinger 1996). A simple example is 
shown in Figure 2 and Figure 3: 

 
Figure 2: Hybrid automata with “a” as input signal. 

On every “state” an ODE is present. The transition 
conditions consist of trigger conditions when to 
switch the state (e.g. “[ݔ ≥ 3]”). Furthermore, at the 
transition it is defined in which way to reset the state 
of the ODE (e.g. “/x:=1” means that continuous-
time state x is reset to 1, before entering the target 
“state”). In the Dymola prototype, this state  

 
Figure 3: Solution of the hybrid automata from 

Figure 1 with a = time > 2.5”. 

 
Figure 4: Hybrid automata from Figure 1 modeled 

in Modelica with indirect reset. 

machine can be modeled with the proposed Modelica 
extension according to Figure 4. Here, every “state” 
is a block that contains the differential equation. 
Note, the same continuous-time state variable “x” is 
used in all “states” (called “mode1”, “mode2”, 
“mode3” here), because this variable is defined with 
“outer output” in the mode blocks. Additionally, 
the start value xstart of the state is reported via 
inner/outer to all mode blocks. The expected se-
mantics is that whenever entering a “state” and the 
reset flag in the transition is set, then the differential 
equation is newly initialized with the actual start val-
ue of “x”.  

The current semantics of the prototype implemen-
tation in Dymola is that when an immediate transi-
tion is used, the equations are activated once before 
the reset is made. This explains why xstart is mod-
ified in the destination state. The use of the con-
struct: 
  inner Real xstart(start=1, fixed=true); 
  inner Real x(start=xstart, fixed=true); 
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is not standard Modelica since the variability of the 
start attribute is parametric. To allow any variability 
of the start expression would be one possible exten-
sion to Modelica to solve the re-initialization prob-
lem. However, the solution of using a “global” vari-
able xstart is not elegant and is error prone. It would 
be better to allow such information for re-
initialization to be associated with the transition. Fur-
ther investigations are needed for designing the 
“right” extension.  

Similarly as for clocked synchronous state ma-
chines, also for continuous-time state machines the 
“single assignment rule” holds for every variable. 
This means that variables in the different “states” 
must be merged. The merge-semantics for algebraic 
variables is identical to the merge-semantics of 
clocked synchronous state machines (see section 
17.3.5 of the Modelica 3.3 specification). Variables 
that appear in the derivative operator, der(..), are 
merged in the following, equivalent way: 
der(x) := if activeState(state1) then  
            expr1  
          elseif activeState(state2) then 
            expr2  
          elseif  
             ... 
          else last(der(x)) 

This means that in the example above, the equations 
for der(x) in the different “state” blocks are merged 
into the following single statement: 
der(x) := if     activeState(mode1) then 
             1 
          elseif activeState(mode2) then 
            -x 
          elseif activeState(mode3) then 
            1 + sin(time+0.5) 
          else last(der(x)) 

3 Continuous-time state machines 
with acausal models 

Hybrid automata are of limited use for physical sys-
tem modeling, because the equations have to be first 
manually transformed into an input-output block and 
this is inconvenient and might be non-trivial. Fur-
thermore, the graphical representation in an object 
diagram might be “not nice” due to input and output 
connections in a diagram that uses physical, that is 
acausal, connectors otherwise. Therefore, from a us-
er point of view, it is important to support acausal 
models as “states”. In general this is non-trivial, be-
cause different “states” may require different sym-
bolic handling of the equations in the environment 
since causality and the DAE index might change be-
tween “states” of a state machine. However, a quite 

large class of acausal model “states” have been iden-
tified that can be reasonably handled. 

As an example, consider the electrical circuit with 
two state machines in Figure 6. In the upper part of 
the electrical circuit a diode model is present as a 
“state”. At “time > 0.9” this state is left and state 
“brokenDiode” is activated consisting of a resistor 
with a large resistance. Note, that the “states” have 
“electrical pins” from which they are connected with 
the rest of the circuit. In the lower right part of the 
circuit diagram, another state machine is present. It 
consists of a capacitor “state” (modeled as a resistor 
in series with an ideal capacitor model).  

At time = 0.3s, the hardware configuration is 
changed and the state switches to state “R2” consist-
ing of a small resistance. At time 0.7s, the configu-
ration is switched back. Note, that in this second case 
the number of continuous-time states is changing 
when switching. 

In the rest of this section, the new method is de-
scribed that allows us to handle such systems in an 
efficient way. 

 
Figure 5: Circuit with two acausal state machines. 

 
Figure 6: Simulation result of the circuit of Figure 5. 
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3.1 Basic idea for symbolic processing 

The basic idea to symbolically process continuous-
time state machines with physical connectors is ex-
plained at hand of the simple example in Figure 7. 
This circuits contains a state machine with two 
states, capacitor C (state 1) and resistor R2 (state 2). 
The simulation starts with capacitor C and after 0.5 s 
the state machine is switched to the resistor R2. Con-
ceptually, the same behavior can be achieved with 
the Modelica model shown in Figure 8 where the 
models of the two previous two states are connected 
together with a special switch explained below. 

 
Figure 7: Simple circuit with an acausal state ma-
chine.  

 
Figure 8: Simple circuit from Figure 7 implemented 
with special switches using standard Modelica. 

Via the Integer input state to the switches it can be 
defined whether pin n1 or pin n2 is connected to pin 
p. In the circuit from above, it is defined as: 
  Integer state = if time <= 0.5 then 1  
                                 else 2; 

The effect of the two switch positions is demon-
strated in Figure 9. If in state 1, the capacitor C 

is connected with the rest of the circuit. The resistor 
R2 is connected with small (dummy) conductances to 
ground. This is necessary, because otherwise R2 
would be “floating” and there would be missing 
equations for voltages. The currents into the pins 
would be zero since no environment would be at-
tached. However, it is already stated in the resistor 
that the currents sum to zero. So there would be one 
equation too much for currents. 

If in state 2, the resistor R2 is connected with the 
rest of the circuit. The capacitor C is connected with 
small (dummy) conductances to ground, similarly as 
the resistor in state 1. 

It is clear that both configurations can be simulat-
ed with a standard Modelica simulator and that the 
variables of the “active” state will have identical re-
sults to the “active” state of the circuit in Figure 7. In 
order to achieve this behavior, the special switch 
models of Figure 8 need to be defined as:  

Configuration if state = 1 

 
Configuration if state = 2 

 
Figure 9: The two configurations of the simple cir-
cuit from Figure 8. 
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  // Equation for potential variables 
  p.v = if state==1 then n1.v else n2.v; 
 
  // Equation for flow variables 
  0 = p.i + (if state==1 then n1.i  
                         else n2.i); 
 
  // Equation for not connected state 
  0 = if state==1 then Gsmall*n2.v-n2.i 
                  else Gsmall*n1.v-n1.i; 

There are different variants to formulate the equa-
tions of this switch. The variant above has the ad-
vantage that one equation depends only on potential 
variables, but not on flow variables, and one equa-
tion depends only on flow variables and not on po-
tential variables. This is the same principal structure 
as for every single configuration. For example, as-
sume that in both configurations the potential varia-
ble equations need to be differentiated (due to a con-
straint between states). If in this case the combined 
potential variable equation of the switch is differen-
tiated, then no flow variables are differentiated be-
cause the equation contains only potential variables. 

The basic idea to handle acausal state machines 
can now be sketched: 
(1) Connect statements from the outside of a state 

machine to connectors on the states of a state 
machine are replaced by the equations of the 
special switch statement above. 

(2) All state machine states are removed and the 
equations of all states and all transitions are add-
ed to the rest of the model. The result is a stand-
ard DAE according to current Modelica. 

(3) The standard symbolic transformation algo-
rithms are applied on this resulting DAE, such as 
Pandelides algorithm (Pantelides 1988), BLT, 
dummy derivative method (Mattsson and Söder-
lind 1993). 

(4) When generating code, all equations originally 
belonging to a state are de-activated (are not 
evaluated), when this state is not active. Fur-
thermore, all continuous-time state variables 
from all non-active states are removed from the 
integrator2. 

Note, applying rules (1) and (2) on the example from 
Figure 7 results in the circuit of Figure 8. Due to 
rule (4), the code for the dummy conductors will not 
be executed and therefore the values of the conduct-
ances do not matter. The conductors are only im-
portant during the symbolic transformation phase 
                                                      
2 A simple way to not integrate over deactivated states is to just 
report to the integrator that the derivatives of these states are 
zero, and otherwise keep the dimension of the state vector. 

where structural properties of the equations are uti-
lized. 

Since the symbolic processing might differentiate 
equations and/or might lead to linear or non-linear 
systems of equations, this means, that also equations 
on states might be differentiated or algebraic systems 
of equations over states and non-states might be pre-
sent. 

In the rest of this paper, the above sketch is more 
formally defined, consequences and limitations are 
discussed and several examples are presented. 

3.2 Mapping physical connections to equations 

In this section it is defined how the connect(..) 
statement of Modelica is mapped to equations if one 
of the arguments is a connector on a state of a state 
machine. 

3.2.1 Connections between states of one 
state machine 

Requirement 1: 
It is not allowed to have a connection set where 
all connectors of the set belong to the same state 
machine and at least two connectors are on dif-
ferent states of this state machine. 

Note, the states of a state machine are mutually ex-
clusive. If there are connections between mutually 
exclusive states of a state machine, then the connec-
tion will never have an effect (because always only 
one connector will be active), and there will be miss-
ing equations. 

3.2.2 Connections between single potential-flow 
variable pairs  

Assume a connector ܿ present on a state ݅ is defined 
by one potential variable  and one flow variable ݂ 
and that ݊ of these connectors from the same state 
machine are connected to connectors outside of this 
state machine.  

A virtual connection node ܿ is (conceptually) in-
troduced outside of the state machine. All connec-
tions from ܿ to connectors outside of the state ma-
chine are replaced by connections to ܿ and connec-
tions from ܿ to the original targets. As a result, the 
following connect statements will be present (the 
connect statements to the targets are handled accord-
ing to current Modelica): 

connect(ܿ, ܿଵ) 
connect(ܿ, ܿଶ) 
   ... 
connect(ܿ, ܿ) 

Modelica extensions for Multi-Mode DAE Systems

188 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096183



These connect statements are replaced by the follow-
ing equations, where ݅ characterizes the active state: 

Mapping Equations 1:  = ,ଵ] ,ଶ ⋯ , ࢌ ்[ = [ ଵ݂, ଶ݂, ⋯ , ݂]் ݅ = activeState()   = 0 [݅] = ݂ + ݆ for [݅]ࢌ = 1: ݊ − 1 ݇ = mod(݅ + ݆ − 1, ݊) + 1 0 = ௦ܩ ∙ [݇] −  [݇]ࢌ
Note, the for-loop generates ݊ − 1 dummy equations 
describing a linear relationship between the potential 
and flow variables of the connectors on the states 
that are not active. Due to this mapping, the connect 
equations have the following structural dependency: 0 = ݃ଵ(, , ݅) 0 = ݃ଶ( ݂, ,ࢌ ݅) 0 = ,)ଷ:ାଵࢍ ,ࢌ ݅) 

These are ݊ + 1 equations for ݊ + 1 connectors, 
where 
 one equation depends on all potential variables 

of the connection set and on the active state, 
 one equations depends on all flow variables of 

the connection set and on the active state, 
 ݊ − 1 equations depend on all potential and all 

flow variables of the connectors that are on the 
state machine and on the active state. 

The equations ࢍଷ:ାଵ are in principal only relevant 
for the symbolic analysis. During simulation, these  
equations are never evaluated, because they are deac-
tivated for the active state.  

If these equations appear in an algebraic loop, a 
simple implementation might just compute the solu-
tion without taking into account that the equations 
are deactivated and then ignore the computed value 
for the deactivated variables. In this case the value of ܩ௦ matters because the value is used during the 
solution of the equation system, and if the value be-
comes too small, the Jacobian of the equation system 
may become badly conditioned. In this case ܩ௦ 
should be in the order of the other elements of the 
equation Jacobian (or if this information is not 
known, ܩ௦ = 1 might be used). 

An efficient implementation requires to rewrite 
algebraic equation systems when a new state be-
comes active. For example, assume a linear system 
of equations is present during simulation and for 
state ݅ = 1 it has the form: 

ଵଵ ଵଶ ଵଷ் ௦ܩ ଷଵ1− ଷଶ ଷଷ
ଷସଵସ் ∙ ൦ࢠଵଶ݂ଶࢠଷ൪ = ቈ⋯⋯⋯ 

Since the variables and equations of state ݅ = 2, es-
pecially ଶ, ଶ݂, are deactivated (and the variables 
hold their values) if this state is not active, this linear 
system of equation can be simplified for state ݅ = 1 
to: ଵଵ ଷଵଵସ ଷସ൨ ∙ ቂࢠଵࢠଷቃ = ቂ⋯⋯ቃ 

With this type of equation handling, ࢍଷ:ାଵ are nev-
er evaluated during simulation and the value for ܩ௦ does not matter. 
Note, when implementing a generic switch for ݊ 
connectors, the “Mapping Equations 1” can be com-
pactly defined in Modelica: 

  input Integer state; 
  parameter Integer nStates; 
  Pin p, n[nStates] 
equation 
  p.v = n[state].v; 
    0 = p.i + n[state].i; 
  zeros(nStates-1) = {Gsmall* 
     n[mod(state+i-1, nStates)+1].v - 
     n[mod(state+i-1, nStates)+1].i 
     for i in 1:nStates-1}; 

3.2.3 Connections between 
input-output connectors 

Assume state ݅ of a state machine is an input-output 
block with an input ݑ and an output ݕ and that ݊ of 
these connectors from the same state machine are 
connected to connectors outside of this state machine 
– from a node ݑ to the inputs ݑ and from the out-
puts ݕ to a node ݕ. This means that the following 
connect statements are present: 

connect(ݑ,  (ଵݑ
connect(ݑ,  (ଶݑ
   ... 
connect(ݑ,  (ݑ

connect(ݕଵ,  (ݕ
connect(ݕଶ,  (ݕ
   ... 
connect(ݕ,  (ݕ

These connect statements are replaced by the follow-
ing equations, where ݅ characterizes the active state: 

Mapping Equations 2: ࢛ = ,ଵݑ] ,ଶݑ ⋯ , ࢟ ்[ݑ = ,ଵݕ] ,ଶݕ ⋯ , ࢛  ்[ݕ = ݑ ∙ ones(݊)ݕ =  [()activeState]࢟
These are ݊ + 1 equations for ݊ + 1 connections. 
When a state ݆ is not active, an arbitrary value can be 
provided for its input ݑ. For simplicity, just the 
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overall input ݑ is provided, so ݑ = -. Again, beݑ
cause equations on not active states are deactivated 
during simulation, these equations are only present 
during the symbolic transformation, but not during 
run-time. Therefore, the actually provided value for 
the input does not matter. Additionally, to the map-
ping rules above, the standard input-output semantic 
restrictions (e.g. an output can be only connected to 
one input), must be relaxed, so that this rule holds 
only for the active state, but not for deactivated 
states. 

In Figure 10 an example with two input-output 
blocks is given: The simulation starts with block 
firstOrder, a first order block. When time > 0.5, 
the state machine switches to block secondOrder. 
Entering seondOrder re-initializes the block to the 
output of state firstOrder (more details on re-
initialization are given in section 3.3). 

 
Figure 10: State machine switching between two in-
put-output blocks.  

Simulation results are shown in Figure 11. Here a 
first order behavior is seen for the first 0.5 s. After-
wards a second order behavior occurs.  

 
Figure 11: Simulation results of the state machine of 
Figure 10. 

3.2.4 Equation rewriting to enhance efficiency 

The approach from section 3.2.2 might lead to alge-
braic equation systems where the size of the systems 
is unnecessarily large. In some cases these sizes 
might be reduced with the following rewriting rules 
for connect equations: 

First, run the Pantelides algorithm (Pantelides 1988) 
and perform the BLT (Block Lower Triangular) 
transformation on the differentiated problem. 

Second, if the following equations of one connection 
set (see “Mapping Equations 1”),   = 0 [݅] = ௦ܩ ∙ [݇] −  [݇]ࢌ
or their differentiated form, appear in an algebraic 
equation system having all potential variables [݇] 
as unknowns, but not the flow variables 3[݇]ࢌ, then 
the equations above can be reformulated to: for ݅ = 1: [݅]     ݊ =  ([݅])ܜܛ܉ܔ ܍ܛܔ܍  ܖ܍ܐܜ (݅)activeState ܑ

where ([݅])ܜܛ܉ܔ is the value of [݅] when state ݅ 
was active the last time (so it is a known value).  

The proof for this rewriting is given for ݊ = 2. For ݊ > 2, similar arguments can be given. So, assume ݊ = 2. Then, the equations from the connect-
statements have the following form for the different 
states, according to “Mapping Equations 1”: if  activeState(1) then       = ଵ 0 = ݂ +  ଵ݂ 0 = ௦ܩ ∙ ଶ − ଶ݂ else       = ଶ 0 = ݂ +  ଶ݂ 0 = ௦ܩ ∙ ଵ − ଵ݂ end if 
Since it is assumed that the flow variables ଵ݂ and ଶ݂ 
are known (are computed somewhere else), the 
dummy conduction equations can be solved for the 
potential variables (e.g. ଶ: = ଶ݂/ܩ௦). This 
means that for the non-active states, the potential 
variables are known. Instead of computing them by a 
dummy conduction equation, alternatively another 
known value can be used (because all equations of 
non-active states are anyway de-activated) and espe-
cially ([݅])ܜܛ܉ܔ. As a result, the equations above are 
equivalent to: 

                                                      
3 The flow variables do not appear in the algebraic loop if all are 
continuous-time states or are computed from continuous-time 
states. 
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if  activeState(1) then       = ଵ 0 = ݂ +  ଵ݂ ଶ =       else ()ܜܛ܉ܔ = ଶ 0 = ݂ +  ଶ݂ ଵ =  end if (ଵ)ܜܛ܉ܔ
This equation set is in turn equivalent to: ଵ =  if  activeState(1) then  ܜܛ܉ܔ ܍ܛܔ܍(ଵ) ଶ =  if  activeState(2) then  ܜܛ܉ܔ ܍ܛܔ܍(ଶ) 0 = ݂+ if  activeState(1) then ଵ݂܍ܛܔ܍ ଶ݂ 

and the proof is complete. 

After re-writing the equations, all symbolic algo-
rithms are re-run. Usually, the equation systems will 
become smaller, since the equations depend now 
only on two variables, and not on many variables. 
Intuitively this rewriting means that    is computed 
outside of the state machine and propagated to the 
states of the state machine. Therefore, the previous 
algebraic loop over all the states is broken. A prereq-
uisite for this rewriting is that for all non-active 
states it is sufficient to treat the potential variables as 
inputs. A sufficient condition for this to be possible 
is that the flow variables have been already comput-
ed somewhere else. 

In a similar way, the equations can be rewritten, if 
the flow variable equation and the dummy conductor 
equations are in an algebraic loop. 

3.3 Re-Initialization 

When changing from one state to another one, the 
DAE of the target state must usually be initialized. 
This is basically performed with the methods from 
section 2.3 as demonstrated at hand of the example 
in Figure 12. This example models a drive train, 
where a rotational inertia breaks during the opera-
tion. In particular, this models consists of  
 a state1 with inertia1 and J=10, 
 a state2 with inertia2a (J=9) and inertia2b 

(J=1) that are not connected, 
 an inertia3 outside of the state machine that is 

connected to inertia1 and inertia2a and is 
driven by a step torque4, and 

 a spring-damper that is connected to inertia1 
and inertia2b. 

At time = 0.5, the state machine switches from 
state1 to state2 and therefore inertia1 is re-
placed by two unconnected inertias that have togeth-
er the same moment of inertia as inertia1. In other 
words, the “breaking” of inertia1 is modelled. 
Note, that the number of continuous-time states is 
changing (there are 2 continuous-time state when in 
state1 and 4 when in state2). 

With the generation of connect equations in sec-
tion 3.2 and the sketched symbolic processing of the 
overall DAE, this system gives rise to index reduc-
tion between inertia3, inertia1 and inertia2a 
                                                      
4 inertia3 is only present to demonstrate index reduction and 
algebraic loops over a state machine 

Figure 12: Breaking inertia that requires index reduction and algebraic loop handling over a 
state machine, as well as re-initialization when entering state2.
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and due to this index reduction an algebraic loop be-
tween equations of these components are present. 
The Dymola prototype handles this correctly. 

When switching from state1 to state2, iner-
tia1 has some angle and angular velocity and the 
inertias on state2 need to be appropriately initial-
ized. Since inertia2a is rigidly attached to iner-
tia3, no initialization of inertia2a is needed. 
However, the continuous-time states of inertia2b 
need to be initialized to the states of inertia3. This 
is performed in the following way: 
  inner Real phi(start=0, fixed=true) = 
                           inertia3.phi; 
  inner Real w(start=0,fixed=true) = 
                           inertia3.w; 
  ... 
  // in state2 
  import R=Modelica.Mechanics.Rotational; 
  outer Real phi; 
  outer Real w; 
  R.Components.Inertia inertia2b(J=1, 
            phi(start=phi, fixed=true), 
              w(start=w  , fixed=true)); 

On the top level the inner variables phi and w are 
associated with the corresponding variables of iner-
tia3. In state2 these variables are declared as 
outer and used as start values for inertia2b. 
The semantics is that when state2 is entered, then 
the variables of state2 are re-initialized to their 
start values. A result plot of the angular velocities of 
the inertias on the two states is shown in Figure 13. 

 
Figure 13: Simulation result for the breaking inertia 
of Figure 12. 

As can be seen, the amplitude and frequency of in-
ertia2b increases with respect to inertia1, be-
cause its moment of inertia is much smaller. 

3.4 Limitations 

The question arises which types of models cannot be 
handled with the proposed approach? First, inde-
pendently of the symbolic algorithms used, the map-

ping of connect statements to equations as defined in 
section 3.2 is always correct. It is clear that there 
must be limitations when applying the standard sym-
bolic algorithms on the resulting set of equations, 
because the structure of the equations depends on the 
active state and this dependency is not taken into 
account by the standard algorithms. For example 
assume that the following equation is present 
  p.v = if state==1 then n1.v else n2.v 

when mapping some connect statements to equa-
tions. Assume that p.v and n1.v are states, but n2.v 
is not. Then this state constraint is not detected and 
n2.v is always computed from p.v and from n1. Of 
course, this will fail (will give a division by zero) in 
state 1. The correct handling would be that in state 1 
the equation p.v = n1.v is present and if both vari-
ables are states, this equation must be differentiated. 
However, the standard algorithms do not take this 
into account and it seems also non-trivial to general-
ize. 

In Figure 14 there is a state machine with a ca-
pacitor C1 and a resistor R2 . These two states are 
connected in parallel to a capacitor C2. This model 
cannot be handled with the proposed method (and 
will give a run-time error that a matrix is singular), 
because in the capacitor state there is a state variable 
constraint between C1 and C2 and in the resistor state 
there is no such state constraint. 

 
Figure 14: Parallel capacitors that cannot be han-
dled due to different state constraints in the different 
states. 

In Figure 15 there is a state machine with a connec-
tion of two flanges in state1 and no connection in 
state2 (this is defined by connecting zero-torques 
to the two flanges). This state machine is placed be-
tween two inertias. The model describes a breaking 
inertia in a more natural formulation as in Figure 12. 
This model cannot be handled with the proposed 
method (and will give a run-time error that a matrix 
is singular), because in state1 there is a state con-
straint between inertia1 and inertia2 and in 
state2 there is no such state constraint. 
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Figure 15: Breaking inertia that cannot be handled 
due to different state constraints in the different 
states. 

It is not nice that such models lead to an error only 
when simulating the model. It is also difficult to de-
duce the source of the problem from an error mes-
sage stating that a matrix is singular. In principal, the 
diagnostics can be improved, so that such errors oc-
cur during translation with an understandable error 
message:  

The sorted equations are inspected and every al-
gebraic equation system that depends on a state of a 
state machine is processed again: The equations of 
an algebraic equation system are partitioned (so the 
assignment algorithm is applied) for every state ma-
chine state taking into account the equation structure 
of the particular state only. If one of the assignments 
fails, the equation system is structurally singular for 
the selected state and therefore the model cannot be 
handled. 

4 Conclusions  
A proposal is presented for modeling variable struc-
ture systems with dynamically changing number of 
states in Modelica by extending the synchronous 
clocked state machines to continuous-time state ma-
chines. With this extension it is straightforward to 
model hybrid automata. However, hybrid automata 
are not practical to use for physical system modeling. 
A novel extension is proposed to use acausal models 
as states of a state machine. By mapping connections 
to connectors on a state machine in a particular way 
on equations, the standard symbolic processing for 
Modelica models can be applied. This approach al-
lows already handling a large class of useful variable 
structure systems with dynamically changing sizes of 
continuous-time states. 

Models cannot be handled with this new method, 
if connections between state and non-state compo-
nents lead to constraints on continuous-time state 

variables that vary for the different state machine 
states. 

The proposal is not yet complete. Especially, 
mappings for all connector types of Modelica need to 
be still defined, especially for multi-body and for 
fluid systems. Additionally, the switching between 
DAEs may lead to Dirac impulses, if not properly re-
initialized (or it must be modelled in a way that im-
pulses occur, due to the underlying approximation of 
the reality). Furthermore, algebraic equation systems 
over states need to be analyzed in more detail, espe-
cially in combination with the dummy derivative 
method. It is planned to work on these topics in the 
near future. 
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Abstract 
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the 
drawback that programming and modeling errors are 
often hard to find. In this paper we present the first in-
tegrated debugger for equation-based languages like 
Modelica, which can combine static and dynamic 
methods for run-time debugging of equation-based 
Modelica models during simulations. This builds on 
and extends previous results from a transformational 
static equation debugger and a dynamic debugger for 
the algorithmic subset of Modelica. 

 
Keywords: Modelica, Debugging, Modeling and 

Simulation, Transformations, Equations, Algorithmic 
Code, Runtime Errors, Tracing, Solver Failures 

1 Introduction 
The advanced development of today’s complex prod-
ucts requires integrated environments and equation-
based object-oriented declarative (EOO) languages 
such as Modelica [10][14] for modeling and simulation.  

The increased ease of use, the high abstraction, and 
the expressivity of such languages are very attractive 
properties. However, the downside of this high-level 
approach is that understanding the root causes of unex-
pected behavior and numerical errors of simulation 
model is very difficult, in particular for users who are 
not experts in simulation methods.  

The main reason of this difficulty the fact that lots 
of sophisticated symbolic and numerical transfor-
mations are applied to the original model in order to 
eventually obtain the executable simulation code, in 
which errors and problems do occur. An effective de-
bugging environment should then guide the end user 

back and forth through the numerical results and all the 
performed symbolic transformations of the model, in 
order to quickly find and correct the causes of errors. 
This paper presents the integrated debugger of the 
OpenModelica tool suite, including a graphical user 
interface integrated with the OpenModelica Connection 
Editor (OMEdit) GUI. This builds on and extends pre-
vious results from a transformational static equation 
debugger [6][7] and a dynamic debugger [1][3][4] for 
the algorithmic subset of Modelica.  

Despite the fact that debugging environments have 
been the subject of extensive research and implementa-
tion work in the field of computer science, to the best 
of the authors’ knowledge this is the first documented 
operational debugging environment for equation-based 
modeling languages supporting dynamic debugging of 
equation-based mathematical models as well as algo-
rithmic code in an integrated way. 

The rest of the paper is structured as follows: The 
debugging procedure is outlined in Section 2 and the 
GUI in Section 3. The tracing of equation transfor-
mation is discussed in Section 4, while Section 5 dis-
cusses the issues of interfacing with the run-time simu-
lation executable. In Section 6, some example models 
are shown, illustrating how the debugger can help their 
troubleshooting. Section 7 discusses background and 
related work, Section 8 states the current implementa-
tion status at the time of this writing, and Section 9 
concludes the paper. 

2 Overall Debugging Procedure 
The debugger should support three basic scenarios: 

• The simulation stops at a certain time step, or during 
initialization, because of a numerical runtime error; 
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• A complete simulation run has been performed suc-
cessfully, but some variables exhibit suspicious or 
clearly wrong values; 

• A breakpoint is inserted to stop the integration ei-
ther at a certain given value of the time variable, or 
when some user-supplied condition is triggered. In 
this case, it should be possible to restart the  simula-
tion (and possibly to set a new breakpoint) 

The different functionalities of the debugger are speci-
fied in more detail in the following sub-sections. 

2.1  Types of Debugging Activities 

We divide the problem of debugging the execution 
(i.e., the numerical simulation) of an equation-based 
model into three different areas: 

• Initialization. Before starting the simulation, con-
sistent initial conditions are computed by solving a 
set of initial equations. In the following, it is as-
sumed that this is done by using multiple optimiza-
tion strategies, such as alias variable elimination, 
BLT partitioning, tearing, etc.  

• Causalization. It is also assumed that the solution of 
the differential-algebraic equations over time is ob-
tained by a two-stage strategy. In the casualization 
stage, the DAEs are solved for the derivatives by us-
ing multiple optimization strategies, such as sym-
bolic index reduction as well as the ones previously 
mentioned.  

• Time integration. The computed derivatives (and 
possibly their Jacobian matrix) are then passed to 
ODE solvers, such as DASSL, Runge-Kutta, Radau, 
etc., that advance the solution of the system over 
time 

2.2 Debugging Initialization and Causalization 
Problems 

For the purpose of debugging, initialization and 
causalization share a common structure despite using 
different numerical solvers. They can be represented 
using a similar GUI. The only difference is that the set 
of equations and unknowns for initialization is larger 
than for causalization, as it also includes the state vari-
ables and the parameters, as well as the initial equations 
and parameter-binding equations. Also, the simulation 
code to solve both problems is usually generated by the 
Modelica tool itself, so it is fairly straightforward for 
the tool developers to add all kind of instrumentation to 
it for debugging purposes. 

Variables are matched to the equations that are used 
to solve them. If an error has occurred while trying to 
compute a certain variable or a certain set of variables 

for strong components in the BLT, the error (e.g., divi-
sion by zero, logarithm of a negative number, singular 
linear system of equations, etc.) is reported in the con-
text of the equation as it has been transformed in order 
to solve it efficiently at run time. Then, it is possible to 
backtrack step-by-step each stage of the transfor-
mations of each equation, up to the original equations 
in the source code. 

This activity can also be carried out in the absence 
of errors, either when a breakpoint is triggered, or when 
the values at a specific time step are inspected after the 
simulation run has been performed. Assuming that 
some variable(s) have suspicious, or maybe clearly 
wrong values, one starts analyzing the equations that 
were used to compute them, going backwards in the 
causality chain determined in the BLT, and trying to 
locate the model error that caused the computation of 
the wrong values. 

The solution of the equation(s) also depends on the 
values taken by all the other known variables showing 
up in the equations, either states or other unknown var-
iables previously computed in the BLT. The debugger 
allows to inspect the values taken by these variables, as 
well as the equation(s) in which they were solved for. 
Then, the same activities will be possible recursively 
on this new set of equations: understanding where they 
come from in the equation transformation chain, as 
well as inspecting the values of the variable(s) they 
depend upon. 

2.3 Debugging Time Integration Problems 

The requirements for the debugging of time integration 
problems are quite different. Unrecoverable errors gen-
erated by the ODE solver should be reported to the de-
bugger using some kind of unified representation (e.g., 
using XML), which is as independent as possible from 
the specific solver used. Of course, some errors will 
only make sense for a subset of solvers; for example, 
singular Jacobians are only relevant in the case of im-
plicit solvers; event chattering is only relevant for solv-
er with state event detection.  

The first kind of error that can arise in solvers with 
state event detection based on zero crossing function is 
chattering: if a large number of events takes place in a 
very short time interval, then the debugger reports the 
corresponding zero-crossing functions and allows to 
back-track them to their original formulation in the 
source code, as well to inspecting the values of all the 
variables involved in them in the last accepted time 
steps.  

It may also be the case that chattering arises without 
any event being generated, if the noEvent() operator 
is incorrectly placed around a discontinuous expression 
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inside a model equation, or if some functions in the 
model generate results which are discontinuous w.r.t. 
their inputs (recall that Modelica functions do not gen-
erate events). This situation can be detected by moni-
toring the step size, and detecting the fact that the step 
size has been reduced to very small values for a very 
large number of step sizes.  

In order to identify the root cause of the problem, it 
is necessary that the ODE solver can report which 
component(s) of the state vectors have the largest esti-
mated errors, and are thus mainly responsible for the 
excessive step size reduction. The debugger will then 
point the end user to the equations that are used to 
compute the corresponding derivatives, using the same 
mechanism adopted for the initialization and casualiza-
tion steps. Wildly oscillating values of the derivatives 
will be observed across the last time steps, and it will 
then be possible to analyze the expressions leading to 
these oscillations, eventually locating the root cause of 
the problem.  

Another possible error can arise at the ODE solver 
level if the underlying differential equations have a 
finite escape time, i.e., one or more elements of the 
state vector go to infinity as time approaches a certain 
finite value. The main symptom in this case is very 
similar to the previous case, i.e., the step size is greatly 
reduced and the simulation seems stuck at a certain 
point in time.  

The root cause can also be identified in this case if 
the solver reports the component(s) of the state record 
that mostly contribute to the error estimate, so that the 
debugger can allow the user to inspect the equation(s) 
that compute the corresponding derivatives. The values 
of these derivatives will constantly grow from one step 
to the next one, rather than oscillating wildly as in the 
previous case. Again, by careful inspection and analy-
sis, it might be possible to understand the root cause of 
the problem and fix it.  

2.4 Debugging Homotopy-based Initialization 
Problems 

If the homotopy() operator is used for initialization, 
two extra stages are added to the debugging of the ini-
tialization problem. First, the set of initial equations 
using the simplified expression is presented. The BLT 
structure of this problem might be substantially differ-
ent (and hopefully simpler) than that of the actual ini-
tialization problem, but the way it is presented in the 
GUI to the user for analysis is the same as for the actual 
initialization problem. 

 The second stage is the homotopy transformation. 
From a GUI perspective, this is very similar to the sim-
ulation phase as there are several steps involved. Each 
might be accepted, rejected, or eventually fail if the 
errors cannot be recovered by taking shorter steps. Al-
so, similarly to the simulation phase, errors might be 
reported that arise while solving the equations in the 
BLT sequence (as in the initialization and causalization 
problems), but also some system-level errors might be 
reported by the homotopy solver itself, e.g., in case of 
homotopy path bifurcations, similarly to problems re-
ported by the ODE solver during time integration. 

The GUI is therefore similar to the one used for de-
bugging errors during simulation, with the following 
differences: 

• The set of unknowns includes states and parameters; 
• the set of equations include initial equations and pa-

rameter-binding equations 
• All occurrences of the homotopy operator [14] in 

the equations are transformed into λ*actual_expr + 
(1 − λ)*simplified_expr;  

• The independent variable which is stepped is not 
time but rather the λ homotopy parameter. 

3 Debugger Graphical User Interface 
In order to visualize the transformations performed and 
the operations taken by the solver to solve for a varia-
ble and its corresponding equation(s), a transfor-
mations browser (Figure 1; Figure 2; Figure 3) has 
been created. 

The transformations browser lists the variables 
along with their respective types hierarchy, operations 
performed, equations which defines the variable and 
equations which are using the variable. The types can 
be used to navigate to the specific class. 

Double clicking on the equation updates the trans-
formation browser and shows the list of operations and 
variables involved in the solution of the equation. See 
Figure 3. 

The transformation browser provides two views: 

• Variables view 
• Equation View 

The data needed to build the structures shown in the 
GUI, i.e., the structural information about the equation 
systems, and the equation transformation traces, are 
loaded from an XML file which is generated by the 
OpenModelica compiler, see Section 4 for more details. 
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Figure 2. Enlarged left part of variable info in 
transformations browser variable view with columns: 
Variables, Variable Types, Variable 
Operators. 

When a numerical error is reported, clicking on the 
“Debug more” link at the end of the error report brings 
up the debugger showing the equation(s) involved in 
the error. 

 

 
Figure 3. Enlarged part of transformation browser 
equation view with Defines variable, Depends on 
variable, Equation Operators operations like solved, 
simplify, substitute, etc. 

4 Transformation Tracing 
The underlying implementation of the transformation 
tracing mechanism is described in more detail in [7]. 
Some further improvements are present in this version. 

The key idea introduced in [7] is to encode and store   
in a list all transformations that are performed by the 
Modelica compiler on the model equations, such as 
symbolic solution, alias elimination, symbolic differen-

Figure 1. Transformations browser variables view with columns: Variables, Variable Types, Variable 
Operators. 
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tiation, etc. Because every operation is stored, it is pos-
sible to replay the operations and verify that the tool 
only performed sane operations during translation. This 
list of operations is then output to an XML-file (Figure 
4) which is parsed by the debugger. 

 
Figure 4. List of equation transformations in the model 
Modelica.Electrical.Analog.Examples.NandGate. 

The XML-file contains all the variables and equations 
used to solve the model, as well as variables that have 
already been solved for, alias relations, and so on. The 
equations are split into several groups, such as start-
value equations, initial equations, regular equations, 
since the same variable may have different equations 
defined for it in different phases of the program.  

These groups are related to how the compiler decid-
ed to numerically solve simulations. For example, the 
file includes the equations generated for the Jacobian, 
which is not used by all numerical ODE/DAE solvers. 

Each equation knows the variables it solves for, as 
well as the variables it uses. This enables fast lookup of 
parents, children, and siblings in the BLT matrix. When 
reading the file, information is propagated to variables 
in a way such that each variable also knows the equa-
tion(s) where it is defined. This is again to ensure that 
the debugger can perform cheap lookup operations. 

In the case of strongly connected components, an 
equation index will point to a set of equations (linear 
and nonlinear systems of equations in OpenModelica 

are defined as a set of equations and variables to solve 
for). The generated code knows the index of an equa-
tion in the XML-file, so in case error or diagnostic 
messages are generated, a link to the equations and var-
iables associated with this index can be provided to the 
debugger. 

The message routines have been updated to take a 
list of equation indexes as an option, as well as output 
the messages as structured XML. This enables the de-
bugger to read the messages and insert links to equa-
tions as appropriate. 

This approach allows a user to debug simulations 
even if he/she did not run the simulation through the 
debugger, because it is possible to perform post-
mortem debugging only based on the messages and 
diagnostics produced by the simulation executable. 

There is no additional overhead during regular exe-
cution except reading and writing the additional infor-
mation in the XML-file. This can be done by a thread 
running in the background and takes only a few se-
conds even for the large EngineV6 model which both 
has many equations and many symbolic operations per-
formed on each equation.  

For error-messages there is an additional overhead 
of creating an error message that contains all the rele-
vant information. This is a small one-time cost for er-
ror, which are hopefully infrequent. Consequently, the 
detailed error messages are output even if the user had 
not decided to debug the simulation before he started it 
since it will help him figure out why things went 
wrong. 

5 Run-Time and Event Related Im-
plementation 

The run-time system performs the actual simulation of 
a Modelica model, in which the solution process is 
done by different solvers that cooperate in a master-
slave hierarchical configuration, with the ultimate mas-
ter being the end-user: 

• ODE solver 
• Functions computing the derivatives and algebraic 

variables 
• Function computing the initial states and the values 

of parameters 
• Function computing event points 
• Linear equation solvers 
• Nonlinear equation solvers 

All of them may fail with different kinds of errors de-
pending on the solver, generally because of numerical 
issues (e.g. singular Jacobian, no convergence, too tight 

<simplify> 

 <before> 

  Nand.TP1.G.i + Nand.TN1.G.i + (-Nand.x2.i)  

  = 0.0 

 </before> 

 <after> 

  Nand.TP1.G.i + Nand.TN1.G.i - Nand.x2.i  

  = 0.0 

 </after> 

</simplify> 

<substitution> 

 <before> 

  Nand.TP1.G.i + Nand.TN1.G.i - Nand.x2.i 

 </before> 

 <!-- list of intermediate results --> 

 <exp>0.0 + 0.0 - (-VIN2.i)</exp> 

</substitution> 

<simplify> 

 <before>0.0 + 0.0 - (-VIN2.i) = 0.0</before> 

 <after>VIN2.i = 0.0</after> 

</simplify> 

<solved> 

 <lhs>VIN2.i</lhs> 

 <rhs>0.0</rhs> 

</solved> 
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tolerance). However, at the bottom level they all share 
particular error types: 

• Evaluation of expressions 
• Division by zero. 
• Functions called outside their domain (e.g.: 

sqrt(-1), log(-3), asin(2)). 
• Evaluation of non-integer powers with nega-

tive argument 
• Assertion violations for the model 

In general some errors can be recovered automatically 
by the system (e.g. by re-trying with a shorter time 
step), whereas others abort the simulation and are re-
ported to the user, which can then enter the debugging 
mode. 

If an error cannot be recovered by the solver hierar-
chy, informative diagnostics are provided to the user. 
The diagnostic error message includes the correspond-
ing equation block, the involved variables and their 
values. Furthermore the hierarchical context of the er-
ror is important to be able to classify it.  

In the next step the user may be able to enter the de-
bugging mode, where the simulation can be re-run to an 
accepted step just before the error occurs again. The 
last accepted step corresponds to the last point in time 
in the result file created in the first run. This point in 
time can be a breakpoint for debugging mode.  

In the debug mode breakpoints are interpreted like 
zero-crossings, but without the time-consuming search 
process which the numerical solver does — the simula-
tion just breaks if the condition becomes true. 

Then the step that caused the failure is executed in a 
verbose mode, where informative diagnostic is provid-
ed for every equation that needs to be solved till the 
error occurs again. This allows the user to trace the so-
lution process and if necessary, to engage by changing 
the model. 

6 Example Models for Debugging 
In this section some simple test cases are shown which 
demonstrate various possible error scenarios, and how a 
debugger can help their troubleshooting. 

6.1 Chattering Models 

In the model ChatteringEvents1, chattering takes 
place after t = 0.5, due to the discontinuity in the right 
hand side of the first equation. Chattering can be de-
tected because lots of tightly spaced events are generat-
ed. The debugger allows to identify the equation from 
which the zero crossing function that generates the 
events originates. 
 

model ChatteringEvents1 
  Real x(start=1, fixed=true); 
  Real y; 
  Real z; 
equation 
  z = if x > 0 then -1 else 1; 
  y = 2*z; 
  der(x) = y; 
end ChatteringEvents1; 

Also in the model ChatteringNoEvents1, chattering 
takes place after t = 0.5, due to the discontinuity in the 
right hand side of the first equation. However, events 
are not generated in this case, because of the noEvent 
operator. If a variable-step-size integration algorithm 
with error control is used, the time step will be reduced 
to very small values once the discontinuity is hit, and 
this can be detected by monitoring the value of time at 
each time step. 

The variable step size solver should be able to re-
port which state variable(s) give the biggest contribu-
tion to the error estimate, thus causing the step size re-
duction. The corresponding derivative shows very high 
frequency oscillations between two values. The end 
user can then use the BLT navigation functionality of 
the debugger to investigate which variable/equation is 
introducing the discontinuity. 
model ChatteringNoEvents1  
  Real x(start=1, fixed=true); 
  Real y; 
  Real z; 
equation 
  z = noEvent(if x > 0 then -1 else 1); 
  y = 2*z; 
  der(x) = y; 
end ChatteringNoEvents1; 

Regarding ChatteringFunction1, after t = 0.5, chat-
tering takes place due to the discontinuity in the right 
hand side of the first equation. The discontinuity is 
caused by a discontinuous function, which does not 
generate events. 

The considerations regarding variable-step solvers, 
derivatives, and debugger BLT navigation are the same 
as for the previous example ChatteringNoEvents1. 
model ChatteringFunction1 
  Real x(start=1, fixed=true); 
  Real y; 
  Real z; 
 
function f_sign 
  input Real x; 
  output Real y; 
algorithm 
  if x > 0 then 
    y := 1; 
  elseif x < 0 then 
    y := -1; 
  else 
    y := 0; 
  end if; 

Integrated Debugging of Equation-Based Models

200 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096195



end f_sign; 
 
equation 
  z = Functions.f_sign(x); 
  y = 2*z; 
  der(x) = y; 
end ChatteringFunction1; 

6.2 Models with Different Numerical Failure 
Modes 

The NonlinearSolverFailureInitial, model de-
scribes a simple hydraulic system with a pump, fol-
lowed by a valve, which fills a reservoir. 

The initial value of the level of the reservoir is too 
high for the pump sizing, so the pressure p2 is too high 
and consequently the nonlinear algebraic system of 
equations that determines p1 and w_pump has no solu-
tion. 

It is possible to find a solution to the system either 
by lowering the initial value of y, and thus the pressure 
p2, or by increasing the value of the parameter dp0, 
increasing the head the pump can provide.  

The debugger can show the dependency of the non-
linear system of equations on the parameters dp0, a1, 
a2, a3, and Kv (also showing their values), as well as 
the dependency on p2 (which has a too high value). 
Once one understands that p2 is too high, it should be 
possible to continue the analysis, looking at the equa-
tion that determines p2, which in turn depends on the 
value of the state y, which is the root cause of the prob-
lem.  

The nonlinear system that cannot be solved has five 
unknowns: w_pump, dp_pump, dp_valve, sqrt_dp, 
and p1, which can be easily reduced to one by using 
dp_pump as a tearing variable. The debugger can show 
the torn variables and the tearing variables, as well as 
the corresponding torn equations and implicit residual 
equations, and allows to track the values of all five var-
iables during the iterations of the Newton algorithm. 
model NonlinearSolverFailureInitial 
  parameter SI.Pressure patm=101325  
    "Atmospheric pressure"; 
  parameter Real Kv=1e-2 "Valve coefficient"; 
  parameter Real dp_small=1  
    "Small dp for valve equation"; 
  parameter Real dp0=3e5 "Pump dp @ zero flow"; 
  parameter Real a1=1e6 "Pump coefficient"; 
  parameter Real a2=3e2 "Pump coefficient"; 
  parameter Real a3=3e2 "Pump coefficient"; 
  parameter SI.Temperature T0=20 + 273.15  
    "Temperature of incoming fluid"; 
  parameter SI.Density rho=995  
    "Density of fluid"; 
  parameter SI.Area A=0.01  
    "Storage tank cross section"; 
  parameter SI.MassFlowRate w_extra=0  
    "Extra mass flow rate into reservoir"; 
  constant SI.Acceleration g= 9.81 
    "Acceleration of gravity"; 
  parameter SI.Temperature Tref=273.16 
    "Reference temperature for specific  

     enthalpy computation"; 
  parameter SI.SpecificHeatCapacity cp=4186  
    "Cp of the fluid"; 
  SI.MassFlowRate w_pump  
    "Mass flow rate from the pump"; 
  SI.Pressure p1 "Pump discharge pressure"; 
  SI.Pressure p2 "Storage tank inlet pressure"; 
  SI.Pressure dp_pump "Pump dp"; 
  SI.Pressure dp_valve "Valve dp"; 
  Real sqrt_dp "Regularized sqrt(dp)"; 
  SI.SpecificEnthalpy h0  
    "Pump inlet specific enthalpy"; 
  SI.SpecificEnthalpy h1  
    "Pump discharge specific enthalpy"; 
  SI.Power W “Pump power consumption”; 
  SI.Length y(start=40, fixed=true) 
    "Reservoir level"; 
  Real eta(final unit="1") =  
    (p1 - patm)*w_pump/rho/W "Pump efficiency"; 
  SI.Temperature T1  
    "Pump discharge temperature"; 
  SI.Time tau=1  
    "Time constant of temperature sensor"; 
equation 
  dp_pump = p1 - patm "Pump dp"; 
  dp_valve = p1 - p2 "Valve dp"; 
  dp_pump = dp0 - a1*w_pump^2; 
  w_pump = Kv*sqrt_dp; 
  sqrt_dp = dp_valve/ 
           (dp_valve^2 + dp_small^2)^0.25; 
  W = a2 + a3*w_pump; 
  w_pump*(h1 - h0) = W; 
  rho*A*der(y) = w_pump + w_extra; 
  p2 = rho*g*y + patm; 
  h0 = cp*(T0 - Tref)"; 
  h1 = cp*(T1 - Tref)"; 
end NonlinearSolverFailureInitial; 

A simple modification of the previous model allows 
demonstration of the failure of the nonlinear solver in 
the causalization stage during simulation. The initial 
value of the level is reduced to 20, so that an initial so-
lution can be found. 
model NonlinearSolverSimulation 
  extends NonlinearSolverFailureInitial( 
             y(start=20), w_extra=0.2); 
end NonlinearSolverSimulation; 

In this case the reservoir is filled both by the pump and 
by an extra source. The mass flow rate of the pump 
w_pump is determined by a nonlinear system with five 
unknowns: w_pump, dp_pump, dp_valve, sqrt_dp, 
and p1, which basically computes the operating point 
of the pump as the intersection between the pump head 
curve and the load (valve + reservoir head) curve. Note 
that these curves have two intersections (also see 
NonlinearSolverFailure3 later on). As the level 
increases, w_pump is reduced, and the two intersections 
get closer to each other, until at time t = 269 they col-
lide, making the system singular. As the level increases 
further due to the extra source, this system ceases to 
have any solution. This is a typical bifurcation pattern 
in nonlinear systems. 

The debugger can show that the condition number 
of the Jacobian of the nonlinear system gets bigger and 
bigger as the critical time when the two operating 
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curves become tangent to each other, suggesting that 
this system becomes singular for some reason. Under-
standing the reason why this happens requires physical 
insight into the model.  

The model can be fixed by adding some mass stor-
age depending on the pressure p1, in order to avoid the 
singularity in determining p1, and also by using a more 
realistic cubic curve for the pump model, so that when 
the limit level is reached, the solution will jump to a big 
negative pump flow. Again, this requires physical in-
sight into the validity range of the implemented model. 

Another slight variation of the model allows 
demonstrating the case of finite escape time.  
model FiniteEscapeTime 
  extends NonlinearSolverFailureInitial( 
            y(start=20)); 
  SI.Temperature Ts(start=T0); 
equation 
  tau*der(Ts) = T1 - Ts; 
initial equation 
  der(Ts) = 0; 

end FiniteEscapeTime; 

As the reservoir level increase, the flow rate w_pump 
goes to zero. When it does, the energy balance equation 
causes the specific enthalpy h1, and thus the tempera-
ture T1, to go to infinity.  

The temperature T1 is the input of a first-order line-
ar system, representing the temperature sensor dynam-
ics. If a variable step-size solver with error control is 
used, it will try to compute the state trajectory, which 
also goes to infinity, so the solver eventually gets stuck 
at time t = 664. 

If the ODE solver reports information on the state 
whose error estimate is causing the step size to be re-
duced, (Ts, in this case), then the debugger can point 
the end user to its derivative der(Ts). It will be shown 
that it depends on T1, whose values can be seen to 
grow indefinitely over time. T1 is shown to depend on 
h1, which also goes to infinity. Finally, h1 depends on 
the energy balance equation, which depends on 
w_pump. At that point it will become apparent that as 
the flow rate w_pump goes to zero, the model becomes 
ill-posed. The solution in this case is to change the 
pump model, by adding to the energy balance some 
dynamic energy storage and/or some heat transfer to 
the ambient, in order to avoid the zero-flow singularity. 

Finally, another small change to the original model 
presented in this section allows to demonstrate the de-
bugging of models where the wrong initial solution is 
picked by the nonlinear solver.  
model WrongInitialSolutionSelected 
  extends NonlinearSolverFailureInitial( 
            y(start=20),  
            dp_pump(start=-1000)); 
end WrongInitialSolutionSelected; 

The operating point of the pump is determined by a 
nonlinear system with five unknowns: w_pump, 
dp_pump, dp_valve, sqrt_dp, and p1. It is assumed 
here that dp_pump is selected as a tearing variable. At 
time t=0, this system has two solutions, one with posi-
tive w_pump, and the other one with negative w_pump. 
If the start value of the tearing variable dp_pump is 
chosen incorrectly, the solver will converge to the 
negative solution, then lock onto it for the rest of the 
simulation. 

When the user sees the negative w_pump in the sim-
ulation (which is physically wrong), he/she should be 
able to analyze how this value was found at time t = 0. 
The debugger shows that w_pump is solved by that non-
linear system, and shows the values of the tearing vari-
ables and of the torn variables at each iteration step. 

It will then become apparent that the start value of 
the tearing variable dp_pump leads to a negative value 
of the torn variable w_pump, leading to the solution of 
the problem, i.e., changing the start value of dp_pump 
to a value that allows convergence on the desired solu-
tion. 

7 Background and Related Work 
Modelica is a declarative language that makes writing 
equations easy while still producing efficient code. 
However, traditional debugging tools like GDB [12], 
Valgrind [19], or any of the other tools described in 
[18] assumes that the program being debugged is 
statement based. It also assumes that the user knows 
something about what the program is doing. This is fine 
if you are a Modelica compiler developer working on 
fixing some segmentation fault in your own code. A 
GDB-based approach exists for Modelica [4]; it works 
fine for debugging algorithms in functions. 

But as a Modelica user you know very little about 
the internals of the run-time system. For example, there 
is speculative execution while simulating a model mak-
ing debugging with GDB confusing. 

There exists previous work on debugging in 
Modelica. Bunus [9] proposes a semi-automated dy-
namic (run-time) debugging of models where the user 
has to provide a correct diagnostic specification of the 
model which is used to generate assertions at runtime. 
Moreover, starting from an erroneous variable value the 
user explores the dependent equations (a slice of the 
program) and acts like an “oracle” to guide the debug-
ger in finding the error. 

Sjölund [7] is used as the main basis of the equation 
debugging part of this work. It was mainly focused on 
tracing operations in the compiler backend. It has been 
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extended with structured error messages from the simu-
lation run-time system as well as an actual debugger. 

Pop et al [3], [4] describe an integrated debugging 
approach based on a dependency graph. Edges in that 
dependency graph can be computed by the transforma-
tional tracing mechanism mentioned in Section 4. 

8 Current Status 
At the time of this writing, the implementation of the 
debugger framework in the OpenModelica environment 
is mostly complete but still missing some parts. 

This debugger framework has three main parts: the 
tracing of symbolic operations in the backend of 
OpenModelica, reporting run-time errors in simula-
tions, and the debugger implemented as an extension of 
the OMEdit graphical user interface. 

The tracing of operations is complete, and the map-
ping of error positions in the low level generated code 
to the high-level model from where they originated.  
However, the reporting of run-time errors only works 
for a subset of problems at the moment. 

The generation of the XML file with the transfor-
mation tracing, and its subsequent representation in the 
OMEdit GUI are fully implemented. Some types of 
numerical errors (e.g., chattering) can already be de-
bugged as described in the paper.  

However, the interface to the numerical solvers 
(both for the casualization and for the time integration 
steps) is still incomplete. Also the functionality of ana-
lyzing the results of simulation runs (which did not 
generate errors) at specific points in time is not imple-
mented yet. 

It is planned to have the implementation with the 
abovementioned additional functionality completed by 
fall 2014. 

9 Conclusions and Future Work 
We have presented a set of problems of simulating 
Modelica models that benefits from increased debug-
ging tool support. We have also presented a design and 
implementation of the first (to our knowledge) docu-
mented debugging framework that can handle this set 
of problems. 

The debugger is operational and has been tested on 
rather large models without noticeable run-time over-
head. It is able to map error positions from low-level 
compiled simulation code to the corresponding source 
level equations in the Modelica model.  

We believe that this kind of debugging support will 
significantly improve the ease-of-use regarding applica-
tion modeling with Modelica compared to the current 

situation typically needing a large amount of trial-and-
error and a lot of expertise in the internal mechanisms 
of Modelica model compilers and simulation run-time 
systems. This can speed up the acceptance and use of 
Modelica in the engineering community. 

Future work includes creating additional specialized 
debugging views including a view to display non-
convergence of non-linear equation systems. 
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Abstract
Engineers need to perform many different
types of analyses as they design systems. Mod-
elica has become a leading language to sup-
port numerical simulation. As a consequence
there is widespread understanding of Modelica
and a large number of Modelica model libraries
available. This paper addresses the task of us-
ing formal methods to derive system proper-
ties such as whether a design meets its require-
ments for all possible inputs. We report on our
experience building a qualitative reasoner op-
erating on Modelica models. In this paper, we
highlight five Modelica modeling practices that
impede the application of formal methods.

1 Introduction
Modelica [Fritzson, 2004] is a powerful language for spec-
ifying the behaviors of components represented by declar-
ative constructs connected through power ports. Modelica
provides designers with large libraries of standard mod-
els and compile time computation to create large mod-
els. These features attract designers interested in numeric
simulation and researchers developing new analyses. In
contrast, the languages qualitative reasoning [Weld and de
Kleer, 1989] and other hybrid system verification methods
(e.g., HybridSAL [Tiwari, 2012]) require equation-based
models. Engineers use these formal methods to prove that
systems will never reach critical states for all possible pa-
rameter values in a section of the design space. In previous
work, we have discussed how qualitative reasoning can be
used on Modelica models consisting only of a subset of
the language [Klenk et al., 2012].

In addition to this common core, Modelica allows de-
signers to specify behavior using algorithms and provide
advice for simulation engines. While designers desire this
flexibility and control, these features make qualitative rea-
soning and other formal methods difficult to apply to Mod-
elica models. In addition to simulation advice and explicit
algorithms, we identify three other modeling practices that
hinder the application of formal methods: unnecessary
component model complexity, use of computational state,
and incomplete models.

This paper is structured as follows. We begin with a
brief overview of qualitative reasoning. Then, we discuss
how the Modelica compiler may be used by formal meth-
ods. After which, we provide examples of each class of

hindrances along with suggestions for improving the ap-
plicability of Modelica models for formal methods. We
close with a discussion of related work and some general
reflections on modeling.

2 Qualitative reasoning and Design
Qualitative reasoning has its roots in automating reasoning
about physical systems [Forbus, 1984][Kuipers, 1994][de
Kleer and Williams, 1991]. Based on the intuition that en-
gineers employ qualitative reasoning extensively through-
out the design process, numerous researchers have sought
to apply qualitative reasoning to design problems includ-
ing functional reasoning [Everett, 1999][Wetzel and For-
bus, 2009], diagnosis [Struss and Price, 2004], and au-
tomated FMEA generation [Snooke and Price, 2012].
An important subtask is qualitative simulation [Forbus,
1984][Kuipers, 1994], which provides an abstract descrip-
tion of the possible behaviors of a mathematical model.
We illustrate qualitative simulation as well as some uses
in the design context with a series of examples.

First, consider the spring block system in Figure 1 with
the initial condition of a displacement of 5 meters com-
pressing the spring. Given a set of numeric parameters
and a simulation duration, Modelica produces a numeric
simulation (i.e., a sequence of real values for each vari-
able). On the other hand, qualitative simulation begins
by creating a set of abstractions for each variable. The
simplest set is three qualitative values (Q-, Q0, and Q+)
corresponding to the sign of the real valued quantity. Each
continuous variable can have as many higher-order deriva-
tives as necessary, each of which specifies a direction of
change (↓(DEC), →(STD), ↑(INC)) at that derivative or-
der. Qualitative simulation determines all possible se-
quences of qualitative states a system can go through over
time, called an envisionment. Changes in the qualitative
state occur when a variable or its derivative reaches a land-
mark (e.g., the displacement of the block crosses zero, the
velocity of the block crosses zero). Crossing a landmark
occurs in an instant that has no duration (represented as
a rectangle) and approaching or departing a landmark oc-
curs over an interval of time (represented as an oval). The
numeric simulation produces a sequence of numbers that
must be interpreted by the designer to understand the be-
havior. On the other hand, the envisionment illustrates
directly that this system is oscillatory because the graph
is a loop (i.e., the system returns to the same qualitative
state). Furthermore, while the numeric simulation results
apply to specific values for the mass and compliance of
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Ini$al	  
displacement	  

of	  5	  m	  

(a) Spring block system

mass1.v <36> [Q0 : DEC]

<118> [Q- : DEC]

<243> [Q- : STD]

<308> [Q- : INC]

<433> [Q0 : INC]

<512> [Q+ : INC]

<637> [Q+ : STD]

<702> [Q+ : DEC]

<827> [Q0 : DEC]

(b) Envisionment with qualitative values for the velocity and its
derivative are shown. Each state is assigned a unique id. Ovals
represent qualitative states that exist over an interval of time and
rectangles represent qualitative states that exist only for an in-
stant.

Figure 1: Qualitative simulation example

the spring, the envisionment illustrates that the behavior
of the system in Figure 1 will be oscillatory for every set
of parameters.

One reason for performing simulations is to determine
if a system will meet some specified requirement. Figure
2 illustrates a simple rotational mechanical system with a
specified requirement that the angular velocity must ex-
ceed 1 rad/s. This requirement can be encoded in Mod-
elica using an enumerated type: Unknown, Success,
Violated. The value of this variable begins as Unknown
and changes to Success if the angular velocity of the fly-
wheel exceeds 1 rad/s. As shown in the Modelica simula-
tion (Figure 2), the system does not meet the requirement.
Meanwhile, the envisionment (Figure 2) contains an in-
terval in which the flywheel is accelerating followed by
two branches: one where the requirement is met (shown
as a green uparrow) and one where the inertia reaches

its asymptote (shown as a blue rectangle). This multi-
trajectory simulation illustrates the range of behaviors that
are possible given underspecified parameters (e.g., the mo-
ment of inertia, applied torque, and damping coefficient
are known only to be positive). The Modelica simulation
in Figure 2 corresponds to the the following trajectory of
qualitative states: 48 → 122 → 313. Because this envi-
sionment includes a trajectory in which the requirement’s
value is Success, the designer knows that this topology
may satisfy the requirement with different parameter val-
ues (e.g., increasing the torque or decreasing the damping
factor).

Figure 2: Qualitative Simulation and Requirements

(a) Modelica configuration with requirement that the flywheel
reaches 1rad/s.

Desired Velocity 
Angular Velocity 

(b) Modelica simulation demonstrating that the current set of pa-
rameters does not meet the requirements within 5 seconds.

Requirment , Inertia1.w <48> unknown , [Q0 : INC]

<122> unknown , [Q+ : INC]

<313> unknown , [Q+ : STD] <247> unknown , [Q+ : INC]

<378> unknown , [Q+ : INC]

<411> success , [Q+ : INC]

(c) The envisionment shows that this configuration could meet
requirements with a different set of parameters. Cyan nodes rep-
resent terminal states, magenta nodes represent discrete events,
and green uparrow nodes represent states that meet requirements.

Our intuition is that designers use this qualitative under-
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standing of the design space to make decisions about com-
ponents, parameters and configurations. Qualitative sim-
ulation is applicable early in the design process because
it operates without completely specified parameters. Fur-
thermore, qualitative simulation can be used to automate
a number of the reasoning tasks designers perform during
early design, answering such questions as:

• Could this configuration of components perform the
desired function?

• What kinds of failures might this design have?

• How would this system behave when increasing a
particular parameter?

Unfortunately, current qualitative simulation ap-
proaches are unable to make use of many existing Mod-
elica models. In the the rest of this paper, we discuss fea-
tures of the Modelica language and practice that hinders
the reuse of Modelica models by formal methods such as
qualitative reasoning.

3 Modelica models for formal methods
Modelica’s reuse and flexibility are central to its appeal
among designers, engineers, and researchers. Unfortu-
nately, these features create difficulties for applying for-
mal methods. Some problematic features are: com-
piler interaction, artifacts for numeric simulation, unnec-
essary component model complexity, algorithms, sequen-
tial states, and incomplete models. For each issue, we will
attempt to answer three questions:

• Why do designers use it?

• Why is this difficult for formal methods?

• What should be done to enable formal verification?

Before we discuss Modelica language issues, we dis-
cuss how Modelica compilers assist in our efforts to per-
form qualitative reasoning with Modelica models.

3.1 Using the compiler to facilitate other
analyses

Modelica tools include a compiler that takes as input a
Modelica model and through a sequence of processes pro-
duces executable code to perform numeric simulation. Ac-
cess to intermediate results during the compilation process
facilitates other analyses. Here we highlight three aspects
of the compilation process we have found useful.

Model construction language
Modelica has a powerful model construction language in-
cluding iteration and conditional declarations. For exam-
ple, the Damper model (shown in Figure 3) includes a con-
ditional heat port, which allows the same damper model to
be used in systems that consider thermal connections and
those that do not. Also, compilers perform a number of
optimizations on the model including index reduction and
removal of redundant variables. These optimizations are
applicable to qualitative reasoning as well. Therefore, our
approach uses an XML representation of the hybrid-DAE
produced by OpenModelica [Parrotto et al., 2010]. Fur-
thermore, we encourage the ongoing efforts to standard-
ize an XML representation of the compiled model across
Modelica tools.

System initialization
System initialization is a well-known difficult problem,
and Modelica provides a number of language constructs
to direct the solver to the initial state [Mattsson et al.,
2002]. These include the use of the :start and :fixed
keywords, initial equations and initial algorithms. Quali-
tative simulation also requires knowing the initial values
of the system variables. Therefore, we use OpenModelica
to solve the initial equation system for a consistent set of
initial values from which to begin our analysis.

Function inlining
Many Modelica functions are merely mathematical rela-
tionships between input and output variables. Consider
the from_kmh function in the Modelica Standard Library
shown in Figure 4. Function inlining is performed by
many Modelica compilers to replace calls to these func-
tions by their equivalent equations. The problems with
analyzing arbitrary functions will be discussed in Section
3.4. Therefore, having the compiler perform these opti-
mizations assists in translating Modelica models for use
in formal methods.

Figure 4: Function that converts km/h to m/s

function from_kmh;
input NonSIunits.Velocity_kmh kmh ;
output Velocity ms "metre per second value";

algorithm
ms := kmh/3.6;

end from_kmh;

3.2 Artifacts of numeric simulation
Modelica is primarily a language for modeling and simu-
lating mathematical models that evolve as a function of
time. Consequently, there exist many constructs to as-
sist with issues that arise in numeric simulation. While
some are irrelevant for formal methods (e.g., noEvent and
smooth), in this section, we discuss three that complicate
formal methods analyses.

Equality involving continuous time variables
Modelica events occur at zero crossings. Therefore,
it is not possible to have a condition testing equal-
ity of real valued variables, s1 and s2. Instead, the
Modelica.math.IsEqual function from the Modelica
Standard Library which is computing using Equation 1.

result := abs(s1− s2)<= eps; (1)

While Equation 1 can be translated directly for for-
mal methods, it both needlessly adds complexity to for-
mal analysis and may yield unexpected results. Intuitively,
IsEqual is testing whether s1 and s2 are equal. If the
Equation 1 is directly encoded, the formal analysis will
have to consider 7 cases: (1) s1− s2 is negative and more
than eps from 0, (2) s1− s2 = −eps, (3) s1− s2 lies be-
tween −eps and 0, (4) s1− s2 = 0, (5) s1− s2 is positive
and less than eps, (6) s1− s2 = eps, (7) s1− s2 > eps. In
effect, it treats eps as an important parameter the system.
As a consequence the number of states needed to be an-
alyzed grows exponentially in the number of IsEqual’s
translated in this way. Finally, the formal analysis could
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Figure 3: Damper model from the Modelica Standard Library includes a conditional heat port connection that is set during
model instantiation

model Damper "Linear 1D translational damper"
extends Translational.Interfaces.PartialCompliantWithRelativeStates;
parameter SI.TranslationalDampingConstant d(final min = 0, start = 0) "Damping constant";
extends Modelica.Thermal.HeatTransfer.Interfaces.PartialElementaryConditionalHeatPortWithoutT;

equation
f = d * v_rel;
lossPower = f * v_rel;

end Damper;

produce incorrect results because it will accept as possi-
ble states in which s1 is not equal to s2 which is clearly
against modeler’s intent. Because formal methods al-
low for equality between continuous-time variables, the
best solution is to simply translate IsEqual(s1,s2) to
s1 == s2.

Smoothing functions
Another piece of advice supplied by the model
to the simulation engine concerns smooth-
ing functions. For example, the function
Modelica.Fluid.Utilities.regStep approxi-
mates a step function with a second order polynomial
that is continuous and differentiable. Unless the transient
behavior is the focus of the model, formal methods are
more applicable to the idealized behaviors.

3.3 Unnecessary component model complexity
Modelers should be as concise and clear as possible when
authoring models.

Optional model parameters
The inheritance features in Modelica make it easy to pro-
vide different variants of components that account for dif-
ferent behaviors. Therefore, in each model, every param-
eter should affect the behavior of the model. When this is
not the case, the modeler has increased the complexity of
the model unnecessarily. Consider the w_small parame-
ter PartialFriction model. The default value of this
parameter is 1e10 and the comment directs the engineer
to set this to a small value if particular discontinuities are
expected. This absurdly high value is to prevent it from
affecting the simulation. Making these two separate mod-
els that inherit from the same model would facilitate for-
mal methods by considering the w_small parameter only
when it is necessary. Otherwise formal analysis will have
to needlessly analyze the distinction between wsmall and
w.

Component modes
The evolutionary development of the Modelica language
is apparent in the models of the Modelica Standard Li-
brary. For instance, many models use Integer variables
to define a mode of operation for the model. However,
these variables are typically unbounded, and often the de-
fault variable value of zero is not an applicable mode. Us-
ing enumerations would provide a definite set of modes
of operation for these variables. However, even this is not
sufficient. In some tool systems, such as OpenModelica,
parameter variables of enumerated types are not required
to be initialized to any particular value, and in that case

they default to the integer default value of zero, which is
an invalid integer value for that enumerated type! In gen-
eral, the semantics of operating modes, and more specifi-
cally enumerations (and parameters), seems to need more
work in Modelica.

3.4 Imperative Code
Modelica algorithms can be executed at two times: flatten-
ing and simulation. All of the former algorithms pose no
difficulty to formal analysis as they are executed before the
DAE is created. Imperative code embedded in the DAE,
typically in functions, to be executed at run time presents
a fundamental challenge. Imperative code is important
to model designers because certain numerical computa-
tions are easier to express as algorithms as opposed to
equations. The Modelica language is Turing-complete, so
proving properties of arbitrary Modelica programs is as
hard as proving properties of any program. And proving
properties of programs is a challenging intellectual field
all to its own. Formal methods cannot be expected to an-
alyze such algorithms. For common functions, we have
created qualitative equivalents. For example, interpolation
tables are essential to modeling complex physical systems,
and, therefore, we have created an analogous concept for
qualitative reasoning. There is independent interest in the
Modelica community in elimination of imperatives when
possible. For example, function inlining converts some
imperatives to constraints automatically [Papadopoulos et
al., 2012] .

We have applied our analysis technique to a wide vari-
ety of models. Too often we encounter needless impera-
tives. For example, consider:

Model Single_Clutch_Controller
Output Real y;
Input Integer u;
parameter Integer num_gears = 5
parameter
Integer gear_nums[num_gears] = {-1,1,2,3,4}
parameter Real engagement[num_gears]

= {0.0, 1.0, 1.0, 0.0, 0.0};
algorithm
y := 0.0;
for i in 1:num_gears loop

if u == gear_nums[i] then
y := engagement[i];

end if;
end for;

end Single_Clutch_Controller;

model GBX_5_clutch_controller
...
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Modelica.Blocks.Interfaces.RealOutput clutch_1;
Single_Clutch_Controller controller_c1

(num_gears=num_gears,
gear_nums=gear_nums,
engagement=c1_eng);

...
equations

connect(controller_c1.u, gear_selected);
connect(controller_c1.y , clutch_1 );
...

end GBX_5_clutch_controller;

Given a desired gear, the controller selects the clutch to
activate. The algorithm block simply looks up the array
index of the desired gear and reads off the clutch needed
to engage. The clutch can be modeled as a table:

x y
-1 0.0
1 1.0
2 1.0
3 0.0
4 0.0
X 0.0

Modelica has a table primitive (which begs the question
why it wasn’t used in this model). However, this particular
table can be expressed as a Modelica equation:

y = if (x=1 or x=2) then 1.0 else 0.0;

To summarize, our approach to imperative code is:
• For widely used MSL functions such as interpolation

we design them as primitives for the qualitative anal-
ysis. These function names appear in the XML DAE
and thus can be treated as primitives.

• In limited cases, imperative code can automatically
be translated to declarative code by function inlining.

• Key MSL models containing imperative code are be-
ing rewritten to be purely declarative (or use only
known imperative primitives).

• User created functions and algorithms are currently
not allowed. One unexplored possibility is the user
must annotate the model specifying a piecewise lin-
ear approximation of the imperative code’s behavior.

3.5 Sequential States
Many models include sources that iterate through a
sequence of states (Modelica.Blocks.Sources.
SawTooth) or components that exhibit delayed effects
(Modelica.Blocks.Logical.TriggeredTrapezoid).
The primary way this is handled in Modelica is by
triggered Modelica events and setting a discrete-time
real value representing the time at which the next
state should change. Consider the variable T in the
TriggeredTrapezoid model shown in Figure 5.

These models are difficult to analyze due to the non-
local effects of the setting of the discrete-time variable.
We propose to rewrite them without explicitly referencing
time. This is done by using the events to set the rate and
then the delayed effects occur when one of the continuous
variables reaches a limit.

3.6 Incomplete models
Another complicating issue is that model authors fre-
quently build models until their needs are met. While
these models produce the simulation results the modeler
expects, other analyses may have trouble using them due
to untyped variables and operating regions.

Untyped variables
Modelica allows modelers to give types to variables, but
modelers frequently use Real instead of more specific
types. The Brake model in MSL defines mue0 as type
Real instead of CoefficientOfFriction. Automated
fault modeling techniques (e.g., FAME [de Kleer et al.,
2013]) construct better fault models if variables are typed
correctly.

4 Related work
The differences between the modeling languages used by
engineers (e.g., Modelica, C++) and those used by model
checking tools (e.g., finite state automata) hinder the de-
ployment of formal methods in the design process. Re-
searchers have taken both top-down and bottom-up ap-
proaches to overcoming this hurdle. Carloni et al. exem-
plify the top-down approach by arguing for a semantic-
aware interchange format to make formal methods ap-
plicable across languages [Carloni et al., 2006]. As an
alternative to attempting to unify all hybrid systems lan-
guages, bottom-up approaches define automatic transla-
tions between subsets of pairs of languages. For exam-
ple, Lundvall et al. translate a portion of Modelica mod-
els into hybrid automata for verification [Lundvall et al.,
2004]. Our approach follows the bottom-up tradition, and
the contribution of this paper is a discussion of five Model-
ica modeling practices that hinder the automated analyses
of Modelica models by formal methods.

5 Reflections on modeling
Modelica makes some fundamental semantic choices
which are at odds with the formal methods, qualitative
reasoning and cyber-physical systems communities. For
example, Modelica allows one event to cause another —
that is, two instants immediately following one another.
Also, formal methods typically model behavior by modes,
guards, and constraints. Modelica’s guards and modes ex-
ist at the system level as conditions, but are not directly ac-
cessible from the models. So the common-sense engineer-
ing notion of mode has to be expressed by extra boolean
variables and conditions. This can lead to very counterin-
tuitive (to an engineer) models (e.g., the transistor models
in MSL). For the purposes of our research, we have to
accept Modelica’s semantics. We do not know yet what
problems this will cause.

Our experiences using Modelica models for other anal-
ysis purposes motivates some reflections on good model-
ing practices. In the course of this research, we have had to
study and analyze a great many Modelica models. Some
models in the MSL are diamonds, other models are dis-
asters. We often wish that the Modelica community em-
ployed more standardized modeling practice. Modelica is
such a general language that a modeler can write incred-
ibly stupid models. Maybe that is because it is very hard
to write clean, concise models. To summarize we suggest
the following modeling principles:
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Figure 5: Portion of the TriggeredTrapezoid model highlighting the use of discrete-time variables to initialize the
timing of state transitions.

block TriggeredTrapezoid "Triggered trapezoid generator"
extends Modelica.Blocks.Icons.PartialBooleanBlock;
...

protected
...
discrete Modelica.SIunits.Time T

"Predicted time of output reaching endValue";
equation

y = if time < T then
endValue - (T - time) * rate else

endValue;
when {initial(),u,not u} then

...
T = if u and not rising > 0 or not u

and not falling > 0
or not abs(amplitude) > 0
or initial() then

time else
time + (endValue - pre(y)) / rate;

end when;
end TriggeredTrapezoid;

Figure 6: Portion of the TriggeredTrapezoidPARC model that explicitly states the conditions for state transitions.

block TriggeredTrapezoidPARC
...

protected
Real rate;

equation
when {initial(),u,not u,y>offset+amplitude,y<offset} then
rate = ...

end when;
der(y) = rate;

end TriggeredTrapezoid;

1. Models should be easy to understand for both ma-
chines and people.

2. Models should be as declarative as possible, even
when it’s simpler to write imperative code. Such
models are easier to understand by both people and
machines.

3. Any “advice” to the compiler, especially dealing
with small epsilon quantities in models should be
done in standardized ways, such as IsEquals.

4. All variables should be declared by their physical
type.

5. Models should have assert statements describing
their range of applicability.
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Implementing stabilized co-simulation of strongly coupled
systems using the Functional Mock-up Interface 2.0
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Abstract

This paper addresses the main issue encountered with
the co-simulation of coupled systems that exchange
energy, i.e. the trade-off between computational per-
formances and numerical stability. This property is
first explained in details with the help of a simple
generic test system for which a large oversampling
with respect to the Nyquist frequency is required in
order to keep a good level of accuracy. The linearly
implicit stabilization method from [4] is then imple-
mented and tested thanks to the directional directives
computation capability of the FMI for Co-simulation
2.0 standard. Some minor extensions to the stan-
dard are proposed to efficiently implement the method.
When applied to the test system, it is shown that large
co-simulation steps can be taken, and hence significant
computation time speed-ups are observed.

Keywords: Functional Mock-up Interface; co-
simulation; linear system theory; stability

1 Introduction

Among the existing methods for coupling simulation
models and software, co-simulation is used for per-
forming transient simulations of coupled simulators1.
The fundamental principle of co-simulation is to lo-
cally decouple in time simulators that are synchro-
nized only through a limited set of coupling variables
at scheduled time instants.

The most widespread numerical co-simulation
scheme, is an explicit non-iterative Jacobi-type se-
quence of forward solving steps [7] done by each in-
volved numerical solver (the stepping is described on

1A simulator being defined as the combination of a simulation
model and mathematical libraries with a numerical solver, the lat-
ter being itself a combination of numerical integrators of ODE or
DAE systems, error estimators, step size and order control heuris-
tics, and discrete event schedulers.

figure 1 in the case of two simulators).

Figure 1: The explicit modular stepping scheme ap-
plied to the co-simulation of two coupled subsystems.
Hk is the size of the current co-simulation or macro
step.

As a consequence of this stepping scheme, each
simulator is seen as a discrete dynamical system from
the outside, and although each simulator is able to
reach convergence if taken alone, the co-simulation
process of energetically coupled systems is condition-
ally stable, even if the system is devoid of algebraic
loops. This means that the convergence of the co-
simulation process depends on the size of the co-
simulation step, also called macro-step. An abso-
lute stability limit does exist beyond which divergence
is rapidly reached, and slightly below this limit un-
damped numerical oscillations still propagate between
the subsystems. Divergence and poor accuracy are
usually avoided by taking small enough macro-steps,
which prevents the numerical solvers from taking large
numerical micro-steps and thus leads to reduced com-
putational efficiency with respect to continuously cou-
pled systems that are integrated with a unique variable-
step solver.

This property leads to a trade-off between computa-
tional efficiency and numerical stability which can be
studied on the simple test case of a strongly coupled
system introduced in the next section. In a latter sec-
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tion, a numerical method is then implemented within
the FMI for Co-simulation 2.0 framework, and tested
with the same system, showing that this trade-off can
be significantly enhanced.

2 A conditionally stable co-simulated
system

2.1 Description of the test system

We consider a two degrees of freedom hydraulic sys-
tem [1] obtained by connecting serially two elemen-
tary subsystems (see figure 2) made of:

1. a pipe modeled as a lumped-parameter nonlinear
R-I element, with first-mode inertial effects and
regular head losses

2. a volume modeled as a lumped-parameter non-
linear C-R element, with fluid-related compress-
ibility effects, and singular head losses due to a
leakage to the main circuit tank

The nonlinearities arise from the isothermal fluid prop-
erties that relate the density and compressibility to the
system pressure, and from the laminar-turbulent fric-
tion models of the head losses. Some boundary con-
ditions are introduced to model the surrounding envi-
ronment: a constant pressure source on the left, and a
transient flow rate source on the right.

2.2 Analysis of the continuously coupled sys-
tem

The figure 3 shows the transient response of the con-
tinuously coupled system to the change of flow rate
applied by the source on the right. The system param-
eters (pipe length and diameter, roughness, volume,
head loss, ...) are chosen to be the same in the left
and right subsystems. This choice is made to exem-
plify the nature of the coupling and its consequences
on the dynamics of the coupled system.

Indeed, the dynamics of each subsystem can be
studied by linearizing the system around some oper-
ating points, for example at the steady state following
the first transient, for 0.5 ≤ t < 1. Instead of building
the nonlinear state space and then evaluating the Jaco-
bian matrix, a better understanding of the dynamics is
obtained by analyzing the bond graph of the system.

Following the bond graph analysis of figure 4 and
considering that the energy storage and dissipation el-
ements are modeled using linear behaviour law, each
elementary subsystem can be modeled by a first order

Figure 3: Transient pressure in the two hydraulic
chambers (top) and source flow rate (bottom). Numer-
ical simulation performed with the LSODA variable-
step solver

Figure 4: Bond graph of the system showing the parti-
tioning in two subsystems. The coupling variables are
e1 (output effort from first subsystem on the left) and
f2 (output flow from second subsystem on the right).
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Figure 2: Sketch of an hydraulic two degrees of freedom system obtained by connecting two identical R-I-R-C
subsystems built with LMS Imagine.Lab AMESim

linear system of ordinary differential equations in the
state variables qi and pi associated with the C and I
energy storage elements. For subsystem 1, the state-
space equations are given by:

(
q̇1
ṗ1

)
=

(
−1/τ 1/I
−1/C −2ζ ω0

) (
q1
p1

)

+

(
0 −1
1 0

) (
e0
f2

)
(1)

where ω0 = 1/
√

IC, ζ = r/(2ω0 I) and τ = 1/(RC)
are the usual reduced parameters of a first degree of
freedom linear system, and e0, f2 are respectively the
effort source of the left subsystem, and the flow source
of the right subsystem. The output relation of subsys-
tem 1 provides the effort e1 associated with the capac-
itive element:

e1 =
(

1/C 0
) ( q1

p1

)
+
(

0 0
) ( e0

f2

)
(2)

For subsystem 2, it yields:

(
q̇2
ṗ2

)
=

(
−1/τ 1/I
−1/C −2ζ ω0

) (
q2
p2

)

+

(
0 −1
1 0

) (
e1
f3

)
(3)

where f3 is the flow source on the right of subsystem.
The corresponding output relation gives the flow f2
that is also the input of subsystem 1:

f2 =
(

0 1/I
) ( q2

p2

)
+
(

0 0
) ( e1

f3

)
(4)

For any subsystem, defined by equations (1) or (3),
and provided that the damping parameters ζ and 1/τ
are small, the eigenvalues of the Jacobian matrix are

given by

λi =−ζ ω0 (1 +
1

2ζ ω0 τ
)

± j ω0

√
1−ζ 2 (1− 1

2ζ ω0 τ
)2 for i = 1,2 (5)

whereas the eigenvalues of the whole system obtained
by coupling the equations (1) and (3) through the out-
put relations (2) and (4) are given by

λi =−ζ ω0 (1 +
1

2ζ ω0 τ
)

± j ω0

√
φ 2

i −ζ 2 (1− 1
2ζ ω0 τ

)2 for i = 1,2 (6)

where φ 2
i = 3±

√
5

2 are the coupling coefficients. The

non-unity ratio φ1
φ2

=
√

3+
√

5
3−
√

5
6= 1 expresses the fact

that the two subsystems are strongly coupled and that
part of the dynamics lie in the coupling itself.

2.3 Analysis of the co-simulated system

The nonlinear hydraulic system of figure 2 being parti-
tioned in the two subsystems shown on 5, the resulting
coupled system is co-simulated by assigning to each
subsystem a slave simulator which embeds a numeri-
cal solver. With the explicit modular stepping shown
on figure 1, the output variables of each subsystem e1
and f2 are sampled at the communication points tk, and
are taken as input variables which are held constant on
the duration Hk of the macro-step.

Based on the eigenvalues (6), it should be possible
to schedule the macro-steps (Hk)k=0,··· ,M−1. A first ap-
proach consists in choosing a step size smaller than the
Nyquist frequency, i.e. half the smallest time constant
of the system, in order to ensure a proper sampling of
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Figure 5: Sketch of the two nonlinear hydraulic sub-
systems being co-simulated within LMS Imagine.Lab
AMESim. Blocks labeled SHM and shm are used
for exchanging the coupling variables at the scheduled
communication points. SHM stands for master simu-
lator, whereas shm identifies the slave simulator.

the coupling variables:

Hk ≤
π

max
i=1,2
|λi|

Unfortunately, this bound is too high regarding sta-
bility. This can be shown empirically by performing
co-simulation with macro step sizes slightly smaller
than the Nyquist bound (about one tenth of the above
limit period, for small damping factors of less than
1 %). In a few macro-steps, instabilities propagate be-
tween the two subsystems that rapidly lead to diver-
gence. To understand this phenomena and be able to
correctly schedule the macro step size, it is necessary
to fully analyze the stability of the system with cou-
pling variables subjected to a zero-order sample and
hold process, as shown on figure 6.

Stability analysis of this type of loop sampled sys-
tem is carried by following the methodology described
in [8]. This analysis, which focuses on the dicretiza-
tion of the coupling variables induced by the stepping,
relies in other respects on the assumption that the sub-
systems can be exactly integrated by their respective
numerical solvers2. Since there are only two subsys-
tems connected through a unique loop, the analysis is
done by considering the discrete-time transfer func-
tion associated with any of the two coupling variables
which are obtained from the linearized3 state-space

2or at least that these variable-step solvers are able to bound
the truncation errors by any arbitrary tolerance

3around the same operating point reached in 0.5≤ t < 1

ee

-

6

�

?

ee

e1

f2

Subsystem 1

Subsystem 2

H

H

1−e−H s

s 1−e−H s

s

Figure 6: Bloc diagram of co-simulated system. H is
the length of the current macro-step.

system (1)(2)

e1(z) =−Z
[

1− e−H s

s
G1(s)

C

]
f2(z)

+ Z
[

ω2
0 G1(s)
s + α1

e0(s)
]

(7)

or (3)(4)

f2(z) = Z
[

1− e−H s

s
G2(s)

I

]
e1(z)

+ Z
[

ω2
0 G2(s)
s + α2

f3(s)
]

(8)

with
Gi(s) =

s + αi

(s + α1)(s + α2)+ ω2
0

and
α1 = 2ζ ω0, α2 = 1/τ

By combining the transfer functions (7)(8) and
noticing that z = eH s by definition, the closed-loop
transfer function is given by:

(1 + G?(z))e1(z) = ω2
0 Z
[

G1(s)
s + α1

e0(s)
]

− ω2
0

C
G?

1(z)Z
[

G2(s)
s + α2

f3(s)
]

(9)

in which

G?
i (z) = (1− z−1)Z

[
Gi(s)

s

]
(10)
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and
G?(z) = ω2

0 G?
1(z)G?

2(z) (11)

is the open loop discrete-time transfer function. With-
out giving here all the details about the calculation
of (10) obtained using tables of Z-transforms, the
Nyquist criterion [6] can be applied on the open loop
transfer function (11) to evaluate the stability.

For given values of the reduced parameters, for ex-
ample ζ = 0.1%, and ω0 τ = 0.5, the Nyquist plot (fig-
ure 7) shows that the system is unstable for macro-step
sizes such that H ω0 φ1

π ' 0.1.

Figure 7: (top) Nyquist plot of the open loop trans-
fer function for ζ = 0.1%, ω0 τ = 0.5, and H '
0.1π/ω0 φ1, which is a ten times oversampling of the
Nyquist frequency. (bottom) Zoom on the unit cir-
cle showing the encirclement of the -1 point by the
z = e j ω H contour for 0≤ ω H ≤ π

With the same values of the damping parameters, it
can be shown that the absolute stability limit is reached
for H ω0 φ1

π ' 0.01, and a phase margin of at least 2 ◦ is
obtained for a ratio less than 0.002, which means over-
sampling 500 times the Nyquist frequency. The ef-
fect of the damping coefficients on the phase margin is

analyzed on figure 8. This oversampling requirement

Figure 8: Plot of the phase margin versus macro-step
size H, for different values of the the damping factor
ζ (left), and of the decay time constant τ (right).

makes co-simulation unpractical for strongly coupled
systems that are lightly damped. Indeed, comparison
of the CPU time spent for performing the direct simu-
lation of the continuously coupled system of figure 2,
with the time needed for co-simulation with 500 times
oversampling, exhibits a large slowdown, as shown on
table 1. This is easily explained by looking at the num-
ber of micro-steps taken by the numerical solvers (last
column of table 1). In the case of continuous simula-
tion, the unique LSODA variable-step solver uses only
26000 steps, taking steps as large as 76 µs, which is
only a four times oversampling of the Nyquist limit
period π

ω0 φ1
. With co-simulation the local numerical

solvers used for integrating each subsystem (DOPRI5
variable step solvers) cannot take large steps since the
micro-step size is bounded by the macro-step size. It
yields a large number (2× 106) of dynamics function
evaluation by the two numerical solvers, which is in-
efficient with respect to the frequencies of the coupled
system.

3 Implementing the linearly implicit
stabilization method

The rationale behind this method is to mitigate the
stability-performance trade-off exemplified in the last
section, by extending the phase margin. The linearly
implicit stabilization method, first described by Arnold
[4], makes use of the Jacobian matrices of the subsys-
tems to build reduced linear models of the subsystems
in state-space form that are exactly integrated locally
in time using an unconditionaly stable method. This
allows to take relatively large macro-steps, which in

Session 2A: FMI 2

DOI
10.3384/ECP14096213

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

217



Type of simulation CPU Number of Maximum micro-
time [s] micro-steps step size [µs]

Direct simulation with LSODA < 1 26 000 76
variable-step solver

Co-simulation with H = 1 µs 70 2 000 000 1
(H π

ω0 φ1 = 0.002)

Table 1: Comparison of continuous time simulation with co-simulation

turn do not restrict the size of the micro-steps taken by
the embedded numerical solvers.

3.1 Description of the method

According to the FMI specification [5] the external
representation of a system contained in a slave corre-
sponds to a system of ordinary differential equations.
Consequently the mathematical model of the whole
coupled system is described by the following set of
ODEs:

ẋ(t) = f (x(t),u(t)) (12)

y(t) = g(x(t),u(t)) (13)

u(t) = K y(t) (14)

where x(t) = (x1(t), x2(t), · · · , xN(t)) is the
state vector obtained by gathering the state
vectors of the N ≥ 2 subsystems being in-
volved, u(t) = (u1(t), u2(t), · · · , uN(t)) and
y = (y1(t), y2(t), · · · , yN(t)) are the input and
output variables of all subsystems.

The third equation, which is not specified in the
slave subsystems but in the co-simulation master, is
required to close the above system. It defines how the
output variables are connected to the input variables
through a K matrix, which verify the following prop-
erties:

• it is a square matrix, since it can be assumed with
no loss of generality that the output of a subsys-
tem is connected to exactly one input of another
subsystem

• the elements of K take their value in {0,1}
• there is exactly one 1 value per row and column

of K

The FMI specification [5] for Co-simulation allows
a slave subsystem to expose its Jacobian matrices re-
lated to the equations (12-13):

A = ∇x f (x,u) B = ∇u f (x,u)

C = ∇xg(x,u) D = ∇ug(x,u)

The linearly implicit stabilization method intro-
duced by Arnold in [4] relies on the following three
assumptions:

1. the product DK is assumed to be nilpotent [3],
since the class of co-simulation methods consid-
ered here do not take into account algebraic loops
on coupling variables

2. Inside a co-simulation macro-step, when t ∈
[tk, tk + Hk[, part of the system (12-13) can be ap-
proximated by a linear time invariant system ob-
tained by linearizing the ODEs and the output re-
lation around the point x = x(tk), u = u(tk)

3. The linear approximate system is discretized us-
ing either the backward Euler method or the
trapezoidal rule [2]

Assumption 2 leads to consider the following linear
system:

ξ̇ (t) = ẋ(tk)+ Aξ (t)+ B(w(t)−u(tk)) (15)

η(t) = y(tk)+C ξ (t)+ D(w(t)−u(tk)) (16)

where A,B,C,D are obtained at t = tk and ξ , η and
w are the counterpart of x, y and u in the linear system.
With this choice of variable, the corresponding initial
condition is given by ξ (tk) = 0.

The coupling equation (14) is thus rewritten to cou-
ple the dynamic system of each subsystem with the
approximate linear system, inside a macro-step:

u(t) = K η(t) (17)

w(t) = K y(t) (18)

On the duration of a macro-step, the differential
algebraic system made of equations (12), (15), (13),
(17), (16), (18) holds. As there is no algebraic loop
(assumption 1), this DAE can be reduced to a coupled
set of ODEs by taking the derivate the last four equa-
tions.
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Following assumption 3, the ODE (15) is first dis-
cretized using one of the two proposed methods:

(I−r (t−tk)A)ξ (t) = (t−tk) [ẋ(tk)+r B(w(t)−u(tk))]

where r depends on the discretization method and is
either 1 for backward Euler or 0.5 for the trapezoidal
rule. This equation provides an estimate for the state
vector derivative:

ξ̇ (t)'A (t) [ẋ(tk)+ r B(w(t)−u(tk))]

as well as for the output relation (16):

η̇(t) = C ξ̇ (t)+ Dẇ(t)

= CA (t) [ẋ(tk)+ r B(w(t)−u(tk))]+ Dẇ(t)

(19)

with
A (t) = (I− r (t− tk)A)−1

In order to explicitly take into account the lack of
algebraic loop, the equation (18) is approximated us-
ing the assumption 2. This means that the inputs w are
obtained from a linear approximation of the outputs y
of the subsystems around the point t = tk:

w(t)−u(tk) = K [C (x(t)− x(tk))+ DK (η(t)− y(tk))]

ẇ(t) = K [C ẋ(t)+ DK η̇(t)]

After substituting these two relations into (19) and
noticing the nilpotency of DK due to assumption 1,
an explicit differential equation for the outputs η is
obtained:

η̇(t) = CA (t) ẋ(tk)+ DKC f (x(t),K η(t))

+ rCA (t)BK [C (x(t)−x(tk))+DK (η(t)−y(tk))]
(20)

The coupling condition (17) applied to (12) finally
rewrites as:

ẋ(t) = f (x(t),K η(t)) (21)

These two ODE (20) and (21) along with the ini-
tial condition η(tk) = y(tk) explicitly define the dy-
namics of the system on the duration of a macro-step
[tk, tk+1 = tk + Hk[. At the end of the step the outputs
are evaluated and propagated among the subsystems
using (13):

y(tk+1) = g(x(tk+1),K η(tk+1))

3.2 Computational flow

The following notation is introduced to describe the
submatrices obtained by restricting to the variables in-
volved in the slave simulator numbered s∈{1, · · · ,N}:

• Ks,s is the square submatrix of K obtained by tak-
ing the columns corresponding to the output vari-
ables of slave s, and the rows corresponding to
the input variables of the other slave simulators
that are connected to the outputs of slave s;

• Ks,s is the square submatrix of K obtained by tak-
ing the rows corresponding to the input variables
of slave s, and the columns corresponding to the
output variables of the other slave simulators that
are connected to the inputs of slave s.

The computational flow is a two steps process, the
first step taking place at the communication point of
co-simulation, the second step being the continuous
time solving of the coupled DOE system (20)(21) dur-
ing one co-simulation macro-step.

At t = tk: The slave subsystem s ∈ {1, · · · ,N} com-
putes:

• the derivative of its state vector

ẋs(tk) = fs(xs(tk),Ks,s ηs(tk))

• its outputs

ys(tk) = gs(xs(tk),Ks,s ηs(tk))

• the Jacobian matrices

As,s = ∇x fs(xs(tk),Ks,s ηs(tk))

Bs,s = ∇u f (xs(tk),Ks,s ηs(tk))

Cs,s = ∇xgs(xs(tk),Ks,s ηs(tk))

Ds,s = ∇ugs(xs(tk),Ks,s ηs(tk)) (22)

• it also provides the updated value xs(tk) of its
state vector. If k = 0 this is the global initial con-
dition of (12)

• it receives its inputs and set up the stepwise local
initial condition for its extended state:

Ks,s ηs(t+
k ) = Ks,s ys(tk) (23)
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For tk < t ≤ tk+1: The slave subsystem s ∈
{1, · · · ,N} solves a subset of the coupled DOE system
(20)(21):

ẋs(t) = fs(xs(t),Ks,s ηs(t)) (24)

Ks,s η̇s(t) = fs(xs(t),Ks,s ηs(t), t) (25)

where fs is evaluated by the master:

fs(xs,Ks,s ηs, t) = Ks,sCs,.A (t) ẋ(tk)

+ Ks,s Ds,s Ks,sCs,s fs(xs,Ks,s ηs)

+ r Ks,sCs,.A (t)B.,s Ks,s [Cs,s (xs− xs(tk))

+ Ds,s Ks,s (ηs− ys(tk))] (26)

Practically, the derivative of the state vector ẋs is
provided by the slave to the master, which uses it for
evaluating the second term of equation (26) instead
of evaluating the function fs that appears in the right-
hand side of equation (24).

3.3 Implementation within the FMI frame-
work

The guiding principle behind the organization of com-
putation is a strict devolution of responsability be-
tween the slaves and the master in the co-simulation
process. Each slave FMU is responsible locally for the
system being solved and does not have any informa-
tion about the coupling and the surrounding environ-
ment. It is up to the master algorithm to gather and as-
semble this information from the different slaves and
to provide to the slaves ways for evaluating the ad-
ditional ODE that represent the linearized part of the
coupled system. This information is provided partly in
the description4 of the model structure of each slave,
and partly at run-time through appropriate functions
that evaluate the directional derivatives of the system
enclosed in the FMU. With this structure-related infor-
mation, as well as the variables exchanged at commu-
nication like the outputs of the models, state variables
and their derivatives, a cooperation between the mas-
ter simulator and slave simulators can be set up that
keep the organization clean from the point of view of
computational responsabilities.

In addition, the implementation of the stabilized
co-simulation has to be compatible with the classi-
cal modular stepping specified by the FMI for Co-
simulation [5]. This means that the stabilization
method operates only if both the slaves FMU and the

4stored in the corresponding XML file distributed with the
FMU

co-simulation master cooperate. If it is not supported
by any part of the coupled systems, the classical mod-
ular stepping with stepwise extrapolation has to be ap-
plied.

On the side of the slave FMU, it is mandatory to
first enable the computation of the directional direc-
tives of all state variables and connected outputs, with
respect to all state variables and connected inputs.
This is done by declaring the flag providesDirection-
alDerivative and by implementing the fmiGetDirec-
tionalDerivatives function of the FMI specification.
Moreover, the stabilization method being a model-
based extrapolation, it is not compatible with the op-
tional history-based extrapolation schemes that are al-
lowed by the FMI specification. So the current canIn-
terpolateInputs attribute has to be extended to specify
which type of extrapolation is actually supported.

The way the slave handles its input variables has
to be modified: the input variables that appear in the
dynamics equation (24) are now considered as addi-
tional state variables, according to equation (25), and
the input variables now act as initial conditions (equa-
tion (23)) for these state variables. The state vectors to
be solved by the numerical integrator embedded in the
slave is thus (xs,us), where us is actually Ks,s ηs, the
actual mapping between the outputs ηs of the linear
system and the inputs of the slave being done by the
master, since the structural information about connec-
tion (i.e. the elements of the K matrix) is only known
by the master simulator.

If the master does not support stabilization, the
right-hand side of equation (25) reduces to zero and so
the actual inputs of the slave do not vary: a zero-order
hold extrapolation is thus performed as defined in the
FMI specification when the canInterpolateInputs flag
is not set. In that case, the inputs of each slave is di-
rectly given by the initial condition (23), in which ys

are the outputs of the slaves that are fed to the inputs of
the slave number s, through the fmiGetReal and fmiSe-
tReal functions called by the master simulator at each
communication point (tk)k=0,··· ,M−1.

On the side of the master simulator, more tasks are
required to implement the linearly implicit stabiliza-
tion method. The master has to set up a callback func-
tion that is used to evaluate the dynamics associated
with the inputs of the slaves. Before co-simulation,
the model structure information of the slaves is used to
prepare the matrices and the computations that appear
in (26). Then, during co-simulation, these elements
are updated at each communication step, through calls
to the fmiGetContinuousStates, fmiGetDerivatives and
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fmiGetDirectionalDerivatives functions. Notice that
the first two functions are originally defined only in
the Model Exchange part of specification, so the Co-
simulation specification has to be extended in the fu-
ture. The same is true about the availability of the
callback function associated with relation (26). This
function is aimed at being called by the the numerical
solvers of the slaves, when performing the numerical
integration of (24)(25). A proposal for extending the
FMI for Co-simulation is to define a function called for
example fmiGetStabilizedInputDerivatives and having
the following arguments:

• the current time of the slave numerical solver at
which the right hand side of (26) is desired

• the current value of the additional state variables,
i.e. the stabilized inputs us = Ks,s ηs

• the current values of the state variables and state
derivatives (xs, fs(xs,us)) of the slave

• practically, a reference to the master environ-
ment, declared as componentEnvironment during
instantiation, may be needed to help the master
simulator identify the calling slave.

This function should return the vector of derivatives of
the stabilized inputs, according to relation (26). It has
to be declared by the master environment in the fmi-
CallbackFunctions argument of the slave instantiation
function.

The master algorithm is roughly sketched in Algo-
rithm 1, in which the additional tasks required for sta-
bilization are emphasized.

3.4 Test results

The hydraulic test case studied in section 2.1 and
composed of two elementary hydraulic systems con-
nected in serie is tested under various conditions of
co-simulation:

• Reference implementation : transient simulation
of the continously coupled system, using the
LSODA variable-step solver [2]

• Co-simulation with native interfaces in the LMS
Imagine.Lab AMESim simulation environment,
or through a specially crafted prototype of a mas-
ter simulator supporting the FMI 2.0 RC1 [5]
specification with the proposed extensions de-
scribed in section 3.3

Require: N slave FMU s∈ {1, · · · ,N} and a sequence
of M macro-steps {H0, · · · ,HM−1}.
read the model structure description of slaves and
create the connection matrix K
instantiate each slave s and provide to it a callback
function fs

provide the initial conditions for all slave variables
initialize the slaves
initialize time t = t0
for k = 0 to M−1 do

get the outputs of slaves in y
get the state variables and derivatives xs, ẋs of
slaves
get the Jacobian matrices As,s,Bs,s,Cs,s,Ds,s of
slaves
set the inputs of slaves as u = K y
perform one macro-step for the slaves from t up
to t + Hk
update time t← t + Hk

end for
Algorithm 1: Master simulator algorithm. Lines in
blue correspond to the additional tasks required by the
stabilization method.

• Comparison of stabilized co-simulation with ex-
plicit modular stepping

• Comparison of a mixed C/Python implementa-
tion for the co-simulation master, or «direct» C
implementation, both with DOPRI5 variable-step
solver for the slave simulators

For comparison purpose, all tests are performed
with the same values of the reduced damping coeffi-
cients as in section 2.3, namely ζ = 0.1 % and ω0 τ =
0.5. The limit period corresponding to the Nyquist fre-
quency is π/ω0 φ1' 425µs, the absolute stability limit
is reached for H ' 5 µs, and a 2 ◦ phase margin is ob-
tained for H = 1 µs.

The test results are summarized in table 2. The ac-
curacy of co-simulation is measured by taking the root
mean square error on the coupling variables e1 and f2
with respect to the reference implementation and the
mixed tolerance for all the variable-step solvers is set
to 10−5. In all co-simulation tests, the CPU time is
measured by setting the print interval (i.e. the sam-
pling of result variables) to 50 µs, corresponding to the
largest macro-step size used across the tests, in order
to have comparable processing times regarding result
storage and disk access.

The stabilization method allows to choose large
macro-step sizes H, up to the size of the numerical
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Tested implementation Macro-step RMS CPU
size H [µs] error time [s]

#1. Continously coupled system with variable step solver in
AMESim

reference 1.0

#2. Explicit co-simulation, native AMESim interface 1 104 70.0
#3. Stabilized co-simulation, native AMESim interface 50 207 8.5
#4. FMI 2.0 explicit co-simulation, mixed Python/C prototype 1 123 40.0
#5. FMI 2.0 stabilized co-simulation, mixed Python/C prototype 50 237 36.0
#6. FMI 2.0 explicit co-simulation, direct C prototype 1 123 12.0
#7. FMI 2.0 stabilized co-simulation, backward Euler, direct C
prototype

50 215 1.5

#8. FMI 2.0 stabilized co-simulation, trapezoidal rule, direct C
prototype

50 152 1.5

Table 2: Summary of tests performed with different implementations, macro-step sizes H and discretization
methods.

micro-steps taken by the variable-step solver in the ref-
erence case. Indeed, the absolute stability limit of co-
simulation seems to be reached for macro-step sizes of
about 76 µs, which is the maximum numerical step size
reported in table 1. Consequently, a maximum value
of 50 µs is used for comparison across the tests #3, #5,
#7 and #8.

Clearly, the performances obtained for the maxi-
mum macro step size depend on the implementation.
Additional operations are needed by the stabilization
method like the computation of Jacobian matrices and
integration of the additional state equations related to
the inputs on the side of the slaves, and the evaluation
of the approximate dynamics (26) on the side of the
master. This overhead, if not efficiently implemented,
may cancel out the gain over the number of micro-
steps. This is the case with the mixed Python/C imple-
mentation #5 of the master simulator, which exhibits
poor performances with respect to #3, due to the too
many context switches between the two environments.
On the contrary, the two other C-based implementa-
tions #3 and #7 (or #8), show a large speed-up factor
of about 8 with respect to the corresponding explicit
co-simulations #2 and #6.

Regarding the accuracy, the tests #3, #5 and #7,
which are based on a backward Euler method, yield
nearly the same level of accuracy, about twice the error
obtained with explicit co-simulation at H = 1 µs. The
increase of the RMS error with the macro-step size is
depicted on figure 9 for tests #7 and #8. Clearly, the
use of a second-order method like the trapezoidal rule
provides more accurate results, for the same computa-
tional load.

Figure 9: RMS errors obtained with respect to contin-
uously coupled simulation versus the macro step size.
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4 Conclusions

Although co-simulation is generally considered a ro-
bust method of simulator coupling, this paper pre-
sented the main issue that remains with the co-
simulation of strongly coupled system, namely the
trade-off between stability (or accuracy) and the com-
putational performances. With the help of a simple
yet representative example of this class of system, it
showed how the stability issue may affect the com-
putational load, since an oversampling factor as large
as 500 is observed with respect to the highest dynam-
ics of the system. The implementation of the linearly
implicit stabilization method within the framework of
the FMI for Co-simulation 2.0 standard then showed
that significant speed-up can be regained at the price
of a moderate loss of accuracy, provided that an effi-
cient implementation is available as well as some mi-
nor extensions to the FMI for Co-simulation specifi-
cation. With the advent of the FMI 2.0 specification,
which one of its major enhancements is an interface
for the directional derivative matrices, it seems that
the efficient co-simulation of strongly coupled sys-
tems becomes feasible. Although this paper focused
on the stabilization of the more common type of co-
simulation, i.e. the explicit modular stepping, fur-
ther performance gains are expected with more ad-
vanced types of co-simulation, for instance by combin-
ing the stabilization method with variable macro-step
size heuristics or implicit (iterative) stepping, since
these currently seldom used techniques are now en-
abled by the FMI specifications.
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Abstract

The growing complexity of systems, together with in-
creasing available parallelism provided by multi-core
chips, calls for the parallelization of simulation. Simu-
lation speed-ups are expected from co-simulation and
parallelization based on models splitting into loosely
coupled sub-systems in the framework of Functional
Mockup Interface (FMI). However, slackened syn-
chronization between the sub-models and associated
solvers running in parallel introduces integration er-
rors, which must be kept inside predefined bounds. In
this paper, context-based extrapolation is investigated
to improve the trade-off between integration speed-
ups, needing large communication steps, and simula-
tion precision, needing frequent updates for the mod-
els inputs. An internal combustion engine, based on
FMI for model exchange, is used to assess the paral-
lelization methodology.

Keywords: FMI; parallel simulation; signal pro-
cessing; polynomial extrapolation; real-time; context-
based decision

1 Introduction

During the design process of complex systems, such
as in automotive, simulation is proven to be an in-
disputable step between concept design and prototype
validation. Realistic simulations allow for the prelim-
inary evaluation, tuning and possibly redesign of pro-
posed solutions ahead of implementation, thus lower-
ing the risks. To be confident in the result, building
such simulations requires high-fidelity models both for
the components and for their interaction.

Currently, building high-fidelity system-level mod-
els of cyber-physical systems in general and automo-

tive cars in particular, is a challenging duty. One prob-
lem is the diversity of models, designed for different
environments, provided by various multi-disciplinary
teams. Distinctive environments are preferred for a
specific use due to specific strengths (modeling lan-
guage, libraries, solvers, cost. . . ). The FMI specifica-
tion has been proposed to improve this issue [1].

However, the simulation of high-fidelity models is
time consuming, and reaching real-time constraints is
out of the capabilities of single-threaded simulations
running on single cores. Simulation speed-ups are
needed, in particular by splitting the systems into sub-
models to be executed in parallel on currently available
multi-core chips.

Unfortunately most of the existing simulation soft-
ware are currently unable to exploit multi-core plate-
forms, as they rely on sequential Ordinary Differential
Equations (ODE) and Differencial Algebraic Equa-
tions (DAE) solvers. The co-simulation approaches
can provide significant improvements by allowing to
simulate together models coming from different areas,
and to validate both the individual behaviors and their
interaction [2]. The simulators may be exported from
original authoring tools as Functional Mock-up Units
(FMUs), and then imported in a co-simulation envi-
ronment. Hence, they cooperate at run-time, thanks to
the FMI definitions of their interfaces, and to the mas-
ter algorithms of these environments.

The “FMI for model exchange” framework allows
for solving independently the sub-models using cus-
tom solvers. In this context, several methods have
been already proposed to perform real-time distributed
simulation of complex physical models. For exam-
ple, in [3], the study focused on the case of fixed-step
solvers. Then, in [4], the study was extended to handle
the case of variable time-step solvers.

However, accounting for the dependencies between
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the sub-models needs to synchronize them at some
time intervals. Certainly, this synchronization avoids
the propagation of numerical errors in the simula-
tion results and guarantees their correctness. Unfor-
tunately, these synchronization constraints also lead
to waiting periods and idle time of some processors.
Consequently it decreases the potential efficiency of
the threaded parallelism existing in multi-core plat-
forms.

To overcome this limitation, and to more efficiently
exploit the available parallelism, the dependencies
constraints should be relaxed as far as possible while
keeping accumulated errors under control. In a first
step, this can be performed by a well done system de-
composition that minimizes the dependencies between
the sub-models. For example, a method was proposed
in [5] for distributed simulation using a technology
based on bilateral delay lines called transmission line
modeling (TLM), where the decoupling point is cho-
sen when the variables change slowly and the time-
step of the solver is relatively small.

Unfortunately, most often perfect decoupling can-
not be reached and data dependencies still exist be-
tween parallel blocks. Some synchronization between
them must be kept tight through small communica-
tion steps between models, which prevents the variable
time-step solvers to reach large integration steps.

It is proposed that the synchronization steps can be
stretched out with limited deterioration of the simu-
lation precision, thanks to a well-suited, albeit sim-
ple, context-based polynomial extrapolation of the ex-
changed data beyond the synchronization points be-
tween sub-models.

This paper is organized as follows. First, a formal
model of a hybrid dynamical system is given and a
model of the integration errors due to slack synchro-
nization is sketched in Section 2. The background on
prediction and polynomial prediction algorithms are
developed in Section 3. The principles for context-
based extrapolation, to cope with the hybrid nature of
the models, are exposed in Section 4. The method-
ology is assessed in Section 5 using the model of an
internal combustion engine.

2 Motivation for extrapolation

2.1 Model formalization

Consider a hybrid dynamical system Σ described by a
set of nonlinear differential equations:

Ẋ = f(t,X,D,U) for tn ≤ t < tn+1,
Y = g(t,X,D,U),

where X ∈ RnX is the continuous state vector, D ∈
RnD is the discrete state vector, U ∈ RnU is the input
vector, Y ∈ RnY is the output vector and t ∈ R+ is the
time.

The sequence (tn)n≥0 of strictly increasing time
instants represents discontinuity points called “state
events”, which are the roots of the equation

h(t,X,D,U) = 0.

The function h is usually called zero-crossing function
or event indicator. It is used for event detection and
location [6].

At each time instant tn, a new continuous state vec-
tor can be computed as a result of the event handler

X(tn) = I(tn,X,D,U),

and a new discrete state vector can be computed as a
result of discrete state update

D(tn) = J(tn−1,X,D,U).

If no discontinuity affects a component of X(tn), the
right limit of this component will be equal to its value
at tn.

It is assumed that Σ is well posed in the sense that a
unique solution exists for each admissible initial con-
ditions X(t0) and D(t0) and that consequently X ,
D, U , and Y are piece-wise continuous functions in
[tn, tn+1].

To execute the system in parallel, the model must be
split into several sub-models. Assume for simplicity,
that the system is decomposed into two subsystems as
in Figure 1. Our approach generalizes to any decom-
position into N blocks of system Σ.

Therefore, the system can be written as:
{
Ẋ1 =f1(X1,X2,D1,U1)
Y1 =g1(X1,X2,D1,U1)

and
{
Ẋ2 =f2(X1,X2,D2,U2)
Y2 =g2(X1,X2,D2,U2)

with X = [X1 X2]T and D = [D1 D2]T , where T

denotes the matrix transpose.
Here, U1 are the inputs needed for Σ1 and U2 are

the inputs needed for Σ2. In other words,U1∪U2 =U
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U Y U Y

U1

U2

Y1

Y2

X1 X2Σ
Σ1

Σ2

Figure 1: System splitting for parallelization.

and U1 ∩U2 can be an empty set or not according to
the achieved decoupling.

In the same way, Y1 are the outputs produced by Σ1
and Y2 are the outputs produced by Σ2. In other words,
Y1∪Y2 = Y and Y1∩Y2 = /0.

To perform the numerical integration of the whole
multivariable system, each of these simulators needs
to exchange, at communication points, the data needed
by the others (see Figure 2). To speed up the inte-
gration, the parallel branches must be as independent
as possible, so that they are synchronized at a rate P
by far slower than their internal integration step hn

(P� hn). Therefore, between communication points,
each simulator integrates at its own rate (assuming a
variable step solver), and considers that the data in-
coming from others simulators is hold as constant.

Σ1

Σ2

Initialization Exchange 1 Exchange 2

Integration step hn Communication step P

Communication step PIntegration step hn

Σ

ts ts+1tn tn+1 ts+2

Figure 2: Σ split into Σ1 and Σ2 for parallel simulation.

It is likely that large communication intervals allow
to speed up the numerical integration, but may result
in integration errors and poor confidence in the final
result. Modeling the errors induced by slack synchro-
nization is a first step to find effective directions to im-
prove the trade-offs between integration speed and ac-
curacy.

2.2 Integration errors and parallelism

To compute the next state value Xi(tn+1), i = 1,2 (see
Figure 3), the numerical solver needs at least the val-
ues of Xi(tn) and Ẋi(tn) = fi(X(tn)) (e.g. for Euler

integration). The inputs and discrete states are omitted
for clarity.

f1(X(tn))

f2(X(tn))X2(tn)

X2(tn)

X1(tn)

X1(tn) Solver

Solver

X1(tn+1)

X2(tn+1)

X1(tn)
.

X2(tn)
.

Σ1

Σ2

X=[X1 X2]
T

Figure 3: System’s internal composition.

When computing Ẋ1(tn) = f1(X(tn)), the value of
the local variable X1(tn) is always available. This is
not the case for X2(tn), which is computed in a par-
allel branch. In fact, X2 is only available in branch
1 at synchronization with interval P, which is larger
than the integration step hn. In other words, X2(tn)
is available only when the time tn corresponds with
a synchronization point ts (see Figure 2), otherwise
its estimated value is the one transmitted at the pre-
vious synchronization point. Let us evaluate the evo-
lution of integration errors due to slack synchroniza-
tion between the parallel branches when computing
Ẋ1(tn) = f1(X(tn)). The analysis on Σ1 remains valid
for Σ2.

The influence of using a delayed value of X2 in
f1(.) (respectively X1 in f2(.)) is due to the lack of
updated data during a delay τ , represented by the dif-
ference between the current integration time tn and the
last synchronization time ts as

τ = tn− ts (1)

with
ts = P

⌊ tn
P

⌋

therefore

ts =

{
lP when tn = l.P l ∈ N∗
(l−1)P when tn < l.P l ∈ N∗

leading to
{

τ = 0 when tn = ts
τ > 0 when tn > ts

Therefore, the induced error at tn+1 in the subsys-
tem Σ1, denoted E1(tn+1), is the difference between
X1(tn+1) for the unsplit model (2) and X̃1(tn+1) for
the split model (3):
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X1(tk+1) =X1(tk)+hkf1(X1(tk),X2(tk)), k ∈ {0, . . . ,n}
(2)

X̃1(tk+1) =

{
X1(tk+1) k = 0
X̃1(tk)+ hkf1(X̃1(tk),X̃2(tk− τ)) k ≥ 1

(3)
In other words,

E1(tn+1) =
n
∑

k=0
E1(tk)

+ hn[f1(X1(tn),X2(tn))−f1(X̃1(tn),X̃2(tn− τ))]
=E1,p(tn)+E1,c(tn+1)

where

E1,c(tn+1) = hn[f1(X1(tn),X2(tn))−f1(X̃1(tn),X̃2(tn− τ))]

E1,p(tn) =
n
∑

k=0
E1(tk)

(4)

HereE1,c(tn+1) is the current error generated at tn+1
whatever a synchronization or not. So, the global
decoupling error E1(tn+1) is the result of the accu-
mulation of past errors E1,p(tn) and the current error
E1,c(tn+1). As a conclusion, to achieve a correct re-
sult, two conditions must be met for the current (local)
error and the global error:

• |E1,c(tn+1)|< εloc: allowed local error

• |E1(tn+1)|< εglo: allowed global error

These conditions can be satisfied by acting on some
parameters. Indeed, in (4), the delay error depends
on the integration steps hn and on the delay τ . The
integration step hn is already adapted following the
numerical solver strategy and the user-defined solver
tolerance. The delay τ , however, depends on the last
synchronization time ts, which is function of the syn-
chronization period P.

The delay induced error tends to zero when the de-
lay τ tends to zero, which means that the delay error
can be eliminated with the synchronization interval set
equal to the integration steps. In other words, all the
parallel subsystems should be integrated at the same
adaptive rate (in the case of adaptive synchronization
period), or with same fixed time-step. These two as-
sumptions are very restrictive, as they force to choose
a global adequate time-step regardless the discontinu-
ities and the stiffness of the sub-systems. Compared
with the single-threaded simulation, the only possi-
ble speed-ups during a parallel execution would be
brought by the brute force computation power of the
multicore machine, reduced by the parallelization cost.

Therefore, considering a split model and a parallel
execution, a trade-off must be found between accept-
able simulation errors, thanks to tight enough synchro-
nization, and simulation speed-ups thanks to decou-
pling between sub-models.

To add a degree of freedom to this trade-off achieve-
ment, we propose to extrapolate model inputs to com-
pensate the stretching out of the communication steps
between sub-models. Note that in this first approach
of the polynomial extrapolation, the synchronization
interval is considered as constant. Future enhance-
ments will consider communication step size control,
for which the error analysis and estimation can be in-
spired by [7]. Extrapolation is sensitive for different
reasons:

• prediction should be efficient: causal, sufficiently
fast and reliable;

• there exist no universal prediction scheme, efficient
with every signal;

• polynomial prediction may fail in stiff cases [8] (cf.
Section 4 for details).

We choose to base our extrapolation on polynomial
prediction, which allows fast and causal calculations.
The rationale is that, in this situation, the computing
cost of a low-order polynomial predictor would be by
far smaller than the extra model computations needed
by shorten communication steps. Since such predic-
tions would be accurate neither for any signal (for in-
stance, blocky versus smooth signals) nor any signal
behavior (slow variations versus steep onsets), we bor-
row a context-based approach , common with lossless
image coders [9], such as GIF or PNG formats. The
general aim of these image coders is to predict a pixel
value based on a pattern of causal neighboring pixels.
Compression is obtained when the prediction residues
possess smaller intensity values, and more generally a
better distribution (concentrated around close-to-zero
values) than the pixels in the original image. They
may thus be coded on smaller “bytes”, using entropy
coding techniques. In images, one distinguishes ba-
sic “objects” such as smooth-intensity varying regions,
or edges with different orientations. Based on simple
calculation of the prediction pattern pixels, different
contexts are inferred (e.g. flat, smooth, +45o or −45o

edges, etc.). Look-up table predictors are then used,
depending on the context.

In the proposed approach, we build a heuristic table
of contexts (in Section 4) based on a short frame of
past samples, and affect a pre-determined polynomial
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predictor to obtain a context-dependent extrapolated
value. We now review the principles of extrapolation.

3 Causal polynomial prediction

3.1 Background on prediction

This section is dedicated to a peculiar instance of dis-
crete time series, or signal, forecasting. The neigh-
boring topics of prediction or extrapolation represent
a large body of knowledge in signal processing [10],
econometrics [11] or control [12].

In the present case, we consider a real-valued, reg-
ularly sampled signal u, with period P, known at syn-
chronization or communication intervals. Prediction
in general assumes the knowledge of signal formation
models. Since very little is assumed on the signal’s dy-
namics (no behavioral/explicit model is available, pe-
riodicity and regularity are unknown), and as we oper-
ate under real-time conditions, implying strong causal-
ity, only a tiny fraction of time series methods are
practically applicable. Zeroth-order hold or nearest-
neighbor extrapolation is probably the most natural,
the less hypothetical, and the less computationally ex-
pensive forecasting method. It consists in using the lat-
est known sample as the predicted value. It possesses
small (cumulative) errors when the time series is rela-
tively flat or its sampling rate is sufficiently high, with
respect to the signal’s dynamics. In other words, it is
efficient when the time series is sampled fast enough to
ensure small variations between two consecutive sam-
pling times. However, it indirectly leads to under-
sampling related disturbances, that affect the signal
content. They appear as quantization-like noise, off-
set or peak flattening.

In our co-simulation framework, communication in-
tervals are not chosen arbitrarily small for computa-
tional efficiency. Thus, the slow variation of inputs
and outputs cannot be ensured in practice. Hence, bor-
rowing additional samples from the past known data
and using higher-order extrapolation methods could be
beneficial, provided a trade-off of cost and error is met.
Different forecast methods of various fidelity and com-
plexity may be efficiently evaluated. We focus here on
polynomial methods, for their simplicity and ease of
implementation, following initial works in [13, Chap-
ter 16].

3.2 Notations

We denote by P(δ ,λ ) the least-squares polynomial pre-
dictor of degree δ ∈ N and prediction length λ ∈ N∗.

The prediction length λ represents the number of past
samples required for each prediction, performed in
the least-squares sense [14, p. 227 sq.]. For conve-
nience, we use a 0-last-sample-index convention: we
re-index the frame of the λ past samples such that
the last known sample is indexed by 0. Computa-
tions for the prediction at relative time τ (loosely de-
noted by u(τ)), defined in (1), thus require past sam-
ples {u1−λ ,u2−λ , . . . ,u0}. We first recall principles
and formulas for a standard least-squares, degree-two
or parabolic prediction. The general equations are de-
rived next.

3.3 Polynomial prediction of degree δ = 2

We look for the best fitting parabola, i.e. with degree
δ = 2, u(t) = aδ + aδ−1t + aδ−2t2 to approximate the
set of discrete samples {u1−λ ,u2−λ , . . . ,u0}. The pre-
diction polynomial P(2,λ ) is defined by the vector of
polynomial coefficients a= [a2,a1,a0]T . They are de-
termined, in the least-squares sense [15], by minimiz-
ing the squared or quadratic, error:

e(a) =
0

∑
l=1−λ

(
ul− (a2 + a1l + a0l2)

)2
.

Note that the l indices here are non-positive, between
1−λ and 0. The minimum error is obtained by solving
the following system of equations (zeroing the deriva-
tives with respect to each of the free variables ai):

∀i ∈ {0,1,2}, ∂e(a)

∂ai
= 0

namely:





0

∑
l=1−λ

l0 (ul− (a2l0 + a1l1 + a0l2)
)

= 0,

0

∑
l=1−λ

l1
(

ul− (a2l0 + a1il + a0l2)
)

= 0,

0

∑
l=1−λ

l2 (ul− (a2l0 + a1l1 + a0l2)
)

= 0.

(5)

The system in (5) may be rewritten as:





0

∑
1−λ

ul = a2

0

∑
1−λ

l0 + a1

0

∑
1−λ

l1 + a0

0

∑
1−λ

l2 ,

0

∑
1−λ

lul = a2

0

∑
1−λ

l1 + a1

0

∑
1−λ

l2 + a0

0

∑
1−λ

l3 ,

0

∑
1−λ

l2ul = a2

0

∑
1−λ

l2 + a1

0

∑
1−λ

l3 + a0

0

∑
1−λ

l4 .
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Let md = ∑λ−1
l=0 lδ−du−l (here the indices l are posi-

tive) denote the (δ−d)-th moment of the frame ui, and
m the vector of moments [m2,−m1,m0]T . We express
the sums of integer powers by Σd

λ = ∑λ−1
i=0 id . Closed-

form expressions exist for Σd
λ , involving Bernoulli se-

quences [16]. For instance:

• Σ0
λ = λ ,

• Σ1
λ = (λ −1)λ/2,

• Σ2
λ = (λ −1)λ (2λ −1)/6,

• Σ3
λ = (λ −1)2λ 2/4,

• Σ4
λ = (λ −1)λ (2λ −1)(3λ 2−3λ −1)/30.

We now form the matrixZ(2,λ ) of sums of powers (de-
pending on δ = 2 and λ ):

Z(2,λ ) =




Σ0
λ −Σ1

λ Σ2
λ

−Σ1
λ Σ2

λ −Σ3
λ

Σ2
λ −Σ3

λ Σ4
λ


 .

The system in (5) rewrites:




m2

−m1

m0


=




Σ0
λ −Σ1

λ Σ2
λ

−Σ1
λ Σ2

λ −Σ3
λ

Σ2
λ −Σ3

λ Σ4
λ


×




a2
a1
a0




or m = Z(2,λ )×a. Now we want to find the value
predicted by P(2,λ ) at time τ . Let τ2 = [1,τ,τ2]T be a
vector of τ powers. Then u(τ) is equal to a2 + a1τ +
a0τ2 = τ T

2 ×a. Finally, Z(2,λ ) is always invertible,
provided that λ > δ . Its inverse is denoted Z(−2,λ ).
It thus does not need to be updated in real-time. It
may be computed off-line, numerically or even sym-
bolically. Hence:

u(τ) =
(
τ T

2 ×Z(−2,λ )

)
×m .

The vector τ2 and Z(−2,λ ) are fixed, and the product
τ T

2 ×Z(−2,λ ) may be stored at once. Thus, for each
prediction, the only computations are the update of
the vectorm and his product with the aforementioned
stored matrix. It thus enables look-up-table-based pre-
dictions, which helps to reduce propagation errors in
matrix computations.

3.4 General formulas

Inferring from the previous example, we easily get a
more generic extrapolation pattern in its matrix form:

[
1 τ · · · τδ ]

u(τ) = ×




Σ0
λ −Σ1

λ · · · (−1)δ Σδ
λ

−Σ1
λ . .

.
. .
. ...

... . .
.

. .
. ...

(−1)δ Σδ
λ · · · · · · Σ2δ

λ




−1

×




mδ

−mδ−1

...

(−1)δ m0


 .

Note τδ = [1,τ, · · · ,τδ ]T , then:

u(τ) = τ T
δ Z(−δ ,λ )m .

As in the previous case, only m and one matrix prod-
uct need be computed in real-time. When δ = 0, one
easily sees that:

u(τ) =
m0

Σλ
0

=
u1−λ + · · ·+ u0

λ
,

that is, the running average of past frame values, re-
ducing to the zeroth-order hold when λ = 1. Although
the matrix formulation is convenient, actual computa-
tion does not require true matrix calculus, especially
for small degrees δ . For instance, P(1,3) yields the
simple estimator form: u(τ) = τ

2 (u0−u−2) + 1
6(5u0 +

2u−1−u−2).

4 Context-based extrapolation

Actual complex systems usually present non-
linearities and discontinuities, so that it is hard to
predict their future behavior from past observations.
Moreover the considered models are generated using
the FMI for model exchange framework, which does
not provide the inputs’ derivatives (conversely with
the FMI for co-simulation architecture). Hence the
previously described polynomial prediction cannot
correctly extrapolate along all the system trajectories.

For example, [17] studies a method based on a se-
quential implementation of continuous dynamical sys-
tems that uses a constant, linear or quadratic extrapola-
tion and a linear interpolation to improve the accuracy
of the modular time integration. The study shows that
the method is successful for non-stiff systems and it
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fails for the stiff case. The context-based extrapola-
tion is then performed to account for steps, stiffness,
discontinuities or weird behavior, and use adapted ex-
trapolation to limit excessively wrong prediction.

Keeping with the previous 0-last-sample-index con-
vention, and for the sake of simplicity, we first define
a measure of variation based on the last three samples:
d0 = u0−u−1 and d1 = u−1−u−2, the last and previ-
ous differences. Their absolute values are compared
with two thresholds, γ0 and γ−1, respectively. We then
define three complementary conditions:

• O if |di|= 0;

• Ci if 0< |di| ≤ γi;

• Ci if |di|> γi;

We can now define the six-context Table 1, and ex-
amples for their associated heuristic polynomial pre-
dictors. The six contexts form a partition, i.e. they
are mutually exclusive, and cover all possible options
for a hybrid dynamical system. They are illustrated
in Figure 4. Their names represent their behavior.
For instance, the flat context addresses steady signals,
for which a mere zeroth-order hold suffices, hence
P(0,1). The calm context represents a sufficiently sam-
pled situation, where value increments over time re-
main below fixed thresholds. In this case, the signal
is relatively regular, and could be approximated by a
quadratic polynomial, for instance P(2,5). For the “flat”
and “jump” contexts, there is an additional procedure
which consists in resetting the extrapolation to prevent
inaccurate prediction. For example, when context 1 is
chosen just after context 5, the quadratic extrapolation
P(2,5) requires 5 valid samples, whereas the last 3 only
are relevant.

Our two-threshold is relatively simple. Hence, the
choice of the thresholds γ0 and γ−1, is potentially cru-
cial. For instance, fixed values may reveal inefficient
under important amplitude or scale variation of signal.
Hence, we have chosen here to compute them, in a run-
ning manner, on the past frame {u1−ω , . . . ,u−3}. With
excessively low thresholds, high-order extrapolations
would be rarely chosen, loosing the benefits of pre-
dictions. Too high thresholds would in contrast suffer
from any unexpected jump or noise. As the contexts
are based on backward derivatives, we have used in
the simulations presented here the mid-range statisti-
cal estimator of their absolute values. This amounts to
set: γ0 = γ−1 =

1
2

max
i∈[1−ω,...,−3]

(|ui−ui+1|).

Table 1: Summary of the six-context Table.
n(ame) # |d−2| |d−1| d−2.d−1 (δ ,λ )
f(lat) 0 O O O (0,1)
c(alm) 1 C1 C2 any (2,5)
m(ove) 2 C1 C2 any (0,1)
r(est) 3 C1 C2 any (0,2)
t(ake) 4 C1 C2 > 0 (1,3)
j(ump) 5 C1 C2 < 0 (0,1)

flat calm move

rest

take

jump

x

x

xx
x

x x x x

x

x

x

x x

x

x

xx x

x

x

x

x

x

Figure 4: Illustration for context table in Table 1.

5 Case study

5.1 Engine simulator

In this study, a Spark Ignition (SI) RENAULT F4RT
engine has been modeled. It is a four-cylinder in-line
Port Fuel Injector (PFI) engine in which the engine
displacement is 2000cm3. The air path (AP) consists
in a turbocharger with a mono-scroll turbine controlled
by a waste-gate, an intake throttle and a downstream-
compressor heat exchanger.

The engine model was developed using the Mod-
Engine library [18]. ModEngine is a Modelica [19]
library that allows the modeling of a complete en-
gine with diesel and gasoline combustion models. Re-
quirements for the ModEngine library were derived
from the existing IFP-Engine AMESim1 library. Mod-
Engine contains more than 250 sub-models. It has
been developed to allow the simulation of a complete
virtual engine using a time-scale related to fractions of
the crankshaft angle. A variety of elements are avail-
able to build representative models for engine com-
ponents, such as turbocharger, wastegate, gasoline or
Diesel injectors, valve, air path, EGR loop etc. Mod-
Engine is currently functional in the Dymola tool2.

The engine model and the split parts were imported
into xMOD model integration and virtual experimen-

1www.lmsintl.com/imagine-amesim-1-d-multi-domain-
system-simulation

2www.3ds.com/products/catia/portfolio/dymola
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tation tool [20], using the FMI export features of Dy-
mola. The engine model has 118 state variables and
312 event indicators (of discontinuities).

5.2 Decomposition approach

The partitioning of the engine model is performed by
separating the four-cylinder from the air path (AP),
then by isolating the cylinders (Ci, for i ∈ [1,2,3,4])
from each other. This kind of splitting allows for the
reduction of the number of events acting on each sub-
system. In fact, the combustion phase raises most of
the events, which are located in the firing cylinder. The
solver can process them locally during the combustion
cycle of the isolated cylinder, and then enlarge its in-
tegration time-step until the next cycle.

From a thermodynamic point of view, the cylinders
are loosely coupled, but a mutual data exchange does
still exist between them and the air path. The model is
split into 5 components and governed by a basic con-
troller denoted CTRL. It gathers 91 inputs and 98 out-
puts.

6 Tests and results

Tests are performed on a platform with 16GB RAM
and 2 “Intel Xeon” processors, each running 8 cores at
3.1GHz.

6.1 Reference simulations

The model validation is based on the observation
of some quantities of interest as the intake and ex-
haust manifold pressures, air-fuel equivalence ratio
and torque. These outputs are computed using LSO-
DAR which is a variable time-step solver with a root-
finding capability to detect the events occurring during
the simulation. It has also the ability to adapt the in-
tegration method depending on the observed system
stiffness.

The simulation reference Yref is built from the in-
tegration of the entire engine model, the solver toler-
ance (tol) being decreased until reaching stable results,
which is reached for tol = 10−7 (at the cost of an un-
acceptable slow simulation speed).

Then, to explore the trade-offs between the simula-
tion speed and precision, simulations are run with in-
creasing values of the solver tolerance until reaching a
desired relative integration error Er, defined by (6)

Er(%) =
100
N
.

N−1

∑
i=0

(∣∣∣∣
Yref(i)−Y (i)

Yref(i)

∣∣∣∣
)

(6)

with N the number of saved points during 1s of sim-
ulation. Iterative runs showed that the relative error
converge to a desired error (Er ≤ 1%) for tol = 10−4.
The single thread simulation of the whole engine with
LSODAR and tol = 10−4 provides the simulation ex-
ecution time reference, to which the parallel versions
are compared. When using the split model, each of
its 5 components is assigned to a dedicated core and
integrated by LSODAR with tol = 10−4.

6.2 Effect of the context-based extrapolation
on accuracy

To explore the effect of extrapolation on accuracy, the
communication step has been set to 250µs in a first set
of experiments. This value has been chosen to provide
acceptable results for the accuracy (Er ≈ 1%), while
being large enough to make extrapolation useful.

The tests show that performing only a fixed poly-
nomial prediction (conventional first and second or-
der extrapolation) on the engine model fails, with in-
tegration errors larger than for the reference simula-
tion. This is due to the hybrid nature of the model,
for which the extrapolation failures are caused by dis-
continuities, and also by sharp variations of some vari-
ables at specific instants. These cases totally waste the
gain in precision due to successful extrapolation in the
other parts of the state trajectories.

In contrast, using the context-based polynomial pre-
dictor, the outputs of the simulation are almost always
closer to the reference trajectory than those computed
when considering the inputs hold as constant (Fig-
ure 5).
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Figure 5: Airpath output: pressure.

Figure 6 shows that using context-based extrapola-
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tion, the prediction step is discarded when there is a
discontinuous behavior in the signal, and that the de-
gree of the predictor is adapted according to the signal
slope (Figure 6).
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Figure 6: Context behavior during simulation.

The cumulative relative integration error on a long
simulation run is computed in Table 2. It shows that
the context-based extrapolation efficiently decreases
this error for the chosen variables, for example by 63%
for the temperature and by 72.5% for the fuel density.

Table 2: Relative integration error.

Outputs Er(%) Er(%)
w/o extrapolation w/ extrapolation

Pressure 0.499 0.304
Temperature 0.511 0.19
Air density 0.784 0.31
Fuel density 3.55 0.978

Burned gas density 4.99 3.47

6.3 Effect of the context-based extrapolation
on simulation time

The ultimate objective of extrapolation is to decrease
the simulation by stretching out the synchronization
interval, while keeping the relative integration error Er
inside predefined bounds. Indeed, widening the com-
munication step from 100µs to 250µs without extrapo-
lation (Figure 7) saves time but increases the error (e.g.
6.97% for the burned gas density and 340.5% for the
fuel density).

Using the extrapolation for the 250µs step fortu-
nately decreases the relative error to values close to, or

below, those measured for the 100µs step with frozen
inputs.
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Figure 7: Cumulative relative error using different
communication steps.

Table 3 shows the simulation speed-up compared
with the single-threaded reference. First note that
when splitting the model into 5 threads integrated
in parallel on 5 cores, the speed-up is supra-linear
w.r.t. the number of cores. Indeed, the containment
of events detection and handling inside small sub-
systems allows for solvers accelerations, enough to
over-compensate the multi-threading costs. Secondly,
it appears that combining the enlarged communication
step and the context-based extrapolation, the 10 % ex-
tra speed-up is reached without loss for the relative
error. Even more surprising, using the extrapolation
slightly speeds-up the simulation, possibly because the
inputs shaped by the predictor enables a faster conver-
gence of the solver step.

Table 3: Simulation speed-up.
Communication time 100µs 250µs

Extrapolation No No Yes
Speed-up 8.9 10.01 10.07

7 Conclusion and future work

The aim of this work is to speed up the numerical in-
tegration of hybrid dynamical systems, eventually un-
til reaching a real-time execution, while keeping the
integration errors inside controlled bounds. The ba-
sic approach consists in splitting the system into sub-
models, which are integrated in parallel. Using large
synchronization intervals between the branches allows
for numerical integration speed-ups. However, slack
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synchronization intervals may generate integration er-
rors in the final result.

In this paper, the errors caused by the slack syn-
chronization are modeled, giving directions to find ef-
fective trade-offs between integration speed and accu-
racy. Then, an approach of stretching out the commu-
nication steps while keeping a predefined integration
precision is proposed. Rather than using costly small
integration and communication steps, it uses extrapo-
lations of the behavior of the models over the synchro-
nization intervals. Test results on a hybrid dynamical
engine model, show that well chosen context-based
extrapolation allows for an effective speed-up of the
simulation with negligible computing overheads.

This work shows that properly-chosen context-
based extrapolation, combined with model splitting
and parallel integration, can potentially improve the
speed/precision trade-off needed to reach real-time
simulation. However, the accuracy could be widely
improved by accessing on the input derivatives of the
models. This is the case for the FMI for co-simulation,
and it would be highly useful to also integrate this fea-
ture in the FMI for model exchange. Future works in-
tend to improve the context-based extrapolation algo-
rithm, to make it more subtly aware of data freshness
and even more decrease the prediction induced inte-
gration errors. Another possibility is to process the in-
put signals to separate them into simpler components,
easier to predict with different predictors, and to cope
with noise. When it comes to polynomials, wavelet
pre-processors [21] could be useful, as they play an
important role in polynomial model fitting.
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Abstract 

Virtual evaluation of complex Cyber-Physical Sys-

tems (CPS) [1] with a number of tightly integrated 

domains such as physical, mechanical, electrical, 

thermal, cyber, etc. demand the use of heterogeneous 

simulation environments.  Our previous effort with 

C2 Wind Tunnel (C2WT) [2] [3] attempted to solve 

the challenges of evaluating these complex systems 

as-a-whole, by integrating multiple simulation plat-

forms with varying semantics and integrating and 

managing different simulation models and their in-

teractions. Recently, a great interest has developed to 

use Functional Mockup Interface (FMI) [4] for a va-

riety of dynamics simulation packages, particularly 

in the automotive industry. Leveraging the C2WT 

effort on effective integration of different simulation 

engines with different Models of Computation 

(MoCs), we propose, in this paper, to use the proven 

methods of High-Level Architecture (HLA)-based 

model and system integration. We identify the chal-

lenges of integrating Functional Mockup Unit for 

Co-Simulation (FMU-CS) in general and via HLA 

[5] and present a novel model-based approach to rap-

idly synthesize an effective integration. The ap-

proach presented provides a unique opportunity to 

integrate readily available FMU-CS components 

with various specialized simulation packages to rap-

idly synthesize HLA-based integrated simulations 

for the overall composed Cyber-Physical Systems. 

Keywords: Functional Mockup Interface, Functional 

Mock-up Unit for Co-Simulation, Cyber-Physical 

Systems, Heterogeneous simulation, Multi-paradigm 

modeling, Model-based integration, DSML, Distrib-

uted Simulation, High-Level Architecture 

1 Introduction 

Cyber-Physical Systems (CPS) [1] are composed 

of several collaborating physical and computing 

components that interact through embedded commu-

nication capabilities. These systems require ad-

vanced integration of abstractions and techniques 

that have been developed over the past years in dis-

parate areas such as cyber systems that rely heavily 

on computation and networking and physical sys-

tems that employ various engineering methods in 

domains such as mechanical, thermal, electrical, 

electronic, hydraulic, thermal, biological, and acous-

tic. 

Analysis of Cyber-Physical Systems poses unique 

challenges due to the heterogeneity of components 

and interactions [2]. The fundamental differences in 

the characteristics of these different physical and 

computation processes lead to a huge spectrum of 

modeling methods. For example, some components 

can be easily described by differential equations, 

while others like communication networks are better 

modeled as Discrete-Event Systems. As such, several 

simulation tools and techniques are needed for CPS 

simulation and analysis. This further necessitates an 

over-arching CPS model and system integration plat-

form that is model-based and supports rapid synthe-

sis of distributed heterogeneous CPS simulations. 

Co-Simulation (Co-operative Simulation) is a 

simulation method that permits simulating individual 

components using different simulation tools simulta-

DOI
10.3384/ECP14096235

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

235



neously and collaboratively. Individual simulation 

tools exchange information such as system variables 

and their values, time steps for synchronization, and 

control signals for orchestrating the co-operative 

simulation. Thus, engineers can use different simula-

tion tools together to create virtual prototypes of en-

tire Cyber-Physical Systems. In practice, however, 

significant challenges remain with regard to the syn-

tax and semantics of model and system integration. 

In the Co-Simulation domain, a recent effort by 

the MODELISAR ITEA2 project that develops a 

tool independent standard called the Functional 

Mock-up Interface (FMI) [4] [7] [8] has gained sig-

nificant influence, more prominently in the automo-

tive industry. The FMI standard provides a well-

defined specification and API to integrate simulation 

components. FMI-compliant simulations pack shared 

libraries that can be executed using the standardized 

function calls and the model execution must adhere 

to the rules of the standard. These function calls span 

all stages of the model execution, viz. initialization, 

configuration, access, modification, and manipula-

tion. 

The strength of FMI lies in the fact that all simu-

lation tools participating in the Co-Simulation follow 

the defined standard and as such provides for stand-

ardized access to model equations. This permits cou-

pling of Continuous-Time, Discrete-Time, and Dis-

crete-Event that are part of a Cyber-Physical System. 

In some ways, this is also a limitation because not all 

simulation tools are amenable to support all of the 

strictly specified FMI function calls. 

Another key requirement for Co-Simulation via 

FMI is to also develop a Master Algorithm (MA) 

that orchestrates the steps of Co-Simulation. Master 

algorithms have two tasks: (1) control the data ex-

change and (2) control time advancement among 

individual simulations according to the requirements 

of the integrated simulation of the overall Cyber-

Physical System. Since the FMI standard does not 

describe or limit the implementation of the MAs, it 

basically leaves out the two fundamental challenges 

that all distributed simulation architectures face: data 

exchange and time management
1
. Solution for inte-

grated data and time management in distributed sim-

ulations is technically complex and errors can easily 

lead to performance bottleneck and failures. This 

complexity pushes designers to adhere to the sim-

plest solutions – losing much of the potential ad-

vantages of co-simulation. 

                                                      
1
 Theoretically, an MA for direct co-ordination among 

FMUs can be developed for each distributed simulation 

problem, but that would be expensive and subject to er-

rors. 

For example, Cyber-Physical Systems frequently 

involve vastly different sub-domains and physical 

processes that vary greatly in the execution frequen-

cy at which they need to run. This leads to signifi-

cantly different dynamic response characteristics. 

For example, mechanical components of a complex 

CPS often have much slower frequency responses 

compared to fast electronic components. A single 

standalone monolithic model of a CPS therefore suf-

fers heavily with solver inefficiencies. These systems 

are generally highly complex and have significant 

non-linearities and discontinuities, which further in-

creases difficulties of gaining convergent solutions. 

Taking subsystems apart and using different solvers 

and step-sizes offers a potential solution. However, 

multirate composition also introduces inefficiencies 

due to time management, composition restrictions, 

data exchange, and potential stability issues if the 

system is split at the wrong place. 

Challenges of distributed simulation have a long 

research history with notable results and standards. 

One of the widely used solutions developed by the 

U.S. Modeling and Simulation Coordination Office 

(M&S CO) is the High Level Architecture (HLA) 

[5]. The HLA provides a specification of a common 

technical architecture for modeling and simulation 

with a primary goal to facilitate interoperability 

among simulations and to promote re-use of simula-

tions and their components. The HLA comprises of 

three major components: HLA rules, HLA interface 

specification, and HLA object model template [5]. 

With these rules, the HLA standardizes run-time 

support for various tasks, such as coordinated time 

evolution, message passing and shared object man-

agement. The key difference between FMI and HLA 

is that HLA provides a standard for data exchange 

and time management for individual simulation pro-

cesses. This enables broader integration of different 

simulation tools using different Models of Computa-

tion. Functional Mock-up Units can be integrated as 

a participating simulation tool in the overall integrat-

ed simulation of the Cyber-Physical Systems. 

A key benefit of HLA is that its Distributed Dis-

crete Event model of computation allows full flexi-

bility to individual subsystems in using any internal 

solver and model of computation. Moreover, this 

flexibility permits multirate simulations by design. 

However, the HLA standard also lacks some key 

facilities for developing integrated distributed heter-

ogeneous simulations. For example, the HLA stand-

ard does not formalize methods for developing inter-

actions and objects used by HLA federates and it 

does not provide facilities for easily moving simula-

tions from one computational node to other. Conse-

quently, HLA-based simulations also require a sig-

Model-Based Integration Platform for FMI Co-Simulation and Heterogeneous Simulations of Cyber-Physical
Systems

236 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096235



nificant amount of tedious and error-prone hand-

developed integration code. 

Achieving the integrated simulation of Cyber-

Physical Systems require effective integration of a 

huge spectrum of models of physical processes, 

communication systems, exchanged information, and 

control mechanisms. As detailed above, the ap-

proaches of FMI and HLA both have their ad-

vantages and some key limitations. The approach of 

using HLA as a master algorithm enables use of 

FMUs in a Co-Simulation environment while also 

providing flexibility of using other types of non-

FMU simulations [9]. The resulting framework can 

provide a much broader scale of simulation tools that 

can be used in the integrated simulation of Cyber-

Physical Systems. However, several gaps need to be 

filled in order to develop a platform that enables this 

integration in an efficient manner. A single efficient 

model-based platform is needed that: 

 Enables modeling of interactions and shared 

objects between simulation tools 

 Enables modeling and integration of systems 

with their data exchange mechanisms 

 Enables modeling of deployment of simula-

tion tools on distributed computational infra-

structure 

 Provides a standard master algorithm for FMI 

Co-Simulation 

 Enables multirate modeling with dynamic 

time management 

 Provides a set of tools to generate necessary 

artifacts for rapid synthesis of simulations 

This paper attempts to address these important 

challenges in creating a single coherent platform for 

developing integrated distributed simulations of 

Cyber-Physical Systems. We build upon our previ-

ous work on a model-based integration platform 

called the Command and Control Wind Tunnel 

(C2WT) [2] [3]. 

The rest of the paper is organized as follows. Sec-

tion 2 and 3 give an overview of the C2 Wind Tun-

nel and FMI for Co-Simulation respectively. We pre-

sent our detailed model-based integration approach 

in Section 4 and provide a detailed case study with 

experimental results in Section 5. Section 6 provides 

the related work and Section 7 concludes the paper. 

2 C2 Wind Tunnel 

Over the past several years, we have developed a 

model-based multi-model integration platform called 

the Command and Control Wind Tunnel (C2WT) [2] 

[3]. It is an integrated, graphical, multi-model, dis-

tributed simulation environment for the experimental 

evaluation of large-scale C2 systems with various 

organizational and technical architectures. It enables 

a variety of simulation engines to interact and trans-

mit data from one another and log and analyze simu-

lation results. Figure 1 below gives a conceptual ar-

chitecture of C2WT. 

The High-Level Architecture is a standardized 

framework for distributed computer simulation sys-

tems.  Communications between different federates 

is managed via the Run-Time Infrastructure (RTI) 

layer.  The RTI provides a set of services such as 

time management, data distribution, message pass-

ing, and ownership management. Other components 

of the HLA standard are the Object Model Template 

(OMT) and the Federate Interface Specification 

(FIS). 

 

 
 

Figure 1: Conceptual architecture of C2WT 

 

The HLA standard focuses on three primary are-

as.  First is time coordination throughout the federa-

tion.  The evolution of time is a key thread through 

each of the integrated simulators.  Each simulation 

platform must slave its progression of time to that of 

the overall HLA clock.  The HLA standard provides 

several methods by which to accomplish this.  Sec-

ond is coordination of inter-federate messages and 

shared data objects.  The HLA standard provides a 

publish-and-subscribe mechanism for passing mes-

sages and object updates throughout the federation.  

Third, the HLA standard provides for basic simula-

tion execution control.  Starting, pausing, and stop-

ping the execution of a simulation is built directly 

into the HLA standard.  The C2 Wind Tunnel relies 

upon all of these services during run-time. 

As HLA is an accepted standard, a number of 

commercial, academic, and alternate RTI implemen-

tations are available. Currently, we use the Portico 
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RTI [10] – which provides support for both C++ and 

Java clients and is compliant with version 1.3 of the 

HLA standard. 

The HLA provides a standard for the RTI that 

supports the coordinated execution of distributed 

simulations. However, designing the model integra-

tion, coding the platform-to-RTI glue-code, and test-

ing and deploying all of the various run-time compo-

nents across multiple platform-specific simulation 

tools is a highly challenging task. C2WT provides a 

solution to this simulation integration problem.  It 

provides a holistic modeling and management envi-

ronment built around a custom Domain-Specific 

Modeling Language (DSML) [11], implemented in 

Generic Modeling Environment (GME) [11], and a 

related suite of model interpreters to coordinate be-

tween the integration model and the platform-

specific simulation tools involved in the overall envi-

ronment. It facilitates the rapid development of inte-

gration models and use of these models throughout 

the lifecycle of the simulated environment. With 

simulation engine specific model configurations and 

experiment specific deployment modeling, it enables 

significant automation in the development of inte-

grated distributed simulation. With integration mod-

eling support and various sophisticated generation 

tools, C2WT provides a robust platform for users to 

rapidly model and synthesize complex, heterogene-

ous, command and control simulations. 

3 FMI for Co-Simulation 

Functional Mock-up Interface (FMI) [4] [7] [8] 

was initiated and organized by Daimler AG within 

the ITEA2 project MODELISAR [4]. The FMI 

standard consists of two main parts. The first part is 

FMI for Model Exchange, which standardizes the 

distribution of a dynamic system model in the form 

of generated C-Code as an input/output block to oth-

er simulation environments. The second part is FMI 

for Co-Simulation, which standardizes the mecha-

nisms for coupling of two or more simulation tools 

in a co-simulation environment. 

The key idea is to have a discrete set of commu-

nication points only, at which times the subsystems 

exchange any data. Outside of these points, the sub-

systems are executed independently. The data ex-

change is controlled by a master system that also 

manages time synchronization of subsystems. 

The FMI Co-simulation master simulator couples 

the subsystem simulators through a zip-archive. This 

zip-archive contains shared library files (.DLL, .SO) 

that conform to the function call specifications given 

in the standard. Each zip-archive also contains a 

XML file that provides meta-data and further details 

of the model such as default start and stop times, var-

iable types, units, tool specific data, parameter and 

variable names and attributes. The XML also con-

tains specification for executing the model as a 

shared library during a simulation run (CoSimula-

tion_Standalone) or by importing a slave tool wrap-

per and interfacing it with the external tool (CoSimu-

lation_Tool). 

4 Model-Based Integration 

One of the primary contributions of our effort is 

our focus on developing a completely model-based 

integration approach.  Our efforts leverage the Ge-

neric Modeling Environment (GME) [11] tool suite 

for designing the integration model DSML [11] and 

HLA [5] to provide run-time support as the “simula-

tion bus”. 

4.1 Needs and Challenges 

Cyber-Physical Systems [1] [2] are highly com-

plex and their simulation spans a multitude of com-

putational domains and specializations. A large 

number of tools exist that have been developed for 

specific aspects of CPSs. A variety of tools exist 

even for a single aspect of CPSs. For example, many 

special purpose simulation tools exist to model and 

analyze vehicle dynamics or for switching mecha-

nisms of hybrid drivetrains. As such the integration 

platform must be open toward use of any tool that 

may be required for some component/aspect of the 

CPS simulation. 

A subtle problem in using multiple simulation 

tools in an integrated simulation is that they tend to 

use many different Models of Computation (MoC). 

For example, Discrete-Event, Discrete-Time, Con-

tinuous-Time, Synchronous Dataflow, are among the 

many MoCs used. Each MoC has a specific mecha-

nism for time progression and event handling. The 

integration platform must be able to handle tools that 

use different MoCs in highly flexible manner. The 

integrated system must respect time synchronization 

with other simulation tools as well as the causality of 

events must be preserved. In addition to system inte-

gration, the platform must also enable integration of 

models by means of capturing the communication 

(with any translation that might be needed) that oc-

curs between them. 

In general, it is preferable to have a graphical en-

vironment that provides well-defined semantics for 

modeling concepts, their relations, and rules for 

composition. Moreover, for rapid synthesis of simu-
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lations, the platform must support tools for transla-

tion of models to executable software that conform 

to specified executable semantics. The automation 

not only provides efficient development of simula-

tions, it also significantly minimizes human errors. 

The integration environment should also provide 

capabilities for modeling and configuration experi-

mentation and logging.  

Furthermore, when FMUs are integrated the rules 

of FMI must still be adhered to. Particularly, the 

models in the FMUs must be accessed, controlled, 

and manipulated using the function calls specified in 

the FMI standard. 

4.2 Meta-modeling 

The Generic Modeling Environment is a meta-

programmable model-integrated computing (MIC) 

[11] toolkit that supports the creation of rich domain-

specific modeling and program synthesis environ-

ments.  Configuration is accomplished through meta 

models, expressed as UML class diagrams, specify-

ing the modeling paradigm of the application do-

main.  Meta models characterize the abstract syntax 

of the domain-specific modeling language, defining 

which objects (i.e. boxes, connections, and attrib-

utes) are permissible in the language.  Another way 

to envision this is that a DSML [11] is a schema or 

data model for all the possible models that can be 

expressed by a language.  Using finite state machines 

as an example, the DSML would consist of states 

and transitions.  From these elements any state ma-

chine can be realized.  The inherent flexibility and 

extensibility of the GME [11] via meta models make 

it an ideal foundation for the C2 Wind Tunnel envi-

ronment.  Alternate meta modeling frameworks have 

also been developed in the past, such as AToM3 

[12], MetaCase [13], Microsoft DSL [14], and the 

Eclipse Modeling Framework [15]. 

4.3 Model-Based Integration of FMUs in 

C2WT 

As detailed in section 2, C2WT provides an over-

arching modeling and management environment and 

a suite of model interpreters to coordinate the inte-

gration models and platform-specific simulation 

tools involved in the overall heterogeneous distribut-

ed simulations. The user is referred to [2] for details 

of the meta-modeling language and its executable 

semantics. In this section, we further discuss the in-

tegration of FMUs as HLA-federates in the C2WT 

platform. 

In this work, the C2WT metamodel was further 

customized to enable FMU specific federate specifi-

cations. Although the original C2WT metamodel is 

sufficient to support integration of newer types of 

federates, having simulation tool/technique specific 

first-class objects in the modeling language makes 

reasoning about such entities more flexible and can 

support extensive automation. The FMU-federate 

model specifies the location of the zip archive, 

whether to log variable values during simulation, 

additional variables (other than input and output) to 

log, and ratio of macro and micro steps for multirate 

simulations. 

Figure 2 below shows the extension to the origi-

nal C2WT architecture to incorporate FMU federates 

in the platform. 

 

 
 

Figure 2: C2WT extended for FMI-CS 

 

Our model interpreters can read the models with 

specified input and output relationships with other 

simulation tools and even other FMUs and can au-

tomatically generate all the executable code that can 

be deployed on different nodes in the available com-

putational infrastructure for the simulation. As pre-

viously mentioned, C2WT supports simple modeling 

of computational infrastructure and assignment of 

federates on its nodes. 

Following the rules of FMU access, modification, 

and manipulation as described in the FMI standard 

[4] [7], we developed a simplified procedure for 

FMU-federate execution as given below: 

 

Initialization phase (before simulation start): 

 

1: Load FMU zip archive, read model description 

2: Load shared libraries in the FMU 

3: Instantiate the FMU slave 

4: Setup input/output and HLA-interaction maps 

5: Setup up logging 
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Execution phase (during simulation): 

 

1: Synchronize start of simulation with all tools 

2: Request RTI to proceed to step-size and wait 

3: Update input variables with HLA updates 

4: Call doStep in step-size/#micro-steps chunks 

5: Continue #4 until full step-size is executed
2
. 

6: Update HLA with output variables 

7: Go to #2 

Please note that above is rather simplified proce-

dure of FMU integration mechanism in C2WT. The 

actual implementation also involves setting up statis-

tical and database logging, micro-step management 

to avoid overlaps, error-handling, efficient federate 

code execution, reliable & reusable time advancing 

facilities, and model state and HLA interaction syn-

chronization. 

5 Case Study 

To illustrate our model-based approach for FMU 

integration in C2WT we present a high-fidelity mod-

el of a representation of a Vehicle Thermal Man-

agement (VTM) system which is intended for study-

ing interactions of thermal management systems 

within a vehicle. 

5.1 Model description 

This particular example is a conventional four 

wheel chassis and drivetrain architecture with a 

spark ignition engine and standard transmission. 

These mechanical systems are created using compo-

nents from the Vehicle Dynamics Library (VDL) 

from Modelon [16]. The model also includes a repre-

sentation of the coolant loop for the engine and 

transmission oil loop in conjunction with a four heat 

exchanger stack for the thermal domain. These por-

tions of the model are constructed from components 

of the Liquid Cooling Library (LCL) from Modelon. 

A snapshot of the overall model is shown in the fol-

lowing Figure 3 below. 

The key component models of the system are: 

Driver, Vehicle (Engine, Transmission, Driveline, 

Chassis, Aerodynamics, External loads, and Brakes), 

Lumped engine thermal mass, Lumped transmission 

thermal mass, Engine coolant fluid circuit, Transmis-

                                                      
2
 Note that an FMU freely updates its internal variables 

during micro-steps, but the input variables at the begin-

ning of step #4, remain unchanged during step #5. Each 

subsequent micro-step, within the step #5, uses the updat-

ed internal variables in previous micro-step. Also, it is 

assumed that FMUs do not reject time-steps. 

sion oil cooling circuit, Heat exchanger stack, Low 

voltage battery, Alternator, Cooling fan and control-

ler, and Grill shutters and controller. Table 1 below 

provides key features of these component models. 

Since the purpose of this model is to study vehi-

cle thermal dynamics, a simplified 1D longitudinal 

dynamics chassis model is used rather than a full 3D 

body model. This allows for faster simulations of the 

typically long duration drive cycles. 

 

 

 
 

Figure 3: Overall system model 

 

 

 
Table 1: Key features of component models 
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During the simulation, heat that is generated by 

the engine is stored within the engine thermal mass 

and then rejected to the coolant-to-air heat exchanger 

(radiator) through a coolant fluid loop. A similar 

loop and heat exchanger also exists for the transmis-

sion. 

The model is well suited to thermal management 

controller design, studying tradeoffs between thermal 

management energy demands and fuel economy, 

heat exchanger efficiency and sizing, and coolant 

fluid flow dynamics. 

For this paper, the model was partitioned into 

separate executables by dividing the model along 

domain boundaries. In this case the vehicle mechan-

ics, electrical, and driver were grouped into one 

model while the fluid and thermal portions of the 

model were grouped into another. This partitioning 

allows for execution of Driver vehicle and Thermal 

management parts at different rates. Owing to the 

inclusion of fluid portions in the Thermal manage-

ment part, this part needed to run with a much lower 

step-size than the Driver vehicle part to maintain 

system stability. 

In order to do this the physical connections that 

are bisected by the boundaries must be converted to 

causal signals. As an example for the engine, the 

heat is generated within the mechanical portion of 

the model. The heat is directed to the lumped thermal 

model, within the thermal portion of the model, 

which determines the thermal mass temperature. Im-

ages of these two systems are shown in Figures 4 and 

5 below. 

 

 

 
 

Figure 4: Driver vehicle model 

 

 
 

Figure 5: Thermal management model 

5.2 Simulation architecture 

The simulation setup consisted of mainly three 

federates, viz. Driver vehicle, Thermal management, 

and the Manager federate. Manager federate is an 

auto-generated external federate, which is used 

mainly as a front-end controller of the overall heter-

ogeneous simulation. The simulation architecture is 

illustrated in the Figure 6 below. 

 

 
 

Figure 6: Simulation architecture 

 

5.3 Data and Integration model 

The actual data and integration model are given 

in the Figures 7 and 8 below. These show the input 

and variables from the Driver vehicle and Thermal 

management federates. These two models are exe-

cuted as FMUs in the C2WT. 
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Figure 7: Data model 

 

 

 
 

Figure 8: Integration model 

 

5.4 Experimental Results 

For the experiment, the Driver vehicle and Ther-

mal management FMUs were exported from Dymola 

[16] models by Modelon, Inc. [16]. We used a JFMI 

Ptolemy APIs [17] to connect the FMUs to our Java 

based C2WT platform. All federates were running in 

a single Ubuntu 32 virtual machine. The Run-Time 

Infrastructure (RTI) used was Portico [10]. Total 

simulation time for the experiment was 50 seconds. 

The simulation was setup as a multirate simula-

tion with different step-sizes for the three federates: 

Driver vehicle (10 ms), Thermal management 

(5 ms), and Federation Manager (100 ms). The entire 

simulation ran in about ~9 minutes. The Figures 9 

and 10 above show the experimental results for the 

total 50 seconds of simulation time. It should be not-

ed though that the VTM models used were currently 

not optimized for efficiency. 

From the experimental results, we found closely 

matching plots with same peak and trough values 

that were in the equivalent single monolithic (com-

bined Driver vehicle and Thermal management) 

model. The overall runtime (~9 minutes) was also 

comparable to standalone single model simulation 

time in Dymola (~6 minutes) despite the use of a 

third federate (viz. Manager federate) in the simula-

tion and delays due to inter-process communications. 

The models were developed with a variable step 

solver as requirement. However, they could still run 

with a fixed step solver (with a maximum step-size 

of 1.5 ms). However, with our setup of separating the 

Driver vehicle and Thermal management compo-

nents as separate FMUs and executing them through 

C2WT platform, we could even execute these com-

ponents at 10 ms and 5 ms step-sizes respectively. 

 

 

 
 

Figure 9: Vehicle speed and crankshaft angular velocity 
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Figure 10: Gear selection and Liner heat flux 

  

Yet another experiment we have performed is the 

one where we placed a network simulator for the 

CAN bus that must be placed between the above two 

components. We used the OMNeT++ simulator [18] 

to model that. In this experiment, we varied the rates 

of the FMUs to initially match the rate at which net-

work simulator was run, viz. 0.5 ms, and then in the 

second setup we increased the step-size of Driver 

vehicle and Thermal management to 1 ms. We found 

that the results still matched while in the second set-

up they executed in about one-third the overall wall-

clock time. We omit further details of experiment 

setup here for brevity. In the future, we plan to fur-

ther publish our work focusing specifically on the 

multirate aspects in distributed CPS simulations. 

6 Related Work 

Distributed simulation of Cyber-Physical Systems 

[1] is a highly challenging endeavor with its unique 

set of requirements. In the past a number of re-

searchers have attempted to solve these problems. 

Some approaches aim at providing an integration 

mechanism for two or three tools used in CPS simu-

lation. For example, [20] shows integrated CPS sim-

ulation by coupling Matlab and a network simulation 

called EPANET, [21] presents an integration ap-

proach using SysML and numerical solvers, and [22] 

presents a co-simulation platform using Modelica 

framework and the ns-2 network simulator. There are 

also approaches to provide a complete dedicated 

simulation environment. For example, [23] [24] pre-

sented a unified software environment for model-

based integration and multi-granular evaluation of 

widely used simulators. A simple master algorithm 

for Co-Simulation using FMI was given in [25] and a 

framework providing a central master simulator for 

FMUs as well as live components was provided in 

[26]. A dedicated environment for modeling with 

different models of computations and their execution 

via HLA was presented in [27]. Also, a co-

simulation tool-chain has been proposed in [28], 

where existing system components from domains 

such as TinyOS and Modelica can be imported into 

SysML and then converted into corresponding FMU 

blocks.  It was recently argued in [29] that it may be 

feasible to create a HLA-based master algorithm for 

FMI Co-simulations and then later a method was 

proposed in [9] [30] [31]. 

Our work focusses on providing a framework to 

enable model-based rapid synthesis on CPS simula-

tions. The origins of our model-based approach can 

be found in [32]. Further, [33] explains how model-

based rapid synthesis can lead to development of 

Cyber-Physical Systems with continuous integration 

techniques. The C2WT framework [2] developed at 

our institute facilitates model-based rapid integration 

of heterogeneous and distributed simulations. Re-

cently, C2WT framework was used to develop an 

evaluation tool for networked control systems in 

[34]. 

7 Conclusions 

In this paper, we have successfully demonstrated 

a model-based integration approach to rapidly syn-

thesize multi-model distributed simulation that may 

also involve co-simulation FMUs as component 

models. The FMUs are automatically wrapped as 

HLA-federates that can be executed in the C2WT 

platform. 

We also illustrated that different federates can be 

run with different clocks and their synchronization in 

C2WT is managed using HLA time management 

facilities. We have also integrated FMU-CS in simu-

lations that also use other simulation tools such as a 

network simulator or a 3D terrain simulator. The in-

tegration of other federates in C2WT has been previ-

ously demonstrated in [2]. Thus C2WT provides a 

broader range of simulation tool integration that in-

volves FMI and non-FMI simulations to enable de-

velopment of System-of-System (SOS) simulations. 
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C2WT supports real-time and as-fast-as-possible 

modes of simulation execution. However, currently 

the real-time simulation requires that the individual 

component simulations can run faster than real-time. 

C2WT also supports human-in-the-loop simula-

tions with real-time simulations. In this case human 

interaction with running simulations (e.g. in military 

training exercises) is performed using HLA-

interaction mappings. 

One of the key benefits of C2WT platform is its 

support for extensive experimentation, message log-

ging, state variables logging, and analysis support. 

The research at our institute is currently ongoing 

with the applications of FMI Co-Simulation using 

HLA-based integrations. We anticipate novel meth-

ods for FMI Co-Simulations that are rapidly synthe-

sized and may perform faster than single monolithic 

simulations. 

We are also working on extending the C2WT 

platform to support other simulation techniques and 

tools such as SystemC. 
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Abstract 

Conceptual design of systems requires aggregate level 

simulations of the designed system in its operational 

setting. By this way, performance of the system and 

its interactions with the other entities in its environ-

ment can be evaluated. The complex nature of these 

simulations often requires distributed execution. 

IEEE 1516 High Level Architecture (HLA) is a 

widely accepted standard architecture for distributed 

aggregate level simulations. Functional Mock-up In-

terface (FMI) is a recent standardization effort that 

leads to a tool independent systems simulation inter-

face that enables model reuse and co-simulation. This 

paper aims to present a method for developing HLA-

compliant federates using FMI. The method enables a 

Functional Mock-up Unit to join an HLA-compliant 

federation as a member.   

 

Keywords: Functional Mockup Interface; High Level 

Architecture; Distributed Simulation 

1 Introduction 

Systems development process starts with conceptual 

design phase in which designers create concepts and 

conduct trade off analysis. Modeling and simulation 

have always been essential tools for conceptual de-

sign. Early stage systems modeling aims to identify 

the system requirements and its interactions with its 

operating environment. Effect based models, inte-

grated in a large scale operational settings are used to 

evaluate the performance of the system concerning 

the accomplishment of its mission. Simulation of the 

mission space of a system requires modeling large 

number of entities and often simulating them in a dis-

tributed fashion. IEEE 1516 High Level Architecture 

(HLA) standard [1] [2] [3] is commonly used to inte-

grate loosely coupled models of the entities in a mis-

sion space. 

The Functional Mock-up Interface (FMI) is a 

newly developed, tool-independent model interface 

standard [4] [5]. Its main purpose is to model reuse 

between various modeling tools and environments 

throughout the systems development phases. A simu-

lation component conforming to FMI is called a Func-

tional Mock-up Unit (FMU), whose contents include 

a model description file, user defined libraries, source 

codes, model icons and documentation.  

FMI and HLA has completely different behavior. 

While HLA supports to work at process level, the 

master of the FMU does not care about the topics such 

as entity transfer, shared resource management, time 

synchronization or ownership management [10]. 

On the other hand, there is a potential to reuse ex-

isting FMUs as federates in an HLA-compliant dis-

tributed simulation, i.e. federation. By this way, FMI 

will also serve as a model interface for distributed 

simulation entities in the concept of design phase. 

Here in this study, we introduce a mechanism to de-

velop Functional Mockup Unit Federates (FMUFd) 

from FMUs. 

 

1.1 Related Work 

As model based development of engineering systems 

are getting more popular, connecting engineering 

models to the distributed simulation environments is 

also becoming an important issue of concern [6][7]. 

There have been some attempts for developing such 

tools and methodologies. Closely related to our work, 
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there exist two particular efforts providing a mecha-

nism for connecting models to HLA environments. 

MatlabHLA-Toolbox [8] and HLA Blockset [9] 

are available toolboxes to provide HLA communica-

tion feature to the Matlab. With these toolboxes, mod-

elers can create a federate, join a federation and start 

publishing and subscribing entities and events. How-

ever, these solutions can only work in Matlab envi-

ronment. 

In [10], authors introduce an approach to run FMI 

Co-Simulation environment over HLA. They employ 

HLA RTI as a master to synchronize the simulation 

that is composed entirely of FMUs. They define an 

Object Class derived from the interface specifications 

of all participating federates and let each federate out 

of an FMU publish or subscribe its required attributes. 

In contrast, our approach enables participation of 

FMUs in a federation with non-FMU members as 

well.   

2 Functional Mockup Interface 

Functional Mockup Interface provides an interface 

specification for simulation components called Func-

tional Mockup Units. FMI provides two standard in-

terfaces, namely, FMI for Co-Simulation and FMI for 

Model Exchange [4] [5]. 

While FMI for Model Exchange specifies the in-

terface for callers with explicit or implicit integrators, 

FMI for Co-Simulation specifies the interface for sim-

ulation runnables that possess solvers in them. As we 

can view HLA Federates as standalone simulation 

runnables, this effort is based on FMI-Co-Simulation 

interface for federate development. In this work, the 

first version of the standard is used as the baseline [5]. 

2.1 FMI for Co-simulation 

As mentioned above, FMI for Co-Simulation is a 

standard interface for the model output containing its 

solver inside. Therefore, the user does not need to 

know which integration method is actually employed 

to solve the ordinary differential equations within the 

model. 

For each of the FMU in a co-simulation environ-

ment, the communication capabilities are configured 

in a model specific XML file, namely ModelDescrip-

tion.xml file. Communication with an FMU can only 

be realized in a discrete communication point, which 

is a sampling point or a synchronization point of the 

FMU [5].  

2.1.1 Computational Flow 

As show in Figure 1, FMU co-simulation computa-

tional flow has three main states, namely Instantiation 

and Initialization, Running and Termination.  

Instantiation and Initialization  

A new FMU instance is created and initiated to be 

ready to run. Memory allocations and initial value set-

ting for the FMU parameters are performed in this 

phase. 

 Running  

In this phase, FMU model is executed via calling 

doStep() method. Intuitively, before running a step, 

FMU input parameters are set by calling 

FMUSetXXX(…) and after the completion of this step 

the model output parameter are read by the master via 

calling fmiGetXXX(…). 

Termination  

The model component is unloaded and the memory is 

cleaned up in this phase. 
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Figure 1 – FMU Co-Simulation Model Computational 

Flow 

3 High Level Architecture  

The High Level Architecture (HLA) is a common 

framework for distributed simulation systems. HLA 

promotes interoperability between heterogeneous 

simulations and supports the reuse of models in dif-

ferent contexts. HLA provides communicating data 

and synchronization actions between simulation 

members regardless of their computing platforms [1]. 

HLA combines simulations (federates) into a 

larger simulation (federation), where federates are 
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components and federations are component based ap-

plications. The HLA requires runtime infrastructure 

(RTI) software to support the operation of a federation 

execution. RTI provides a set of services and by using 

these services a federate can interact with the federa-

tion at runtime. How a federate can utilize these ser-

vices is defined by the Federate Interface Specifica-

tion [2]. 

Federation Object Model (FOM) is the HLA Fed-

eration Object Model that describes all of the object 

classes and interactions, attributes of object classes 

and parameters of interactions for the federation. 

Also, FOM establishes the information model con-

tract which governs the simulation. Simulation Object 

Model (SOM), on the other hand, is the HLA Simula-

tion Object Model that describes the object classes 

and interactions, attributes of object classes and pa-

rameters of interactions information which are ex-

posed or consumed by a federate [2] . 

3.1 HLA Services 

HLA provides six groups of services to enable distrib-

uted simulation in an aggregate level [2]. Federation 

Management describes how to create, join, resign and 

manage federations, save and restore federation 

states. Declaration Management defines the publish-

ing and subscribing to objects and attributes. Object 

Management service states how to register new in-

stance of an object class or interaction, update the at-

tributes, receive interactions, discover new instances 

and receive updates of attributes. Ownership Manage-

ment defines acquisition of ownership of the regis-

tered objects. Time management describes how a fed-

erate can advance its logical time along with other 

federates and how to deliver the time-stamped events 

ensuring that a federate can never receive an event 

with a timestamp less than the federate’s logical time. 

Data distribution management defines the production 

and consumption of data to bind the relevance of com-

munication data among federates. As a result, RTI can 

recognize the irrelevant data and prevents its delivery 

to consumers.  

3.2 HLA Object Model 

HLA provides object classes and interactions as the 

object models, which are used to publish/subscribe 

the data over distributed simulation environment. 

Providing the data exchange between federates is one 

of the responsibilities of the RTI. 

An object class can be derived from another object 

class. HLAobjectRoot is the base class of the all object 

classes. Each object class can contain one or more at-

tributes. Derived classes also inherit base class attrib-

utes. Attributes are have data types. A federate will 

publish/subscribe only interested attributes of an ob-

ject class; it does not have to deal with all the attrib-

utes in an object class. 

An interaction can be derived from another inter-

action. HLAinteractionRoot is the base class of the all 

interactions. Each interaction contains one or many 

object parameters. Derived interactions takes base in-

teraction parameters also. Parameters have data types. 

A federate should fill all the parameters of an interac-

tion to publish it. 

HLA provides six different data types where user 

can create variety of data structures by using those 

data types. The published/subscribed values are stored 

in these data structures. The details of data types are 

given below [3]: 

 Basic Datatype: Basic data refers to a predefined 
set of data representations. Following data types 
should be defined by any OMT: HLAinteger16BE, 
HLAinteger32BE, HLAinteger64BE, HLAfloat32BE, 
HLAfloat64BE, HLAoctetPairBE, HLAinteger16LE, 
HLAinteger32LE, HLAinteger64LE, HLAfloat32LE, 

HLAfloat64LE, HLAoctetPairLE, and HLAoctet. 

 Simple Datatype: The simple data type table re-
fers to simple, scalar data items. Following data 
types should be defined by any OMT: 
HLAASCIIchar, HLAunicodeChar, and HLAbyte.  

 Enumerated Datatype: The enumerated data type 
refers to data elements that can take on a finite dis-
crete set of possible values. Following data type 
should be defined by any OMT: HLAboolean. 

 Array Datatype: The array data type table refers 
to indexed homogenous collections of data types; 
these constructs are also known as arrays or se-
quences. Following data types should be defined 
by any OMT: HLAASCIIstring, HLAunicodeString, 
and HLAopaqueData.  

 Fixed Record Datatype: The fixed record data 

type table refers to heterogeneous collections of 

types; these constructs are also known as records 

or structures. This allows users to build structures 

of data according to the needs of their federate or 

federation. 

 Variant Record Datatype: The variant record 

data type table refers to discriminated unions of 

types; these constructs are also known as variant 

or choice records. 

3.3 HLA Padding Rules 

HLA requires that certain types of data start at a par-

ticular kind of location. Therefore, usually there is a 

requirement for extra bytes, namely padding bytes, 
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between data fields in a structure. To illustrate, con-

sider a structure where the first field is a byte and sec-

ond field is a double. Double must start at a position 

which is a multiple of 8. Therefore, seven bytes of 

padding is needed between byte field and double field 

for a proper structure.  

The padding rules are used to determine exact po-

sitions of the fields of a data type, which constructs 

the data structure of an attribute.  

These rules for constructed data types (arrays, 

fixed records, and variant records) as described below 

[3]: 

Base Datatype 

Each base type has a boundary value as provided in 

table 1. During the calculation of padding, this table 

is used to calculate structure boundary value. 

Table 1 – Basic Datatype Boundary Values 

Basic representation Octet Boundary Value 

HLAoctet 1 

HLAoctetPairBE 2 

HLAinteger16BE 2 

HLAinteger32BE 4 

HLAinteger64BE 8 

HLAfloat32BE 4 

HLAfloat64BE 8 

HLAoctetPairLE 2 

HLAinteger16LE 2 

HLAinteger32LE 4 

HLAinteger64LE 8 

HLAfloat32LE 4 

HLAfloat64LE 8 

 

Simple Datatype 

Same base data type padding rules also apply for sim-

ple datatype. 

Enumerated Datatype 

Same base data type padding rules also apply for enu-

merated datatype.  

Fixed Record Datatype 

The padding bytes are added to each field when nec-

essary to ensure that the next field in the record is 

properly aligned. After a field the padding bytes can 

be calculated by using the following formula:  

( 𝑂𝑓𝑓𝑠𝑒𝑡𝑖 +  𝑆𝑖𝑧𝑒𝑖 +  𝑃𝑖)𝑚𝑜𝑑 𝑉𝑖+1 = 0  

where 𝑂𝑓𝑓𝑠𝑒𝑡𝑖 refers to the offset of the i'th field of 

the record as bytes,  

 𝑆𝑖𝑧𝑒𝑖 refers to the size of the i'th field of the record as 

bytes, 

𝑉𝑖+1 is the octet boundary value of field (i + 1)th of 

the record. 

Variant Record Datatype 

The HLAvariantRecord encoding shall consist of the 

discriminant followed by a field. This field is chosen 

by using the value of discriminant. The discriminant 

is placed at offset 0 of the record. The padding bytes 

𝑃 are calculated by using the following formula: 

( 𝑆𝑖𝑧𝑒 +  𝑃) 𝑚𝑜𝑑 𝑉 = 0 

where 𝑆𝑖𝑧𝑒 refers to the size of the discriminant as 

bytes, and 𝑉 refers to the maximum of the octet 

boundary values of the alternatives. 

HLA Array Datatype with Fixed Cardinality 

The padding bytes 𝑃𝑖 between i’th and (i+1)th ele-

ments can be calculated by using following formula: 

( 𝑆𝑖𝑧𝑒𝑖 + 𝑃𝑖) 𝑚𝑜𝑑 𝑉 = 0  

where 𝑆𝑖𝑧𝑒𝑖 is the size of the i’th element of the array 

in bytes, 

𝑉 is the octet boundary value of the element type. 

HLA Array Datatype with Variant Cardinality 

The first 4 bytes are used to present the number of the 

elements in the array. These 4 bytes are encoded as 

HLAinteger32BE. The padding bytes can be added be-

tween the inform element and the first element of the 

sequence. The padding bytes can be found by using 

following formula: 

( 4 +  𝑃) 𝑚𝑜𝑑 𝑉 = 0 

where 𝑉 is the octet boundary value of the element 

type. 

4 Functional Mockup Unit Federate 

Design 

The FMI for Co-Simulation standard does not provide 

a specification for connecting FMUs to an HLA fed-

eration, hence, FMI Co-Simulation does not have an 

interface ready to utilize HLA services. Moreover, 

there is no convenient way to convert FMU scalar var-

iables to HLA object class attributes, because FMI 

Co-Simulation only supports the following primitive 

types: real, integer, string, Boolean and Enumeration. On 

the other hand, HLA attributes can represent any data 

type structure, from basic data types to the complex 

data type structures. Since FMI Co-Simulation scalar 

variables can only map to HLA basic data types, a 

simulation environment using complex data types 

cannot be directly supported by FMI Co-Simulation. 
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Hence, there is a need for a wrapper that connects 

an FMU, in the context of FMI Co-Simulation, to the 

HLA distributed simulation environment. The work 

conducted handles the problem by designing a Func-

tional Mockup Unit Federate (FMUFd). FMUFd has 

the following responsibilities: 

 Instantiating, initializing, stepping and terminating 
of a FMU model.  

 Providing the communication of distributed envi-
ronment with services by using the HLA standard 
interface. 

 Converting FMU model outputs to compatible 
HLA data types and sending them as HLA object 
updates. 

 Receiving model inputs from HLA objects and 
converting them to compatible FMU types. 

The top level structure of FMUFd that satisfies 

these requirements is depicted in Figure 2. The 

FMUFd is composed of the FMU model, FMI-HLA 

Map configurations and HLA connection configura-

tion. FMI-HLA Map Configuration is used to inform 

FMUFd about HLA FMI relation. For each FMU, us-

ing this structure an FMUFd is needed to be config-

ured. HLA connection configuration is related with 

the federation and FOM information of distributed 

simulation environment. By using these data, FMUFd 

runs with stepwise activities. As shown in Figure 3, 

these activities can be grouped into four main phases, 

namely, initialization, object discovery, stepping and 

termination. 

In initialization phase, FMUFd loads and initial-

izes the FMU and then connects the HLA federation 

as a federate with related HLA services and declare 

interested object classes for publishing and subscrib-

ing.  

In object reflection phase, the subscribed object 

class instances are discovered and their values are re-

flected. 

The stepping phase is the main phase of the simu-

lation. In this phase, FMU input variables are reflected 

from related HLA objects, FMU runs one time step, 

and then, FMU output values are reflected to related 

HLA objects. 

In termination phase, FMUFd terminates and un-

loads FMU, resigns from federation, frees allocated 

memory and finally stops. 

The details of these steps with the process of con-

necting FMU to the HLA simulation environment will 

be described in the following sections. After that, the 

FMUFd capabilities in terms of the HLA services and 

FMUFd limitations will be mentioned briefly. 

4.1 Loading an FMU 

The loading of FMU takes two phases: In the first 

phase, the model description file is parsed, while the 

FMU is loaded and initialized in the second phase. 

FMU Model description file provides the static in-

formation of all exposed variables and model related 

data. FMUFd uses model description file to identify 

scalar variables with data types and value reference, 

Globally Unique Identifier (GUID) and the model 

name. The scalar variables are used in data flow be-

tween FMUFd and FMU model. GUID is used for val-

idating concrete coded FMU with model description 

file. Model name is used to load shared object and 

FMI functions. The dynamic link library has the same 

name as the model; shared object FMI functions 

should also take the model name as a prefix to their 

functions [5]. 

Functional Mockup Unit

FMU

Model
FMI

Model

Description.xml

FMU Shared 

Library

FMI-HLA

MAP

Configuration

Functional Mockup Federate

HLA

RTI

Other 

Federates

FOM

HLA 

Configuration SOM

 

Figure 2 – Functional Mockup Unit Federate 
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The FMU related operations are developed based 

on the FMU SDK [11]. By using these operations, 

FMUFd can load and use the FMU. The shared li-

brary, inside the FMU file should supply FMI Co-

Simulation interface implementations. FMUFd loads 

those implementations automatically and then instan-

tiates the model and gets the model instance. By then, 

FMU is ready to run steps over time.  

4.2 FMU as an HLA Federate 

This section describes how the FMUFd can join a fed-

eration execution as a member federate.  

4.2.1 Connect to the HLA Federation 

The FOM file contains all data exchange related in-

formation of HLA Federation, including object clas-

ses and object class attributes. By using this file, the 

FMUFd identifies the structure of each object class 

with attributes and data types. 

The parsing process of a FOM takes two steps. 

First of all, the data types are parsed and stored in a 

map. For each type of the data, different parsing pro-

cedure is applied as each type has its special fields. 

For example, the size and endian information is set 

only for basic data types. Then, the object classes are 

parsed with their attributes and the data type of each 

attribute is retrieved from the map. If a class is de-

rived, then its inherited attributes are obtained from its 

ancestors. 

After parsing the FOM file, FMUFd tries to con-

nect to the federation. The federation information is 

provided by the user through a configuration file. The 

FMUFd reads this file to get the federation name, path 

of FOM file and the name of its own federate. Then, 

FMUFd tries to create a federation if it has not been 

created yet. Finally, it joins the federation.  

After joining the federation, FMUFd declares RTI 

which object classes with which attributes will be 

published and/or subscribed. This information is pro-

vided by the user with a SOM file. The FMUFd reads 

the file and identifies the published/subscribed objects 

and informs the RTI. 

4.2.2 Create Object Instances 

There are two scenarios for creating the object in-

stances. At the beginning of the simulation, after de-

claring the object classes, the FMUFd creates the ob-

ject class instances for publishing the FMU output pa-

rameters. The initial values of this object can be as-

signed by user with using the configuration files. 

Then, whenever an object class is discovered (new ob-

ject instance is subscribed), the FMUFd creates an in-

stance of the discovered object class.  

Each object contains both object class metadata 

and attributes. Each attribute allocates the memory 

with the same size as its data type. While calculating 

the size of a data type the padding rules are used as 

described in section 3.3. Although there exists some 
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rules, still it may not be straightforward to find the ex-

act size of the data type. For example, fixed record 

data type can contain another fixed record data type 

and a dynamic array data type. In this case, it is not 

possible to find exact size of the data type without fill-

ing the exact data. Therefore, for every update, the 

size of the data type should be recalculated. This re-

calculation may have a problem regarding the perfor-

mance of an application. To address this issue, the 

FMUFd has been designed with two restrictions: 

 The array data type with dynamic cardinality is not 
supported by FMUFd, 

 The discriminant value of the variant record data 
type is explicitly defined in configuration file and 
cannot be changed in runtime.  

With these restrictions, the FMUFd calculates the 

size of each attribute at the beginning of the simula-

tion and uses this size throughout the simulation. As 

the data can contain different data types in it, the cal-

culation may be performed through recursion. The 

basic data type is the only type with known size. 

Whenever the recursion reaches a basic data type, the 

padding rules are applied. The base case of the recur-

sion could be the code segment given in Figure 4. The 

currentOffset value is passed into recursion which 

holds the previously calculated offset. After recursion 

is finished, currentOffset will hold the size of the root 

data type. 

 

 
Figure 4 – The base condition code snapshot for cal-

culating the padding bytes 

4.2.3 Update/Reflect Object Class Attribute 

A complex data type can contain both big endian and 

little endian data types in it, independent from appli-

cation computer’s endian type. Therefore, before up-

dating the object class attribute, the attribute values 

should be encoded to the right type of endian. Like-

wise, after reflecting the attribute, the value should be 

decoded to the computer endian type. The FMUFd al-

ways keeps the data with the same encoding of com-

puter. By doing that, it becomes easier to use the data 

in an application. Whenever an attribute is needed to 

be updated, the attribute is encoded first then update 

operation is called. Likewise, whenever an attribute is 

reflected, the value of that attribute is decoded first 

and kept in decoded form in memory.  

The encode/decode operation is also executed with 

recursion. The basic data type is the only type with 

known endian type. Whenever the recursion reaches 

to the basic data type, the swapping operation is ap-

plied. The base case of the recursion could be the code 

segment given in Figure 5. The returnValue and row-

Data are the void* data type values, with the same size 

of attribute. If the recursion is used for updating the 

attribute operation than rowData refers to the current 

value of the attribute, otherwise, it refers to the re-

flected value of the attribute. The returnValue refers to 

the encoded (or decoded) value of the attribute. 

 
Figure 5 – The base condition code snapshot for en-

coding/decoding the attribute values. 

4.3 Running the Federate 

After introducing how HLA data is de-marshalled, the 

next step is mapping FMU scalar variables to HLA 

basic data types. This mapping is performed through 

user configuration files. These files inform the 

FMUFd about which data from HLA will be set to 

FMU and which data from FMU will be published to 

HLA. 

if(theDataType->type ==  

ObjectClass::Attribute::DataType::BasicData) 

{ 

 int mod = theDataType->size; 

 int padding = (theDataType->size  

- (currentOffset % mod)) 

% mod; 

 theDataType ->offset = currentOffset + padding; 

 currentOffset = newDataType->size  

+ theDataType->offset; 

} 

 

if(dataType.type  

== OjectClass::Attribute 

::DataType::DataTypeType::BasicData) 

{ 

 if(currentNodeEndianType  

!= dataType.endianType ) 

 { 

  T_UINT8* returnValueOffset  

= (((T_UINT8*) returnValue )  

+  dataType.offset); 

  T_UINT8* rowDataOffset  

= (((T_UINT8*) returnValue )  

+  dataType.offset); 

 

  switch(dataType.size) 

  { 

  case sizeof(T_UINT8): 

   *returnValueOffset = *rowDataOffset; 

   break; 

  case sizeof(T_UINT16): 

   *((T_UINT16 *) returnValueOffset)  

= _byteswap_ushort(*(T_UINT16 *) rowDataOffset); 

   break; 

  case sizeof(T_UINT32): 

   *((T_UINT16 *) returnValueOffset)  

= _byteswap_ulong(*(T_UINT16 *) rowDataOffset); 

   break; 

  case sizeof(T_UINT64): 

   *((T_UINT16 *) returnValueOffset)  

= _byteswap_uint64(*(T_UINT16 *) rowDataOffset); 

   break; 

  } 

 } 

} 
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After mapping between FMU scalar variables and 

the HLA attributes, the stepping function can be exe-

cuted.  

Before running a step of FMU, the FMUFd up-

dates each input variable of the model. The input val-

ues are obtained from an instance of related object 

class. If there is no instance for related object class 

then the FMUFd will wait for the instance of that re-

lated object. 

After running a step of FMU, the FMUFd updates 

related attributes of the HLA objects by retrieving the 

values from related FMU scalar variables. Therefore, 

an FMU output values can be mapped to different 

HLA objects, which are controlled by the FMUFd. 

After value updates are finished, the FMUFd will re-

quest the RTI to publish those attributes. 

4.4 FMUFd Structure 

The FMUFd is implemented as an application. In-

spired from paper [14], the application is constructed 

with three base layers as Figure 6. 

Presentation 

Layer

Simulation 

Layer

Communication 

Layer

«uses»«uses»

Functional Mockup Federate

 
Figure 6 – the FMUFd Structure 

4.4.1 Presentation Layer 

The presentation layer is the user interface of the ap-

plication. This layer provides presentation of applica-

tion, input and interaction with the user as shown in 

Figure 7. The plot in the figure shows the change of 

some parameters of the missile and target over time. 

By using this layer, a user can load the necessary con-

figurations to FMUFd and observe scalar variables’ 

value changes in real time. 

 

 
Figure 7 – The FMUFd screenshot while running the 

missile FMU 

4.4.2 Simulation Layer 

The simulation layer processes the application. It in-

cludes the computation of FMI simulation and feder-

ate specific HLA object classes. Its purpose is to run 

FMU and generate the federate behavior.  

Simulation layer is responsible for running the simu-

lation. This layer initializes the FMU, supplies neces-

sary inputs for FMU from HLA class instances, runs 

the models and publishes the model outputs over HLA 

distributed environment.  

One of the key features of the simulation layer is 

to create HLA object class structure dynamically. 

That is, without having the real structure, simulation 

layer can create a void data with the same size of the 

structure by using FOM xml file. Then simulation 

layer can edit this void data parts with the same posi-

tion of any object class attribute fields. 

4.4.3 Communication Layer 

The communication layer deals with the RTI commu-

nication in order to access the object classes and inter-

actions exchanged in the federation execution. RTI is 

the middleware that manages the federation execution 

and object exchange through a federation execution. 

In addition to data exchange, communication layer 

also supports time management service. 

4.5 FMUFd Capabilities 

In this section, FMUFd capabilities are described in 

terms of HLA interface services. Data distribution 

management and ownership management are not used 

in our current implementation. 

Federation Management: If the federation has not 

been created before, the FMUFd creates the federa-

tion. Then it joins the federation. Similarly, after sim-

ulation is finished, the FMUFd resigns from the fed-

eration and if there is no other federate connected to 

the federation, it destroys the federation. 

Declaration Management: FMUFd informs the RTI 

about publishing/subscribing object classes with at-

tributes. 

Object Management: Whenever new object class in-

stance is discovered, FMUFd keeps the handle for this 

instance and allocates memory for it. Whenever a re-

flectAttributeValues event is raised by RTI, the FMUFd 

check whether the object instance is discovered be-

fore. If it is discovered, FMUFd reflects the attribute 

values to the allocated memories of the object in-

stance, and ignores otherwise. Whenever a removeOb-

jectInstance event is raised by RTI, the FMUFd checks 

if the object instance is discovered before. If it is dis-

covered, FMUFd deletes the handle of instance and 

frees the related allocated memory. 
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FMUFd reflects the attribute values to the allo-

cated memory of the object instance, ignores other-

wise. 

Time Management: FMUFd works as a time regu-

lating and time constraining federate. As the nature of 

the time constraint, FMUFd ensures that the sub-

scribed object model instance received reflection no 

less than the currentRTITime. Also, after each running 

step of the model, FMUFd requests to update the fed-

erate time. 

4.6 Limitations 

FMUFd still has some limitations and constraints. 

First of all, HLA interactions are not supported by 

FMUFd as there exists no corresponding logical con-

cept in current FMI for Co-Simulation standard. 

Moreover, the array data type with dynamic cardinal-

ity is not supported by FMUFd. Finally, the discrimi-

nant value of the variant record data type is defined at 

the beginning of the simulation and FMUFd does not 

allow changing it at runtime.   

5 Demonstration 

To demonstrate the FMUFd usage, a simple distrib-

uted simulation environment is developed with MAK 

HLA RTI [12] implementation. For this application, 

the RPR2-D17 FOM file developed by SISO [13] is 

used as a FOM file. The used HLA object classes with 

its parent hierarchy are shown in Figure 8. 

 
Figure 8 – RPR2-D17 FOM classes used in the case 

study. 

There are three nodes connected over an Ethernet 

network in this distributed simulation environment as 

shown in Figure 9. In the missile node, the missile co-

simulation FMU (called MissileFMUFd) is connected 

to distributed simulation environment as the HLA fed-

erate by using FMUFd. Similar to missile PC, the air-

craft co-simulation FMU is also connected to the sim-

ulation environment as a federate by using FMUFd 

(called AircraftFMUFd) in the target aircraft PC. The 

synthetic environment node is used to provide other 

entities in this operational setting, such as the missile 

launch platform, and to visualize the simulation in 2D 

and 3D. To this end, Presagis STAGE is used [15]. 

With two configuration files, one for FMU inputs 

and one for FMU outputs, user should supply infor-

mation to the FMUFd about mapping between FMU 

scalar variables and HLA basic data types. Therefore, 

the entire hierarchy down to the basic data types 

should be explicitly defined for an object model.  

 

 
Figure 9 – The Deployment View Diagram of Simu-

lation Environment 

The example extract from a configuration file is 

provided in Figure 10. This example shows how the 

Target_Ecef_X scalar variable can be mapped with the 

Aircraft object’s Spatial attribute’s data type where 

data type goes down the hierarchy until it reaches the 

basic data type HLAfloat64BE. This mapping is speci-

fied for other scalar variables as well. 

 

Figure 10 – The example mapping between FMU sca-

lar variables and HLA object class attribute data 

types. 

With these configurations, 1500 simulation runs 

have been executed and performance figures for 

framework overhead have been measured. The me-

dian time for updating FMU parameters from HLA 

objects for MissileFMUFd is 254 microseconds. Like-

wise, the median time for updating HLA attributes 

from FMU parameters for MissileFMUFd is 356 mi-

croseconds. Measurement were taken on a computer 

with Intel Xeon 2.66GHz processor, 4GB DDR3 

RAM and Windows 7 Pro 64bit operation system. 

HLAobjectRoot.BaseEntity.PhysicalEntity.Platform.Aircraft  

HLAobjectRoot.BaseEntity.PhysicalEntity.Munition 
 

Target_Ecef_X  = Aicraft|Spatial|SpatialStruct 

:DeadReckoningAlgorithm-A-Alternatives 

:SpatialStruct-DeadReckoningAlgorithm[DRM_FPW] 

:SpatialFPStruct:WorldLocation:WorldLocationStruct:X 

:HLAfloat64BEmetersperfectalways:HLAfloat64BE 
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6 Conclusion 

The FMI is an emerging standard for co-simulation 

and model exchange in Model Based Integration com-

munity. Also, HLA is a well-accepted standard for the 

distributed simulation. FMUFd supplies a solution for 

participation of FMUs that implement FMI Co-Simu-

lation interface in an HLA Federation. Thus, a system 

model can be simulated as a part of an aggregate sim-

ulation of its operational setting. Moreover, this pro-

motes a high level of reusability of system models 

supporting FMI.  

As an alternative approach, the wrapping process 

may generate an FMU HLA wrapper code automati-

cally by reading the FMU specification and generat-

ing the wrapper that knows how to translate just the 

specific FMU join HLA. This approach, on the other 

hand, is both FMU and federation specific and re-

quires a recompile for each FMU. In our case, we 

aimed at recompilation free integration of FMUs to 

any federation via configuration files. 

Finally, FMUFd is currently released in Roketsan 

Inc. as an in-house developed simulation infrastruc-

ture and being employed in some system development 

projects. 
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Abstract 

Simulation models play a fundamental role in the 

development of transmission control software. In the 

ideal case, the same model can be used throughout 

the whole development process from concept and 

design over implementation to system verification. 

The idea is to use one uniform model along this V-

scheme. This leads to the requirement that simula-

tions have to be able to run in real-time on hardware-

in-the-loop platforms. On the other hand, very de-

tailed models of some components might be needed 

during the early design phase. 

Thus, a trade-off between modeling depth and com-

putational performance has to be found. This may be 

achieved by selectively simplifying parts of the 

model that are prone to generating stiff sub-systems 

or a large number of state events. 

Within this framework, the present paper introduces 

the Modelica simulation model of TraXon, the new 

modular transmission for heavy commercial vehicles 

by ZF. The model can be adapted to various needs 

by replacing components according to the required 

modeling depth and/or dynamical behavior.  

After a brief overview of the ZF in-house Modelica 

libraries and the architecture of the TraXon model, 

some approaches and tools are described for evaluat-

ing and optimizing models with respect to real-time 

issues. 

Keywords: ZF Modelica libraries; model simplifica-

tion; performance analysis; hardware-in-the-loop; 

1 Introduction 

ZF is a global player in driveline and chassis tech-

nology. Being confronted with a huge variety of in-

creasingly complex transmission concepts and con-

tinuously reduced development cycle times, simula-

tion has traditionally been an essential part of trans-

mission control software engineering at ZF. Detailed 

models reflecting the mechanical structure of the 

transmission as well as the physical behavior of its 

actuating components are central to this task.  

This paper outlines the Modelica simulation model 

of the new ZF TraXon transmission. Here, the prin-

ciples of object-orientated modeling inherent to 

Modelica greatly contribute towards balancing both 

modeling accuracy and real-time performance. Thus, 

one simulation model can be used throughout the 

whole development process. 

2 Usage of Modelica in ZF 

2.1 Motivation 

Modelica was introduced at ZF over 10 years ago. 

The main intention was to standardize the modeling 

methodology for transmission systems and to share 

modeling know-how by creating component libraries 

accessible throughout the company [1].  

Modelica nowadays represents the standard approach 

for modeling and simulating of a wide range of dis-

tinct transmission systems, particularly in the context 

of control algorithm development. Originally starting 

from one single ZF Modelica Library, more than ten 

different context-specific libraries have been devel-

oped so far, all based on the Modelica Standard Li-

brary [2]. 

2.2 ZF Modelica Libraries 

While some of the above mentioned Modelica librar-

ies are only employed for targeted investigations re-

garding, e.g., shifting comfort or combustion engine 

dynamics, others are regularly used in almost every 

transmission model formulation: 

 ZFLib, encompassing central gear parts 

such as clutches, synchronizers, table-

based engine formulations, controllers, 

chassis models, etc. It is based on the 

Modelica Standard Library and also con-
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tains some extensions to the components 

therein. 

 HybridLib, including extensions for hy-

brid powertrains (electrical machines, 

battery models and complete driving 

strategies for hybrid vehicles). 

 FluidLib for pneumatic/hydraulic actuat-

ing cylinders and valves. This library was 

built upon Modelica.Media and Modeli-

ca.Fluid. The separation of fluid-

mechanic components and the employed 

media is quite useful in order to design 

models that can be used for both hydrau-

lics and pneumatics. 

The motivation for developing in-house libraries ra-

ther than using commercial ones stems from the fol-

lowing requirements: 

 Adaptability of components according to 

internal standards, e.g., with respect to 

data handling and parameterization [1]. 

 Preservation of ZF-specific modeling 

know-how inside components. 

 Synergy effects when modeling closely 

related transmission concepts. 

 Models perfectly tailored to the needs of 

ZF. 

In particular, the central libraries are widely reused 

among distinct transmission modeling projects, thus 

leading to thoroughly tested components character-

ized by a high degree of reliability and robustness. 

Dymola [3] represents the standard front-end tool. 

However, as Modelica is tool-independent current 

efforts also aim at evaluating the usability of the ZF 

Modelica libraries in SimulationX [4]. Then, users 

may choose the most suitable tool for their task. 

2.3 Model Export 

In addition to the unified modeling approach de-

scribed above, also a standardized export process has 

been implemented. The possibility to make simula-

tion models available on various software design and 

testing platforms is an essential requirement. One 

common software development and integration tool 

is Simulink [5] with its ability to export models to 

other platforms. 

For this purpose, the Dymola-Simulink interface has 

been adapted in order to serve all simulation envi-

ronments used at ZF, especially ZF-internal soft-

ware-in-the-loop and hardware-in-the-loop plat-

forms. One particular extension to the original inter-

face is that different fixed-step solvers are attached 

to the exported models. These solvers can be select-

ed just before running the simulation, so the user 

may decide whether he wants to use the Simulink 

solver or one of the built-in fixed-step integrators. 

Furthermore, the inner simulation time step can be 

defined independently from the Simulink solver step 

size. If the inner step size is smaller than the global 

step size a sample and hold mechanism is imple-

mented for in- and outputs. 

3 The TraXon simulation model 

3.1 TraXon – the new modular transmission by 

ZF 

TraXon (Figure 1) is an automatic commercial vehi-

cle transmission platform with five modules for dif-

ferent driving applications, satisfying the most chal-

lenging requirements. It is prepared for intelligent 

networking with other vehicle systems, and sets new 

standards in the areas of efficiency, comfort, and 

application diversity [6]. 

 

 

Figure 1: TraXon transmission 

3.2 TraXon simulation model: overview 

The modular structure of the TraXon transmission is 

also reflected in the structure of the simulation mod-

el. Correspondingly, the TraXon gearbox model con-

sists of six mechanical sub-systems in series, each 

one associated with its own (pneumatic) actuator 

concept (Figure 2). In particular, these sub-systems 

all have a uniform connector interface and can thus 

easily be rearranged to model a wide spectrum of 

distinct transmission topologies in a consistent man-

ner. 

 

Figure 3 exemplifies the general structure of such a 

sub-system (splitter). Note that there is a clear sepa-

ration between the rotational part, mimicking the 

torque flow through a synchronizer depending on the 

position of the sleeve, and the actuator, which trans-
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lationally moves the sleeve according to the pressure 

relationships inside a two-position pneumatic cylin-

der.  

 

 
 

Figure 3: Splitter part of the TraXon transmission, 

modeling a synchronizer actuated by a pneumatic 

cylinder 

 

By extending from a common interface, different 

actuator concepts (e.g., electro-magnetic or electro-

mechanical) and actuator formulations with varying 

modeling depth can thus quickly be exchanged and 

simulated. This is especially important when the 

model needs to be simplified for real-time simula-

tions. 

3.3 Detailed modeling approach 

The master model contains all relevant physical ef-

fects of the pneumatic actuators and can be em-

ployed for detailed MiL/SiL-investigations during 

function development. 

3.3.1 Detailed actuator cylinder model 

Almost all components of TraXon are actuated by 

pneumatic cylinders due to the fact that this kind of 

energy is already available on heavy trucks. The 

physical model of these actuator cylinders consists of 

replaceable variants of chamber and piston compo-

nents. The most detailed piston model considers fric-

tion with stick-slip-effects. This results in high calcu-

lation effort, so the piston may also be replaced (us-

ing the “replaceable” mechanism of Modelica) by 

other variants building on continuous friction model-

ing approaches. End-stops are generally not taken 

into account; instead they are incorporated into the 

translational dynamics of actuated shifting device. 

This helps to reduce the number of equations without 

any effect on the overall behavior of the model. The 

detent of the piston is also modeled, assuring that the 

piston stays in a pre-defined position if not actuated.  

Chambers are composed of a fluid volume and a 

translational flange, transmitting force according to 

the product of fluid pressure and plunger area. The 

latter may be constant or position-dependent as in the 

case of “three-position” cylinders, where the piston 

can be held at a center-position.  

 
Figure 2: TraXon simulation model: engine clutch, splitter (synchronizer), brake, main gear (dog 

clutch transmission with specified shifting geometry), group transmission (synchronizer) and 

retarder 
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Figure 4: Detailed cylinder model using replaceable 

components 

 

A major advantage here is that the modeling media 

are separated from the components so that the cylin-

der models can be used for pneumatic and also for 

hydraulic systems just by changing the media. 

3.3.2 Detailed actuator valve model 

The actuator valve models governing the venting 

behavior of the respective cylinders are divided into 

an electrical, mechanical and fluid-dynamic part. 

The electrical part contains coil inductance and elec-

tro-magnetic force. Control signals are generated by 

Pulse-Width-Modulation. Simplifications are made 

in the magnetic part by neglecting hysteresis and 

using tables instead. The mechanical part consists of 

a translational spring-mass system for the valve tap-

pet. End-stops are modelled and friction can be acti-

vated but is not used at the moment. 

The fluid-dynamic part is divided into a geometrical 

and a fluid flow part, both of which are replaceable. 

The geometrical part yields the valve opening result-

ing from a specific position of the tappet. Different 

valve seating geometries can be realized, including 

flat seat and ball-drill/-cone seat. The fluid flow part 

calculates mass flow depending on the valve open-

ing.  

Here, changing from pneumatics to hydraulics is al-

most as easy as in the case of cylinders. The only 

component that has to be replaced is the inner valve 

containing the equations to calculate the pressure 

drop. This is due to the fact that a different behavior 

results dependent on the compressibility of the media 

(compressible (e.g., air) vs. incompressible (e.g., 

simple oil)). 

3.4 Simplifications made for real-time compu-

tations 

Since the TraXon simulation model aims at accom-

panying the entire software development process, 

there is a special constraint: real-time capability.  

To meet this challenge, certain model simplifications 

have to be implemented in order to guarantee a fast 

and robust simulation on HiL-platforms, usually em-

ploying an Euler-forward algorithm with a fixed step 

size of 1 ms.  

In this context, extensive use is made of Modelica’s 

inherent feature to make certain model components 

easily exchangeable. In particular, by declaring the 

above-mentioned actuator parts as replaceable, cyl-

inder and valve formulations with different levels of 

detail may directly be incorporated into the model 

without changing the surrounding structure. This 

feature is especially beneficial during model simpli-

fication steps as outlined below. 

 
Figure 5: Detailed valve model composed of electrical, mechanical and fluid-dynamic part 
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3.4.1 Simplified actuator cylinder model 

 

In the simplified cylinder model the plunger areas 

are parameterized such that the neutral position cor-

responds to a force equilibrium if both chambers 

have ambient pressure. Therefore, the detent force 

can usually be neglected. Friction is modeled in a 

velocity-dependent way in order to avoid stick-slip-

events and thus the creation of many event iterations. 

The volumes of the in- and outgoing pipes are 

lumped into the dead volume of the chambers. This 

avoids fast dynamics due to small fluid volumes and 

hence leads to better numerical stability. 

3.4.2 Simplified actuator valve model 

In contrast to the detailed valve model the electro-

mechanical part is replaced by a second-order trans-

fer function. Thus, higher frequencies of the valve 

piston movement can be avoided. Also the genera-

tion of events is reduced by neglecting end-stops of 

the piston.  

3.5 Stability analysis 

If simulation has to be performed with a fixed step 

solver, the stability region of the integrator has to be 

taken into account. Facing a complex model like the 

one introduced before, with multiple domains inter-

acting with each other, it is difficult to identify the 

critical modes of the system, i.e., those modes that 

do not fulfill the stability requirements because their 

eigen-frequencies are too fast. 

To overcome this problem a MATLAB [5] tool was 

implemented, which visualizes all eigenmodes and 

eigenvectors that can be computed by linearizing the 

nonlinear system at certain time points of interest.  

The linearizing feature of Dymola is used for this 

purpose. The top panel of Figure 6 shows the stabil-

ity regions for the implemented fixed step solvers.  

 

Figure 6: Eigenmode analysis tool 

The blue dots show all eigenmodes in the z-space. 

Each dot that does not fall within the stability region 

of the used solver has to be investigated. At the bot-

tom of Figure 6, the eigenvector of one selected 

eigenmode is shown.  

This links the eigenmode to the contributing state 

variables and thus allows for identifying the corre-

sponding components in the model. To enhance this 

feature, special states are included in all components, 

representing the stored energy. The eigenvectors can 

be “filtered” according to these energy states, mak-

ing it even easier to find the components of interest. 

With this information, the engineer may decide to 

change the model structurally or to adapt some phys-

ical parameters, in order to move the eigenmodes 

into the stability region without modifying the dy-

namical behavior too much. 

3.6 Performance analysis 

A model analysis after symbolic manipulation of the 

underlying equations shows the differences between 

the detailed and simplified modeling approach as 

discussed above, see Table 1. Note that the number 

of mixed real/discrete systems of equations is drasti-

cally reduced, hence less computational effort is ex-

pected during event iterations. 

 
 Detailed 

model 

Simplified 

model 

Number of mixed real/discrete systems of 

equations 
20 4 

Number of states 180 124 

Number of linear systems of equations 4 4 

Max. size of linear systems of equations 8 8 

Number of nonlin. systems of equations 12 7 

Max. size of nonlin. systems of equations 17 17 

Table 1: Model analysis before and after simplifica-

tion  

 

The performance increase by using the simplified 

modeling approach can be seen in Figure 7. This 

computational load can be made visible because the 

translated model is running in our own simulation 

framework by calling the “dsblock” C-function [7], 

and the time needed for its execution is measured at 

each time step. A very important effect that can be 

seen in this plot is the occurrence of events and the 

time needed to handle them. In general, finding con-

sistent restarting conditions after an event is a serious 

problem for real-time simulations as it seems that at 

every event handling the calculation time required is 

at least two times higher than the average time with-

out an event. Due to this effect the maximum al-
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lowed calculation effort is half the integration step 

size – here 0.5 ms – to avoid time overruns. 

Using this analysis tool, the average time interval 

needed for executing one solver step can be lowered 

by approximately 50%. Another important effect is 

the reduction of state events and the parallel decrease 

of iteration steps necessary for finding consistent 

restart conditions. When using the TraXon simula-

tion model on hardware-in-the-loop platforms this is 

the key to avoid overruns.  

4 Conclusions 

The use of simulation models along the entire soft-

ware development process is widely implemented at 

ZF. A standardized way to export models to different 

simulation platforms has been established and the 

potential of the Functional Mockup Interface in this 

regard is currently evaluated. 

Modelers can benefit from the availability of in-

house Modelica libraries and components that are 

extensively reused in many simulation models.  

For real-time applications, object oriented modeling 

provides an elegant way to rapidly switch between 

different model formulations with a varying degree 

of detail. This is a key feature when the model has to 

be simplified in order to ensure a fast and robust ex-

ecution. Nevertheless, the analysis methods inside 

Dymola with respect to this task may be improved. 

In particular, an automated way for ranking model 

variables according to their contribution to different 

timescales in the model would be highly desirable. 

Furthermore, the generation of events and the subse-

quent iteration process represents a drawback of 

Modelica in the context of for real-time applications. 
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Vectorized single-track model in Modelica for articulated vehicles
with arbitrary number of units and axles
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Abstract

A linear single-track model for articulated vehicles has
been implemented. The model can represent an artic-
ulated vehicle with an arbitrary number of units each
with an arbitrary number of axles. Lateral and yaw
dynamics are in focus but longitudinal effects in cou-
plings are also included. In the model, tire forces are
linear with respect to slip angle. The couplings be-
tween units are represented as non-linear kinematic
constraints which are valid for small and large artic-
ulation angles.

Four use cases are presented: Inverse dynamics for
feedforward control, frequency responses when vary-
ing parameters, steady-state evaluations and dynamic
simulation. For these use cases, four parametrizations
of the model are used corresponding to a tractor with a
semitrailer a truck with a dolly and a semitrailer, an A-
double (tractor+semitrailer+dolly+semitrailer) and an
approximate version of an airport baggage carrier with
five full trailers.

Keywords: vehicle dynamics, vehicle models, artic-
ulated vehicles

1 Introduction

Simple vehicle dynamics models are very useful for
basic analysis, rough parameter tuning and concept
studies. By keeping models simple, one gains not
only simulation speed but the possibility to for exam-
ple invert the model for feedforward control. A simple
model is however not always simple to model.

Several modeling approaches have been used to
model articulated vehicles [1], [2], [3], [4]. For simple
models, it is common to simplify the coupling equa-
tions using small angle approximations. This greatly
simplifies the modeling effort but also invalidates the

model for low-speed cases when articulation angles
typically exceed the validity range of such an approx-
imation. For multiple units, keeping the non-linear
coupling equations usually require some kind of sym-
bolic solver, such as Maple, Mathematica or Matlab’s
Symbolic toolbox. It is also common that the mod-
eling is done for a specific vehicle combination with
little room for extending to more units without refor-
mulating the model.

Creating the model using Modelica one does not
have to explicitly solve all equations and thus the
model formulation can be kept simple while letting
the Modelica tool take care of equation solving. Fur-
thermore, by vectorizing the model with respect to the
number of units and axles the model equations does
not have to be expressed with a specific vehicle com-
bination in mind, leaving that to the specific imple-
mentation.

2 Model description

A description of the model equations and structure
is presented here. For brevity and readability of
code snippets,vector() and matrix() function
calls and some full library paths are left out.MSL is
used when models are taken from the Modelica Stan-
dard Library, mainly fromModelica.SIunits and
Modelica.Blocks.

2.1 Assumptions

As is normal for single-track models, the two tires on
an axle are lumped as a single tire in the middle of
the axle. Coupling points are assumed to not transfer
torque between units. Slip angles are assumed to be
small such that tanα ≈ α .

While the model accepts a variable input velocity,
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typical longitudinal effects such as load transfer are
not taken into account.

2.2 Parameter and variable structure

Parameters describing positions on the vehicle are all
expressed relative to the first axle of the corresponding
unit. This includes axle positions, center of gravity,
c.g., positions and coupling point positions. Figure 1
shows the position parameters for a unit. Since states

 

 

Ai
Bi

Xi

Li,1
Li,2
Li,3

Lcog,i, j {
Acog,i Bcog,i

Figure 1: Geometric parameters of uniti. Ai andBi are
the distances from the first axle to the front and rear
coupling points, respectively.Xi is the distance from
the first axle to center of gravity.Li, j is the distance
from axle 1 to axlej on uniti.

are defined at the center of gravity of each unit, po-
sition parameters are recalculated relative to this, e.g.
Acog = A−X .

Parameters and quantities related to axles, such as
tire forces and axle positions, are defined as matrices
with dimensions[nu,na] wherenu is the number of
units in the combination andna denotes the maximum
number of axles on any of the units. If the number of
axles on a unit is less thanna the unused elements will
be set to zero and are thus disregarded. Parameters
and quantities related to units, such as motion states
and masses, are defined as vectors of lengthnu.

2.3 Tire forces

Given the small angles assumption, the slip angle for
a single tire is defined as

α =
vy +Lcogωz

vx
−δ (1)

whereLcog is the distance from the center of gravity
to the axle that is being considered,vy andωz are the
lateral velocity and yaw rate of the unit in question
andδ is the steering angle. In the model code, the slip
angle matrix for all axles is defined as

alpha = ((vy*ones(1,na)
+Lcog.*(wz*ones(1,na)))
./(vx*ones(1,na))-delta);

The lateral tire forces can then be calculated as

Fyw = -C.*alpha;

whereC is the axle cornering stiffness matrix. To-
gether with the longitudinal forces,Fxw, the tire forces
can be transformed to the vehicle coordinate system
with the steering angledelta

Fx = Fxw.*cos(delta)-Fyw.*sin(delta);
Fy = Fxw.*sin(delta)+Fyw.*cos(delta);

A variableFxd is defined as the drive force needed at
each driven axle to maintain the input velocity. This
force is applied at each driven axle:

for i in 1:nu loop
for j in 1:na loop

if driven[i,j] then
Fxw[i,j]=Fxd;

else
Fxw[i,j]=0;

end if;
end for;

end for;

This force is implicitly determined to satisfy the rest
of the model equations.

2.4 Coupling constraints

The constraints in the couplings state that the global
velocity vector of the rear coupling on the unit in front
should be the same as that of the front coupling point
on the unit behind. The Modelica language allows
for a series of equations to be defined using for loops.
Here, the constraint that the velocities at the front cou-
pling of unit i should be the same as that of the rear
coupling on unit i-1 is defined by looping over all the
couplings:

for i in 1:nu-1 loop
vx[i+1] = vx[i]*cos(theta[i])

-(vy[i]+Bcog[i]*wz[i])*sin(theta[i]);
vy[i+1]+Acog[i+1]*wz[i+1]=

(vy[i]+Bcog[i]*wz[i])*cos(theta[i])
+vx[i]*sin(theta[i]);

end for;

Equations for the coupling forces are not formulated
explicitly, the velocity constraints in the coupling to-
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gether with force and moment balances gives enough
information for an implicit calculation. Figure 2 shows
how the coupling cut forces are applied to the dif-
ferent units affected by the coupling. The forces

Fc,x,i

Fc,x,i

Fc,y,i

Fc,y,i

θi

Unit i

Unit i+1

Figure 2: Example of cut forces in coupling between
unit i (front) and i+1 (rear)

in each coupling are defined in the coordinate sys-
tem of the front unit which it affects with negative
sign. The rear unit in the coupling is affected by the
forces with positive sign transformed by the articula-
tion angle. SoFcx[i] pulls rearward on uniti and
Fcx[i]*cos(theta[i]) pulls forward on uniti+1.
Similarly, Fcy[i] pulls in the negative y direction
(rightwards) on uniti andFcy[i]*cos(theta[i])
pulls towards the left on uniti+1.

2.5 Steady state mode

To simplify steady-state analysis, substitute parame-
ters are defined for each state derivative:

MSL.Acceleration[nu] d_vx;
MSL.Acceleration[nu] d_vy;
MSL.AngularAcceleration[nu] d_wz;
MSL.AngularVelocity[nu-1] d_theta;

If the model is to be run in steady-state, all derivatives
are set to zero. For dynamic simulations they are set to
the derivative of their corresponding state variable:

if steadystate then
d_vx=zeros(nu);
d_vy=zeros(nu);
d_wz=zeros(nu);
d_theta=zeros(nu-1);

else
d_vx=der(vx);
d_vy=der(vy);
d_wz=der(wz);
d_theta=der(theta);

end if;

2.6 State equations

By using matrices and vectors, the state equations can
be formulated as matrix equations for the entire vehi-
cle combination instead of writing separate equations
for each unit. In the axle force matrices, a row,i, con-
tains all the axle forces on uniti. To get the force
sum on each unit, the force matrix is multiplied by a
column vector of ones of lengthna:



Fy,11 · · · Fy,1na

...
. . .

...
Fy,nu1 · · · Fy,nuna







1
...
1


 =




Fy,11+ ...+Fy,1na

...
Fy,nu1 + ...+Fy,nuna


 (2)

For coupling forces column vectors[Fcx;0] and
[Fcy;0] are defined for the rear coupling forces, the
0 element meaning no rear coupling force on the rear-
most unit. Similarly, vectors[0,Fcx] and[0,Fcy]
are defined for the front coupling forces where 0 here
means no front coupling force on the first unit. Then,
the force balance equations for the whole combination
can be written as a matrix equation using element-wise
multiplication. The lateral and longitudinal force bal-
ances are written as:

ay=d_vy+vx.*wz;
m.*ay=Fy*ones(na,1)-[Fcy;0]

+[0;Fcx].*sin([0;theta])
+[0;Fcy].*cos([0;theta]);

ax=d_vx-vy.*wz;
m.*ax=Fx*ones(na,1)-[Fcx;0]

+[0;Fcx].*cos([0;theta])
-[0;Fcy].*sin([0;theta]);

The moment balance around the yaw axis is done in
the same way with the added moment arms for the dif-
ferent forces:

I.*d_wz=Lcog.*Fy*ones(na,1)
-Bcog.*[Fcy;0]
+Acog.*([0;Fcx].*sin([0;theta])
+[0;Fcy].*cos([0;theta]));

whereAcog andBcog are the distance from c.g. to the
front and rear couplings, respectively andLcog is the
distance from c.g. to each axle.

2.7 Inputs

The inputs to the model are the steering angles at all
axles and the velocity of the first unit.

input MSL.RealInput[nu,na] delta_in;
input MSL.RealInput vx_in;
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Due to the kinematic constraints in the coupling, the
derivative of thevx_in input will be needed. To allow
velocity as input when exporting the model, the deriva-
tive of vx_in is set to zero with annotated derivatives
using a QuasiStatic function from the Modelon library:

vx[1] =
max(0.1,QuasiStatic.scalar(vx_in));

The output from the
QuasiStatic.scalar(vx_in) function has
the same value asvx_in but with zero derivative.
Here, the velocity is also set to be minimum 0.1 to
protect sideslip calculations from division by zero.

3 Use cases

Four use cases are presented as examples. For each use
case a different vehicle combination is used to show
how the model can be parametrized for different vehi-
cles.

A tractor-semitrailer model is inverted for feedfor-
ward control, a truck-dolly-semitrailer is linearized
and its frequency response is studied, a tractor-
semitrailer-dolly-semitrailer is run in steady-state to
evaluate its off-tracking characteristics and a five-
trailer airport baggage carrier is run in a dynamic sim-
ulation. Figure 3 shows the four vehicles used.

Figure 3: The four vehicle combinations used.

The Functional Mockup Interface, FMI, allows
modeling and simulation to be performed in sepa-
rate tools. Model development has been done in Dy-
mola and all simulations and plotting are done in Mat-
lab/Simulink using FMI Toolbox. The only parame-
ters that need to be set before exporting models are
the steadystate setting and the number of units,
nu, and axles,na, as they change the structure of the
model. Other parameters such as axle positions and
cornering stiffnesses are free to set when using the ex-
ported model.

3.1 Inverse dynamics

By using the InverseConstraints block in the Modelica
Standard Library, the inverse dynamics of the model
can be solved for. To use the model for feedforward
control, we select the lateral accelerationa_y of the
first unit as input and the steering angle at the front
axledelta[1,1] as output. Figure 4 shows the block
diagram of the inverse model.

Figure 4: Block diagram of inverse model. Inputs to
the model are lateral acceleration and longitudinal ve-
locity at the first unit. Output is the required steering
angle at the first axle.

To test the inverted model, a triangular acceleration
signal of 0.2 Hz frequency and 2 m/s2 amplitude is sent
as input. The velocity is 50 km/h. The steering output
from the inverted model is then input to a model with
normal causality to verify that the lateral acceleration
achieved will be correct. Figure 5 shows that the lat-
eral acceleration output from the controlled model is
indeed the same as the desired lateral acceleration in-
put. The resulting steering command is shown in fig-
ure 6.
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Figure 5: Desired lateral acceleration input and out-
put from vehicle controlled with steering output from
inverted model.
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Figure 6: Steering angle from inverted model.

3.2 Frequency response

The model can easily be linearized to find the fre-
quency response. An important use case for this is to
find how different parameters affect the frequency re-
sponse. Here, the coupling position between the trac-
tor and the trailer is varied to show how this affects the
stability of the vehicle combination.

The truck-dolly-semitrailer combination is lin-
earized for straight forward driving at 80 km/h. Fig-
ure 7 shows the baseline gain from steering angle to
the yaw rates of the different units in the truck-dolly-
semitrailer combination.
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Figure 7: Gain from steering angle at the front axle
to the yaw rates of the different units for the baseline
parametrization of the truck-dolly-semitrailer combi-
nation.

Often the rearward amplification is an important
measure of vehicle performance. This is defined as
the gain from the first unit yaw rate to each of the
towed units’ yaw rates. Figure 8 and figure 9 show
how the rearward amplification of the dolly and semi-
trailer changes as the coupling position on the truck is
changed. The baseline position is 0.53 m behind the
rear axle. As the coupling moves rearward the ampli-
fication increases.
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Figure 8: Yaw rate gain from first unit to second unit
when moving coupling position on first unit. Coupling
further rearward (negative adjustment) gives higher
amplification of yaw rate.
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Figure 9: Yaw rate gain from first unit to third unit
when moving coupling position on first unit. Coupling
further rearward (negative adjustment) gives higher
amplification of yaw rate.

3.3 Steady-state off-tracking

Off-tracking is an important property of a vehicle with
trailers. It is usually defined as the difference in curve
radius between the towing unit and the trailers. In the
model, the instantaneous curvature is calculated for all
axles as

for i in 1:nu loop
for j in 1:na loop

curvature[i,j] = wz[i]
/sqrt((vy[i]+Lcog[i,j]*wz[i])^2
+vx[i]^2);

end for;
end for;

To show how off-tracking varies with vehicle speed,
the vehicle is driven at a constant curve radius of 100 m
for velocities from 1 to 80 km/h. Figure 10 shows how
the curve radius of the last axle of each trailer com-
pares to that of the first axle on the tractor. The typical
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characteristic is that trailers track cuts into the curve at
low speed due to vehicle kinematics and geometry. At
high speed the trailers track a larger curve radius due
to the increased lateral load causing higher sideslip.
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Figure 10: Curve radius of the first tractor axle and the
last axle of each towed unit for varying velocity.

Off-tracking for a fixed vehicle speed also varies
with the curve radius of the first unit. To study this,
the vehicle is run at a fixed speed of 10 km/h and curve
radius of the first unit varies from 15 to 100 m. Fig-
ure 11 shows how off-tracking varies with the curve
radius of the first axle. At this relatively low speed,
vehicle kinematics cause more inward off-tracking at
smaller curve radii.
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Figure 11: Off-tracking of the last axle of each towed
unit in the A-double. First unit speed is fixed and curve
radius varies. Positive off-tracking is defined outwards
in the curve.

3.4 Dynamic simulation

The baggage carrier is simulated with a single period
sine steering input of 5◦ amplitude and 0.3 Hz fre-
quency at 18 km/h. Figure 12 shows the yaw rates of
all the units in the airport baggage carrier and figure 13
shows the position of each axle.

The parameters are only approximated and are not
measured or estimated from a specific real vehicle.
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Figure 12: Yaw rates of all the units in the baggage
carrier train
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Figure 13: Positions of each axle in the baggage carrier
train.)

The simulation results show that the model can repre-
sent multi-trailer vehicles without additional modeling
effort.

4 Conclusion

This work shows that Modelica is useful for formu-
lating simple vehicle models. Using Modelica, artic-
ulated vehicle combinations with arbitrary number of
units and axles can be modeled with the same level of
abstraction as when modeling a non-articulated single-
track vehicle model. Tool independent export and im-
port possibilities within the Functional Mockup Inter-
face greatly simplifies the use of models like this in
control design and concept studies.

By incorporating simple-but-relevant models to-
gether with higher fidelity models in development pro-
cesses infeasible concepts can be ruled out early and
only the most promising ones can be carried on to
more detailed analyses.
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Abstract

Considering the specific case of the multibody mod-
elling of a racing motorbike, where the rigid model of
the rear swingarm has been replaced with a flexible
one, a general approach to flexible multibody systems
modelling in Modelica is presented in this paper. In
particular, the steps required to generate the model of a
flexible body starting from a FEM analysis, performed
with commercial packages, are detailed. Simulations
results are shown with reference to a sudden braking
and to a series of impacts with curbs. In this last case,
an unstable behaviour occurred when considering the
flexible component, which is currently under investi-
gation.

Keywords: motorcycle dynamics; flexible multibody
systems; finite element method; floating frame of ref-
erence; Craig-Bampton method.

1 Introduction

Object-oriented modelling, favoring a real modular
and multi-domain approach, has been recognized as
a fundamental tool for the mechatronic design, requir-
ing an integrated approach to mechanical, electronic
and control design [1]. In this respect, even if multi-
body dynamics is frequently just one of the physical
domains involved, the simulation of flexible multibody
systems plays an important role.

On the other hand, in real applications, the task of
modelling distributed flexibility cannot be addressed
without the help of finite elements (FE) codes, in or-
der to describe complex geometries and material prop-
erties. Moreover, for the sake of efficiency of numer-
ical simulation, the huge number of nodal coordinates
introduced by FE modelling, must be reduced to a
much smaller number of modal coordinates, for exam-
ple through the classical Craig-Bampton method [2].

Two commercial packages exist that pre-process the
output of FE codes to get the Modelica model of a

flexible body, one has been developed by the German
Aerospace Center (DLR) [3], the other has been devel-
oped by Claytex Services Ltd.

The DLR FlexibleBodies library provides several
Modelica classes, namely a flexible beam model
(Beam), an annular plate model (AnnularPlate),
a thermoelastic plate (ThermoElasticPlate) and a
model for general flexible bodies exported from FE
codes (ModalBody). The results of the FE analy-
sis performed by several general purpose codes are
first processed by another commercial code: FEMBS,
implementing modal reduction in a two-step process.
Guyan or Craig-Bampton reduction methods are ap-
plied in the first step to keep the flexible body input file
to FEMBS small, while in the second step the modes in
the frequency range of interest for multibody simula-
tion are selected. The reduced modal representation is
then stored in a Standard Input Data (SID) file [4, 5],
an object-oriented data structure developed to define
a standard format to exchange data between FE and
MBS codes. When a ModalBody class is instantiated
the user has to specify the name of the SID file con-
taining the modal description of the body, which also
stores the original mesh of the FE model, used by Dy-
mola to perform the animation of the simulated motion
of the flexible body.

The Claytex library generates directly the Model-
ica model of a flexible body from the output of the
model reduction process performed by three FE codes:
namely Nastran, Genesis and Abaqus.

Object-oriented modelling of general flexible multi-
body systems has been also described in [6] (up to the
Modelica code), based on the parameters of the flex-
ible body computed by FEM packages, stored in an
ASCII file and read by a parsing tool. The model also
maintains the efficient choice of the generalized coor-
dinates implemented in the Modelica standard (rigid)
multibody library. Thus, when a body is a component
of a tree structure, the motion of the local Floating
Frame of Reference (FFR) [7] is actually calculated by
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propagating of the kinematic quantities from the root
of the tree while, in the case of floating bodies, the
body itself is a root, introducing its own generalized
coordinates for position and orientation.

In this paper, the above mentioned approach is ap-
plied to the multibody model of a racing motorbike,
where a flexible model of the rear swingarm has been
considered.

First, a rigid multibody model of the motorbike has
been developed, with the aim of providing forces and
torques applied to the frame and to the swingarm for a
following FEM structural analysis, performed for the
sake of mechanical design validation. As reference
simulation scenarios a sudden braking and a series of
impacts with obstacles (curbs) have been considered.
Then, the rigid model of the rear swingarm has been
replaced with a flexible one and the simulation results
have been compared.

In view of the particular simulation experiments
considered only limited differences were expected,
particularly appreciable during the simulation of im-
pacts. On the other hand, the simulation of the mo-
torbike with a flexible swingarm showed an unstable
behaviour in the case of subsequent impacts, largely
due to a poor performance of the virtual driver, but un-
doubtedly induced by swingarm flexibility, since the
said behaviour in the rigid case did not occur.

The paper is organized as follows. In Section 2 the
rigid multibody model of the motorbike is described,
including the simulation scenarios and the related re-
sults, moreover, the simulation results are compared to
experimental results obtained on the real bike. Section
3 explains the flexible multibody modelling approach
used in this paper, describing the adopted theoretical
formulation and the most relevant characteristics of the
Modelica flexible body model. Further, it describes the
procedure which leads to obtain flexible body models
in Modelica. In Section 4 the flexible model of the rear
swingarm is described, the procedure outlined in the
previous section is adopted to obtain a flexible model
of the body, then, in Section 5 the previously described
simulations are repeated and the results are compared
with respect to the rigid model. Section 6 concludes
the paper.

2 Rigid multibody motorbike model

A rigid multibody model of a racing motorbike, built
by RobbyMoto Engineering S.r.L., has been first de-
veloped (Fig. 1).

Since the considered scenarios were a sudden brak-

Figure 1: Model of the motorbike.

Figure 2: Scheme of the Modelica model of the mo-
torbike.

ing and a series of impacts with obstacles (curbs), the
model was not intended to simulate the dynamic be-
haviour of the motorbike in curves, but a steering de-
gree of freedom was anyway provided, in order to rep-
resent the intrinsically unstable behaviour of the ve-
hicle. The adopted tyre model accounted for lateral
forces and roll angle, thus a tilt control was required.

The rigid motorbike model is made up entirely by
components of the standard Modelica multibody li-
brary, except for the wheel/road interaction model and
the virtual driver, taken from [8, 9]. The main compo-
nents are:

• Main frame,

• Front suspensions,

• Rear suspended Pro-Link swingarm,

• Wheels and wheel-road interaction,

• Virtual driver: a simple vehicle stabilizer, acting
on the front steer and controlling the tilt angle.

and the scheme of the Modelica model is shown in
Fig. 2.
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It must be pointed out that the suspension mech-
anism includes two interconnected planar kinematic
loops, which must be carefully modelled in order to
avoid singularities. In this respect, the Modelica multi-
body library provides some aggregate joints imple-
menting an analytic solution of the loops closure equa-
tions [10]. In our case, a Revolute-Revolute-Revolute
(RRR) joint is used to solve one of the loops, as shown
in Fig.4, which also inherently breaks the second one,
hence there is no need to use another aggregate joint
for the second loop. Figure 3 shows a simplified
scheme of the planar loop and how it is realised in the
real motorbike.

Figure 3: Planar loop.

In view of the simplicity of the considered simula-
tion scenarios, a linear model of the tyre/road interac-
tion has been adopted [8]. The longitudinal force is
thus computed as a linear function of the longitudinal
wheel slip, and the lateral force is computed as a linear
function of the tire sideslip angle and of the roll angle.

Aerodynamic drag forces have been also taken into
account, calculated as:

Fa = S fCzV 2

Figure 4: Model of the kinematic planar loop.

Where Fa is the aerodynamic force applied in the pres-
sure center of the bike, placed 20 cm above the center
of mass and biased 10 cm on the front, according to
[11]. The front section of the bike is defined as S f , the
aerodynamic coefficient Cz is calculated from experi-
mental results (Cz = 0.45), and V is the ground speed
of the vehicle. The drag force is shown in Fig. 1 as a
green horizontal arrow applied to the pressure center.

2.1 Simulation of a braking

In this subsection, the results obtained by simulating a
braking are compared to experimental data.

The experiment starts with the bike moving on a
straight line at 215 km/h, then, a constant braking
torque of 280 Nm is applied to the front wheel for
4 seconds, according to the pressure observed on the
front brake of the real bike. While braking, the pi-
lot weight is applied 70% on the front handlebars and
30% on the saddle.

Figure 5 shows two screenshots of the simula-
tion before and during the braking manoeuvre, while
Figs. 6 and 7 compare the simulated and experimen-
tal speeds and the elongation of the suspensions, re-
spectively. It must be pointed out that the distribution
of the driver weight in the Modelica model is con-
stant during the entire simulation, while the distribu-
tion of the weight load in the experiment highly de-
pends on the longitudinal acceleration, thus, the front
suspension displacement is slightly different between
model and experiment before the braking manoeuvre.
The comparison between simulation and experiment
is more significant in the first part of the transient, say
the first 2 seconds, because in the last part the driver
enters a curve and starts releasing the brake handle.
Anyway, the simulated results appears to be in quite
good accordance with the experimental data.

Afterwards, the forces and torques acting on the
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Figure 5: Screenshots of the simulation before and
during the braking.

frame and rear swingarm (Fig. 8) have been recorded
from the simulation, in order to identify the stress peak
and the actual values of loads to be used during a FEM
analysis.

2.2 Impacts with curbs

In a second simulation experiment a series of impacts
with curbs has been considered.

Curbs have been modeled as sawtooth obstacles
(Fig. 9) placed on the road surface, every sawtooth has
an height of 2 cm and a width of 20 cm, in order to re-
produce the real curbs of most racetracks. To this aim,
the road model described in [8] has been modified in
order compute the quote of the road, given the position
of the wheel. Since the driver weight distribution was
impossible to estimate in this experiment, the whole
load (70 kg) was placed on the saddle. The forces and
torques acting on the frame and rear swingarm have
been exported for a following FEM analysis step, Fig.
10 shows vertical forces exchanged between rear arm
and main frame in the hinge.

Figure 6: Speeds during braking.

Figure 7: Front and rear suspension elongation during
braking.

3 Flexible multibody modelling in
Modelica

The object-oriented modelling paradigm implemented
by the Modelica language requires a description of the
dynamics of a flexible body in terms of local vari-
ables, while the interaction between different bodies
has to be described using the connectors of the stan-
dard Modelica multibody library [10]. In turn, a local
description of a body’s dynamics naturally calls for a
floating frame of reference (FFR) approach [7], which
is currently the most widely used method in computer
simulation of flexible multibody systems.

In the FFR formulation, each body is attached to
a moving frame of reference undergoing large (rigid)
motion, while the (small) elastic displacements are ob-
tained in local coordinates with respect to the reference
frame. Thus, the position (in local coordinates) of a
point on a flexible body, see Fig. 11, is given by:

ū = ū0 + ū f , (1)

where ū0 is the “undeformed” (i.e., rigid) position vec-
tor and ū f is the deformation contribution to position
(i.e., the deformation field).

If small elastic deflections are considered, accord-
ing to the classical Rayleigh-Ritz method [12], the in-
finite dimensional deformation field on the body can
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Figure 8: Forces acting on the rear swingarm hinge
during braking.

Figure 9: Curbs model.

be approximated by a functional basis space with fi-
nite dimension, say M, so that the vector ū f can be
expressed by the finite dimensional product

ū f = Sq , (2)

where S is the [3×M] shape functions matrix (i.e., a
matrix of functions defined over the body domain and
used as a basis to describe the deformation field of the
body itself) and q is the M-dimensional vector of de-
formation degrees of freedom, or modal coordinates.
The representation of a generic flexible body in the
world reference frame requires then 6 + M d.o.f.: 3
corresponding to the rigid displacements r, 3 to the
undeformed body orientation angles θ and M to the
modal coordinates q.

Starting from eqs. (1,2) and accounting for the elas-
tic properties of the material and for the mass distri-
bution, the generalized Newton-Euler equations for a
generic unconstrained flexible body, formulated with
respect to the FFR, can be derived in [13, 7, 14, 15, 5,
16], and developed up to the Modelica code in [6]. It
must be also pointed out that the efficient choice of the
generalized coordinates, implemented in the Modelica
standard (rigid) multibody library, can be maintained.
Thus, when a body is a component of a tree structure,
the motion of the FFR is actually calculated by propa-
gation of the kinematic quantities from the root of the
tree while, in the case of floating bodies, the body itself
is a root, introducing its own generalized coordinates
for position and orientation.

Figure 10: Vertical forces acting on the rear swingarm
hinge during impacts with curbs.

Figure 11: Floating reference frame.

In the case of simple geometries, such as beams
[13], the set of data required to implement the flexi-
ble body dynamic equations, summarized in Table 1,
can be determined analytically, but in more general
cases the use of finite elements (FE) computer codes
as preprocessors is necessary. In this last case the
huge number of nodal coordinates must be reduced to
a much smaller number of modal coordinates, through
the classical Craig-Bampton method [2] or other re-
cently proposed methods [17, 18, 14, 19].

The Modelica model of a general flexible body:
FEMBody, is characterized by an array of Nc multibody
connectors, while the data in Table 1 have been suit-
ably collected in the Modelica record BodyData. The
record is defined as replaceable:

replaceable parameter FEMData.BodyData

data;

so that it is possible, by exploiting the features of the
Modelica language, to assign a different data record to
each FEMBody instance, by simply replacing the record
in the model declaration:

FEMBody FlexPendulum(redeclare

FEMData.PendulumData data ,

alpha=0.005 ,
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Table 1: Flexible body data.
M Number of deformation d.o.f.
I1,I2,I3

i ,I4,I5
i ,I6,I7,I8

i ,I9
i j,I10

i j ,I11
i j Inertia invariants

De,Ke Structural damping and stiffness matrix
Nc Number of connectors
Si, Ŝi Slices of the modal matrix of connectors d.o.f.
ū0i, Āi Undeformed position and orientation of connectors

beta=0.005 ,

d=1);

where alpha, beta, d are the parameters defining the
damping matrix (Rayleigh coefficients).

The process of generation of the flexible body data
record is schematized in Fig. 12.

Figure 12: Flexible body data generation.

First, a FE model of the body is developed based on
3D CAD model (often inherited from design phase).

Then, a FEM analysis is performed, essentially con-
sisting in an eigenfrequency analysis followed by a
modal reduction step, generally based on the Craig-
Bampton method.

The results of the FEM analysis are stored in a bi-

nary Modal Neutral File (.mnf)1, which must be then
translated into an ASCII file, usually with extension
.mtx, containing the same data in a readable format.
This step can be performed through the Adams/Flex
tool, a package included in the MSC.Adams suite,
which allows to inspect the .mnf file and export the
content in ASCII format.

Figure 13: mtx2mo: Graphical User Interface.

The file containing the Modelica record of flexible
body data is finally generated by a parsing software
tool, named mtx2mo, written in Java2 (a screenshot of
the tool is reported in Fig. 13). This tool reads the con-
tent of the .mtx file and translates it into the Modelica
syntax, moreover, it allows the user to choose:

• the eigenmodes to be considered;

• which nodes of FE processing are selected as the
position of the multibody connectors;

1The inertia invariants I10 and I11, are not a direct result of the
analysis and are not stored in this file, they are computed by two
Modelica functions from invariants I8 and I9, as detailed in [6].

2The tool could be implemented also in C or Modelica.
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• how many FE nodes are selected for the 3D
graphic rendering of the model.

The described approach thus avoids the preprocess-
ing stage adopted by the DLR FlexibleBodies library,
which requires the models to be processed by FEMBS
in order to obtain the SID file.

Figure 14: FE model of the swingarm.

4 Modelling a flexible swingarm

Figure 14 shows the FE model of the swingarm, re-
alised with the Patran/Nastran suite by MSC.Software.

Figure 15: Multi-point constraint.

The swingarm is characterized by three connection
points, so three virtual nodes have been defined in the
FE geometry: one in the center of the frame pivot, one
in the lower triangle pivot, and one in the center of the
wheel hub. The internal surfaces of bores have been
associated to this massless nodes by RBE2 rigid multi-
point connections, namely, every node of the mesh lo-
cated on the surface of the holes is rigidly connected
to the virtual node, so that the motion of all dependent
nodes is constrained by the motion of one node. Fig-
ure 15 shows the rigid connection between nodes in
the front bore.

The boundary conditions were assigned in order to
reproduce the hinge acting on the rear swingarm: all
translations and two rotations were fixed for the pin

connecting the swingarm to the mainframe, while all
the other nodes were free to move. A free-motion
eigenvalue resulted from the FEM analysis, with a
very small absolute value (1.2 ·10−3 Hz), neglected in
the generation of the Modelica model.

The first 20 eigenmodes were retained from the
FEM analysis, with eigenfrequencies ranging from
117.3 Hz to 3585.6 Hz, the first eigenmode is shown
in Fig. 16.

Figure 16: First torsional eigenmode.

It must be pointed out that structural damping is ac-
counted in the flexible body model by means of the
Rayleigh coefficients, which are difficult to estimate
and are often the result of an averaging on the damping
ratios of different modes. In this work the coefficients
are chosen as d = 1,α = β = 0.005.

The Modelica model of the flexible swingarm is
shown in Fig. 17. Note that, for the sake of modu-
larity, the connectors of the flexible body are stored
in a vector, hence it is not possible to distinguish the
connections in the graphical layer of the model.

It must be also pointed out that the RRR joint used
in the rigid case to manage the kinematic loop is no
longer required, as the flexibility of the body inher-
ently breaks the loop.

A relative position sensor has been also introduced,
with the aim of sensing the deflection of the rear wheel
hub with respect to the position of the rear wheel bore
in the undeformed configuration.

Figure 17: Modelica model of flexible swingarm.

Session 2B: Automotive Applications 2

DOI
10.3384/ECP14096273

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

279



5 Simulation results with a flexible
swingarm

Figure 18: Displacement of rear wheel hub in braking.

Figure 19: Vertical position of vehicle mass center dur-
ing braking.

The experiments reported in Section 2 have been re-
peated with the flexible swingarm model.

Figure 18 shows the deflection of the rear hub mea-
sured by the above mentioned relative sensor. Dur-
ing the braking manoeuvre the swingarm deflects un-
der the load on the rear part of the bike, starting from
a value of 0.16 mm on the vertical axis before brak-
ing. A lateral displacement is also measured, due to
the imprecise virtual driver, which cannot mantain the
motorbike perfectly vertical. Although the swingarm
deflection is small, it anyway affects the overall geom-
etry of the vehichle.

In Fig.19 the quotes of the mass center of the over-
all vechicle are shown, in the rigid and flexible case.
During the braking, the weight and the inertia loads
mainly impact on the front wheel, while the rear sus-
pension reaches an equilibrium where poor forces are
applied.

Forces and torques applied on the frame do not
change significantly with respect to the rigid model,
in Fig. 20 the vertical forces in the rear hinge are
compared between the rigid and the flexible case at
the beginning of the manoeuvre. As expected, the dif-

ferences (≈3% of the maximum value) are scarcely
appreciable in the transients, and the deformation val-
ues are in good accordance with the static FE analysis
(Fig. 21), in which the same loads (extracted from the
multibody analysis) are applied.

Figure 20: Vertical forces at the beginning of braking
manoeuvre.

Figure 21: FEM static analisys of rear arm displace-
ment.

During the simulated impacts with curbs the forces
acting on the wheel, and consequently on the rear arm,
are much higher in magnitude. Figure 22 shows the
deflection of the rear wheel hub when the motorbike
faces curbs. Note that in this case the vertical deflec-
tion reaches values up to 0.6 mm.

Figure 23 shows a comparison between the vertical
forces in the rear hinge in the rigid and flexible case.
As expected, the forces in the flexible case are lower
in absolute value, because part of the energy is used
to deform the flexible component, which shows also a
dissipative behaviour due to damping.

The overall behaviour of the motorbike in this case
changes significantly due to flexibility, Fig.24 shows
a comparison of the mass center quote of the motor-
bike in rigid and flexible case, the differences reach
an absolute value of 10 mm. Moreover, when consid-
ering the flexible swingarm, an interesting behaviour
appears.

If the simulation time is long enough, the virtual
driver is no more able to control the vehicle, which
starts to wave after some seconds. Figure 25 shows
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the motorbike pose in both cases (flexible on the left
and rigid on the right) at time t = 5.5 s: the vehicle
with a flexible swingarm comes into an unstable be-
haviour and is going to thumble. This behaviour, cur-
rently under investigation, is certainly due to a poor
performance of the virtual driver and to a rough model
of the tyres, but appears to be induced by swingarm
flexibility.

Figure 22: Vertical and longitudinal displacement of
rear hub when facing curbs.

Figure 23: Vertical forces in rear hinge, comparison
between rigid and flexible case.

The main drawback of model with the flexible com-
ponent is the computational cost due to the additional
elastic degrees of freedom: the braking simulation ex-
periment with a rigid swingarm takes 0.32 s of CPU
time to simulate 7 s, on a normal laptop, the same
model with a flexible swingarm takes about 10.4 sec-
onds of CPU time; regarding the simulation of im-
pacts, the rigid model takes 5 s while the flexible
model takes 64 s for 3.5 s of simulated time. The
DASSL integration algorithm has been used in all the
simulations.

6 Conclusion and future work

In this paper, a Modelica multibody model of a motor-
cycle with a flexible swingarm is presented.

Figure 24: Mass center quote, comparison between
rigid and flexible case.

Figure 25: Motorbikes with rigid (right) and flexible
(left) swingarm at time t = 5.5 s.

At first, a rigid model of the motorbike has been de-
veloped and validated with respect to a sudden braking
transient.

Then, a general approach to the modelling of flexi-
ble bodies is presented, and the full procedure leading
to the Modelica model is detailed.

The proposed modelling approach has been applied
to the rear swingarm of the motorbike and a compar-
ison between the rigid and the flexible case is pre-
sented, with reference to a sudden braking and a series
of impacts with curbs as simulation scenarios. In par-
ticular, the simulation of the motorbike with a flexible
swingarm showed an unstable behaviour in the case
of subsequent impacts, largely due to a poor perfor-
mance of the virtual driver, but undoubtedly induced
by swingarm flexibility.

The developed approach to flexible multibody mod-
elling will allow to easily include the description of
bodies’ flexibility in mechatronic systems, expanding
the range of the dynamic analysis. In particular, the
said unstable behaviour is currently under investiga-
tion, as well as another unstable behaviour (shimmy)
occurring in racing bikes.
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Abstract

In this paper two semi-physical models of the semi-
active dampers of the DLR robotic electric vehicle
ROboMObil (ROMO) are described and their im-
plementation in Modelica is presented. Besides the
damper characteristics and hysteresis, the models ad-
ditionally consider the gas force and cover the dif-
ferences of the damper characteristics for compres-
sion and rebound. A procedure to identify the damper
model parameters was implemented using the DLR
Optimization library. The measurement data used for
parameter identification was recorded during experi-
ments on a damper test bench. The simulation results
of the damper models are compared to the experiment
data of the semi-active damper and the suitability of
the damper models with respect to accuracy and real-
time simulation is discussed.

Keywords: semi-active damper; model identifica-
tion, Bouc-Wen model, vehicle dynamics

1 Introduction

When designing a suspension system there are gen-
erally two conflicting goals concerning satisfactory
ride comfort and good road-holding. Using passive
dampers this leads to a compromise since good ride
comfort can be achieved by a rather soft damping
whereas for good road-holding high damping is nec-
essary. On the contrary, suspension systems with con-
trolled semi-active dampers can mitigate this restric-
tion by allowing the adaption of the damper force ac-
cording to the current vehicle state. A comprehensive
overview of control strategies for semi-active suspen-
sions is given in [1, 2] or [3].

Semi-active dampers enable the continuous adap-
tion of the damper force characteristics within a large

operation range dependent on a control input. The
adaption inside the damper is realized by modifying
the force generating physical effects of the damper.
Therefore, semi-active dampers generally need little
energy effort for control as only small forces are nec-
essary to modify the damping force [2]. These two
properties, low energy consumption and continuous
adaption of the damper force, make the integration
of semi-active dampers in vehicle suspensions attrac-
tive. In order to investigate the influence of all the
aforementioned aspects in the context of an experi-
mental electric vehicle, semi-active dampers are used
in the ROMO.

The ROMO, see Figure 1, is an innovative robotic
electric vehicle developed at the Robotics and Mecha-
tronics Center of the German Aerospace Center
(DLR). It is composed of fourWheel Robots, see [4],
which integrate drivetrain, brakes, steering, and sus-
pension.

Figure 1: The ROboMObil (ROMO) on the four post
test rig

During the design process of semi-active suspen-
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sions accurate purpose dependent models describing
the behaviour of semi-active dampers are needed as
shown e. g. in [5]. These models can then be used for
full and quarter-car simulations as well as for estima-
tor and controller design, see [6, 7] or [1].

Due to the ability to combine models from differ-
ent physical domains like mechanics and/or electrics
with control algorithms the object oriented modelling
language Modelica is well suited for modelling and
simulation of controlled semi-active dampers. An-
other advantage for modelling of electric vehicles like
the ROMO is the possibility to reflect the hierarchi-
cal model structure which simplifies the handling and
parameterization of large models.

The common component models for semi-active
dampers can be separated into the following groups
depending on the kind of modelling:

• Full physical models which include a mechanical
and an electrical model of the damper as well as
a hydraulical model of the fluid flow.

• Semi-physical models which also include the
damper mechanics and electrics, but approximate
the hydraulics by an empirical model.

• Black-box models – empirical models which do
not include physical model information in any
way.

A description of a physical damper model can be
found in [8, 9] or [10]. A good overview of semi-
physical models can be found in [11] or [12]. These
two latter papers give an introduction to semi-active
damper modelling and describe several semi-physical
models like the Bingham model or the Bouc-Wen
model. A look-up table based damper model is devel-
oped in [13]. The application of a black-box damper
model is shown in [14]. There, the authors develop a
nonlinear autoregressive exogenous (ARX) model and
compare it to an extended Bouc-Wen model accord-
ing to [11]. The results presented in the paper illus-
trate that both models reproduce the damper behaviour
with a high accuracy while the nonlinear ARX model
slightly outperforms the extended Bouc-Wen model.

This paper focuses on two semi-physical damper
models – a modified generalized extended Bouc-Wen
model and a model based on a 2-dim. look-up table
with the damper velocity and the control input as in-
puts, further referred to as Force Map based damper
model. In contrast to the extended Bouc-Wen model
presented by [11] and used in [14] and [2], the ex-
tended Bouc-Wen model described in this paper dis-

tinguishes between compression and rebound (i. e. de-
compression) of the damper allowing different damper
characteristics. This corresponds to the typical char-
acteristics of semi-active dampers as used in vehicle
suspension systems. Further, the dependency of the
model parameters on the control input is modelled in a
more general way, compared to [11], as the restriction
imposed by the linear dependency of the parameters
on the control input limits the performance of the ex-
tended Bouc-Wen model (see also [14]). Utilizing the
implementation in Modelica, the model parameters are
identified through a step by step optimization approach
using the DLR Optimization library [15]. Hereby, the
overall optimization task was split into several smaller
subtasks each focusing on a subset of the overall model
parameters and making use of particular experiment
data specifically recorded for this optimization step.
The advantage of this procedure is that the knowledge
of the real damper structure and behaviour can be con-
sidered in the optimization algorithm and thus local
minima finding can be avoided more easily during the
optimization. Subsequently, the behaviour of the pa-
rameterized damper models is compared to the real
damper behaviour and the feasibility of the damper
models for real-time simulations is investigated.

The paper is structured as follows. In the next sec-
tion the semi-active damper used in ROMO is pre-
sented. In section 3 the semi-active damper models are
introduced and some implementation details are dis-
cussed whereas section 4 deals with the experimental
setup and the identification approach. Subsequently,
section 5 compares the simulated damper behaviour to
the real damper behaviour.

2 The semi-active damper

In this work, a semi-active dual tube damper from the
KW Automotive GmbH with one external controllable
electromagnetic valve is used, see Figure 2. The ad-
justment of the damper force is realized by controlling
the electric current flowing through the inductor of the
electromagnetic valve. The induced magnetic field de-
termines the position of the valve piston and conse-
quently the oil flow through the valve. The flow direc-
tion of the oil through the external valve stays the same
during both compression and rebound of the damper
as the oil always flows from the rebound volume to
the compensational volume.

Besides this electromagnetic valve there are further
valves for compression and rebound, similarly to a
conventional passive damper. They are placed at the
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Figure 2: Semi-active dual tube damper with exter-
nal continuously variable valve (coil spring was un-
mounted for experiments)

damper bottom and in the piston thus limiting the oil
flow from the compression volume to the compensa-
tional volume and from the rebound volume to the
compression volume, respectively.

Part of the compensational volume is filled with
a pre-stressed gas to compensate the oil volume dif-
ference between pulled out damper and compressed
damper caused by the piston rod. This gas volume
can be regarded as an accumulator that generates a de-
flection dependent gas force. The gas force increases
when compressing the damper and can threrefore be
considered as a preloaded spring in a damper model.

The electric current to control the damper is gen-
erated by a power electric unit which transforms the
Pulse-Width Modulated (PWM) signal, further re-
ferred to as control input, from the Rapid Control Pro-
totyping (RCP) hardware into the appropriate electric
current. Figure 3 illustrates the speed-force map of
the damper at the constant control inputs 10% (blue)
and 50% (red) as recorded during experiments. The
curves represent the raw damper force measurements
and therefore reflect both the damper friction and the
gas force influences.

The characteristic of the semi-active damper differs
for compression (negative velocity) and rebound (pos-
itive velocity). This especially can be observed for
larger control inputs as significantly higher rebound
forces are generated, compared to compression ones,
cf. Figure 3.

3 Semi-active damper models

The Force Map based damper model and the extended
Bouc-Wen damper model were chosen for implemen-
tation in Modelica to investigate the achievable accu-
racy in reproducing the real damper behaviour and to
evaluate their real-time feasibility.

In general, they both provide a good approximation
of the highly non-linear behaviour of the semi-active
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Figure 3: Speed-force map at control input 10% and
50%

dampers, whereas the computational effort is far less
than that of physical models as they do not include
a model of the damper hydraulics, but approximate it
by an empirical model. Therefore, these semi-physical
models can be solved more easily by a fixed step solver
and are better suited for real-time simulation, state es-
timation and controller design.

The damper models are implemented as one-
dimensional translational models and extend from the
common translational interfaces of the Modelica Stan-
dard library.

3.1 Generalized extended Bouc-Wen Model

An introduction to the Bouc-Wen hysteres model can
be found in [2]. The extended Bouc-Wen model as
shown in Figure 4 is described in detail in [11]. There
the authors started with a simpler model consisting
of the linear damping elementc0, the linear springk0

and the Bouc-Wen hysteresis model. To better predict
the real damper behaviour, they extended this simple
model by the elementsc1 andk1 which reproduce the
gas chamber damping and the roll-off at low veloci-
ties, respectively. To make the model applicable for
semi-active dampers they further determined a sub-
set of three parameters out of the ten parameters of
the extended Bouc-Wen model which are then linearly
adapted according to the current control input. This
way, the extended Bouc-Wen model is able to cover
the different characteristics of semi-active dampers de-
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pending on the control input. Additionally, the control
input was delayed by a first order low pass filter in
order to better approximate the delayed real damper
response towards changes in the control input due to
the dynamic response of the electromagnetic valve and
following the dynamic response of the damper hy-
draulics.

Figure 4: Mechanical model of the extended Bouc-
Wen damper model (similar to [11])

Based on the model description in [11], we fur-
ther generalized the extended Bouc-Wen model as de-
scribed in the following.

First, the set of three originally suggested param-
eters depending on the control input is extended to
seven parameters and the linear dependency on the
control input is replaced by a predefined look-up table,
see structure of the implemented Modelica model in
Figure 5. This way, the restrictions on the dependency
between control input and model parameters are far
less than in [11] and the damper model should achieve
a better prediction of the real damper. Next, the pa-
rameters of the extended Bouc-Wen model are addi-
tionally modelled as a function of the current damper
velocity to account for the different characteristics of
the damper for compression and rebound, cf. Figure 3.

Furthermore, the low pass filter which approximates
the dynamic damper response for changes in the con-
trol input is modelled as a first order transfer function
(block firstOrder_varT) with an additional delay. The
time constant as well as the delay time are consid-
ered to be functions of the instantaneous damper ve-
locity (block relSpeed) and the sign of the derivative
of the control input. This way, varying response times
Tcomp,r , Tcomp, f , Trebound,r , Trebound, f and delay times
τcomp,r , τcomp, f , τrebound,r , τrebound, f for compression
and rebound as well as for rising and falling control
inputs, indicated by the indicesr and f , respectively,
can be considered.

Utilizing the abovementioned extensions, the result-

Figure 5: Generalized extended Bouc-Wen damper
model

ing equations of the generalized extended Bouc-Wen
model are given as

Fd = c0(u,vd)(ẋb − ẏ)+k0(u,vd)(xb −y)

+k1((xb −xa)−x0)+ α(u,vd)z, (1)

with

ẏ =
1

c0(u,vd)+c1(u,vd)

(
α(u,vd)z

+c0(u,vd)ẋb +c1(u,vd)ẋa

+k0(u,vd)(xb −y)
)

(2)

and

ż = − γ(u,vd) |ẋb − ẏ| z |z|n−1

− β (u,vd)(ẋb − ẏ) |z|n
+ δ (u,vd)(ẋb − ẏ). (3)

The meaning of the displacementsxa, xb, which cor-
respond to the motion offlange_a, flange_b, respec-
tively, and the internal displacementy is clear from
Figures 4 and 5. The variablez represents an inter-
nal state of the Bouc-Wen model and is often called
hysteretic state. The spring stiffnessk1 and the un-
stretched spring lengthx0 model the gas spring of the
damper. Therefore, these parameters are considered
invariant to changes of the control inputu and the
damper velocityvd = ẋb − ẋa. The remaining param-
eters of the generalized extended Bouc-Wen model
arek0, c0, α , β , γ , δ andn. All these parameters are
functions of the control inputu and the damper veloc-
ity vd except for the exponentn, which is empirically
determined to ben = 2 as in [2].

It is assumed that the dependency of the parameters
on the damper velocityvd can be approximated by a
switching function which distinguishes between posi-
tive damper velocity for rebound and negative one for
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compression. This means that for every setθeBW of
parameters two variants are generated – one for com-
pressionθeBW,comp and one for reboundθeBW,rebound.
These sets are then stored in the look-up table men-
tioned above. To combine the two sets of parameters
the following smooth switching algorithm is applied:

θeBW = sθeBW,rebound+(1−s)θeBW,comp, (4)

with the switching signals which is given by the fol-
lowing sigmoid function:

s= 0.5 tanh
( vd

veps

)
+0.5. (5)

This function generates a smooth output that
changes from zero to one in a small region around
zero damper velocitiesvd. The size of this region is
determined byveps. Although other switching signals
like s = sign(vd) would be possible, such a smooth
switching signal is better suitable for a real-time sim-
ulations as no events occur. The function calculating
the time constant of the first order transfer function and
the delay time from the current damper velocityvd and
control input derivative is implemented using a simi-
lar switching algorithm as the one described in equa-
tions (4) and (5).

3.2 Force Map based model

Figure 6 shows the Force Map based damper model
implemented in Modelica. The control demand ap-
plied to the damper model is again (as in section 3.1)
modelled by a transfer function and an additional de-
lay with time constants and delay times dependent on
the damper velocityvd and the control input deriva-
tive. The main component of this damper model is a
lookUpTable, which takes the current damper velocity
and the delayed control input as inputs and computes
a force. Additionally, a model of the gas spring is in-
cluded to improve the damper model for large deflec-
tions. The overall damper force is therefore given by:

Fd = Flookup+Fgas, (6)

with the output of the look-up tableFlookup and the gas
forceFgas.

The implemented model is similar to the one devel-
oped in [13]. The main differences between these two
models are the negligence of the damper housing stiff-
ness which is very high and therefore causes stability
problems during real-time simulations.

Figure 6: Force Map based damper model

4 Parameter identification

The parameter identification of the two semi-active
damper models introduced in section 3.1 and 3.2 is a
challenging task because both models are highly non-
linear and additionally the number of parameters to be
determined is large. The arising optimization problem
is non-convex and a lot of effort is necessary in or-
der to avoid local minima evaluations. In this work,
the optimization problem at hand is split into several
subproblems as suggested in [13] and [2], estimating
successively subsetsθ j of the overall parameter vec-
tor θ .

The parameter subsetsθ j are chosen from expe-
rience and technical understanding of the damper in
such a way that specific experiments focusing on iden-
tification of these parameters can be performed. The
suboptimization problems are arranged in a chrono-
logical order and the estimated parameter subsets re-
sulting from previous steps are inserted in the cur-
rent optimization run. Although some of these sub-
optimization problems are non-convex as well, lo-
cal minima can be avoided more easily by a careful
choice of the initial values of the parameter subsets.
This is achievable because the optimization problem
is smaller compared to the overall optimization prob-
lem.

Throughout all suboptimizations, a cost function

J =

1
N

N
∑

i=1

(
Fd,m−Fd,s(θ j)

)2

1
N

N
∑

i=1

(
Fd,m− ( 1

T

N
∑
j=1

Fd,m)
)2

(7)

is used.
This cost function, which is also used by [14], repre-

sents the error-to-signal-ratio of the simulated damper
force. Here, the number of the measured data samples
is denoted byN. The measured damper force is repre-
sented byFd,m and the simulated damper force byFd,s.
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The suboptimization problems can now be stated by

find argmin
θ j

(J) subject toθ j,min < θ j < θ j,max, (8)

with θ j,max and θ j,min restricting the maximum and
minimum parameter values.

The optimization is done in Modelica/Dymola us-
ing the model optimization functions of the DLR Op-
timization library [15]. From the various optimization
algorithms available in this library theSimplex method
was chosen in this work as the algorithm proved sat-
isfactory and fast convergence during preliminary in-
vestigations. A default cost function value larger than
the initial cost function value was defined in the opti-
mization setup to handle simulation runs with the gen-
eralized extended Bouc-Wen damper model which be-
came unstable for certain parameter sets.

4.1 Experimental Setup

The experiments were performed on a Röhrig damper
test rig which is shown in Figure 7.

Figure 7: Experimental set-up

This test rig is equipped with a linear electric mo-
tor and therefore able to generate various damper ex-
citations like sine sweeps or constant velocity periods.
The measurement data was recorded using a Micro-
autobox 2 from dSpace. The sample period of the RCP

system was set toTs = 1ms. The measured signals are
damper force, displacement and acceleration. These
signals are recorded together with the control input and
are pre-filtered by a low-pass FIR filter.

4.2 Step by Step optimization approach

The size of the overall parameter vectorθeBW of the
generalized extended Bouc-Wen model depends on the
number of nodes in the look-up table storing the con-
trol input dependent parameters as described in sec-
tion 3.1. Each control input segment is represented by
one row in this look-up table. The elements of the pa-
rameter vectorθeBW are:

θeBW = (k0,x0,θeBW,i,2, . . . ,θeBW,i,m+1,

Ti,r ,Ti, f ,τi,r ,τi, f )
T , (9)

with

θeBW,i, j = (c0,i, j ,k0,i, j ,c1,i, j ,αi, j ,βi, j ,γi, j ,δi, j)
T . (10)

Here,i stays forcompor rebound, j = 2, . . . ,m+1
and m is equal to the number of control input seg-
ments. This parameter vector is split into the following
m+2 subsets.

• Gas force identification

θeBW,1 = (k0,x0)
T . (11)

Experiment: Constant, very small velocity exci-
tation for compression and rebound at constant
minimum control inputumin.

• Bouc-Wen parameter identification at constant
control inputu1:

θeBW, j = (θeBW,comp, j ,θeBW,rebound, j )
T . (12)

Experiment: Sine excitation of the damper with
an amplitude of 25mm and a frequency of 0.8Hz.

• Time constant and delay estimation

θeBW,m+2 = (Tcomp,r ,Tcomp, f ,Trebound,r ,

Trebound, f ,τcomp,r ,τcomp, f ,

τrebound,r ,τrebound, f )
T . (13)

Experiment: Saw tooth excitation of the damper
with an amplitude of 25mm and a constant
damper velocity with an absolute value of
0.15ms−1 for compression and rebound.
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As an example, Figure 8 shows the virtual test rig
for the optimization of the Bouc-Wen parameters at
control inputu1. Similar virtual test rigs are employed
to optimize the other parameter subsets. Therefore, the
measurements have to be replaced by the correspond-
ing measurement data, e. g. with a different control in-
put.

Figure 8: Virtual test rig for optimization

On the left-hand side of the model the measure-
ment data is read by aCombiTimeTablecalled mea-
surements, on the right-hand side the cost function is
calculated by thesysID_Criteriablock and in the mid-
dle the damper modelsemi-active damperis excited
by a moveelement supplied with the measured dis-
placement and derived velocity and acceleration.

The estimated gas force of step one is inserted as
known value in the damper models for the following
optimization steps and, further, the estimated parame-
tersθeBW, j (with j = 2, . . . ,m+1) of the previous step
are used successively as initial values for the param-
eter vectorθeBW, j+1 of the following step. The initial
values of the extended Bouc-Wen model for the first
step are taken from [12] and the corresponding mini-
mum parameter valuesθ j,min and maximum parameter
valuesθ j,max are defined by scaling the initial parame-
ter values.

The optimization procedure for the Force Map
based damper model is very similar to the one of the
extended Bouc-Wen model. The first step gas force es-
timation and the last step time constant estimation are
the same. The steps in between are used to estimate the
values of thelookUpTable, which takes the damper ve-
locity and the control input as inputs and calculates a
force as output. As the control input is constant dur-
ing these steps, the values are again determined row by
row.

4.3 Optimization results

The resulting cost function values for both damper
models are shown in Table 1. The models reproduce
the real damper behavior with almost the same accu-

racy. For a control input of 10% the Force Map model
and the extended Bouc-Wen model achieve the same
accuracy. For a control input of 50% the extended
Bouc-Wen model achieves slightly better values than
the Force Map model.

Table 1: Optimal cost function values of the damper
models

Control input
Damper model 10% 50%

Extended Bouc-Wen 0.097 0.090
Force Map 0.095 0.117

The corresponding force over time, force over dis-
placement and force over velocity diagrams for 10%
and 50% control input are illustrated in the figures 9
and 10. The slight accuracy difference indicated by
the cost function value for 50% control input is most
obvious in the force over velocity diagram (Figure 10
below), mainly in the small velocity region.

In Figures 11 and 12 the results of the time con-
stant and time delay identification for control input
steps during rebound and compression are shown. The
damper velocity was kept constant for rebound and
compression to isolate the damper response for con-
trol input steps only. The modelled time behavior of
the damper consisting of a first order transfer function
and a delay with different time constants and delay
times for rebound and compression as well as depen-
dent on the direction of the control input change as de-
scribed in section 3.1, is able to reproduce the damper
behaviour very well. From Figures 11 and 12 it can
further be seen that the delay is almost as large as the
time constant of the transfer function and therefore the
delay cannot be neglected by the damper model.

4.4 Real-time suitability

The parametrized damper models were simulated by a
fourth-order Runge-Kutta solver with a fixed step size
of Ts = 1ms to analyse their feasibility for real-time
simulations, as this solver is used to run the real-time
model of the ROMO. The Force Map based damper
model showed good results for this solver, while the
generalized extended Bouc-Wen model became unsta-
ble for the optimized parameters.
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Figure 9: Comparison of damper models to damper
measurements at 10% control input (above: force over
time; middle: force over position; below: force over
velocity)

5 Conclusion

In this paper two semi-physical damper models are
presented and their accuracy in reproducing the real
damper behavior is compared. Both models achieve
a high accuracy in the considered velocity and fre-
quency range. The generalized extended Bouc-Wen
model gives more accurate results especially for higher
control input.

On the other hand, the Force Map based damper
model proved a better suitability for real-time simula-
tion due to its more robust stability properties depend-
ing on the chosen solver and step-size and its simpler
structure.

In the future, the velocity and frequency range of
the damper models have to be extended towards higher
values to improve the damper models for larger opera-
tion ranges. Further, the influence of stiction and slid-
ing friction on the damper model accuracy for small
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Figure 10: Comparison of damper models to damper
measurements at 50% control input (above: force over
time; middle: force over position; below: force over
velocity)

control inputs and small velocities have to be investi-
gated as well.
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The Modelica HouseModels Library: Presentation and
Evaluation of a Room Model with the ASHRAE Standard 140
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Abstract

As part of its contribution to IEA Annex 60, the In-
stitute for Energy Efficient Buildings and Indoor Cli-
mate of RWTH Aachen University will make its Mod-
elica HouseModels library available. The scope of
this paper is to provide information about the library.
The first part presents the library and its functional-
ity. In the second part a room model is evaluated by
using Case 600 from the test suite provided by the
American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) in the standard
140.

Keywords: HouseModels library, IEA Annex 60,
ANSI/ASHRAE Standard 140, building performance
simulation

1 Introduction

The Institute for Energy Efficient Buildings and Indoor
Climate of RWTH Aachen University aims through its
research to reduce the energy consumption of build-
ings and increase indoor air quality, while focusing on
energy generation, storage, distribution and delivery to
rooms, buildings or city districts. Over the years sev-
eral libraries have been developed for the dynamical
simulation of building energy systems [1].

On a simulation level, modeling the thermal behav-
ior of the construction body and the building envelope
has to mediate the following trade-off: CPU(central
processing unit)-time and detail. The building models
serve on a basic level as an energy consumer. However
through accurate modeling of heat transfer inside the
building it is possible to assess the thermal comfort,
while taking into account more subtle effects like the
storage of energy into the thermal mass of the build-
ing. As part of its contribution to IEA Annex 60 [2]
the institute will make its Modelica HouseModels li-
brary available.

The HouseModels library aims to provide standard

models for one family dwellings (stand alone house),
single apartments and multi-family dwellings consist-
ing of several apartments. The particularity of this
library lies in providing ready to use models for the
dynamic simulation of building energy systems, while
allowing for a degree of flexibility in adapting or ex-
tending these models to ones needs.

A library with models for standard houses as such
does not yet exist. While at the moment the standard
house models are tailor-made for the German market,
it is possible to adapt them to other markets.

For the building models we used components from
our Building library [1]. When setting up detailed
house models, we follow an approach of building each
room individually and of having each room component
visible on the room model level. This approach was
formed with time by dealing with project partners in
our research activities and with students in our teach-
ing activities. We analyzed how easy it is to under-
stand the model and how quickly one can start work-
ing with it. As a consequence the graphical descrip-
tion of a model can quickly get cluttered, so we try to
keep our detailed house models as simple as possible.
An advantage of simple models with few equations
is that, when set up correctly, they can lead to short
CPU-times for simulations. In order to make sure that
these models are correct they need to be evaluated. We
choose the ANSI/ASHRAE Standard 140 [3] for eval-
uating or models.

Several Modelica libraries for building components
already exist, some of them free [4] and [5]. While
the Buildings library is already validated [6], we chose
to use our own components when building the house
models in order to maintain consistency between our
libraries and because our models are simpler than the
ones from the Buildings library. We need them as sim-
ple as possible when for example doing whole year
simulations for a set up consisting of a building and
its heating system, especially when the focus lies on
the components in each room. For a direct comparison
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between our room model and the one from the Build-
ings library please refer to [4] and section 2.2 in this
paper, which in order to allow for an easy comparison
are similarly structured.

The first part of the paper presents the HouseModels
library, while the second one presents the first steps in
the ongoing work of evaluating our models with the
ASHRAE Standard 140: the results for the case 600.

The library was developed using the commercial
simulation environment Dymola [7].

2 The HouseModels library

When developing the HouseModels library we fol-
lowed several goals:

• develop standard models

• model only the necessary physical processes

• build a model so that changing the parameters is
easy, quick and will not lead to hidden mistakes

• have an easy to use graphical interface

• ensure a degree of flexibility for expanding or
building new models

We call these house models standard for the follow-
ing reasons:

• the floor layouts were made based on existing
buildings, by analyzing data provided by the Ger-
man Federal Statistical Office and by consulting
with experts

• for modeling realistical wall structures building
catalogues as well as experts were consulted

• the physical properties of the materials for the
wall layers were chosen to satisfy the insulation
requirements of current and past German energy
saving ordinances (e.g. [8])

2.1 Library structure

Figure 1 presents the structure of the library. The pack-
age Rooms contains room models for one (OFD) and
multi-family dwellings (MFD).

The multi-family dwelling is based on an exist-
ing building consisting of several identical apartments
which is part of a larger national research project [9].
The dimensions and layout of the rooms are fixed, with

Figure 1: Structure of HouseModels library

an apartment having a living area of 70 m2 and con-
sisting of a living room, two bedrooms, a kitchen and
a bathroom.

The one family dwelling isn’t based on an exist-
ing building, but on a virtual two storey building with
ten rooms and a saddle roof, which is typical for Ger-
man houses. The living area is 150 m2. A core of
six room types was developed to model the differ-
ent rooms in the house: room types with two outer
walls and room types with one outer wall. Some in-
ner walls can face just one room, while others can face
two rooms. Rooms on the ground floor are connected
to the ground, while rooms on the upper floor have a
saddle roof. The layout of the two floors is the same.
The dimensions of the room are not fixed on a room
level and are set up at floor level.

The package House contains the set up house mod-
els, where the room models are connected together.
The name OFD_MiddleInnerLoadWall denotes the
fact that the standard house has a middle load bearing
wall. Other positions of the load bearing inner wall
are possible, but not included in the library. Walls are
connected together and they form a room. Multiple
rooms are connected together and they form a storey
for the one family dwelling and an apartment for the
multi-family dwelling. For the multi-family dwelling
it is possible to model several storeys with apartments
on top of each other, as well as several wings with
apartments next to each other. Storeys are connected
together to form a whole house. All connections be-
tween the connectors of the models are explicit.

For each standard house type there are packages for
the building envelope (Building), for the energy sys-
tem (EnergySystem) and for the building as a whole
(BuildingAndEnergySystem). Currently work is be-
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ing done on the models for the energy supply systems
consisting of pump, heat generator, pipes, thermostatic
valves and radiators. These models are being devel-
oped starting from more detailed models to be used as
a teaching tool for a course on simulation of building
energy systems. They will be made available later on
as part of our contribution to the IEA Annex 60.

The package Examples contains exemplary simula-
tion setups for a room, an apartment and a one fam-
ily dwelling. They can be used to learn how to set
up a simulation for these models (e.g. assumption for
boundary conditions for a single room) and to com-
pare the different CPU-times for simulations using the
models.

2.2 Room model

In a room model the following physical processes are
considered:

• transient heat conduction through walls; each
wall consists of several layers with different
physical properties; further discretization of each
layer is possible

• steady-state heat conduction through glazing
systems; transmission of short wave radiation
through the window depends on a constant coeffi-
cient; transmitted radiation is considered together
with the radiation from room facing elements

• heat convection at outside facing surfaces either
with a constant coefficient, depending on wind
speed, or depending on wind speed and surface
abrasiveness

• heat convection at inside facing surfaces depends
on the wall orientation and the temperature differ-
ence between the room air and the wall surface

• radiation exchange between room facing ele-
ments

• temperature balance equations for the room air
volume; per room only one air node is consid-
ered; humidity is not considered in the air node

The incident solar radiation on tilted surfaces is calcu-
lated using a isotropic sky model [10].

All outer walls are whole walls connected to the
room air and the ambient, while inner walls are half
walls, each half belonging to one of the rooms which
share the wall. Airflow among rooms is not explicitly
considered.

2.3 Model parameterization

The room model is realized by aggregating together all
the components in a model, parameterizing on a room
level and referencing the parameter on the component
level. In this way the number of parameters is reduced,
e.g. for a simple rectangular room only three param-
eters are needed for the dimensions of all the walls:
height, length, width. On a floor level this parameter-
ization can further be optimized, as rooms have com-
mon walls.

However not the geometrical measurements are the
most problematic when parameterizing a room, but the
wall types, meaning their layer structure and the phys-
ical properties of each layer. We use records for pa-
rameterizing a wall. A record contains information
about the number of layers, the thickness of the layer,
as well as density, thermal capacity and conductivity
of each layer material together with the emissivity of
the room facing layer. However setting or changing
the type of each wall in each room in a house can be
challenging and can lead to errors. Because we aim to
build standard house models, we want to parameterize
a standard house with minimal but relevant input and
not have to specify each wall individually. We chose
to parameterize according to the following criteria:

• thermal mass class: heavy, middle and light

• energy saving ordinance: along with the al-
ready mentioned ordinance form 2009, older or-
dinances from 2002, 1995 and 1984 are consid-
ered

By specifying these two parameters, all wall, window
and door types in a house are automatically set cor-
rectly.

In listing 1 an example is given of how to set up
the parameter for the floor type depending on the set
energy saving ordinance. As floor slabs are made of
concrete for stability reasons, there is no difference be-
tween the floor types for houses with different thermal
mass. As this type of coding is meant to help and not
confuse a user, all these parameters are protected. The
infiltration rate for a house is protected as well and de-
pends on the energy saving ordinance. The DataBase
library referenced in the listing is a library for records.
The packages which are relevant for the HouseMod-
els as well as any other relevant models, e.g. walls,
windows, will also be made available.

Listing 1: Code example for setting the floor slab type
(Type_FL) depending on the chosen thermal insulation
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regulation (TIR)
// Floor to ground type
parameter DataBase.Walls.GFBaseDataDefinition
Type_FL=
if TIR == 1 then
DataBase.Walls.EnEV2009.Floor.FLground_SML()
else if TIR == 2 then
DataBase.Walls.EnEV2002.Floor.FLground_SML()
else if TIR == 3 then
DataBase.Walls.WSchV1995.Floor.FLground_SML()
else
DataBase.Walls.WSchV1984.Floor.FLground_SML()

Furthermore for a multi-family dwelling, for each
apartment, the types for floor and ceiling are automati-
cally set if the apartment is situated on the ground, last
or an arbitrary upper floor.

2.4 Using and extending the library

We wanted to make the library easy to use and extend
by future users and developers. To this purpose we put
extra effort in creating easy to understand icons and
graphical interfaces for parameter input.

Figure 2 shows the needed parameters for a room
type with two outer walls. The room views inte-
grated in the parameter window help the user under-
stand which are the width and the length of the room,
where each wall type is situated and what possibilities
regarding windows and doors exist for the outer walls.
For each outer wall both a door and a window are pos-
sible. By checking the box for a window, element in-
put fields for parameters are enabled. In the given ex-
ample the outer wall OW1 has a window and the outer
wall OW2 has a door. The already mentioned parame-
ters for thermal mass and energy saving ordinances are
visible at the top level. Other necessary parameters in-
clude the solar absorptance coefficient of the walls and
the heat convection model at outside facing surfaces.

However once the parameter window is closed, the
information about the geometry of the room is no
longer available. Because users might want to rotate or
mirror a room to build up a whole floor, we wanted to
transfer the information about the position of the walls
in the room, the meaning of the parameters width and
length as well as the existence of windows on the icon
level.

Figure 3 shows the icon for the parameterisation
from figure 2. The text for the connectors was added in
post-processing. However the connectors themselves
have unique, easy to understand names. The informa-
tion about the width and the length of the room is fixed.
The thickness of the pictures for the walls indicates if

Figure 2: Parameter window for a room type

it is an inner or an outer wall. The square with the
name Win1 indicates the presence of a window on that
wall, and the number 1 indicates that this is wall 1. The
square is only visible if the window has been selected
for the wall. In this way it is easy to combine the in-
formation given by the icon to the one which needs to
be inputted in the parameter window.

Figure 3: Icon for a room model

The set of room types developed for the one fam-
ily dwelling can, if necessary, be parameterized differ-
ently than the standard model or extended in order to
build up specific house models. New sets of wall, win-
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dow and door types can be developed, e.g. for older,
not renovated buildings, and incorporated in the exist-
ing structure.

With the exception of the integration of images in
the parameter GUI, which is done by using a Dymola
specific annotation, all other annotations are indepen-
dent of the used simulation environment. Also the SI-
units package from the Modelica Standard Library is
sufficient for using the library.

We use this library in our teaching activities as well,
as it is representative of our research activities and
quite complex. With the help of a custom made tu-
torial we help students better understand working with
Modelica from a building systems performance simu-
lation point of view. The library is planned to be made
available via a dedicated website in summer 2014.

3 Evaluation with Case 600 of
ASHRAE Standard 140

The ASHRAE Standard 140 is widely used for the
evaluation of building performance simulation soft-
ware especially in the English speaking community.
The test suite offers a variety of tests used for valida-
tion (base cases) and for evaluation and improvement
of software tools (in-depth cases). In this paper we
will present the results from using a room model build
with our components in the simulation setup for case
600.

Case 600 is a case which tests a low mass building
without shading. The building is a rectangular room
with all surfaces facing to the outside, decoupled from
the ground, with a height of 2.7 m, a length of 6 m and
a width of 8 m. The south facing wall has a window
area of 12 m2. Detailed information about the test is
provided in [3]. Once the simulation results are calcu-
lated, the way to test them is by comparison with the
simulation results from other software tools, which are
provided in the standard. In the following subsections
the results obtained with our room model are labeled
HouseModels Lib.

In this paper we will presents results from evaluat-
ing the solar radiation model as well as the heating and
cooling behavior of the room.

3.1 Solar radiation model

The case offers a frame for evaluating the calculation
of the solar radiation on a tilted surface, by providing
results for solar radiation profiles for clear and cloudy
days, for the south and west facing walls.

Figure 4 presents the solar radiation on the south
side on a cloudy day, while figure 5 presents the results
for a clear day. The profiles are similar to the ones
obtained with the other programs, never going outside
the maximal and minimal specified ranges.
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Figure 4: Comparison of hourly incident solar radia-
tion for a cloudy day (March 5)
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Figure 5: Comparison of hourly incident solar radia-
tion for a cloudy day (July 27)

3.2 Heating and Cooling behavior

For evaluating the heating and the cooling behavior of
the room, annual heating and cooling loads and annual
hourly peaks as well as profiles for exemplary days are
calculated.
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When considering the whole year, figure 6 presents
a comparison of the heating and cooling loads for the
whole year. The results for the annual heating load
5.081 MWh and cooling load 6.636 MWh are within
the limits obtained with the other simulation tools.
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Figure 6: Comparison of annual heating and cooling
loads

A more detailed look at the annual hourly heating
and cooling peak loads (absolute value as well as day
and hour when it occurs) is presented in tables 1 and
2. The peak heating load of 4.132 kW occurring on the
4th Jan and the peak cooling load of 6.2621 kW occur-
ring on the 16th Oct are similar to the results from the
other programs: they are within the given limits and
there is at least one software which gives the same time
of occurence. The occurrence of the maximum cool-
ing load on 16th Oct is explained by the concurrence
of a high ambient temperature of 22.2◦C and a high
incident solar radiation on the south side of 874 W

m2 .

Table 1: Annual hourly integrated peak heating loads

Code Name kW Date Hour

ESP 3.437 4 JAN 5
BLAST 3.940 4 JAN 5
DOE2 4.045 4 JAN 5
SRES/SUN 4.258 4 JAN 2
TRNSYS 3.931 4 JAN 6
TASE 4.354 4 JAN 2
HouseModels Lib. 4.132 4 JAN 2

Table 2: Annual hourly integrated peak cooling loads

Code Name kW Date Hour

ESP 6.149 17 OCT 13
BLAST 5.965 16 OCT 14
DOE2 6.656 16 OCT 13
SRES/SUN 6.827 16 OCT 14
TRNSYS 6.486 16 OCT 14
TASE 6.812 17 OCT 13
HouseModels Lib. 6.261 16 OCT 13

Finally the test requires a comparison of the heating
and cooling load profiles for the day with the highest
heating load. Positive loads are heating loads, while
negative loads are cooling loads. As shown in figure
7 the results obtained with our room model are similar
to the ones from the other simulation tools.
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Figure 7: Comparison of hourly heating and cooling
load profiles for Jan 4

4 Conclusion

In this paper we present our HouseModels library,
which will be made available free of charge in summer
2014, as part of our contribution to the IEA Annex 60.
The library contains complete standard house models
for one and multi-family dwellings. The multi-family
dwelling also contains a model for a single apartment.
For each house type the models can be easily parame-
terized for different thermal masses and energy saving
ordinances. A variation of the geometrical measure-
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ments is possible for the one family dwelling. This
type of variations are useful when testing energy con-
cepts and control strategies, as a robust system has to
be able to adapt to different types of buildings.

Our motivation for creating this library is to bridge
the gap between developers and users of Modelica for
dynamic building system simulations. The models are
easy to understand and use. Extra effort has been made
to enrich the parameter window and to make the icons
dynamic in regard to the chosen parameters. In order
not to confuse beginners certain parameters have been
set as protected and the parameterization of a room
model can be done by specifying only a handful of
parameters. The library is a useful tool for teaching,
as students can learn to use Modelica with a focus on
building systems while at the same time learning a few
programming tricks.

The set of room types developed for the one fam-
ily dwelling can, if necessary, be parameterized differ-
ently than the standard model or extended in order to
build up specific house models.

As we try to keep the models as simple as possi-
ble and as detailed as needed in order to have good
CPU-times for the simulations, a validation of the
room models is currently on the way. In this paper
we present first results obtained with case 600 of the
ASHARE Standard 140. For all the required outputs
our room model produced results within the minimum
and maximum specified ranges. We plan on further
evaluating the models with the whole suite of tests and
improving the models if necessary.
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Abstract

This paper presents a Modelica library for electrical
grid systems for low-voltage distribution grids and in-
building grids. The library is based on previous work,
in which a library was presented to simulate fully bal-
anced three-phase low-voltage distribution grids [1].
This library is extended to simulate three-phase un-
balanced low-voltage distribution grids as part of the
IDEAS library [2]. The library also allows to sim-
ulate in-building AC and DC grids. The AC grids
can be single-phase or three-phase (un)balanced grids.
Electrical grids may connect many different energy
systems (loads and generation units), different grids
and/or buildings within districts. The library allows
to assess the grid impact of these systems on different
grid types. Control or optimization strategies can use
grid variables, such as voltages and power exchanges.

Keywords: Electrical grid; AC grid; DC grid;
Power flow analysis; Modelica

1 Introduction

Climate and energy goals are set, i.e. the European
20/20/20 targets [3]. One of these targets is an im-
provement in the EU’s energy efficiency and the in-
tegration of renewable energy resources (RES) in the
power production. Also, energy goals and benchmarks
at the level of individual buildings are stated in the Eu-
ropean Directive 2010/31/EU [4]. It is stated that by
2020 all new buildings need to be nearly zero-energy
buildings (nZEB). nZEBs target a high penetration of
RES, such as photovoltaic (PV) systems, and a high
energy efficiency in the built environment.

This integration of RES and energy-efficient tech-
nologies in buildings may result in an increased elec-

trification. Also different domains, such as the elec-
trical and thermal domain, tend to become more inte-
grated. This requires new approaches to analyze these
integrated systems [5], such as taking into account the
limitations of an electrical grid or using grid variables
as control inputs in building design simulations. This
may lead to a more effective analysis and better control
of the energy system under consideration.

1.1 Electricity grids

1.1.1 Radial versus meshed grids

In the electrical power system, two types of electric-
ity grids exist, namely distribution and transmission
grids [6]. Distribution grids (low to medium volt-
age level) often differ fundamentally from transmis-
sion grids (high voltage level). Transmission grids are
mostly meshed grids, whereas distribution grids are
mostly radially. This means there is only one point
of common coupling (PCC), which reduces the relia-
bility of the distribution network. In case of a fault,
all loads behind the fault will be switched off. Second,
the R/X (resistance/reactance) ratio increases when the
voltage level decreases. Thus, low voltage residential
distribution grids are highly resistive.

Electricity grids in buildings are similar to low-
voltage distribution grids. As buildings are connected
to the grid at one point, these grids are also radial.
Loads (or buildings) can be single-phase or three-
phase connected to the grid. Electrical grids in build-
ings can be a combination of different single and three-
phase cables which connect the loads (see Fig. 1).

1.1.2 AC versus DC in-building grids

The current AC distribution grid and AC in-building
grids are traditionally designed to feed AC and DC
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Figure 1: Comparison of low-voltage distribution grids (left) and in-building grids (right).
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Figure 2: A traditional AC in-building grid with dis-
tributed converters (e.g. in appliances).

loads (e.g. household appliances) with distributed con-
verters, e.g. rectifier in an appliance (see Fig. 2). Since
almost all electric loads are equipped with power elec-
tronic converters, the interest in DC grids increases.
It may lead to efficiency and economic advantages by
reducing the losses [7]. Also, the harmonic distortion
can be significantly reduced, which saves energy and
improves the lifetime of equipment [8]. And a cen-
tral AC/DC connection with the distribution grid can
help to solve the three-phase balancing problem. Fig. 3
shows a possible lay-out of a hybrid AC/DC electrical
grid for buildings. This grid includes e.g. a central
AC/DC converter, a central DC/DC converter for the
DER, storage units, EVs, etc. and DC/DC converters
for loads on different DC voltages.

1.2 Electricity grid impact

Energy efficiency can be achieved by a further electri-
fication through new, more efficient technologies such
as heat pumps and electric vehicles (EVs) [9]. How-
ever, from the electricity grid point of view, these new
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Figure 3: A possible hybrid AC–DC grid with a cen-
tral bidirectional converter (AC/DC).

technologies have a twofold grid impact.
First, the power consumption will increase. For

instance, when full EVs are charged only at home,
the additional power consumption of about 2,350 to
3,750 kWh doubles the average Flemish household’s
power consumption. On the other hand, local RES
will introduce bidirectional power flows due to a cer-
tain non-simultaneity with the local demand [10].

Second, the increased power consumption and the
intermittent production character of RES and its po-
tential non-simultaneity with the local power demand
have an impact on the low-voltage electricity grid [10]:
both the distribution and in-building grid. The injec-
tion of electricity and the increased power consump-
tion may lead to peak loads and higher resistive losses.
As LV grids are mainly resistive, voltage deviations
and phase unbalance occur due to the active power
flows [2, 10, 11]. To minimize the grid impact, a
proper synchronization of consumption and produc-
tion of electricity and heat is needed through demand
side management (DSM), electrical and thermal sto-
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rage and minimizing the power consumption [9].
Taking into account the limitations of an electrical

grid or using grid variables as control inputs in build-
ing design simulations, may lead to a more effective
analysis and better control of the energy system under
consideration.

1.3 Scope of paper

To investigate the impact of energy systems on the
electrical distribution grid or in-building grid, a li-
brary is developed to simulate both single and three-
phase unbalanced AC radial grids and DC electrical
grids. For AC grid analyses, a quasi-stationary model
is implemented, assuming the frequency is fixed (e.g.
50 Hz). This allows to represent the waveforms by its
amplitude and phase shift. Therefore, dynamic tran-
sient are not included.

In previous work, the first version of this library
was presented [1]. This library consisted of models
for the modeling of balanced three-phase low-voltage
distribution grids, which can be represented by an
equivalent single-phase grid. This paper discusses
the recent additions: the unbalanced three-phase low-
voltage grids and DC grids.

First, the basics on power flow analyses is given in
Section 2. Section 3 and 4 describe the physical and
the model description in Modelica. To conclude, a
comparative model validation is performed.

2 Power flow analysis

A power flow analysis is performed to obtain the volt-
age and current information in each node and line of
the electrical grid, based on the Laws of Kirchhoff:

Conservation of electric charge The sum of currents
flowing into a node is equal to the sum of currents
flowing out of a node.

Conservation of energy The sum of the voltage
drops in any closed circuit is zero.

The voltage drop ∆v in a line k between nodes n and
n + 1 is defined as:

∆vk(t) = vn(t)− vn+1(t) = Zkik(t), (1)

with Zk the impedance of the line and ik the line cur-
rent. When the nodal currents, line currents and nodal
voltages are known, the apparent power in one phase
S f can be calculated. S consists of active power P and
reactive power Q:

S f (t) = Pf (t)+ jQ f (t) = v f i∗f , (2)

with a non-linear relation between S f , v f the phase
voltage and i∗f , the complex conjugate of the total
phase current i f . The total apparent power is calcu-
lated as S(t) = ∑S f . For DC grids: Q = 0.

The joule losses PJ in a grid are the sum of the losses
in all phases and neutral (or negative) conductor. The
joule losses in a line k are calculated as follows:

PJ, k = Rk|ik|2, (3)

with Rk the resistance of a line k. Note that also the
reactive current is responsible for a part of PJ .

The non-linear system requires numerical methods
to obtain a solution. Several methods are available to
solve a power flow analysis, such as direct and iterative
methods. The backward-forward sweep is an example
of an iterative method, which is well suited for radial
grids. This method is illustrated in Appendix A. In
Dymola, the DASSL solver [12] is used to solve the
power flow analysis.

In [13], a three-phase unbalanced power flow anal-
ysis is implemented in MATLAB. This model uses the
backward-forward sweep technique. The models in
the developed Modelica library will be validated with
this MATLAB model. Other available Modelica li-
braries regarding electrical systems are e.g. the SPOT
library [14] and Electric Power Library [15] which al-
low both steady-state and transient simulations.

The library in this paper allows to do a quasi-
stationary analysis of electrical grids. This allows to
represent the waveforms by its amplitude and phase
shift. Dynamic transient are not included.

3 Physical model description

3.1 Grid topology representation

Traditionally, radial grids are represented by an inci-
dence matrix (or connection matrix) T. Eq. (4) gives
an example of an incidence matrix of a grid in which
consecutive nodes are connected.

T =




−1 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1




. (4)

The columns correspond with the number of nodes
(or connection points), whereas each row is a segment
of the grid (line) between two nodes. The start and
end node of each line are represented by respectively
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1 and -1. Since a radial grid contains n nodes, there
are (n− 1) line segments. To attain a square matrix,
an additional (first) row is introduced to represent the
imaginary line segment between the transformer and
the first node (with a length of 0 m). This line segment
only has an end node.

3.2 Grid elements

3.2.1 Cables

Cables, with a length fL (m), for the line segments are
characterized by an impedance Z = R+ jX , with R the
resistance and X the reactance of the cable:

R = fLr and X = fLx, (5)

with r the characteristic resistance and x the char-
acteristic reactance in Ω/m. This allows to repre-
sent the grid with an impedance matrix Z = R + jX.
Single-phase AC and DC grids contain two conduc-
tors, respectively a phase/neutral conductor and a pos-
itive/negative (or positive/neutral) conductor. Three-
phase grids have three phases and one neutral conduc-
tor (total of four conductors).

For three-phase AC cables, typically nominal Π or
T models are used to model cable, which include the
resistance and reactance of the cable, as well as the
shunt admittance. This capacitance is neglected for
the considered low-voltage grids in this paper. Also,
it is assumed that all phases are symmetrically spaced
and that all phases are regularly transposed. Compared
to [13], the shunt admittance and mutual impedance,
which has a very small impact for low-voltage cables,
is neglected.

3.2.2 Transformers

A transformer transforms e.g. a higher to a lower AC
three-phase voltage level. The transformer is modeled
with a phase impedance Ztr = Rtr + jXtr, which are as-
sumed identical for the three phases. The losses in the
transformer Ploss are the sum of the no-load losses P0,
which are assumed to be constant, and the sum of the
joule losses PJ in each phase f of the transformer:

Ploss = P0 + PJ = P0 +
3

∑
f =1

Rtr|i f , k|2. (6)

3.3 Load models

3.3.1 Loads and generation units

Loads and generation units are modeled as constant
power loads, which is common for loads equipped

with power electronic. This means the power is not
depending on the solution of the power flow (voltage
and current). This results in a non-linear relation be-
tween power, voltage and current, as shown in Eq. (2)
and its implementation in Section 4.2.4. Other possi-
ble load models take e.g. grid variables as input, such
as voltage-droop load models [16].

3.3.2 Converters

Converters are required to convert AC to DC (recti-
fiers) or vice versa (inverters) or DC to DC. For recti-
fiers, the DC power (PDC) is lower (or equal) than the
AC power (PAC). For inverters: PAC ≤ PDC. The ratio
between the DC and AC power is defined by the effi-
ciency of the converter. The power electronics level of
converters is not modeled.

Converters can also regulate the reactive power
consumption or injection [13]. The power factor
(pf = P/|S|) can be leading (drawing reactive current)
or lagging (injecting reactive current).

4 Implementation in Modelica

This section gives an overview on the functional re-
quirements of the models, which are identified from
the different use cases. In the second part, the compo-
nent modeling is described.

4.1 Requirements

4.1.1 Use cases

This section describes the needs for electrical grid
modeling at the level of an individual building and at
the level of a district energy system. The following
use cases are identified, which are used to define the
functional requirements:

• Grid impact analyses of electrical processes at
building and district level. The results are an
analysis of the nodal voltages, line currents, pow-
ers (active and reactive) and power losses.

• Grid architecture: single/three-phase AC grids
and DC grids.

• Flexible and scalable approach for grid topology
definition for all grid types.

• Connection architecture: Single/three-phase con-
nection for loads and generation units.

• Integrated control or optimization by using grid
variables, such as the nodal voltages, powers, etc.
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4.1.2 Functional requirements

This section describes the functional requirements.
Physics to be modeled include:

• Load and generation units:

– Active and reactive power;
– Connectors: Complex voltage/current and

single/three-phase;
– Converter losses.

• Electrical grids:

– Quasi-stationary analysis;
– Active and reactive power flows and losses;
– Transformer: voltage drops and losses;
– Unbalanced loads (including the resulting

zero-point shifting);
– Grid type:

* Distribution and in-building grid;
* Single-phase, three-phase (unbal-

anced) and equivalent single-phase;
* AC and DC.

– Integrated control or optimization: access to
grid variables.

4.2 Modelica model implementation

4.2.1 Connectors

The library uses the connectors from the Standard
Modelica Library:

• AC connectors: Electrical.QuasiStatio
nary.SinglePhase.Interfaces.Pin

• DC connectors: Electrical.Analog.In
terfaces.Pin

These connectors contain the voltage and current
(flow). The AC positive and negative pin also include
a reference angle.

The grid contains both internal and external nodes.
The internal nodes include the neutral or negative con-
nector, while the external nodes are used to connect
the loads and generation units.

External nodes The external connection nodes
are defined as: .Pin Nodes[numPha,nNodes],
with nNodes the number of grid nodes and
numPha=1 for single-phase AC and DC loads and
generation units and numPha=3 for three-phase AC
loads and generation units.

Internal nodes The internal connection nodes
are defined as .Pin gridNodes[numCon,
nNodes], with numCon the number of conductors
(see Section 3.2).

Adapters Adapters are available to connect the in-
ternal and external nodes (see Code 1). For single-
phase and DC grids, the adapter connects the two wire
to a single wire system. For three-phase grids these
are respectively four and three wire systems. A single-
phase load or generation unit can be connected to one
phase of a three-phase grid.

Fig. 4 shows the use of an adapter in a three-phase
grid to connect the internal (node4Lines) and exter-
nal nodes (nodes3Ph). The electricity grid connects
the gridConnection (e.g. voltage source or trans-
former) with the internal nodes.

Two wires to single wire
twoWire[1].v - twoWire[2].v =

oneWire[1].v "Phase voltage";
oneWire[1].i = -twoWire[1].i;
twoWire[1].i = -twoWire[2].i;
if AC then

.Connections.branch(oneWire[1].
reference,twoWire[1].reference);

oneWire[1].reference.gamma =
twoWire[1].reference.gamma;

end if;

Four wires to three wires
for f in 1:3 loop

fourWire[f].v - fourWire[4].v =
threeWire[f].v "Phase voltage";

threeWire[f].i = -fourWire[f].i;
.Connections.branch(threeWire[f].
reference,fourWire[f].reference);

threeWire[f].reference.gamma =
fourWire[f].reference.gamma;

end for;
fourWire[1].i + fourWire[2].i +

fourWire[3].i = -fourWire[4].i;

Code 1: Adapters for internal and external nodes.

Figure 4: Use of adapter for three-phase grids.
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4.2.2 Grid topology

The grid topology is described by the incidence ma-
trix and the cable impedances (see Section 3). This is
shown in Code 2. GridType extends GridImp and
describes the grid topology.

Code 3 shows how the grid is constructed by using
the incidence matrix. This code is used to construct
each phase (and neutral) of the grid by connecting the
different line segments (conductor) and grid nodes.

record GridType
extends GridImp(R=CabTyp.RCha.*LenVec,
X=CabTyp.XCha.*LenVec);

parameter Modelica.SIunits.Length
LenVec[nNodes] "Length for each line";

parameter Cable CabTyp[nNodes];
end GridType;

record GridImp
parameter Integer nNodes;
parameter Integer nodeMatrix
"Incidence matrix";

parameter Modelica.SIunits.Resistance
R[size(nodeMatrix,1)];

parameter Modelica.SIunits.Reactance
X[size(nodeMatrix,1)];

parameter
Modelica.SIunits.ComplexImpedance
Z[size(nodeMatrix,1)](re=R,im=X);

end GridImp;

record Cable
parameter CharacteristicResistance RCha
"Characteristic resistance";

parameter CharacteristicReactance XCha
"Characteristic reactance";

parameter ComplexCharacteristicImpedance
ZCha(re=RCha,im=XCha);

end Cable;

Code 2: Description of grid topology (interfaces).

4.2.3 Grid elements

Cables Code 2 also describes the record Cable.
This record describes each cable type with their
respective characteristic impedance, which is the
impedance per unit of length (Ω/m).

Transformers The transformer model consists of an
impedance for each of the three phases. The interface
for the records, which are used to define the trans-
former data, is shown in Code 4.

For each conductor i
phase + neutral/negative

connect(internalNode[i],conductor[i].pin_p);
for x in 1:nNodes loop

for y in 1:nNodes loop
if nodeMatrix[x,y] == 1 then
connect(conductor[x].pin_p,node[2,y]);

elseif nodeMatrix[x,y] == -1 then
connect(conductor[x].pin_n,node[2,y]);

end if;
end for;

end for;

Code 3: Connect statements for the grid construction.

record Transformer
parameter Modelica.SIunits.ApparentPower

Sn "Apparent power of the transformer";
parameter Modelica.SIunits.ActivePower

P0 "No-load losses";
parameter Modelica.SIunits.Complex

Impedance Z1 "Phase 1";
parameter Modelica.SIunits.Complex

Impedance Z2=Z1 "Phase 2";
parameter Modelica.SIunits.Complex

Impedance Z3=Z1 "Phase 3";
end Transformer;

Code 4: Transformer description (interface).

4.2.4 Load models

Constant power model Code 5 shows the non-
linear relation between the apparent power, voltage
and current shown in Eq. (2).

Converters The converters are implemented accord-
ing to Section 3.3.2 and the power equations in Sec-
tion 2. Fig. 5 shows the diagram for a bidirectional
converter, which uses the AC and DC connectors as
defined in Section 4.2.1. The AC connector can be sin-
gle or three-phase. For three-phase converters, the ap-
parent power is equally divided over the three phases:
S f (t) = S(t)/3.

Figure 5: Use of adapter for three-phase grids.
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model AC
parameter Integer numPha;
Modelica.Blocks.Interfaces.RealInput P;
Modelica.Blocks.Interfaces.RealInput Q;
Modelica.Electrical.QuasiStationary.
SinglePhase.Interfaces.Negative
Pin[numPha] vi

equation
for f in 1:numPha loop
P/numPha = Modelica.ComplexMath.real

(vi[f].v*Modelica.ComplexMath.conj
(vi[f].i));

Q/numPha = Modelica.ComplexMath.imag
(vi[f].v*Modelica.ComplexMath.conj
(vi[f].i));

end for;
end AC;

model DC
Modelica.Blocks.Interfaces.RealInput P;
Modelica.Electrical.Analog.Interfaces.
PositivePin vi

equation
P = vi.v * vi.i;

end DC;

Code 5: Relation apparent power, voltage and current
for both AC (single/three-phase) and DC systems.

Code 6 shows the implementation of a bidirectional
converter which extends the partial Converter
model. A boolean is used to define the operation (rec-
tifier or inverter) in function of the sign of the DC
power. For the Rectifier and Inverter model,
this boolean is a parameter.

model BidirectionalConverter
extends .BaseClasses.Converters.
Partials.Converter;

Boolean inverter
"Inverter: true / Rectifier: false";

equation
inverter = if pDC >= 0 then true
else false "Define converter mode";

pAC = if inverter then -pDC*eff
else -pDC/eff "DC/AC power ratio";

end BidirectionalConverter;

Code 6: Converter mode and DC/AC power ratio.

4.3 Simulation of multiple grid types

The Modelica implementation also allows to simulate
multiple types of grid (i.e. single-phase AC, three-

phase AC and DC grids) in one simulation. Fig. 6
shows an example with different grids (with loads)
connected to one feeding transformer. For the DC
grid, a converter is required as well as a separate DC
grounding.

Figure 6: Simulation of multiple grid types in one
simulation.

5 Comparative model validation

The electrical grid models are validated using a com-
parative validation method. The three-phase grid mod-
els from the Modelica library are compared with the
power flow analysis tool in [13].

5.1 Example case: residential district

A simple case study is developed with a small three-
phase unbalanced residential distribution grid.

There is one feeder connected to the feeding trans-
former. 20 residential loads are connected to respec-
tively one of the 20 nodes in this feeder. The cables
between the nodes have a length of 16 m and have
a characteristic impedance of 0.507 + j0.229 mΩ/m.
The feeder is connected to a three-phase transformer
which has a phase impedance of 20.4+ j67.5 mΩ. The
nominal phase voltage between a phase and the neutral
conductor is 230 V. The grid topology is illustrated in
Fig. 7 (not on scale).

Figure 7: Grid topology for the validation model.
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Synthetic residential load profiles for one day are
available on a 30-minute resolution [17]. A set of 16
different profiles are randomly distributed over the dif-
ferent household connections to the distribution grid.
The household loads are all single-phase connected.

5.2 Validation results

For the comparative validation, the results on the nodal
phase voltages are compared with the results of the
models from [13]. Fig. 8 shows the absolute1 differ-
ence in results between the Modelica and Matlab mod-
els. Box plots are used to show the difference in the
nodal phase voltages during the simulation period of
one day for each phase of the electrical grid. The me-
dian, minimum and maximum values of these absolute
differences are repeated in Table 1.
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Figure 8: Relative absolute difference on the nodal
phase voltages for each phase between the Modelica
models and the Matlab models from [13].

Table 1: Median, average, minimum and maximum
relative nodal voltage difference [%] for each phase.

Median Average Min. Max.

Phase 1 0.0277 0.0256 0.0009 0.0476

Phase 2 0.0133 0.0121 0.0004 0.0181

Phase 3 0.0144 0.0135 0.0003 0.0292

The average absolute nodal phase voltage differ-
ences for a voltage of 230 V are in the order of 10−2 V.
The minimum difference is less than 1 mV. Note that
in this case study the nodal phase voltages are always
lower than 230 V since there are only loads.

This difference between both models is function of
the loads and the grid topology, since an error in one
node will propagate through the grid as a result of the
Laws of Kirchhoff in an electrical circuit. Therefore,

1The differences are both positive and negative

the difference in results will also increase for nodes
further from the feeding point. A second source of the
difference in results is the stop criterion for the itera-
tion in both simulations. The Matlab code uses a max-
imum allowed voltage error (1 mV) as a stop criterion.
In Dymola, a tolerance of 10−4 is used. A last part of
the difference is that the shund admittance and mutual
impedance between cables in three-phase systems is
neglected in this Modelica library.

The differences between the results of both models
are limited. Since both stop criteria for the iterative
solution method is different, the results show that the
accuracy is sufficient to apply this Modelica library.

6 Conclusions

A Modelica library is developed to simulate single-
phase AC radial grids, both balanced and unbalanced
three-phase AC radial grids and DC electrical grids.
For AC grid analyses, a quasi-stationary model is
implemented, assuming a fixed grid frequency (e.g.
50 Hz). The library is based on previous work, in
which a library was presented to simulate fully bal-
anced three-phase low-voltage distribution grids [1].

The models in this library can be used for electri-
cal grid systems for low-voltage distribution grids and
in-building grids. Electrical grids may connect many
different energy systems (loads and generation units),
different grids and/or buildings within districts. The
library allows to assess the grid impact of these sys-
tems. Control or optimization strategies can use grid
variables, such as voltages and power exchanges.

The comparative validation of this Modelica library
with a power flow simulation in Matlab [13] shows
that the difference in nodal voltages depends on the
loads, the grid topology and end criterion. Also the
mutual impedance of cables in three-phase systems is
neglected. Nevertheless, the average voltage differ-
ences are limited, for this case study in the order of
10−2 V for a voltage of 230 V.

A Appendix: Backward-forward
sweep method

The backward-forward sweep is an example of an it-
erative method to solve a power flow analysis. The
method is well suited for radial grids.

First, an initial guess of the voltage profile is set.
This allows the backward step to calculate the nodal
(Inode) and line currents (Iline) in function of the ap-
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parent power (Snode), the nodal voltages (Unode)2 and
incidence matrix (T), which is defined in Section 3.1:

Inode = f (Snode,Unode) =

(
Snode

Unode

)∗
, (7)

Iline = (transpose(T))−1 ·Inode. (8)

In the forward step, the nodal voltage is calculated
with the line currents: Unode = Ugrid −Z ·Iline. The
iteration stops when convergence is reached.
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Abstract 

This paper describes software tools developed at the 

Lawrence Berkeley National Laboratory (LBNL) 

that can be coupled through the Functional Mock-up 

Interface standard in support of the design and opera-

tion of building energy and control systems. These 

tools have been developed to address the gaps and 

limitations encountered in legacy simulation tools. 

These tools were originally designed for the analysis 

of individual domains of buildings, and have been 

difficult to integrate with other tools for runtime data 

exchange. The coupling has been realized by use of 

the Functional Mock-up Interface for co-simulation, 

which standardizes an application programming in-

terface for simulator interoperability that has been 

adopted in a variety of industrial domains. 

As a variety of coupling scenarios are possible, this 

paper provides users with guidance on what coupling 

may be best suited for their application. Furthermore, 

the paper illustrates how tools can be integrated into 

a building management system to support the opera-

tion of buildings. These tools may be a design model 

that is used for real-time performance monitoring, a 

fault detection and diagnostics algorithm, or a con-

trol sequence, each of which may be exported as a 

Functional Mock-up Unit and made available in a 

building management system as an input/output 

block. We anticipate that this capability can contrib-

ute to bridging the observed performance gap be-

tween design and operational energy use of build-

ings. 

Keywords: Co-simulation; Functional Mock-up In-

terface; Building Management System; NiagaraAX  

1 Introduction 

Building thermal systems, ventilation systems, elec-

trical systems and control systems are becoming 

more and more integrated to increase the energy effi-

ciency and to improve the interoperability with the 

electrical grid. This leads to a higher level of com-

plexity for the design, installation, commissioning 

and operation of these systems. Modeling and simu-

lation of such systems is challenging in today’s 

simulation tools because it requires the tool to sup-

port multiple physical domains, multi-time scales, 

and also different formalisms for how systems 

evolve in time, in particular if they involve supervi-

sory control with state transitions.   

At present, the simulation of controls, rapid proto-

typing of new building energy and control systems 

and the use of simulation for building operations and 

building retrofits are constrained by current simula-

tion tools. Most legacy whole building energy simu-

lation tools such as EnergyPlus [1] or TRNSYS [2] 

perform well for annual energy analysis, but their 

model representation and numerical methods do not 

allow simulating systems with fast dynamics nor do 

they allow the proper representation of controls. For 

example, in EnergyPlus, the smallest time step is one 

minute, TRNSYS has a fixed time step, and neither 

can handle state events. To nevertheless use these 

tools with other programs that better address controls 

or systems with fast transients, but may lack com-

prehensive libraries of building components, they 

can be coupled with each other through co-

simulation. By co-simulation, we mean a technique 

that allows individual component models described 

by differential algebraic or discrete equations to be 

simulated by different simulation tools running sim-

ultaneously and exchanging data during runtime.  

Co-simulation somewhat remedies the limitations of 

individual tools. While this allows addressing many 

practical questions, see [3-5], one has to keep in 

mind that hybrid systems formed through this tool 

coupling still have some deficiencies. We refer to [6] 

for properties that would need to be satisfied by the 

individual tools to allow a proper treatment of hybrid 

systems.  
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This paper is structured as follows: Section 2 intro-

duces the Functional Mock-up Interface (FMI) 

standard which is the open standardized interface 

used in this paper for co-simulation. Section 3 de-

scribes a) FMIs added to the Building Controls Vir-

tual Test Bed (BCVTB), and EnergyPlus to support 

their co-simulation with various tools, and b) an FMI 

added to a building management system to support 

error-free development and deployment of control 

algorithms. Section 4 presents our conclusions. 

2 Functional Mock-up Interface for 

Co-Simulation 

The FMI standard has originally been developed in 

the Information Technology for European Advance-

ment (ITEA2) project MODELISAR. 

The FMI standard supports both model exchange and 

co-simulation of dynamic models using a combina-

tion of XML1-file, C-code and/or shared libraries.  

The FMI standard version 1.0, which has been used 

in this contribution, consists of three parts: 

 FMI for model exchange, which stand-

ardizes an interface for coupling simula-

tion tools that are integrated in time by an 

external solver [7]. 

 FMI for co-simulation, which standardiz-

es an interface for coupling simulation 

tools that contain their own solver for 

time integration [8]. 

 FMI for Product Lifecycle Management, 

which provides a standardized way to 

handle FMI related data [9]. 

A system model or simulation tool which imple-

ments the FMI standard is called a Functional Mock-

up Unit (FMU). An FMU comes in the form of a zip-

file, which contains the FMI model description file, 

which is an XML-file with information needed by an 

import tool, C-code and/or shared libraries required 

to interface with the model or simulation tool, and 

resource files such as tables, or documentation.  

This contribution uses the FMI for co-simulation 

application programming interface (API). This API 

provides the means for two implementations namely 

CoSimulation_Tool, and CoSimulation_StandAlone. 

In the CoSimulation_Tool implementation, the FMU 

contains a wrapper for shared libraries that interact 

with the slave tool so that a master tool which im-

                                                      
1XML stands for Extensible Markup Language. 

ports the FMU can interface with the slave tool in a 

standardized way. In the CoSimulation_StandAlone 

implementation, the FMU contains the model and its 

solver.  

3 Co-simulation using the FMI 

Standard  

3.1 FMU for Co-Simulation Import Interface 

in the BCVTB 

The BCVTB [10] is a free, open-source middleware 

based on Ptolemy II [11]. It allows users to couple 

different simulation tools such as EnergyPlus, 

TRNSYS, MATLAB/Simulink [12], Modelica [13], 

or ESP-r [14]  at runtime for co-simulation. The 

BCVTB also allows calling system commands, for 

example to run a shell script, which may start a Ra-

diance-based [15] daylighting simulation. Figure 1 

gives an overview of tools coupled to the BCVTB. 

The BCVTB also allows simulation tools to be cou-

pled with hardware through its BACnet interface or 

its analog/digital interface [16].  

The BCVTB is essentially a special configuration of 

Ptolemy II, with the addition of actors2 and examples 

that are of interest to the buildings community.  

The BCVTB has been used in several applications 

such as agent-based simulation [5], real-time simula-

tion [3], controls of networked sensors and actuators 

[17], and performance prediction of HVAC systems 

[18].  

As the BCVTB has been developed at the same time 

as the first version of the FMI standard, it contains 

its own API for co-simulation. This API is however 

much more limited than FMI and is not supported by 

all tools that export FMUs. Therefore, an FMU for 

co-simulation import interface has been added to the 

BCVTB. This interface allows the BCVTB to import 

simulation tools which have been exported as FMUs 

(Figure 2). This interface complies with the FMI for 

co-simulation API.  

This new capability has several benefits: 

 It allows users to couple the simulation 

tools shown in Figure 1, which are not all 

available as an FMU, to any other simu-

lator that can be exported as an FMU for 

co-simulation. 

                                                      
2Actors are software components that execute concurrent-

ly and share data with each other by sending messages via 

ports. 
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Figure 1: Simulation tools and hardware that can be coupled to the BCVTB. 

 The BCVTB can be used as a master al-

gorithm for co-simulation of FMUs using 

the Synchronous Data Flow domain of 

Ptolemy II. 

 FMUs can be linked to hardware through 

the BCVTB. 

 The BCVTB provides a graphical user in-

terface for linking and simulating FMUs 

for co-simulation. 

 The BCVTB allows synchronizing the 

simulation of FMUs to real-time. 

The use of the BCVTB has the drawback that it in-

troduces an additional transaction layer between the 

different simulators. As computing time is for most 

applications dominated by the simulation code inside 

the FMUs, the BCVTB middleware generally has no 

noticeable effect on the computing time. However, 

users need to have some familiarity with the use of 

the BCVTB. This increases the learning curve and 

could be a barrier for users who are familiar with one 

simulation tool and do not have resources to learn 

how to use this middleware. In addition, in some use 

cases, it may be more expedient to work directly in a 

domain-specific modeling environment. For exam-

ple, when analyzing different façade systems, one 

may want to use a graphical user interface of a build-

ing simulation program that imports the model of the 

façade controller as an input/output block. Converse-

ly, when developing a controller, one may want to 

take advantage of the visual editor and plotting capa-

bilities of a Modelica modeling and simulation envi-

ronment, while using an input/output block for a 

building model that takes as input the control action 

and outputs a sensor signal. For the first use case, we 

developed an FMU for co-simulation import inter-

face in EnergyPlus, for the second use case, we de-

veloped a facility to export EnergyPlus as an FMU 

for co-simulation. The next two sections describe 

these technologies.  

 

Figure 2: FMU for co-simulation import interface in the BCVTB.
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3.2 FMU for Co-Simulation Import Interface 

in EnergyPlus 

EnergyPlus is a whole building energy simulation 

tool. It is used by engineers, architects, and research-

ers for the modeling and simulation of energy use in 

buildings. EnergyPlus was not intended to be used 

for detailed modeling of airflow, dynamic response 

of heating, ventilation and air-conditioning equip-

ment, and modeling of control systems other than 

scheduling of setpoints by simple supervisory control 

algorithms. To overcome these limitations, 

EnergyPlus has been coupled to various simulation 

tools such as COMIS [19], Computational Fluid Dy-

namics [20],  MATLAB [21], or Modelica [22]. 

LBNL added to EnergyPlus 7.2 and higher an FMU 

for co-simulation import interface to allow the im-

port of any simulation tool that is available as an 

FMU for co-simulation (Figure 3). This interface 

complies with the FMI for co-simulation API.  

To facilitate the import of FMUs in EnergyPlus, we 

developed a utility called FMUParser. This utility is 

distributed with EnergyPlus and can be found in its 

PreProcess folder. When invoked, it unzips the 

FMU, extracts relevant information from the model 

description file of the FMU, and writes this infor-

mation to a temporary EnergyPlus input file. A user 

can then complete this temporary input file to create 

the EnergyPlus input file. This parser has been de-

veloped so that users do not need to read the model  

description file, which can easily contain more than 

thousand lines of xml syntax.  

To support the import of FMUs, we extended the 

data structure of EnergyPlus with four new objects 

[23]. These objects are used to map the inputs and 

outputs of the FMU to internal EnergyPlus variables 

once the FMU has been imported in EnergyPlus. We 

also implemented a set of C-functions which are dis-

tributed with EnergyPlus as a shared library. 

EnergyPlus uses these functions to call the FMI 

functions of the imported FMU. 

Figure 4 shows how the FMU for co-simulation im-

port interface was used to couple an HVAC system, 

implemented in Modelica and exported as an FMU, 

to a room modeled in EnergyPlus. This example is 

described in detail in [24]. The HVAC system com-

puted sensible and latent heat exchange with the 

room, using the air inlet and outlet as the thermody-

namic boundary. The room model computed the 

temporal evolution of the room air temperature and 

humidity, using the sensible and latent heat exchange 

as inputs to its energy balance. The FMU uses as 

inputs the room dry-bulb temperature (TRooMea), 

the outdoor dry-bulb temperature (TDryBul), the 

room air relative humidity (rooRelHum), and the 

outdoor air relative humidity (outRelHum) to com-

pute the sensible and latent heat exchange 

(QSensible, QLatent) which are sent to EnergyPlus 

through its outputs. EnergyPlus uses these values to 

compute the new room air temperature and humidity.

 

Figure 3: Importing an FMU for co-simulation in EnergyPlus through its ExternalInterface [25].  

 

ExternalInterface

FMU

ExternalInterface:FunctionalMockupUnitImport:To:Schedule

ExternalInterface:FunctionalMockupUnitImport:To:Actuator

ExternalInterface:FunctionalMockupUnitImport:To:Variable

ExternalInterface:FunctionalMockupUnitImport:From:Variable

EnergyPlus

Input Output
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Figure 4: Linking an HVAC model developed in Modelica to an EnergyPlus room model using the FMU for 

co-simulation import interface.

3.3 FMU for Co-Simulation Export Interface of 

EnergyPlus 

Although interfaces and middleware exist that facili-

tate the coupling of EnergyPlus with various soft-

ware, they might not be widely used in the building 

simulation community since they still require users 

to be familiar with EnergyPlus so they can set it up 

and link it with other simulation tools. We thus ex-

ported EnergyPlus as an input/output block using the 

FMI standard. This allows importing EnergyPlus 

into any simulation tool that allows importing FMUs 

for co-simulation.  

To export EnergyPlus 8.0 and higher as an FMU for 

co-simulation, we developed and released a software 

module called EnergyPlusToFMU [26], which ex-

ports EnergyPlus as an FMU for co-simulation. 

EnergyPlus implements in this configuration the FMI 

for co-simulation in the CoSimulation_Tool method. 

Figure 5 shows how EnergyPlus is imported in 

Dymola as an input/output block which can be con-

nected to other Modelica blocks. 

 

To support the export of EnergyPlus as an FMU for 

co-simulation, we extended the data structure of 

EnergyPlus with four new objects [23]. These ob-

jects map the inputs and outputs of the FMU to vari-

ables that are internal to EnergyPlus. 

Exporting EnergyPlus as an FMU for co-simulation 

can support various applications. For example, as 

described above, EnergyPlus may be used as an in-

put/output block when designing a controller in a 

Modelica modeling and simulation environment or in 

MATLAB/Simulink. EnergyPlus building models 

may be linked to electrical grid and control models 

to design an electrical demand response controller 

for a campus that controls building electrical loads as 

a function of tariff, power quality and state of charge 

of batteries.  

Table 1 shows a comparison between the different 

import and export capabilities. The table also lists 

their strengths and weaknesses. Although not ex-

haustive, this table should guide users in the selec-

tion of an import or export facility that is adequate 

for their specific application.

 

Figure 5: Coupling of an EnergyPlus model exported as an FMU with a PI-controller using Dymola. 
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Table 1: Comparisons between different technologies to couple simulators3. 

  

Graphical user 

interface 

 

Minimum 

knowledge 

required 

 

Pros 

 

Cons 

 

 

BCVTB 

 

 

Yes 

 

BCVTB, and tools 

to be coupled. 

 

Links to various tools  

and hardware. 

 

Reuse functionality of 

Ptolemy II. 

 

Learning curve, 

transaction layer. 

 

BCVTB  

(FMU  

Import) 

 

Yes 

 

BCVTB 

and FMU. 

 

Links to various tools, 

FMU for co-simulation 

and hardware. 

 

Reuse functionality of 

Ptolemy II. 

 

 

Learning curve, 

transaction layer. 

 

EnergyPlus 

(FMU  

import) 

 

No 

 

EnergyPlus 

and FMU. 

 

No need to learn new 

tool. 

 

May be able to use 

graphical user interface 

of EnergyPlus4. 

 

Tool to couple needs to be avail-

able as an FMU for co-

simulation. 

 

 

 

EnergyPlus 

(FMU  

export) 

 

No 

 

EnergyPlus 

and FMU. 

 

EnergyPlus can be im-

ported in other tools. 

 

Can use EnergyPlus as 

an input/output block 

inside a block diagram 

editor. 

 

 

Import tool needs to support FMI 

for co-simulation. 

 

 

 

 

 

                                                      
3Simulator refers to simulation tool, system model, or tool exported as an FMU for co-simulation. 
4Not all graphical user interfaces of EnergyPlus may support all EnergyPlus features and thereby support the FMU im-

port interface. 
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The previous sections described the coupling of mul-

tiple simulators. In the next section, we describe an 

import interface that we implemented in an open 

framework for building controls that allows linking 

FMUs for co-simulation with different building 

management systems.  

3.4 FMU for Co-Simulation Import Interface 

in Niagara
AX

  

NiagaraAX is a Java-based framework and develop-

ment environment for creating internet-enabled 

products, device-to-enterprise applications and dis-

tributed internet-enabled automation systems. It is a 

commercial product from Tridium that is often over-

laid to other building management systems to facili-

tate their interoperability (Figure 6). NiagaraAX uses 

a unified component model (Common Object Model) 

to transform the data from diverse external systems 

into uniform software components. These compo-

nents form the foundation for building applications 

to manage and control the devices. 

LBNL added to NiagaraAX an FMU for co-simulation 

import interface. This interface complies with the 

FMI for co-simulation API.  

We selected the NiagaraAX framework because of its 

open-source architecture, which is based on Baja 

(Building Automation Java Architecture) [27] and its 

wide use in the buildings industry.  

To implement the FMI interface in the NiagaraAX 

framework, we used JFMI [28], a Java wrapper for 

FMI, and created two new classes BFMUService 

and BFMUComponent. These classes are used in 

the framework to interface with imported FMUs for 

co-simulation. 

The BFMUService is used by the NiagaraAX 

framework to process FMUs and to make their rele-

vant information available to the framework. The 

BFMUComponent class represents an FMU in-

stance. When instantiated, it appears in the 

NiagaraAX framework as an input/output block, 

which can be connected to other components of the 

NiagaraAX framework. 

Figure 7  shows an FMU for co-simulation which 

has been imported in NiagaraAX as an input/output 

block. This block can then be linked to any other 

block available in the NiagaraAX framework. 

Adding an FMU for co-simulation import interface 

enables various applications. For example:  

 An HVAC designer may create a simulation 

model during the design of a building. 

She/he then exports the model as an FMU 

for co-simulation and imports it to 

NiagaraAX. In NiagaraAX, she/he links the 

model input to measured data. The design 

model can then be used to compute expected 

energy consumption, which in turn can be 

used to compare measured with expected 

performance. See [3] for such a use case. 

 A researcher or product developer may de-

velop a fault detection and diagnostic algo-

rithm, test it on a simulation model, and then 

export the algorithm as an FMU for co-

simulation. This FMU can then be linked 

through NiagaraAX with an actual building 

energy system. 

 A researcher, product developer or advanced 

HVAC designer may develop and test an ad-

vanced control sequence in simulation, ex-

port it as an FMU for co-simulation, and im-

port it to NiagaraAX to link it to an actual 

building.   

We anticipate that the use of FMI in building man-

agement systems supports a robust and low cost im-

plementation, and an error-free deployment of con-

trols or FDD algorithms. 
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Figure 6: NiagaraAX framework (Courtesy: Tridium). 

 

 

Figure 7: FMU for co-simulation import interface in NiagaraAX.

 

4 Conclusions 

We anticipate the integration of FMU for co-

simulation interfaces in the BCVTB and EnergyPlus 

to support a better simulation-based design and oper-

ation of buildings.  

We believe FMI to be well positioned to become a 

de-facto standard for implementing, and deploying 

control sequences. We thus see the integration of an 

FMU for co-simulation import interface in building 

management system as a promising approach and a 

natural extension of its application to date. 
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Abstract 

This paper illustrates the use of Functional Mock-
up Interface (FMI) [1] to couple an occupant behav-
iour simulator and a building model. 

Due to their intrinsic nature, occupant behaviour 
and building and its energy systems are usually rep-
resented by different modelling paradigms. The oc-
cupant behaviour is here described by Agent-Based 
Modelling (ABM) whereas the building is described 
by a set of hybrid and differential algebraic equa-
tions, typical of dynamic thermal modelling. Such 
different complex systems cannot be efficiently 
simulated in a single tool. Therefore, one solution is 
the tool coupling approach. 

The FMI standard for co-simulation was used to 
couple the SMACH occupant behaviour simulator 
and a building energy model built with the 
BuildSysPro Modelica library. Variables of interest 
are passed from one model to another at fixed syn-
chronization time steps. 

 
Keywords: Building simulation; behavioural model-
ling; Specific use of electricity; thermal comfort; 
Modelica; FMI; co-simulation  

1 Introduction 

Enforcement of energy efficiency policies drives 
new buildings towards better performance and espe-
cially low or even positive energy buildings. These 
kinds of buildings are different from existing ones as 
their ventilation and envelope heat losses are inten-
sively decreased. Nevertheless, this improvement has 
two consequences. First, human actions to ensure 
thermal comfort can cut back heating and cooling 
energy savings. Second, a significant share of energy 
will be consumed by specific electricity uses (light-

ing, cooking, white goods, electronic appliances...) 
and not anymore by space heating and cooling. Both 
points are strongly linked with occupant behaviour. 

Occupant behaviour is commonly described in 
dynamic building simulation tools using standard-
ized occupancy profiles. Various studies suggest that 
occupant behaviour should be taken into account in a 
more accurate way, as it can have a dramatic impact 
on energy consumption especially in the context of 
low and positive energy buildings [2] [3]. 

The purpose of this work is to couple realistic 
occupant behaviours with building energy simula-
tion. It focuses on dynamic modelling and espe-
cially electric power demand instead of energy 
consumption. Two interaction approaches were 
carried out: 

• Co-simulation for R&D studies, 
• Generation of realistic occupancy scenar-

ios for simplified building simulation 
tools. 

This last objective will be fulfilled thanks to de-
sign of experiments using the co-simulation. Only 
the tool-coupling approach is presented here. 

2  Occupant behaviour model 

The occupant behaviour model is implemented in 
the SMACH platform, an agent-based tool developed 
by EDF and the LIP6 laboratory.  

The coupling between the building energy model 
and the occupant behaviour model is mainly carried 
out through thermal comfort perception and control 
of electrical appliances.  

2.1 Occupant behaviour model 

In order to represent adequately and individually 
the behaviour of each occupant, we rely on an agent-
based modelling approach and, more specifically, the 
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one we already applied in [4]. The agents, in 
SMACH, provide a realistic way of modelling in-
habitants’ behaviour. In the occupant behaviour 
model, an agent corresponds to an individual person, 
and a family corresponds to a group of agents. This 
modelling approach emphasis the fact that agents are 
autonomous and have their own individual interac-
tion dynamic within the situation. At each moment, 
their universe is defined by their individual percep-
tion of the situation, their comfort level and their 
preferences regarding possible actions [5]. State-
graphs could have been used however this kind of 
approach is much less adaptable and concise than 
ABM for occupant behaviour modelling. 

In practice, the inhabitants’ activity is decom-
posed into generic tasks (t) such as “watch TV” or 
“cook dinner”. The actual behaviour of each individ-
ual is a set of actions (a) derived from the generic 
tasks. A task is a tuple (τmin, τmax, Et, Etf, Tpre) corre-
sponding respectively to minimal and maximal dura-
tion to conduct the task, the required and favourable 
appliances and the pre-conditional tasks. For in-
stance, ironing may require the completion of clean-
ing clothes, lasts one to two hours, requires the iron 
appliance and may be likely to be conducted with the 
TV switched on. 

An action is an instantiation of a task by an occu-
pant. It is defined by a tuple a = (t, w, st) correspond-
ing respectively to the associated task, rhythm and its 
state (done, not-done). A rhythm (w) is a tuple (per, 
freq, var, PP) corresponding respectively to the base 
period (day, week, month, year), the frequency, the 
frequency variability and a set of preferred periods 
(PP). An action example could be as follows: a child 
may watch TV according to a weekly rhythm of 10 
viewing periods on weekdays between 7 and 8 a.m 
and/or 5 and 6 p.m. 

2.2 Thermal comfort model 

The thermal comfort model used in the occupant 
behaviour simulator is derived from Fanger’s PMV 
model [6]. Instead of defining a mean comfort value, 
an individual thermal comfort level is defined after 
the same set of variables (air temperature, radiative 
temperature, humidity, metabolic heat production 
and mechanical work). A new parameter called 
frilosity defined by expert assessment and based on 
field studies in real situation is also taking into ac-
count. It describes the cold tolerance of each occu-
pant [7]. On top of this individual model, a group 
comfort level is defined per room as follows:  

�� =������	
� ∙ ���
����

 

Where agei is the age class and comforti the indi-
viduals comfort. The age class defines a level of re-
sponsibility depending on age, for instance an adult 
will favour a child comfort instead of his/her. This 
group comfort level is used to determine what action 
the group will choose (e.g. increase temperature set 
point, open windows) and individuals’ actions (e.g. 
adapt clothing, change activity ...). 

2.3 Appliances 

Electrical appliances, e ∈ E, are defined by their 
electrical power consumption θi. The ����	 func-
tion defines this relation for each appliance. 

����	 ∶ �� → 	ℝ�� ↦	 θ�
� 

We consider two types of electrical appliance: 
state-based appliances and program-based appli-
ances. 

 
State-based appliances are defined as a tuple (θo, 

θs, st) where θo and θs are the electrical power 
consumptions when e is running or in standby mode, 
and st ∈ {off, standby, on} is the state of the 
appliance, modified by occupants in the house during 
their activities. Heaters, TVs, fridges... can be 
represented by state-based appliances. 

 
Program-based appliances are defined as an 

ordered pair (Pe, st) where Pe is a set of operating 
programs characterised by load curves. The status st 
of the appliance is then defined by an ordered pair st 
= (p, t) where p is the currently selected program and 
t is the time since the beginning of this program. A 
program p is an ordered pair (τ, φ) where τ is the 
program duration and φ: [0, τ] →	ℝ� gives the 
appliances power consumption over time during the 
program. Thus, ����	'�( = φ)'
(. For instance, 
washing machines can be represented by this kind of 
appliance. 

In SMACH, all energy consumption profiles 
come from real data from the REMODECE Euro-
pean project [8]. 

3 Building energy model 

The building energy model is written in Modelica 
language with the BuildSysPro library developed by 
EDF [9]. We used a purely thermal model compliant 
with the Thermal.HeatTransfer class from the Mode-
lica standard library. The class is defined by its con-
nector involving the temperature T as a potential and 
Q_flow for the heat flow rate. 
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3.1 Building envelope 

The “Mozart” house is one of the most represen-
tative houses in the French residential building stock, 
and was therefore chosen for this work. It is a me-
dium size detached house of 100 m² of living surface 
area and an air volume of 252.15 m3.  

The building is modelled in a low energy con-
figuration: the U-values of the different envelope 
components are low compared to the standard 
French building stock. Internal wall insulation is 
chosen since this is the most common in France; it 
impacts the potential of heat storage into walls. The 
internal walls are modelled in the same way as the 
other opaque walls. Therefore, they contribute to the 
thermal inertia. 

 
Table 1: Main parameters of the building envelope 

PARAMETER VALUE UNIT 
Uoutdoor wall 0.27 [W.m-2.K-1]  
Uceiling 0.191 [W.m-2.K-1]  
Ufloor 0.263 [W.m-2.K-1]  
Uwindows 1.43 [W.m-2.K-1]  
   

 
Windows are double-glazed, with no thermal in-

ertia. The conductive, convective and radiative heat 
transfers are considered.  

The building envelope model is composed of six 
zones corresponding to the different rooms repre-
sented in Figure 1. The garage is not taken into ac-
count.  

3.2 Boundary conditions 

Weather data is applied as boundary conditions 
on the outdoor side of the building model. The build-
ing envelope is studied in a temperate climate, more 
precisely the weather data from Trappes, a city lo-

cated near Paris in France. The weather reader model 
provides the outdoor dry air temperature, the direct 
and diffuse solar radiations and the sky temperature. 
Relative humidity and wind data (velocity and direc-
tion) are not used in this first study. 

The short wave radiations transmitted inside the 
building envelope through the windows are entirely 
absorbed by the floor. The long wave radiative heat 
transfers which occur between the sky and surround-
ings and the external surfaces of the walls and win-
dows are taken into account through a combined heat 
transfer coefficient. 

3.3 Model inputs 

Internal heat gains due to the occupants are set to 
90 W.pers-1. The indoor occupancy scenario is cou-
pled to the occupant behaviour model, impacting 
internal gains and set point temperatures, which are 
specified in each zone by the occupants depending 
on their thermal comfort perception. Occupants also 
have the possibility to open windows if needed to 
ensure their comfort. The window open/closed status 
has an impact on the internal gains by adding a heat 
gain or loss, depending on the external weather con-
ditions. 

3.4 HVAC system 

The HVAC system is composed of an ideal elec-
trical heater controlled by PID and a mechanical ven-
tilation. A static model is used for the ventilation 
system with a fixed air change rate. 

Considering the weather conditions of Trappes 
and a normative scenario for occupancy specifying 
internal heat gains, the annual heat demand for this 
building is 20 kWh.m-2.year-1. 

 

 
 
 

 
Figure 1: Diagrams of the Mozart house 
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Figure 2 shows the overall Modelica model. 
 

 
Figure 2: Overall building energy model 

4 Co-simulation 

As previously mentioned, the model describing 
the building and its energy system has been devel-
oped using the BuildSysPro library with Dymola 
2014. The occupant model has been implemented 
within the SMACH agent-based simulation platform, 
written in Java. In order to allow co-simulation of 
heterogeneous simulators, the Modelica building 
model was exported from Dymola as a Functional 
Mock-up Unit (FMU), based on the Functional 
Mock-up Interface (FMI) for co-simulation standard. 
This approach has already been applied in several 
works [10] [11]. 

4.1 Implementation 

FMI defines a standardized interface to be used in 
computer simulations to develop complex systems 
[1]. In practice, it defines a common interface to con-
trol the FMU as a dynamic library, a .dll file in the 
present case. The first version of the standard was 
used. 

The master algorithm part is integrated into the 
SMACH occupant simulator. The JFMI wrapper [12] 
was used to control the exported FMU within the 
SMACH platform. It is designed to facilitate control 
of a native library with Java. A centralised architec-
ture was used with a single FMU representing the 
entire building with its energy systems. The SUN-
DIALS CVODE solver with backward differentia-
tion formula [13] was integrated as the built-in solver 
of the FMU. 

4.2 Coupling variables 

Several coupling variables are selected in order to 
couple the building energy model and the occupant 
simulator. On one hand, the occupant simulator must 
supply data that can impact the thermal ambiance of 
each room in the building or the HVAC system. On 
the other hand, the building energy model must re-
turn information to estimate the overall power load 
and the thermal comfort of the occupants. Therefore 
the FMU inputs are: 

• The temperature set point of each room where 
occupants can set the temperature. 

• The internal heat gains due to appliances and 
occupancy. 

• The windows opening status. 
The FMU outputs are: 

• The air temperature in each room. 
• The mean radiative temperature in each room. 
• Outdoor temperature. 
• Electrical power consumption of the HVAC 

system 
There are also two optional outputs to ensure proper 
synchronisation: 

• Day 
• Time in second 

4.3 Workflow 

The master algorithm acts as a scheduler between 
the FMU and the occupant model within the 
SMACH platform. We use a constant synchroniza-
tion time step of 1 minute. After the instantiation and 
initialisation steps, the workflow is the following:  

1. The behaviour of each occupant is computed 
based on his/her perceptions (action of other 
individuals, temperature of the room...) and in-
ternal state (action that he yet has to perform, 
thermal comfort level...).  

2. The FMU inputs corresponding to occupants’ 
actions on thermal environment are set (heater 
control, opening of the windows...).  

3. The building energy model computes the ac-
tual temperatures based on the occupants ac-
tions and their presence (internal heat gains) 

4. The FMU outputs are returned to the occupant 
simulator. 

4.4 Computing performances 

On a computing time point of view, the coupling is 
heavy. For a one month simulation and a time step of 
1 minute, the occupant behaviour simulation takes 3 
minutes with SMACH and the building energy simu-
lation takes 10 seconds with Dymola. When coupling 
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is applied, the same simulation takes 13 minutes. 
These computing times have been obtained with 
standard laptop equipped with an Intel i5 2520 M 
processor on Windows 7 32 bits. These are rough 
results and no optimisation has been conducted yet. 

5 Results 

This section shows some outputs from the co-
simulation between SMACH and the BuildSysPro 
building model. 

The activity diagram in SMACH, Figure 3, is 
used to analyse simulations. Activities are repre-
sented by different colours for each occupant over 
time. 

 
Figure 3: Activity diagram, a working day pattern 

 
On Figure 4, the activity diagram clearly shows 

the difference between usual working days and other 
days (Wednesday and weekend) for this household.  
Figure 5 shows the temperature evolution over thir-
teen days including seven days of vacation. The blue 
line represents the outdoor temperature and the red 
line, the indoor temperature in the living room. The 
grey stripes show when the HVAC system is work-
ing.  
In fact, the actual temperatures and power consump-
tion curves differ because during regular periods, the 

family is not at home during weekday daytime and 
sets the objective to 18°C whereas the indoor tem-
perature is set according to each individual/group 
comfort level when they are at home. On the con-
trary, during holidays the indoor temperature is set at 
12°C thus, the electric heater power load is null for 
an extended period of time (due to the efficiency of 
the represented low energy house) and then can os-
cillate to maintain this temperature. One may also 
observe the difference between weekdays and week-
ends. The absence of occupants during weekdays lets 
the HVAC system controls the temperature accord-
ing to the temperature set points. 

6 Conclusion 

This paper presents the first results of the co-
simulation between the SMACH platform for occu-
pant behaviour and a BuildSysPro building model. 
The tool coupling is fully functional, however to en-
sure computer time efficiency and adaptability the 
following improvements will be considered in IEA 
Annex 60 [14]: 

• Control  of the communication step size, 
• Dividing the Modelica model into sub-models 

(HVAC system, building envelope) and use 
composition of  FMUs to ensure adaptability, 

• Auto-mapping of coupling variables, consider-
ing input and output names and dimensions, 

The authors would like to thank the ANR for funding 
the SUPERBAT project.  

 
 
 

 
Figure 4: Activity diagram over one week 
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Figure 5: Indoor and Outdoor temperature evolution over holiday period 
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Abstract 

In this work, the structure of a modular, acausal and 
reconfigurable electro-thermal battery model is de-
scribed. The dynamic model structure adopted for 
the battery cell is based on an equivalent circuit 
whose parameters are generated using real cycling 
data through an optimisation routine written in the 
Modelica language. A linearised one-dimensional 
thermal mathematical model with lumped parameters 
is used to simulate temperature profiles for the cell. 
The cell and scaled-up pack model is parameterised 
for a number of commercially available cells ranging 
a number of cell formats, sizes and chemistries. 
These Dymola models are validated using highly 
transient and aggressive real-world as well as syn-
thetic drive cycles. 
 

Keywords: Lithium ion, battery, HEV, EV, PHEV, 
Acausal, Dymola, Modelica 

1 Introduction 

 
A key enabler (or constraint) of the electrified power 
train is the need to store energy in a form that can be 
easily and robustly converted into electricity. Batter-
ies have emerged as a preferred choice in alternative 
energy storage but the technology still comes with 
significant compromises for the customer. Many of 
the challenges and opportunities presented by battery 
technology can be traced to the li-ion cell at the heart 
of the battery. 
 
 
 
 

 
 
 
 
The need to accurately, rapidly and robustly model 
the performance of cells and their effects on the bat-
tery system and wider vehicle is of paramount im-
portance to vehicle OEMs. While multiple modelling  
approaches are available for Li-ion cells, a balance is 
required to produce a model than has the flexibility 
to map the microscopic scale effects of internal cell 
mechanisms to the macroscopic scale of pack and 
vehicle dynamics in a timely and cost effective man-
ner. 
 
Moreover it is important for any of these battery 
models to be readily integrateable with an existing 
electrified powertrain and control simulation toolset, 
where an acausal simulation structure (as opposed to 
input-led) can be advantageous. In this paper, we 
extend the INEEL FreedomCar program model [1] to 
include temperature dependence, voltage hysteresis, 
self-discharge and diffusion limitation. We present a 
generic routine that can be used to generate model 
parameters based on optimisation [2]. Moreover, we 
utilise the capacity of Modelica to avoid assignment 
statements and base our model on equations so as to 
achieve acausality. Finally, we show an efficient 
method for scaling-up the cell electro-thermal model, 
while maintaining the ability to uniquely parameter-
ize individual cells, to pack level without substantial-
ly compromising simulation time. 

2 Model development 

2.1 Cell Model 
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Modelling the electronic and thermal behaviour of a 
battery cell requires characterization of mechanisms 
across multiple time domains and model parameters 
that are dynamically interlinked. The equivalent cir-
cuit model (ECM) adopted in this work is shown in 
Figure 1 and consist of a parallel RC network con-
nected in series with a capacitor, a resistor and an 
ideal voltage source. As shown in Figure 1, the cir-
cuit is mainly composed of three parts including an 
open-circuit voltage source	���, internal resistances 
and equivalent capacitances. The internal resistances 
include the ohmic resistance �� which comprises all 
electronic resistances and the polarization resistance �� which when coupled with �� accounts for ion 
diffusion. The equivalent capacitance �	
 is used to 
describe the transient response during charging and 
discharging [1].  

 

 
 
Figure 1: Depicting the equivalent circuit model of a Li-ion 
battery system. The circuit represents temperature, state of 
charge and current dependency of the circuit components; self-
discharge and the hysteresis effects added with open circuit 
voltage.   

 

The electrical behaviour of the ECM shown in Fig-
ure 1 is given by [1]: 

 �� = ��� − ���� −�	
 − �� ��� �� + ������ = ���� 

 

 

(1) ��� �	
 = �� ������  

 

where �� is the terminal voltage, �� is the load cur-
rent, �	
 	is the voltage drop across the capacitor �	
, �� is voltage drop due to polarisation effects 
and � is accumulated charge; the mentioned varia-
bles are time dependent. This coupled set of equa-

tions (1) can be solved analytically and without loss 
of generality the solution is given by: 

 �� = ��� − ����− 1�	
�����
− �� ������� �� ����� ���� 

 

(2) 

 

The last term on the right hand side arises from the 
RC component and is decoupled from contributions 
from the other components in the circuit. This sug-
gests that from a mathematical viewpoint introducing 
more RC terms into the ECM will not lead to chal-
lenging parameterization algorithms, however, in so 
doing one must give attention to balancing the com-
putational effort with accuracy yield. In this work we 
consider a single (modified) RC circuit, similar to 
that proposed by INEEL FreedomCar program [2], 
and will show that this leads to sufficient accuracy. 

 

Equation (2) can be re-written in a closed form thus 
[2]: 

 

�� = ��� − ���� − 1�	
� ������� −��
� �!����� , 

�!,# = $1 − 1 − �%& '−∆�)!*∆�)! + ��,#
+ $1 − 1 − �%& '−∆�)!*∆�)!
− �%& ,−∆�)!-+ �!,#
+ �%& ,−∆�)!- �!,#�. 

 

(3) 

 

which is written in matrix form: 

 

/
001
��,.��,2⋮⋮⋮��,45

667 =
/
001
11⋮⋮⋮1
		 ��,.��,2		⋮		⋮		⋮��,4

		 8ℎ�,.8ℎ�,2		⋮		⋮		⋮8ℎ�,4
		 �!,.�!,2		⋮		⋮		⋮�!,4 5

667: ������	
�.�� ; 

 

 

(4) 
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where 

 8ℎ�,# �< ��,=∆�#
=>� .  

(5) 

 

Solving equation (4) via an optimisation routine in 
Modelica, which constitutes a part of the battery li-
brary, generates estimates for the parameters of the 
ECM at a fixed temperature �@�, load current and 
state of charge �AB�� defined by 

 

AB� � AB�����  100
�DE�F�� �� � AG� ∙ ��

��
� 

 
 

(6) 

 

where �DE�F�  is the rated capacity of the cell (the 
total amount of charge that can be reversibly cycled 
from the cell) and	AG is the self-discharge contribu-
tion given by [3]: 

 

	AG � I� J KL�M@NAB� 
 

(7) 

 

where the ratio of activation energy to the molar gas 
constant		KL �M⁄  is determined through observations 
and on timescales of a few hours can be taken to be 
zero. The optimisation routine runs a sweep for ) 
within a range of values. The value of ) which yields 
the least error when predicting �� via equation 4 is 
selected for the reference data set. 

The optimisation routine is repeated for various 
temperatures, current pulses and AB� values to pro-
duce a three dimensional map of battery parameters 
as a function of AB�, 	�� and	@. These parameters are 
then fed into the equivalent circuit models.  

 

The Hysteresis contributions		�
	to cell voltage is 
modelled by the following first-order differential 
equation which we couple to open circuit voltage ��� 
[4]: 

 
P�
P� � Q���  RAG�S�
,TEU � VWXY����
Z  

(8) 

 

where the constants  Q and R are to be determined 
and 	�
,TEU is the limiting hysteresis voltage. Equa-
tion (8) is constructed such that for prolonged as well 
as large pulse charge currents the hysteresis voltage 
tends to  	�
,TEU while for prolonged as well as large 
pulse discharge currents the hysteresis voltage tends 

to	�
,TEU. Moreover, if there is a prolonged period 
of zero current the hysteresis voltage tends to �
,TEU through the self-discharge effect. 

 

The ��  component shown in Fig 1 attributes a time 
constant ) � ���� to the bulk diffusional process of 
Li ions in the solid phase. We account for diffusion 
limitation, where the surface concentration of lithium 
may be significantly different than the average con-
centration contained within the active material parti-
cle, by allowing the time constant to be a function of 
current and assume the following simple power-law 
form [5]: 

 

) � [\� � \.�� � \2��2 � \]��] � ^���_�[ (9) 

 

 
Figure 2: A comparison of ���	estimation using polynomial fit-
ting (6th order) and spline functions applied to ���	�AB�� values 
generated through solving Eq. (4).  

 

To generate mathematically smooth estimates for the 
battery parameter (` � `�AB�, 	��, @�) the usual 
practice is to use polynomial fitting functions. This 
method has the disadvantage that it often does not fit 
the data well as in the case of Open Circuit Voltage 
depicted in Fig. 2. In this work we utilize spline 
functions to generate smooth estimates for `�AB�, @� 
which avoid oscillations in interpolated values either 
side of outliers. We find that while both estimates 
follow the general trend of the data in the highly 
non-linear regions of the curve the accuracy of the 
spline function is much greater compared to a poly-
nomial fit. 

 

Cubic splines are preferred over lower degree 
splines. With first-degree splines the slope of the 
spline may change abruptly at the knots (i.e., data 
points) and for second-degree splines the disconti-
nuity is in the second derivative which means that 
the curvature of the quadratic spline changes abrupt-
ly at each node. The cubic spline function A is de-
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fined in the X interval [X0,Xf] such that A is a poly-
nomial of degree at most 3 on each subinterval ab# , b#c.d and A	is continuous up to its second deriv-
ative.  

 

Spline interpolation is coupled with linear interpola-
tion where there is a weak correspondence between a 
variable {AB�, 	��, @} and the model parameter	` =
ter	` = `�AB�, 	��, @�).  
 

A further improvement in stability was achieved us-
ing Akima splines. The calculation of the derivative 
only relies on data from local points, hence reducing 
the amount of oscillations between data points in the 
interpolation. 

 

Temperature is modelled as lumped value. For mod-
elling Li-ion batteries this is convenient because of 
the resulting simplicity of the governing equations. 
Such assumptions can be suitable if temperature gra-
dients within the cell body are negligible [5] which 
does not hold for most HEV applications were cur-
rents are large. It has recently been shown that a cell 
with a temperature gradient maintained across is has 
a lower impedance than one held at the theoretical 
average temperature [6]. Our assumption therefore 
will introduce some errors in voltage predictions but 
this, as will be demonstrated, can be negligible. The 
thermal model for a single cell is depicted in Figure 
3 where the heat generated in aJd is given by:  

 �h = � ,� − ��� − @DFi �����@ - (9) 

 

where a dot represents a time derivative and ��� − ���� represents irreversible joule heating 
caused by Li-ion transport. The last term on the right 
hand side of Eq. (9) represents the reversible rate of 
heat generation due to entropy change. This model 
assumes no specific geometry for a single cell be-
yond a total volume with uniform temperature for 
some arbitrary body.  

 

 
Figure 3: Figure depicting the 1D thermal model which is cou-
pled to the electrical model via the heat source (equation 9).   

 

2.2 Pack Model 

 
The pack model consists of an electrical network and 
a thermal network connecting electrical and thermal 
paths respectively. 

 

Pack electrical model 

A pack is constructed from modules which are con-
structed from sub-modules. The sub-modules are of 
two types: only parallel connections and only series 
connections. This allows us to make effective “cells” 
which become the building blocks of our model. The 
sub-modules are constructed by appropriately loop-
ing electrical connections of a single cell. Each cell 
is then allowed to be unique, i.e., take unique values 
of initial SoC, C/3 discharge capacity, internal re-
sistance, polarisation resistance, ���, bus bar con-
nection resistance – through a data table. Such 
uniqueness of cell parameters allows for various in-
teresting studies including cell balancing, diagnos-
tics, performance limitations, design optimisation 
and so forth. The sub-modules are either connected 
via parallel or series loops to construct modules 
which can be connected to construct a pack. The un-
specified parameters of the pack electric model in-
clude bus-bar resistance and inter-module connection 
resistance. For studies of high frequency ripple, the 
inductance of bus bars can be included as a parame-
ter; however, in what is presented here this option is 
deselected.  

 

The advantages of using component arrays over sep-
arate instantiations of components is firstly: less 
model diagram layer space being taken up, but more 
importantly: the ability for the model to be scaled up 
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or down without having to manually redefine the 
architecture. 

 

 
 

Figure 4: Dymola model diagram layer showing component 
array methodology for scalable stacks. 

 

In the example shown in Figure 4, each element in 
the cell and resistance arrays (size=n) have been 
linked using the following notation: 

 
  connect(pin_p, cell[1].pin_p)  
 
for k in 2:data.n loop 
    connect(resistor[k -
 1].n, cell[k].pin_p)  
end for; 
   
  connect(resistor.p, cell.pin_n)  
  connect(resistor[data.n].n, pin_n)  
  connect(const.y, cell.Temp)  

 

 

Symbolic Manipulation is a powerful tool used to 
simplify the systems of equations generated for a 
model during compilation. The model equations are 
rearranged into a form where the unknowns can be 
calculated whilst the redundant equations are re-
moved. Dymola like other Modelica based tools has 
its own version of Symbolic Manipulation which 
helps achieve time-effective model computation. 

 

The simplification of the systems of equations leaves 
the accuracy of the model intact whilst dramatically 
reducing the computational effort required to solve 
the original model equations [7]. 

 

Pack thermal model 

Akin to the electrical pack model we connect thermal 
paths between cells via heat-ports. Thus, employing 
loops we thermally connect cells within sub-
modules, sub-modules within modules and modules 

within a pack which is attached to a global cooling 
circuit. In our work we consider two cooling models: 
 

Control based ideal cooling system 

 

This simple model mimics an ideal cooling strategy. 
The cooling system remains inactive as long as the 
temperature of the cells in the pack remains below 
some critical temperature	@� (a design parameter). As 
soon as the temperature exceeds @� the cooling sys-
tem takes action: it extracts heat ��@� [W] away 
from every cell in the pack uniformly. The 
tion	��@�, which is a function of cell temperature, 
can take any form and in the simplest design will be 
a constant (i.e., regardless of how hot the cells are, 
the cooling system exerts the same effort). Once the 
temperature is forced below	@� the cooling system 
will return to its idle state. 
 

 

Fluid based Cooling Model 

 

This model couples simple fluid dynamics with the 
existing electro-thermal model. This model connects 
every cell in the pack via their sub-modules and 
modules to the global cooling circuit via cooling 
plates. The surface area of the cooling plate is a criti-
cal feature and is a parameter of the model. The 
cooling system is traversed by coolant (incompressi-
ble mixture of water and ethylene glycol, the ratio of 
which is a parameter of the model) that is forced by 
an ideal pump with a mass flow rate jik�l that is a 
parameter of the model.  
 

3 Validation 

We have parameterized our model for a number of 
commercially available cells ranging a number of 
cell formats, sizes and chemistries including cells 
with Lithium iron phosphate (LFP), Manganese spi-
nel (LMO) and Lithium nickel manganese cobalt 
(NMC) cathode materials and graphite and Lithium 
titanate (LT) anode materials. We find cells with the 
same chemical compositions have similar ����AB�� 
profiles; however, internal resistance – which is in-
fluenced by factors such as electronic contact be-
tween active electrode materials and current collec-
tors, homogeneity of the active material paste, the 
battery internal structure – and polarisation re-

Cell 
array 

Link re-
sistance 
array 

Looped con-
nections 
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sistance – influenced by electrolyte composition – 
are found to differ. It can thus be established that the 
manufacturing process itself will have a bearing on a 
batteries performance characteristics.  

 
In what follows of this sub-section we present some 
validation results for the electro-thermal cell model. 
While the model has been validated for a number of 
commercially available cells here we present results 
for a 20Ah LFP pouch cell. The cells were cycled 
and monitored using a Bitrode MCV 16-100-5 
EV/HEV Battery Cell Test System. 

 

3.1 Cell level validation 

 
The validation of the 20Ah LFP cell utilised an ag-
gressive artificial cycle, shown in Figure 5a, in order 
to test the model boundaries.  The subsequent results 
of the electro-thermal model are shown, with labora-
tory test data, in Figures 5b-5c. 

 
  
 
 
 

 
Figure 5a: Depicts a highly demanding current profile used for 
this validation process. The duration of this cycle is 600 seconds 
(excluding rest time) and the pulses range between 20C dis-
charge and 10C charge.  
 

 

 
Figure 5b: A comparison of predicted terminal voltage using the 
cell model (blue line) with actual test data (red line) for a 20Ah 
LFP cell. The maximum transient error is less than 50mV. 

 

 
Figure 5c: A comparison of temperature predictions using the 
reduced order model (red line) with laboratory data (blue line) 
for an A123 20Ah LFP cell.  

 
 

3.2 Pack level validation 

 
For pack validation we use a commercial pack com-
prising 214 20Ah LFP cells in a 2p107 configura-
tion. The cells are organised into 5 modules: 4 mod-
ules with 2p24s configuration and a final module 
with a 2p11s configuration. There is a service break 
that splits the pack between 2 modules and 3 mod-
ules (2p48s and 2p59s) for safety. The cells are 
welded to the bus bar by laser welding and the mod-
ules are connected via thick 48mm cables with a re-
sistance of 240x10-8240 × 10�p Ω and inductance 
of 50nH. The pack was cycled and monitored using a 
Bitrode FTF-500-900 EV/HEV Battery Pack Test 
System and temperature was recorded using t-type 
thermocouples connected to a pico logger. 

 
  

The pack was cycled with a number of PHEV cycles. 
Here we present results of a single charge sustaining 
mode cycle. It is worth mentioning that the nominal 
transient discrepancy between modelled and meas-
ured voltages were below 2% during most part of the 
simulation and in some cases peaked to 5% as shown 
in Figure 6b (i.e., the maximum transient discrepan-
cy between modelled and measured voltage is less 
than 5%). The pack was connected to a cooling sys-
tem passing liquid coolant at a rate of 27L/min thor-
ough the cooling plates attached to the bottom of the 
pack (opposite end to cell tabs). 
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Figure 6a: A 63 minute current cycle consisting of theree phas-
es: The first 24 minute charge depleting phase with currents 
between -200A<I<130A takes the cell from 70% SoC down to 
10% SoC; this is followed by a 34 minute phase of constant 40A 
charge which takes the cell back up to 70% SoC; the final phase 
is a 5 minute charge depleting phase with similar current magni-
tudes. 

 
 

 
Figure 6b: Shows a good fit between modelled voltage (red) and 
measured voltage (blue). During most of the simulation errors 
were below 2%, with a peak error of 5% at around the 5000 sec-
onds.  

 

 
Figure 6c: Compares modelled temperature (red line) verses 
maximum recorded cell temperature  in the pack and minimum 
recorded temperature (blue dashed lines). 

 
 

4 Conclusions 

 
In this paper we present a library of models that ex-
tend to construct a coupled, dynamic, electro-thermal 
model of battery cells and packs. At the elementary 
level we utilize a single polarization equivalent cir-
cuit model (ECM) to capture the Ohmic and diffu-
sional characteristics of a Lithium ion battery. The 
EC model is then developed to include effects of 
hysteresis, self-discharge and diffusion limitation. 

 
A distinguishing property of this model is the inclu-
sion of diffusion limitation effects through a current 
dependant time constant. This property better mimics 
the solid diffusional dynamics of Li+ intercalation 
into the active material.  

 
Employing an optmimisation routine we extract state 
of charge (SoC), temperature (T) and current de-
pendent (IL) model parameters from High Pulse 
Power Characterization (HPPC) data. This extracted 
data then forms a three dimensional “look-up table” 
which is interpolated using Spline functions in the 
ranges 0%≤SOC≤100% and -20oC≤T≤65oC.  

 
The model (cell, module and pack) is acausal and 
thus utilises physical pins that mimic battery termi-
nals. Stimuli are therefore any load acting on the bat-
tery via the tabs (as is the case in reality) and outputs 
are any measurements that are made across the tabs 
(using modelled sensors).  
 
The cell model was validated using a number of 
commercially available cells. Our combined valida-
tion results showed a maximum of 50mV discrepan-
cy between measured and tested voltages at cell level 
and a 1.4℃  discrepancy between measured and test-
ed temperature at cell level.  

 
Our pack model is constructed from a series-parallel 
configuration of cells where cell-to-cell connections 
are modelled by a resistor. Our focus for this inte-
grated architecture was methods of automated and 
unique parameterization which facilitates, for exam-
ple, the study of the effects of SoC imbalance, 
anomalous resistances and SoC balancing mecha-
nism.  
 
An important characteristic of the model presented 
here, which is unique to Modelica code, is that it is 
based on equations instead of assignment statements. 
The main advantage is that the solution direction of 
equations will adapt to the data flow context in 
which the solution is computed. The nature of the 
equation based approach means that the models are 
acausal. This in turn means that the modeler does not 
have to rewrite or rearrange the system equations 
when using the components in different scenarios, 
for example forward and inverse dynamic modelling 
situations. More advantageously a model of a battery 
behaves physically like battery. So for example, if a 
resistor is connected to the physical pins (modelled 
negative and positive terminals of a battery) the bat-
tery will discharge causing a rise in temperature, fall 
in SOC, fall in voltage and so on.  
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In this work we demonstrate Dymola's ability for 
multi domain modelling. We find that the Mdoelica 
libraries including Electric, Fluid and Thermal readi-
ly facilitate the construction of coupled electro-
thermal battery models. However, we also find that 
Dymola is lacking in some areas of numerical prob-
lem solving, particularly in solving coupled non-
linear simultaneous equations as well as coupled 
non-linear partial differential equations. We circum-
vent these problems by employing regression meth-
ods for predicting battery parameters. 
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Abstract 

The initial integration of a large scale battery 

system in existing end products like cars is 

usually of experimental nature. So are the 

simulation models supporting its design pro-

cess. In the following a comprehensive Model-

ica model is introduced for the simulative de-

scription of the physical behavior of lithium 

ion battery cells packs for relevant aspects 

and use cases. It is part of the Modelon Bat-

tery Library, a commercial Modelica library 

to model battery cells and packs of various 

types, shape and grouping.  

Thermal behavior, electrical behavior and the 

impact of the degradation due to aging are 

considered as they influence each other. 

The model parameters to calculate the electri-

cal behavior are to be derived from measure-

ments; an optimization algorithm to obtain 

them is integrated in the package using the 

Optimization Library. Functions to validate 

the model against these measurements are 

included as well. 

As an application example the simulation of 

an energetic energy storage system in the 

model of a battery electrical vehicle is shown. 

Keywords: battery model; lithium-ion; behav-

ioral modeling; electrical vehicle 

1. Motivation 

In Battery Electric Vehicles (BEV) and Hy-

brid Electric Vehicles (HEV) the majority of 

car producers focus in lithium ion based bat-

tery concepts due to their high performance 

density in connection with reasonably high 

lifetime and acceptable thermal behavior. As 

these vehicles become more accepted on the 

market, the production numbers are supposed 

to increase with some positive pricing effect. 

It is likely that this will also make lithium ion 

batteries attractive for use in homes and other 

decentralized energy systems – especially in 

connection with renewable energy. 

Practically all lithium ion based batteries 

show more or less troublesome aging behavior 

which reduces the lifetime to inacceptable 

levels, if no particular provisions are taken to 

avoid or reduce it. Aging appears as calendric 

and as cyclic effect according to the number 

of charging and re-charging events. The main 

aging effects [1] of current lithium battery 

systems are: 

 Accumulated damages of the solid electro-

lyte interface (SEI) between anode and 

electrolyte caused by chemical reactions 

and physical movement due to temperature 

changes. 

 So-called lithium plating, i.e. the deposi-

tion of metallic lithium on the anode. 

Aging effects are severely influenced by the 

thermal load on the battery. Therefore high 

performance battery systems need to be kept 

within a certain temperature range by cooling 

and sometimes heating. 

For whatever application, in current battery 

systems single cells of a certain type are ar-

ranged in stacks, modules or packages 

through serial and parallel alignment of the 

cell. Cells can have cylindrical, prismatic or 

so-called coffee bag shape. Apart from the 

electrical interconnection, the cells are inte-

grated in some thermal design concept to cool 

them and reduce aging. It should be noticed 

that car as well as energy system manufactur-

ers design battery systems according to the 
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needs of the general concept of their product. 

I.e. the design of the battery is not based on a 

unified single-type approach, but many differ-

ent concepts are required to cover the large 

range of system requirements.  

 

Fig. 1, Battery system of the MUTE electrical 

car project by TU Munich 

 

Therefore, the battery model presented in this 

paper uses the cell as a base unit to be pa-

rameterized with fairly simple data sheet and 

empiric input. With the help of pre-defined 

templates, organized as shown in figure 1, the 

user can easily set-up a battery model as an 

electrical and thermal system consisting of a 

single cell.  

 

Fig. 2, Content of the Battery Library 

 

Aging information is provided by an integrat-

ed aging system or user-defined approach. 

While lithium ion battery cells are usually 

described by RC circuit elements, the electro-

chemical effects in lead-acid batteries are ap-

proximated in a separate model to take ac-

count of the specialties of this battery type. 

2. Electrical Modelling 

The main requirement for cell models used in 

system simulation is to provide accurate in-

formation on the macroscopic characteristics 

(e.g. voltage, current and state of charge) 

combined with reasonable computation time. 

In many applications these requirements are 

fulfilled by models using an electrical equiva-

lent circuit.  

The voltage of a battery U can be described as 

the difference between the open circuit volt-

age UOCV and a number of overpotentials ηi 

caused by different electrochemical effects: 

 iOCV ηUU  

These overpotentials can be modelled with 

electric networks. In figure 2 the voltage char-

acteristic for the step current discharge of a 

NiMH cell is shown.  

 

Fig. 3, Voltage characteristic of NiMH cell [1] 

 

The overpotential is divided into an ohmic 

overpotential ηohm, overpotential caused by 

charge transfer and the electrical double layer 

ηtrans and overpotential due to diffusion ηdiff. 

An electrical equivalent circuit capable of re-

producing the shown voltage characteristic is 

shown in figure 3, whereas the dynamic be-

havior the overpotentials are modelled using 

RC-circuits. 
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Fig. 3, Equivalent circuit 

 

The performance of a cell is strongly depends 

the battery current, state of charge, tempera-

ture and other factors. To achieve good per-

formance of the model over a wide range of 

conditions the consideration of these depend-

encies in the models of the electrical compo-

nents and their parameterization is crucial. 

The presented library offers equation based 

and table based modeling of the electrical 

components. As an example of equation based 

modeling a lithium ion cell model [2] and a 

lead acid cell model [3] are implemented in 

the library. The electrical equivalent circuits 

of the models contain serial resistors, RC-

circuits, voltage sources representing the open 

circuit voltage and current sources describing 

the leakage current. The functions represent-

ing these elements are derived from measure-

ment data and depend on the temperature, 

state of charge and current. 

The table based models perform a table 

lookup to determine the parameters of the 

components in the electrical circuit. The li-

brary offers pre-defined templates for 2D and 

3D interpolation. They enable a variable com-

position of elements in the equivalent circuit. 

In the 2d interpolation template the dependen-

cy of the lookup tables can easily be config-

ured.  

For the simulation of battery packs containing 

multiple cells, templates using discretized or 

scaled cell models are implemented. In the 

discretized pack models every cell is modeled 

separately. This enables the analysis of the 

packs’ electrical behavior when unconformi-

ties of the included cells occur. As the geo-

metric layout usually doesn’t correspond to 

the electrical connections of the cells in the 

pack, a connection Matrix M is defined, that 

offers the possibility to connect the electric 

connectors of the cells in a given design.  

3. Parameter Estimation 

When modeling the electrochemical processes 

in a battery using a simplified approach like 

an electrical equivalent circuit, the choice of 

the circuit’s components and the parameteri-

zation of these components determine the per-

formance of the model. 

A widely used approach to parameterize bat-

tery models is the generation of lookup tables 

from measurement data using numerical op-

timization algorithms ([6], [7]).  

As mentioned before the battery performance 

is strongly dependent on numerous factors. 

The number of dependencies that are im-

portant for the interaction within the investi-

gated system and the size of the range in 

which they need to be considered often lead to 

a complex optimization task.     

The developed library provides a Dymola in-

ternal approach to execute parameter estima-

tions using the commercial library Optimiza-

tion developed by the German Aerospace 

Center (DLR) which includes several numeri-

cal optimization algorithms [10]. A template 

of a parameter estimation for an equivalent 

circuit containing a serial resistor and two 

RC-circuits generating 2d lookup tables is 

implemented. The workflow of the template is 

illustrated in figure 4.  

 

Fig. 4, Parameter estimation workflow 

 

The inputs to the parameter estimation routine 

are inner resistance measurements from dis-

charging or charging the battery with step cur-

rents. For each measurement an optimization 

function from the Optimization Library is 

called. The optimization function simulates a 

model that contains the equivalent circuit and 

computes the optimization criteria which is 

returned to the optimization function. The 

outputs of the parameter estimation are 2D 

lookup tables for the resistors and the capaci-

tors in the circuit. 

 When computing the parameters of all com-

ponents in a single estimation task the genera-

tion of plausible lookup tables is a complex 
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challenge [8]. To simplify this challenge and 

dictate e.g. which RC-circuit represents the 

fast dynamics and avoid a switch of assign-

ment during the estimation task, the boundary 

b for each parameter can be set by 

3

21

k
Rkkb   

ΔR is the increase of the inner resistance dur-

ing the measurement and ki are constants de-

fining the boundary. This rather simple meth-

od showed acceptable results estimating cur-

rent and state of charge dependent tables for a 

NiMH cell.  

4. Thermal Model 

In order to determine the influence of varying 

temperatures on electrical and aging behavior 

a thermal model of the cell and its surround-

ing environment is required. Heat inside the 

cell is generated mainly due to Joule effects, 

the chemical reactions are only weakly exo-

thermic or even endothermic. Thus the gener-

ated heat corresponds to the power loss calcu-

lated in the resistors of the equivalent electric 

circuit which are therefore connected to the 

thermal model. 

 

 

 

Cell 

The thermal model uses a template/interface 

structure with a replaceable thermal model 

such that the discretization level can be 

adapted by the user. All models are based on a 

finite volume approach, using heat resistors 

and thermal capacities. The user can choose 

between 0D and 1D models, further models 

can be added easily 

Conditional heat ports at the top, side and bot-

tom of the cell reduce the complexity without 

reducing the flexibility of the thermal man-

agement design.  

Equations for the calculation of thermal pa-

rameters are provided for cylindrical and 

prismatic forms. Material records for the most 

common materials are also included.  

Packs 

In addition to the cell, the thermal model of 

the pack might consider housing and in case 

of the discretized pack a filling material in 

between the cells. Simple heat transfer models 

for convection and radiation are also included. 

For the scaled models, the heat flow of a sin-

gle instance of the cell is multiplied with total 

number of cells. Effects such as heat conduc-

tion in-between the cells can only be consid-

ered in the discretized pack models with sev-

eral instances of the cell model. Heat transfer 

via pins can also be modelled; the connections 

between the pins use the same connection ma-

trix as the electric part. 

A two-dimensional heatport simplifies the 

icon of the housing, Cells, filling, and the ex-

terior heat ports can easily be connected. 

The temperature of the pack can be monitored 

with a provided controller model. Based on 

given limits. Boolean signals for activation of 

heating or cooling are emitted. 

 

Fig. 6, Structure of thermal model of a discre-

tized battery pack 

5. Aging Model 

The capacity as well as the behavior of a cell 

change with age and cycle numbers of the 

cell. To account for the effects of the most 

important factors temperature, current rate and 

SOC, a flexible aging model based on the 

StateGraph library has been implemented.  

The aging factor   denotes the ratio between 

the current value and the value at t=0:  

)0(

)(




tA

tA
A  

Using this definition, the actual value can be 

determined just by multiplying with . Resis-

tor and capacitor models have a conditional 

input for the aging factor that can be activated 

in the parameter dialog.  

 

The flow chart in figure 6 shows the signal 

flow structure in the aging model. The cycle 

detector detects the end of a cycle and triggers 

the calculation of the aging factors in the cy-

clic and calendric aging models. Mean values 
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for temperature, depth-of-discharge (DOD), 

voltage and current are calculated for the pre-

vious cycle as the aging models are all based 

on continuous boundary conditions. The aging 

factors are discrete values, thus they are con-

stant during one cycle until the next calcula-

tion is triggered. Therefore, the aging factors 

represent the age of the cell at the beginning 

of the next active cycle. Start value for all ag-

ing factors is set to 1.  

 Fig. 7, Flow chart of the aging model mecha-

nism 

 

Both aging models use a semi-empirical ap-

proach to determine the aging factor based on 

recent publications ([4], [5]). The aging mod-

els are replaceable and can be switched on/off 

individually. New aging models can easily be 

added by using the provided interface. 

The aging of cells during storage (calendar 

aging) is mainly caused by electrolyte decom-

position and the growth of the solid electro-

lyte interface. Ecker et al [5]  describe this 

process with a square root dependency on 

time. For voltage and temperature, an expo-

nential approach is chosen. The implemented 

model is based on extensive measurements on 

30 NMC cells stored at different SOCs and 

temperatures. The semi-empiric approach al-

lows the user to adopt the parameters to his 

data even with a low number of measure-

ments. The calendar model calculates aging 

factors for the cell capacity, the serial re-

sistance and the parameters of the first RC-

circuit. Thus, the degradation of capacity as 

well as the loss of power and changes in the 

dynamic behavior due to calendar aging can 

be shown.  

It is supposed that the loss of active lithium 

due to anode degradation is the cause of ca-

pacity loss due to cycling of the cell [5]. 

Wang et al performed measurements with 

varying time, temperature, depth of discharge 

and discharge rate. They developed a general-

ist model for cyclic aging that can be adapted 

to different Li-Ion chemistries as long as the 

aging mechanisms are also based on diffusion 

processes. By using the energy throughput of 

the cell as input of the aging factor calculation 

instead of time, the equation becomes inde-

pendent of the charge rate. As the experiments 

showed little influence, the SOC of the cycled 

cell is neglected. 

Figure 7 shows the aging factors for a cell 

cycled with a constant current rate between 

0.5 and 0.55 SOC at 20°C. The aging factors 

for capacities decrease, those for the re-

sistance increase, both reducing the capacity 

as well as the power of the cell. 

 

 

 

Fig. 8, Aging factors for cycling a cell be-

tween 0.5 and 0.55 SOC with 0.5C-Rate at 

20°C 

 

6. Application Example 

 

Fig. 9, Battery Lib within a Catia V6 Systems 

model of an e-car 

 

In order to demonstrate the application of the 

Battery Library within a vehicle environment, 

an example project has been created based on 

the “Light Car” – a battery electric vehicle 

concept designed by the company EDAG. The 

development methods applied were chosen to 

time in s 
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replicate the real-world methods as closely as 

possible. The partners participating in the pro-

ject are the companies EDAG (to represent 

the car development competence), Transcat 

(to represent Catia V6) and Modelon (to rep-

resent system simulation with Modelica). Di-

mensioning the battery in terms of vehicle 

autonomy and its aging behavior are also in 

the scope of the project as well as the first 

time application of state-of-the-art develop-

ment tools. In order to realize typical driving 

scenarios and test cycles like NEDC the sys-

tem simulation model consists of a longitudi-

nal dynamic vehicle model, the driving re-

sistances and a driver. The focus of the model 

lies on the battery system, including its elec-

trical, thermal and aging behavior and the bat-

tery controller. 

In current e-car projects, the battery cells are 

supplied by cell manufacturers, but combined 

to a battery system at the OEM car producer. 

The control of the battery’s primary states 

such as current, cell temperature, state of 

charge and state of health has to be in line 

with the entire car concept and is therefore 

OEM work, too. The key design factors of the 

battery system are the arrangement of the cells 

in stacks and packs under maximum utiliza-

tion of their potential in terms of performance 

and duration of life. In this context, due to the 

very high influence of the temperature on the 

aging, certain limits have to be kept during all 

conditions of operation. In the presented pro-

ject, the cooling design is based on air flow. 

For a maximum precision of the calculations, 

the 1D system simulation results from the 

Modelica / Catia V6 Systems environment 

have been verified using a finite element sim-

ulation in the tool Simulia.  

A typical simulation result in terms of a cell 

temperature is shown in Fig. 9. 

 

Fig. 10, Temperature (red) and heat perfor-

mance (blue) of a battery cell within the 

NEDC drive cycle 

7. Summary and Outlook 

The battery model of Modelon’s Battery Li-

brary for Lithium Ion cells has been described 

in its structure, functionality and employment. 

 The calculation of the electrical behavior by 

equivalent circuit models with table based and 

equation based approaches has been shown as 

well as its parameterization function based on 

the Optimization Library. The thermal model 

has been described for single battery cells and 

battery packs. The estimation of degradation 

due to cell aging has been modelled in differ-

ent ways, calendric aging and cyclical aging. 

An example for the integration of the battery 

model in a vehicle simulation of an electrical 

car has been described in the “Light Car” pro-

ject. 

The Battery Library was designed with the 

intention to be coupled with other system 

models in Modelica-based or other simulation 

frameworks. As the battery model features all 

necessary interfaces, the code of a battery 

management system in a signal flow simula-

tion environment can be attached as an FMU. 

Vice versa, it is possible to use this physical 

battery model for the prediction of the ther-

mal-electrical behavior as well as aging on a 

battery management system or for a “model in 

the loop” approach. 

The ongoing development of the Battery Li-

brary is heading towards electrochemical 

modelling of the aging behavior by the im-

plementation of a “Dual-Foil-Model” [9] and 

the advancement in the thermal modelling of 

large electrical energy storage systems com-

prising several battery packs. Introduction of 

models for capacitors of the “super capacitor” 

type is also planned. 
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Abstract

This paper introduces behavioral (macro) models of
power semiconductors, i.e. diodes, MOSFETs and
IGBTs, being part of a library for simulating power
electronics utilized, e.g. in electrified powertrains of
either hybrid electric vehicles (HEV) or purely battery
electric vehicles (BEV). The models consider static,
dynamic (switching mode) and thermal effects and in
most cases can be fully parameterized solely on the
basis of characteristic curves and parameters spec-
ified in datasheets. The main purpose of behavioral
models is an accurate representation of the semicon-
ductor signals to, e.g. calculate the overall losses.
The MOSFET models are verified in simulations with
various test circuits and are validated with measure-
ment data provided by a company developing electric
drive systems. Furthermore, the arising numerical
problems are discussed and possible solutions are
provided on how to modify the models in order to use
them in e.g. system simulation.

Keywords: power electronics, power semicon-
ductors, macro modeling, behavioral modeling,
numerical performance

1 Introduction

In practice, models of electric powertrains - consisting
of at least a high-voltage battery, an inverter and an
electric machine - have to answer questions regarding
lifetime, maximum driving range, temperature devel-
opment or overall efficiency. One of the most impor-
tant and challenging tasks is to provide models that can
be parameterized easily and simulated fast and robust,
i.e. numerically stable.

Models of power electronic components are avail-
able in different degrees of complexity in freely- and
commercially distributed libraries. When needed for
industrial use, ideal models are often not accurate

enough, whereas physical ones cannot be parameter-
ized with standard datasheets and are rather suited for
the field of research. Moreover, such models are often
solely available in a specific level of detail which ei-
ther results in unreasonable simulation times in case of
very detailed models or a lack of information in case
of e.g. ideal models. In [6] different modeling tech-
niques of the switch models available in the Modelica
Standard Library (MSL) are discussed.

A trade-off between these ideal and micro model-
ing techniques is a macro modeling approach called
behavioral modeling, which was first introduced for
power semiconductors in [8] and is further developed
at Modelon GmbH. The idea of this technique is to
describe the component’s behavior via characteristic
curves and parameters provided in datasheets. Thus,
on the one hand behavioral models of MOSFETs can
be parameterized solely on the basis of datasheets and
on the other hand, the models behave as specified by
the manufacturer under nominal conditions. In case
of IGBTs due to their internal semiconductor struc-
ture, the occurring tail current has to be measured in
advance. Moreover, in trench/field-stop IGBTs due to
the additional field-stop layer added to the semicon-
ductor structure the model developed in [8] is not valid
anymore and has to be modified.

Since behavioral models provide detailed switching
slopes, the simulation performance is totally unaccept-
able if such models are used to simulate, e.g. the driv-
ing range of an electric vehicle. Hence, some possibili-
ties are discussed on how to use such models to derive
table based models that store solely the information
needed for a specific simulation task.

2 Behavioral Modeling of Diodes

In the Modelica Standard Library (MSL) several dif-
ferent models of diodes are available (refer to [6]). The
ideal diodes are modeled using parameterized curve
descriptions, whereas the physical ones are described
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by the well-known Shockley equation. These models
are perfectly suited for, e.g. circuit analysis. However,
if conduction- and switching losses of a specific diode
are of interest none of these models can be used since
they neither include the appropriate equations describ-
ing the transient (switching) behavior nor cannot be
parameterized using datasheets. Behavioral models
provide the means to make use of datasheet values to
model the static- and dynamic behavior.

2.1 Static Model

In the simplest case, the static model of a diode can
be described as depicted in Figure 1. The current
through the diode is measured using a current sen-
sor and serves as input signal to a table which stores
the forward characteristic Vf = f (I f ) specified in the
datasheet. The corresponding forward voltage drop is
fed into a signal-controlled voltage source. The ad-
ditional ideal reverse blocking diode ensures that the
current solely flows in forward direction.

Vfp=pf(If)

forwardCharacteristic

A

currentSensor signalVoltage

+ -

reverseBlockingDiodep n

Figure 1: Static model of a diode: Vf = f (I f )

Usually datasheets provide the diode’s forward
characteristic not only as a function of the forward cur-
rent I f but also of the temperature T . Hence, the model
has to be modified as depicted in Figure 2.

VfF=FfPIf,FT)

A

currentSensor signalVoltage

+ -

K

temperature
Sensor

prescribedH
e

atF
olw

product

forward
Characteristic

reverseBlockingDiodep n

heatPort

Figure 2: Static model of a diode: Vf = f (I f ,T )

The losses generated while the diode is conducting
are nothing else but a thermal heat flow which will re-
sult in a certain temperature depending on the thermal
network connected to the heat port.

2.2 Dynamic Model (Reverse Recovery Ef-
fect)

The dynamics of a diode occur due to its junction- and
diffusion-capacitance. An approach of modeling these
capacitances is given in [8]. The main problem is that
the capacitance values depend on parameters that are
not available in standard datasheets. As the dynam-
ics of a diode in terms of switching losses are mainly
dependent on the reverse recovery effect, an approach
has been followed which was published in [3].

3 Behavioral Modeling of Power-
MOSFETs

In order to understand the behavioral model of a
power-MOSFET its structure will be discussed briefly.
After introducing the models its modes of operation
will be verified using different test circuits. Finally,
the model is validated with measurement results pro-
vided by a company.

3.1 Power-MOSFET Structure and its
Modes of Operation

By means of the MOSFET’s semiconductor structure,
the different modes of operation shall now be ana-
lyzed. Based on that, a static model can be developed.
In Figure 3, the structure of a vertical power-MOSFET
is illustrated.

D

SG

Metal Oxyd

n+ n-
p+

Channel

Source: Translated from [5]

Figure 3: Structure of a power-MOSFET

It is first supposed that a positive gate-source volt-
age is applied, i.e. a conducting channel between
drain and source arises. Now, the MOSFET oper-
ates in on-state. Thus, if a positive drain-source volt-
age is applied (on-state forward conduction mode),
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current flows from drain to source, which represents
the MOSFET’s first quadrant operation. Since the
conducting channel is not a pn-junction but more of
a voltage-controlled resistance, current can also flow
from source to drain if a negative drain-source volt-
age is applied (on-state reverse conduction). This was
not considered in the model developed in [8] and will
be added to the model demonstrated in this paper. In
the modified version of the MOSFET, the character-
istic curves in the first quadrant are mirrored into the
third quadrant. The only difference in third quadrant
application is an additional parasitic diode - the body
diode - between drain and source. If the current in re-
verse direction is high enough to cause a voltage drop
equal to the body diode’s threshold voltage, the body
diode starts conducting and provides an additional cur-
rent path. A more detailed description of these reverse
conduction modes can be found in [9, p. 61 ff.]. In
order to analyze the off-state modes, the gate-source
voltage is supposed to be zero meaning that the con-
duction channel does not arise. Still, the body diode
can conduct current in reverse direction. In forward
direction, no current can flow. In summary, the dis-
cussed modes of operation are listed below.

Mode 1: on-state forward conduction
Mode 2: on-state reverse conduction
Mode 3: on-state reverse conduction with

body diode forward biased
Mode 4: off-state reverse conduction
Mode 5: off-state forward blocking

3.2 Power-MOSFET Model

Based on the modes of operation, a behavioral model
of the power-MOSFET is developed in the following.
First, a static model is derived, which afterwards is
extended to cover dynamics and temperature depen-
dency.

3.2.1 Static Model

In order to describe the static behavior of a MOS-
FET, the modes of operation discussed before have to
be realized in a model structure. As depicted in Fig-
ure 4, the transfer behavior and therefore the MOS-
structure is modeled by a voltage sensor measuring the
applied gate-source voltage. This voltage signal is the
input to a table which stores the transfer characteristic
Id = f (Vgs) specified in the datasheet. The table’s out-
put is the maximum current, which can flow due to the

applied gate-source voltage. This current value is the
input to the signal-controlled current sources. Since
the current that flows through the component is deter-
mined by the external load circuit, e.g. by an inductive
load, each current source has an ideal diode in paral-
lel ensuring that the current that is not drawn by the
load can free-wheel through these diodes. In Figure 4
the current paths in the different modes of operation
are marked with arrows. In mode 1, the current flows
through the resistor RonFw, which represents the con-
ducting channel. Another ideal diode is connected in
series which ensures that the current solely can flow
from drain to source. In the second mode, the current
flows through the resistor RonBw and again, an ideal
reverse blocking diode ensures that the current flows
in the right direction. The body diode provides the
current path for the third and the fourth mode. If the
MOSFET is in on-state, the current will split between
the reverse leg and the body diode as soon as the body
diode’s threshold voltage Vf is reached. In off-state,
the MOSFET is a simple diode conducting in reverse
direction and blocking in forward direction.

Id1=1f(Vgs)

transferCharacteristic

V

voltageSensor

R
=
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Figure 4: Static model of a power-MOSFET

3.2.2 Dynamic Model

For solving a demanding simulation task, a static
model is often not sufficient enough. Especially when
switching losses are of interest, a dynamic model is in-
dispensable. The static model shall now be extended
to introduce the component’s dynamics, which are
mainly an effect of capacitances between the MOS-
FET’s connections. As the manufacturers do not pro-
vide these directly but in form of the input capacitance
Ciss, the output capacitance Coss and the reverse trans-
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fer capacitance Crss, the following conversions have
to be made to gain the effective capacitances between
gate, drain and source:

Cds = Ciss−Crss

Cgd = Crss

Cgs = Coss−Crss

These equations are computed in the capTable
block, which can be seen in the dynamic model in Fig-
ure 5. The characteristic curves Ciss = f (Vgs), Coss =
f (Vgs) and Crss = f (Vgs), specified in the datasheet are
stored inside tables. The computed values are the in-
puts to the signal-controlled capacitors, which can be
seen in the model. The MOS-structure is modeled with
an RC-circuit. The gate-source capacitor is charged
through the internal gate resistor and the gate-source
voltage is the voltage across the capacitor.

Idp=pf…

C=fGVdsP

Ron=fGTP

staticpmodel

dynamicpmodel

Id=fGVgs,TP

R=Rg

R1

V
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Figure 5: Dynamic model of a power-MOSFET

3.2.3 Temperature Dependency

Besides dynamics, temperature dependency is intro-
duced to the model in Figure 5. Thus, in the transfer
characteristic table a second input was introduced, i.e.
Id = f (Vgs,T ). The constant resistors have been re-
placed and are controlled by the characteristic curve
ron = f (T ). The body diode model was extended such
that it considers temperature in the diode’s forward
characteristic table Vf = f (I f ,T ) and that switching
losses can be computed, i.e. the reverse recovery ef-
fect was modeled according to [3]. The total power
losses are computed by multiplying the drain-source
current and voltage and forwarded as heat flow to the
heat port. This enables the use of a thermal network to
compute the device’s junction temperature.

3.3 MOSFET Model Verification

In order to verify the behavior of the static model in
Figure 4, two test circuits have been created. For
verifying modes 1, 2, 4 and 5, the circuit in Figure
6 is used. In order to test the on-state modes, the
gate-source voltage is set to 10V ; for testing the off-
state modes it is set to 0V . The constant supply volt-
age source is either positive or negative depending on
whether a forward conduction mode or a reverse con-
duction mode is tested. With the chosen load resis-
tance, a current of approximately 100A will be drawn.

staticM
O
S
F
E
T

ground

constV
oltag

e2=
10

+
-

R=200e-3

R1

constV
oltag

e=
20

+
-

Figure 6: Test circuit for modes 1, 2, 4 and 5

Figure 7 shows the simulation results of the test
circuit. It can be seen that in mode 1, the total cur-
rent flows in forward direction through the resistor
RonFw. In mode 2, the input voltage is set negative
and therefore the total current flows in the backward
branch through the resistor RonBw. In the diagram of
the fourth mode, it is shown that the current is nei-
ther flowing through RonFw nor through RonBw but
through the body diode. The last diagram proves that
no current at all flows in mode 5.

0.0 0.5 1.0

0

100

[A
]

Mode 1 Mode 2

Mode 4 Mode 5

0.0 0.5 1.0

-100

0

[A
]

0.0 0.5 1.0

0

100

[A
]

0.0 0.5 1.0

0

100

[A
]

Figure 7: Simulation results for modes 1, 2, 4 and 5

To test the third static mode, the test circuit has
been adapted in the way it is shown in Figure 8. The
constant supply voltage source has been replaced by
a signal-controlled voltage source with a ramp input.
This causes the input voltage and therefore the current
to increase linearly.
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ground
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oltag

e=
10

+
-

R1

signalV
oltage

+
-

ramp staticM
O
S
F
E
T

R=200e-3

duration=1

Figure 8: Test circuit for mode 3

Figure 9 shows the simulation result. The input volt-
age decreases from −20V to −50V . At the beginning,
the current flows in the backward branch through the
resistor RonBw. At an input voltage level of about
−31V , the current through this resistor produces a
voltage drop equal to the diode’s threshold voltage.
Hence, the diode starts conducting and builds a cur-
rent divider together with RonBw. The total current is
then divided into the two branches. The green curve
represents the sum of the two branch currents, which
is the total linearly decreasing current.

-50 -45 -40 -35 -30 -25 -20
-300

-200

-100

0

[A
]

signalVoltage.v

Mode 3

Figure 9: Simulation result for mode 3

The test circuit in Figure 10 is used to verify the
MOSFET’s dynamic behavior. The device is alter-
nately turned on and off by the pulse voltage pattern
applied between gate and source. A constant junction
temperature is assumed and applied externally.

+
-

+
-

Tj

T=50

R=200e-3

R1

dynam
icM

O
S
F
E
T

ground

pulseV
oltage

constV
oltag

e=
20

Figure 10: Test circuit dynamic behavior

Figure 11 depicts the simulation results. In the up-

per diagram, one can see the drain current, the drain-
source voltage and the power losses of the MOSFET.
One can see the conduction losses and the turn-on and
turn-off peaks whenever the device is switched. In the
lower diagram, the switch-on behavior is shown more
detailed.
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Figure 11: Switching waveforms and power losses

3.4 MOSFET Model Validation

The developed power-MOSFET model was validated
with measurement data provided by a company pro-
ducing electric drive systems. The data was obtained
by measurements of a three-phase inverter of one of
the company’s drive systems. The circuit diagram of
this inverter is shown in Figure 12. The device under
test (DUT) is an Infineon IPB180N06S4-H1 power-
MOSFET. Per phase leg, there are three high- and
three low-side MOSFETs to be able to drive the de-
sired load current. The company provided two space-
vector modulation switching patterns for two different
operating points of the electric machine and the cor-
responding power losses occurring per MOSFET. The
data can be seen in Table 1:

Table 1: Operating points and loss power
RPM Torque Power

Operating point 1 3700rpm 3Nm 1.1W
Operating point 2 700rpm 3Nm 0.9W

Since a synchronous machine with three pole pairs
is connected to the inverter, a mechanical revolution
speed of 3700rpm results in an electrical frequency
of 185Hz. In order to simulate the MOSFET’s total
power losses correctly, they have to be averaged over
this frequency. The resistive-inductive load represent-
ing the electric machine, was parameterized in such a
way that the measured current for the appropriate oper-
ating point is drawn. The three phase currents and the
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Figure 12: Power-MOSFET based three-phase inverter for driving an electric machine

average power losses per MOSFET are shown in Fig-
ure 13. The two curves in the lower diagram represent
the power losses of a high- and a low-side MOSFET of
the U-phase. The first average value can be computed
after one period. It can be seen that once the U-phase
current (blue signal in the upper plot) reaches steady-
state, the average power losses over one period settle
down at 1.12W .
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Figure 13: Simulation results of operating point 1

Figure 14 depicts the simulation results of the sec-
ond operating point. At 700rpm, the inverter’s output
frequency is 35Hz. Again, one can see the average
power losses per MOSFET settle down in steady-state
at 0.91W .
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Figure 14: Simulation results of operating point 2

The relative error between the measured data and
the simulation result lies within 2% in both operating
points. These results speak especially for the behav-
ioral modeling technique as well as for the accuracy of
the provided information in the datasheets.

4 Behavioral Modeling of IGBTs

4.1 IGBT Structure and its Modes of Opera-
tion

Concerning the IGBT technology, two different design
principles are available, NPT- (non-punch through)
and PT- (punch through) IGBTs. The basic structure
of an NPT-IGBT is illustrated in Figure 15.

Contrary to power-MOSFETs, NPT-IGBTs have an
additional p+ doped layer between emitter and collec-
tor. This means that the forward characteristic of such
a device does not behave like a classic resistance but
more like a pn-junction. This pn-junction basically de-
termines the IGBT’s behavior in its forward and re-
verse mode.

Source: Translated from [5]

Figure 15: Structure of a non-punch through IGBT

Behavioral Modeling of Power Semiconductors in Modelica

348 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096343



If an additional n+ doped layer is introduced be-
tween the p+ doped layer at the bottom and the n-
doped layer, a PT structure is realized. Due to the ad-
ditional n+ doped layer the shape of the electric field
gets steeper which in turn allows for a smaller n- doped
layer, i.e. reduces the chip size (refer to [7] for a more
detailed description).

4.2 IGBT Models

A static and a dynamic behavioral model of an IGBT
is introduced within this section, whereas the dynamic
model is different for the NPT- and the PT-IGBT. The
verification of the models is similar to the one of the
MOSFET and is therefore not discussed in the paper.
The validation of the models is currently under devel-
opment.

4.2.1 Static Model

Figure 16 shows the static model of an IGBT. The
output characteristic is modeled the same way as the
diode’s forward characteristic illustrated in Figure 1,
i.e. the collector-emitter current is measured with a
current sensor and fed into the table providing the
IGBT’s output characteristic VCE = f (IC). The table’s
output is then fed into the signal-controlled voltage
source. The transfer characteristic is modeled anal-
ogously to the MOSFET: The gate-emitter voltage is
measured and the maximum current - provided by the
transfer characteristic curve which is stored in a table
- flows through the signal-controlled current source,
i.e. it again behaves like a voltage controlled current
source. As for the MOSFET model, a free-wheeling
diode provides a path for the current which is supplied
too much and a blocking diode ensures that the IGBT
is not conducting in reverse direction.

4.2.2 Dynamic NPT- and PT-IGBT Model

To introduce dynamics to the model, three capaci-
tors are introduced to the static model discussed be-
fore. The gate-emitter capacitor can be approximated
as constant over the collector-emitter voltage (refer to
Equation 1). The gate-collector capacitor - also known
as Miller-Capacitance - strongly depends on the col-
lector emitter voltage an can be approximated with
Equation 2 [1, p. 15]. The input capacitor Ciss and
the reverse transfer capacitor Cres can be found in the
datasheet.
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Figure 16: Static IGBT model

Cge(Vce)≈Ciss(25V )−Crss(25V ) (1)

Cgc(Vce)≈
Crss(25V ) ·

√
25V√

Vce
(2)

Where for instance Ciss(25V ) and Crss(25V ) have
been determined at a constant collector-emitter voltage
of 25V.

Due to the internal semiconductor structure of PT-
IGBTs an additional output capacitor Cq = f (VCE) ap-
pears which is mainly responsible for the PT-IGBTs
switching-off behavior (refer to [4]).

In Figure 17 the dynamic IGBT model is shown.
The gate-emitter capacitor is charged over the inter-
nal gate resistance R1. Equation 1 is implemented di-
rectly in the parameter window of Cge as Ciss and Cres

are input parameters to the model. Equation 2 is ei-
ther implemented via equations or a table based model,
i.e. the characteristic curve is derived by the equation.
Again, temperature dependency has to be introduced
to the model (shown for the output characteristic in
Figure 17) and the power losses are forwarded as heat
flow (not included in the model shown in Figure 17) to
the heat port to allow the use of a thermal network.

The main problem of IGBT behavioral models is
the lack of information in datasheets regarding tail cur-
rent. Hence, the tail current has to be measured in ad-
vance and fed into the model. Alternatively, if there is
no possibility to measure the tail current, the dynamic
model can be replaced by the characteristic curves of
the switching losses Eon,Eo f f = f (IC,T ).
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Figure 17: Dynamic PT-IGBT model. If the part high-
lighted in blue is removed, the model behaves like an
NPT-IGBT

5 Numerical Performance

The simulation of power semiconductor components
faces solvers with a whole series of challenges. To
make statements about numerical stability and simula-
tion time, the power-MOSFET model was tested in the
three-phase inverter circuit in Figure 12 on its numeri-
cal performance1.

5.1 Integration Algorithm

Detailed modeling of switching operations usually re-
sults in so-called stiff systems, consisting of differ-
ential algebraic equations (DAE) having time con-
stants that differ by several orders of magnitude, e.g.
fast switching dynamics and slow thermal processes.
These characteristics restrict the selection of the solver
enormously. Only solvers based on implicit integra-
tion algorithms are suited for such simulations tasks.

Furthermore, switching operations lead to disconti-
nuities in the simulation. Thereby it is distinguished
between time- and state-events. In particular the latter
causes the solver to iterate for the event, e.g. by using
bi-section or regula-falsi algorithms, which increase
the simulation time drastically. Even when using an
implicit solver, it is not guaranteed that the iterations
converge and the simulation succeeds. A deeper in-
sight into this matter is given in [2]. Moreover, if the

1any performance comparison was done on an Intel Core i5-
3427U CPU, 1.8GHz, 8 GB RAM running Windows 8 (64Bit) and
Dymola 2014

switching slopes are not treated ideally, the simulation
performance becomes even worse, e.g. real switching
slopes are in the region of several 100ns.

5.2 Solver Settings

In the upper part of Listing 1, default settings are given
which basically match the Dymola standard settings
except that the number of intervals is increased due
to accuracy reasons. The simulation’s performance
results, which can be seen in the lower section of the
listing, serve as reference values for any following
comparison. The impact of the solver settings on the
numerical performance is investigated on the basis
of the number of function-, hessian- and jacobian-
evaluations. At this point it should be mentioned
that the parameter for CPU integration time has to be
interpreted with caution since it strongly depends on
the utilization of the CPU and is therefore not precise
in terms of repeatability.

� �
Solver : DASSL

Number of intervals : 5.000

Tolerance : 1e-4

Equidistant time grid : ON

Store variables at events : ON

---------------------------------------------

CPU -time for integration : 253s

Number of GRID points : 5.001

Number of F-evaluations : 1.733.187

Number of H-evaluations : 292.055

Number of J-evaluations : 145.405

Number of time events : 9.988

Number of state events : 5.401� �
Listing 1: Default solver settings

First, the influence of the number of points plotted
into the output diagram is investigated. If the equidis-
tant time grid is deactivated2, the solver does not plot
the computed values according to the number of in-
tervals parameter, but instead it plots the entire com-
puted values in the output diagram. The number of
grid points then increases drastically (228.795) as it
was expected whereas the number of F-, H- and J-
evaluations basically stay the same. Nevertheless, the
number of points that have to be plotted into the output
diagram have a big influence on simulation time.

Next, the impact of the solver’s integration toler-
ance is tested. In order to do this, the tolerance is
increased by a power of ten. Due to less F-, H- and

2simulation setup - output tab - output selection
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J-evaluations, the simulation time could be decreased
by approximately 25% but again resulting in a loss of
accuracy. The same applies to the option ’store vari-
ables at events’3 when deactivated.

In summary, choosing the solver settings in order to
optimize the simulation time strongly depends on how
accurate the results shall be. The number of intervals
should be chosen manually meaning that the equidis-
tant time grid is activated.

5.3 Optimization of the Model

For optimizations of the model, first the ideal compo-
nents are investigated. The model contains four ideal
diodes. The on-resistance and off-conductance is set
to 10−5Ω and 10−5S by default. These values were
changed to 10−7 for the next simulation. The results
showed that this can be done without any problems re-
garding the simulation speed. A few more state events
were generated because the system got stiffer. As a
matter of fact, the smaller these values are chosen, the
more accurate the power loss computation will be.

Also the tables have optimization potential because
the interpolation-type influences the simulation per-
formance. The user can choose between linear and
continuous interpolation methods, whereas the first
method decreases the simulation time slightly and at
the same time is holding the number of additional
events (due to the non-continuous method) in a neg-
ligible range.

Furthermore, the interpolations can be minimized
by fitting polynomial functions through the character-
istic curves stored in the tables. The challenge hereby
is fitting the curves accurately while the order of the
polynomial functions is held low. The problem with
higher order polynomials is that they drift away dras-
tically outside the fitted range and in terms of decreas-
ing simulation time the opposite effect would occur.
An approach hereby could be to split the curve in mul-
tiple sections and fit each with a separate polynomial
function. When doing this, a polynomial of higher or-
der can be split into multiple polynomials of lower or-
der resulting in an invariant accuracy and a decrease of
simulation time.

5.4 Generating Table-Based Models for Sys-
tem Simulation

Although the simulation performance can be slightly
improved, the models cannot be used in a system sim-

3simulation setup - output tab - output selection

ulation, e.g. to answer questions regarding tempera-
ture development or maximum driving range. For this
purpose table-based models (efficiency maps) have to
be provided, i.e. the overall losses at several operat-
ing points have to be stored in a table. Such models
were already developed and verified for electric ma-
chines at Modelon GmbH and are currently developed
for inverter models.

6 Problems with Behavioral Models

Among the bad numerical performance due to detailed
description of the signals several other problems occur.

1. Firstly, datasheets provide values derived under
nominal conditions. However, when such models
are integrated in an electric powertrain the con-
ditions strongly depend on the topology and are
usually not as specified in the datasheet.

2. Secondly, values for parasitics elements are only
available in datasheets of modules, e.g. inverter
modules developed by the semiconductor manu-
facturer. The parasitics that occur in a specific
layout have to be measured and afterwards inte-
grated in the model (by introducing parasitic re-
sistors, inductors and capacitors) to ensure that
the switching behavior is modeled correctly.

3. Moreover, in case of IGBT models neither infor-
mations regarding tail current nor the output ca-
pacitor that appears in the PT structure are pro-
vided.
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8 Conclusion

The presented model of a power-MOSFET covers the
static as well as the dynamic behavior of the compo-
nent. Furthermore, it can be parameterized solely on
the basis of characteristic curves and parameters spec-
ified in datasheets. The verification in various test cir-
cuits delivered reasonable results in static and dynamic
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applications. The model was validated with measure-
ment data of a three-phase inverter motor drive system
and the maximum relative error between the measured
and simulated total power losses lies within 2%.

Since behavioral models of power electronic com-
ponents produce many events, the simulation becomes
slow. It can be accelerated by widening up the inte-
gration tolerance, decreasing the number of intervals
or not storing variables at events. Also optimizations
on the model itself lead to a better simulation perfor-
mance. However, when integrating the model into a
simulation of the entire vehicle, it must be transformed
into an efficiency map model which stores the power
losses of different operating points in a table.

The IGBT models are way more complex since the
tail current has to be measured in advance to model
the signals correctly. If it is not possible - for whatever
reason - to measure the tail current it is recommended
to replace the dynamic model with tables storing the
particular switching losses. This in turn increases the
simulation performance and ensures that the losses are
modeled correctly.
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Abstract 
Modelica models are typically used for simulation to 
investigate properties of a possible system designs. 
This is often done manually or combined with optimi-
zation to select the best design parameters. 

It is desirable to have systematic and partly auto-
mated support for exploration of the design space of 
possible designs and verifying their properties vs. re-
quirements. The META design tool chain is being de-
veloped to support this goal. It provides an integration 
framework for components, designs, design spaces, 
requirements, and test benches, as well as verification 
of requirements for the generated design models during 
design exploration 

This paper gives an overview of the META tools 
and their integration with OpenModelica. The integrat-
ed environment currently has four main uses of 
OpenModelica: importing Modelica models into the 
META tool model structure, performing simulations 
within test benches, analyzing Modelica models and 
automatically adding fault modes, and extracting equa-
tions (DAEs) for formal verification tools, e.g. the 
QRM using qualitative reasoning.  

A prototype of the integrated tool framework is in 
operation, being able to generate and simulate thou-
sands of designs in an automated manner. 

 
Keywords: Modelica, simulation, design exploration, 
verification, etc. 

1 Introduction 
A design tool chain (META tools, Figure 1) is being 
developed for exploring design alternatives under cer-

tain condition and to verify their properties versus for-
malized requirements. 

A design is built from component model building 
blocks defining component dynamic behavior and is 
defined as a composition of component models. A de-
sign space can represent different component alterna-
tives as well as different design architectures. 

After a design or design space has been created, test 
cases can be defined against the given requirement set. 
The test cases, which are called test benches, are exe-
cutable versions of the system requirements.  

From the test bench models, the META tools can 
compose analysis packages over a design space for dif-
ferent domains such as simulation of DAEs (differen-
tial algebraic equations), formal verification, static 
analysis, and structural analysis. 

The integrated environment currently has four main 
uses of OpenModelica: importing Modelica models 
into the META tool model structure, performing simu-
lations within test benches, analyzing Modelica models 
and automatically adding fault modes, and extracting 
equations (DAEs) needed for formal verification tools. 

2 The OpenMETA Tool Chain 
The OpenMETA1

[5]
 tool chain is being developed under 

DARPA’s Adaptive Vehicle Make (AVM)  program 
that contains a set of projects one of them is the META 
project. The AVM program aims to reduce vehicle de-
sign and manufacturing time using the framework and 
toolset provided by the META program. 

                                                      
1 Provided under MIT license 
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The tool chain consists of a language/meta-model 
called Cyber Physical Modeling Language (CyPhyML), 
a set of model transformation software components that 
translate from CyPhyML models to various domain 
tools, an analysis package executor (referred to as Job 
Manager), and a visualizer (referred to as Project Ana-
lyzer) for inspecting and understanding the results of 
analysis packages. 

We present (a) the concepts defined in CyPhyML in 
Section 2.1, (b) the integration points with and utiliza-
tion of OpenModelica in Section 2.2 and Section 2.3, 
(c) collected analysis results in Section 2.4 and Section 
2.5, and (d) the usage of formal verification methods in 
Section 2.6. 

2.1 Concepts 

CyPhyML is a Domain Specific Modeling Language 
(DSML) built for modeling cyber, physical, and manu-
facturing component models, composing the compo-
nent models, making architecture trade-offs using de-
sign spaces, and encoding test cases for various analy-
sis domain tools. CyPhyML is defined using the 
MetaGME language in the Generic Modeling Envi-
ronment (GME [6]). 

A CyPhyML Component model contains interfaces 
(physical, structural, and data) of a physical entity or a 
controller, key parameters of the component, and the 
relationship between component level parameters and 
domain model parameters. For instance, a mass com-
ponent can have a manufacturing domain model, a ge-
ometric domain model (CAD), and a behavior domain 
model (Modelica model).  

The component model level parameters can affect 
all domain model parameters at the same time, i.e., if 
the mass has dimension and density parameters, then 
the CAD model and the behavior model are parameter-
ized with exactly the same values respecting unit con-
versions.  

When the CAD and behavior models are composed, 
all parameters will be consistent across all domain 
models. CyPhy Component models do not contain any 
internal details of the domain models; they capture in-
formation only about interfaces and links to the domain 
models. 

A CyPhy Component Assembly model can contain 
any number of CyPhyML Components and other 
CyPhyML Component Assemblies, which together 
provide system and subsystem concepts. This language 
feature makes hierarchical composition possible 
through interfaces (ports and parameters). A full system 
model is often called a point design or a single design 
configuration. 

A CyPhyML Design Space model can encode mul-
tiple design configurations (i.e., component assemblies) 
by using alternative and optional containers inside the 
design space. Design space models generate a discrete 
design space in the form of design configurations using 
the Design Space Exploration Tool (DESERT [5]).  

For instance, if the design space contains a mass 
component, alternative mass components can be added 
(e.g. using different geometric sizes, material, etc.); if 
3 options are added for the mass component, the design 
space will grow to 3 design configurations. If we have 
a mass, spring, and damper system (similar to a very 
simplified suspension assembly) and 3 options are 

Figure 1. Design flow in the OpenMETA Tool Chain. 
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available for each, then the overall design space would 
be 27 configurations.  

To solve the design space exploration problem, 
CyPhyML supports design space constraints that can be 
expressed as auto-generated range constraints, property 
constraints (e.g. component level parameter limits), 
visual constraints (e.g. compatibility between compo-
nents/material or symmetry), or as Object Constraint 
Language (OCL) constraints. Constraints are used to 
prune the exponentially large combinatorial design 
space to a feasible and manageable set of configura-
tions. 

Once a CyPhyML Design or Design Space is built, 
we can define the evaluation of designs using 
CyPhyML Test Bench models. CyPhyML Test Bench-
es are used to set up boundary and environmental con-
ditions for designs in which they should be evaluated. 
Test benches also provide sufficient information and 
any additional models (e.g. stimulus, load, external 
‘test’ components) to the system to make simulation 
and analysis possible with a domain-specific tool.  

CyPhyML supports various types of test benches, 
including Dynamics (i.e., Modelica simulations), for-
mal verification, CAD (e.g. composing the 3D model 
and computing center of gravity or mass), finite ele-
ment analysis, computational fluid dynamics, blast, 
ballistic, conceptual manufacturing, detailed manufac-
turing, and reliability analysis.  

In this paper we focus on formal verification and 
Dynamics (Modelica) simulation test benches only. 
CyPhyML Test benches contain a top level system un-
der test (design or design space), input parameters that 
can change environment, load, stimulus conditions (test 
component parameters), and outputs called metrics. 

2.2 Importing Modelica Models 

CyPhyML Components have associated behavior mod-
els in the form of linked Modelica models. Only 
Modelica parameters and Modelica connectors need to 
be represented in the CyPhyML Component model. 
The behavioral model aspect of a CyPhyML Compo-
nent can be viewed as a lightweight wrapper around a 
Modelica model, which can be built using the 
OpenMETA tool set and its editor GME.  

Building the Modelica model interface representa-
tion in GME can be cumbersome and a time consuming 
activity. All information about the interface exists in 
the Modelica model, already including the following: 
model name, model type, connector names, connector 
types, parameter values (e.g. default value, minimum 
value, and maximum value), and class restrictions.  

The user has to provide a set of Modelica models in 
textual form (.mo files or one .mo package). A wide set 

of Modelica models can be imported in an automated 
way as CyPhyML Components or CyPhyML Test 
Components using the OpenModelica Compiler (OMC) 
API. There is a seamless integration between the 
OpenMETA tools and the OMC API. The OMC API 
provides functionality to load model files and libraries 
(i.e., packages), query containment and inheritance re-
lationship between types, and navigate through model 
elements using the abstract syntax tree. 

The Modelica model importer has certain limita-
tions and it does not support the entire Modelica lan-
guage. Conditional ports and parameters, enumerated 
types, and parameterized ports (which can change their 
internal structure) are not supported. ‘Replaceable’ el-
ements have a limited support, for instance models with 
fluid port connectors can be imported and the ‘Medi-
um’ type is correctly set in the CyPhyML Component. 

If the model or library does not conform to the 
Modelica Specification and/or the OMC API cannot 
load the package, then the automated import functional-
ity is not available in the OpenMETA tools, requiring 
users to build the CyPhyML Components manually. 

We are currently working on supporting a more 
complete set of the Modelica language and multi-
fidelity models where one CyPhyML Component can 
be linked to more than one Modelica model and where 
the different Modelica models represent different level 
of modeling abstraction of the behavior of the physical 
component.  

The OpenMETA tools already have a limited sup-
port for multi-fidelity component models, but they have 
to be built manually. For any CyPhyML Test Bench the 
component fidelity selection can be specified for a class 
of components, e.g., spring or damper component mod-
els. 

2.3 Generating Modelica Models  

Once a set of Modelica components are imported into 
the CyPhyML we can build design models, design 
space models and test-bench models. These models are 
composed through interfaces (i.e., connectors and pa-
rameters), which is sufficient information to generate 
composed Modelica models of test bench models for a 
design or for the entire design space. 

The generated Modelica models preserve the hierar-
chical decomposition of the system and organize all 
generated models into packages and sub-packages 
based on the CyPhyML project structure to ease navi-
gation in the generated model. Each generated compo-
nent model, used in the design, ‘extend’ the referenced 
Modelica model and overwrites the parameters with the 
CyPhyML Component instance values. 
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From each dynamics CyPhyML Test Bench there 
are two generated models in the Modelica package that 
are used to run analysis. One of them is a simulation 
model and the other one is an augmented version of the 
simulation model for formal verification purposes. 

 
Figure 2. Mass-Spring-Damper in Modelica 

 
Figure 3. Mass-Spring-Damper design space in OpenMETA 
tools 

 
Figure 4. Mass-Spring-Damper design space tree and alter-
native options 

We use a Mass-Spring-Damper (MSD) system, which 
contains Modelica Standard Library components, as a 
simple use case to show the workflow and the results of 
the formal verification tool for two configurations from 
a CyPhyML Design Space. Modelica model of the 
MSD system structure is shown in Figure 2. Figure 3 
depicts the design space in the OpenMETA tools, 
where each component Mass, Spring, and Damper con-
tains alternative components. The hierarchical structure 
and alternative options are shown in Figure 4. There are 

10 alternatives in each design container, thus the design 
space generates 10x10x10 (1000) configurations. We 
have selected two configurations (#1 and #8) for further 
analysis by the verification tool. 

Configuration #1 and configuration #8 have the 
same architecture, i.e., the same number and kind of 
components and the same connections among the com-
ponents, but configuration #1 uses Mass 9 (m=9 kg), 
Spring 9 (c=9 N/m), Damper 9 (d=9 N.s/m) and con-
figuration #8 uses Mass 3 (m=3 kg), Spring 8 
(c=8 N/m), Damper 8 (d=8 N.s/m). 

Figure 5 shows configuration #1 of a generated 
Modelica model for formal verification. The verifica-
tion model inherits the simulation model and includes: 
the definition of the requirement status (success, un-
known, violated), all physical limit definitions (e.g. 
Limit1: maximum absolute force cannot exceed a cer-
tain value) and requirements for the system, and defines 
all conditions under which the limits (e.g. 
abs(Spring.f)>17) and requirements are violated. 

 
Figure 5. Modelica model of MSD configuration #1. 

2.4 Model translators and Job Manager 

CyPhyML analysis model translators (i.e., analysis in-
terpreters) are built to generate analysis packages from 
CyPhyML test benches, which contain domain tool 
specific input files, data structures, and scripts to per-
form the execution and collect results.  

The OpenMETA tools can generate analysis pack-
ages for all test benches over the entire design space. 
This raises another scalability issue: executing all anal-
ysis packages may take significant time. In order to 
reduce the overall runtime, the META Job Manager [8] 
can run the individual/independent analysis packages in 
parallel either locally utilizing multiple CPU cores, or 
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on a remote compute cloud provided by the 
VehicleFORGE [8] platform. After analyses are exe-
cuted, the results are stored locally. 

2.5 Analysis Results 

The raw analysis results are cumbersome and can be 
extremely difficult to compare. To address this issue, 
CyPhyML defines metrics for the key performance pa-
rameters of design configurations. These numbers, 
which are often driven by system requirements, provide 
the basis for design trade-offs and ranking, as well as 
for making decisions under specific circumstances 
about which design configuration is best. 

Metrics are stored in a manifest file that contains the 
key information about the design configuration, test 
bench, and the projection of results. This single file is 
much smaller than the raw data and makes design space 
comparisons significantly easier. In general, we noticed 
roughly a three orders of magnitude size reduction 
when using only the compact manifest file (e.g. 15 GB 
of raw analysis data -> 10 MB). 

The OpenMETA tools provide a data visualizer 
called the Project Analyzer. The Project Analyzer can 
be used locally in a web browser or deployed on 
VehicleFORGE (or another server). It loads all analysis 
data from the manifest files (no data from raw files is 
loaded) and provides different visualization techniques 
to display results, visualize requirements, rank designs 
based on the user’s weighting preference on metrics, 
show physical limit violations on components, display 
constraint plots, show formal verification results, etc. 

 
Figure 6. Mass-Spring-Damper simulation results configura-
tion #1 force on the spring component 

OpenModelica can be used to visualize the raw simula-
tion results if needed. Figure 6 shows the force [N] on 
the spring component for design configuration #1. 

The Project Analyzer provides various visualization 
techniques using different widgets to visualize the re-
sults over a design space. Figure 7 shows the parallel 
axes plot widget, where the vertical axes correspond to 
the metrics (velocities) and each colored line between 
the axes represent a design configuration. The require-

ments objective and threshold values are shown on the 
right hand side of the axes. 

 
Figure 7. Project Analyzer parallel axes plot 

 
Figure 8. Project Analyzer user preferences settings 

 
Figure 9. Project Analyzer designs by user preferences and 
color coded based on requirements 

 
Figure 10. Project Analyzer designs by user preferences and 
color coded based on ranking 

Users can set their weighting preference (Figure 8) for 
each metric value, which would determine the ranking 
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of the designs shown in Figure 9 and Figure 10. De-
signs on each widget can be color coded based on re-
quirements (Figure 9), ranking (Figure 10), limit viola-
tions, or design scores. 

2.6 Simulation and Verification of Generated 
Modelica Models 

We have chosen to separate the verification and the 
simulation models in the generated code. We aim to run 
the simulations as fast as it possible, since running the 
test benches over a design space can take significant 
time even if parallel execution is used.  

Using the OpenMETA tools and the parallel execu-
tion capability provided by the Job Manager we run 
hundreds of design configurations over tens of test 
benches. The simulation model does not need to con-
tain verification properties and unnecessary auxiliary 
variables. Therefore, the simulation can first be execut-
ed, and then a post processing script can validate the 
limit violations and requirements on the simulation re-
sults. 

This approach will give us a faster execution time 
for simulation models. The OpenMETA tools use 
OpenModelica to execute the generated simulation 
models.  

Modelica models for verification are translated to 
Differential Algebraic Equations using the 
OpenModelica Compiler. The Mass-Spring-Damper 
configurations are translated to DAEs and then a formal 
verification tool analyzes both configurations.  

 
Figure 11. Verification results for MSD configuration #1. 

 
Figure 12. Verification results for MSD configuration #8. 

The limit restrictions and requirements are the same for 
configuration #1 and #8. Figure 11 and Figure 12 de-
pict the results of the formal verification results for 
configuration #1 and configuration #8 respectively. 
Section 3 and Section 4 describes the integrated formal 
verification method and reliability analysis in more 
detail respectively. 

3 Qualitative Reasoning Module 
The Meta tool suite includes a Qualitative Reasoning 
Module (QRM) which performs qualitative analyses of 
system behavior.  In contrast to Modelica solvers which 
produce exact numerical results given exact numerical 
inputs and parameter values, qualitative simulators pre-
dict the possible time evolution of a system in qualita-
tive terms.   

Qualitative values are characterized by ranges, for 
example Q+ represents any possible positive value.  
Qualitative values can be demarcated with landmarks, 
for example [l,u] where the value lies between l and 
u. A qualitative analysis may show that a particular 
design cannot ever meet its requirements—something 
that is impossible to show with numerical solvers. 

One challenge to more widespread use of Qualita-
tive Reasoning is the lack of extensive qualitative mod-
el libraries.  One cannot expect a designer to write their 
own qualitative models.  Therefore we have spent con-
siderable time and effort into automatically translating 
Modelica models into terms suitable for qualitative 
analysis. 

Our translator starts with the exported DAE from 
OpenModelica. This has required significant extensions 
of model importers to qualitative algorithms. In addi-
tion, the DAE exporters have had to be extended to 
provide additional information. Qualitative reasoning 
requires declarative models.  Any Modelica model used 
by AVM which is not purely declarative is being con-
verted to declarative form manually. 

Qualitative reasoning is most useful in early stages 
of conceptual design where the parameters, topologies, 
and requirements have not been completely articulated.  
Topologies which cannot possibly achieve customer 
requirements can be eliminated without having to de-
termine specific parameters. 

Qualitative analysis can also analyze a design which 
fails to meet some requirement and suggest qualitative 
parameter changes which will bring the design closer to 
meeting a requirement.  The screenshot (Figure 13) 
illustrates analyzing a mass-spring-damper system to 
identify qualitative changes to meet a requirement. 
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4 Reliability Analysis 
The Meta tool suite includes a reliability analysis tool.  
This tool automatically allows a designer to evaluate 
the reliability of various components as well as various 
design configurations.  The reliability tool has three 
major modules: (1) automatic construction of Modelica 
fault models, (2) determination of the fault probability 
distributions, (3) computing system reliability given (1) 
and (2). 

Our fault augmenter takes a MSL model as input 
and automatically constructs its fault modes, which 
includes power port failures such as open and shorts as 
well as important parameter shifts.  For each fault mod-
el, we construct damage maps which provide a proba-
bility density function for important parameters and is 
indexed by the type of material the particular compo-
nent is constructed out of (e.g., steel), CAD properties, 
and Modelica variable values.  The damage maps are 
constructed through a separate probabilistic process.  
More details can be found in [13].  In this paper we will 
focus on how the reliability tool is used by a designer 
(i.e., the third module). 

 
Figure 14. Braking distance / the coefficient of friction 

Suppose a designer needs to choose brake in their de-
sign (vehicle drive train) that will meet its stopping 
requirement of 28 m from 60 kph.  Given a fault aug-
mented model, we can determine stopping distance by 
running multiple Modelica simulations. 

From the Modelica simulations we can see that the 
stopping criterion fails after a fault amount of 0.27. 
Using the reliability formula and given a reduction in 
friction the actual physical damage is 0.85. 

Figure 13.  Using QRM for analysis of a mass-spring-damper system. 
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Figure 15. ACEI Wear damage / coeff. of friction. 

Finally we refer to the damage map to determine the 
probability that the vehicle will meet its braking re-
quirement after 75 missions. 

 
Figure 16. ACEI Wear damage / cumulative distribution. 

With the reliability tool the designer can choose the 
component, requirement, number missions, desired 
probability of success, etc.  

 
Figure 17. Reliability tool. 

The needed Modelica simulations required to render 
these reliability calculations are expensive.  Our ap-
proach is to pre-compute as much as possible.  For ex-
ample, the damage maps are all pre-computed.  For the 
simple vehicle model analysis presented here we have 

pre-computed all Modelica simulations (and use inter-
polation) to enable the reliability tool to respond in-
stantly.  However, for complex novel designs the relia-
bility calculations will take hours and possibly days on 
a single machine.  Fortunately, reliability calculations 
scale linearly with the number of processors. 

5 OpenModelica Tool Support 
OpenModelica is used in four different places in the 
OpenMETA tool chain:  

• importing Modelica models and associating them 
with CyPhyML component models,  

• performing simulations of composed Modelica 
models, i.e., CyPhyML test benches,  

• analyzing Modelica models and automatically add-
ing fault modes, and 

• extracting Differential Algebraic Equations (DAEs) 
for formal verification tools. 

The OpenModelica compiler (Figure 18) has been 
slightly extended to facilitate integration with the ME-
TA Tool chain. 

    

 Modelica 
Source Code 

Translator 

Analyzer 

Optimizer 

Code 
Generator 

C Compiler 

Simulation 

Modelica  model 

Flat Model 

Sorted  equations 

Optimized  sorted 
equations 

C Code 

Executable 

Rewrite 
Engine 

Equations DAE as XML  

 
Figure 18. The OpenModelica compiler (OMC) structure and 
simulation execution. A rewrite engine and enhanced DAE 
XML output have been added for Meta Tool usage. 

5.1 User-defined Rewrite Rules for Model Sim-
plification 

In order to make it feasible to apply formal verification 
to models they need to be simplified as much as possi-
ble so that their complexity is drastically reduced. 
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To support model simplification a rewrite engine 
for user-defined rewrite rules has been added to the 
OpenModelica compiler (Figure 18). 

Note that this simplification could be applied by the 
formal verifier tool on the final DAE, but if the rewrite 
rules are applied as early as possible inside the 
Modelica compiler further simplifications can be dis-
covered and applied.  

The final model representation form as reduced and 
optimized symbolic equations is output in an XML rep-
resentation for further processing by the Meta Tools 
QRM module. 

The user defined rewrite rules have the form: 
rewrite(old_expression, new_expression);  

Note that old_expression and new_expression can 
contain special component references in the form of 
quoted identifiers starting with $, for example: '$1', '$2', 
'$x', '$y', etc. 

The part of the expression tree where the special 
component reference appear is bound to that compo-
nent reference. 

As an example, consider the rule: 
rewrite( 
  abs('$1'), 
  if ('$1' >= 0) then '$1' else -'$1'); 

which could be applied to an expression: 

  abs(y + z) 

In this case $1 will be bound to y+z and the trans-
formed expression becomes: 
if ((x+y) > 0) then (x+y) else -(x+y)  

The bounding operation is similar to pattern matching 
or unification in languages that support such features. 
Some examples of user-defined rewrite rules: 
rewrite( 
  abs('$1'), 
  if ('$1' >= 0) then '$1' else -'$1'); 
 
rewrite('$1' ^ 2, '$1' * '$1'); 
 
rewrite(semiLinear(0.0, '$1', '$2'), 0.0); 
 
rewrite(noEvent('$1'), '$1'); 
 
rewrite( 
   Modelica.Fluid.Utilities.regStep( 
    '$1', '$2', '$3', '$4'), 
   if ('$1' > '$4') then '$2' else '$3'); 

The rules are loaded from a file given by the user and 
the rules are matched/applied to the expressions appear-
ing in the abstract syntax tree. 

Note that the application of the rules happen during 
semantic checking of expressions so that the resulting 
type before and after the application of the rule can be 

checked. In the cases where the bound expressions are 
arrays the operation is applied for each element, for 
example: 
rewrite( 
   Modelica.Math.Matrices.isEqual('$1', 
     '$2', '$3'), 
   '$1'=='$2'); 

applied to: 

Modelica.Math.Matrices.isEqual({{x,y}, 
 {z,w}}, {{a,b},{c,d}}, eps)  

will result in: 

x == a and y == b and z == c and w == d 

One can see that in some cases not all variables are 
used as for example eps above. For the purpose of 
formal verification the given expression is enough as 
the eps is used only for robustness of simulation. 

6 Integrated OpenModelica Meta 
Tools Environment 

The following summarizes the main capabilities of the 
integrated OpenModelica – META Tools environment: 

• Parse Modelica models (OpenModelica compiler 
API called through Python) and import model inter-
faces (parameters and connectors) into the META 
tool chain. 

• Run simulations of composed Modelica models us-
ing the OpenModelica (OMC compiler). 

• Be able to formally evaluate verification properties 
of system designs using OpenModelica and verifica-
tion tools QR/HybridSal (XML DAE). 

• OpenMETA tools can compose simulation models 
over a design space including different architecture 
variations in an automated way. 

• Verification problems and simulation models can be 
encoded as test bench, which can be evaluated over 
a design space. 

• Using the OpenMETA tools the JobManager pro-
vides sufficient capabilities to utilize all CPU cores 
in the user's computer. 

•  The analysis simulation/verification can run locally 
or on a remote execution cluster. 

• Simulation and verification results are collected and 
visualized through a common interface called Pro-
ject Analyzer. 

7 Related Work 
Automated verification of dynamic behavior of design 
models against formalized requirements is described in 
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[10] and [11].  A prototype of an integrated tool chain 
for model based functional safety analysis is presented 
in [12]. 

8 Conclusions 
This paper has presented an overview of the META 
tools for design space exploration and design verifica-
tion, and their integration with OpenModelica.  

The integrated environment currently has four main 
uses of OpenModelica: importing Modelica models 
into the META tool model structure, performing simu-
lations within test benches, analyzing Modelica models 
and automatically adding fault modes and extracting 
equations (DAEs) for formal verification tools, e.g. the 
QRM using qualitative reasoning.  

A prototype of the integrated tool framework is in 
operation, being able to generate and simulate thou-
sands of designs in an automated manner. 
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Abstract 

Modelica gives the possibility to compose more and 

more detailed models since model components can 

be reused. This means that simulation needs to be 

faster. One possibility is then to use multi-core tech-

nology. Recent advances with more than 1000 cores 

show the potential.  

The problem is then how to utilize this enormous 

processing power in a user friendly way. Partitioning 

needs to be made automatically. Modelica gives 

good possibility to automatically partition the model 

equation execution into separate threads since it is a 

declarative language based on equations. 

This paper describes a method to automatically 

parallelize model equations implemented in Dymola. 

A speed-up of 3.4 times has been achieved using 4 

cores/8 threads.  

 

Keywords: Modelica; Multi-core; Automatic parti-

tioning 

1 Introduction 

Modelica gives the possibility to compose more and 

more detailed models since model components can 

be reused. This means that simulation needs to be 

faster. One possibility is then to use multi-core tech-

nology. Recent advances with more than 1000 cores 

show the potential. One example is the Kalray 

MPPA (Multi-Purpose Processor Array) Technology 

(http://www.kalray.eu/). The MPPA 256 has 256 

cores on one chip. 

The problem is then how to utilize this enormous 

processing power in a user friendly way. Partitioning 

needs to be made automatically. Modelica gives 

good possibility to automatically partition the model 

equation execution into separate threads since it is a 

declarative language based on equations. (Aronsson, 

2002, 2006) discussed automatic partitioning algo-

rithms but speed-up was only achieved in special 

cases. 

This paper describes technology to automatically 

parallelize model equations. Results using the im-

plementation made in Dymola are included. Ther-

modynamic and electrical examples are discussed in 

detail. A speed-up of 3.4 times has been achieved 

using a laptop with Intel(R) Core i7-3740QM CPU 

@ 2.70GHz with 4 cores/8 threads.   

2 Algorithms for Parallelization 

The goal is to make a static scheduling of the equa-

tion execution. To find the optimal schedule is very 

complex, so various heuristics needs to be utilized. 

The first phase is to investigate which equations that 

could be executed in parallel. In this phase, the num-

ber of possible threads is not utilized.  

      In order to balance the efforts of executing the 

parallel sections, we need to have some estimates of 

the cost of executing different parts. Thus, the equa-

tions are analyzed and manipulated in the ordinary 

way until we have a sequence of calculating deriva-

tives and variables at a given point of time. The cal-

culations may include simple assignments, calls to 

Modelica functions or external functions and solving 

linear, nonlinear, mixed discrete/real systems of 

equations. An element in this sequence will be called 

a block node and it includes a set of solved equations 

and a set of variables that are solved by the node. 

The ordering of the block nodes is typically obtained 

by making a Block Lower Triangular (BLT) partition 

of the problem. The BLT partitioning defines a par-

tial ordering meaning that a node can be executed if 

all block nodes with lower numbers have been exe-

cuted.  There may be other orderings that also may 

be feasible. If two successive blocks do not need 

each other’s result, the order can be exchanged. They 

can in fact be executed in parallel. The major steps to 

investigate what can be executed in parallel are:    

 

1. Build a dependency graph including all 

block nodes. Let the edges represent the de-

pendencies between the nodes such that if 

node Ni needs the input of a variable v be-
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longing to node Nj there is an edge between 

Ni and Nj. We can make the edges directed: 

a. For Ni it is a “need” edge meaning 

that it needs the results of Nj. The 

BLT partitioning has sorted Nj be-

fore Ni. 

b. For Nj it can be viewed as “used by” 

edge. 

2. Parallelization: Search for all source blocks 

in the BLT graph, i.e. blocks which does not 

depend on other blocks (no outgoing needs 

edges) and collect them in layer Li, which 

corresponds to equations or systems of equa-

tions that can be solved independently of 

each other. 

3. Delete all nodes in Li from the block node 

graph and delete all edges to them. 

4. If there are still nodes in the graph, increase i 

by one and go to step 2. 

5. The sets L define a parallelization and the 

calculations are given starting from i=1.  

 

We developed this algorithm in October 2009 and 

made a test implementation. However, our run-time 

infrastructure was not completely reentrant, so we 

were not able to make any simulation tests. Casella 

proposed in 2013 (Casella, 2013) a very similar algo-

rithm but did not present any run-time speed-up re-

sults. However, in step 2, this algorithm searched for 

sinks, i.e. it was a dual algorithm.  

Unfortunately, using the result of these basic al-

gorithms for parallelization doesn’t give desired 

speed-up. The reason is that the obtained sections of 

a layer Li are normally too small so overhead will 

give longer execution times. It is necessary to aggre-

gate blocks into a section so the execution of a sec-

tion outweighs the effort to set up and start the thread 

execution. 

The approach to search for sources can be viewed 

as performing a calculation as soon it is possible. 

This approach can be taken bit further, if we consider 

the block nodes in the order defined by the BLT sort-

ing and if we are collecting block nodes for Li and a 

block node only has need edges from one section we 

add that block node to that section instead of defer-

ring the calculation to Li+1. The approach to search 

for sinks can on the other hand be viewed as per-

forming the calculations just-in-time. We are then 

considering the nodes in the reverse order defined by 

the BLT sorting.  If we are collecting block nodes for 

Li and a block node only has a needed edges from 

one section we add that block node to that section 

instead of already doing the calculations in Si+1. 

Please, recall that in this approach the sets are or-

dered in reverse calculation order. 

In many cases the sets will include more parallel 

sections than we have cores. Thus, it is useful to 

merge sections within a set to make each section 

bigger to beat overhead. To get the sections balanced 

we need to have some estimate of the effort needed 

to perform the calculations of each block node. That 

is a difficult task for many reasons such as the solv-

ing of a non-linear problem may take different num-

ber of iterations. We have developed heuristic to get 

an estimate of the number of arithmetic operations 

needed to execute a block node. This includes also 

estimating the complexity of Modelica functions. 

Fortunately, we can make the result less sensitive to 

the estimates by generating code for more sections 

than we have cores. If we order the sections in esti-

mated complexity order with the most complex first, 

the execution will start with them. If some estimates 

are bad or one nonlinear system needs more itera-

tion, the other cores can be kept busy by handling 

remaining sections. Each section should have a min-

imum estimated effort. 

From the two basic approaches discussed above 

indicates there may be a freedom in which parallel 

layer a calculation may be put in. To get fast transla-

tion it is not possible to check and evaluate all 

scheduling possibilities. To simplify the problem we 

focus on the most complex blocks and try to get as 

many of them in the same layers. 

When the parallel sections of each layer have 

been identified, we need to be concerned with data. 

If data used and updated by different cores are adja-

cent, there is a risk of performance degradation due 

to false sharing of cache lines. Even if one core does 

not write the same double precision number as used 

by another core, the two variables might reside in the 

same cache line, typically 64 bytes of memory. We 

overcome this false sharing by adding padding, of 

typically 64 bytes, between the variables sets of the 

different sections.  

3 Parallel Code for Equations 

Consider the following model: 

 
model ParallelCodeGeneration 
   input Real u, U; 
   Real x1, x2, x3; 
   Real y1, y2, y3; 
   Real X1, X2, X3; 
   Real Y1, Y2, Y3; 
 

equation  
  der(x1) = f1(x1, u); 
  y1 = g1(x1, u); 
 

  der(x2) = f2(x2, y1); 
  y2 = g2(x2, y1); 
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  der(x3) = f3(x3, y2); 
  y3 = g3(x3, y2); 
 

  der(X1) = F1(X1, U); 
  Y1 = G1(X1); 
 

  der(X2) = F2(X2, Y1); 
  Y2 = G2(X2); 
 

  der(X3) = F3(X3, Y2); 
  Y3 = G3(X3); 
end ParallelCodeGeneration; 

 

It consists of 3 dynamical systems with direct term 

(g1, g2, g3) coupled in series and 3 systems in series 

without direct term (G1, G2, G3).  

The partitioning of the equations into layers of 

parallel sections as described above corresponds to a 

fork-join code generation scheme. OpenMP supports 

this scheme by using simple pragmas in the C-code. 

The following code will thus be generated by the 

proposed parallelization algorithm: 

 
  #pragma omp parallel 

  { 

    #pragma omp sections 
    { 

      #pragma omp section 

      { 
        der(x1) := f1(x1, u); 

      } 

      #pragma omp section 
      { 

        y1 := g1(x1, u); 
      } 

      #pragma omp section 

      { 
        der(X1) := F1(X1, U); 

      } 

      #pragma omp section 
      { 

        Y1 := G1(X1); 

      } 
      #pragma omp section 

      { 

        Y2 := G2(X2); 
      } 

    } 

  } 
  #pragma omp parallel 

  { 

    #pragma omp sections 
    { 

      #pragma omp section 

      { 
        der(x2) := f2(x2, y1); 

      } 

      #pragma omp section 
      { 

        y2 := g2(x2, y1); 

      } 
      #pragma omp section 

      { 

        der(X2) := F2(X2, Y1); 
      } 

      #pragma omp section 

      { 
        der(X3) := F3(X3, Y2); 

      } 

    } 

  } 
// Sequence of calculations 

  der(x3) := f3(x3, y2); 

 
// Result calculations 

  y3 := g3(x3, y2); 

  Y3 := G3(X3); 
 

Two parallel layers will thus be used followed by a 

sequence (of one block). The last two equations are 

not needed for solving the differential equations only 

to enable plotting.  

Note that no mutual exclusion locks are needed 

since updating a variable is done only in one block, 

i.e. in one section and reading is always done in later 

layers, i.e. after resynchronization.. Between layers 

of parallel code, usual sequential code is used typi-

cally when potential parallel sections would be too 

small and sequential execution is faster.  

4 Example: Electrical Circuit 

Consider a Spice3 model of a 4-bit ripple-carry ad-

der. The model is available in the Modelica Standard 

Library:  

Modelica.Electrical.Spice3.Examples. 

Spice3BenchmarkFourBitBinaryAdder 

The model adds two 4-bit numbers and is built out of 

four two-bit adders, Figure 1: 

 

 
Figure 1: Four-bit adder 

 

The two-bit adders are built out of two one-bit ad-

ders, Figure 2.  

 

 
Figure 2: Two-bit adder 

 

The one-bit adder is built out of nine NAND gates, 

Figure 3. 
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Figure 3: One bit adder 

 

 

Each NAND gate has 5 BJT transistors and 3 diodes. 

The total model contains 180 BJT transistors and 108 

diodes. There are 4640 unknown variables of which 

324 are state variables. Many systems of equations 

appear: 

 
Sizes of linear systems of equations: {5, 11, 5, 5, 5, 5, 5, 5, 66, 5, 11, 5, 

5, 5, 5, 5, 5, 66, 5, 11, 5, 5, 5, 5, 5, 5, 66, 5, 11, 5, 5, 5, 5, 5, 5, 62, 5, 16, 

5, 16, 5, 16, 5, 16, 5, 16, 5, 16, 5, 16, 5, 16} 
Sizes after manipulation of the linear systems: {0, 3, 0, 0, 0, 0, 0, 0, 26, 

0, 3, 0, 0, 0, 0, 0, 0, 26, 0, 3, 0, 0, 0, 0, 0, 0, 26, 0, 3, 0, 0, 0, 0, 0, 0, 24, 0, 

7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7, 0, 7} 
Sizes of nonlinear systems of equations: {47, 47, 49, 49, 49, 49, 49, 49, 

49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 

49, 49, 49, 49, 49, 49, 49, 49, 49} 
Sizes after manipulation of the nonlinear systems: {4, 4, 4, 4, 4, 4, 4, 4, 

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4} 
 

Simulating this model for 1e-7 seconds takes 40.9 

seconds on using a laptop with Intel(R) Core i7-

3740QM CPU @ 2.70GHz with 4 cores/8 threads. 

This laptop has been used for all timings in this pa-

per. 

The BLT (Block Lower Triangular) structure is 

shown in Figure 4: 

 

 
Figure 4: BLT structure for 4 bit adder 

 

The BLT blocks are the small green squares along 

the diagonal. Note, that the BLT structure is not 

unique. The grey lower part has either zeros or ones. 

The rows and columns has been permuted according 

to the proposed partitioning algorithm (starting by 

searching source blocks) to show the triangles of 

zeros below the diagonal. These zeros are utilized 

when the layers of blocks to be executed in parallel 

are formed.  

The layers can be compressed vertically as shown 

below to illustrate the parallel execution of blocks 

that don’t need input from each other, Figure 5. 

 

 
 

Figure 5: Initial parallel schedule 

 

It can be noticed that many small systems of equa-

tions are present for which the cost of evaluation is 

very small. The cost of evaluation is estimated by 

counting the number of operations needed. A fixed 

number of iterations is assumed for nonlinear sys-

tems of equations and for for-loops and while-loops 

within functions. The corresponding diagram when 

the vertical size has been replaced by estimated 

number of operations (divided by 50) is shown in 

Figure 6. 

  

 
 

Figure 6: Parallel schedule (cost horizontally) 

 

Blocks on the critical path are marked red. The esti-

mated total number of operations are (sequen-

tialPathLength) 424 198. The criticalPathLength = 

28 967. The AmdahlSpeedUpFactor = sequen-

tialPathLength / criticalPathLength = 14.7.  

The pathLength for this particular schedule using 

numberOfLayers=15 and numberOfCores=126 is 

80 225.  The estimated speedUpFactor = 5.3. 

The corresponding schedule produced by the dual 

algorithm (first searching for sinks) is shown in Fig-

ure 7. 
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Figure 7: Parallel schedule using dual algorithm 

 

The characteristics of this schedule are: pathLength 

= 60 697, speedUpFactor = 7.0,  numberOfLayers = 

15,  numberOfCores = 325. 

These schedules are not realistic for the target ar-

chitectures with fewer cores available today. The 

granularity is too small since some of the sections 

just have a few operations. So merging of blocks 

must be done. Furthermore, it can be noted that some 

large blocks have ended up in different layers. In 

many cases, there is a freedom to move blocks be-

tween layers still not violating the data dependency. 

By appropriate heuristic rules, it is possible to 

achieve the schedule in Figure 8. In this case the 

maximum number of sections has been constrained 

to 4. 

 

 
 

Figure 8: Parallel schedule with max 4 sections 

 

The following characteristics is achieved: path-

Length = 114 998, speedUpFactor = 3.7,  number-

OfLayers = 6,  numberOfCores = 4. 

The schedules presented are essentially Gantt 

charts with time advancing downwards. By using 

fixed width of the rectangles instead of width propor-

tional to the number of unknown variables, we get 

Figure 9.    

 

 
 

Figure 9: Gantt chart for 4 section schedule 

 

The simulation time using this schedule is 16.5 

seconds, i.e. a speedup of 40.9/16.5 = 2.48. For the 

dual algorithm (first searching for sources), the simu-

lation time becomes 18.0 seconds.  

The utilization of the cores is quite low as can be 

seen in Figure 10: 

 

 

 
Figure 10: CPU usage with max 4 sections 

 

It makes sense to increase the maximum number of 

sections to 8, 16 or even 32. The best simulation 

times achieved was 13.9 seconds, i.e. a speed-up of 

2.94. The utilization of the cores then becomes 80%, 

Figure 11. 
 

 

 
Figure 11: CPU usage with max 16 sections 

The actual execution times are logged during simula-

tion using high resolution timers and are presented as 

follows:  

 
Name of block   Total CPU[s]  Min[us] 

Seq 2(71)       0.009           0.22 

Par 3[2](59)    1.571          32.85 

Seq 4(45)       0.010           0.14 

Par 5[16](98)   6.201         105.86 

Par 6[4](428)   2.458          86.21 

Par 7[4](49)    1.623          32.76 

Par 8[2](36)    0.508          10.73 

Seq 9(20)       0.010           0.26 

Par 10[16](87)  0.988          28.51 
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Seq i(m) means sequential layer i with m BLT 

blocks, i.e. no parallelization. Par i[n](m) means par-

allel layer i with n parallel sections and m BLT 

blocks. It is then seen that layer 5 has larger execu-

tion time than layer 6 contrary to the estimated times 

shown in the Gantt diagram. The reason is that layer 

5 has 16 sections but only 4 cores are available, i.e. 

some of the sections must be executed sequentially. 

5 Example: Evaporator 

Consider simulation of a model of an evaporator in-

cluded in the AirConditioning library as AirCondi-

tioning.Examples.Evaporator model and shown in 

Figure 12. 
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Figure 11: Evaporator model 

 

The geometry of the evaporator for both air and re-

frigerant are discretized into segments. The example 

given in AirConditioning has evaporator.n_segAir = 

1 and evaporator.n_segRef = 3, which gives that the 

refrigerant is discretized into 18 cells along the flow 

direction. Each of these cells as well the sink has 

pressure and enthalpy as continuous states and there 

is additionally 18 continuous time states for the wall 

temperature giving a total of 56 states. The major 

computational task is to calculate the thermodynamic 

properties from the state variables. There are 9 non-

linear systems of size 23 and 9 non-linear systems of 

size 21. The difference is due to the geometry of the 

heat exchanger. The tearing procedure results in 

problems with 3 iterations variables for all of them. 

If we set the stop time to 100 s, it takes 2.44 s to 

simulate it on a normal laptop. We are here mainly 

interested in the speed-up when parallelize the calcu-

lation, so the absolute time is of less interest, howev-

er, it is of interest to consider the absolute time and 

number of calculations, because when the calculation 

are sufficiently short, the overhead to start and syn-

chronize the parallel calculation the overhead will 

make the parallelized calculations take longer time 

than running then in sequence on one processor. 

 A causality analysis gives that we can first solve 

9 of the systems in parallel followed by some other 

calculations and thirdly the remaining 9 systems.  

Partitioning of the code with maximum of 16 sec-

tions can be represented in the graph in Figure 12. 

Green rectangles represent BLT blocks. These are 

merged into sections which are outlined in blue. The 

critical path is marked in red. 

 

 
 

Figure 12: Schedule for Evaporator using max 16 cores 

 

It takes about 45 μs to solve such a nonlinear system 

of equations. With 4 cores/8 threads we get a 

speed-up factor of 2.1. 
Let us make the model more complex by making 

a finer and more desirable discretization by setting 

evaporator.n_segAir = 5 and evaporator.n_segRef = 

10, which gives that the refrigerant is discretized into 

60 cells along the flow direction. Each of these cells 

as well the sink has pressure and enthalpy as contin-

uous states and there is another 60 continuous time 

states for the wall temperature giving a total of 182 

states. There are now 30 systems of size 112 and 30 

systems of size 110. The tearing procedure results in 

problems with 11 iterations variables for all of them. 

The simulation time becomes now 58.8 s, compared 

to 3.7 s for when using a less fine discretization. A 

causality analysis gives that we can first solve 30 of 

the system in parallel followed by some other calcu-

lations and thirdly the remaining 30 systems can be 

solved in parallel. It takes 60-90 μs to solve such a 

system. We can parallelize these computations. With 
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4 cores/8 threads the factor is 3.4. The calculations 

between the systems of equations can be split into 

two parts that can be run in parallel. One part takes 

2.2 μs to execute and the other takes 6.7 μs, so run-

ning them in series takes 8.9 μs. If we run them in 

parallel it takes 23 μs, due to the overhead to start up 

and synchronize parallel threads.  

6 Example: Multi-Body Systems 

Let us consider simulation of multi-body systems. A 

major task is to invert the mass-matrix to solve for 

the accelerations. If the system has kinematic loops 

there are additional non-linear and linear systems. 

The factorization of a Jacobian is a major task when 

solving a system of equations. However, when paral-

lelizing that, it gave faster calculations only if the 

size of the Jacobian was greater than 300x300. 

Another major task is calculation of forces and 

accelerations. For a tree structured mechanism, there 

are obvious possibilities to parallelize each branch of 

the tree into different threads. Such possibilities will 

be investigated in the future. 

6.1 Real-Time Simulation and Inline Integra-

tion 

What has been discussed above applies to hardware-

in-the-loop simulation (HILS) as well as when varia-

ble step-size integration methods are used. 

For HILS of stiff models such as multibody sys-

tems including bushings, implicit methods are need-

ed. Inline integration (Elmqvist, et.al., 2002) can 

then be used. It means that the discretization formu-

las are merged with the model equations and the en-

tire merged set of equations is symbolically trans-

formed. 

 The parallelization method can be used on the 

merged set of equations. However, implicit methods 

typically give one large system of non-linear equa-

tions to solve, i.e. the above method is not useful as 

described.  

To handle this situation, we have introduced a 

decouple operator which delays the signals one step 

corresponding to changing from an implicit relation-

ship to an explicit. The result is that the large system 

of equations decomposes into smaller systems that 

both are faster to solve and that can be solved in par-

allel. 

Using this technique, we have been successfully 

simulated vehicles with about 150 DOFs (Degrees-

of-Freedom) in real-time using a 1 ms step size and 

implicit Euler. By decoupling the front and rear 

wheel suspensions respectively from the chassis 

(having large mass) and by decoupling each wheel 

from the wheel suspensions we achieved a speed-up 

of 1.5. The two decoupling elements decoupling 

front and rear suspensions from the chassis can be 

seen in the VDL (Vehicle Dynamics Library) dia-

gram in Figure 13: 

 

 
 

Figure 13: Decoupling of VDL model 

 

Parallelizing the resulting smaller non-linear systems 

of equations gave a further speed-up of 2.8 with 4 

cores/8 threads. 

7 Conclusions 

Modelica is well suited for automatic parallelization 

of equation execution using many cores. We have 

described a technique for such automatic partition-

ing. The obtained results are good for models from 

various domains. For a thermo-dynamic model a 

speed-up of 3.4 was achieved, for electrical 2.9 and 

for mechanical HILS 2.8 using 4 cores/8 threads. 
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Abstract

Taking a look at project costs from a financial point
of view, the commissioning times of new indus-
trial systems become more and more important, as
they significantly drive the costs. Hence, the reduc-
tion of commissioning times is part of current re-
search. Besides the use of simulation and the coupling
between hardware and software (Hardware-In-The-
Loop-Simulations),Rapid Control Prototyping offers
a huge potential to reduce commissioning times. Un-
til now, most of the toolchains use special hardware
in combination with commercial simulation software,
which leads to some serious drawbacks. In this work,
a toolchain for Rapid Control Prototyping using in-
dustrial controllers and open source software is pre-
sented.

Keywords: Rapid Control Prototyping; Model-
ica; OpenModelica; Hardware-In-The-Loop; Bosch
Rexroth; real-time simulation

1 Introduction

1.1 Motivation

According to the V-model of mechatronic product de-
velopment (VDI 2206, [1]), the first step during the
design of a new industrial system, after a rough pre-
calculation of the required components, is to set up
a simulation model of the system under considera-
tion. Therefore, at Bosch Rexroth, our in-house tool
Rexroth Simster is used.Rexroth Simster is a simula-
tion environment, which allows object-oriented mod-
elling of technical, mainly mechanical, electrical and
hydraulic systems. Clearly, the tool includes powerful
numerical solver to perform the simulation. After suit-
able components and parameters are determined inside
the simulation environment, the controller concept has
to be tested using a real hardware controller. At this
point, until now, the simulation model of the controller

is not used any further and the controller is set up
from scratch inside the development environment of
the controller. At Rexroth, mostlyIndraWorks as stan-
dard tool for the development of controller algorithms
and the design of the whole controller is used. In many
cases, even the developed controller structure inside
the simulation tool is not used anymore. Instead, pre-
defined standard control algorithms are used.

However, it is clearly desirable to adapt the com-
plete control algorithm from the simulation environ-
ment. There are already possibilities to use virtu-
ally designed control algorithms on real-time oper-
ating systems using Hardware-In-The-Loop-Setups.
Two possibilities are using a dSPACE [2] system or
a xPC system in combination withMatlab/Simulink
[3]. Though, using such a toolchain leads to three
serious drawbacks. First, these systems are very ex-
pensive. Second, even in that case the control algo-
rithm has to be re-implemented on the real control
hardware after testing on the real-time system. Fur-
thermore, it has to be taken into account that the usage
of such commercial real-time systems leads to depen-
dencies to external software (e.g.Matlab/Simulink).
Clearly, such a dependency for the generation of code
for the PLC (Programmable Logic Controller) is not
desirable. Moreover, if new features should be imple-
mented, this is a big disadvantage, because the code
generation of the commercial tools can not be modi-
fied.

The aim of this work is to set up a toolchain for
Rapid Control Prototyping with a Rexroth controller
(IndraControl L45) using open source software and
Modelica for the modeling part, i.e. a toolchain, which
is completely independent from external software and
hardware. To be more precise, this toolchain enables
the engineer to transfer virtual controller models mod-
eled in Modelica to standard Rexroth controllers. To
validate the functionality, in this contribution, the con-
troller is used in a Hardware-In-The-Loop setup. The
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validation of the controller in combination with a real
system is part of current work.

1.2 Outline of this paper

In the first section of this paper, a short introduction
into Rapid Control Prototyping is given. Furthermore,
a standard toolchain for using Rapid Control Proto-
typing nowadays is discussed. In the second section,
after requirements for the toolchain have been defined,
the specific parts of the toolchain are presented. The
functionality of the toolchain is finally verified using
a Hardware-In-The-Loop setup consisting of a real
Rexroth hardware controller running controller code
of an industrial control algorithm created in Modelica
and a model of a hydro-mechanic system. In the last
part, a short summary and an outlook on further inves-
tigation is presented.

2 Rapid Control Prototyping

Rapid Control Prototyping is a computer-aided
method for developing and testing control algorithms
quickly on real-time operating systems. This approach
allows to investigate how the control algorithm will
behave later on the real hardware controller. Rapid
Control Prototyping includes all steps between the def-
inition of the controller specifications and the imple-
mentation of the final control algorithm. The single
steps during the Rapid Control Prototyping process are
shown in the V-model in figure 1. The left part of the
V-model shows the way from the specification of the
requirements to the implementation of the controller,

specifications controller

implementation

controller test

subsystem
test

overall system
test

system design

modelling

simulation

controller
design

iteration
cycles

Figure 1: V-model showing the Rapid Control Proto-
typing process

in the right part the functionality of the implemented
algorithm is verified. The functionality of the algo-
rithm is then compared to the requirements specified at
the beginning of the cycle. If there are differences be-
tween the required specifications and the actual func-
tionality, another iteration cycle is necessary. This pro-
cedure is repeated until the actual behavior of the con-
troller and the specifications fit together.

2.1 dSPACE/Matlab

Nowadays, the usage of Rapid Control Prototyping
is already standard in different industry branches,
e.g. the automotive industry. Therefore, for example
dSPACE (Digital Signal Processing And Control En-
gineering) systems can be used. On a dSPACE box
a real-time operating system is working which allows
to execute code in real-time on the device. To gener-
ate the code, e.g. special toolboxes fromMatlab can
be used. These toolboxes allow to generate executable
code for the dSPACE box in a very short time. Using
this toolchain it is possible to develop and test control
structures on a real-time operating system in an easy
and fast way.

Although this method offers the possibility to
test algorithms quickly, it does not avoid the re-
implementation on the final hardware device, which
is a big disadvantage. Besides the fact, that a re-
implementation is time consuming and a possible er-
ror source, the portability is potentially incalculable.
It cannot be guaranteed that the controller on the final
target behaves in the same way as the controller on the
test device. Other disadvantages are the costs of such a
dSPACE system and the dependencies to the commer-
cial software.

Because theMatlab Code Generation only works
for special operating systems and special hardware,
there are no direct possibilities to adapt the code gener-
ation for other devices like the Rexroth controller. Of
course, it could be tried to wrap the code could for the
use on other devices, but even in this case, this code
has to be compiled for the target operating system. If
only one single part of the code cannot be compiled
for the operating system, it is impossible to execute
the code on the hardware. Hence, it is necessary to de-
velop a toolchain, which is open source and therefore
applicable to different hardware devices. The develop-
ment of such an open source toolchain is the topic of
this work.

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

372 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096371



3 Realization of the toolchain

For the realization of the toolchain, clearly, different
tools are needed. The structure of the toolchain is
shown in figure 2. The starting point is the simula-
tion environmentRexroth Simster. As already said in
the introduction, the first step during the development
of a new system is to set up a simulation model of
the system and the controller inside the simulation en-
vironment. The simulation toolRexroth Simster will,
in one of the next releases, support both the usage of
models from an internal library (written in C/C++) and
of Modelica models. It makes sense to use Modelica
models, because they offer three big advantages. The
first one is, that Modelica models are easy to create
and support an object-oriented modeling structure, ei-
ther using a graphical user interface or the Modelica
editor. Second, in order to simulate Modelica mod-
els, they have to be compiled to C/C++. There exist
both commercial (e.g.Dymola) as well as open source
(e.g.OpenModelica, JModelica) Modelica-compilers.
In this work, of course the open sourceOpenModel-
ica-compiler (OMC) is used. Furthermore, Modelica
is a widespread language, which is used frequently in
the industry.

The controller model shall then directly be used on
the real PLC. The PLC used here is a common Rexroth
controller (Rexroth IndraControl L45). Therefore it
is necessary to compile the model of the controller
for the operating system of the hardware. The real-
time operating system running on the hardware isVx-
Works. To execute the code and run the simulation on
the PLC, a simulation core, which runs and manages
the simulation, is additionally required. This simula-
tion runtime has also to be compiled for the operat-
ing systemVxWorks. To compile the system and the
runtime and load the compiled libraries onto the hard-
ware, the development environmentWindRiver Work-
bench is used. This environment includes among other
things aVxWorks compiler. The simulation of the con-
troller model can then be executed in parallel to the
main thread on the PLC. This first step, to compile
and load the model on the PLC, is shown via the grey,
dashed arrow in figure 2.

To allow the exchange of data between the PLC and
the simulation environment during a HiL-simulation,
an interface between the newly created thread running
the controller code (controller thread) and the origi-
nal IndraWorks thread (main thread) is required. To
get access to the Rexroth IndraControl L45, the soft-

Figure 2: Structure of the toolchain

ware IndraWorks is used. IndraWorks is a standard
tool for the development of control algorithms and the
design of Rexroth PLCs. The connection between the
controller thread and the main thread is realized with
a function block according to IEC 61131 [4] inside
the IndraWorks-application, which is used as an in-
terface. In order to run the HiL-simulation, data has
to be exchanged between the PLC andRexroth Sim-
ster. Therefore, the MLPI (Motion Logic Program-
ming Interface) is used [5]. The MLPI is a program-
ming interface for high level programming languages
(C/C++/C#/VBA/Java/LabVIEW/...). It can be used
to write applications, which can be used to configure
and run a Bosch Rexroth controller which supports the
MLPI interface technology, like the IndraControl L45.

3.1 Used software components

In the following sections, a short overview and more
detailed information about the tools used in this work
are given.

3.1.1 Rexroth Simster

The simulation environmentRexroth Simster is an in-
house tool developed by Bosch Rexroth. It covers mul-
tiple domains (mechanic, hydraulic, electric) and has
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been developed for the design and optimization of con-
trolled automation systems. The component library in-
cludes both generic and Rexroth specific components,
which can simply be placed on the worksheet using
drag and drop.Rexroth Simster includes a special sim-
ulation core. This simulation core offers an interface
for models from the standardSimster libraries, which
are implemented in C/C++. The C/C++ code gener-
ated by theOpenModelica-compiler implements the
same interface. Thus, the simulation core can handle
both models from the own internal library and Model-
ica models. Detailed information about the developed
simulation runtime is given in [6].

3.1.2 WindRiver Workbench

WindRiver Workbench is an eclipse-based develop-
ment environment forVxWorks and is used in ver-
sion 3.3. VxWorks is a real-time operating system,
which is mainly used in embedded systems and is the
operating system running on Rexroth hardware con-
trollers. Included in the development environment is
a VxWorks compiler, which generates executable code
from C/C++-code. The tool is used to compile both
the controller model and the simulation core for the
use on the hardware controller. The classes inside the
simulation core are compiled into dynamically linked
libraries, which leads to.out-files. These.out-files
have then to be moved to the internal flash card of the
Rexroth hardware. This is done using an FTP client.

3.1.3 IndraWorks

IndraWorks is a tool developed by Bosch Rexroth and
is used as standard tool for the development of con-
trol algorithms and the entire configuration of the PLC.
InsideIndraWorks, an application to run on the hard-
ware can be created. After having configured the con-
nection parameters (IP address, type of connection),
the algorithms are developed using the IEC 61131-3
standard PLC programming languages. Furthermore,
additional languages especially for the use of motion
commands (PLCOpen) are available. During the run-
time of the controller, the process can be visualized
and monitored using plotter and other visualization
tools.

3.1.4 Motion Logic Programming Interface

TheMotion Logic Programming Interface is an inter-
face supporting many high level programming inter-
face and is also developed by Bosch Rexroth. Using

this interface, it is possible to write applications to con-
figure and run Bosch Rexroth devices which support
the MLPI interface technology. It contains a set of
headers and libraries. There are 8 different libraries,
which allow access to different parts of the controller:

• mlpiAPILib includes functions to connect and
disconnect MLPI

• mlpiSystemLib includes functions to read system
information like temperature, diagnosis data and
the firmware version

• mlpiParameterLib includes functions to read-
/write parameter

• mlpiLogicLib includes functions to start/stop/re-
set the PLC, load PLC programs, browse/read-
/write symbol variables

• mlpiMotionLib allows access to general motion
functions, single axis motion, cyclic commands
and synchrone axis motion

• mlpiContainerLib allows cyclic read/write access
with fast container buffer mechanism

• mlpiWatchdogLib includes functions to monitor
the user application

• mlpiTraceLib includes functions for the trace
configuration and to add, collect and view debug
information.

There are four different MLPI toolboxes, each sup-
porting a different programming language. Here, the
toolbox for C/C++ is used. In this work, MLPI is used
on the hand side to realize the data exchange between
the simulation toolRexroth Simster and the hardware
controller. Furthermore, MLPI is used as interface be-
tween the user and the controller to change controller
parameter inside the controller code. The structure and
functional principle of MLPI is explained in [5].

3.2 Connecting the different components to
the toolchain

To ensure the functionality of the toolchain, some ad-
ditional aspects must be considered while connecting
the different parts to the toolchain. The different as-
pects are discussed in the following, each in an own
subsection.
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3.2.1 Modifications inside the simulation core

An important point is the library handling inVxWorks.
Hence, each location inside the code loading a library
has to be modified. To ensure the functionality in both
the new operating system (VxWorks) and the old en-
vironment (Microsoft Windows), pre-processor com-
mands are used to decide which implementation is
used. Using this method the same runtime can be
used in bothRexroth Simster and on the PLC, which is
an important requirement. To load dynamic libraries
in VxWorks, the following basic framework has to be
used:
i n t l i b r a r y F i l e = open ( " l i b . ou t " , O_RDONLY, 0 7 7 7 ) ;
i f ( l i b r a r y F i l e == ERROR)

/ / E r r o r l o a d i n g l i b r a r y

MODULE_ID c_moduleId = loadModule ( l i b r a r y F i l e ,
LOAD_ALL_SYMBOLS ) ;

c l o s e ( l i b r a r y F i l e ) ;
i f ( c_moduleId == NULL)

/ / Unable t o l oad as module

e x t e r n SYMTAB_ID sysSymTbl ;
SYM_TYPE symType ;
doub le (∗ f u n c P t r ) ( i n t ) ;

i f ( symFindByName ( sysSymTbl , " name " ,
( cha r∗∗ ) &f u n c P t r , &symType ) == ERROR)

/ / Symbol no t found

doub le a = f u n c P t r ( 2 ) ;

After the library is loaded by theopen command,
all symbols are loaded using theloadModule function.
This allows to get access to the functions inside the
library. The next step is to create a function pointer.
The function pointer in this example points on a func-
tion, which gets an integer as input variable and which
returns a double value. The last step is to search a
specific function in the symbol list using thesymFind-
ByName function. This function pointer can then be
used to call the function inside the library.

3.2.2 Synchronization of the HiL-setup

The next aspect is the synchronization between the
simulation of the system insideRexroth Simster and
the code execution on the PLC. It is clear, that both
processes have to run synchronized, so that the ex-
changed data fit together.Rexroth Simster is a win-
dows application and therefore, without any modifica-
tions, not real-time capable. That means, that the cal-
culation time depends on the complexity of the model
and the workload of the used operating system. Thus,
the simulation can be faster or slower than real-time.
In contrast, a PLC is a hard real-time system with a
fixed cycle time. At the beginning of one cycle, the

Initialize

userstop

Delay

tex = t

PLC calculation

One step
simulation

!userstop

Write inputs
on PLC

Read outputs
from PLC

t − tex < tcycle

t − tex == tcycle

PLC calculation running

PLC calculation finished

Figure 3: UML Diagram showing the synchronization

inputs of the controller are read. Then, the control
algorithm is executed and the output data based on
the input data is computed. The last step is to write
the calculated values to the output. Therefore, the
controller expects input signals in real-time. Using
a standard PLC containing a standardIndraWorks ap-
plication (i.e. the controller computes the output in
real-time) in a Hardware-In-The-Loop-setup with the
Rexroth Simster, there are two possibilities: either the
simulation is forced to run in real-time or the controller
has to be adapted to the simulation speed of the simu-
lation environment.

Because the second way has some big advantages,
the slowdown of the controller has been realized. One
main advantage is the user-friendliness. Main users
of this toolchain are engineers like start-up engineers,
who shall design a new industrial system and do not
have the possibility to use a real-time operating sys-
tem on their working computer. Additionally, this way
is more comfortable, as there are no limits with regard
to applicable numerical solve algorithms or the com-
plexity of the model.

To realize the slowdown of the controller, a trigger
variable inside the controller application to start the
task is necessary, which activates one calculation step
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on the controller. After the simulation is progressed by
the length of the cycle time, the simulation is stopped
and the values of the input variables on the controller
are set inside theIndraWorks application using MLPI
commands. After that, the trigger variable is set to
true, which starts the calculation of one single step of
the controller. At the end of the computation, another
variable, which indicates that the computation is fin-
ished, is set totrue. The simulation environment reads
the output values from the controller and sets both the
trigger variable and the variable indicating the end of
the calculation tofalse. These steps are repeated until
the end of the simulation time is reached.

In the setup described in this contribution, how-
ever, the control algorithm is not implemented inIn-
draWorks and therefore not computed inside the main
thread of the controller, but in the separate controller
thread running in parallel to the main thread, which
makes the situation more complicated. This means,
that the program is not controlled via anIndraWorks
task like in the case discussed before.

3.2.3 Establishment of a connection between the
different threads

The next challenge is the establishment of the con-
nection between the controller thread and the main
thread, because the MLPI commands allow only ac-
cess to variables and functions inside theIndraWorks
application running on the PLC. The connection be-
tween both threads is realized via a function block in-
side theIndraWorks application. It is possible to link
an external implementation to a function block, so this
function block has no own implementation.

To ensure that the application will find the missing
function implementations, the external implemented
functions have to be registered using the MLPI func-
tion mlpiLogicPouExtensionRegister from the mlpi-
LogicLib. This function provides the possibility of
using C/C++ extensions within the IEC 61131-3 en-
vironmentIndraWorks and describes the mapping be-
tween the function block name inIndraWorks and the
function name in the C/C++ implementation. The vari-
ables that shall be exchanged can now be defined as
variables inside the function block in the main thread.
Then, both the simulation insideRexroth Simster and
the controller on the PLC can get access to the vari-
ables using MLPI functions as well as read and write
the variables. The structure of the communication be-
tween the two parallel threads is shown in figure 4.
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Figure 4: Interface between main thread and controller
thread on the hardware controller

After having established the connection between the
two threads, the synchronization between the simula-
tion of the system insideRexroth Simster and the con-
troller can be realized analogous to the technique de-
scribed before. The trigger variable is defined inside
theIndraWorks application and can be set by both the
simulation environment and the controller thread.

3.2.4 Initialization of the toolchain

The next aspect to be considered is the initialization
of the code execution on the controller. After the
compilation of the simulation core and the controller
code, all dynamic libraries are available on the inter-
nal memory. To start the controller, a main function
to manage the code execution (load the libraries in the
correct order, call the functions to initialize the solver
and the system, start the code execution) is necessary.
This function has to be executed before the controller
starts, so that all libraries are loaded and all instances
of the classes are already initialized. This is the func-
tion later called automatically via the function block
interface.
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3.2.5 Resulting workflow for the toolchain

Regarding all the aspects discussed before, the result-
ing workflow for the toolchain can be derived. Assum-
ing, that the simulation model of the system and the
controller inside the simulation environmentRexroth
Simster already exist, the first step is to compile the
simulation core and the controller code for the oper-
ating system of the controller (VxWorks). Therefore,
a new project inside WindRiver Workbench has to be
created. The classes inside the simulation core have to
be compiled into dynamically linked libraries, which
leads to.out-files. These.out-files have then to be
moved to the internal flash card of the Rexroth hard-
ware. This is done using an FTP client. The next step
is to register the executable main function containing
the initialization of the simulation on the controller
(see section 3.2.4). The registration is done using the
MLPI functionmlpiPouExtensionRegister. The syntax
is as follows:

MLPIRESULT m l p i L o g i c P o u E x t e n s i o n R e g i s t e r (
c o n s t MLPIHANDLE connec t i on ,
c o n s t WCHAR16∗ name ,
c o n s t MLPIPOUFNCPTR f u n c t i o n ,
c o n s t ULONG s i g n a t u r e = 0 ,
c o n s t ULONG v e r s i o n = 0 ) .

The first input parameter is the connection handle
automatically created when a connection to the hard-
ware via MLPI is established, the second parameter
is the name of the POU (Program Organization Unit)
in IndraWorks, in this case the name of the function
block, the third parameter is the function pointer to the
C/C++ implementation, while the fourth and fifth de-
scribe the signature of the POU interface and the ver-
sion of the POU library, if implemented within a li-
brary, and have not necessarily to be set, as they are
predefined with 0 [7].

Now the implementation of the function block inter-
face inside theIndraWorks application is made known
to the IndraWorks application. As the next step, the
IndraWorks application, which only consists of the
function block with the external implementation and
the definitions of the variables to be exchanged dur-
ing the simulation as well as the trigger variable (see
section 3.2.2), can also be uploaded to the hardware
device (if theIndraWorks application is uploaded be-
fore the registration of the functions is executed, there
will be linker errors for the external implementation of
the function block).

The next step is to start the initialization of the
controller on the hardware, i.e. to active the func-

tion block. Therefore the task controlling the func-
tion block has to be started. This can again be realized
via MLPI. The task is defined astriggered task, which
allows to start the task setting the activation variable
to true. The start of the main function effects, that
all necessary libraries are loaded and the simulation
manager is started. Inside the simulation manager,
a query is continuously performed, whether the trig-
ger variable to start one calculation step is set or not.
For the connection to the hardware device from the
Rexroth Simster side, a special component is neces-
sary, which has been developed for HiL-tasks (MLPI-
Coupler). The component has several inputs and out-
puts and contains the MLPI-commands to both write
the data from the different inputs on the device and
read the data from the device and set the values to the
outputs of the component. The names of the variables
inside IndraWorks can be set as component parame-
ters.

The last step is to start the simulation insideRexroth
Simster. The cycle time between the exchange of the
data can also be set in the MLPICoupler component.
The simulation of the system triggers then the simu-
lation on the hardware device. The synchronization
between both simulations is realized as described in
section 3.2.2.

3.2.6 Automation of the toolchain

The toolchain presented in this work is not fully auto-
mated until now. In one of the next releases ofRexroth
Simster, Modelica support will be added to the sim-
ulation environment. Until now, an additional Mod-
elica environment is necessary to build up the con-
troller simulation model. In the future, Modelica mod-
els can directly be created inside the simulation tool.
The code generation is integrated into the simulation
core, so that the executable code can directly be gen-
erated. This allows a fully automated toolchain, where
the controller model can be set up inside the simula-
tion environment and automatically be compiled and
sent to the controller. Starting the simulation inside
Rexroth Simster activates the toolchain (compile the
controller model, transfer the code to the controller,
load the simulation core libraries, start controller code
execution).

4 Application on an example system

To verify the functionality, the toolchain is used to de-
velop an appropriate control structure for the control
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Figure 5: System model inside Rexroth Simster

of an industrial hydro-mechanical system, namely a
single hydraulic axis. This system model is build in-
sideRexroth Simster and simulates the behavior of the
hydro-mechanical system. The structure of this simu-
lation model can be seen in figure 5. This model also
includes a control loop which has been developed vir-
tually inside the simulation environment.

4.1 Model of the system

The single axis model consists of five sub-blocks, each
highlighted in a different color. The light blue block is
the HPU (hydraulic pumping unit), i.e. it realizes the
oil supply for the hydraulic system and includes the
oil tank, a variable pump which is powered by an elec-
tric motor. The motor speed is power- and pressure-
controlled. Additionally an accumulator is included in
the HPU to ensure the oil supply for temporary high
demands on oil.

The yellow block shows a generic WRx propor-
tional valve, which limits the volume flow of the hy-
draulic fluid. Using the input signal port of the valve,
the spool position of the valve can be modified. The
valve’s dynamics is modelled with a PT2-behavior
with power limit, the flow is modelled via a character-
istic curve depending on the piston stroke (Q = f (s)).

The connections between the pump and the valve are
modelled by lines including frictional losses. The dif-
ferential cylinder is modelled inside the grey box. The
simulation model of the cylinder considers Stribeck
friction (static friction, running friction and Coulomb
friction), internal leakage and external leakage. Addi-
tionally the cylinder model has two end stops for the
piston, which are implemented using momentum con-
servation (optionally a coefficient of restitution can be
specified).

The load is modeled inside the orange sub-box and
considers the force resulting from the load mass, the
gravity force, the plastic and the elastic deformation.
The velocity of the cylinder piston is defined by the
user and is available as characteristic curve in the form
v = f (t). The position profile for the cylinder, which
can be obtained through integration of the velocity
profile, is shown in figure 6 (blue curve).

4.2 Modeling the controller

To realize the control, the current position of the cylin-
der piston has to be measured. Therefore, the internal
position measuring system of the cylinder, which is in-
cluded in the cylinder model, is used. As first try for
the controller structure a position controller is used.
The position controller compares the current position
of the piston with the desired position from the profile.
The difference (control error) is then multiplied by a
gain factor (P-controller). The profile and the con-
troller structure are implemented inside the rose box
in figure 5.

4.3 Starting the RCP process

To transfer this controller model to the real hardware
device, the toolchain which has been explained in sec-
tion 3 is used. As numerical solver, the explicit Euler
algorithm is used. Note, that the controller model con-
tains an ODE from the integrator component to calcu-
late the position from the velocity profile. For the ver-
ification, the results of this HiL-simulation using the
developed toolchain are compared with the results pro-
duced by a simulation of both the system and the con-
troller insideRexroth Simster. Both results are shown
in figure 6, the complete simulation insideRexroth
Simster in red, the simulation using the Rapid Control
Prototyping toolchain in green.

It can be seen that both curves are very similar, but
of course not identical. This is because the controller
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Figure 6: Results from the first controller implemen-
tation and comparison with the Rexroth Simster simu-
lation

insideRexroth Simster is a continuous controller and
gets the position update from the cylinder in every
solver time step, while the simulation on the hardware
device (like every hardware controller) is updated only
in the cycle time of the connection between simula-
tion and hardware. But as the differences are very
small, the functionality of the toolchain and the data
exchange can definitely be verified.

4.4 Improvements on the controller

If again the V-model of the controller development in
figure 1 is considered, the first cycle is now finished.
But, if the current result is compared to the desired
result, another iteration cycle due to the existing os-
cillations is necessary. It is clear, that a simple P-
controller cannot fulfill the control task. In the second
iteration, a velocity feed forward to minimize the gap
and an additional control part to minimize the oscilla-
tions is integrated into the controller. Therefore, the
Modelica code is modified inside the simulation en-
vironment. After suitable parameters are determined,
the controller structure is again transferred to the In-
draControl L45 controller using the toolchain to in-
vestigate the functionality on the hardware. Figure 7
shows the result of the improvement of the control al-
gorithm.

Taking a look on the results after this iteration cycle,
it can be seen, that the oscillations could be removed.
It can be assumed, that the developed controller struc-
ture, in general, is suitable to solve the control task in
this example (the desired positions are reached with-
out oscillations). In the practice, one or two additional
iteration cycle would be performed in order to tune the

parameters to maybe get an even better parameter set,
that shifts the current position more towards the de-
sired position to minimize the gap. However, this is
skipped at this point.

5 Summary and outlook on further
investigations

In this work, a toolchain for Rapid Control Prototyping
using an industrial Rexroth hardware controller based
on open source software is presented. This toolchain
allows to reduce commissioning times, avoiding the
re-implementation of the controller structure from the
simulation environment inside the development envi-
ronment of the hardware controller. Furthermore, the
toolchain is based on open source software. This en-
sures, that the functionality is independent from soft-
ware developed by external companies, i.e. additional
features can easily be implemented.

The functionality of the toolchain is also verified
with an example. Here, the big advantages of Rapid
Control Prototyping get visible. The control structure
is developed and pre-tested easily inside the simulation
environment. To test this control algorithm on the real
hardware, until now, it was necessary to re-implement
the algorithm. Using the developed toolchain, the re-
implementation is no longer necessary, because the fi-
nal hardware, which is applied later on the real sys-
tem, is used for the Rapid Control Prototyping Pro-
cess. The development process consists of several it-
eration cycles (see 1). In this example, we used three
iteration cycles (third one not explicitly shown here),
hence, three re-implementations could be saved. In
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Figure 7: Results from the second controller imple-
mentation and comparison with the Rexroth Simster
simulation
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more complex systems, of course, the controller struc-
ture also gets more complex.

In this contribution, the RCP toolchain is verified
virtually in a HiL-setup. In the future, the controller
executing the code has to be tested on a real system.
Therefore, theIndraWorks program has to be adapted.
In the HiL-setup, the simulation insideRexroth Sim-
ster uses MLPI commands to write the values to the
variables in theIndraWorks application. If the con-
troller is connected to a real system, the input and
output signals are transferred via the input and output
ports on the controller. Additional code for the map-
ping between the I/O ports and the variables is nec-
essary. An important point is the observation of the
calculation times. It has to be investigated in the fu-
ture, how the strict observance of the calculation times
can be guaranteed.

Another part of the future is work is to fully auto-
mate the toolchain, as described in section 3.2.6.

The simulation core can not only be used to simulate
controller models to realize Rapid Control Prototyping
and couple hardware and software in a Hardware-In-
The-Loop simulation. It is also possible to simulate
whole system models, which opens the door to many
other fields of application. One field of application
are alternative control concepts like Model Predictive
Control. Model Predictive Control calculates the cur-
rent control action by solving an optimal control prob-
lem at each sampling instant using the current state of
the plant as initial state. The cost function of an opti-
mal control problem is optimized subject to different
constraints. One main constraint is the system dynam-
ics in the formẋ = f(x, t). This condition requires the
simulation of the system in each optimization step.
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Abstract

The demand to ever increase realism and scope of
models routinely exceeds the currently available com-
puting power and thus requires thoughts on improv-
ing simulation efficiency. This is especially true for
real-time simulations, where fixed timing constraints
do not allow to just “wait a bit longer”.

This paper presents a new approach in Modelica that
allows a modeler to separate a model into different par-
titions for which individual solvers can be assigned. In
effect, this allows to use multi-rate and multi-method
time integration schemes that can contribute to im-
prove the efficiency of a (real-time) simulation.

The first part of the paper discusses basic considera-
tion relating to modular (real-)time integration. After-
wards, the implementation of a convenient Modelica
library for the partitioning of physical models is briefly
described. Finally, the presented library is used to par-
tition a detailed six degree of freedom robot model for
modular simulation. The simulation performance of
that partitioned model is compared to the simulation
performance achieved by using “conventional” global
solvers.

Keywords: multi-rate / multi-method time integra-
tion; simulation; clocked discretized continuous-time
partitions.

1 Introduction

Testing the actual embedded systems hardware in
processor-in-the-loop (PIL) or hardware-in-the-loop
(HIL) setups, usually requires that the “virtual” parts
of the overall systems are simulated under real-time
constraints. This means that the simulation must run
as a hard real-time application that always meets its
timing deadlines.

Inputs and outputs of a real-time simulation need to
be processed at regular intervals. The length of this

interval is called the simulation frame time. The worst
case computation time needs to be less than the sim-
ulation frame time. Explicit fixed-step solvers are ap-
propriate numerical integration routines for real-time
simulations. Variable-step solvers are generally not
appropriate for two reasons: a) because real-time sim-
ulation must normally perform I/O operations at reg-
ular intervals, and b) because the flexible number of
performed simulation model evaluations impede deter-
ministic prediction of worst case computations times.

Implicit fixed-step solvers are problematic in the
context of real-time simulation, because the number
of iterations required by implicit methods is theoret-
ically unbounded. However, their numerical proper-
ties with regard to integrating stiff systems1 is much
more favorable compared to explicit solver methods.
When integrating stiff systems using explicit methods,
the largest possible step size is severely limited due to
stability problems of the integration algorithms. Im-
plicit methods can perform much better in such cases.
Because of that, attempts have been made to use im-
plicit methods also in real-time simulation. Elmqvist
et al. [5, 4] describe techniques that allow to minimize
the number of iteration variables for implicit methods
(in some cases the number of iteration variables can
be reduced to zero!). These algorithms are available in
the commercial tool Dymola for real-time simulation
purposes under the umbrella term inline integration
algorithms. The development of linearly implicit or
semi-implicit methods are another noticeable attempt
in which implicit solver methods are “approximated”
by methods that exhibit a bounded number of worst-
case iterations. This improves the suitability of these
methods for real-time simulation purposes

Computational resources are finite. As a conse-
quence the computational requirements of the real-
time simulation must accommodate with available

1Stiff systems typically contain dynamically fast and highly
damped components.
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hardware resources. If the computational load re-
quired for the simulation is too high, the simulation
model needs to be adapted in order to meet the tim-
ing deadlines. Typical options for improving the com-
putational performance include model simplification,
use of more efficient algorithms and operations, or re-
placing computational intensive subsystems with fast
table lookups. Another option is to split the simula-
tion model into subsystems, which can be executed in
parallel across multiple processors, or which can be
executed with different frame rates. The later option
is termed multiframing or multi-rate integration and
can be attractive if some subsystems have significantly
longer time constants than others. Details about typi-
cal techniques used in the context of real-time simula-
tion can be found in relevant literature, e.g., [7, 3].

The new synchronous language elements extension
to Modelica [8, Chapter 16] also provides language
primitives that allow the developer to partition models
into several parts that can be solved separately by dif-
ferent numerical solver methods. A crucial aspect of
the partitioning task is to establish adequate coupling
mechanism between the separate partitions. Following
[6] the term modular simulation is used to underline
that modular coupling approach.

During the partitioning the developer can take ad-
vantage of a-priori system knowledge to improve the
performance of the simulation. Partitions can be exe-
cuted with different frame rates and/or can utilize dif-
ferent numerical integration algorithms. In that way
multi-rate and multi-method integration schemes can
be realized. To the knowledge of the authors, this is a
rather unique feature in a modeling language for physi-
cal systems. However, the suitable preparation of sim-
ulation models for multi-rate and multi-method inte-
gration is still a non trivial task.

In order to facilitate the preparation of simula-
tion models for multi-rate and multi-method integra-
tion schemes a Modelica library named MULTIRATE

has been build that wraps necessary methodological
and technical knowledge in an easy-to-use framework.
The theory behind this library, as well as its technical
implementation and application to practical problems
will be demonstrated in the following sections.

2 Clocked Discretized Continuous-
Time

Using the synchronous language elements extension
[8, Chapter 16] it is possible to define clocks that
associate a continuous-time solver to the equations

associated to that clock. This is illustrated in Fig-
ure 1. Line 4 defines a periodic clock with the in-

1model ClockedDiscretizedContinuousTime
2Real x(start=0), u;
3// 500 ms, no solver:
4Clock clk = Clock(5,10);
5// 500 ms, ExplicitEuler solver:
6Clock clk_solver=
7Clock(clk, "ExplicitEuler");
8equation
9// associate clock clk_solver to u:
10u = sample(1.0, clk_solver);
11der(x) = -x + u;
12end ClockedDiscretizedContinuousTime;

0 1 2 3 4
0

0.2
0.4
0.6
0.8

time [s]
va

lu
e

x

Figure 1: Clocked discretized continuous-time exam-
ple.

terval 500ms. Line 7 defines a solver clock based
on the previously defined clock and assigns as solver
method "ExplicitEuler". Other methods that are
predefined by the language standard are discussed be-
low. Line 10 associates clock clk_solver with the
variable u (by “sampling” the literal constant 1.0
using clock clk_solver). Due to clock inference
the differential equation in line 11 can be deduced
to be also associated with clk_solver and therefore
the differential equation needs to be solved by the
"ExplicitEuler" method with a fixed-step integra-
tion step size of 500ms. The corresponding plot of x
is shown at the right-hand side of Figure 1.

The specification [8, Section 16.8.2] defines the
conceptual solution algorithms of the predefined meth-
ods (tools may provide support for additional solver
methods). Since the following discussion is based on
these algorithms the respective part from the specifica-
tions is reproduced below in a slightly adapted form2.

The solvers are defined with respect to the underlying or-
dinary differential equation in state space form to which the

2Most notably, in contrast to the specification text the solver
methods are defined in terms of integrating from clock tick ti to
ti+1, instead of from ti−1 to ti. This is just a simple index shift.
The advantage is, that it allows to present some equations in a
slightly more concise and readable form.
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Table 1: Predefined solver methods for solver
clocks

Solver Method Solution method
(for all methods:
yi := g(xi,ui, ti))

Explicit-
Euler

xi+1 := xi + h · ẋi
ẋi := f (xi,ui, ti)

ExplicitMid-
Point2

xi+1 := xi + h · f (xi + 1
2 h · ẋi,

ui+ui+1
2 , ti + 1

2 h)
ẋi := f (xi,ui, ti)

Explicit-
Runge-
Kutta4

k1 := h · ẋi

k2 := h · f (xi + 1
2 k1,

ui+ui+1
2 , ti + 1

2 h)

k3 := h · f (xi + 1
2 k2,

ui+ui+1
2 , ti + 1

2 h)
k4 := h · f (xi + k3,ui+1, ti+1)
xi+1 := xi + 1

6 (k1 + 2k2 + 2k3 + k4)
ẋi := f (xi,ui, ti)

Implicit-
Euler

xi+1 := xi + h · ẋi+1
†

ẋi := f (xi,ui, ti)

Implicit-
Trapezoid

xi+1 := xi + 1
2 h · (ẋi + ẋi+1) †

ẋi := f (xi,ui, ti)
† Equation system with unknowns: xi+1, ẋi+1.

continuous-time partition can be transformed, at least con-
ceptually (t is time, u(t) is the real vector of input variables
to the partition, x(t) is the real vector of continuous-time
states, and y(t) is the real vector of algebraic and/or output
variables to other partitions):

ẋ = f (x,u, t)

y = g(x,u, t)

The solver methods (with exception of "External"3) are
defined by integrating from clock tick ti to clock tick ti+1

and computing the desired variables at ti+1, with h = ti+1−
ti = interval(ui+1) and xi+1 = x(ti+1).

Table 1 shows the definitions of the predefined
solver methods using the notation from above.

3 Multi-Rate

Multi-rate integration can be attractive if some sub-
systems have significantly longer time constants than
others. This is often the case for multi-domain physi-
cal systems since the components of different physical
domains often exhibit significant different time con-
stants. A typical example are systems with slow me-
chanical parts which are controlled by fast electrical

3The solver method "External" means that the solution
method is defined in the simulation environment and not in the
Modelica model.

circuits. If an explicit integration method is used, the
numerical stability of the whole system depends on the
fastest time constant and it is necessary to choose a re-
spective small step size for integration.

The MULTIRATE library doesn’t impose limits on
the number of partitions with different frame rates that
may be executed together. However, for clarity the ba-
sic idea of multi-rate integration is demonstrated with
two ODE partitions4 that will be discretized for two
different execution rates:

ẋ f (t) = f f (x f ,xs, t) (1a)

ẋs(t) = fs(x f ,xs, t) (1b)

The sub-index f stands for the “fast” partition
and s stands for the “slow” partition. Using the
ExplicitEuler method from Table 1 for discretiza-
tion results in a system of recurrence equations of the
form:

x f (ti + j ·h f ) = x f (ti +( j−1) ·h f )

+ h f · f f
(
x f (ti +( j−1) ·h f ),

xs(ti +( j−1) ·h), ti +( j−1) ·h
)

(2a)

xs(ti+1) = xs(ti)+ k ·h f · fs
(
x f (ti),xs(ti), ti

)

(2b)

where k and j are integers, k is the ratio of the two step
sizes, j = 1 . . .k, h f is the step-size of the fast partition,
and ti+1− ti = k · h f = hs is the step-size of the slow
partition.

Note that Equation (2a) does not specify how xs(ti +
( j− 1) · h) is calculated. Equation (2b) is not defined
for intermediate values between ti and ti+1. Therefore,
an interpolation or extrapolation scheme needs to be
used to estimate the intermediate values.

For real-time simulation the sequence in which the
computation of fast and slow frames are interspersed is
important. Ledin [7] describes three typical execution
schemes. The timing diagram in Figure 2 shows that
execution schemes by means of an example where the
ratio of the slow and the fast step size, k, is k = 3. The
three schemes are described briefly below:

1. Multiframing in a single task with no fast-frame
real-time I/O. The slow frame rate is treated as a
“master” frame rate in which the slow frame is
executed first, followed by a burst of the k fast
frames. This scheme is only acceptable if the fast
frames do not perform any real-time I/O.

4In general, partitions in the MULTIRATE library may consist
of differential and algebraic equations and the partitions are cou-
pled over designated input and output variables, but this is omitted
here in favor of a more succinct presentation of the basic idea of
multi-rate integration.
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2. Multiframing in a single task with fast-frame
real-time I/O. The fast frames are executed at
fixed intervals of h f length. The computations
needed in the slow frame are split into several
subframes which are interspersed after the fast
frame calculations. However, splitting the slow
frame into several suitable subframes is rarely a
simple thing to do. This is a serious drawback of
this method.

3. Multiframing in a multitasking environment with
rate monotonic scheduling (RMS). In this case
the scheduler will give CPU access to the task
with the higher priority (computation of fast
frames) and interrupt the lower priority task
(computation of slow frames) until the higher pri-
ority task has finished its computations. During
the times in which the higher priority task is idle,
the CPU access is given back to the lower prior-
ity task to resume its computations. No (manual)
splitting into subframes is needed which is a huge
advantage compared to the previous method.

hs
Running
Idle
Running
Idle

Slow
Frame

Fast
Frame

tn tn+1

Time

hs
Running
Idle
Running
Idle

Slow
Frame

Fast
Frame

tn tn+1

h f

hs
Running
Idle
Running
Idle

Slow
Frame

Fast
Frame

tn tn+1

h f

Single task with no fast-frame I/O

Single task with fast frame I/O

Multitasking environment with RMS

Figure 2: Three different multiframing schemes for
real-time simulation.

4 Multi-Method

Multi-method integration (also called mixed-mode in-
tegration) is yet another option to improve the execu-
tion performance of (real-time) simulation. In contrast
to multi-rate integration that uses different integration
step sizes for distinct partitions, multi-method inte-
gration uses different integration methods for distinct
partitions. Similarly to multi-rate integration, multi-

method integration can be attractive if some partitions
have significantly longer time constants than others.

A typical scenario is to split a system into fast parts
and slow parts and use an implicit integration method
for the fast parts and an explicit integration method for
the slow parts. Schiela and Olsson [11] describe such
a mixed-mode integration scheme (using explicit and
implicit Euler methods) in which they employ an auto-
matic partitioning approach based on linearization and
eigenvalue analysis. This disburdens the developer
from partitioning the system. However, if a system
is highly nonlinear, inspecting eigenvalues becomes
questionable since the eigenvalues of the linearized
system move around with time. A user controlled par-
titioning, leveraging a-priori system knowledge, can
be more adequate and effective in such cases.

Similar to multi-rate integration, the basic idea of
multi-method integration is demonstrated on the ba-
sis of two ODE partitions in the form of equation sys-
tem (1). Using the ImplicitEuler method from Ta-
ble 1 for the “fast” partition and the ExplicitEuler
method for the “slow” partition results in recurrence
equations of the form:

xs(ti+1) = xs(ti)+ h · fs
(
x f (ti),xs(ti), ti

)
(3a)

x f (ti+1) = x f (ti)+ h · f f
(
x f (ti+1),xs(ti+1), ti+1

)
(3b)

where h = ti+1− ti is the integration step-size. At first,
xs(ti+1) is computed using the explicit Euler method.
This value is afterwards used to compute x f (ti+1) us-
ing the implicit Euler method.

The MULTIRATE library allows to combine any of
the solver methods listed in Table 1. Note that it is eas-
ily possible to combine multi-rate and multi-method
integration within the framework of the MULTIRATE

library. This allows to exceed the benefits compared to
applying the methods separately.

5 Partition Coupling

An important aspect when applying multi-rate and
multi-method integration is the coupling between the
involved partitions. In the context of the framework
provided by the MULTIRATE library the coupling
scheme of Figure 3 depicts the basic idea (liberally ab-
stracting from the details). Note that although the cou-
pling is discussed by considering the special case of
two coupled partitions, the basic principles carry over
to the general case of n partitions.

Partition 1 and 2 may be discretized by using one of
the solver methods defined in Table 1. Different solver
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ẋ1 = f1(x1,u1, t)
Partition 1

y1 = g1(x1,u1, t)

Extra-/Interpolation

ẋ2 = f2(x2,u2, t)
Partition 2

y2 = g2(x2,u2, t)

Extra-/Interpolation

u2y2n ,y2n+1

y1n ,y1n+1u1

t ∈ [Tn,Tn+1]

t ∈ [Tn,Tn+1]

Figure 3: Coupling of two partitions. Communication
takes place at discrete time instants t = T0,T1, . . . ,Tk.
Depending on the applied coupling scheme the ap-
proximation of the coupling terms u1, u2 can be based
on interpolation (if y1n+1 , or respectively y2n+1 is avail-
able) or it must be based on extrapolation.

methods, as well as different step sizes can be used as
long as the ratio of the step sizes is an integer.

Data exchange between clocked discretized
continuous-time partitions is only possible at clock
ticks. Therefore, the clock ticks of the slower partition
determine the discrete time grid in which data is
exchanged between the two partitions. This is quite
similar to the situation encountered in co-simulation
scenarios, in which the communication and data
exchange between two distinct systems is restricted to
discrete synchronization points Tn.

However, in contrast to co-simulation the modular
integration considered in the MULTIRATE framework
has some distinctive characteristics:

• It inherits the characteristics of the synchronous
model of computation that has been introduced
in the “Synchronous Language Elements” exten-
sion in Modelica 3.3 [8, Chapter 16]. This has the
advantage that the formal model of various cou-
pling schemes can be expressed in a high-level,
declarative manner which is close to the under-
lying conceptual mathematical model. However,
the drawback is that optimizations that require a
more low-level control can not be realized.

• Modelica uses acausal connectors to assemble
models of physical components. However, the
coupling of partitions according to Figure 3 re-
quires causal data-flow. It is not obvious how
convenient and effective coupling schemes can be

realized when a model should be partitioned at
acausal connectors.

5.1 Mathematical Model

For the further analysis more detailed mathematical
models than the one indicated in Figure 3 are pro-
posed. As before, the discussion is based on two parti-
tions, but carries over to more general settings involv-
ing n partitions.

Figure 4 depicts a continuous-time domain model
for two coupled partitions, including inputs (u1,u2)
and outputs (y1,y2) due to real-time I/O hardware de-
vices. The dynamics of the coupled partitions are
modeled as differential-algebraic equations (DAEs) in
autonomous semi-explicit form

ẋ1 = f1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
(4a)

0 = γ1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
(4b)

y1 = g1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
(4c)

ẋ2 = f2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
(4d)

0 = γ2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
(4e)

y2 = g2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
(4f)

with differential variables xi ∈Rnxi , algebraic variables
zi ∈ Rnzi , (real-time) inputs ui ∈ Rnui , and outputs yi ∈
Rnyi where nxi ,nzi ,nui ,nyi ∈ N and consistent initial
conditions xi(t0) = xi,0, zi(t0) = zi,0. The (continuous-
time) variables with tilde, x̃i, z̃i, ũi are reconstructed
from a number of m ≥ 1 sampled (discrete-time) val-
ues of the variables without tilde of the same name by
means of extrapolation or interpolation using a “recon-
struction” operator denoted Ψ

x̃i(t), z̃i(t) = Ψi(χi,ζi)(t) t ∈ [Tn,Tn+1] (4g)

ũi(t) = Ψui(υi)(t) (4h)

where χi,ζi,υi are sampled at time instants tk ∈
(Tn−m,Tn] (extrapolation), or tk ∈ (Tn+1−m,Tn+1] (in-
terpolation)

χik ,ζik = xi(Tk),zi(Tk) k = 1 . . .ki, Tk < Tk+1,

ki ∈ N, χi ∈ Rnxi×ki , ζi ∈ Rnzi×ki

υik = ui(Tk) k = 1 . . .kui , Tk < Tk+1,

kui ∈ N, υi ∈ Rnui×kui .

The operator Ψ is loosely borrowed from the math-
ematical framework described in [12, p. 1495], where
it is defined as extrapolation operator. The definition
there is mathematically more technical and rigorous
than considered necessary for this work.
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ẋ1 = f1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)
Partition 1, t ∈ [Tn,Tn+1]

0 = γ1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)

y1(t)u1(t)

y1 = g1
(
x1(t), x̃2(t),z1(t), z̃2(t), ũ1(t)

)

ũ1(t)

Ψ1

x1(t),z1(t)

x̃1(t), z̃1(t)
ẋ2 = f2

(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)
Partition 2, t ∈ [Tn,Tn+1]

0 = γ2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)

y2 = g2
(
x̃1(t),x2(t), z̃1(t),z2(t), ũ2(t)

)

Ψu1

Ψ2

x2(t),z2(t)

x̃2(t), z̃2(t)

u2(t) ũ2(t)
Ψu2

y2(t)

Figure 4: Illustration of the used continuous-time domain mathematical model for partition coupling, including
external real-time I/O (u1,u2,y1,y2). The inputs to the partitions are first sampled at discrete time instants
t = T0,T1, . . . ,Tk, subsequently the operators Ψi are applied to the (time-discrete) signals in order to provide
extrapolated/interpolated continuous-time signals during a period of continuous-time system evolution (t ∈
[Tn,Tn+1]).

Data exchange between partitions and the update of
coupling terms is restricted to the time-discrete syn-
chronization points t = T0,T1, . . . ,Tk. In co-simulation
the steps from Tn → Tn+1 are referred to as macro
steps. The union of all macro-time steps is a a macro-
time grid where the partitions update their coupling
terms. Generally, the real-time inputs and outputs
of the respective partitions may be sampled at dis-
crete time instants that are different to the macro-time
grid instants. During a macro step Tn→ Tn+1 the dy-
namics of the partitions evolve according to the gov-
erning DAE using extrapolated (or interpolated) data.
Note that x̃i, z̃i, ũi are continuous in each macro step
Tn → Tn+1 but may have jump discontinuities at the
synchronization points Tn.

Since this work is concerned with real-time simula-
tion, it is natural to consider only equidistant macro-
time grids with constant macro-step size h = (Tn+1−
Tn). Moreover, the utilized synchronous framework
in conjunction with the discretization formula given
in Table 1 suggests to describe the coupling within a
(discrete-time) recurrence equation framework. The
step-sizes hi of the two partitions may differ, but the
ratio between the slower and faster period must be an
integer multiple. Without loss of generality assume
that h1 is the faster partition and denote N = h2/h1 as
the frame ratio. The partitions are synchronized at the
discretization points (≡ macro-time grid)

t = k ·N ·h1 = k ·h2 = k ·h, k ∈ N. (5)

At these points the equations of both partitions have to
be fulfilled concurrently (synchronous model of com-
putation).

The overall discretized system equations can now be
described in terms of the faster sampling period h = h1,
further also denoted as micro-time step. The pre-
cise time dependencies, i.e., at which instant ti = i ·h1
on the micro-time grid coupling variables from time
instant ti≤ j are required depend on the utilized dis-
cretization method. Table 2 shows the dependencies
for the solver methods supported by the Modelica stan-
dard. The important characteristics to be observed
are:

1. Algebraic equations always, regardless of the uti-
lized solver method, require the variable values at
the current time instant on the micro/macro-time
grid.

2. For state integration using ExplicitEuler cou-
pling variable values and state variable values
from previous activation times are sufficient.

3. The other two explicit methods require coupling
variable values from the current time instant (due
to the occurrence of term ui+ui+1

2 in the defining
equations in Table 1)!

4. The implicit methods require coupling variable
values and state variable values from the current
time instant.
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Table 2: Coupled variables time dependencies after
discretization

Solver Method Time instant dependencies
For all methods: h1 is the step-size
of the fast partition, and
ti+1− ti = N ·h1 = h2 = h
is the step-size of the slow partition,
N, j ∈ N, N = h2/h1, j = 1 . . .N.
x̃1,i, z̃1,i, x̃2,i, z̃2,i are approximated
from x1,i,z1,i,x2,i,z2,i by a suitable
extrapolation method.
Time dependencies in the algebraic
equations are always:
0 = γ1(x1,iN+ j, x̃2,iN+ j,

z1,iN+ j, z̃2,iN+ j)
0 = γ2(x̃1,(i+1)N ,x2,(i+1)N ,

z̃1,(i+1)N ,z2,(i+1)N)

Explicit-
Euler

x1,iN+ j = f1(x1,iN+ j−1, x̃2,iN+ j−1,
z1,iN+ j−1, z̃2,iN+ j−1)

x2,(i+1)N = f2(x̃1,iN ,x2,iN , z̃1,iN ,z2,iN)

Explicit-
MidPoint2 /
RungeKutta4

x1,iN+ j = f1(x1,iN+ j−1, x̃2,iN+ j,
z1,iN+ j−1, z̃2,iN+ j)

x2,(i+1)N = f2(x̃1,(i+1)N ,x2,iN ,
z̃1,(i+1)N ,z2,iN)

Implicit-
Euler /
Trapezoid

x1,iN+ j = f1(x1,iN+ j, x̃2,iN+ j,
z1,iN+ j, z̃2,iN+ j)

x2,(i+1)N = f2(x̃1,(i+1)N ,x2,(i+1)N ,
z̃1,(i+1)N ,z2,(i+1)N)

This has the following consequences for clocked dis-
cretized continuous-time partitions that are coupled
within Modelica’s synchronous computation frame-
work:

• In the general case, there is no scheduling of γ1
and γ2, that satisfies reciprocal data dependencies
without resorting to extrapolation from previous
values.

• State integration using ExplictEuler allows
to use x̃1,iN , z̃1,iN = x1,iN ,z1,iN (no extrapolation
needed, since values already available at ti+1N).
However, x̃2,iN+ j−1, z̃2,iN+ j−1 need extrapolation
for j > 1. Scheduling of f1, f2 at the macro-time
grid is always possible, since only past values are
required at these points.

• For state integration using the remaining explicit
and implicit methods, there is no scheduling of f1
and f2 that satisfies reciprocal data dependencies
in the general case without resorting to extrapo-
lation from previous values.

Note that in Modelica’s synchronous computation
framework it is not allowed to have algebraic loops
spanning clocked discretized continuous-time parti-
tions (however, it is allowed to have algebraic loops
within a partition!). Therefore, there must be a sorting
for the coupling equations at macro-time grid points
that allows to evaluate them in a sequential order that
satisfies data dependencies.

The previous discussion already allows to identify
some of the consequences when using the synchronous
framework for partition coupling:

• A staggered method (Gauss-Seidel scheme) that
would first integrate the slow partition, extrapo-
lating the inputs from the coupled (fast) partition,
and after that integrate the fast partition, interpo-
lating from the results of the slow partition, is not
feasible. This is because within the synchronous
framework new values are accessible only at the
points at time where they are valid and not di-
rectly after they have been computed. Also, it is
not possible for the modeler to directly influence
the sequence of calculations. This is at the dis-
cretion of the simulation tool that will only guar-
antee to respect data flow dependencies.

• Nevertheless, an execution scheme similar to the
“Single task with no fast-frame real-time I/O” de-
picted in Figure 2 is feasible, however, the inter-
polation of coupling variables during execution
of the fast partitions is not possible (extrapolation
is required).

• The synchronous model of computation makes
the abstractions that equations at time instants
are evaluated instantaneously. However, in real-
ity, computation takes time. From a real-time I/O
timing perspective it is desirable that the simula-
tion time instants of inputs and outputs closely fit
the real-time instants. For that reason, dedicated
real-time integrators are typically designed to re-
quire only past inputs for the integration up to the
current time instant. This allows to compute the
output values required at real-time instants t = Tn

during a computational period scheduled at t <
Tn. This computational timing details are beyond
the scope of the Modelica specification. How-
ever, observe that all solvers specified in Table 1
(except ExplicitEuler) require the (real-time)
inputs at t = Tn in order to compute the outputs
at t = Tn. Therefore, the real-time outputs will
be inevitable afflicted with a (potentially consid-
erable) computational delay (toutputs = Tn + tdelay).
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Obviously, it will often be desirable to keep at
least tdelay as small as possible. For the “Single
task with no fast-frame real-time I/O” scenario it
is therefore advisable to schedule the computa-
tion of the slow frame’s real-time outputs before
executing the fast frames (just as depicted in Fig-
ure 2)5.

• Parallel coupling methods using solely extrapo-
lated coupling terms (Jacobi-scheme) can be re-
alized within the available synchronous frame-
work. Therefore, parallel execution of frames as
depicted at the bottom of Figure 2 should be fea-
sible. This is expected to be particularly attractive
if a simulation can benefit from multi-core hard-
ware and distribute the computational load on the
available cores6.

• Some of the solver methods in Table 1 are multi-
pass methods7, i.e., they require several “inter-
mediate” evaluation of f (..) during integration.
Since communication within the synchronous
framework can only occur at clock ticks, the
needed intermediate values of the inputs u are
computed by interpolation. The alternative to ac-
tually acquire (real-time) samples of u for this in-
termediate evaluations is not possible in the cur-
rent framework. However, it should be noted that
for dedicated real-time integrators the use of in-
termediate input samples is typically considered
[1, 9].

5.2 Partition Coupling at Acausal Connec-
tors

In Figures 3 and 4 the coupling of partitions is accom-
plished by causal (directed) dataflow. However, physi-
cal modeling in Modelica relies on acausal connectors.
It is not obvious how to accomplish partition coupling
at the boundary of acausal connectors.

The following discussion is based on couplings
at the boundary of rotational mechanical connectors
from the Modelica Standard Library. However, the

5The Modelica standard doesn’t provide any possibility for a
modeler to control the scheduling of computations. Therefore, a
reasonable scheduling of real-time I/O can be seen as an imple-
mentation quality trait of a Modelica tool.

6However, the Modelica standard doesn’t provide any means
for a modeler to control whether computations are parallelized. At
the time of writing this article the authors are not aware of any
Modelica tool that supports parallelization of clocked partitions.

7Namely, the solver methods ExplicitMidPoint2 and
ExplicitRungeKutta4.

presented principles are easily transferable to other
physical connectors.

Consider the academic example model in Figure 5
and assume the model shall be partitioned somewhere
between the inertias J1 and J2.

(a) Modelica component diagram of assembly.

φ1 φ2dc

cc

J1 J2

d1

c1

d2

c2

(b) Schematic diagram of mechanical assembly.

Figure 5: The example model: a linear 2-DOF oscilla-
tor.

Figure 6 shows two common approaches to partition
the model for modular integration [2]:

Force/displacement coupling Partition P1 provides
the cut torque at its boundary as output which is
the input to partition P2. Conversely, partition P2
provides the displacement at its boundary as out-
put which in turn is the input to partition P1 (Fig-
ure 6a).

Displacement/Displacement coupling The coupling
force element of S1 is duplicated in S2. The two
partitions are coupled by the displacements of S1
and S2 (Figure 6b).

5.3 Implementation in Modelica

The Modelica MULTIRATE library provides conve-
nient building blocks for partitioning a model for
multi-rate and multi-method simulation. It is imple-
mented on top of the synchronous language elements,
partly reusing functionality provided by the MODEL-
ICA_SYNCHRONOUS library [10].

5.3.1 Force/Displacement Coupling

The component diagram in Figure 7a shows the oscil-
lator from Figure 5a in a force/displacement coupling
configuration. The coupling component subSample1
is an instance of the SubSampleForceDisp class from
the MULTIRATE library. The SubSampleForceDisp
class provides a few parameters to modify the coupling
characteristics, namely inferFactor to define that the
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φ1
τ1 τ2

φ2

P2P1

dc

cc

J1 J2

d1

c1

d2

c2

[
φ2
φ̇2

]

τ1

(a) Force/displacement coupling.

cc

dc
φ1
τ1 τ2

P2P1

φ2

cc

J1

d1

c1

J2

d2

c2

dc

[
φ2
φ̇2

]

[
φ1
φ̇1

]

(b) Displacement/displacement coupling.

Figure 6: Partitioning the example model.

tool shall determine the sub-sample factor by clock in-
ference. Otherwise, the sub-sample factor can be en-
tered manually. Efficient polynomial extrapolation of
arbitrary degree nP is supported for extrapolating val-
ues stemming from the slow partition during execution
of the fast partition8. With default settings the out-
put of the fast partition will be delayed one clock tick,
however parameter useDirectFeedthrough allows to
avoid that delay. The delay is necessary if both par-
titions need at macro-time steps t = iN the current
coupling values of the respective other partition. As
has been discussed in Section 5.1 this reciprocal data
dependencies lead to illegal algebraic loops spanning
the coupled partitions. Note that if at least one of the
partitions uses ExplicitEuler as solver method, a
scheduling without algebraic loops may become feasi-
ble and useDirectFeedthrough may be set to true.

The design of the icon of the SubSampleForceDisp
class gives a visual clue regarding the intended place-
ment within a model. The component at the left hand
side receives a displacement (φ and derivatives of φ ),
and needs to provide a torque τ . This is typical for
spring like elements. The right hand side compo-
nent receives a torque and reacts with a displacement.
This is typical for inertia like components. The sub-

8Note that nP=0 is equivalent to holding the value constant
and nP=1 is equivalent to linear extrapolation. Moreover, while
increasing the order of extrapolation may result in improved nu-
merical stability and accuracy in some applications it may also de-
teriorate numerical stability (see [2] for comprehensive numerical
experiments regarding extrapolation and interpolation of coupling
signals in co-simulation scenarios). In many cases, nP=0 or nP=1
seems to be a good choice.

sampling factor is displayed at the bottom of the icon
(provided that inferFactor=false).

The internal structure of the SubSampleForceDisp
class is depicted in Figure 7b. The parallel branches
with component uDirect1 and unitDelay19 are con-
ditional branches. Their activation is mutually ex-
clusive and depends on the value of the parame-
ter useDirectFeedthrough. The subSample1 block
wraps Modelica’s subSample(..) operator, which
performs fast-to-slow rate transitions. Component
absoluteSensor returns an array with the displace-
ment variables {φ , φ̇ , φ̈}. Upsampling and (polyno-
mial) extrapolation of the variables is performed by the
superSample1 block. Since φ is a discrete-time (sam-
pled) signal (see Figure 4), it carries no information
about its derivatives. It is the task of component move
to force the movement of flange flange_a according to
signals φ , φ̇ and φ̈ . In the implementation smoothness
information of φ is recovered at the sampling points
by using the sampled values of φ̇ and φ̈ and setting the
recovered signal equal to flange_a.phi. This is ac-
complished by using the derivative annotation as de-
scribed in [8, Section 17.7, “Declaring Derivatives of
Functions”]. Components torqueSensor and torque1
are from the Modelica Standard Library.

9The unitDelay1 block wraps the previous operator. Ac-
cording to the current specification [8, Section 16.8.1] the use of
previous within a clocked discretized continuous-time partition
is forbidden. However, the Dymola 2014 FD01 tool used for this
work is more lenient and allows it. This is a desirable feature in
order to enable the described implementation.
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j2

J=10

j1

J=10
d=10

cd1

c=1e4
d=10

cd2

c=1e4fixed1 fixed2

assignSolver1 periodicClock1

100 us

ImplicitTrapezoid

d=10

cc

c=1e4
2

f ast slow

subSample1

p

t·1/z

assignSolver2periodicClock2

200 us

ExplicitRungeKutta4

(a) Example model using a force/displacement coupling
in a multi-rate and multi-method configuration. The cou-
pling component subSample1 is an instance of class
SubSampleForceDisp from the MULTIRATE library.

absoluteSensor

{phi, w, a}
phi,w,a

move

subSample1

factor

torque1

tau

superSample1

factor

n nP

superSample1

factor

n nP

torqueSensor1

tau

unitDelay1

1

z
y_start=0

uDirect1

flange_bflange_a

(b) Component composition diagram of class
SubSampleForceDisp. This class implements the
force/displacement coupling.

Figure 7: Force/displacement coupling using the
MULTIRATE library.

5.3.2 Displacement/Displacement Coupling

The component diagram in Figure 8a shows the os-
cillator in a displacement/displacement coupling con-
figuration. The component cc is an instance of class
SubSampleDispDisp from the MULTIRATE library. It
constitutes both: the dynamic equations of motion for
the spring/damper element and the partition coupling
equations.

The upper part of parameters of the
SubSampleDispDisp class is identical to the pa-
rameters provided by the SubSampleForceDisp class.
The lower part provides parametrization for the
spring/damper element.

The internal structure of the SubSampleForceDisp
class is depicted in Figure 8b. Note that the dynamic
equations for the spring/damper element are dupli-
cated: while component springDamper1 is assigned
to the slow partition, springDamper2 is assigned to
the fast partition. This “overlapping” integration of-
ten leads to more favorable numerical stability proper-
ties (see Busch [2]). Aside from this, the components
appearing in Figure 8b are already known from Fig-

d=10

cc

c=1e4

f ast slow

3

j2

J=10

j1

J=10
d=10

cd1

c=1e4
d=10

cd2

c=1e4fixed1 fixed2

assignSolver1 periodicClock1

100 us

ExplicitMidPoint2

assignSolver2periodicClock2

300 us

ExplicitEuler

(a) Example model using displacement/displacement cou-
pling in a multi-rate and multi-method configuration.

absoluteSensor2

{phi, w, a}
phi,w,a

move2

d=d

springDamper2

c=c

absoluteSensor1

{phi, w, a}

subSample1

factor

subSample1

factor

d=d

springDamper1

c=c
phi,w,a

move1

unitDelay1

1

z
y_start=0

unitDelay1

1

z
y_start=0

superSampleExpo2

factor

n nP

superSampleExpo2

factor

n nP

uDirect1

flange_bflange_a

(b) Implementation of displacement/displacement coupling
class.

Figure 8: Displacement/displacement coupling using
the MULTIRATE-library.

ure 7b.
While this section described the partitioning at the

example of 1-dimensional, rotational mechanics, it is
needless to say that the basic approach carries over
to other physical domains. Furthermore, the mindful
reader may miss a SubSampleDispForce class. That
class was omitted, since it basically results by swap-
ping and adapting respective components in Figure 7b.

6 Application to a 6-DOF Robot
Model

In order to understand whether the partitioning is suit-
able for “real-world” systems with considerable com-
plexity, the RobotR3 example (a detailed model of a
robot with six degrees of freedom) from the MultiBody
package of the Modelica Standard Library (MSL) was
adapted and partitioned into three parts (see Figure 9):

1. “clockControl” partition. The partition con-
sists of a clocked discrete-time path planning
component and clocked discrete-time P-PI cas-
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Figure 9: 6-DOF robot example adapted from the
RobotR3 example of the multi-body package of the
MSL.

cade controllers for the six axes (inner PI-
controllers to control the motor speeds, and outer
P-controllers to control the motor positions).
Therefore, the continuous-time controllers and
the path planning component from the original
RobotR3 example were replaced by a discrete-
time (digital) implementation. The sample period
of that partition is set to 800 µs.

2. “clockDrive” partition. The remaining parts in
each axis (motor including current controller and
the gearbox including gear elasticity and bearing
friction) are combined into a clocked discretized
continuous-time partition. The steady-state ini-
tialization found in the original RobotR3 example
was removed since the initialization of clocked
partitions differs from the standard scheme of ini-
tialization in Modelica [8, Section 16.9, “16.9 Ini-
tialization of Clocked Partitions”]. Instead, com-
patible initial values have been set at appropri-
ate places. “ImplicitEuler” with a step size of
800 µs is used as solver method.

3. “clockMultiBody” partition. Except for set-
ting compatible initial values, the multi-body
part is identical to the original RobotR3 model.
“ExplicitMidPoint2”, also with a step size of
800 µs, is used as solver method.

Partitions “clockDrive” and “clockMultiBody” are
coupled at the mechanical flanges connecting the axes

with the mechanics multi-body system by force/dis-
placement components with constant extrapolation
(nP=0) and no direct feedthrough.

The simulation performance using the solver clocks
was compared against simulations performed on the
same model (using various solvers), but without us-
ing coupled clocked discretized continuous-time par-
titions (see Figure 10).
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Figure 10: Comparison model: 6-DOF robot example
without coupled clocked discretized continuous-time
partitions.

The numerical experiment is conducted on a note-
book with an Intel Core 2 Duo CPU P9700 @ 2.8 GHz
and 4.0 GB of RAM. The simulation tool is Dymola
2014 FD01 running on a 64-bit Microsoft Windows 7
operating system.

The reference simulation result is obtained by sim-
ulation of the comparison model (Figure 10) using
DASSL as integrator. The solver parameter “Toler-
ance” is set to 0.0001 for all simulation runs. The
simulation interval is always set to [0,2] seconds. The
step size of the tested solver methods is iteratively in-
creased until either integration fails (which for the con-
sidered model typically means that too large residu-
als appear while solving (nonlinear) systems of equa-
tions), or the simulation result deviates considerably
from the DASSL reference solution.

The decision whether a result deviates considerable
from the reference solution is made by two criteria:
a) visual inspection of the trajectory of the load at the
robot arm tip, and b) deviation of the trajectory to the
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reference solution defined by the norms

E2 =

√∫ te

t0
er(t)2 dt (6a)

E∞ = sup
t≥t0

(er(t)) (6b)

where t0 is the simulation start time, te is the simulation
stop time and

er(t) =
‖r(t)− rDASSL(t)‖
‖rDASSL(t)‖ r,rDASSL ∈ R3

provides a relative error measurement by relating the
distance between the obtained solution r(t) and the
reference solution rDASSL(t) to the magnitude of the
vector rDASSL(t). For the actual computation of E2
and E∞, (6a) and (6b) are numerically evaluated over
an uniformly spaced grid with spacing ∆t = 0.0008.
Therefore, the integral in (6a) is approximated by nu-
merical summation.

In Figure 11 the DASSL reference solution is com-
pared with the result when simulating the coupled par-
titions model of Figure 9 and the result when simulat-
ing the comparison model of Figure 10 with an inline
implicit Euler solver.

Figure 11a shows the first Cartesian coordinate of
the trajectory of the robot arm tip. It can be observed
that the solution computed by the implicit Euler solver
with fixed step size 0.0016 s diverges considerably at
the end of the simulation run. Examining the evolution
of the norms E2 and E∞ confirms that observation (see
Figure 11b). At t = 2 s the relative error of the implicit
Euler solution compared to the DASSL reference is
about 3%.

Beside using the DASSL integrator, various real-
time inline integrators provided by the tool Dymola
[5] were tested with the comparison model. Table 3
summarizes the results obtained by that simulation ex-
periments and contrasts them to the result obtained
by simulation of the coupled partitions model of Fig-
ure 9.

The inline implicit Euler solver displayed the best
performance of the tested “conventional” solvers.
However, for this scenario it was possible to even out-
perform that solver by a factor of about 2.9 (at com-
parable accuracy to the reference solution) by using a
coupling of clocked discretized continuous-time parti-
tions in combination with judiciously selected solver
methods.
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(a) Trajectory of the first Cartesian coordinate of the robot
arm tip.
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(b) Evolution of the norms E2 and E∞ over the simulation
time.

Figure 11: Simulation results of coupled partition ap-
proach and implicit Euler solver (step size 0.0016 s)
compared to the DASSL reference solution.

7 Conclusions

This paper presented a new approach in Modelica that
allows a modeler to separate a model into different par-
titions for which individual solvers can be assigned.
This effectively allows multi-rate and multi-method
time integration schemes that can improve simulation
efficiency in certain cases. Additionally, there is a po-
tential to execute the partitions in parallel to gain fur-
ther simulation speedups. However, this is not sup-
ported by currently available tools.

The approach is based on clocked discretized
continuous-time partitions, a concept that was intro-
duced as part of the synchronous language elements
extension into the Modelica 3.3 language standard.
However, until now it has not been applied in the con-
text considered in this article.

The article started with a formal description of
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Table 3: Comparison of solver methods

Solver Step size (s) CPU-time for E2 E∞
integration (s)

DASSL 10.8 0 0
Coupled partitions 2×0.0008 0.7 0.0014 0.0019
Inline implicit Euler 0.0008 2.0 0.0058 0.0081
Inline implicit Euler (considerable deviation) 0.0016 (1.2) 0.0207 0.0313
Inline trapezoidal 0.0008 2.1 0.0059 0.0082
Inline trapezoidal (considerable deviation) 0.0016 (1.3) 0.0208 0.0313
Inline explicit Euler 0.00002 2.3 0.0009 0.0017
Inline explicit Euler 0.00004 (Failed)
Mixed explicit/implicit Euler 0.0004 3.5 0.0004 0.0008
Mixed explicit/implicit Euler 0.0008 (Failed)
Inline explicit RK 4 0.00002 8.6 0.0004 0.0009
Inline explicit RK 4 0.00004 (Failed)

the mathematical prerequisites of coupling partitions
within the synchronous language elements framework
with special regard to timing requirements inherent
to real-time simulations. In the following, the im-
plementation of a Modelica library for the partition-
ing of physical models, denoted as MULTIRATE li-
brary, was sketched out. Finally, elements of that li-
brary were used to partition a detailed robot model
and the simulation performance of that partitioned
model was compared to “conventional” inline inte-
grators provided by the Dymola tool. This numeri-
cal experiment illustrated: a) that the partitioning is
feasible also for comprehensive, “real-world” models,
and b) that by using a coupling of clocked discretized
continuous-time partitions in combination with judi-
ciously selected solver methods considerable simula-
tion speedups can be achieved (the speedup factor was
about 2.9 for the example model).

Despite this encouraging result, it also needs to
be noted that it can take substantial efforts to find a
good partitioning and select a combination of solver
methods and corresponding integration step sizes that
outperform a simulation using “conventional” solvers.
Nevertheless, particularly for real-time simulations,
investing that additional effort may be worthwhile if
real-time constraints cannot be satisfied by using a
conventional global solver approach.
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Abstract 

Modern advanced driver assistance systems (ADAS) 

provide a significant increase in comfort and safety. 

In many cases, a single vehicle, today, contains more 

than one assistance system, while the trend to use 

ADAS continues to grow. At the same time, the 

number of systems that perform control interventions 

with safety-relevant functions increases as well.  

From an overall perspective, it must be assured that 

the driver assistance systems – individually as well 

as in the way they interact – function flawlessly in 

any driving situation and with any driver at the 

wheel anywhere in the world. This results in an 

increased development and testing effort for modern 

ADAS in general. In-development testing based on 

virtual test driving offers an approach to a solution 

that allows the validation effort to be significantly 

reduced while meeting the requirements for safety-

relevant functions in the vehicle associated with ISO 

26262. This is particularly evident when developing 

and testing new light functions, which in real-world 

road tests can often be performed only in conditions 

of darkness. Dynamic Light Functions are defined as 

the situation-dependent headlight adjustment 

consisting of cornering light, headlight leveling and 

(glare-free) headlight assistance. This paper presents 

this new methodology.  

 

Keywords: FMI; AUTOSAR; CarMaker; Sil; Xil; 

Dynamic Light Function 

 

 

1 Motivation and Current State 

of Technology 

Today, new light functions are developed in the early 

stage based on models. These models are 

subsequently tested for functional performance in the 

Model-in-the-Loop (MiL) process using simple test 

cases. Based on requirement specifications, the 

Simulink models are subsequently migrated to 

C Code and put into an electronic control unit 

as an AUTOSAR software component 

(AUTOSAR-SWC). The approval occurs strictly in 

the Hardware-in-the-Loop (HiL) test based on 

real-world measurement data or stimuli. After 

approval of the software on the HiL-(/SiL-) test rig, 

testing in the vehicle commences. When using this 

procedure, though, feedback in the whole vehicle 

takes place only at a very late point in time.  Today, 

in the Dynamic Light Functions project, dynamic 

SiL tests are performed based on recorded test drives 

and manually generated scenarios. Improvement 

potential still exists here with respect to certain 

aspects:  

1. The open-loop tests, in the case of 

modified controller software, are reusable 

only to a limited extent.  

2. The transfer to different vehicle 

configurations or new vehicle variants is 

possible only to a limited extent. The low 

availability of prototype vehicles in the 

various development stages does not permit 

any tests to be run on the physical prototype.  

3. The additional evaluation scenarios which 

may emerge in the analysis of the interaction 

of the controller and controller distance have 

to be recorded in the vehicle test again. The 
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reproducibility of the scene and the large 

number of real-world variants is often 

unfeasible.  

By using a vehicle model and corresponding test 

automation real-world effects can be examined early 

in the SiL approach. This SiL approach can be 

integrated into the seamless X-in-the-Loop (XiL) 

development method [1]. The limited availability of 

the HiL test rig resource (and the associated late 

availability of the whole vehicle) could thus at least 

be partially alleviated. 

2 FMI Brings Light into Darkness 

The Functional Mock-up Interface (FMI) [2] offers 

the possibility to make use of C Code and Simulink 

models in a standardized form as so-called 

Functional Mock-Up Units (FMU) in integration 

tools. These FMUs can be used for interaction chain 

tests and design decisions at a very early stage of 

development. In addition, they are available in the 

validation chain for dynamic residual bus simulation 

models. Furthermore, the fast and easy connection of 

an electronic control unit or an array of ECUs is 

possible as well. 

An FMU can be generated quickly and at low cost 

using simple means. FMUs consist of a 

ModelDescription, i.e. a description of the interface 

(signals and parameters) and a container with a 

dynamic library for the relevant operating system. 

Therefore, the generation of such an FMU requires 

some type of interface specification (e.g.  the arxml 

format [3]) and the associated source code and/or a 

previously compiled library for the relevant target 

systems (Figure 1). Even though some tools already 

offer the possibility to generate FMUs, the objective 

here is to point out a license-free alternative for 

quick implementation that can also be used to carry 

out new requirements with ease. 

 

 
 
Figure 1: FMU generation. 

 

The ModelDescription is an XML format specified 

in the FMI standard. All the information required to 

generate it is available in the AUTOSAR 

specification in the form of an arxml description and 

is therefore retrievable in an automated form. In 

addition to the interface description, the AUTOSAR 

XML specification contains the function calls for 

initialization and the individual calculation steps as 

well as their step widths. Furthermore, the interface 

description provides information about the names of 

the buffers (global variables) for inputs and outputs 

as well as coding parameters. The FMU interface 

merely provides an array with all model variables. 

Consequently, they have to be additionally mapped 

to the global variables in order to enable the 

controller to process the current data. 

To simplify the integration of the controller into 

different development environments, a floating-point  

to fixed-point conversion was directly implemented 

in the wrapper, again automatically generated from 

the existing signal description.  

By using this information it is now possible to 

generate code which initially sets the parameters of 

the FMU and in the subsequent calculation steps 

manages the inputs and outputs and calls the actual 

controller. Together with the controller source code 

it is possible to compile dynamic libraries which 

together with the ModelDescription yield a 

functional FMU. 

The FMUs generated in this way can be imported, 

linked and simulated in various integration tools. 

3 Consistent Tests through Efficient 

Integration of Standardized 

Components 

To create the link between the FMUs and the whole 

vehicle, additional plausible models of vehicle 

physics and the vehicle environment are necessary. 

For this purpose, the seamless X-in-the-Loop (XiL) 

approach was rigorously implemented in CarMaker 

(Figure 2). 

 

The XiL integration makes it possible to integrate 

and comprehensively validate all relevant system 

components, either as models, ECU software or 

hardware, into the whole virtual and real-world 

vehicle. As an open integration platform, CarMaker 

offers interface architecture that is adapted to the 

vehicle development and in which the FMU 

approach can be efficiently used. Models, software 

components and real-world vehicle components are 

integrated by mouse click into so-called digital 

prototypes – from the single component through to 

interlinked (networked) systems. 

AUTOSAR 
conform 
Interface 

Description 
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Various components such as the powertrain, 

assistance and control systems etc. as well as 

instrument and operating concepts may be integrated 

as needed [4]. The virtual integration creates the 

prerequisites to check what effects the tested 

components have on the overall performance of the 

whole vehicle. Unfavorable design decisions and 

even functional faults can thus be detected earlier 

and allow corresponding design decisions to be  

optimized [5]. The digital prototypes are verified as a  

total system in virtual test driving and serve as input 

for our light assistance FMU (Figure 3). 

 

Figure 3: Interfacevariables to implement the light FMU into the 

CarMaker integration platform. 

 

In practical terms, we receive signals from vehicle 

dynamics, additional environment sensors and 

camera systems as well as driver inputs such as 

steering angle or manual headlight requests. In 

addition to the powerful vehicle and driver model, 

CarMaker encompasses a complete environment 

simulation, consisting of roads with corresponding 

static traffic objects and moving traffic as well as 

environment sensors and digital maps (such as 

NAVTEQ or Google Earth). As a result, the test 

environment is modeled at a high level of realism, 

see Figure 4. 

 
Figure 4:  Function models and software components can be 

integrated into the integration environment either as Functional 

Mock-Up Units or hardware components. In addition, CarMaker 

allows navigation systems and software development tools to be 

connected as well. 

 

Furthermore, as a test platform, CarMaker offers a 

maneuver description that is based on the principles 

of real-world road tests. Complex open- and 

closed-loop tests are carried out as maneuver 

instructions. The virtual test drive is reproducible 

and can be easily modified as needed. This makes it 

possible to evaluate new developments in virtual test 

driving and to tangibly experience them in realistic 

driving situations. The test cases for the light 

functions are migrated from test driving into the 

CarMaker language and carried out in the 

TestManager (Figure 5). 

Figure 2: X-in-the-Loop enables the early verification and validation of systems. CarMaker offers the appropriate interfaces to 

integrate all relevant components and systems into a whole virtual vehicle. 
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Figure 5: Test cases from real test driving. 

 

By combining in-development testing, the 

standardized FMI and the multi-domain integration 

and test platform the development and test effort can 

be significantly reduced. A maneuver catalog that 

has been defined once is thus available for design, 

verification and validation purposes in all stages of 

the development process. The maneuver catalog is 

specifically extended according to the development 

stage in order to comprehensively verify and validate 

the design and implementation of the ECU software. 

This allows fast, convenient exchanges and testing of 

vehicle components as FMUs, both within the BMW 

organization and in collaboration with suppliers. In 

other words, the OEM and the suppliers are able to 

use the same models and functions for architectural 

decisions and virtual test driving. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Use in the Development Process 

Last but not least, this is where the advantages of 

virtual test driving prove their viability (Figure 5): 

providing test scenarios (through to complex 

customer use cases) which can be modified as 

needed and are reproducible on the one hand and 

reproducible test results on the other.  

In the development process, FMUs can be used in an 

SiL environment at an early development stage. 

Software modifications and their effects on existing 

test cases can be easily realized and tested due to the 

standardized components. 

Aside from this range of applications, FMUs can 

also be used as substitutes for electronic control units 

not currently in existence in an array or composite of 

ECUs together with existing, real-world ECUs. This 

way, they help to make tests on the whole system 

possible at an early development stage. 

In the case of the dynamic light function, in addition 

to numerous vehicle dynamics parameters provided 

by CarMaker, camera-based information is processed 

as well. This information is either provided by 

virtual sensors or – ideally – by the real ECU of the 

camera. To enable the ECU to actually deliver 

realistic values, virtual driving scenes including 

other traffic from CarMaker are captured and 

processed by the camera in a darkened room. This 

means that the virtual test drive is filmed by the 

real-world vehicle camera in order to run a so-called 

interaction chain test. The camera is used to detect 

the presence of other vehicles within the blinding 

range of the light. This information is forwarded to 

the light function in order to activate the glare-free 

range of the high beam (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Set-up of an HiL test rig for the event chain test: Operator PC and HiL system, real-world or simulated controls for the light, 

light ECU, headlights with headlight actuators, camera with integrated ECU and monitor for filming. 
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This adds significant value compared to the tests that 

have been run up to now, in which only the ECU 

could be served with a residual bus simulation but 

the specific signals and functions of the camera 

could not be used.  

Linking real-world headlights with the environment 

described above now represents the next step. This 

allows the entire interaction chain, from the camera 

through to the actuator, to be modeled and tested. As 

a result, detailed statements about the functional 

performance of the whole system can already be 

made on the test rig, which makes it possible to 

considerably reduce the validation effort on the 

real-world vehicle. Figure 7 shows a snapshot from a 

video [6] for comparison of a real-world and a 

corresponding virtual test driving situation. 

 

 
Figure 7: Comparison of the light function: video with glare-

free high beam and its simulation. 

5 Conclusions 

By using both the standardized interface 

specification FMI and an integration and test 

platform (from MiL, to SiL and through to HiL) the 

current development process can be made 

significantly more efficient and the existing gap in 

the area of the SiL tests can be closed. In such a 

development environment the presented control loop 

consisting of the “the car on the road” and “light 

events detected by the camera” can be studied in 

detail. The control loop of interest can then be 

extended step by step, e.g. additionally including the 

position of the headlight actuators, and/or the 

simulated illumination of the headlights. A reduction 

of the testing effort associated with the large number 

of variants can be achieved by the DoE (Design of 

Experiment) method in combination with carefully 

selected real-world road tests [7]. For this purpose, 

critical corner case parameters can simultaneously be 

tested in the design space to be validated and, in 

parallel, simulated in virtual test driving. The models 

on which these tests are based are validated. 

Proceeding from this database, additional real-world 

road tests could be made superfluous by the 

continuing validation being supported by the results 

thus obtained. This harbors further remarkable 

potential for reducing the validation effort and, 

ultimately, controlling this effort as well. 
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Abstract 

Due to the higher complexity of electrified vehi-

cles the requirements for vehicle components and 

vehicle design augment and new development tools 

are desirable. The following paper describes the de-

sign of a hardware-in-the-loop test bench along with 

its structure using Modelica and a Remote Process 

Communication library. The aim is to support the 

development of components and operational strate-

gies under realistic boundary conditions illustrated 

by the example of a waste heat recovery system. The 

test bench is planned and built up within the scope of 

the public founded project qOpt at the Institute for 

Automotive Engineering (RWTH Aachen Universi-

ty) in cooperation with the Forschungsgesellschaft 

Kraftfahrwesen mbH Aachen and the Institute of 

Automatic Control (RWTH Aachen University). 

 

Keywords: hardware-in-the-loop simulation, thermal 

management; vehicle simulation; combined heat and 

power generation, waste heat recovery, electric ve-

hicle, Plug-in hybrid vehicle, thermal storage 

1 Introduction 

A pursued objective of politics and industry is to 

improve the efficiency and reduce the emission of 

individual mobility. For achieving that, the electrifi-

cation of the drive train seems to be a promising ap-

proach. The wide distribution of purely electric vehi-

cles lacks due to their short driving ranges since the 

specific energy content of current traction battery 

systems is rather low which leads to a high vehicle 

weight. Besides, the costs for such systems are still 

quite high. Plug-in hybrid electric vehicles (PHEV) 

or range extended electric vehicle (REEV) provide 

the opportunity to combine the advantages of a con-

ventionally propelled vehicle such as their high driv-

ing ranges with the possibility of driving electrically 

and thus without emissions. To increase the electric 

driving range an efficient treatment of the electric 

energy is obligatory. This includes the optimization 

of the drive train, the reduction of the electric energy 

demand for auxiliary consumers for example by 

means of an intelligent thermal management. In or-

der to exploit the maximum potential of such a drive 

train a complex operational strategy in consideration 

of all energy forms has to be provided. For example 

in the scope of the public founded project qOpt, 

which enables this research, especially the reduction 

of auxiliary electric heaters during the winter term is 

focused. Therefore a waste heat recovery system in 

form of a latent heat storage in combination with an 

operational strategy will be developed. 

For an a priori design the requirements for new 

simulation tools augment. But often not every com-

ponent may be simulated properly so hardware tests 

are still necessary. A combination of simulation 

models and specific hardware components in a 

hardware-in-the-loop (HIL) environment provides 

the possibility to reduce building up physical proto-

types for a high number of variations. 

HIL systems are widely used for control systems, 

like engine control units. An extension of such sys-

tems for prototyping components is the logical con-

sequence and is to be considered further on in this 

paper. 
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2 Hardware-in-the-Loop System 

In general, HIL simulation systems provide the 

opportunity for the following three points: 

• Component tests and component design 

• Design, test and validation of operational 

strategies 

• Control of test bench components 

Such a system is built up at the Institute for Au-

tomotive Engineering (ika), RWTH Aachen Univer-

sity, in cooperation with the Forschungsgesellschaft 

Kraftfahrwesen mbH Aachen (fka). 

The main system consists of the simulation envi-

ronment, the test bench components and its controls 

and the data exchange process. All three systems are 

explained further in the following sub chapters. 

2.1 Holistic Model Library 

For the mentioned reasons a holistic model li-

brary has been developed at the ika in cooperation 

with the fka and is constantly increased and im-

proved [1].   

The library contains different kinds of vehicle 

models, including their drive train, passenger cabin, 

and their respective cooling circuits. Also building 

systems may be considered, to solve future problem 

issues like vehicle-to-home (V2H) or vehicle-to-grid 

(V2G) applications. All models can be controlled 

and evaluated under different dynamic boundary 

conditions (e.g. drive cycles, ambient conditions) 

(cf. Fig. 1). 

 

 

Fig. 1: Holistic simulation approach 

The library is implemented following an ap-

proach of high scalability and modularity, so the lev-

el of detail may be adjusted depending on the issue 

to be investigated (cf. [1]). 

2.2 Thermo-hydraulic test bench 

The common interfaces for thermo-hydraulic 

simulations are the temperature, volume flow rate 

and the pressure. When emulating physical systems 

in a simulation environment the respective physical 

values have to be provided with a thermo-hydraulic 

test bench at every time step. The used test bench for 

the HIL system is shown in Fig. 2. For the hydraulic 

part, a controllable fluid pump and several controlla-

ble valves are integrated to adjust the volume flow 

rate and the relative pressure at the device under test 

(DUT). 

The temperature is regulated with a heating de-

vice and a fluid cooling system. When connecting a 

refrigerant system also temperatures less than ambi-

ent temperature can be achieved. 

The test bench is operated by a CompactRIO sys-

tem. Since the system is not hardly real time capable 

with bigger models also a PXI System may be con-

nected, which is presented in [3]. 

 

 

Fig. 2: Thermo-hydraulic test bench 

2.3 Data Exchange Process 

The software configuration of the HIL consists of 

several applications, which are simultaneously work-

ing together. The participating applications address 

different concerns at the HIL, e.g. simulation and test 

bench control. 

Proper execution and interaction of all applica-

tions need to be assured. Thereby the resulting chal-

lenge for the HIL system is the elimination of un-

wanted side effects between the applications in order 

to avoid mutual interference of the applications dur-

ing operation. 
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Fig. 3: Software structure of the HIL system. Multiple applications are joined for operation. 

An overview of the participated applications cur-

rently in use at the HIL is shown in Fig. 3. Most im-

portant are Dymola and LabView. Dymola is respon-

sible for hosting the physical model of the surround-

ing environment, which generates control requests 

for the test bench and the DUT. The management of 

the HIL system itself is based on National Instru-

ments LabView [6] in optional combination with 

VeriStand [7], executed on a CompactRIO hardware 

and a Windows based personal computer. The 

CompactRIO executes all requests coming from the 

physical model output. LabView in combination 

with the CompactRIO ensures reliable control of the 

hardware of the test bench and keeps the test bench 

within applicable operating conditions. 

At the same time LabView and the CompactRIO 

capture measurement data from test bench and DUT 

and return these back to the physical simulation in 

the Dymola environment. As Dymola is normally not 

targeted for real-time interaction with control com-

ponents, new coupling features have been integrated 

to Dymola in order to implement the previously 

mentioned linkage of applications. 

The connection between the applications is real-

ized by an additional Remote Process Communica-

tion (RPCom) interface library, developed at fka. 

The library provides communication and synchroni-

zation elements, which are added to the physical 

model in Dymola in order to build an externally ac-

cessible interface with input and output data (cf. Fig. 

4). This interface is accessible while the simulation 

is running. Corresponding elements of the RPCom 

Library are as well integrated in a LabView VI
1
 or in 

VeriStand using a RPCom Custom Device [8]. 

                                                      
1
 Individual, decoupled operation of all applications can 

be performed even if the RPCom elements have been in-

tegrated, allowing enhancements of the physical model 

and the test bench in parallel without removing the 

RPCom elements. 

The RPCom library is implemented in .NET and 

embedded by Dymola using a system native c wrap-

per [5]. To allow access to the .NET components by 

the system native functions called by Dymola the 

intermediate code is modified such that all managed 

code elements are exported with system native inter-

faces [9]. The RPCom functionality can be used to 

even extend the co-operation of tools at the HIL to 

further applications, like e.g. a driving simulator, if 

these are required. 

 

 

Fig. 4: Simple physical model in Dymola with addi-

tional RPCom elements 

Main responsibility of the RPCom library is bind-

ing the individual applications together by organiz-

ing a coordinated signal exchange. This is realized 

by the RPCom library using UDP communication 

making distributed execution of all applications on a 

multi-computer network possible, completely decou-

pling the control of the test bench hardware from the 

simulation itself. Supplementary to data exchange, a 

synchronization functionality for all applications, 

necessary to make the operations of simulation and 

test bench behaviors coherent, is taken out by the 

RPCom library. 

The exchange of signals between the applications 

is organized by symbolic IDs. Finally this means that 

all signals are managed within a signal pool by an 

unique symbolic name, which is associated with in-
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formation on the corresponding value among with a 

the timestamp of last known validity of the value and 

supplementary meta-data, like physical unit or a de-

tailed signal description. Currently, all elementary 

data types, such as double, integer or boolean values 

are supported. Vectors shall be supported in a future 

extension of RPCom. 

All signals are initially stored in local caches as-

signed to each participating application. In regular, 

configurable cycles - which depend on the timing 

requirements - these caches are synchronized. The 

synchronization can be selected to match the indi-

vidual timing requirements of the application, avoid-

ing unnecessary data exchanges. Altogether the syn-

chronized signal caches of the applications build up a 

distributed information server. 

For reliable HIL operation, the connection of ap-

plications and the timing behavior realizable by the 

RPCom library are relevant in order to ensure deter-

ministic HIL operations.  

 

 

 

Fig. 5: Signal travel time (tx,Total) and distribution 

measured during HIL operation for exchanged data 

between the coupled applications. Configured cycle 

time is 10 ms. 

Due to the systems thermal inertia, soft hardware 

requirements can be applied for the cooperation. 

Fig. 5 shows a timing measurement executed on 

the HIL system with a configured synchronization 

time of the application caches of 10 ms by the 

RPCom library. In the analyzed scenario Dymola 

and LabView are operated on the same machine. A 

pool of 25 signals is exchanged between the applica-

tions. The cycle time of the Dymola Model is 100 ms 

while HIL cycle time for test bench control is set to 

10 ms. As the measurements in Fig. 5 implies, the 

exchange rate is very stable around 10 to 20 ms.  

The benefit of the integration of the RPCom li-

brary is to distribute different HIL concerns to multi-

ple computer systems within a network, e.g. decou-

pling hard real-time from weak real-time require-

ments. Also an easy partitioning of different Dymola 

model segments to more than one computer system 

can be realized, allowing integration of even com-

plex and computation time intensive model configu-

rations. Both benefits are utilized within the HIL sys-

tem. 

3 Augmented CHP usage of the in-

ternal combustion engine in electri-

fied vehicles 

Especially in winter terms the thermal manage-

ment of electrified vehicles represents a major chal-

lenge. A temperature sensible component e.g. the 

traction battery needs to be conditioned and heating 

energy has to be provided for the passenger cabin.  

When driving purely electrically the heating energy 

has to be supported electrically which directly affects 

the electric driving range. Thus, waste heat recovery 

is a promising approach. 

In the scope of the project qOpt the electrified 

vehicle Opel Corsa Hybrid 3 (cf. [2]) of ika is con-

verted to a Plug-in-hybrid electric vehicle. Besides, 

an optimization of the thermal management of the 

vehicle  is considered. In this article the potential of 

the integration of a thermal storage into a PHEV to 

enhance the electric driving range is further analyzed 

by means of hardware-in-the-loop simulations.  

3.1 System architecture 

The vehicle data including the passenger´s cabin 

are listed in Tab. 1. Since the internal combustion 

engine (ICE) has a high potential for waste heat re-
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covery, the ICE and its cooling circuit is considered 

as the device under test (DUT).  

 

Tab. 1: Vehicle data of the Opel Corsa Hybrid 3 

In Fig. 6 the schematic hardware setup is shown. 

An additional heat exchanger (HEX) is integrated 

into the cooling circuit of the ICE to provide the pos-

sibility to warm up the ICE or use its waste heat. The 

heat exchanger is the interface between both the 

electrified vehicle and the HIL system. Since the in-

tegrated pump is belt driven, an additional electric 

pump is integrated to achieve higher volume flow 

rates when driving at low engine speed or when driv-

ing purely electrically. Furthermore to monitor and 

control the cooling circuit, different sensors for vol-

ume flow rate, relative pressure and temperatures are 

integrated. 

 

 

Fig. 6: Schematic view of the HIL setup and its con-

nection to the cooling circuit of the internal combus-

tion engine 

To analyze the waste heat at different driving cy-

cles, the vehicle is placed on a dynamic chassis dy-

namometer. The driving resistance for the specific 

Opel Corsa are adjusted, so a realistic power output 

is achieved. The current test setup is shown in Fig. 7. 

As mentioned above a winter term scenario and the 

possibility of waste heat recovery is analyzed. But 

since with this setup the winter term boundary condi-

tions can only be adjusted to the ICE it is necessary 

to simulate the remaining vehicle components. For 

this purpose inter alia the library mentioned in chap-

ter 2 is used.   

 

Fig. 7: System setup with the Opel Corsa on the dy-

namic chassis dynamometer connected to the HIL 

test bench 

3.2 Simulation models 

In the application case all thermal energy sinks 

are modeled in Dymola/Modelica. This includes the 

model of the passenger cabin and the HVAC unit. 

Besides, a thermal storage is considered. The heat 

exchanger of the HVAC uses the measured tempera-

ture to calculate the heat flow rate into the cabin. The 

heating demand is determined by the passenger cabin 

model. It includes the different convective and 

radiative heat flow rates to and from the environment 

(cf. Fig. 8 and [4]). Inside the heating circuit an addi-

tional electric heater is installed to provide heating 

energy when the vehicle is driven purely electrically.  

 

 

Fig. 8: Energy flows in passenger´s cabin model 

In this application example a latent heat storage 

was chosen. It is modeled according to [10]. The la-

tent material has a melting temperature of about 

65°C. Depending on the temperature gradient be-

tween the cooling fluid and the latent material the 

thermal conductance is calculated.  

empty weight 1150 kg

power (ICE) 44 kW

power (electric machine) 37 kW

battery capacity 16 kWh

cabin volume 3 m³

window surface 2 m²
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3.3 Scenario and boundary conditions 

To analyze the benefit of an advanced combined 

heat and power (CHP) usage of the ICE (engine data 

cf. Tab. 1) a realistic scenario is defined. A drive 

cycle with a highway part and a rural part is used for 

the simulations. On the highway the vehicle is pro-

pelled by the internal combustion engine at a con-

stant speed of 110 km/h. The waste heat is used to 

warm up the ICE and to provide heat for the passen-

ger´s cabin. Shortly before the thermostatic valve 

opens (engine is warmed up) a valve is operated, 

opening the bypass to the thermal storage. In this 

way an advanced combined heat and power genera-

tion usage of the ICE is achieved since the opening 

time of the thermostatic valve is minimized. Thus, 

less heat is rejected to the environment and a higher 

amount of waste heat is used. As mentioned before, 

all heat sinks are simulated in Modelica and the re-

spective heat flows rates are transferred from the 

engine´s cooling circuit in the thermo-hydraulic test 

bench.  

Subsequently, the vehicle enters a rural zone (Ur-

ban part of HYZEM cycle) and is operated purely 

electrically. The stored energy from the thermal stor-

age is then used for providing heating energy for the 

passenger´s cabin, so the high value electric energy 

need not to be used for heating purposes. 

As ambient conditions a typical winter scenario is 

chosen (0°C ambient temperature, 100 W/m² solar 

radiation) (cf. [11]).   

4 Results 

In Fig. 9 the dynamic profile of the engine cool-

ing temperatures before and after the heat exchanger 

that is connected to the HIL are shown (cf. Fig. 6). 

The initial temperature of the engine is 10 °C. 

The waste heat of the ICE warms up the engine and 

by the means of the heat exchanger in the HVAC the 

passenger cabin. At the beginning only little heating 

energy is transferred through the HVAC heat ex-

changer because of the low temperature gradient. At 

a temperature of 84 °C in the ICE cooling circuit the 

valve, to regulate the volumetric flow through the 

thermal storage is opened. Due to the high tempera-

ture gradient a high amount of heat is transferred to 

the thermal storage. The measurement clearly shows 

this point. Both the temperature before and after the 

heat exchanger are reduced. Subsequently the tem-

perature gradient and therefore the heat flow rate into 

the storage decreases (cf. Fig. 9). 

      

 

 

Fig. 9: Engine cooling temperatures before and after 

heat exchanger (cf. Fig. 6) 

Fig. 10 shows the dynamic curve of the heat flow 

rate to the cabin and to the storage. Within the first 

300 seconds the heating power increases since the 

engine cooling temperature increases. After that the 

control unit for cabin heating demands a lower heat-

ing power to maintain comfort temperature (cf.[4]). 

 

Fig. 10: Heat flow rates for the passenger´s cabin 

heating and to the PCM storage (cf. Fig. 6) 

In Fig. 11 the temperature curve of the thermal 

heat storage is shown. The melting point of the latent 

material is clearly stated out. At the end of the ride 

the thermal storage reaches a temperature of about 

85 °C. The contented energy amounts about 700 Wh.  

During the subsequent purely electric ride the 

heating energy may be used for cabin heating and by 

this the heating demand for the next 600 seconds 

may be provided nearly completely by the stored 

waste heat of the combustion engine. Thus, the elec-

tric driving range can be enhanced by about 4 km. 
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Fig. 11: time dependent temperature curve of the 

latent heat storage 

5 Conclusion and Outlook 

Due to the higher complexity of electrified vehi-

cles the requirements for vehicle components and 

vehicle design augment and new development tools 

are desirable. In this article a HIL system using 

Modelica and an UDP interface has been presented 

which was developed at the Institute for Automotive 

Engineering (ika), RWTH Aachen University, in 

cooperation with the Forschungsgesellschaft 

Kraftfahrwesen mbH Aachen (fka). The connection 

between the applications is realized by an additional 

Remote Process Communication (RPCom) interface 

library, developed at fka. 

Performance tests show that the connection of appli-

cations and the timing behavior is reliable to ensure 

deterministic HIL operations, at least for low real 

time requirements. Besides, by this data exchange 

progress it is possible to separate the simulation and 

the test bench control hardware, especially when 

models with a higher complexity demand high per-

formance hardware. 

 

An application example was given in which the 

potential of integrating a thermal heat storage unit 

into the cooling circuit of the ICE of a PHEV was 

investigated by means of HIL simulation. In order to 

measure the usable amount of waste heat of the ICE 

the vehicle was placed on a dynamic chassis dyna-

mometer. All heat sinks, like the passenger cabin as 

well as the thermal storage were simulated in 

Dymola and the respective physical values were 

transferred to the thermo-hydraulic test bench. The 

results show that a reasonable amount of waste heat 

could be recovered in a thermal storage. Therefore, 

the electric driving range can be enhanced by provid-

ing the heat energy of the passenger cabin by the 

thermal storage unit. 

The HIL system will be used further in the project 

qOpt to develop an operational strategy in considera-

tion of the heat demand for electrified vehicles tak-

ing into account a latent heat storage system. Be-

sides, in another project an electrical and thermal 

coupling between vehicles and buildings will be in-

vestigated further on.  
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Abstract 

This paper highlights the use of a coordinated suite 
of Modelica libraries for vehicle thermal manage-
ment applications.  The models are implemented us-
ing the Vehicle Dynamics Library, Liquid Cooling 
Library, and Heat Exchanger Library from Modelon. 
An integrated vehicle thermal management model is 
implemented, including the key physical and con-
trols models.  The model is used to highlight com-
plex, multi-domain interactions between the physical 
and control systems over drive cycles for combined 
thermal and fuel efficiency studies.  The model is 
also used to support controller development and op-
timization as an FMU integrated into Simulink.  The 
flexibility of FMI-based workflows is also illustrated 
via batch and Monte Carlo simulations in Excel. A 
heat exchanger application coupling inputs from 
CFD illustrates the use of higher fidelity models 
from Heat Exchanger Library for calculation of per-
formance degradation due to non-uniformity.   

Keywords: vehicle thermal management; thermal 
systems; fluid systems; vehicle modeling; power-
train; engine; transmission; controls; Simulink; FMI 

1 Introduction 

To meet increasingly stringent fuel economy and 
emissions standards, automotive original equipment 
manufacturers (OEMs) and suppliers have sought 
novel technologies to increase fuel efficiency. Given 
the complexity of vehicle systems, the need for in-
creasingly sophisticated analytic tools to perform 
concept evaluation, capture multi-domain system 
interactions, and develop and validate control strate-
gies grows. A Modelica-based platform for simula-
tion of vehicle systems is ideal for this type of work 
as it naturally captures multi-domain interactions, 
allows flexibility in model complexity to support a 

range of applications, and supports integration of 
physical and control systems.   

Traditional vehicle models for fuel consumption 
have often ignored thermal effects as the inclusion of 
thermal effects increases the model development and 
parameterization effort and can affect computational 
efficiency for models which are run on drive cycles 
which can be thousands of seconds in duration.    
However, in the search for fuel efficiency gains, ad-
vanced technology is rapidly advancing from re-
search and development to production, including the 
associated controls development.  Due to the com-
plex interactions between vehicle subsystems, vehi-
cle thermal management (VTM) requires a holistic 
approach to minimize energy consumption without 
violating thermal limits for the various systems. Pre-
vious work in Modelica has highlighted this need for 
thermal management of electrified vehicles [1]. 

A real world example of a vehicle level technolo-
gy that has the potential for fuel economy gains, but 
with a direct impact on thermal management is grill 
shutters. Grill shutters can be used to restrict or com-
pletely close airflow to the front of the vehicle.  
While this reduction in airflow positively impacts 
fuel efficiency by reduction in aerodynamic drag, 
reduced airflow through the front end of the vehicle 
degrades cooling capacity through the heat exchang-
er stack which contains the radiator, condenser, and 
potentially additional coolers such as oil and charge 
air coolers.  Grill shutters can be mechanical or po-
tentially even actively controlled.  Clearly attribute 
balancing at the vehicle level is required to manage 
fuel consumption gains and the cooling requirements 
for the various fluid systems over a range of driving 
conditions and ambient environments. Active grill 
shutters can be found in production on a range of 
vehicles from various manufacturers, including the 
Ford Focus, Chevrolet Cruze, Cadillac ATS, Dodge 
Dart, and Ram 1500 [1].    

To illustrate the complex interactions between 
vehicle subsystems, vehicle controls, and thermal 
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controls, an integrated vehicle thermal management 
model is implemented with grill shutters.  The mod-
els are implemented using a coordinated suite of 
Modelica libraries from Modelon. The models are 
implemented using the Vehicle Dynamics Library 
(VDL) [3], Liquid Cooling Library (LCL) [4], and 
Heat Exchanger Library (HXL) [5].  The model cap-
tures vehicle dynamics on drive cycles including key 
thermal dynamics.  The model also includes critical 
vehicle controls and thermal controls for the grill 
shutters and fan. This paper provides an overview of 
the model, key subsystem implementations, and key 
features of the various libraries to support this type 
of modeling.    

The integrated vehicle thermal management mod-
el is used as a demonstrator for Modelica-based 
workflows for illustrative controls development and 
robustness applications. The controls development 
application illustrates the implementation and opti-
mization of an active grill shutter strategy.  The 
Modelica VTM model is exported as an FMU via 
Functional Mock-up Interface [6] for integration in 
Simulink with the grill shutter and fan controls. Inte-
gration in Simulink is via FMI Toolbox for 
MATLAB [7] from Modelon.  DOE techniques are 
used to optimize the combined grill shutter and fan 
settings for minimum fuel consumption.  A sample 
optimized controller is implemented to show the fuel 
economy impact on several different drive cycles. 
Sample robustness studies are also performed with 
the VTM FMU in Excel via FMI Add-in for Excel 
[8] from Modelon.  These applications include batch 
simulations and Monte Carlo simulations and also 
illustrate some of the scripting capabilities in FMI 
Add-in for Excel. Workflows that involve coupling 
higher fidelity models from Heat Exchanger Library 
with CFD input data for heat exchanger performance 
are shown. 

This paper describes a coordinated suite of librar-
ies for vehicle thermal management, an integrated 
model including grill shutters, and applications of 
this model for controls development and robustness 
using FMI.  These examples illustrate the multi-
domain approach needed for vehicle thermal man-
agement applications.  Given the importance of 
model deployment outside of traditional CAE envi-
ronments to support model-based systems engineer-
ing, workflow aspects via FMI are highlighted.    

2 Integrated VTM Model 

This section outlines the key multi-domain compo-
nent and subsystem models in the integrated VTM 
model that support the subsequent applications. The 

main model components and subsystems are de-
tailed.  The model shown is representative of system 
level models for use in thermal system design and 
performance characterization with parameterization 
as a demonstrator model and thus does not include 
any customer-proprietary data (future publications 
will highlight industrial models and applications 
pending publication approval).  The vehicle parame-
terization data was taken from a sedan implemented 
in VDL.  The majority of the thermal parameters 
were estimated from authors’ experience with similar 
systems in industrial applications. 

2.1 System Model 

Figure 1 shows the integrated VTM model.  This 
model is structured in a thermal-centric way such 
that the key thermal subsystems are visible at the top 
level of the model and in parallel with the vehicle 
model.  At this level, the model contains the follow-
ing subcomponents with key systems to be described 
in more detail in subsequent sections: 

• Lumped 1D conventional vehicle model 
with automatic transmission 

• Lumped thermal models for engine and 
transmission 

• Simple underhood models for engine and 
transmission heat transfer 

• Controllers for fan and grill shutters  
• Coolant and transmission oil fluid circuits 
• Heat exchanger stack with radiator, conden-

ser, transmission oil cooler, and charge air 
cooler 

• Minimal HVAC and charge air circuits 
• Electric fan with simplified vehicle electrical 

system 
 

 
Figure 1.  Integrated VTM model 
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2.2 Vehicle Model 

The vehicle model is implemented using the vehicle 
model architecture and components from Vehicle 
Dynamics Library [3].  This architecture supports 
the full range of vehicle models from lumped 1D to 
geometry-based full 3D representations suitable for 
vehicle dynamics and handling applications.  Previ-
ous work [9] has illustrated drivability applications 
using Vehicle Dynamics Library with simplified 
chassis representations.  A similar approach is used 
to create a computationally-efficient lumped 1D ve-
hicle model suitable for drive cycle simulations.  
This model focuses on core loads and losses to en-
sure that the engine operates at the appropriate oper-
ating conditions for accurate fuel consumption and 
heat generation.  Both the mapped engine and trans-
mission generate heat input to the thermal system via 
thermal connectors added to the vehicle architecture.  
The simplified chassis model with rigid axle, no slip 
tires, and a single lumped mass is shown in Figure 
3.  Parameterization for the vehicle model is taken 
from a sedan model in VDL. 
 

 
Figure 2.  Vehicle model augmented with thermal be-

havior 

 
Figure 3.  Simplified 1D chassis model 

2.3 Fluid Circuits 

Fluid circuit modeling is a key part of the VTM 
model. An efficient thermo-fluid implementation is 
critical as it is common for a VTM model to include 
several different fluid circuits which interact with the 
thermal system and heat exchanger stack.  Liquid 
Cooling Library [4] is ideal for modeling incom-
pressible fluid circuits due to its efficient formula-
tions which can support models with minimal num-
ber of pressure states, potentially even a single pres-
sure state per circuit, while maintaining thermal 
states as required throughout the system. This ap-
proach eliminates the stiffness and resulting compu-
tational impact of modeling incompressible flow cir-
cuits as minimally compressible. 
    Figure 4 shows a simple coolant circuit imple-
mented to support the demonstrator VTM model.  
This model includes the following components from 
Liquid Cooling Library: 

• Coolant pump driven by crankshaft 
• Coolant path through engine head and block  
• Thermostat to control flow to radiator and 

via bypass 
• Expansion volume 

A similar model is implemented for the transmission 
oil circuit.   
 

 
Figure 4.  Simple coolant circuit 

2.4 Heat Exchanger Stack 

The heat exchanger stack is a key coupling point be-
tween the fluid circuits.  Both Liquid Cooling Li-
brary and Heat Exchanger Library include models of 
heat exchanger stacks.  These models differ in terms 
of model detail.  Heat Exchanger Library allows de-
tailed, geometry-based models which can be stacked 
using a streamtube approach for the airflow that pre-
serves non-uniform conditions for each heat ex-
changer throughout the stack.  The heat exchanger 
models in Heat Exchanger Library can be discretized 
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and can accept both uniform and non-uniform air-
flow inputs.  The approach and a sample model are 
shown in Figure 5.  This formulation is efficient 
enough to support drive cycle work assuming a rea-
sonable number of stream tubes.  The stack models 
in Liquid Cooling Library require only the basic 
stack geometry and can use mapped heat exchangers 
with imposed airflow based on external inputs from 
CFD, etc.   The air temperatures through the stack 
are calculated based on the stack geometry with a 
single calculated input temperature for each heat ex-
changer based on preceding heat exchanger outlet 
temperatures.  LCL includes assembled stack models 
ranging from 2-8 heat exchangers. 
    Figure 6 shows the heat exchanger stack used in 
the VTM model.  The stack consists of a radiator, 
condenser, transmission oil cooler, and charge air 
cooler.  Figure 6 shows the visualization of the stack 
geometry which also provides dynamic visualization 
of the temperatures during the run.  The dynamic 
summary visualization for the temperatures, 
flowrates, and heat transfer in each heat exchanger is 
also shown.  Each heat exchanger is implemented as 
a mapped effectiveness as a table of the fluid and air 
mass flow rates.  Though simplified, effectiveness 
data is often available early in vehicle programs and 
thus can support upfront cooling pack concept as-
sessment and early thermal system design and per-
formance. 
 

 
 

 
 

Figure 5.  Streamtube approach and sample stack 
from Heat Exchanger Library 

 
Figure 6.  Heat exchanger stack 

 

 
Figure 7. Stack geometry and summary visualization 

2.5 Controllers 

For demonstration purposes, simple controllers in 
Modelica are implemented for the fan and grill shut-
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ters.  The fan controller is shown in Figure 8.  The 
grill shutter implementation mimics a passive grill 
shutter system where grill shutters are closed above a 
parameterized vehicle speed as shown in Figure 9.  
More detailed controller implementations in Sim-
ulink are discussed in Section 3.2 when the VTM 
model is exported as an FMU and combined with the 
control system in Simulink.      

 

 
Figure 8. Simple fan controller 

 
Figure 9. Passive grill shutter control 

2.6 Driver and Drive Cycles 

To support drive cycle simulations, the vehicle mod-
el shown in Figure 2 is augmented with a driver 
model as shown in Figure 10.  The driver model pro-
vides closed loop trace following based on the vehi-
cle longitudinal velocity.  The driver model also 
handles the gear shifting for the automatic transmis-
sion based on a shift map.  The driver model is 
adapted from the closed loop driver in VDL. Ambi-
ent and road conditions are also specified in the 
augmented driver. 

Drive cycle selection is also implemented in con-
junction with the vehicle model.  Figure 11 shows 
the interface for drive cycle selection.  Common and 
publicly available drive cycles are selectable from a 
drop down list.  Custom drive cycles are supported 
via the “User Defined” option where the cycle data is 
implemented directly in the model or via the “File” 
option where the drive cycle data is read from a file. 

 
Figure 10.  Assembled vehicle with driver, drive cycle, 

and ambient models 

 

 
Figure 11.  Drive cycle model with standard and user-

defined cycle implementations 

3 Application Examples 

Using the component and subsystem models outlined 
in the previous section, this section details several 
applications and workflows using the integrated 
VTM model. 

3.1 Drive Cycle Simulation 

The first application simply illustrates drive cycle 
simulations in Dymola [10] with the models de-
scribed in Section 2.  The integrated VTM model is 
simulated on the US06 drive cycle. Selected results 
from that simulation are shown in Figure 12. These 
results illustrate both the typical drive cycle simula-
tion results along with results of a thermal system 
such as coolant and oil temperatures.  Even with pa-
rameterization for a demonstrator model, the results 
are certainly reasonable and suitable to illustrate ad-
ditional workflows with the VTM model.      
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Figure 12.  Simulation results on US06 drive cycle 

3.2 Controls Development and Optimization 

While Modelica can handle both controls and physi-
cal models, a common workflow is to combine Mod-
elica-based tools for physical modeling with Sim-
ulink for controls development.  This coupling be-
tween Simulink and Modelica-based tools like 
Dymola is especially streamlined with Functional 
Mock-up Interface (FMI) [6].  While Simulink is not 

natively FMI-compliant, Modelon provides the FMI 
Toolbox for MATLAB [7] that enables both import 
of FMUs into Simulink and export of FMUs from 
Simulink.  This bi-directional coupling is extremely 
powerful and useful in that it allows both controls 
engineers and physical system modelers to leverage 
best-of-breed tools to support their work with a ro-
bust and straight-forward workflow for integration in 
either simulation environment. 
     For integration with controls in Simulink, the in-
tegrated VTM model in Figure 1 is simply modified 
to accept external inputs for the fan and grill com-
mands as shown in Figure 13 to provide a portioning 
between the physical and control systems.  A model 
exchange FMU is created in Dymola from this mod-
el.  This FMU for the VTM model is then imported 
into Simulink using FMI Toolbox for MATLAB and 
integrated with the fan and grill controllers imple-
mented natively in Simulink.  The resulting integrat-
ed model in Simulink is shown in Figure 14.   
  

 
Figure 13.  VTM model with external control for FMU 

generation 

 

Fan controller

Grill controller
(Simulink) ME FMU of VTM model w/o 

controllers (Modelica)  
Figure 14.  Integrated model in Simulink via FMU im-

port with FMI Toolbox for MATLAB 
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An active shutter control strategy was developed 
in Simulink to explore opportunities for improved 
vehicle fuel consumption. To help determine optimal 
settings for grill command and fan command, the 
DOE capabilities of FMI Toolbox for MATLAB to 
execute the runs and post-process results were used 
to run a full factorial sweep for grill and fan com-
mand at different vehicle speeds. Sample results for 
a vehicle speed of 120kph are shown in Figure 15.  
These DOE results can be used to identify optimal 
grill and fan commands that maintain desired coolant 
temperatures at minimum fuel consumption.    

 

 
(a) Engine coolant temperature 

 
(b) Fuel flow rate 

Figure 15.  Results from DOE for grill and fan com-
mands at 120kph vehicle speed 

 
Using the DOE results, an active control strategy 

is implemented in Simulink.  The implementation is 
shown in Figure 16.  This strategy attempts to keep 
the grill closed as much as possible to reduce aero-
dynamic drag while maintaining target coolant and 
oil temperatures. The controller attempts to use op-

timal grill and fan settings when operating in cooling 
mode. 

 
Figure 16.  Active grill shutter controller 

 
The active and passive strategies were run on a 

number of common drive cycles.  Figure 17 shows 
the vehicle speed for the FTP MOD drive cycle.  
Figure 18 shows comparisons between the active and 
passive grill shutters for the FTP MOD drive cycle.  
For this drive cycle, the vehicle speeds are less than 
15 m/s for the majority of the cycle. The coolant 
temperatures between the mechanical and active 
shutter controllers are compared in Figure 18. The 
active shutter controller can be observed to speed the 
warm up of the coolant temperatures by at least 2 
minutes in addition to maintaining the coolant tem-
peratures close to the desired operating point of 90°C 
throughout the entire drive cycle. The grill and fan 
commands in the mechanical shutter controller 
switch between off and completely on whereas the 
active shutter controller makes optimal use of the 
cooling mechanism to both speed up the warming 
process and at the same time maintaining tempera-
tures close to the desired operating point. When 
compared at equivalent coolant temperatures, the 
optimal controller is expected to have slightly better 
fuel consumption (typical benefits of grill shutters 
are in the range of 0.5-2% depending on the vehicle 
and cycle).  Of course, these results are highly de-
pendent on the power consumption of the fan and the 
tradeoff between fan power and recovered aero drag 
and highlight the need for an analytic model to com-
prehend these complex tradeoffs. 

 

 
Figure 17.  Vehicle speed for the FTP MOD drive cycle 
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Figure 18.  Comparisons between active and passive 

grill shutters on FTP MOD cycle 

3.3 Batch Simulations and Robustness 

The integrated VTM model can be simulated from 
Excel using FMI Add-in for Excel to support batch 

simulations and robustness applications.  To support 
this workflow, a co-simulation FMU is created and 
then imported into FMI Add-in for Excel. Experi-
ment sheets allow users to change parameters, pro-
vide external inputs, apply boundary conditions, 
simulate the model, and post-process the results.   
The simulations are automatically run in parallel dis-
tributed across the local CPU cores.  The use of FMI 
for model deployment outside of the model devel-
opment environment is providing additional value 
from a standards-based workflow. 
    A sample experiment sheet for the VTM model is 
shown in Figure 19 to run the model over various 
drive cycles.  Coolant temperature results from a 
batch simulation at a range of vehicle speeds are 
shown in Figure 20.  Using the scripting API provid-
ed with FMI Add-in for Excel, Monte Carlo simula-
tions for robustness applications are enabled.  Figure 
21 shows the Monte Carlo experiment sheet created 
by the script and results from simulations over a dis-
tribution of heat exchanger effectiveness multipliers 
and airflow distribution multipliers.   
 

 
Figure 19.  Experiment sheet in Excel to run model 

over different drive cycles 

 

 
Figure 20.  Batch simulation showing coolant  
temperature over a range of vehicle speeds 
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Figure 21.  Monte Carlo simulations for heat  

exchanger effectiveness and stack airflow 

3.4 Heat Exchanger Non-Uniformity 

    Heat exchanger performance is a critical factor in 
VTM applications. While convenient to simulate 
with uniform velocity and temperature inputs, actual 
conditions typically include non-uniformity.  Thus, 
assessing heat exchanger performance under non-
uniform conditions is critical. Heat Exchanger Li-
brary [5] provides both uniform and non-uniform 
input sources.  Figure 22 shows a test model that can 
be configured for either uniform or non-uniform in-
puts. Non-uniform inputs would typically be provid-
ed from a CFD tool and thus represent a 1D-3D cou-
pling between CFD and the discretized 1D approach 
in the models in Heat Exchanger Library.  Similar 
coupling with the Air Conditioning Library [12] for 
evaluating idle air recirculation has been published 
[13].    

 
Figure 22.  Heat exchanger test with option for uni-

form or non-uniform inputs 

 
To verify the model, published distributions [11] 
were simulated and compared with analytic results 
from the publication for heat exchanger non-
uniformity, defined as the ratio of heat transfer for 
non-uniform inputs to heat transfer with averaged 
uniform inputs from the non-uniform distribution: 

  
(1) 

 
The study was performed with a model from Heat 
Exchanger Library calibrated to bench data.  The 

model was then run over the published distributions 
in [11] for a range of heat capacity ratios with the 
external air as the minimum heat capacity fluid and 
non-uniformity results compared with published val-
ues.  Figure 23 shows a sample distribution.  The 
comparisons between the HXL simulation and the 
published results are shown in Table 1.  Note that the 
results from the paper were extracted from graphs in 
[11].  The simulations in [11] were also run over a 
large range of NTU values (0-100) and it was diffi-
cult to extract values at the NTU for this cooler 
(roughly 1-2).  Thus, the values for NTU=5 and 
NTU approaching zero were extracted for compari-
son with the model and shown in the table.  The 
model accurately captures both the trend and magni-
tude of the non-uniformity. 
  

 
Figure 23.  Velocity distributions from patterns in [11] 

 
Table 1. Non-uniformity comparison between model 
and published results [11] 

Distribution Cmin/Cmax NTU = 0 NTU = 5

Interpolated Non-Uniformity Non-Uniformity

A0 0.2 0.820 0.818 0.846

A1 0.2 0.859 0.856 0.874

A2 0.2 0.959 0.950 0.958

A3 0.2 0.998 0.991 0.993

A0 0.4 0.815 0.769 0.850

A1 0.4 0.860 0.831 0.900

A2 0.4 0.961 0.948 0.956

A3 0.4 0.998 0.993 0.995

A0 0.6 0.814 0.750 0.821

A1 0.6 0.862 0.810 0.862

A2 0.6 0.962 0.946 0.949

A3 0.6 0.998 0.991 0.991

A0 0.8 0.815 0.811 0.809

A1 0.8 0.864 0.844 0.840

A2 0.8 0.963 0.946 0.938

A3 0.8 0.998 0.989 0.989

A0 1 0.816 0.810 0.808

A1 1 0.866 0.845 0.842

A2 1 0.964 0.971 0.945

A3 1 0.998 0.999 0.998

HXL Simulation Ranganayakulu Paper

Non-Uniformity
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4 Conclusions 

A coordinated suite of Modelica libraries for vehicle 
thermal management applications have been used in 
the implementation of an integrated VTM model 
with combined vehicle fuel and thermal effects, in-
cluding the key physical and control models. The 
demonstrator VTM model is implemented using the 
Vehicle Dynamics Library, Liquid Cooling Library, 
and Heat Exchanger Library from Modelon. Several 
application examples focused on vehicle thermal 
management have been detailed. These application 
examples include drive cycle simulations, controller 
development and optimization, batch simulations and 
robustness applications, and 1D-3D coupling for heat 
exchanger performance.  These application examples 
demonstrate the use of sophisticated model libraries 
to enable the multi-domain approach needed for ve-
hicle thermal management applications.  The appli-
cation examples also illustrate the use of FMI to 
couple the VTM model with controls in Simulink 
and for use in robustness application in Excel. Given 
the importance of model deployment outside of tra-
ditional CAE environments to support model-based 
systems engineering, workflow aspects via FMI are 
highlighted.  
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Abstract 

Dongfeng Commercial Vehicles (DFCV) is develop-

ing powertrain controls for a hybrid light truck. To 

support this development, a virtual integration plat-

form is being implemented, using Modelica models 

and Functional Mock-up Units (FMUs) for the en-

gine/EMS, gearbox, MCU/e-motors, driveline, tyres 

and longitudinal dynamics. Simulink models and/or 

c-code of the Hybrid Control Unit (HCU) and 

Transmission Control Unit (TCU)  are also integrat-

ed in the platform to achieve closed-loop simulation. 

The virtual integration allows reproducing accurately 

the overall vehicle behavior and is used for optimiza-

tion of gearshifts, hybrid mode switches and hybrid 

drive strategies.  

 

Keywords: Hybrid powertrain, FMI, Control soft-

ware  

1 Motivation and objectives 

The control systems of hybrid powertrain are gener-

ally implemented using several ECUs networked 

together. Functions are distributed through the con-

trollers. Typically, the powertrain controllers will 

include a Hybrid Control Unit (HCU), an Engine 

Management System (EMS), a Transmission Control 

Unit (TCU), a Motor Control Unit (MCU), and a 

Battery Management System (BMS). Other control-

lers from chassis systems (ESP/ABS) might also in-

teract with the powertrain.  

The development of such a system requires consider-

ing the interactions of all main components together, 

namely engine, gearbox, actuation system, e-motors, 

battery, driveline, tyres. For the control software, it 

also implies that functions cannot be developed in-

dependently but are now inter-dependent and distrib-

uted over several ECUs. This poses challenges to 

classical development processes.   

 

Dongfeng Commercial Vehicles is developing such a 

hybrid powertrain for application in a light truck.  

We give a schematic of the system under considera-

tion in Figure 1. DFCV wishes to have an efficient 

tool for integrating HCU and TCU control logic, op-

timizing parameters and performing system testing. 

This tool should be available for function developers, 

should be cost-efficient and deployable. 

 

 
Figure 1 : schematic of the hybrid powertrain  

The objective of the project described in this paper is 

thus to establish a virtual hybrid powertrain where 

subsystems and controllers can be simulated together 

on a standard PC. Function developer can then easily 

verify on their PC the behavior of any changes in 

software or parameters. This virtual powertrain can 

also be used for other applications, such as large 

coverage testing or system/parameters optimization. 
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For creating this virtual hybrid powertrain, the fol-

lowing tools are used: 

 

ITI SimulationX – plant models authoring 

SimulationX is a Modelica platform that provides 

powerful commercial libraries for powertrain model-

ing and electrical systems modeling [1]. The tool 

fully support the FMI standard and application has 

been demonstrated for powertrain applications [2]. 

Models can be exported to a standard format and can 

be executed without license restrictions. This is an 

important feature for deployment of the virtual 

powertrain. 

 

Simulink –  HCU and TCU software authoring 

Dongfeng Commercial Vehicles developed HCU and 

TCU control software using a model-based approach 

in Simulink. Simulink floating-point models can be 

compiled and integrated in the virtual powertrain. 

This would be then a “model-in-the-loop” setup. It is 

also possible to use the final production-code (fixed 

point) and calibration parameters for integration in-

side the virtual powertrain. This method could be 

described then as Virtual ECUs. [3] 

 

QTronic Silver – Integration platform 

QTronic Silver is an integration platform, widely 

used for powertrain applications [4],[5],[6]. Silver 

provides the simulation core, an interactive GUI 

dashboard, numerous interfaces and tools for inte-

grating plant models and control software or even 

performing ECU chip simulation. The Virtual ECUs 

described in the previous paragraph are built with the 

Silver Basic Software (SBS) technology.  

  

QTronic TestWeaver – Large coverage testing 

Powertrain systems, and in particular hybrid power-

train systems are systems difficult to test because of 

the very large number of system states and larger 

number of state transitions. For instance, a relevant 

test campaign should test all gearshifts, in various 

slopes. It should also test all hybrid mode transitions, 

under various State Of Charge (SOC). The test space 

is huge and test scripts/manual testing is not an effi-

cient method. QTronic TestWeaver is an intelligent 

test system that can generate test cases to increase 

test coverage, drive the system under test to uncov-

ered states and report problems/bugs when these are 

met. TestWeaver has been successfully applied in a 

large number of powertrain projects [5],[7],[8]. 

2 Plant models 

The plant models to be developed will be used for 

development support of HCU and TCU. This means 

that all subsystems and all remaining controllers will 

be modeled in the plant. This includes in particular 

control models for EMS, MCU and BMS.  

 

We can define several general requirements for the 

plant models : 

- Simulate all required bus&sensors signals (>200) 

- Simulate EMS,MCU and BMS logical functions 

- Simulate the necessary physics 

- Simulate fast enough for convenient use 

- Simulation should be accurate enough to sup-

port optimization of relevant system parameters 

 

We describe now how plant models are developed.  

2.1 CAN buses 

The hybrid powertrain under consideration use 2 

CAN networks, CAN1 and CAN2. Dongfeng Com-

mercial Vehicle provided the complete list of CAN 

messages. The 2 CAN networks are implemented as 

Modelica connectors.  

The connectors are then used in the simulated con-

trollers for EMS, MCU and BMS. They are also used 

for defining I/O variables of the FMU that will be 

exported from the vehicle model. The CAN1/CAN2 

networks have together around 200 signals. In 

SimulationX, the network is considered as ideal 

without losses or delays besides the ECUs task cycle 

time. Non-ideal behavior of the CAN network is im-

plemented and simulated in QTronic Silver which 

supports special features for this. 

2.2 Automated Manual Transmission gearbox 

The AMT model consists of input and output inertias, 

gear stages and synchronizers. Drag torques and effi-

ciency losses are also included. The AMT stiffness is 

lumped inside the synchronizers hubs. 
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Figure 2 : AMT gearbox model 

The synchronizer models are complex behavioral 

models that fully reproduce the synchronization pro-

cess, with synchronization torque depending on ac-

tuator force. The synchronizer behavioral model has 

been compared to full contact-based synchronizers 

models in [9]. Some results of the comparisons are 

given in Figure 3. The detailed synchronizer model 

with dog-clutch gear contacts has been validated in 

[10]. 

 
Figure 3 : Comparison of synchronization and en-

gagement process for detailed (red)/functional (green) 

synchronizer models 

We can conclude that the behavioral model com-

putes correctly the synchronization time and the en-

gagement process. The behavioral model has the ad-

vantage of requiring few parameters and of being a 

“fast-running” model. It has been applied in the past 

in real-time simulations for HiL [9]. The synchroni-

zation time is an important quantity for the 

gearshifting simulation and must be simulated cor-

rectly. 

2.3 Clutch model 

The clutch model can be separated in 3 sub-

components: 

Friction/torque model: 
The torque capacity of the clutch is defined as a 

function of the clutch actuator position. This is im-

plemented through a look-up table. Clutch wear is 

included in the modeling. Finally this torque capacity 

is used in a stick/slip friction model. 

Spring force on actuator side: 

The clutch actuator has to overcome the conical 

spring force. The spring is non-linear and has a 

strong hysteresis. This is implemented using a hyste-

resis table from SimulationX 

Thermal model: 

The clutch friction surfaces temperature is an im-

portant quantity to simulate. This is done by compu-

ting losses in the clutch during slip and using thermal 

capacities and heat transfer models. 

2.4 Gearbox actuators 

The gearbox actuation system is a pneumatic actua-

tion system controlled by solenoid valves. The model 

is created using the SimulationX pneumatic library, 

where pressure/temperature are computed using 

mass/energy balances and compressible flow equa-

tions. The solenoid valves receive PWM signals 

from the TCU. The pneumatic actuation model in-

cludes all solenoid valves, gearshift cylinders and 

clutch cylinders. A selector gate model is also im-

plemented. We give the overview of the pneumatic 

actuation model in Figure 4 

 
Figure 4 : Pneumatic actuation model – integrated in 

the vehicle model 

The pneumatic actuation model can reproduce the 

clutch actuation dynamics. In particular, the clutch 
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actuation is a closed control with a position feedback. 

The model can be used for tuning of control gains 

and control laws. 

 
Figure 5 : AMT with “packaged” actuation system and 

a soft-TCU model 

2.5 Engine and EMS 

The engine and EMS models are based on tables de-

fining the torque/rpm capacity of the engine, along 

with the fuel consumption. Turbocharger dynamics 

are so far neglected, but the turbocharger delay in 

boost pressure will probably be implemented in a 

model revision. Besides this rather simple table-

based modeling, a state-chart is also added for simu-

lating the logical behavior of the EMS.  

 
Figure 6 : Engine and EMS model 

 
Figure 7 : EMS state-chart 

The EMS model must simulate the various operation 

mode of the engine, according to CAN requests. For 

instance, the EMS have a self-start mode and a “drag 

start” mode where the e-motor will start the engine 

by closing the clutch. The state-chart editor of 

SimulationX is thus very valuable for creating such 

models. 

2.6 E-motor and MCU 

The e-motor model is based on an energy/power ap-

proach. The AC 3-phase modeling is not considered 

and we only focus on the DC interface. The model is 

thus based on an efficiency approach in which the 

current on the DC side is computed as a function of 

DC voltage and motor torque. As for the EMS, a 

state-chart is also included in the MCU model to rep-

resent the logical behavior of the MCU software.  

 
Figure 8 : e-motor and MCU model 

 
Figure 9 : efficiency map in the e-motor 

Motor cooling circuit is so far not modeled in detail 

because the focus is on HCU and TCU. 

2.7 Battery and BMS 

The battery model is based on a Open Circuit Volt-

age table and on parasitic and polarization re-

sistance/capacity. The diagram of the model is 

shown below.  
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Figure 10 : Diagram of the Battery model 

As for the EMS and MCU, the Battery Management 

System (BMS) uses a state-chart for handling the 

various states and transitions of the BMS software. 

The model is finally packaged as shown in Figure 11. 

 
Figure 11 : Packaged battery and BMS model 

2.8 Vehicle model overview 

We give an overview of the vehicle model in Figure 

12. 

 

 
Figure 12 : Diagram view of vehicle model 

The vehicle model includes tyre with slip and 

driveline/propeller shaft with stiffness. The stiffness 

of the driveline is so far lumped and set according to 

an equivalent stiffness computed from CAD draw-

ings. This assumption will probably be reviewed in 

future model updates. 

2.9 Export of the model as an FMU 

The plant model input/outputs are defined in the 

Code Export wizard of SimulationX. In particular the 

definition of CAN buses is helpful. The model is 

exported so that exported FMU variable names cor-

respond exactly to the names defined in the CAN bus 

definition. This will be an important property when 

doing integration in Silver. 

3 Hybrid powertrain integration 

The integration flow of the HCU/TCU control soft-

ware and plant is summarized in the figure below. 

The plant model is exported from SimulationX as a 

FMU, using the Functional Mock-up Interface. The 

control models are built using Simulink Coder and 

Silver Basic Software scripts.  

 

 
Figure 13 : Integration flow for plant model and con-

trollers 

Silver-built controller models also provide access to 

all internal signals and all internal parameters of the 

Simulink models. This provides very valuable sup-

port for analysis, debugging and calibration of con-

trollers. 

4 Validation/calibration of models 

4.1 BMS – MCU system validation 

The High voltage circuit of BMS, MCU and DC ac-

cessories load is validated independently by using 

comparison between in-vehicle measurements and 

simulation results. The model unknown/uncertain 

parameters are first calibrated. These unknown pa-

rameters are typically the polarization resistance and 

polarization capacity and some MCU control soft-

ware properties. The model used for this calibra-

tion/validation work is shown in Figure 14. Bounda-

ry conditions such as motor speed and motor torque 

target are imposed according to vehicle measure-

ments. Some results are presented in Figure 15 and 

Figure 16. 
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Figure 14: High voltage Electrical system validation 

model 

 
Figure 15 : Battery voltage, comparison of in-vehicle 

measurement and simulation results 

 
Figure 16 : Comparison of in-vehicle measurements 

and MCU/BMS currents and Battery State Of Charge 

The results for the BMS/MCU validation gives a 

very good agreement for the MCU current, battery 

SOC and battery voltage, including transients effects 

on the battery voltage. Difference between simulated 

SOC and recorded SOC is a static offset due to initial 

value of SOC. 

4.2 Complete vehicle simulation 

A special attention was given first to increase simu-

lation speed. For instance unnecessary events in the 

exported FMU were removed, some high frequencies 

dynamics were neglected because irrelevant for the 

work at hand. However, since we are using variable 

step solvers, quantifying exactly simulation speed is 

not possible since it will depend on the driving case. 

We give however rough estimates:  

-When the vehicle is idle or in steady-state without 

gearshifts, simulation runs 20x faster than real-time.  

-When the driving sequence involves numerous 

gearshifts, simulation runs 3x faster than real-time. 

 

We give in Figure 17 a partial view of the graphical 

controls and displays used in the QTronic Silver, 

where the plant model, HCU and TCU are integrated 

together, with around 250 signals exchanged at 10ms 

time cycles between controllers and plant. The com-

plete vehicle validation is still under progress at the 

day of writing. 

 

 
Figure 17 : Extract of dashboard/instruments for in-

teractive simulation in QTronic Silver 

5 Applications and benefits 

The above virtual powertrain will be used for several 

applications that we list below. 

5.1 Control software development support 

The virtual powertrain in QTronic Silver has very 

desirable properties to support the work of function 

developers for the TCU and HCU.  

 

Accurate plant models from SimulationX 

The plant models from SimulationX are accurate and 

represent the overall behavior of the complete vehi-

cle, including all CAN signals and details of EMS, 

BMS, MCU control logic. The controllers can then 

be accurately checked and tuned against such plant 

models. 
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Integration of calibration and measurements 

Silver provides easy integration of in-vehicle meas-

urements standard formats. This allows test engi-

neers to provide data to function developers. Func-

tion developers can easily analyze problems met in 

the vehicle, define fix and corrections, and verify 

effects in the simulation.  

 

Integration of actual production c-code 

During this project, we are currently integrating 

floating-point Simulink models. A next step will be 

the integration of actual production c-code, with 

fixed point arithmetic, tasks, along with A2L defini-

tion. The final production code used in the TCU and 

HCU can thus be fully tested, using Virtual ECUs. 

 

Control software Debugging in Silver 

Simulink models built from Silver can access all in-

ternal signals and parameters of a model. This pro-

vides powerful function for debugging issues in con-

trol logic, arguably more comfortable and efficient 

than natively in Simulink.  

5.2 Large coverage testing 

Once an accurate/realistic virtual powertrain is avail-

able, it is possible to use it for large coverage testing 

using TestWeaver. QTronic TestWeaver can gener-

ate 1000’s of test scenarios overnight and find prob-

lems and issues in the system. This increases system 

quality and system safety early in the development 

cycle. Compared to hand-written test scripts, 

TestWeaver scenario generation is a systematic pro-

cess that will explore a large number of combina-

tions and states. 

 

In the case of the hybrid truck under consideration, 

state coverage objectives include gearshifts and hy-

brid mode transitions. 

5.3 System optimization 

The virtual powertrain established in the project can 

be used for system optimization, including control 

software optimization and calibration optimization. 

This work is efficiently supported since any function 

developer can introduce modifications and quickly 

get results on the new implementation. Moreover, 

Silver also supports scripting so that selected param-

eters can be automatically optimized using numerical 

optimization routines. 

6 Conclusions 

A virtual powertrain for a hybrid truck is being es-

tablished in collaboration with Dongfeng Commer-

cial Vehicles. For creating this system, several tools 

are being used, including ITI SimulationX, QTronic 

Silver and Matlab/Simulink. 

 

The Virtual powertrain provides accurate simulation 

of the complete vehicle, down to gearshift synchro-

nization events. Battery SOC and e-motor currents 

have been validated against in-vehicle measurements. 

 

This Virtual Powertrain is applied for system optimi-

zation, HCU/TCU control logic debugging and large 

coverage testing with TestWeaver. These tasks can 

be conducted efficiently by engineers using PC-

based deployable simulation.  
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General fault triggering architecture to trigger model
faults in Modelica using a standardized blockset
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Abstract
The implementation of faults in Modelica is cur-
rently not standardized, which leads to many non-
compatible implementations. To support the stan-
dardization of fault implementations, a new stan-
dard for fault implementation and triggering is
proposed. The proposed standard can handle pa-
rameter faults as well as variable faults during a
time simulation to cover all common fault pos-
sibilities. Using instance modifiers as well as an
inner-outer broadcasting method, the faults can
be triggered in a central block. Furthermore, care
was taken so that the simulation of the models
in a fault-free condition can be guaranteed. A li-
brary using the proposed standard was developed.
In this library, the fault implementation as well as
the triggering of these faults was modeled with
the end user in mind. An example implementa-
tion is presented which shows the capabilities of
the library.
Keywords: Failure, Fault, Modeling, Standardiza-
tion, Fault Injection

1 Introduction
Failure detection and health monitoring systems
to improve reliability and lower maintenance costs
become increasingly important. Therefore the de-
sign and testing of these algorithms need good pre-
diction models combined with an efficient way to
trigger all fault cases.
Implementing faults in Modelica models is no new
terrain. Many different implementations of real
systems have been made. For example Schallert
[8] did a reliability and safety assessment. The
faults are automatically identified based on pa-
rameter names. To set the parameters of the failed
parts, a function is used which automatically sets

the parameters before simulation. Gao et al. [3, 2]
did a fault analysis of electrical systems. To trig-
ger the faults, two different methods are used;
hard coding a fault in the model as well as cre-
ating a completely new model for a fault. Cui et
al. [1] modeled an actuator system with automat-
ically triggered faults. This automatic triggering
is based on the predefined fault probability, but
cannot be directly controlled. These works are all
examples where faults are triggered in a Model-
ica implementation. However, all of these imple-
mentations use different ways to trigger the faults.
Since there is a lack of standards implementation
ways, all users must find a way for them self to
trigger the faults.
Another approach for model-based diagnosis is
used by RODON [7]. Uncertainty intervals for
the model parameters combined with behavioral
models are used to trigger faults. However, time
simulations are not supported which limits its use
in many applications. Also FaultWeaver [6] can be
used to trigger faults in Modelica. It uses a set of
models in Modelica. An external (non-Modelica)
program is used to set the faults in Modelica and
simulate the results.
In this paper, a set of standardized fault-output
blocks is proposed in Section 3. These blocks use
a designated data type to clearly identify these
blocks as special fault blocks for further process-
ing. Using these blocks, it is possible to create
component models which include optional faults
by the user. Care has been taken to make sure
that all possible faults can be modeled by a sin-
gle or a combination of standardized fault blocks.
By analyzing the complete model, built from in-
dividual sub-models, a wrapper package can be
automatically generated which can be used to ac-
tivate all faults (Section 5). Care has been taken
that it is possible to completely eliminate the fault
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code from a model to increase simulation perfor-
mance if not all faults are triggered. Furthermore,
also quick model testing without a fault setup is
possible.
The proposed implementation is based on a Dy-
mola implementation making use of the Ab-
stract Syntax Tree (AST) functions from the
ModelManagement library. By using the proposed
open and standardized fault blocks with a spe-
cialized fault type, it is possible to create similar
functionalities in all Modelica solvers.

2 Fault injection demands for
Modelica

To create a general environment to trigger faults
in Modelica, care must be taken that all possible
faults can be modeled using the proposed blocks.
To make sure all possible faults are covered, a
trade off study has been carried out. Fault imple-
mentations in the Modelica language can be gen-
eralized into classes. The following sections will
highlight the different fault classes.

2.1 Fault variability classes
For Modelica usage, two different classes of faults
can be identified:

1. Faults that have a very low time constant
with respect to the simulation horizon and
can be considered constant.

2. Faults with time constants faster than the
simulation horizon which will cause transient
behavior.

To further clarify the classes, a more detailed de-
scription including examples of each fault class is
given.

2.1.1 Parameter faults

The parameter fault class consists of faults that
have a low time constant compared with the simu-
lation horizon. Usually these faults are character-
ized by slow changes in time such as the variation
of the viscosity of oil due to an aging process in
a transmission application. Another example of a
fault with a slow time constant compared to the
simulation time are some high frequency electron-
ics simulations. In these simulations, the tempera-
ture of the environment can often be characterized

as constant. Some examples of parameter faults
are:

• Gear play
• Degradation of capacitors or batteries
• Oil viscosity degradation in a transmission
• Environment temperature increase in a fast

switching application

Due to the very slow nature of these faults with
respect to their simulation time, it is not necessary
to have the possibility to model fault transients.

2.1.2 Variable faults

The second class of faults are variable faults.
These faults are characterized by the possibility
that they can significantly change during a typi-
cal simulation. Quite often the study of a tran-
sient response is one of the main purposes of the
simulation of such faults. Some examples are:

• Semiconductor short circuit
• Breakage of hydraulic oil line
• Gearbox tooth breakage
• Screw jam

The faults in this class can vary during a sim-
ulation run, and can cause a dynamic system re-
sponse which might be of interest for the engineer.

2.2 Fault data type classes

The faults of both classes described in Section 2.1,
can be divided into three types to represent the
different cases needed to model faults.

2.2.1 "On-Off" faults (Boolean)

On off faults are marked by having only two dis-
crete states. Examples are jamming of a nutscrew
and disconnection of electrical cables.

2.2.2 Case faults (Integer)

Case faults are marked by having multiple discrete
failure modes. An good example is a semiconduc-
tor failure:

• Normal operation
• Short circuit
• Open loop
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Constant Variable
On-Off Increased friction Screw jam
Mode Bearing fault mode Transistor
Continuous Gear play Oil loss

Table 1: Combined fault possibilities for Model-
ica models with examples. The choice between a
variable and parameter fault is not always directly
clear, and may need to be chosen as constant or
variable based on the length of the simulation

2.2.3 Continuous fault (Real)

A continuous fault is a fault without an explicit
discrete value. Examples are:

• Oil degradation
• Increased friction in a bearing
• Capacitor degradation

Combining the fault classes (Section 2.1) and the
fault class properties (Section 2.2), six different
combinations of faults are identified (see Table 1).
These possibilities can model all general and ad-
vanced faults. In the next sections, the imple-
mentation as well as some extra features for eas-
ier fault handling and simulation performance are
discussed.

2.3 Variable mode selection

To accommodate the reconfiguration of a model
with a variable fault, a mechanism to decide if the
fault can be activated during simulation must be
implemented. This reconfiguration can be neces-
sary to increase simulation speed in case of no fail-
ure or to switch between different failure modes.
In the case of a parameter fault, this is known by
definition. However in the case of a variable fault,
this is not known. To be able to reconfigure such
a model, it is therefore necessary to add a param-
eter signal flag which can be used to reconfigure
the model. For maximal flexibility, it is chosen
to add a mode selection using an integer constant
as a flag. This flag can be used to reconfigure a
model to include or exclude a fault. How to use
the values of the flag can be seen in Table 2.
The same effect as the mode selection is possible
by combining a parameter integer fault with an
variable fault. However, combining two fault in-
puts for one fault makes it hard to use consistent
naming.

Flag value Description
0 fault deactivated
1 (default) standard fault mode activated
2,3,... optional extra fault modes

Table 2: Variable mode selection flag

3 Fault triggering standardisa-
tion architecture

Defining faults types is not sufficient to define
a usable Modelica implementation. For a good
user-friendly implementation a well designed ar-
chitecture is vital. Different ways to set up a fault
triggering method are analyzed and their benefits
compared.

3.1 Fault Architecture
Controlling of the faults in a global model using
components with faults can be done in many dif-
ferent ways. Different ways are studied in this sec-
tion and it is decided which methods are selected
for the proposed standard.
To assess the overall performance of these meth-
ods, a set of criteria is defined to evaluate several
important aspects for fault triggering. The imple-
mentation effort of setting up the general archi-
tecture is not evaluated as this effort has to be
invested only once in the generation of the fault
library.
These criteria are:

(a) Non physical connections: The connec-
tions between the models should be based on
physical quantities. Faults do not have a phys-
ical connections as they are triggered by wear,
or external influences which are usually not
modeled.

(b) Ease of implementation: Effort for user
to create a model from instances using faults
(e.g. the development of a multistage gearbox
using predefined faulty gearbox instances)

(c) Maintainability: Effort to maintain a set of
models with faults. Typical tasks would be
adding or removing fault cases, restructuring
models and keeping a well documented set of
models

(d) Standardization: Standardization effort to
keep models compatible between different

Session 3B: Fault Handling and Safety Issues in Modelica

DOI
10.3384/ECP14096427

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

429



business partners.

(e) Transients: Possibility to model transients
used for variable faults (see for a description
Section 2.1.2).

Four methods to implement faults in Modelica
have been tried out and analyzed. The results
are assessed using the criteria (a through e).

1. Model parameters: Each fault is controlled
by a parameter in the model. It is possible to
"pull" these parameters up to the top level
model. Also direct changing of the instance
parameter in the model is possible. If the pa-
rameter is flagged appropriately, it is possible
to create a system with automated parameter
detection and central setting of the parame-
ters. Such a structure does not need non-
physical connections, is easy to implement for
the user and, if a proper automation is used,
can be well maintained. Also standardization
using the proposed flag methods is possible.
Since in this method it is only possible to han-
dle parameters, no transients can be used.

2. Model inputs: Inputs are used to control
faults in the models. By connecting the input
connectors, it is possible to create a central
element to control all faults. This method is
often used for small fault systems. However,
it leads to non physical connections between
the models. Due to the high customization,
maintainability and standardization cannot
be guaranteed. The ease of implementation is
good in small systems maintained by a single
person, but quickly becomes more and more
problematic as the model grows. Transients
can be handled well.

3. Bus system: A bus system to connect faults.
All fault signals are connected to a bus sys-
tem. This way is similar to the model in-
puts, except that all faults are organized in
one block. A bus system leads to non physical
connections. The ease of implementation and
maintainability depends highly on the com-
plexibility of the model, small systems can
be easily implemented and managed, but it
become quickly confusing. The standardiza-
tion is better than using a direct model input
since all faults are now marked in one fault-
bus. However, still no automated algorithms
can be used as it is impossible to properly

define a standard input. Transients can be
handled well as it is possible to connect vari-
ables to a bus.

4. Broadcasting: Using an inner-outer struc-
ture, the fault models can obtain their values
from a centralized point in the global model.
Using an automated routine, all appropriate
flagged faults can be found and managed in
one central point. No non-physical connec-
tions are needed. If standardized, flagged and
predefined fault blocks are used, the ease of
implementation and maintainability is high.
Also the standardization can be guaranteed
by flagging the models. Using an inner-outer
structure it is also possible to use transients.
However, when only parameter Faults are
used, this way of modeling is over complex
and will always need a full setup of the vari-
able faults. In contrast, it is possible to leave
most parameter faults at their standard value
and set only one fault without setting up a
complete fault system.

In Table 3, the previously discussed four differ-
ent approaches (1:4) are assessed using the criteria
(a:e). From this analysis follows that the usage of
model parameters (1) and a broadcasting system
(4) have most advantages. It is therefore chosen
to use following architecture:

• Model parameters to handle constant
faults

• Broadcasting system for variable faults

4 Standardized fault class defi-
nition

All faults in a model must be recognized by au-
tomated scripts, while at the same time the user
should have the freedom to name the model faults
arbitrarily. To do so, special fault classes have
been designed. This has the advantage that a fault
is identified by the class name, and can be inte-
grated without special care of instance names by
the user. These fault classes are released under
the Modelica 2 License.
Below the all fault classes are defined. For a pa-
rameter fault of the type Real, the type is defined
in Code 1.
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(1) Model parameters + + + + -
(2) Model inputs - ± - - +
(3) Bus system - ± ± ± +
(4) Broadcasting system + ± + + +

Table 3: Fault triggering approaches. A detailed
description of the criteria can be found in Section
3.1

.

Code 1: Real parameter fault
type Parameter_Fault_Real =

Real "Value of the Real Fault";

Using this special fault class for each Real fault, it
is possible to clearly identify each instance of this
model as a Real parameter fault.
The same is done for variable faults. Since these
faults are more complex, a record with three pa-
rameters is used. In Code 2 the definition of this
Fault is shown.

Code 2: Real variable fault
record Variable_Fault_Real

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global )";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Real ;

The first Boolean externalFaultOn is used to
switch between the local default fault defini-
tions and external global control. The integer
faultIndex is used to set the channel in the ex-
ternal global fault triggering (see Section 5). The
Integer faultMode is used to set the optional fault
mode selection as discussed in Section 2.3.

The examples given in this section are for Real
faults. The code for Integer and Boolean faults
can be found in Appendix A.
Using these class definitions, it is possible to set
up a complete fault triggering system. In Section
5 an implementation for Dymola using the Model-
Management toolbox is presented. Since these de-
fined faultclasses are open and standardized, algo-
rithms or plug-ins for programs can be developed
by users, also for other Modelica solvers.

5 FaultTriggering library
Beside the definition of a standard, a library has
been built to support the user with implement-
ing faults. Using the definitions from Section 4,
blocks are created which simplify the implemen-
tation of faults in a model. Two versions of these
outputs are made; one for textual modeling and
one for usage in the diagram layer. Also a method
to manage the fault signals in a single block is
proposed.
In Figure 1, an overview of the final fault set-
ting structure is given. In the generated wrapper
model, it is possible to set the parameter and vari-
able faults. The parameters are set in an automat-
ically generated structure (see Section 5.3.2) and
the variable faults are handled using a generated
bus system (see Section 5.3.3).

5.1 Parameter fault modeling
The textual modeling block for a parameter fault
is a simple block with a parameter of type
Parameter_Fault_Real (for Real faults). By ex-
tending this block in the model, a parameter fault
is directly correctly implemented and its name is
constRealFault.
In Code 3 the code for the Real parameter fault is
given. Parts of the complete path to the compo-
nents are abbreviated for a better overview. Inte-
ger and Boolean faults are implemented using the
same approach.

Code 3: Real parameter fault for textual modeling
block InternalConstantRealFault

" Generate constant Fault of type Real"
extends ...Icons.RealFault ;
parameter ...Types.Parameter_Fault_Real

constRealFault = 1
" Constant output value";

end InternalConstantRealFault ;
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Figure 1: Automatically generated wrapper model (yellow) which contains the extended original model
and the block faultTrigger. In this block all parameter and variable faults can be set. The parameter
faults communicate directly with the model instances using instance modifiers (pink dash-dotted line),
the variable faults using a bus system connected to a global inner/ outer system (orange dashed line).

The blocks for graphical modeling environ-
ment are extensions of the discussed tex-
tual modeling approach and the interface
Modelica.Blocks.Interfaces.SO . This creates
a block (see Code 4) with a single Real output
whose value is set by the fault parameter.

Code 4: Real parameter fault for graphical mod-
eling
block ConstantRealFault

" Generate constant signal of type Real"
extends Modelica.Blocks.Interfaces.SO ;
extends ...InternalConstantRealFault ;

equation
y = constRealFault ;

end ConstantRealFault ;

5.2 Variable faults
The variable fault blocks are more complicated to
implement than the parameter fault blocks. These
blocks need the information from a central block in
which the fault signal is defined. To do so an inner-
outer structure has been set up to communicate
the fault signals. In this section, first the global

block will be discussed followed by the local fault
blocks.

5.2.1 Global variable faults control

For each variable fault (Real, Integer and
Boolean), a single channel is reserved in a vari-
able with n channels (with n the number of
faults of each type). This variable is defined in
a central FaultTrigger block extended from
...FaultOutput.Partial_FaultTrigger. Each
fault can be coupled to fault sources using mod-
elica code in this global block. This can be done
by hand or an automated script which is proposed
in Section 5.3.3. The partial model can be seen in
Code 5. This model is defined as "inner" in the an-
notations, so that the local fault injection blocks
can communicate with this block.

Code 5: Partial model for variable fault input
framework
partial model Partial_FaultTrigger

" partial model defining fault classes "
parameter Integer realFaultSize

" Number of real fault channels ";
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parameter Integer integerFaultSize
" Number of integer fault channels ";

parameter Integer booleanFaultSize
" Number of boolean fault channels ";

Real realFault [ realFaultSize ]
"Real Fault trigger ";

Integer integerFault [ integerFaultSize ]
" Integer Fault trigger ";

Boolean booleanFault [ booleanFaultSize ]
" Boolean Fault trigger ";

annotation (
defaultComponentPrefixes ="inner")

end Partial_FaultTrigger ;

5.2.2 Variable fault modeling classes

The variable fault models get their signals from
the global fault control model. In Code 6 the
code for a variable fault is given. In this model,
the variable fault is the actual fault value. Each
fault uses its own fault channel in the variables
realFault, integerFault and booleanFault.
To select which channel is to be used from these
variables, the parameter faultNumber is defined.
This parameter is generally set by an automated
system (see Section 5.3.3).
To be able to directly operate a model with
variable faults in the model for testing pur-
poses, a parameter with a default fault value
is defined in fault_local. Using the switch
(externalRealFault.externalFaultOn), the lo-
cal fault can be changed to the value defined in
the global fault block. Using this, it is guaranteed
that each block has a valid output without setting
up a global fault block.

Code 6: Real variable fault for textual modeling
block InternalRealFault

" Generate variable Fault of type Real"
extends ...Icons.RealFault ;
outer FaultTrigger faultTrigger ;
parameter Real fault_local = 1

" Default fault value if no external
triggering is used";

parameter ...Types.Variable_Fault_Real
externalRealFault =

...Types.Variable_Fault_Real ()
" External Fault Triggering parameters ";

Modelica.Blocks.Interfaces.RealOutput
fault "Final fault value";

protected
...Types.Fault_SelectRealFault

faultNumber ;
equation

faultNumber =
externalRealFault.faultIndex ;

fault =
if externalRealFault.externalFaultOn
then
faultTrigger.realFault [ faultNumber ]
else fault_local ;

end InternalRealFault ;

The faults for graphical modeling are made by ex-
tending Code 6 in a model with two outputs (Code
7): One real output for the fault signal and one
optional integer output for the mode signal.

Code 7: Real variable fault for graphical modeling
block VariableRealFault

" Generate variable signal of type Real"
extends ...Internal.InternalRealFault ;
parameter Boolean useModelModeSelection

" toggles external mode selection ";
Modelica.Blocks.Interfaces.RealOutput y;
Modelica.Blocks.Interfaces.IntegerOutput

mode = externalRealFault.faultMode
if useModelModeSelection

" Connector of Integer output signal ";
equation

y = fault;
end VariableRealFault ;

5.3 Automated fault handling
To keep overview of the faults in a model and
help the user with fault channel selection for each
fault, an automated fault handling algorithm is
developed. This algorithm can detect the pa-
rameter and variable faults in the selected model.
Also all faults in the instances used in this model
can be detected. Setting and internal handling of
these faults is different for parameter and variable
faults. A library is automatically generated which
contains a wrapper model that extends the orig-
inal model. Also a central block to manage the
faults is instantiated in this wrapper model. In
this block, the configuration of the parameter and
variable faults is handled.

5.3.1 Automated fault finding

Using the Dymola ModelManagement toolbox, it
is possible to investigate a model with its sub-
models. Using these features, it is possible to gen-
erate a model tree from a model with all instances.
A schematical example of such a model tree can be
found in Figure 2. Using the type definitions from
Section 4, all faults in a model can be found and
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A.A

A.B

A.C
A.C.A

A.C.B

Figure 2: Model tree with faulty models on several
levels. Blocks with a lightning symbol (A.A &
A.C.B) are extensions of the standardized fault
classes.

classified. Also the "path" to the model can be
found. The complete path of the fault instance
bearing_stuck in the model Actuator will
be represented as Actuator.bearing_stuck. In
the following sections, the generated fault tree and
fault classification will be used in the implemen-
tation of the library features.

5.3.2 Global parameter setting

All the parameter faults can be found and identi-
fied using a method described in Section 5.3.1. It
is possible to directly change these values by using
an instance modifier generated by the fault-search
algorithm by hand.
However, in case of large models with many faults
or many different cases to analyze, this can quickly
become unclear and tedious. To aid the user,
a structure is automatically generated using the
scripts supplied in the library which includes all
faults together with their default values. This
structure is used as a parameter in the global
faultTriggering model. These values are au-
tomatically linked to the instance modifiers in the
wrapper model. By creating different fault struc-
tures, fault cases can be defined. Each fault struc-
ture stands for a clearly defined simulation case.

5.3.3 Global variable setting

To aid the user with setting the variable faults, a
hierarchical faultbus is generated from the fault
structure (see Figure 1). It is possible to di-
rectly connect the fault source signals to the hier-
archical bus. The hierarchical bus system itself is
connected to the realFault, integerFault and
booleanFault variables (see Section 5.2.2). The
corresponding fault index is automatically set in

Figure 3: Automatically generated Fault library

the model using component modifiers. Using this
approach, mistakes with mixing up the channels
are not possible, as this is automated. Also the
use of an automatically generated bus makes con-
necting the fault sources easy.
In Figure 3, a generated library is shown with its
default components.

6 Examples
To test the library functionality a simple actua-
tor model is built consisting of a motor with PID
control, a simple driveline and a load. The total
model has 6 faults: 2 parameter faults, and 4 vari-
able faults. Using the fault processing algorithms
presented in Section 5.3, a package is generated.
The model wrapper adds the faultTrigger block
in which all faults can be set. In this block all
fault inputs are defined. The variable faults are
set in the block of type FaultTriggerController
(instance faultTrigger). Using the parameter
record in this block, it is possible to set all pa-
rameter faults. An overview of this functionality
is shown in Figure 1.
The result of a simulation with progressive faults
is shown in Figure 4. The dynamic effects of a
breaking component can be seen by the changing
response of motor speed and torque. By changing
or duplicating the faultTrigger block, it is possi-
ble to create multiple fault scenarios for a single
model. The original model stays unchanged and
can be used for all analysis, healthy as well as bro-
ken.

7 Conclusion and Discussion
In this paper, a method to standardize the im-
plementation of faulty components in Modelica is
specified. It is possible to implement parameter,
as well as varying fault signals. The code for the
proposed faulty components is included to aid the
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Figure 4: Results of a simulation with progres-
sive faults. At t=0.2s the motor constant drops,
at t=0.4s, an increased friction in the driveline is
triggered, at t=0.6s, the speed sensor of the motor
breaks and finally at t=0.8s the driveline bearing
gets stuck.

standardisation of fault implementation in Mod-
elica.
Moreover a library has been created which sup-
ports the user to set these faults by automatic
generation of a wrapper library. This wrapper in-
cludes all parameter faults in a parameter struc-
ture and a bus system to connect the variable
faults. This functionality is enabled by the im-
plementation of a search algorithm to search the
model for the standardized fault classes.
An example model has been built and the methods
to implement the faults in the model have been
proved valuable. At the moment the proposed
Fault Library is used in the Actuator EMA library
[4, 5, 9]. The standardization of these faults has
led to an easy implementation process. The model
designer can focus on implementing the faults in
the model without paying attention to the inter-
faces and the compatibility between the models.
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A Modelica Code for Faults

The code for the implementation of the fault
classes is given in this section. Using strictly this
code, it is possible for automated fault systems to
search for all faults in a model.

A.1 Real faults

Code 8: Real parameter fault
type Parameter_Fault_Real =

Real "Value of the Real Fault";

Code 9: Real variable fault
record Variable_Fault_Real

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global )";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Real ;

A.2 Integer faults

Code 10: Integer parameter fault
type Parameter_Fault_Integer =

Integer "Value of the Integer Fault";

Code 11: Integer variable fault
record Variable_Fault_Integer

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global )";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Integer ;

A.3 Boolean faults
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Code 12: Boolean parameter fault
type Parameter_Fault_Boolean =

Boolean " Value of the Boolean Fault";

Code 13: Boolean variable fault
record Variable_Fault_Boolean

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global )";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Boolean ;
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Abstract

We propose a model-based diagnosis framework in
which Modelica models of faulted behavior are used in
combination with a Bayesian approach. The fault aug-
mented models are automatically generated through
a process developed as part of our Fault Augmented
Model Extension (FAME) work. Fault diagnosis using
a Bayesian approach is based on computing a set of
probability density functions, a process that is usually
intractable for any reasonably complex system. We use
Approximate Bayesian Computation (ABC) to bound
the numerical and computational complexity. The ba-
sic idea is to use fault augmented Modelica models to
create probability distributions of possible outcomes
and then compare those distributions against actual ob-
servations to perform parameter estimation. The detec-
tion of faults is treated as a model selection problem
and the inference of their severity levels is treated as
parameter estimation. The diagnostic precision of this
approach is evaluated on a Modelica vehicle drive line
model.

Keywords: fault models; diagnosis; machine learn-
ing; model translation;bayesian methods

1 Introduction

Modelica [6] is an object-oriented, declarative, multi-
domain modeling language for component-oriented
modeling of complex systems. It is used to execute
numerical simulations to determine the behavior of a
system. This approach frees the designer to efficiently
explore a wide set of designs to see which meets
customer requirements, without needing to physically
construct the systems.

In addition to predicting behaviors through numer-
ical simulations of Modelica models, we propose to
use the same simulation models for diagnosis. Mod-
elica’s focus on simulation would seem to make it a

poor choice for diagnosis. After all, diagnosis is the in-
verse of simulation. Simulation predicts the behavior
of a system given a (correct) model. Diagnosis must
infer how the model has changed (i.e., faulted) from
observed behavior.

Most model-based diagnosis algorithms [4, 10] per-
form inference on declarative models. Although Mod-
elica supports the writing of declarative models, too
many Modelica models (including many in the MSL)
contain imperative constructs making direct appli-
cation of existing model-based diagnosis algorithms
problematic. RODON [2] is a Modelica inspired ap-
proach to modeling, but Modelica models first have to
be re-written by hand in qualitative declarative form.
We know of no system identification or FDI technique
that applies for DAE models with boolean constraints
(as Modelica models translate into). Our approach, on
the other hand, applies on Modelica models directly
no matter what types of constraints they contain.

This paper presents a framework for model-based
diagnosis in which Modelica tools play a fundamen-
tal inference role in a Bayesian approach. Numerical
simulations of Modelica models are used to build sta-
tistical models for the behavior of a system for all of
its fault-operating modes; statistical models that help
determine a diagnosis solution based on observations.

The simulation of a system under different fault-
operating modes is enabled by fault-augmented Mod-
elica libraries. As part of our Fault Augmented Model
Extension (FAME) work, we have developed an ap-
proach [5] for automatic model construction of Mod-
elica fault models. Our model fault-augmentation ap-
proach is based on analyzing Modelica libraries for
fault susceptibility and on modifying them to enable
simulation of faulty components. FAME provides the
set of possible faulted behaviors for each component
(e.g., a resistor might be open, shorted, or resistance
shifted by some undetermined amount). FAME can
use as input statistical models from reliability analy-
sis that determine the fault activations and the amount
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of change in the values of the parameters.
Consider a grossly simplified vehicle model il-

lustrated in the Modelica model of Figure 1. The
brake may be working normally (Nominal state) or
may be having friction related faults (Slipping or
Sticking). The severity of these fault modes is
modeled in Modelica by a parameter called amount∈
[0,1] where a value of 0 indicates no fault (i.e.,
Nominal state) and a value of 1 indicates total failure.
The part will likely be unusable (and hence considered
faulty) for values far less than 1.

When the brake absolute angular velocity ω is not
zero, the frictional torque applied by the brake is a
function of a velocity dependent friction coefficient
µ(ω), the normal force fn, and of a geometry constant
cgeo, which takes into account the geometry of the de-
vice and the assumptions on the friction distributions:

τ = cgeo×µ(ω)× fn.

Our approach can be used to estimate such parameters
in addition to performing diagnostics. For this exer-
cise, we assume that the only unknown parameter is
the amount but we could just as easily estimate the
other parameters such as cgeo and fn from the observed
data.

2 FAME approach

We have developed faultable models for the models
in the Modelica Standard Library. A detailed descrip-
tion of FAME can be found in [5], while [8] describes
how it can be used in a design-tool chain to perform
reliability analysis. Here we summarize the essential
details of FAME for the purpose of diagnosis. Ev-
ery model class definition which contains faults is re-
placed with a new class definition, a Modelica model
class subsuming the original model class and adding
declarative behavior to allow simulation of the faults.

An encapsulated enumerated type is defined, listing
the various fault modes of the class, along with the
Nominal mode. A discrete mode parameter of this
new type is introduced, defining the mode in which an
instance of the class is operating. An if-equation sim-
ilar to Figure 2 is added, so that each operating mode
can define its own dynamics.

The set of equations which apply in each fault
mode is expressed in the appropriate branch of this
if-equation. The process also flattens the superclasses
of the model into the rewritten class, and introduces
two new externally visible parameters, mode and

Figure 2: Alternative dynamics are enabled for each
operating mode.

amount, as well as an enumerated type giving the
possible faults for this component, Modes.

Modelica models are augmented with two types
of faults: power faults and parametric faults. Power
faults model loss of power at the connection points and
is implemented through the addition of new compo-
nents abstractly called “dampers” that implement this
behavior. We show below how the Stick fault is im-
plemented at flange_a of the Brake component:

model Brake
...
Modelica.Mechanics.Rotational.

Interfaces.Flange_a flange_a;
FAME.Dampers.RotationalWithConnectEquations

_famefault_flange_a(amount=0.0);
...
end Brake

model RotationalWithConnectEquations
input Real amount(min=0.0, max=1.0);
encapsulated type Modes = enumeration(

Nominal,
Stick,
Broken);

parameter Modes mode = Modes.Nominal;
Modelica.Mechanics.Rotational.

Interfaces.Flange_a port_a;
Modelica.Mechanics.Rotational.

Interfaces.Flange_a port_b;
equation

...
elseif mode == Modes.Stick then
port_b.tau + port_a.tau =
(1/max(Constants.verySmall,1-amount)-1)

*der(port_a.phi);
port_b.phi = port_a.phi;

else
...

end if;

end RotationalWithConnectEquations;

We note that a new component called
_famefault_flange_a was added to the
Brake model; component that implements the
behavior corresponding to the Stick fault.
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Figure 1: Simple drive line.

Similarly, parametric faults are handled by intro-
ducing a new component that defines the pattern of
change for the parameter to which this component is
associated. For example in the case of the Brake
model, _famefault_mue_pos is an instance of
the newly added _famefaults_mue_pos compo-
nent that corresponds to the mue_pos parameter:

model Brake
model _famefaults_mue_pos
extends FAME.Parametric.

BaseParametricFault(amount=0.0);
type Modes = enumeration(

Nominal,
Slip);

parameter Modes mode=Modes.Nominal;
equation
if mode==Modes.Slip then
y = u*{{1,0},{0,1-amount}};
else
y = u;
end if;

end _famefaults_mue_pos;
...
_famefaults_mue_pos _famefault_mue_pos

(u=mue_pos,redeclare type
ParamType = Real[size(mue_pos,1),2]);

...
end Brake;

References to the original parameter are replaced
with an expression which references to this new vari-
able. For example, the parameter mue_pos is re-
placed in the fault-augmented version of the Brake
by _famefault_mue_pos.y.

We consider several other fault modes. Consider the
simple spring-damper system of Figure 3. Figure 4

Figure 3: Spring Damper example.

shows three simulation results for the Nominal,

Stick and Broken modes for inertia1. The un-
derlying intuition of our approach is to pre-compute
many simulations under many fault scenarios and
perform on-line diagnosis by identifying the pre-
computed simulation results which best matches the
observation. In the remainder of this paper we describe
how this intuition has been implemented.

Figure 4: Nominal, Stick and Broken operating
modes for the spring-damper system

3 Fault detection in the drivetrain
system

We demonstrate our proposed approach by detecting
faults in the drivetrain system shown in Figure 1. We
model five failure modes: brake slipping, brake stick-
ing, clutch slipping, clutch sticking, and spring stick-
ing. The failure mode of a stuck brake is modeled in
the FAME library as a dynamic damper component
that adds damping equal to the amount1. This has the
effect of increasing the relative friction in the flanges
which results in a loss of power. The failure mode of a
slipping brake is modeled as a decrease in the velocity
dependent friction coefficient by an amount equal to
the severity of the fault:

µ(ω) 7→ µ(ω)× (1−amount).
1Under normal operating conditions, the amount= 0 so the

system does not experience this additional damping.
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This has the effect of reducing the friction torque2.
The other failure modes are modeled in a similar man-
ner. Our aim is to infer from observed data whether
the system is exhibiting a fault mode — if so, we also
need to infer the severity of the fault (i.e., the value of
amount). We achieve this by using ideas developed
for Approximate Bayesian Computation (ABC).

4 Approximate Bayesian Computa-
tion

Modelica models are formal representations of (hy-
brid) differential equations (DAEs). Existing results
on fault diagnosis of DAEs are not able to cope with
such mathematical models in their generality. They ei-
ther focus on the structural aspect of the system, ig-
noring its dynamics [7], or they make simplifying as-
sumptions, such as linearity, on the DAE model [3].
Therefore more practical approaches for fault diagno-
sis must be employed.

In this section, we give an overview of the ABC
method, based on material from [9, 12, 1] — see those
references for more details. The typical tasks are to
estimate unknown model parameters and to do model
selection. Let M be a model parameterized by some
parameters Θ whose joint prior density is π(Θ). Given
data d generated by the model M, we are interested
in estimating the posterior probability π(Θ|d). From
Bayes rule, we know that

π(Θ|d) ∝ f (d|Θ)π(Θ),

where f (d|Θ) is the likelihood of the data given the
parameters. The prior probability of the parameters is
known so we need to compute the likelihood of the
data in order to estimate the posterior probability of the
parameters. A similar approach can be used for model
selection. Let M1 and M2 be two models and we would
like to infer which of them is more likely to have gen-
erated the given data d. Using the Bayesian analysis
framework, we compute the Bayes factor B12 to sum-
marize the evidence provided by the data for model M1
over model M2:

B12 =
P(M1|d)/P(M2|d)

P(M1)/P(M2)
,

where P(Mi) is the prior probability of model Mi and
P(Mi|d) is the posterior probability of the model Mi

given the data d. A value of B12 between 1 and 3

2Again, under normal operating condition, the amount= 0 so
the system does not experience this loss in torque.

suggests weak evidence in favor of M1, a value be-
tween 3 and 20 suggests positive evidence, a value
between 20 and 150 suggests strong evidence, and a
value greater than 150 suggests very strong evidence.
The prior probabilities of the models don’t depend on
the given data and can be pre-computed. So computing
the Bayes factor comes down to computing the ratio of
the posterior probabilities of the models given the data:

B12 ∝
P(M1|d)

P(M2|d)
∝

f (d|Θ1)

f (d|Θ2)
.

For any reasonably complex model, the likelihood
computation is intractable so ABC approaches like re-
jection are used to approximate it. In order to simplify
the problem computationally, it is common to define a
function fs : Rn→Rm that maps the given data d ∈Rn

to some representative statistic s ∈ Rm where m� n.
Then we define a distance metric dists : Rm×Rm→R
to measure closeness of two sets of statistics. Let d̂Mi

be simulated data generated from a model Mi.

4.1 Rejection Technique

If dists( fs(d), fs(d̂Mi)) < ε for some threshold ε then
the simulated data is accepted for the given observed
data d — otherwise, it is rejected. Now assume that
we generate N data sets simulated from the model Mi

as follows. For each of the N iterations, draw a param-
eter vector Θi from the prior distribution π(Θi) and
simulate data di

s from Mi. Assume that N̄ of those sim-
ulated data sets are accepted given a threshold ε . Then
we can approximate P(Mi|d) as N̄

N . The distribution of
the Θi for each of the accepted iteration approaches
π(Θi|d). The approximated values approach the true
values asymptotically as N→∞ and ε→ 0 if the statis-
tics are sufficient to describe the data. The downside
of this approach is that if ε is small then N needs to be
high in order to achieve a reasonable approximation.
In other words, it can be very computationally expen-
sive.

4.2 Classification Technique (alternative ap-
proach)

For model selection, rather than computing the ratio
of posterior probabilities, we could use a classifica-
tion approach instead. Here we treat the model indica-
tor i as the response variable and the summary statis-
tics as the dependent variables. Any standard classifi-
cation technique such as multinomial logistic regres-
sion, random forest, neural network etc. can be used
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to train a model based on the simulation data.3 The
trained model is evaluated on the statistics fs(d) of the
observed data to directly estimate P(Mi|d). This ap-
proach may be needed for more complex diagnostic
tasks, but as the rejection approach performs so well,
we use it in our example.

5 Evaluating the approach
The first step in ABC is to generate a large number of
simulations. To constrain the problem appropriately,
we assume that the observed output of the system is
generated in response to a known input. For exam-
ple, the response of a dynamical system to a step in-
put (called a step response) is typically used to reason
about the system behavior and may be appropriate for
diagnosis as well. This choice is part of the feature se-
lection and needs to be made at the time of diagnostic
design. For each of the five fault modes, we generate
10,000 step-response simulations4 — we first sample
the amount from its prior distribution5 and then use
that value to perform the simulation. This was done
by parameterizing the variables in Modelica file — a
snippet of the Modelica model is shown below — the
string FAULT_AMOUNT is replaced with the sampled
value before running a simulation.

Brake brake(fnmax = 1600,
_famefault_mue_pos(mode = Modes.Slip,
amount=FAULT_AMOUNT);

The second step in ABC is to compare observed
data against the simulated data. For computational rea-
sons, we compare features computed from the simu-
lated and actual data rather than comparing the raw
data directly. For this exercise, we evaluate the step
response of the drive train system and compute the
following features of the absolute angular velocity of
the inertial load connected to the brake: (1) mean, (2)
maximum, (3) 25th percentile, (4) 50th percentile, (5)
75th percentile, (6) inter-quartile range, and (7) time
to go to zero. The values of these seven features can
be thought of as a vector of dimension seven. The
difference between the observed vector and the sim-
ulated vectors is used to compute an estimate of the

3Any technique that returns a normalized measure of classifi-
cation should be usable.

4For a more complex model, we may need to generate a higher
number of simulations.

5For this example, we sample amount from a uniform distri-
bution: amount ∼ U(0.003,0.5). In practice, the choice of this
distribution will depend on the belief of the designers about the
distribution of the fault amount - such a distribution may be learnt
from field performance data of similar systems. This is a typical
design choice in Bayesian analysis and a non-informative distribu-
tion such as a uniform distribution may be used if no other source
of information is available.

likelihood that the observed value was generated from
the simulated distribution. For more details, please see
[11].

In order to evaluate the effectiveness of our ap-
proach, we measure the diagnostic accuracy of detec-
tion the following 11 faults.

1. Brake Slipping fault mode with amount= 0.1

2. Brake Slipping fault mode with amount= 0.25

3. Brake Sticking fault mode with amount= 0.1

4. Brake Sticking fault mode with amount= 0.25

5. Clutch Slipping fault mode with amount= 0.1

6. Clutch Slipping fault mode with amount= 0.25

7. Clutch Sticking fault mode with amount= 0.1

8. Clutch Sticking fault mode with amount= 0.25

9. Spring Sticking fault mode with amount= 0.1

10. Spring Sticking fault mode with amount= 0.25

11. Nominal mode (i.e., with no fault mode or a fault
mode with a very small amount)

For each of these faults, we infer the fault model that
was most likely to have generated it and estimate the
amount. The analysis was done using the ABCTool-
box suite [11].

Results

We first show how each model fares against the ob-
served data and then put it all together to generate the
final diagnosis.

Brake Slipping model

When the eleven faulty behaviors are compared
against the simulations from the Brake Slipping model,
the marginal distribution of the model is nearly zero
for all but faults #1, #2 and #11. The graphs below
show the posterior density distributions of amount
for those three faults — as the graph shows, the in-
ference is correct and the estimate of the amount is
also very accurate. Of course, in order to make the fi-
nal diagnosis for a fault, the marginal density for this
model will need to be compared against the densities
for the other models.
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Observation 1 (Brake Slip with fault amount 0.1)
Observation 2 (Brake Slip with fault amount 0.25)
Observation 11 (Normal operation)

Brake Sticking model

When the eleven faulty observations are compared
against the simulations from the Brake Sticking model,
the marginal distribution of the model is nearly zero
for all but faults #3, #4, and #11. The graph be-
low shows the posterior probability distributions of
amount for those three faults — again, the inference
is correct and the estimate of the amount is also very
accurate.
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Observation 3 (Brake Stick with fault amount 0.1)
Observation 4 (Brake Stick with fault amount 0.25)
Observation 11 (Normal operation)

Clutch Slipping model

When the eleven faulty observations are compared
against the simulations from the Clutch Slipping
model, the marginal distribution of the model is nearly
zero for all but faults #5, and #6. The graph be-
low shows the posterior probability distributions of
amount for those two faults — while the distributions
are not as peaked as the ones for brakes, the inference
is still correct and the mode of the distribution is over
the correct value of amount.

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

Clutch Slip Model Inference

Fault Amount

P
os

te
rio

r 
D

en
si

ty

Observation 5 (Clutch Slip with fault amount 0.1)
Observation 6 (Clutch Slip with fault amount 0.25)

Clutch Sticking model

When the eleven faulty observations are compared
against the simulations from the Clutch Sticking
model, the marginal distribution of the model is nearly
zero for all but faults #3, #7, #8, #9, and #11. In
this case, the marginal distribution is non-zero for two
faults (#3 and #9) that do not correspond to the clutch
sticking failure mode. However, the overall diagno-
sis still turns out to be correct because the marginal
distribution numbers for the correct models are much
higher than these numbers (see Section 5). The graph
below shows the posterior probability distributions of
amount for faulty observations #7, #8, and #11 —
as in the other cases, the posterior distributions of
amount have very narrow peaks over the correct val-
ues.
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Observation 8 (Clutch Stick with fault amount 0.25)
Observation 11 (Normal operation)

Spring Sticking model

When the eleven faulty observations are compared
against the simulations from the Spring Sticking
model, the marginal distribution of the model is nearly
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zero for all but faults #9, #10, and #11. The graphs
below show the posterior probability distributions of
amount for those faults — again, both the fault mode
inferences and the estimates of amount are correct.
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Final diagnosis

As mentioned previously, all the faulty observations
except #3, #9 and #11 are inferred to have a single
(and the correct) cause. While fault #11 (which corre-
sponds to the normal operation) has significant ambi-
guity regarding the cause, the inferred amount is al-
ways nearly zero in all those cases — this correctly in-
dicates the absence of any fault mode. In other words,
fault #11 is correctly associated with normal operation.
Fault #3 is inferred to have been generated by either
Brake Sticking or Clutch Sticking failure modes. Simi-
larly, fault #9 is inferred to have been generated by ei-
ther Clutch Sticking or Spring Sticking failure modes.
So for these two cases, we need to look at the ratios
of the respective posterior densities, i.e., compute the
Bayes factor in order to complete the diagnosis (see
Section 4 for more details).

Fault #3 For this fault, the marginal posterior density
of Brake Sticking model is 9.8×109 while that of
Clutch Sticking model is 1.7. So the Bayes factor
for Brake Sticking is 9.8×109

1.7 = 5.7× 109 which
is very strong evidence in favor of Brake Sticking
(i.e., the correct diagnosis).

Fault #9 For this fault, the marginal posterior density
of Clutch Sticking model is 3.6×103 while that of
Spring Sticking model is 2.9×108. So the Bayes
factor for Spring Sticking is 2.9×108

3.6×103 = 8× 104

which is very strong evidence in favor of Spring
Sticking (i.e., the correct diagnosis).

So the FAME based inference approach is able to make
the correct diagnosis for all the faults.

6 Final remarks

This paper has demonstrated that a straight-forward
application of machine learning techniques to simu-
lation can be used to accurately diagnose systems.
In fact, it can diagnose systems even if some of the
(non-faulted) parameters are unknown. This approach
has some inherent limitations: (1) the expansion to
multiple faults will require exponentially more pre-
computed simulations and therefore would only scale
to simple systems, (2) active diagnosis will require de-
riving features for many system variables which may
be impractical, (3) the features (i.e. sufficient statistics
of the signal) we use are somewhat determined by the
requirements of the system and must determined at the
outset, and (4) if the system can have a wide variety of
exogenous inputs, too many pre-computed simulations
will be required in order to diagnose for each possible
input stream.

The expansion to multiple faults can be ameliorated
somewhat by the fact that the simulations are done of-
fline and can be easily parallelized. This complexity
may be further managed if a reasonable assumption
can be made about an upper limit on the number of
simultaneous faults (thereby reducing the complexity
from exponential to polynomial).
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Abstract 

This paper presents a methodology for model-based 
fault detection and diagnosis underpinned by model-
ica models and using a qualitative approach to diag-
nosis, which has been applied to diagnosis of an air 
handling unit based on data recorded by a building 
management system. The main steps from model de-
velopment to component diagnosis are discussed and 
illustrated using a heating coil component. 
 
Keywords: model-based diagnosis, heating coil, cali-
bration, fault detection and diagnosis 

1 Introduction 

Heating Ventilation and Air conditioning (HVAC) 
systems are known for being very inefficient for dif-
ferent reasons, one of the most common causes being 
the presence of undetected failures in one or more of 
its components. Undetected faults can remain for long 
periods due to different factors: compensations made 
by the control algorithms of other elements belonging 
to the same system; lack of proper maintenance, im-
proper timing of flow of energy to/from the building, 
etc. Even when systems are known to suboptimal op-
eration, the presence of faults may be very difficult to 
manually localize and identify, making it a costly task 
for human operators who only act when indoor envi-
ronmental conditions are not met. This lack of timely 
intervention raises the need for developing automated 
fault detection and diagnosis methods and technolo-
gies that assist the building operator.  
Different fault detection and diagnosis (FDD) meth-
odologies have been developed for HVAC systems, 
mostly based on expert knowledge to help identifying 
the faulty condition and its source [1]. However, a 
new trend in FDD is that of using models of the 
HVAC systems providing a base line for optimal op-
eration, and supporting the detection of deviation 
from this optimum [2]. Model-based methods, offer 
the advantage of an increased flexibility to adapt to 

different and innovative HVAC systems. 
The focus of this paper is on a model-based diagnostic 
solution that uses a qualitative model for the part of 
the HVAC system corresponding to the Air Handling 
Unit (AHU). This solution is derived from a general 
first-principle Modelica model and exploits a general 
diagnosis algorithm that isolates and identifies faults 
that occur frequently and can cause significant loss of 
system performance in AHUs: passing heating- and 
cooling-coil valves, and stuck dampers. An applica-
tion example using a heating coil model is presented 
and provisions are made for the extension to other 
components. 
The paper is structured as follows: section 2 provides 
an intuitive introduction to model-based diagnosis 
(MBD); section 3 outlines model requirements for on-
line diagnosis while section 4 presents the modelica 
models and its calibration. In section 5 an example of 
the complete tool chain is discussed and finally, sec-
tions 6 and 7 provide concluding remarks and future 
work. 

2 Model-Based Diagnosis: an intuitive 
introduction 

Models used for designing and verifying control usu-
ally capture the nominal behaviour of the controlled 
physical system but are less reliable when modelling 
behaviours related to faulty operation. In fact, model-
based diagnosis is able to perform fault localization 
using only models that represent the intended behav-
iour of the system (OK models) [3]. However, fault 
identification requires modelling the possible rele-
vant faulty behaviours, as well, which may also lead 
to a more focused localization [3]. Therefore, for each 
system component, a health variable is defined as the 
health status (failure mode) of that component. A sys-
tem health assignment (or health mode) is the set of 
health assignments for all components in the system. 
To each component OK or failure mode, the respec-
tive (mis)behaviour is captured by a model (e.g. a set 
of (differential) equations. For example, a passing 
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heating coil valve will have hot water flowing in the 
heating coil when the heating coil is supposed to be 
switched off, in which case the air heats up after pass-
ing over this heating coil. Hence, in this case, the con-
trol setting is heating coil valve closed, but with the 
fault, the valve is actually open. 
Based on this, each system health assignment implies 
one behaviour model of the entire plant, which is ob-
tained by aggregating the component (fault) models. 
Model-based diagnosis is based on an explicit repre-
sentation of the knowledge about the components and 
the information about the plant structure, which deter-
mines how the components interact with each other. 
Based on a library of generic component models and 
the representation of the plant topology, a system 
model (possibly covering both the nominal and faulty 
behaviours) can be obtained automatically. This 
model is exploited by a generic diagnosis algorithm, 
which is not plant-specific and even not domain-spe-
cific (Figure 2). This way, diagnostics tailored to a 
specific plant require only the specification of the 
plant structure and component models; they are gen-
erated automatically instead of being hand-tailored. 
For the purposes of this research work, a plant model 
consisting of component models was built manually 
and then fed to the diagnostics tool that produces the 
diagnostics system automatically. However, steps 
have been taken to automate the full process by pars-
ing the modelica file. This parsing can be done as long 
as certain naming convention is in place. 

3 From Model to On-line Diagnosis 

In this section, we present a complete workflow and 

system modules required to build a diagnostic solu-
tion for a class of plants (AHU) and to deploy it for a 
single plant and run it on-line, which is illustrated in 
Figure 1. Here, we give only an overview of the steps 
and modules, the most important ones being discussed 
in more detail in the following sections. 
• Producing the general solution involves:  

o the production of a library of Modelica mod-
els (section 4) and; 

o its transformation into a qualitative diagnostic 
model library (top row Figure 1).  

• Producing an application system based on the 
general solution, requires 
o The configuration and calibration of a Model-

ica model of the correct behaviour (named 
OK model and explained in section 4); 

o the composition of the diagnostic model 
based on the diagnostic library and the com-
ponent structure of the plant, which can be ex-
tracted from this Modelica system model. 
This composition step is part of the function-
ality of the tool used in this work, Raz’r (from 

 

 
Figure 1 From model to diagnosis, the MBD chain 
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OCC'M Software GmbH). The extraction of 
the component structure from Modelica has 
not yet been realized, but is expected to be 
straightforward, given that the models have 
been developed following certain require-
ments, which are stated in section 3.1.  

• For on-line diagnosis,  
o qualitative deviations are generated by com-

puting the difference between the real data 
(currently for steady state only) and the pre-
dictions generated by the OK model of the 
plant (implemented in Modelica), and deter-
mining qualitative deviations based on given 
thresholds. A steady state filter is used to ex-
tract steady state data from the real operation 
data. The resulting qualitative deviations of 
dependent variables (and zero deviations for 
the exogenous variables) are processed by 

o the runtime diagnosis engine, which is pro-
duced by the code generator from the Raz’r 
module by compiling the consistency-based 
diagnosis algorithm and the diagnostic plant 
model into very compact C-code. The output 
is the set of all mode assignments containing 
minimal combinations of component faults 
that are consistent with the abstract observa-
tions [4]. 

3.1 Requirements on Modelling for Model-
Based Diagnosis 

In order to support the model-based diagnosis ap-
proach as previously outlined, the diagnosis models 
and, hence, also the numerical models to generate 
them from have to satisfy particular requirements: 
• Strictly component-oriented modelling: the li-

brary has to be organized around the component 
types (with models that can be parameterized) that 
constitute the plant and that are units subject to 
diagnosis, e.g. heat exchangers, mass exchanger, 
mass movers, etc. 

• Fault models should be represented (perhaps 
with a parameter characterizing the fault, such as 
the opening of a passing valve) 

• The plant model has to be configured strictly ac-
cording to the real physical interconnections in 
the plant. It must not include computational arte-
facts that link certain variables that are not really 
interacting directly via a physical connection. 
This includes using the concept of connectors in 
Modelica to reflect the channels of physical inter-
actions between components (rather than connec-
tions via single variables as, for instance, in 
Matlab/Simulink). 

The models in the library have to be formulated in a 
context-independent manner and must not rely on 
implicit assumptions about the presence and correct 
functioning of other components, even though they 
may exist in most standard configurations. This is rel-
evant for two reasons: it enables the re-use of the com-
ponent models for different plants, and it is a precon-
dition for the adequacy of the models in fault situa-
tions. 

4 Modelling a Simple Heating Coil 

 

Figure 3. MBD first steps, model development and 
calibration 

4.1 Model Development 

Model development was driven by the specific appli-
cation needs as specified in the previous section. 
These needs also encompass matching of the type of 
information interchanged between elements, reusabil-
ity of the models, best use of manufacturer‘s data for 
setting up models and ease of use. 
Ease of use and best use of manufacturer’s data are 
closely related since the manufacturer’s data is the 
first source of information a model developer will 
have in hand. In this regard, the developed model is 
such that this data is input into the parameters of the 
models corresponding this way to a first calibration 
step based on the manufacturer provided operation 
point. Table 1 shows the parameters, from the manu-
facturer’s data, to be provided to the heating coil 
model. 

The heating coil model calculates the outlet steady-
state conditions in both, water and air sides, using 
equations derived from the conservation of energy 
and mass principles and the definition of effectiveness 
in the classical eff-NTU method which given by equa-
tions (1), (2) and (3) [5]: 

Table 1. Manufacturer’s datasheet operation point values 
needed as parameters for model setup 

Heating Coil 

air input temperature 
air output temperature 
air mass flow rate 
water input temperature 
water output temperature  
water mass flow rate 

Modelica Component Library 

Modelica OK Model 
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The effectiveness eff depends on the coil configura-
tion (parallel flow, counter flow, or cross flow with 
both streams unmixed) [6]. The full modelica code 
is out of the scope of this paper but a snippet of the 
three main equations (1), (2), and (3) is shown below 
to illustrate the match between equation formulation 
and modelica code development: 
 
Qflow = Cflow_a*(To_a - Ti_a); 

Qflow = Cflow_w*(Ti_w - To_w); 
Qflow=eff*min(Cflow_a,Cflow_w)*(Ti_w-
Ti_a); 
 
For the heating-coil component, there are inputs and 
outputs for flow of air through the ducting, and flow 
of hot water through the heating coil. Hence, mass- 
and energy-balance equations must be defined for 
the airflow and water-flow. The imposition of en-
ergy- and mass- balance provides the remainder of 
the Modelica model equations. 

4.2 Calibration 

The calibration methodology uses real operation data 
obtained from the facility’s building management sys-
tem (BMS). For the calibration procedure, instead of 
trying to adjust each of the component’s parameters, 
the approach used is by assuming all the calibration 
can be done with the valve model explained below in 
this section. 
In the heating coil, the air outlet temperature is con-
trolled by water mass flow rate using valves. A control 
signal determines the valve’s position.  
Real valves have no linear behaviour but they may 
present non-linear behaviour and even hysteresis. To 
model the valve’s hysteresis, several options can be 
followed, e.g. using on-off hysteresis, linear hystere-
sis and non-linear hysteresis. For the purposes of this 
research work, a hysteresis as shown in Figure 4 was 
chosen since it produced a good trade-off between ac-
curacy and simplicity. The chosen hysteresis model 
will still be a good representation of the real operation 
of the valve while it does not add important calcula-
tion burden to the model. 
There are three parameters to calibrate. ‘mflowMAX’ 
is the water mass flow rate when the control signal is 
equal to 1 (maximum opening position), centHys and 
delta characterise the hysteresis’ curve and the on/off 
points. 

The real data has to be carefully observed to find max-
imum opening points and then the mflowMAX value is 
fixed in order to decrease the difference between real 
data and model results of the controlled variable in 
those points (temperature and/or humidity ratio). 

To determine centHys and delta, the employed strat-
egy was to find sharp changes in controlled variable 
(output air temperature). When the controlled variable 
has a sharp raise, the control signal coincides with a 
value equal to centHys+delta; controlled variable has 
a sharp decrease, the control signal coincides with the 
value equal to centHys-delta. 
Pre and post calibration results can be seen in Figure 
5 and Figure 6. 

In Table 2 we show calibration accuracy based on er-
ror metrics such as root mean square error (RMSE), 
coefficient of variation of the RMSE (CV-RMSE), 
mean bias error (MBE) and, normalised MBE 
(NMBE). 

5  Qualitative Diagnostic Models 

 
 

Figure 7 From numerical model to qualitative models 
 

Q = Ca*(TaO-TaI)  (1) 

Q = Cw*(TwI-TwO) (2) 

Q = eff*min(Ca, Cw)*(TwI-TaI) (3) 

 
Figure 4 Valve hysteresis function 

Table 2. Calibration Results 
Heating Coil RMSE 

(K) 
CV 
RMSE 

MBE 
(K) 

NMBE 

Pre-Calibration 1.57 0.52 -0.76 -0.26 
Pos-Calibration 0.54 0.18 -0.07 -0.02 

Qualitative Com-
ponent Library 

Modelica 
Component 
Library 

Model Transfor-
mation 
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Creating a diagnostic library, based on the Modelica 
library, requires its transformation into a diagnostic 
model library. Figure 7 illustrates these steps.  
The models used in our diagnostic approach are stated 
in relative, rather than absolute terms: they capture the 
deviation of variable values from the respective under 
nominal behaviour.  
Following [7], [8]: the qualitative deviation of a vari-
able x is defined as: 

Δx:= sign(xact - xnom) (4) 

Equation (4), captures whether an actual (observed, 
assumed, or inferred) value is greater, less or equal to 
the nominal value. The latter is the value to be ex-
pected under nominal behaviour, technically: the 
value implied by the model in which all components 
are in OK mode. 
Qualitative deviation models can be obtained from 
standard models stated in terms of (differential) equa-
tions by canonical transformations, such as equations 
(5) and (6). We use ⊕, ⊝ and ⊗, to denote addition, 
subtraction and multiplication on signs.  

It is important to note that these equations do not con-
tain and require values for the reference values xnom 
and, hence, can be applied to different plants and un-
der distinct operating modes. The qualitative devia-
tion models, obtained from the Modelica models, re-
flect current modelling assumptions, (steady state, 
and no deviation in airflow) and become very compact 
due to their qualitative nature and because constants 
can be dropped and just replaced by their signs. Inter-
nally, this model is automatically transformed into an 
efficient data structure representing finite relation. 
In the following, we illustrate how this transformation 
can be done by manipulating the equations. Accord-
ing to energy balance equations (equations (1), (2) 
and, (3)), and assuming no losses, the energy balance 
in equation (7) can be reformulated in terms of devia-
tions (Δ) as in equation (8).  
Assuming that the air flow and the water temperature 
(drop) are positive and not deviating and replacing the 
capacity flow by the mass flow mfloww (which differ 
only by a constant factor), we obtain equation (9) 
which applies to all modes of the coil. 

0 = Ca*(TaO-TaI) -  Cw*(TwI-TwO) (7) 

0 = Δ (Ca*(TaI-TaO)) ⊕ Δ (Cw*(TwI-TwO)) (8) 

0 = ΔTaI  ⊝ ΔTaO ⊕ Δmfloww (9) 

Following equation (4), each of the variables used for 
diagnostics (equation (9)) can have a deviation of the 
measured value from the simulated one as follows: 
• positively (‘+’), when the actual (measured, pre-

dicted, or assumed) value is above the simulated 
plus a threshold; 

• negatively (‘-‘),when the actual value is below the 
simulated minus a threshold; 

• or not deviate (‘0’), when the actual value is 
within the simulated value plus/minus the thresh-
old. 

Table 3 depicts the resulting relation on the three de-
viation variables, i.e. all solution tuples of equation 
(9). For instance, the first three rows of the table indi-
cate the intuitive fact that, if the mass flow shows no 
deviation, a deviation of the incoming air temperature 

 
Figure 5  non-calibrated  simulated (model) vs. measured 
(real) output air temperature for the heating coil model.  

 
Figure 6  calibrated simulated (model) vs. measured (real) 

output air temperature for the heating coil model. 

a + b = c ⇒ Δa  ⊕ Δb = Δc (5) 

a * b = c ⇒ (aact ⊗ Δb) ⊕ (bact ⊗ Δa)  ⊝ (Δa 

⊗ Δb) = Δc 

(6) 
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will simply be propagated to the output air tempera-
ture.  
On the other hand, a positive deviation of the output 
air temperature in combination with no deviation in 
the input air temperature, is only consistent with a 
positive deviation in the mass flow rate of the water 
(last-but-one row). From the diagnostic perspective, 
this reveals a fault in the coil (e.g. a passing valve), 
because a correct coil will not produce a deviating wa-
ter flow. A valve stuck closed may lead to a negative 
deviation “–“, if the command Cmd to the valve is 
“open” (to some non-zero position, “+”). If the control 
commands the valve to be shut, anyway, a stuck-
closed valve would cause no deviation in the water 
flow. This is captured by the model fragment in Table 
5, which actually, is the complete fault model. Table 
4 and Table 5 show the models of the OK mode and 
the passing valve, respectively. The table expresses 
that this mode may coincide with the nominal behav-
iour for a certain range of opening commands, but de-
viate positively for smaller valve positions.  
With respect to their use for diagnosis, tables 4 – 6 
jointly with table 3 capture which tuples of tempera-
ture and water flow deviations are consistent with 
which behaviour modes. Note that this does not re-
quire that the deviations can be observed directly. 
They may also be predicted by the system model 
based on observations for a particular system health 
assignment.  
 
Bear in mind that a qualitative representation of one 
mode doesn’t exclude that any other mode can be 
reached with the same combination of inputs/outputs. 

5.1  Runtime Deviation Generation 

 

Figure 8 Generating Deviations 
 
At runtime, the system will calculate deviations (Fig-
ure 8) by following the steps: 
• Read each data vector corresponding to the sensor 

and actuator signals;  
• Extract the exogenous variables including (exter-

nal temperature, damper, and valve commands); 
• Provide the exogenous variable values to the Mod-

elica model of nominal behaviour, compare the 
values predicted by this model with the actual sen-
sor data, and compute the deviations. In the current 

solution, this is simply done by using a threshold 
(which can be different for different variables).  

For the example with the heating coil documented 
here, a threshold of 2°C was chosen in order to pro-
duce deviations in the domain of signs (‘+’,’-‘,’0’). In 
future solutions, different orders of magnitudes of the 
deviations could be generated by the abstraction mod-
ule, which can take arbitrary sets of interval bounda-
ries as an input. 
For the example with the heating coil, Table 7 shows 
both the sensor data and the predicted values, high-
lighting the temperature before and after the heating 
coil. Using the 2°C threshold, the inflow air tempera-
ture is determined as nominal, while the outflow air 
temperature is higher than expected. This triggers a 
diagnosis event. 

5.2  Diagnosis Inference 

 

Figure 9 From deviations and qualitative model to diagnosis 

Table 3. Relation on tempera-
ture deviations and water 

flow deviation 

Δmfloww ΔTaI ΔTaO 

0 - - 

0 0 0 

0 + + 

- - - 

- 0 - 

- + * 

+ - * 

+ 0 + 

+ + + 
 

 
Table 4 Qualitative repre-
sentation of the OK mode 

Cmd Δmfloww 

0 0 

+ 0 

Table 5 Qualitative repre-
sentation of the stuck 

closed valve mode 

Cmd Δmfloww 

0 0 

+ - 

Table 6  Qualitative repre-
sentation of the passing 

valve mode 
Cmd Δmfloww 

0 + 

+ 0 

+ + 
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The computed deviation pattern (with a zero deviation 
of exogenous variables -input temperature, and valve 
commands-) forms the input to the diagnosis runtime 
system (Figure 9). The deviation patterns will be 
checked for consistency with the possible models. In 
the trivial example restricted to one component pre-
sented in Table 7, the input/output temperature devia-
tions (0, +) match with only one row in Table 3 that 
holds for all behaviour modes, which fixes mfloww to 
be positively deviating. This positive deviation is con-
sistent with the valve passing mode (Table 6), but nei-
ther with the OK mode, not the stuck closed mode. 
Note, that this result can actually be concluded with-
out information about the command to the valve.  
What is illustrated here for a single component, is ac-
tually applied to the space of plant models covered by 
the system health assignments, which may yield alter-
native diagnosis hypotheses and also such that corre-
spond to multiple component faults.  

6 Discussion  

In this paper a tool chain from model development to 
fault detection in air handling units has been presented 
and discussed with an illustrative example of a heat-
ing coil. The development tool of choice for the model 
was Modelica since it provides all the necessary tools 
to comply with model requirement for model-based 
fault detection as shown in section 3.1. 
One of the main advantages of the model-based ap-
proach is the adaptability to different plants and to 
changes in the same plant. A brief description of the 
steps involved in adapting the qualitative model based 
diagnosis is presented below. 
• Structural changes: These changes will have to 

be reproduced in the model, which would need to 
be compiled and recalibrated. The diagnosis model 
structure is a 1:1 mapping of the model and as such 
only minor adaptation is needed. However, if the 
change involves variables considered for diagno-
sis, the variable mapping between model and diag-
nosis framework has to be modified and tested 
with new data sets. 

• Parameter changes: recalibration of the models is 
in principle the only requirement. In the case these 
parameter changes impact the accuracy of the 

model, the tolerances of the diagnosis framework 
might have to be adjusted. 

• Sensor changes: similar consideration to the case 
of structural changes should be taken in the case of 
adding new sensors or modifying position of exist-
ing ones. In the case that existing sensors are to be 
replaced with new ones with different precision, 
the steps described in the parameter changes are to 
be followed. 

• Changes in control: plant model and diagnosis 
framework is, in principle, not affected by changes 
in the control strategy. 

This adaptability makes model-based diagnosis a via-
ble approach to fault detection and diagnosis in air 
handling units. 
Taking into account that heating ventilation and air 
conditioning systems are rarely critical systems, the 
benefits of FDD in the build environment are more 
economic and environmental rather than being a 
safety issue and that hourly fault detection and diag-
nosis frequencies are more than acceptable in building 
applications; there is little scope for extending the 
models to include dynamic behaviour at the moment.  
Although in early stage, there exist scope for modelica 
models to become the de-facto standard in energy 
modelling of building components as shown by the 
recently established International Energy Agency An-
nex 60. Within this context, one of the key issues for 
model use during operation (e.g. Model-Based FDD, 
Model-Predictive Control, etc.) is the development of 
calibrated models that represent in a cost-effective 
manner the expected normal behaviour of the systems. 
Focused on air handling units’ components, an ap-
proach to tack such problem, which can be automated, 
has been presented in this research paper 

7 Future Work 

Next steps in this research are: 
• Development and testing of models for other com-

ponents of HVAC systems; 
• Improve the calibration methodology by develop-

ing an automatic calibration procedure that could 
be implemented underpinned by machine learning. 

• Comparison of the qualitative model-based diag-
nosis approach with others such APAR rules or 
quantitative diagnosis 

• Deployment and testing in a range of real units op-
erating in normal environments. 
 

Table 7 Deviations between sensor data and model data 
 TaI (ºC) TaO (ºC) 

Sensor Data 18.32 20.87 

Model Prediction 18.44 18.44 

Resulting Deviation 0 + 

Session 3B: Fault Handling and Safety Issues in Modelica

DOI
10.3384/ECP14096447

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

453



8 Acknowledgements 

This work was supported by the International Energy 
Research Centre and Enterprise Ireland under project 
n. CC-2011-4005B and by the Irish Research Council 
– D’Appolonia enterprise partnership scheme. Special 
thanks to Dominik O’Sullivan John McCarthy for 
their invaluable support and help in providing data-
sets for testing the developments presented in this re-
search work. 

9 Nomenclature 

eff 
Q 
C 
T 

effectiveness 
heat transfer 
capacity flow 
temperature 

[1] 
[W] 

[W/K] 
[ºC] 

mflow mass flow rate [kg/s] 
Subscripts and functions 
a air I input 
w water O output 
min(⋅, ⋅) smallest value between arguments 
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Simulation for verification and validation of functional safety
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Abstract

Safety of machinery is the most critical issue in the de-
sign of mechatronic systems. The verification and val-
idation procedure for functional safety of machinery is
thoroughly discussed in ISO 13849-2. Following this
procedure, the system behavior in case of a component
failure has to be analyzed. Up to now this analysis
bases on expert knowledge and real experiments. In
this contribution a simulation based approach is pre-
sented. This approach has several advantages over the
state-of-the-art. First, real experiments are more time
consuming and costly than simulation. Moreover, ac-
cording models can be used for further investigations
like optimizing the sensor setup.
To enable failure simulation as a substitute of testing
on real machinery for validation of functional safety,
typical hydraulic failures are added to safety-related
components of an in-house Modelica hydraulics li-
brary. This library is then used for the verification
and validation of functional safety of a hydraulic test
bench. Moreover, error propagation is considered.

Keywords: functional safety; hydraulics; simula-
tion; failure modeling

1 Introduction

1.1 Motivation

Safety is of primary concern for all machine design-
ers. The functional safety of a mechatronic system is
assured by the correct execution of safety functions.
Those parts of the complete system that are relevant
for the execution of safety-functions are denoted as
safety-related part of the control system (SRP/CS).
ISO 13849 provides guidelines to assure safety of
mechatronic systems. While ISO 13849-1 [1] concen-
trates on the design of the SRP/CS, ISO 13849-2 [2]
focuses on the validation of functional safety. Thereby,
the reliability of the execution of a safety function is
evaluated by a discrete measure called performance
level (PL). The determination of the PL of a safety

function requires the analysis of the system behavior in
case of one or more component failures of the SRP/CS.
The failures that need to be considered for that analy-
sis are also standardized in ISO 13849. The PL is then
used to verify that a mechatronic system is functional
safe, by checking that the PL of the SRP/CS is greater
or equal to the required performance level (PLr ) of the
system. Obviously, the PLr has to be derived before-
hand from a risk assessment.
It is obviously desirable, that the validation of a safety
function can be done solely by analysis, using main-
stream failure analysis techniques like Failure Mode
and Effect Analysis (FMEA) [3] or Fault Tree Anal-
ysis (FTA). However, in most industrial applications,
the SRP/CS of a safety function are too complex to an-
alyze the system behavior by the engineers intuition.
Hence, the result of these failure analysis techniques
is seldom conclusive. Consequently, testing on the real
system must be carried out in order to get a reliable re-
sult. For these tests usually a prototype of the SRP/CS
has to be constructed, which is a time consuming and
costly task. Furthermore, correct insertion of the de-
sired component failure into the test setup is not only
difficult, but can also damage the prototype, e.g. if
the influence of contaminated oil is investigated. In
some applications, testing on actual constructed sys-
tems might not even be possible, e.g. if the considered
failure leads to an hazardous situation for the opera-
tor. This is the case in hydraulic applications, when
the housing of a component breaks, because this leads
to an eruption of the oil at high pressure. To over-
come the same problems (costly and time consuming
prototypes), years ago simulation was established as a
development tool. The use of simulation for the ver-
ification and validation of requirements is visualized
in the mechatronic V-Model (see figure 1). However,
up to now the requirements were mostly functional re-
quirements. To the author’s knowledge there exists
no methodology to use simulation for the verification
and validation of functional safety with respect to ISO
13849. Consequently, there are no libraries available
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Figure 1: The mechatronic V-Model

that have a suitable level of detail, i.e. libraries includ-
ing failure models. Obviously, it is desirable to model
components including failures in such a way that

• the failures can be attached to a model without a
failure (the original model),

• modification of the original model does not re-
quire modifications of the failures,

• the different failures can be easily exchanged,

• new failures can be added.

According to the first requirement physical models are
needed. The remaining requirements aim for an object
oriented model. Thus, Modelica seems to be appropri-
ate to set up such models.
In this contribution an in-house hydraulics library is
extended by components with failures, where the fail-
ures are modeled according to the requirements men-
tioned before. On the basis of that library it is shown
how simulation can support and ease the design of a
functional safe system. Moreover, an approach for er-
ror propagation is presented. A hydraulic test bench,
which is used for testing hydraulic components like
valves, is used as an application example. To summa-
rize, the major benefits of the methodology presented
here are:

• Optimization the typical work flow of design with
respect to functional safety of mechatronic sys-
tems [4], i.e. replacing conventional analysis
techniques and tests on prototypes by failure-
simulation.

• Automated identification of the safety-critical
failures in the SRP/CS.

• Investigation of error propagation.

• Future: Possibility to determine whether a failure
can be detected by the sensor arrangements in the
SRP/CS.

1.2 State-of-the-art

The concept of functional safety is derived from a
functional system representation. Thus, most ap-
proaches for computer aided design of functional safe
systems use functional models. A functional model
is a block diagram of the system under consideration,
where the blocks represent functions of the model and
the connections represent a flow of energy, material or
signals. Functional models can be generated at very
early design stages, but suffer from the fact that they
are rather rough, e.g. they do not include any dynam-
ics.

Using these functional models, a Functional Failure
Identification and Propagation framework is proposed
for the analysis of functional failure propagation in [5].
However, this approach differs significantly from the
method shown here and suffers from two major draw-
backs. First, the level of detail of functional models is
very low. Thus, the value of the gathered information
is limited. Moreover, a special syntax and semantics
are developed, so that existing models can not be used
or upgraded for safety considerations. The same holds
the methods described in [6] and [7] since the authors
also use functional models. It is noteworthy, that the
approach presented by Deng is originally intended for
the verification of general requirements and can hence
also be used for the verification of functional safety.

Most functional model-based analysis approaches
are supported by failure analysis techniques like
FMEA or FTA. An approach for combining both is
presented in [8]. The coupling is done using the Sys-
tems Modeling language (SysML), a general-purpose
modeling language. This method allows for automatic
computation of a FMEA from a functional model, but
suffers from the drawbacks described above. The use
of ModelicaML [9] could be a promising future direc-
tion of the work presented here.

Although most simulation-based safety analysis
methods use functional models, examples of physi-
cal models used for safety investigation can be found.
A simple hydraulic system including a 4/3 direc-
tional valve, a motor-pump group and a cylinder is
modeled with the help of bond graphs in [10] for
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Figure 2: Determination of the required performance
level using the risk graph

proactive fault diagnosis. However, without the help
of powerful object-oriented equation-based modeling
languages like Modelica, even modeling this simple
hydraulic system is tedious and difficult. Therefore,
the fault diagnosis is restricted to erroneous spool
movement in the 4/3 directional valve. Moreover, this
method does not satisfy the requirements stated in the
motivation.

In the following section a brief introduction to func-
tional safety is given. After that, a hydraulic library
including models of failures is presented. Section 4
shows the application example mentioned before. The
paper closes with a conclusion and an outlook.

2 Functional safety

Safety is the primary concern for every machine
designer. ISO 12100 defines machine safety as:

“the ability of a machine to perform its intended
function(s) during its life cycle where risk has been
adequately reduced.”

If the machine safety depends on the correct
functioning of a control system, the termfunctional
safetyis used. ISO 13849 contains guidelines for the
design of a system with respect to functional safety.
In [4] ten steps to reach the required performance
level are presented. In the first step possible risks
are identified and evaluated in a risk assessment. If
required, measures to reduce the risks are chosen.
These measures can be information for the use of the
system, improved system design or safeguarding. If
such a measure depends on the control system it is
called asafety function. De-energizing of the system

in order to reach a safe state is a common safety
function. In the second step the safety functions of
the system are identified. In the third step the PLr is
determined for every safety function using the risk
graph in figure 2. In the shown example the possibility
of serious injuries (irreversible or death), that can
happen only in short time span (e.g. 10min per hour)
and are hard to avoid (e.g. fast moving machine)
lead to a required performance limit PLr =d. The
PLr quantifies the required reduction of the risk (see
figure 3). Hence, after the third step the requirements
for the SCRP/CS are known. Thus, in the fourth step
the structure of the control system can be outlined.
Following directive EN 954-1, control systems can
be realized in the form of five categories (B, 1, 2, 3,
4) mapping the typical architectures, e.g. redundancy
or additional shut-off paths. With each category
only certain performance levels can be reached as
can be seen in table 1. On the other hand, different
choices for the category in order to reach a certain
PL are possible. The fourth step is completed after
the selection of an appropriate category. In the fifth
step a functional model of the system is generated.
That model is used in the sixth step order to analyze
failures of the SCRP/CS. Therefore, a list of relevant
failures is included in [2]. Basing on the functional
model and the engineers expertise it is judged whether
the failures from the failure list lead to a dangerous
situation or the system remains in a safe state. Then,
for each component the diagnostic coverage (DC)
is determined as the ratio between failure rate of
detected dangerous failures and the failure rate of total
dangerous failures. Thereby, the failure rate is the
inverse of the mean-time-to-failure (MTTF), which
can usually requested for each component at the
manufacturer (MTTF and MTTFd). The MTTF is the
number of years at which approximately 63% would
fail. Hence, the MTTF corresponds to a statistical,
expected value and does not guarantee for a failure
free time. The sixth step is completed after calculating
the average diagnostic coverage for the complete
SCRP/CS (consisting of N components) by

Category: PL (possible)

B a-b
1 b-c
2 a-d
3 a-e
4 e

Table 1: Reachable performance level
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Figure 3: Principle of the risk reduction by the safety
function

DCavg =

DC1
MTTFd1

+ DC2
MTTFd2

+ . . .+ DCN
MTTFdN

1
MTTFd1

+ 1
MTTFd2

+ . . .+ 1
MTTFdN

, (1)

where MTTFd denotes the mean time to a dangerous
failure. In the seventh step the PL of the designed
SCRP/CS is determined. The PL depends on

• the category of the PLC,

• the reliability of the SCRP/CS (MTTFd),

• the diagnostic coverage (DCavg).

There exist different approaches to compute the
MTTFd of the SCRP/CS from the MTTFd of the single
components, e.g. Parts-Count-Procedure [4]. Using
the MTTFd, the category chosen in the fourth step and
DCavg determined in the sixth step, the PL can be read
from a table given in [4]. Afterwards, the robustness
of the PLC with respect to situations, that are not con-
sidered in the first steps, is analyzed in the eighth step.
For example, in a redundant controller design all chan-
nels could fail due to violation of the maximum admis-
sible operating temperature. In such cases adequate
measures are taken. In the ninth step the software for
the controller is developed with respect to state-of-the-
art techniques and processes. In the last step the re-
sults from the previous steps are verified and validated.
During the verification it is checked whether the re-
quired performance level has been reached. Otherwise
the SCRP/CS has to be improved, e.g. with compo-
nents with a longer life cycle or a higher category. The
plausibility of all the mentioned reliability parameters
(MTTFd, PL, category, DC), must be validated, either
by analysis or with the help of testing/simulation. The
complete validation procedure can be summarized as
follows:

1. validation of safety functions

2. validation of performance level which includes:

• validation of category specifications

• validation ofMTTFd andDCavg

• Validation of measures against systematic
failure

• validation of safety-related software

3. validation of combination and integration of all
SRP/CS

Theoretically, this verification and validation can be
performed solely by analysis. However, due to the
complexity of most control systems, testing or simula-
tion must be carried out to support inconclusive failure
analysis.
Besides the use of simulation for validation it is useful
for some other tasks. In the sixth step dangerous fail-
ures are identified. Up to now this is done basing on
a functional model and the engineers expertise. Due
to typically big and complex systems this approach is
time consuming and error prone. Hence, the use of
simulation would not only speed up the design pro-
cess, but also lead to more meaningful results.

3 Failure models in Modelica

The DC_HydrauLib is a Modelica library for the
simulation of hydraulic systems developed by Bosch
Rexroth. It contains hydraulic components like
pumps, cylinders and valves. In this contribution it
is used to present a possible approach for failure mod-
eling in Modelica. This approach respects the require-
ments stated in the introduction. Using the language
features of Modelica these requirements can be sat-
isfied in the following way: Each failure is imple-
mented in a new model that extends from the nominal
model. All these models are then collected in a wrap-
per model (via replaceable), which is denoted as the
failure model. Modeling this way one failure model
consists of multiple models including failures. Dur-
ing application the user can choose the failure, that
should be investigated by a parameter. The failures are
implemented according to the list from ISO 13849-2
containing typical hydraulic failures. This list is de-
veloped without consideration of modeling and sim-
ulation. Hence, each failure is described on the base
of the actual component construction. Examples for
failures of a switching valve are
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• Change of switching times

• Non-Switching (sticking at the end or zero posi-
tion) or incomplete switching (sticking at a ran-
dom intermediate position)

• Spontaneous change of the initial switching posi-
tion (without an input signal)

• Leakage

• Bursting of the valve housing or breakage of the
moving component(s) as well as breakage/ frac-
ture of the mounting or housing screws

However, the hydraulic library contains only models
with a level of detail suited for system simulation.
Thus, a translation into implementable descriptions fit-
ting to the abstraction level of the existing hydraulic
library is required first. While the translation for the
first two failures is straight forward, different transla-
tions for the remaining failures are possible, e.g.

• Spontaneous change of the initial switching po-
sition (without an input signal): A white noise
input signal replaces the control signal when the
failure is triggered.

• Leakage: Internal leakage with user-specified
leakage coefficient.

• Bursting of the valve housing or breakage of the
moving component(s) as well as breakage/ frac-
ture of the mounting or housing screws: External
leakage with a (big) user-specified leakage coef-
ficient.

A brief overview on a possible implementation of the
failures is given below.

Change of switching times The switching behavior
of a switching valve is modeled by a trapezoidal pro-
file, that is parametrized by the switching times (on/off
separately). In addition to the parameters and variables
inherited from the base model, two new parameters,
ron andro f f are introduced, which are defined as

ron =
T ′

on

Ton
(2)

ro f f =
T ′

o f f

To f f
, (3)

where T and T ′ are the original and the erroneous
switching time of the valve, respectively. In case of
a failure the erroneous switching times are used in the
calculation of the spool dynamics.

Non-switching This failure is split into two failures,
non-switching and random sticking. Non-switching
means that the valve cannot open or close upon the
next opening or closing input signal. Thus, this fail-
ure does not take effect immediately at the moment
the failure is triggered. However, at the moment the
failure is triggered the current spool position is saved
and from that moment on used for the flow rate cal-
culation instead of the spool position calculated in the
spool dynamics.
Random sticking, takes effect when the failure type is
triggered, which means that the spool stays at the cur-
rent position when the failure is activated at any ran-
dom time. The sticking position can either be the two
end positions or any intermediate position. This failure
is very common in directional valves, when the spring
holding the spool at the end position is broken. The
implementation is very similar to the non-switching
behavior.

Spontaneous position change This failure de-
scribes the situation when the valve becomes totally
uncontrollable, most likely due to breakage of the
spool. For this failure, a white noise generator pro-
ducing filtered noise with a user-specified bandwidth
is used as the input for the spool dynamics. Notice
that this noise generator is not really random. Only
different seeds generate different noise output.

Leakage Leakage is an unavoidable problem in the
construction of hydraulic valves. Leakage between
two hydraulic ports is models as a volume flow rate
proportional to the pressure difference∆p between the
two ports

q = c·∆p (4)

with c as the leakage coefficient. Here, one has to
distinguish between internal and external leakage.
Internal leakage takes place between the two hydraulic
ports of a the valve. In the example of a switching
valve with two ports (A and B), oil might flow
from port_A to port_B, even when the valve is fully
closed. External leakage is leakage to the environment
(modeled as a tank). This model can also be used
to simulate the breaking of the housing or similar
failures.

Looking at the failures it is clear that there should
be some kind of triggering mechanism. In this
work two different triggering mechanisms have
been implemented. In the first case the failure is
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Specimen

Figure 4: Hydraulic test bench

triggered at a user specified time. In the second
case the failure is triggered by the violation of the
working conditions of the corresponding component,
e.g. pressure limitation, temperature range or fluid
contamination. In this contribution only one working
condition (pressure limits) is implemented. According
to the specifications of the DC_HydrauLib, both
ambient and fluid temperature are constant during
one simulation run, so exceeding the temperature
range cannot be modeled using that library (until
now). Similarly, fluid quality is also a fixed property
of a selected oil type, thus contamination of oil can
also not be modeled. Though, the user can specify a
maximal operating pressure. If this maximal pressure
is exceeded the chosen failure is triggered.

4 Application Example

In this section a test bench for hydraulic valves is used
to present possibilities of the usage of failure simula-
tion during the design phase of a hydraulic system. A
typical safety function of this test bench (emergency
stop initiated by user), is thoroughly investigated by
simulation on the SRP/CS that executes this safety
function.

4.1 Test bench

The hydraulic test bench (Figure 4) is designed for the
testing of directional valves. The test bench is manu-
factured by Bosch Rexroth and applied in the produc-
tion line of a Rexroth plant. Typical valve character-
istics of the test item (specimen in figure 4) like leak-
age, characteristics curves and switching times can be
tested. To perform all tests required for a test item,

the test bench must be able to provide various pres-
sure and volume flow rates. During the productive
period of the test bench, a trained operator stands in
front of the test table to mount the test item. A test can
only be started when the safety door (protective safe-
guard in figure 4) is open. On the other hand this door
can only be lowered when the test item is correctly
mounted. The test results are automatically recorded
by the control devices of the test bench. Thereby, the
test results can be severely impaired by a malfunction
of the test bench, especially by component failures in
the motor-pump group and the test table. For exam-
ple, internal leakage inside the test bench may lead
to test results, that indicate too big leakage of the test
item. Moreover, if one of the safety functions, which
are measures against risks, cannot be carried out due
to internal component failures, the consequence can
be even more disastrous. Thus, each time before the
test bench is started a checking routine has to be per-
formed. To reduce this non-productive period, and at
the same time ensure the correct functioning of safety
functions like emergency stop and safe door locking,
is one of the most challenging issues in the designing
of hydraulic test benches.

4.2 Circuit example

The safety function to be investigated for the hydraulic
test bench (emergency stop initiated by user), is acti-
vated by pressing the emergency button on the con-
trol panel, and executed by de-energizing all engaged
valves. Notice that in the execution of this safety
function only the relevant actuators, namely valves
engaged in cutting off the pressure supply, are de-
energized. The energy supplier (the electrical motor
within the motor-pump group) is still working, be-
cause it might be employed in other crucial functions
of the test bench.

Two functional blocks exist between the oil pres-
sure supply and the test table, where the test item is
mounted. The block directly below the base frame of
test table is the measurement block, which contains
mainly sensors for measuring and valves for channel
selection. This measurement block is designed to carry
out all important tests on the test item. Notwithstand-
ing its importance in the correct functioning of the test
bench, it is not safety-related, since it does not execute
a safety function. Moreover, malfunction of this mea-
surement block only results in the non-execution of the
designed tests on the test item. No danger is caused by
the loss or degradation of this function. So the mea-
surement block is out of the investigation scope of this
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Figure 5: Simplified circuit diagram

contribution.
The other block is directly connected to the pressure

supply. This block is designed to cut off the oil sup-
ply from the pump as fast as possible by de-energizing
all engaged valves upon emergency. So this functional
block is the active part to execute the safety function
under consideration, and thus in the focus of the in-
vestigation in this contribution. The original system
consists of several identical channels that can be con-
nected to the test item. However, for the following in-
vestigations only one channel is considered for the rea-
son of simplicity. Some additional simplifications lead
to the circuit diagram in figure 5. Here, the red com-
ponents (valve VA1, VB1, VA2 and VB2) are failure
models. An explanation of the essential components is
given in the following:

• VA1 and VA2: These 2/2 directional valves con-
trol the pressure supply of the test table. The
valves have a switching time of 10ms and an
internal induction sensor for spool monitoring
(high DC value).

• VB1 and VB2: These 2/2 directional valves are
opened in order to let the remaining oil between
two valves flow back to the tank. The valves have
a switching time of 10ms.

• VD1: This pressure relief valve limits the pres-
sure in the circuit to 250bar.

• V3: This 2/2 switching valve imitates a test item.
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Figure 6: Spool position of the valves in the reference
simulation

4.3 Failure simulation

Before performing failure simulations, a failure-free
simulation is first carried out as a reference behavior.
During this reference simulation the safety function
is triggered twice within five seconds. Thereby, the
motor-pump group provides a constant volume flow
rate of 40 l/min. Figure 6 shows the spool positiony of
all controlled valves (VA1, VB1, VA2, VB2 and V3).
The safety function is triggered at 1s and 3s, respec-
tively. Thus, at these times the valves VA1 and VA2
are de-energized (closed). Moreover, VB1 and VB2
also de-energized (opened) and thus let the residue oil
flow back to the tank. Valve V3, which represents
the test item, is controlled by a separate testing sig-
nal, and is not engaged in the execution of the safety
function. It opens at 0.15 s and stays completely open
throughout the whole simulation. The volume flow
rate into the test itemqV3 is the output variable since
this variable is a measure for the danger of extrud-
ing oil. The volume flow rate into each major (VA1,
VA2, VB1, VB2 and V3) is shown in figure 7. Valve
VB1 and VB2 are auxiliary valves designed to let out
residue flow when the main channel is suddenly cut
off. Hence, the flow rate trough these valves is much
smaller than the flow rate through VA1 and VA2.

The results of the reference simulation is used as
the reference for all failure simulations performed in
the following.

4.3.1 Time triggered failures

In the first step described in Sec. 2 a risk assessment
is performed. Here, simulation with failures injected
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Figure 7: Volume flow rate at port_A of all controlled
valves in the reference simulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

0

50

q V
3 (

l/m
)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400

S
1 

(b
ar

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

S
2 

(b
ar

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

y V
A

1 (
%

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

time (s)

y V
A

2 (
%

)

Reference
Test case 1
Test case 2
Test case 3
Test case 4

Figure 8: Comparison of four failure simulations with
the reference simulation

into only one of the safety-related components (VA1,
VA2, VB1 and VB2) can be used in order to get better
estimates of the consequences of component failures.
In the sixth step it judged whether a failure leads to
dangerous situation or not. Clearly, also here simula-
tion can be used. However, here the use of simulation
in the tenth step is shown, i.e. how to use simulation
for validation. Therefore, the category of the SRP/CS
is validated in the following. The chosen category for
the system at hand is three (PLr=d). According to ISO
13849-2 this requires that a single failure does not lead
to the loss of the safety function. Therefore, a Dymola
script is used to simulate possible single failures. In
figure 8 some typical results are presented. The trajec-

tories under investigation are the system outputqV3,
which is the volume flow rate into the test item valve
V3, and all measurable states, which are the displays
of the two pressure sensors S1, S2 and the two internal
sensors monitoring the spool position for valve VA1
and VA2. Sensor S1 is placed near the pump, and is
used to monitor the pressure source of the whole sys-
tem. Sensor S2 is placed at the inlet port of the test
item valve V3, and is used to monitor the pressure pro-
vided to the test item.

It can be easily seen that the trajectories ofqV3 and
the two pressure sensor displays in the four test cases
in figure 8 differ from the reference trajectories around
0.5s (valve VA1 and VA2 are opened). However, after
the first triggering of the safety function at 1s,qV3 be-
comes almost identical to the reference trajectory for
each test case. The same holds for all test cases not
shown here. Thus, the safety function is successfully
executed in all the four test cases and the safety func-
tion is not lost in case of a single failure.

Note that the validation of the category can thus be
performed only based on simulation, which saves time
and money (especially for more complex systems).
Clearly, during the risk assessment also combinations
of failures can be simulated.

4.4 Error propagation

For the previous simulations, only time-triggered fail-
ures are considered. Another option for the failure
triggering mechanism, in which a component failure
is activated when a safety principle is violated, is con-
sidered in this section, for the investigation of error
propagation.

Therefore, the failure-free pressure relief valve VD1
in figure 5, which is used for pressure limitation of
the whole system, is replaced by an equivalent failure
model. Note that the failure lists for pressure valves
differs from the failure list for directional valves. The
only investigated failure in this contribution is non-
opening, which means that the valve cannot open com-
pletely (maximal 1%).

In the test case for error propagation the failure of
the valve VD1 is triggered at 1s. Additionally, VA1 be-
comes uncontrollable (spontaneous spool movement),
if the pressure at the inlet port exceeds the pressure
limit of 400bar. The other valves (VA2, VB1 and
VB2) exhibit a big external leakage (corresponds to
the breaking of the housing), if the pressure limit
(same as for VA1) is exceeded. Once again, a simu-
lation of five seconds with two requests on the safety
function is performed (denoted as Testcase 1 in the fig-
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Figure 9: Results of the valve VA1 compared with the
reference simulation

ures). In figure 9 the simulation results for valve VA1
are shown. It can be seen that the valve VA1 breaks
down shortly (at 1.01s) after the failure of valve VD1
is triggered, because the pressure at the input port gets
bigger than the pressure limit. From that time on the
spool moves uncontrolled, which results in the pre-
sented volume flow. The valves VA2 and VB1 break
down simultaneously shortly after the break-down of
valve VA1 at 1.13s. This is, because the inlet ports of
these two valves are connected to the same hydraulic
port. The break-down of the valves VA2 and VB1
is modeled as big external leakage and hence these
valves nearly act a tank for the rest of the simulation.
That behavior explains the simulation results of the
valve V3 (shown in figure 10). It can be seen that the
volume flow after the failure of VA2 is much smaller
than in the reference simulation. Note that the valve
VB2 works properly, which indicates that the pressure
at the end connector to the test item does not exceeds
the maximum allowed pressure. This can also be con-
firmed by a look at the pressure sensor S2, which is
even lower as in the reference simulation. This behav-
ior occurs, because the valves VB1 and VA2, which
are nearer to the pressure supply, break down earlier
(and exhibit a big external leakage as explained be-
fore).

This example shows that it is possible to perform a
model based estimation of the consequences of com-
ponent failures, where even error propagation is con-
sidered.
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Figure 10: Results of the valves V3 and VD1 com-
pared with the reference simulation

5 Summary

In this contribution an approach for the use of simu-
lation for the verification and validation of functional
safety is presented. Therefore, a hydraulics library is
extended by failure models. Thereby, the failure mod-
els depend on the original model in such a way, that
the requirements stated in the introduction are satis-
fied. One possible use of these failure models is a
risk assessment. The simulation of single failures lead
to insight in the consequences of component failures.
Here, also error propagation can be considered. Fur-
thermore, the failure models can be used for the veri-
fication and validation step, e.g. the verification of the
category as shown before.

In the future, optimization will be used for the iden-
tification of the worst case combination of failures.
The results can either be used for the risk assessment
or the identification of critical components. Moreover,
the approach can be used in order to identify an op-
timal sensor setup. Therefore, on the one hand better
sensor models have to been implemented and on the
other hand algorithms for failure identification are re-
quired.
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Abstract

The formulation of the wheel-rail contact is a cru-
cial issue in simulations considering the running
dynamics of railway vehicles. Therefore a model-
ing environment that is dedicated to railway ve-
hicle dynamics such as the new DLR RaiwayDy-
namics Library relies on an efficient representation
of the kinematics and forces or torques, respec-
tively, that appear at the wheel-rail interface. A
number of different formulations have been devel-
oped since the underlying rolling contact problem
was firstly discussed in literature in 1876. The
paper overviews these wheel-rail contact formula-
tions and then presents the implemented variants
in detail. The DLR RailwayDynamics Library is
used to model and simulate the behavior of an ex-
perimental scaled M 1:5 running gear operating
on the DLR roller rig. The simulations results
are compared and validated with measurements.
Keywords: railway vehicles; wheel-rail contact; ve-
hicle dynamics; multibody simulation

1 Literature Review

1.1 Introduction

The wheel-rail interface is a constitutional element
of railway vehicles. Knothe et al. [1] tell its three
fundamental tasks each associated to a specific
contact force component: load-bearing to the ver-
tical force, guiding to the lateral force and traction
to the longitudinal force. Although this appears
to be very similar to the tire-road interface for au-
tomotive vehicles, the wheel-rail interface differs
fundamentally due to wheel-rail geometry and the
different material behavior of both contact part-
ners which are made of steel.

The contact between wheel and rail in normal

Figure 1: Exemplary contact patch between wheel
and rail and a qualitative surface plot of the asso-
ciated normal stress distribution

direction is very stiff. The deformations of the
contact partners add up to 1/10 or 2/10 mm, the
contact area has an approximate size of 1 to 2 cm2

although the usual transmitted vertical loads are
very high, i.e. in the order of magnitude of 10 tons.
Fig. 1 gives an impression of the size of the contact
patch and the normal stresses here presented with
a maximum of roughly 700 N/mm2.

In the tangential direction the contact behav-
ior is ruled by friction. Therefore it depends on
the normal contact conditions with friction coeffi-
cients between 0.1 and 0.4 and exhibits non-linear
behavior and saturation.

This general specification already exposes the
complexity of the wheel-rail contact problem
which is also demonstrated by Fig. 2. There, the
contours visualize the normal stress distribution
as it is already given by the surface plot in Fig. 1.
The arrows represent the tangential stress vectors
and the circles indicate the points where the wheel
surface slips along the rail surface since adhesion
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Figure 2: Exemplary contact stresses and the asso-
ciated slip region evaluated according to Kalker’s
non-elliptical rolling contact theory [2]

.

is depleted locally.
The fundamental normal and tangential contact

properties motivate the use of conical wheel pro-
files so that the normal contact does not only carry
vertical loads but as well contributes to the lat-
eral guiding task. The additional consideration of
undesired profile changes due to wear led to the
evolution of specific wheel and rail profiles as they
are shown in Fig. 3, see [3] for a more elaborate
discussion on the significance of the profile geom-
etry. It is obvious that such profile design intro-
duces another complexity into the formulation of a
wheel-rail contact model due to the geometry. For
example, the shape of the outer stress field bound-
ary in Fig. 2, usually denoted as non-elliptical, is a
particular result introduced by the non-linear pro-
file geometry.

1.2 Basic Modeling Issues

The goal of the modeling presented in this paper
is to provide the capability of simulating the run-
ning dynamics of railway vehicles. Hence, it is
important that the resultant forces that dominate
the motion of the railway vehicle and are to be
computed very often during one simulation job,
are evaluated in reasonable accuracy and with low
computational burden. However, it is not intended
to give detailed and high accuracy information on
the contact stress distribution as shown Fig. 2 and
as it is required in order to examine e.g. rolling
contact fatigue.

It is therefore a usual approach to review the

Figure 3: Terminology and characteristics of wheel
and rail profile

wheel-rail contact problem looking for reasonable
assumptions that simplify the modeling and re-
duce the computational effort. Tab. 1 gives an
overview on widespread assumptions which may
be applied according to the specific analysis goals
at hand.

The separation assumption for example allows
for introducing a virtual contact point where the
resultant forces and torques acting on the wheel
are assumed to be attached in order to simulate
running dynamics. However the magnitude of the
forces and torques are evaluated considering the
contact problem separately.

Presuming identical materials for wheel and rail,
the separation assumption together with the half-
space approximation makes it possible to evalu-
ate the normal contact first and independently and
then derive the tangential stress quantities on top
of it [1, Sec. 3.3.2].

Combining these two main simplification ideas
with the discussion in Sec. 1.1 facilitates the for-
mulation of the wheel-rail rolling contact problem
by subdividing it into the following three subtasks
that may be solved subsequently: the geometri-
cal problem, the normal contact problem and the
tangential contact problem.

A basic modeling aspect that is related to the
multibody representation of the wheel-rail contact
is the distinction drawn between rigid and elastic
contact. In multibody theory the latter is equiv-
alent to the description of the normal wheel-rail
contact as a force law, while the ideal rigid contact
leads to the concept of a kinematical constraint, so
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Separation assumption The deformations of the contacting bodies do not influence their over-
all motion so that wheel and rail may be assumed to be rigid bodies.
Structural and contact mechanics may be considered independently from
each other.

Linearity The deformation fields are geometrically linear.
Half-space assumption The contact area is very small compared to the characteristic dimensions

of the related bodies in contact.
Ideal material The material is linear-elastic, homogeneous and isotropic.
Identical material Wheel and rail consist of identical materials.
Steady state assumption The running velocity is small compared to the wave propagation within

the material, so that quasi-static conditions are valid with respect to the
contact problem.

Hertz assumption The geometry of the contacting surfaces may be approximated as elliptic
paraboloids so that the contact patch turns out to be a plain ellipse.

Dry Coloumb friction Only dry friction is considered. The friction coefficient is constant and
valid for adhesion as well as for sliding.

Table 1: Overview on assumptions frequently exploited for wheel-rail contact modeling, cp. [1, Ch. 3]

that the equations of motion form a differential-
algebraic system [4]. The rigid contact requires a
sophisticated preprocessing to guarantee the dif-
ferentiability of the constraint equation and avoid
artificial contact point jumps [5]. However, it is
assumed to need less computational effort for time
integration compared to the elastic contact that
introduces very high stiffnesses into the equations
of motion, but provides a more general applicabil-
ity [6].

In the discussion so far it is assumed that the
contact between wheel and rail forms one contin-
uous contact area that may be idealized by one
single contact point, which in fact is the dominant
standard case. However specific configurations
such as switch crossing or light urban and metro
railway vehicles in sharp curves exist where mul-
tiple, non-connected contact areas between wheel
and rail surface occur. These configurations re-
quire the consideration of multiple contact points,
see e.g. [7] or [4].

1.3 The Normal Contact Problem

The basis for the highly accurate non-elliptical
contact description e.g. shown in Fig. 2 has been
set by Kalker [8] who implemented the program
Contact that became a reference for railway con-
tact problems. Contact fully accounts for the pro-
file geometry of wheel and rail so that the sim-
plification of the Hertz assumption from Tab. 1 is
not employed. However, the half-space assumption
is exploited to evaluate the stress and deforma-

tion field numerically. Contact is mainly applied
for verification purposes in offline calculations. In
addition, the same methodology has been used
for detailed research about the influence of struc-
tural dynamics of wheel and rail on the vehicle-
track interaction [2]. However for industrial ap-
plications, the accurate consideration of the non-
elliptical contact requires too many computational
resources, see e.g. [9] for optional approximations.

A very frequently used normal contact model in
railway dynamics analysis is the elliptical contact.
Here, the deviation of the contacting surfaces of
wheel and rail from the ideal ellipsoidal shape is
neglected and the contact stresses and deforma-
tions may be evaluated analytically according to
the Hertz theory, see e.g. [10, Sec. 4.II.A].

For the sake of completeness the Finite Element
Method shall be mentioned as a very general way
to evaluate contact problems that does not rely
on any of the mentioned simplifications in Tab. 1.
Effects such as surface hardening, material flows
or damage mechanism can be taken into account,
see e.g. [11].

1.4 The Tangential Contact Problem

As soon as a relative motion, the so-called slip,
between the contact point on the wheel and its
counterpart on the rail occurs, tangential forces
are transmitted. The program Contact is a wide-
spread accepted reference to solve as well this tan-
gential contact problem.

However in order to facilitate vehicle simu-
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lations, Kalker proposed a simplified theory of
rolling contact based on discretized ellipses and
provided the Fastsim [12] algorithm that never-
theless takes traction and saturation into account.

For vanishing slip, if e.g. only very small trac-
tion forces are given, the linearized theory of
Kalker [8, Sec. 2.2.2] is valid. Here, the tangen-
tial forces are a linear function of the slip.

A different class of tangential contact models try
to get along with purely analytical considerations,
as it is already done for the normal contact using
the Hertz solution. However, these contact models
require an assumption concerning the shape of the
stick and slip region within the contact area. The
basic idea originates from Carter [13], who showed
that the tangential stress distribution of a cylindri-
cal body rolling on a plane may be presented by
two nested ellipses. The extension to three dimen-
sions however relies on approximations that were
proposed e.g. by Vermeulen and Johnson or by
Shen, Hedrick and Elkins [13].

Following the same basic concept Polach [14]
published a very efficient tangential contact solu-
tion in 1992 that coincides with Kalker’s linear
theory in the case of vanishing slip. In addition
an extension is proposed for applications on the
adhesion limit in which high traction forces are
involved [15]. Besides the Fastsim algorithm the
Polach model is wide-spread for multibody railway
vehicle simulations today, see [16] for an assess-
ment of various approaches.

1.5 Review Conclusions

The Modelica implementation of the wheel-rail
contact is in particular supposed to support the de-
velopment of new railway vehicle control concepts
that are on the agenda of the DLR internal project
Next Generation Train (NGT) [17]. For this pur-
pose accuracy and computational effort have to be
compromised. Therefore it has been decided to im-
plement a rigid elliptical single point contact with
tangential force law according to Polach.

2 Theory

2.1 Profile Geometry and Contact

In order to formulate the rigid contact, we look
for an implicit constraint equation that defines the
vertical wheel displacement zw as a function of the
lateral displacement yw, the yaw angle ψ and the

Figure 4: Parametrization of the profile geometry.

roll angle ϕ of the wheel [5], i.e.

zw + f(yw, ϕ, ψ) = 0 , (1)

which is two times continuously differentiable
[18]. zw and yw are resolved with respect to
the rail coordinate system R in Fig. 4, where the
parametrization of the wheel profile F = F (s) and
the rail profile G = G(y) is visualized as well.

The wheel surface Sw may be given in cylindrical
coordinates of the wheel, i.e. Sw : (F (s), τ, s)T , or
resolved with respect to R:

Sw : cS =




0
yw
zw


+A(ϕ,ψ)



F (s) sin τ

s
F (s) cos τ


 , (2)

where A(ϕ,ψ) represents the rotations around the
x- and the z-axis of the wheel.

Those points on Sw, whose normal vectors to
the surface are parallel to the (y, z)-plane of the
rail define the curve Cw that is the projection of
the wheel contour in the (y, z)-plane of the rail [19,
Sec. 2.2]:

Cw : cC =
{
cS : sin τ(s) = − tanψ F (s),

cos τ(s) =

√
1− sin2 τ(s)

}
. (3)

We now specify the curve CE to be independent
from the vertical position of the wheel zw

CE : cE = (xE , yE , zE)T := cC − (0, 0, zw)T , (4)

which can be exploited to relate the wheel contour
zE = zE(s; yw, ϕ, ψ) to the associated rail profile
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G(yE) = G(s; yw, ϕ, ψ) as a function of the para-
meter s, s ≤ s ≤ s̄.

Wheel and rail are in contact iff

zw + max
s≤s≤s̄

( zE − G )︸ ︷︷ ︸
∆(s; yw, ϕ, ψ)

= 0 . (5)

The function ∆(s; yw, ϕ, ψ) in (5) is called the
height function [5]. The value s∗ that is assigned
to the global maximum of ∆ specifies the contact
point.

The direct application of (5) as constraint equa-
tion in multibody simulation for standard wheel-
rail profiles such as S1002 and UIC60 does not
make sense, since these profiles expose abrupt cur-
vature changes and promote artificial jumps of the
normal contact forces [4]. Therefore Arnold et al.
[5] propose to use a regularization parameter α > 0
in the range 10−5 . . . 5 · 10−5 in the following way:

zw + smax(α)
s ∆(s, yw, ϕ, ψ) = 0 , (6)

smax(α)
s ∆ := α ln

∫ s̄

s
exp

(
∆(s, yw, ϕ, ψ)

α

)
ds

∫ s̄
s ds

.

For small values of α it can be shown that
smax(α)

s ∆ ≤ maxs ∆, i.e. (6) yields values of zw
that represent a small penetration δrw of the wheel
and rail bodies. The proposed values of α are cho-
sen in such a way that δrw corresponds to the phys-
ical deformations of the contact partners, which
could be evaluated e.g. according to the Hertzian
theory. Therefore (6) is called the quasi-elastic
contact model by Arnold et al..

The listing below shows that the geometrical
problem is tackled by a Modelica function that
takes yw, ϕ, ψ and α as inputs and mainly returns
zw in addition to quantities that are necessary for
the tangential contact evaluation:
function findQuasiElasticContact

"finds contact points on wheel and rail"
import Modelica.Constants.pi;
import SI = Modelica.SIunits;
input SI.Position y_w

"lateral displacement of wheel";
input SI.Angle phi "roll angle [rad]";
input SI.Angle psi "yaw angle [rad]";
input SI.Radius r0 "nom. wheel radius";
input Real alpha "smoothing parameter";
output SI.Position z_w "vertical

displacement of wheel center point";
output SI.Position s0

"lateral contact coordinate on wheel";
output SI.Position v0

"lateral contact coordinate on rail";
output Real rho_x(final unit="m-1")
"principal curvature at contact point

in the plane normal to x-axis";
output Real rho_y(final unit="m-1")
"principal curvature at contact point

in the plane normal to y-axis";
output SI.Angle delta "contact angle";

The quantity s is an internal vector variable of
this function which disretizes the wheel profile, e.g.
s = {−0.05,−0.0499, ...., 0.05}.

2.2 Kinematics

Consider the coordinate system in Fig. 5 in order
to resolve the vectorial quantities in what follows.
The ez-vector is normal to the wheel and the rail
surface in the contact point C, ex is perpendicular
to the wheel axis and heads in running direction.
v0 is that component of the absolute velocity of the
wheel center point vw that points in ex-direction.
ωw is the absolute angular velocity of the wheel
that includes yaw, roll and the overturning motion
ω0 of the wheel.

The sliding velocity vvvs [20, Sec.2.6.2] in C fol-
lows from

vs = vw + ωw × rC (7)

and is used together with ωw to compose the slip
vector ν with the longitudinal slip νx, the lateral

Figure 5: Coordinate system associated to the
plane through contact point C.
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Figure 6: Icon layer of the contact model.

slip νy and the spin φz:

ννν :=




νx
νy
φz


 =

1

v0




vsx
vsy
ωwz


 (8)

Fig. 6 shows the the icon layer of the contact
model with two multibody frame connectors from
the Modelica Standard Library. The frames have
to be connected to the center of the wheel and to
the reference point on the rail which correspond
to the points W and R in Fig. 4. The kinematical
information of these two frames are required to
evaluate (7) and (8).

The contact model does not have a state but rep-
resents a loop-closing element, which corresponds
to the property that the wheel surface is con-
strained to be in touch with the rail surface. The
constraint is formulated using the function from
Sec. 2.1. As a result, the contact force in normal
direction, i.e. normal to the plane through the
point C according to Fig. 5 implicitly follows from
the closed loop condition.

2.3 Hertzian Normal Contact

The pressure distribution p in the contact plane ac-
cording to the Hertzian theory [21, (3.65)] is given
by

p(x, y) =
3fn

2πab

√
1− 1

a2
− 1

b2
, (9)

where fn represents the absolute value of the nor-
mal force, while a and b denote the semi-axes of
the contact ellipse and follow from

a = m 3

√
3(1− κ2)fn
E(A+B)

, b = n 3

√
3(1− κ2)fn
E(A+B)

. (10)

Beside Young’s modulus E and Poisson’s ratio κ
that are assumed to be identical for wheel and rail,
(10) uses auxiliary terms that are determined by

the curvature of the wheel ρwx and the rail ρrx
measured in the plane normal to the x-axis and
the wheel curvature in the plane normal to the
y-axis ρwy:

A = ρwx + ρrx, B = ρwy, ϑ = arccos
A−B
A+B

.

m and n are coefficients depending on elliptical
integrals and specify the eccentricity of the contact
ellipse. Tab. 2 is an extraction of [21, Tab. 3.4] to
give an impression on their quantitative values.

ϑ 0◦ 0.5◦ 1◦ 10◦ 45◦ 90◦

m ∞ 61.4 36.89 6.604 1.926 1
n 0 0.1018 0.1314 0.3112 0.604 1

Table 2: Hertzian parameters for the contact el-
lipse.

In [5], it is proposed to introduce a weigthed
mean value of the curvatures in (10) that corre-
sponds to (6), e.g. to consider the wheel curvature

ρ̄wy :=

∫ s̄
s ρwy(s) exp

(
∆
α

)
ds

∫ s̄
s exp

(
∆
α

)
ds

. (11)

Eq. (11) is implemented in the function presented
in Sec. 2.1 as indicated by the output values given
there.

2.4 Linear Tangential Contact

For vanishing slip Kalker’s, i.e. for small values of
ν, linear theory [8, Sec. 2.2.2] is valid so that the
creep forces fx and fy in and the torque lz normal
to the xy-plane depend linearly on the slip ν under
consideration of the shear modulus G:

f =



fx
fy
lz


 = Cν with (12)

C = −abG



C11 0 0

0 C22

√
abC23

0 −
√
abC23 abC33


 .

For the sake of demonstration Tab. 3 shows exem-
plary values of the coefficients that appear in (12).

2.5 Polach’s Tangential Contact

According to Polach [14] the torque lz in (12) is
usually very small and can be neglected, while the
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b/a 1 0.8 0.6 0.4 0.2 0.1
C11 4.12 4.36 4.78 5.57 7.78 11.7
C22 3.67 3.99 4.5 5.48 8.14 12.8
C23 1.47 1.75 2.23 3.24 6.63 14.6
C33 1.19 1.04 0.892 0.747 0.601 0.526

Table 3: Coefficients of Kalker’s linear theory of
rolling contact for κ = 0.25 and a > b [8, E3].

influence of the spin φz on the lateral creep force fy
may be of considerable importance. This is why
his creep force law considers two lateral compo-
nents: f�y denotes the creep force that originates
from lateral slip and f∗y is associated to the spin:

f =




fx
f�y + f∗y

0


 (13)

The tangential force in Polach’smodel is defined
in the direction of the slip resultant ν̄ taking the
influence of the spin into account:

ν̄ =
√
ν2
x + ν̄2

y , (14)

ν̄y =

{
νy + aφz ∀ |νy + aφz| > |νy|
νy ∀ |νy + aφz| ≤ |νy| .

In order to evaluate the resulting friction force f̄ it
is postulated that the tangential stresses grow lin-
early with the distance from the leading edge until
saturation is reached. Hence, the analytical inte-
gration of the assumed stress field over the contact
patch leads to

f̄ = −2fnµ

π

(
kaε

1 + (kaε)2
+ arctan(ksε)

)
, (15)

where µ denotes the friction coefficient, ka and ks,
ks ≤ ka ≤ 1, are reduction factors associated to
the adhesion or the slip area, respectively. They
have been introduced by Polach [15] in order to ac-
count for wet or polluted conditions. ε represents
the gradient of the tangential stress in the area of
adhesion at the leading edge of the contact patch
and is related to the coefficients of Kalker’s linear
theory:

ε =
GπabCjj

4fnµ
, Cjj =

√
C2

11ν
2
x

ν2
x + ν2

y

+
C2

22ν
2
y

ν2
x + ν2

y

.

The subdivision of the f̄ into its two components
corresponds to the slip partitions:

fx = f̄
νx
ν̄
, f�y = f̄

νy
ν̄
. (16)

The remaining creep force component f∗y is evalu-
ated separately yielding

f∗y = −φz
ν̄

9afnµ(1 + 6.3(1− e−a
b ))

16
) ·

·
[
ε∗
(
δ3

−3
+
δ2

2
− 1

6

)
+

√
(1− δ2)3

3

]
, (17)

where the tangential stress gradient due to spin ε∗

and the abbreviation δ are used:

ε∗ =
8Gb
√
ab kaC23

3fnµ(1 + 6.3(1− e−a
b ))
|ν̄y| , δ =

(ε∗)2 − 1

(ε∗)2 + 1
.

For traction vehicles running on adhesion limit,
the dependence of the friction coefficient on the
slip velocity may be considered relating the max-
imum friction coefficient µ0 to the limit friction
coefficient µ∞ at infinite slip velocity introducing
the parameter B:

µ = µ0

[(
1− µ∞

µ0

)
e−Bvsx +

µ∞
µ0

]
. (18)

The above used constants ka, ks, µ0, µ∞ and B
are heuristic quantities that have been introduced
to account for deviations from theory observed by
measurements. Tab. 4 quotes Polach to give typi-
cal values.

conditions ka ks µ0 µ∞ B[s/m]
dry 1.00 0.40 0.55 0.22 0.60
wet 0.30 0.1 0.30 0.12 0.20

Table 4: Typical model parameters for dry and
wet conditions of the real wheel-rail contact [15].

3 Application

3.1 Project Background

Fig. 7 shows an experimental running gear in
scale 1:5 that operates on the DLR roller rig in
Oberpfaffenhofen. Unlike usual wheel-set config-
urations this running gear has independently ro-
tating wheels each driven by one wheel hub mo-
tor. Two opposite front wheels are mounted to-
gether on a cranked beam, the two rear wheels
mounted on their carrier constitute the identical
second wheel pair unit. Each wheel pair unit is
connected to the central frame having one rota-
tional degree of freedom around the vertical axis.
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Figure 7: M 1:5 roller rig of DLR with experi-
mental running gear for mechatronic guidance re-
search.

That way the wheel pair units may perform inde-
pendent yaw motions relative to the central frame.
The central frame has two degrees of freedom with
respect to the roller rig basis so it may move lat-
erally and yaw.

The running gear has been designed in order to
develop a new mechatronic guidance concept that
allows for active steering. Significant wear, noise
and weight reduction together with benefits that
result from the low-floor configuration are goals
that are on the agenda of the DLR internal project
NGT [17].

Figure 8: Diagram layer of the running gear model
on the roller rig.

3.2 Model Particularities

In parallel to the experimental environment a sim-
ulation model of the running gear on the test rig
has been established in Modelica. The diagram
layer of the Modelica model is visualized in Fig. 8
while an animation of the running gear operating
on the roller rig is presented in Fig. 9. Both en-
vironments together are supposed to support the
development of advanced control design concepts.

However the aim of this paper is rather the mod-
eling and the validation of the wheel-rail contact
that has been introduced in Sec. 2 and is instan-
tiated four times in Fig. 8. The contact model
named Polach uses two multibody frame connec-
tors to be linked to the center of the wheel and to
the center of the associated roller. Since the con-
tact model represents a loop-closing element, the
contact force in normal direction, implicitly fol-
lows from the closed loop condition. The tangen-
tial forces are evaluated as described in Sec. 2.5.

Fig. 10 shows the main part of the menu used to
parametrize the contact model. The wheel profile
here is not a standard one, but can here be repre-
sented by a true conical shape. The control of the
running gear is defined in such a way that only a
repective region of the wheel tread is in contact.
Therefore the parameter r_wheel_FrontView is
set to 1 · 1012 or infinity, respectivley in Fig. 10.

The discussion in Sec. 2.1 is implicitly restricted
to the contact of wheels to prismatic rails, which is
different here due the geometry of the rollers with

Figure 9: Animation of the running gear model.
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Figure 10: Parameter menu of the wheel-rail contact for conical wheel and curved roller profiles.

0.18 m radius. As soon as a wheel unit performs
a yawing motion the two wheels leave the apexes
of the associated rollers and slightly run downhill.
This behavior is considered in the model but has
been disregarded in Sec. 2, see [19, Sec. 2.2.2].

3.3 Results

A feature of the running gear are the force-torque
sensors, that are assembled at the bearing of each
wheel. Therefore the capability is given to com-
pare simulation and measurement results with par-
ticular respect to the wheel-rail forces.

Fig. 11 to Fig. 13 show wheel-rail forces at the
rear wheel on the right hand side. After the mea-
surements have been low-pass filtered using a cut-
off frequency of 20 Hz, the rotation frequencies
of the roller and wheels still show up clearly, so
that two narrow frequency bands of 0.2 Hz around
these frequencies have been filtered out addition-
ally. It is a current work field to eliminate or at
least reduce the influence of the related distur-
bance sources.

The control of the running gear is set up in such
a way that the running gear performs an artificial
so-called hunting motion with 0.5 Hz frequency
and a lateral amplitude of 8 mm. Whenever a
conventional wheel-set is laterally excited e.g. by
rail irregularities its dynamical response is a lateral

oscillation calling hunting. As along as the run-
ning velocity does not exceed a certain level, this
motion is asymptotically stable. This is a desired
dynamical property and a specific aspect of the
wheel-rail profile design mentioned in Sec. 1.1. In
addition hunting promotes wear not to be locally
concentrated but distributed over a larger region
of the wheel surface.

However independently rotating wheels do not
show this passive behavior so that it has to be in-

Figure 11: Comparison of normal wheel-rail force,
v0 = 6 m/s, 0.5 Hz hunting frequency.
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Figure 12: Comparison of longitudinal wheel-rail
force, v0 = 6 m/s, 0.5 Hz hunting frequency.

troduced by feed-back control. The artificial hunt-
ing by control is the first proof a new mechatronic
running gear concept has to stand, i.e. the mecha-
tronic running gear has to perform at least as good
as the conventional wheel-set design, before addi-
tional benefits could be approached.

Due to the hunting the normal wheel-rail force
in Fig. 11 oscillates between 79 and 87 N. Mea-
surements and simulation results corrrepond very
good. The longitudinal forces in Fig. 12 show a
long-wave deviation but are nevertheless rather
close together. The values of the lateral forces in
Fig. 13 are very small, which is actually intended
by this specific running gear design. Therefore, the
measurement tolerance of 0.25 N has to be consid-
ered when these results are assessed.

So far we are not able to measure the slip with
sufficient accuracy. Therefore, the validation of
the dependency of the forces on the slip is not pos-
sible today but will be tackled soon.

4 Conclusions and Outlook

From an intense literature review it has been con-
cluded that a rigid elliptical single point contact
with tangential force law according to Polach is
expected to provide a well balanced compromise
between accuracy and computational effort in or-
der to establish a Modelica model of the wheel-rail
contact.

Therefore the related theory has been summa-
rized in Sec. 2. One additional refinement namely
the quasi-elastic instead of the pure rigid contact

Figure 13: Comparison of lateral wheel-rail force,
v0 = 6 m/s, 0.5 Hz hunting frequency.

model has been introduced to guarantee a suffi-
cient differentiability of the constraint equation.

This new Modelica wheel-rail contact is then ap-
plied to simulate the behavior of an experimental
running gear on the scaled roller rig of DLR. The
measured forces show a good agreement to the sim-
ulation results. A necessary advancement concerns
the availability of slip measurements. Full scale
applications with standard wheel-rail profiles will
be modeled in the near future.

The new DLR RailwayDynamics Library, to
which this wheel-rail contact model contributes a
first cornerstone, is mainly intended to support the
advanced observer and control design development
and to facilitate multidisciplinary simulation tasks
such as the interaction of running dynamics and
drive train.
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Abstract 
It is our predicament that we live in a finite world, and 
yet we behave as if it were infinite. Steady exponential 
material growth with no limits on resource consump-
tion and population is the dominant conceptual model 
used by today’s decision makers. This is an approxima-
tion of reality that is no longer accurate and started to 
break down. The World3 model, originally developed 
in the 1970s, includes many rather detailed aspects of 
human society and its interaction with a resource-
limited planet. However, World3 is a rather complex 
model. Therefore it is valuable for pedagogical reasons 
to show how similar behavior can be also realized with 
models that are much simpler. This paper presents a 
series of world models, starting with very simple expo-
nential growth and predator-prey systems, then investi-
gates a minimal human-nature model, Handy, and ends 
with a brief account of the World3 model. For the first 
time, a simple human-nature interaction model is made 
available in Modelica that distinguishes between dy-
namics of Elite and Commoner social groups. It is 
shown that Handy can reproduce rather complex behav-
ior with a very simple model structure, as compared to 
that of world models like World3. 

Keywords: Modelica, Simulation, Population Dynam-
ics, World Models, Human-Nature Models. 

1 Introduction 
Dynamic modeling can be applied to the human popu-
lation and its interaction with the earth system. Certain 
types of such models are called World models.  

Perhaps the earliest study indicating that human 
population would eventually reach limits to growth is 
that presented by Richard Malthus in 1798 in his fa-
mous work An Essay on the Principle of Population 
[4]. A catastrophe in the form of population collapse 
was considered as a possible consequence of uncon-
trolled growth that would hit the limits of food produc-
tion causing massive famine. 

A series of simulation models were developed 
mainly during the 1970’s, with some later updates, aim-
ing at understanding the complexity of the interactions 
between global societies and their physical environ-
ment, searching for the conditions that would lead to a 
collapse and possible measures that can avoid it. They 
formed the category of so-called World Models, typi-
cally of considerable generality and complexity, span-
ning several subsystems (demography, energy, econo-
my, industry, agriculture, etc.) at varied levels of detail. 
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2   Growth without Limitations 
In this first example, we shall show the dynamics of 
human populations in an idealized ecological system 
without limitations. We assume that a population con-
tains P individuals. In general, the rate of change of the 
number of individuals is the difference between the 
population birth rate and its death rate:  

deathratebirthrateP −=  (1)  

where P  means dP/dt, the rate of change of the popula-
tion stock. It is natural to assume that the birth and 
death rates are proportional to the size of the popula-
tion: 

Pddeathrate
Pgbirthrate
⋅=
⋅=  (2)  

where g is the growth (birth) factor and d the decrease 
(death) factor for the population. These factors can be 
assumed to be constant if the same amount of food per 
individual is available independent of the size of the 
population, and if no sudden lethal events (disease, 
war) affect the population massively. These assump-
tions are of course valid only for a reasonably limited  
size of the population, since food supply is never infi-
nite in a closed system and epidemics, pandemics, and 
wars sometimes break out. Putting (1)  and (2)  together 
gives: 

PdgP ⋅−= )(      (3) 

Solutions to this equation yield an exponentially in-
creasing population if ( ) 0 g d− > or an exponentially 
decreasing one if 0)( <− dg . We represent this equa-
tion in the model class PopulationGrowth below: 
class PopulationGrowth 
  parameter Real g = 0.04 "Growth factor"; 
  parameter Real d =0.0005 "Death factor"; 
  Real  P(start=10) "Pop. size,init 10"; 
equation 
  der(P) = (g-d)*P; 
end PopulationGrowth; 

The model is simulated and the population size P is 
plotted below: 
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Figure 1. Exponential growth of a population with unlimited 
food supply. 

As expected, Figure 1 shows an exponentially increas-
ing population. We should, however, remember that 
exponential growth can never persist indefinitely in a 
closed system with a limited food supply. 

3 A Predator-Prey Model with Limi-
tations in Prey Animal Population 

Now we will  study a more interesting system consist-
ing of interacting populations of predators and prey 
animals.  

The simplest predator-prey model, the so-called 
Lotka-Volterra model [3], consists of two population 
stocks. We may think of predators as foxes and preys 
as rabbits.  

The rabbit population of size R is assumed to have 
an unlimited food supply. Therefore equation (3) ap-
plies regarding the birth rate of the rabbit population, 
with a positive growth term Rgr ⋅ , where rg is the 
growth factor for rabbits.  

On the other hand, the fox population of size F 
feeds on the rabbits. The rabbit death rate can be as-
sumed to be proportional to the number of foxes due to 
increased hunting pressure, and to the number of rab-
bits due to the higher probability of success in hunting, 
giving a rabbit death rate due to foxes of RFdrf ⋅⋅ , 
where rfd  is the death factor of rabbits due to foxes. 
Putting the birth and death rates together gives the total 
rabbit population change rate R  as defined by equation 
(4) below: 

RFdRgR rfr ⋅⋅−⋅=             (4) 

The growth of the fox population of size F is propor-
tional to the rate of rabbits consumed, i.e., those that 
die because they were hunted by foxes, which is the 
death rate term RFdrf ⋅⋅ mentioned in the previous 
equation. The efficiency of growing foxes from rabbits 
is determined by the growth factor frg , giving a fox 
population growth rate term FRdg rffr ⋅⋅⋅ . The fox 
population also has an intrinsic death rate Fd f ⋅ pro-
portional to the size of the fox population by the fox 
death factor fd . By combining these two terms, we 
obtain equation (5): 

FdFRdgF frffr ⋅−⋅⋅⋅=     (5) 

where F  is the total change rate of the fox population.  
We have created a Modelica [2][8] class below 

called LotkaVolterra that includes both equations (4) 
and (5) along with all the variables and constant pro-
portionality factors. The two state variables R and F for 
the sizes of rabbit and fox populations are represented 
by the Modelica variables rabbits and foxes: 
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class LotkaVolterra 
  parameter Real g_r =0.04    "Natural 
growth rate for rabbits"; 
  parameter Real d_rf=0.0005  "Death rate 
of rabbits due to foxes"; 
  parameter Real d_f =0.09    "Natural 
deathrate for foxes"; 
  parameter Real g_fr=0.1     "Efficency  
           in growing foxes from rabbits"; 
  Real rabbits(start=700) "Rabbits,(R)";  
  Real foxes(start=10)    "Foxes,(F)"; 
equation 
  der(rabbits) = g_r*rabbits – 
     d_rf*rabbits*foxes; 
  der(foxes)   = g_fr*d_rf*rabbits*foxes – 
     d_f*foxes; 
end LotkaVolterra; 

The model is simulated, and the sizes of the rabbit and 
fox populations as a function of time are shown below 
(Figure 2): 
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Figure 2. Number rabbitsprey animals, and 
foxespredators, as a function of time simulated from the 
PredatorPrey model. 

The Lotka-Volterra model has a rather special property: 
the solution variables, i.e., the rabbit and fox population 
sizes, do not approach constant steady-state levels (un-
less they start at those equilibrium levels, which is rare-
ly the case).  Instead, they exhibit oscillatory equilibri-
um. The shape of these oscillations, very characteristic 
for Lotka-Volterra models, corresponds rather well to 
several experimental population studies of predators 
and prey animals. However, this does not prove these   
partly inductive model equations to be correct, only 
that they seem to have certain approximate physical 
significance. 

4 A Minimal Human-Nature Dynam-
ical Model with Economic Stratifi-
cation 

Simplified approaches to World models can exhibit 
interesting behavioral patterns while keeping model 
complexity low enough to enable intuitive comprehen-
sion. One such simplified model is Handy (Human and 
Nature Dynamical model) [9] developed jointly by re-
searchers at the University of Maryland and the Uni-
versity of Minnesota1. 

The LotkaVolterra model (Section 3) was the 
original inspiration behind Handy, which is not a world 
model in the typical sense, although, in principle, it can 
be applied to a homogenous world.  

Handy has four differential equations describing the 
evolution of its state variables: Commoner population 
(commoners), Elite population (elite), regenerating 
natural resources (nature), and accumulated wealth 
(wealth). Human population plays a role analogous to 
that of predators, and nature plays the role of the re-
source preyed upon.  

An interesting feature of Handy is that it introduces 
the accumulation of economic wealth, and divides the 
human population into rich and poor according to their 
unequal access to available wealth. 

This new variable explains why human societies can 
undergo an irreversible collapse, while animal popula-
tions show cyclic changes (or reversible collapses). 

Social inequality is not only explicitly considered 
but also plays a key role in the sustainability analyses 
of the model. This makes Handy the first model of its 
kind that studies the impacts of inequality on the fate of 
societies, a capability seldom found even in complex 
world models. 

Handy establishes a useful general framework that 
allows carrying out “thought experiments” about socie-
tal collapse scenarios and the changes that might avoid 
them. 

The model is a very strong simplification of the 
human-nature system, which results in many limita-
tions. Despite its simplicity, such a model is easy to 
understand and offers a more intuitive grasp of underly-
ing dynamical phenomena compared to more complex 
and less aggregated models. 

We briefly introduce a much more advanced class 
of world model called World3 in Section 5 of this pa-
per. This model (the compiled version) features 41 state 
variables and 245 algebraic variables. It captures many 
                                                      
1 The Handy model has been publicly available since 2010 in the 

form of unpublished reports and presentations, deposited on 
the web site of its authors:  
http://www.atmos.umd.edu/~ekalnay/#publications_based. 
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aspects of the human system and ecology, and it has 
been calibrated against empirical data. 

4.1 Handy Model Equations, Description, and 
Modeled Societies 

The Handy model divides the total population into two 
classes: Commoners and Elites, of population sizes 
commoners and elite, respectively. Population grows 
through birth rates birthRComm and birthRElite, 
which are constants. The population shrinks through 
death rates deathRComm and deathRElite, which are 
modeled as functions of wealth. 

The state variables of the model are described in 
Table 1, additional variables in Table 2, and the param-
eters of the model in Table 3. 

A single stock (variable), nature represents an 
amalgamation of nonrenewable and renewable re-
sources, including “regenerating” resources such as 
forests, soils, and animal and fish stocks, etc.  

The dynamics of the model are defined by the fol-
lowing four differential equations: 

consREliteconsRComm
naturecommonersordepletFactwealth

naturecommonersordepletFact
naturenatureCapnatureegennatureRnature

eliteedeathREliteliteebirthRElitelite
commonersdeathRCommcommonersbirthRCommcommoners

−−
⋅⋅=

⋅⋅−
−⋅⋅=

⋅−⋅=
⋅−⋅=

'

)('
'
'

 

which in Modelica are expressed as: 

der(commoners) = birthRComm*commoners - 
deathRComm*commoners; 
der(elite) = birthRElite*elite – 
deathRElite*elite; 
der(nature) = 
natureRegen*nature*(natureCap-nature) – 
depletFactor*commoners*nature; 
der(wealth) = 
depletFactor*commoners*nature - consRComm-
consRElite; 

The equation for nature includes a regeneration term 
natureRegen*nature*(natureCap-nature) and a 
depletion term depletFactor*commoners*nature 
intended to also include degradation in nature caused 
by pollution. 

The regeneration term is synthetic (i.e., not directly 
physical) following an s-shaped form2 parameterized to 
resemble physically realistic results.  

It exhibits exponential growth for low values of na-
ture (because natureCap-nature is almost constant 
for small nature), reaches its maximum at na-

ture=natureCap/2, and becomes small when na-
                                                      
2 This is the well-known “logistic equation” used in many do-

mains of life sciences to represent exponential growth fol-
lowed by smooth saturation. 

ture approaches natureCap (maximum size of na-
ture in absence of depletion). 

The depletion term includes a rate of depletion (pol-
lution) per worker depletFactor making it propor-
tional to both nature and commoners (labor). The eco-
nomic activity of Elite is modeled to represent supervi-
sory functions with no direct influence on the extrac-
tion of resources or the production of wealth. The un-
derlying concept is that “only commoners produce.” 
Handy does not model the impacts of technological 
change, considering that technology through history 
has proven to produce both increases and decreases in 
resource use efficiency. Thus, a simplification is made 
assuming that these effects cancel each other out. 

Accumulated Wealth (wealth) increases with pro-
duction (depletFactor*commoners*nature) and 
decreases according to the consumption rates of the 
Elites and the Commoners, consRComm and 
consRElite, respectively.  
Table 1. Main state variables of the Handy model. 

Name Description                                      Unit Typical ini-
tial value(s) 

commoners Commoner popula-
tion size Number of people 100 

elite Elite population size Number of people 0, 1, 25 

nature Nature's stock EcoDollars natureCap 
= 100 

wealth Accumulated wealth EcoDollars 0 

The additional variables of the model are described in 
Table 2. Two of these variables describe consumption. 
The consumption of the Commoners, consRComm, is 
given by a subsistence salary per capita subsSal times 
the working population. Elites earn a salary that is 
ineqFactor times larger than that of Commoners, in-
tended to simulate class inequality, and is considered 
time-independent for any given scenario. This is re-
flected in the following equations: 

min(1, / )

min(1, / )

consRComm wealth wealthMin subsSal commoners

consRElite wealth wealthMin subsSal elite ineqFactor

= ⋅ ⋅

= ⋅ ⋅ ⋅
 

which in Modelica are expressed as: 
consRComm = min(1, wealth/wealthMin) * 
subsSal*commoners; 
consRElite = min(1, wealth/wealthMin) * 
subsSal*elite*ineqFactor; 

Both consumption rates, consRComm and consRElite, 
are subject to a “famine” minimum threshold for accu-
mulated wealth before famine, wealthMin. The con-
sumption rates are linearly reduced down to zero by the 
min() terms in the above equations, when wealth falls 
below wealthMin. 

The death rates of the Commoners and the Elite are 
defined by the following equations: 
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max(0,1

/( )) ( )

max(0,1

/( )) ( )

deathRComm deathRnormal consRComm

subsSal commoners deathRfamine deathRnormal

deathRElite deathRnormal consRElite

subsSal elite deathRfamine deathRnormal

= + −

⋅ ⋅ −

= + −

⋅ −⋅

 

The carrying capacity (carryingCap) of population, 
i.e., the population that can be sustained by the re-
growth of nature, and its corresponding maximum car-
rying capacity (carryingCapMax), attainable under 
certain conditions, are defined by these equations: 

2

/

( / )

/ ( ) ( / 2)

carryingCap natureRegen depleteFactor

natureCap subsSal eta depletFactor

carryingCapMax natureRegen eta subsSal natureCap

= ⋅

− ⋅

= ⋅ ⋅

 

The threshold for minimum wealth (wealthMin), the 
total population, and a dimensionless quotient eta used 
above are defined as follows: 

( ) /

( )

wealthMin consWorkerMin commoners

ineqFactor consWorkerMin elite

eta deathRfamine birthRComm

deathRfamine deathRnormal

totalPopulation elite commoners

= ⋅ +

⋅ ⋅

= −

−

= +
 

Table 2. Additional variables of the Handy model for Human 
and Nature Dynamics. 

Name Description                                      Unit 

deathRComm Commoners’ death rate Number of peo-
ple/year 

deathRElite Elites’ death rate  Number of peo-
ple/year 

consRComm Consumption rate of com-
moners EcoDollars/year 

consRElite Consumption rate of Elites EcoDollars/year 

eta Dimensionless quotient  

carryingCap Carrying capacity (of the 
whole system) Number of people 

carryingCapMax Maximum carrying capacity Number of people 

totalPopulation Total population Number of people 

The parameters of the model are described in Table 3. 
Table 3. Parameters of the Handy model for Human and 
Nature Dynamics. 

Name Description                                      Typical value(s) 

deathRnormal Healthy normal (minimum) 
death rate 0.01 

deathRfamine Famine (maximum) death rate 0.07 

birthRComm Commoner birth rate 0.03, or 0.065 

birthRElite Elite birth rate 0.03, or 0.02 

subsSal Subsistence salary per person 0.0005 

consWorkerMin Minimum required consump-
tion per worker 0.005 

natureRegen Nature's regeneration rate 0.01 

natureCap Nature's carrying capacity 100 

ineqFactor Inequality factor between elite 
and commoners 1, 10, or 100 

depletFactor Depletion (production) factor 
6.67E-6,  or 
6.35E-6,  or 
13E-6 

There are three dimensions for quantities in the model: 
Population (either Commoners or Elites), in units of 
people, Nature or Wealth, in units of EcoDollars, 
and Time, in units of years. All other parameters and 
functions in the model carry units that are compatible 
with these dimensions. 

All of the above definitions appear in the 
HandyBase Modelica model below, which is a partial 
model that is inherited by the following actual simulat-
ed models. 
partial model HandyBase "Equations, 
variables, and parameters for Handy" 
  // All parameters, default values for 
egalitarian society 
  parameter Real birthRComm = 0.03 "Birth 
Rate of Commoners No people/year"; 
  parameter Real birthRElite = 0.03 "Birth 
Rate of Elite. No of people/yr"; 
  parameter Real natureRegen = 0.01 
"Nature's regeneration factor."; 
  parameter Real natureCap = 100.0 
"Nature's capacity. ecoDollars"; 
  parameter Real subsSal=0.0005 
"Subsistence Salary/Worker. 
Dollars/worker"; 
  parameter Real consWorkerMin = 0.005 
"Minimum required Consumption per  
    Worker. Dollars/worker"; 
  parameter Real depletFactorEq = 
0.00000667  
   "Rate of depletion (pollution) per 
worker at Equilibrium. 1/Worker*year"; 
  parameter Real deathRnormal = 0.01 
"Healthy Death Rate. people/year"; 
  parameter Real deathRfamine = 0.07 
"Famine Death Rate. people/year"; 
  parameter Real ineqFactor = 0 
"Inequality in consumption level for 
Workers and Non-Workers. Does not play a 
role when elite=0"; 

  Real depletFactor "Rate of depletion per 
worker. 1/Worker*year"; 
  Real commoners "Population of Commoners. 
Number of people"; 
  Real elite "Population size of Elite. 
Number of people"; 
  Real nature "Natural stock (renewable 
and nonrenewable). ecoDollars"; 
  Real wealth "Accumulated wealth. 
EcoDollars"; 
  Real wealthMin "Minimum threshold accum 
wealth before famine. EcoDollars"; 
  Real deathRComm "Death Rate for 
Commmoners. Number of people/year"; 
  Real deathRElite "Death Rate for Elite. 
Number of people/year"; 
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  Real consRComm "Consumption Rate of 
Commoners. Dollars/year"; 
  Real consRElite "Consumption Rate of 
Elite. Dollars/year"; 
  Real eta "Derived quotient expression. 
Dimensionless"; 
  Real carryingCap "Carrying Capacity. 
Number of people"; 
  Real carryingCapMax "Maximum Carrying 
Capacity. Number of people"; 
  Real totalPopulation "Total population: 
elite and commoners. No people"; 

equation  
  der(commoners) = birthRComm*commoners – 
    deathRComm*commoners; 
  der(elite) = birthRElite*elite – 
    deathRElite*elite; 
  der(nature) = natureRegen*nature * 
   (natureCap-nature) – 
    depletFactor*commoners*nature; 
  der(wealth) = depletFactor* commoners * 
    nature – consRComm - consRElite; 
  deathRComm = deathRnormal + max(0, 
    1-consRComm / (subsSal*commoners)) * 
    (deathRfamine-deathRnormal); 
  deathRElite = deathRnormal + max(0, 
    1-consRElite / (subsSal*elite)) * 
    (deathRfamine-deathRnormal); 

  consRComm = min(1, wealth/wealthMin) * 
    subsSal*commoners; 
  consRElite = min(1, wealth/wealthMin) *  
    ineqFactor*subsSal*elite; 
  wealthMin = consWorkerMin*commoners + 
    ineqFactor*consWorkerMin*elite; 

  eta = (deathRfamine - birthRComm) / 
   (deathRfamine-deathRnormal); 
  carryingCap = natureRegen /depletFactor 
*(natureCap - subsSal*eta/ depletFactor); 
  carryingCapMax = natureRegen /  
   (eta*subsSal) * (natureCap/2)^2; 
  totalPopulation = elite + commoners; 
 
initial equation  
  nature = natureCap; 
  wealth = 0; 
end HandyBase; 

4.2 Types of Societies, Simulation Methodology 
and Scenarios 

Handy has been applied to three types of societies: 

• Egalitarian society—with no elites, i.e., the elite 
population elite = 0. Scenario models 
HandyEgal1 to ModelEgal4. 

• Equitable society—with workers (commoners) and 
elites (non-workers), where both groups earn the 
same per person, i.e., ineqFactor=1. Scenario 
models HandyEquit1 to HandyEquit5. 

• Unequal society—with commoners and elites, 
where elites consume more per capita than com-
moners, i.e., ineqFactor > 1. Scenario models 
HandyUnEq1 to HandyUnEq4. 

Several scenarios will be studied for each kind of socie-
ty. The default values for parameters and initial values 
for state variables used in these scenarios are those pre-
sented in Table 1 and Table 3. 

The thought experiments are performed as simula-
tions, the results of which are presented in Sections 4.3 
and 4.5, respectively. Within each type of society, dif-
ferent scenarios are studied by varying the rate of de-
pletion per worker called depletFactor (short for de-
pletion factor). 

For each type of society, an equilibrium state can be 
reached, in which all derivatives go to zero, and conse-
quently, all the system’s variables settle into a steady 
state. 

Under that condition, the carrying capacity can be 
maximized if nature's regeneration rate is maximal. 
According to the equation for nature, the latter is sat-
isfied when nature=natureCap/2. The depletion fac-
tor depletFactor is at the optimal level 
depletFactorEq, when it produces a steady state with 
a maximum sustainable population. 

The scenarios below explore the consequences of 
different types of societies as they behave optimally or 
sub-optimally, determined by the depletion factor.  

 

4.3 Simulation Scenarios of an Egalitarian So-
ciety 

For this type of society, the optimal value for the deple-
tion factor that maximizes the carrying capacity 
(carryingCap) is depletFactorEq=6.67E-6 (derived 
analytically). Below is the HandyEgalitarianBase 
model that is being inherited by all Egal models. 
partial model HandyEgalitarianBase  
  "Egal - Scenarios with Egalitarian 
Society (No-Elite)" 
  extends HandyBase; 
initial equation  
  elite = 0;  // For All "Egal" scenarios 
  commoners = 100.0; 
end HandyEgalitarianBase; 

Scenario Model HandyEgal1: “Soft landing to Equilib-
rium” 
model HandyEgal1 "Scenario Egal1: Soft 
Landing to Equilibrium" 
  extends HandyEgalitarianBase; 
equation  
  depletFactor = depletFactorEq; 
end HandyEgal1; 

By making depletFactor=depletFactorEq the re-
sults in Figure 3 below are obtained: 
plot({commoners_, elites_, nature_, 
wealth_, carryingCap_, carryingCapMax_}) 
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Figure 3. Soft landing to equilibrium, with optimal nature 
depletion factor. Simulation of HandyEgal1. 

In this example, maximum nature regeneration can 
support a maximum sustainable depletion rate (pollu-
tion) and a steady maximum population (commoners) 
equal to the carrying capacity (carryingCap). 

Scenario Model HandyEgal3: “Cycles of Prosperity 
and Collapse” 

In this scenario we increase the depletion intensity by 
selecting depletFactor = 4 * depletFactorEq.  
model HandyEgal3 "Scenario Egal3: Cycles 
             of Prosperity and Collapse" 
  extends HandyEgalitarianBase; 
equation  
  depletFactor = 4 * depletFactorEq; 
end HandyEgal3; 

The results obtained are shown in Figure 4 below: 
plot({commoners_, elites_, nature_, 
wealth_, carryingCap_, carryingCapMax_}) 
 

 

Figure 4. Cycles of Prosperity and Collapse. Simulation of 
HandyEgal3. 

The oscillatory mode exhibits “reversible collapses”. 
This scenario can be seen as belonging to a “limit cy-
cle” for the values of the depletion factor. If 
depletFactor increases even further, the system 
changes into a different mode, one of “irreversible” 
collapse, with only one overshoot-and-collapse cycle. 
This is obtained in the scenario HandyEgal4.  

Additional Scenarios in an Egalitarian Type of Society 

There are also scenarios models HandyEgal2 “Oscilla-
tory Approach to Equilibrium” and HandyEgal4 “Full 

Collapse”, corresponding to depletFactor = 
2.5*depletFactorEq and depletFactor = 
5.5*depletFactorEq, respectively. The reader is en-
couraged to test these models. 

4.4 Simulation Scenarios of an Equitable Socie-
ty—Workers and Non-Workers with Equal 
access to Wealth 

In this society, Non-Workers and Workers have equal 
access to wealth, i.e., ineqFactor = 1. The non-
workers’ privilege is that they get access to wealth 
without having to work (in that sense, they are regarded 
as the Elites). The initial population of non-workers is 
elite = 25. As before, we look for an equilibrium sit-
uation where the depletion factor is set to its optimal 
value, which for this society is depletFactor = 
depletFactorEq = 8.33E-6. This produces the first 
scenario HandyEquit1 model shown further below, an 
adaptation of the HandyEquitableBase model which 
is inherited by all Equit scenario models. 
partial model HandyEquitableBase  
  "Equit Scenarios: Equitable society 
(with Workers and Non-Workers)" 
  extends HandyBase(ineqFactor = 1, 
depletFactorEq = 0.00000833); 
initial equation  
  commoners = 100.0; 
end HandyEquitableBase; 

Scenario HandyEquit1: “Soft Landing to Optimal 
Equilibrium” 
 
model HandyEquit1  
  "Equitable society Scenario Equit1: Soft 
Landing to Optimal Equilibrium" 
  extends HandyEquitableBase; 
initial equation  
  elite = 25; 
equation  
  depletFactor = depletFactorEq; 
end HandyEquit1; 

We simulate and plot: 
plot({commoners_, elites_, nature_, 
wealth_, carryingCap_, carryingCapMax_}) 

 
Figure 5. Equilibrium in the presence of workers 
(Commoners) and non-workers (Elites) with equal 
consumption per person. Simulation of HandyEquit1. 
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In Figure 5, the sum of worker and non-worker popula-
tions reaches the maximum carrying capacity. The op-
timal depletion factor in this society is bigger than that 
of an egalitarian society analyzed in the previous sec-
tion. This is due to an increased amount of production 
required from the workers to sustain the non-workers.  

Scenario HandyEquit2: “Oscillatory Approach to 
Equilibrium” 

If the depletion factor is further increased to  
depletFactor = 2.64 * depletFactorEq we obtain 
an oscillatory behavior. The results are shown in Figure 
6 
model HandyEquit2  
  "Equitable society Scenario Equit2: 
Oscillatory Approach to Equilibrium" 
  extends HandyEquitableBase; 
initial equation  
  elite = 25; 
equation  
  depletFactor = 2.64 * depletFactorEq; 
end HandyEquit2; 

We simulate and plot: 
plot({commoners_, elites_, nature_, 
wealth_, carryingCap_, carryingCapMax_}) 

 
Figure 6. Oscillatory convergence to equilibrium with 
tolerable overshoot. Simulation of HandyEquit2. 

Now, the carrying capacity (carryingCap) is lower 
than the maximum carrying capacity, but the total pop-
ulation approaches a steady state value after an oscilla-
tory phase. 

Additional Scenarios in an Equitable Type of Society 

There are also scenarios HandyEquit3 “Cycles of 
Prosperity, Overshoot and Collapse”, HandyEquit4 
“Full Collapse”, and HandyEquit5 “Preventing a Full 
Collapse by Decreasing Average Depletion per Capita”. 

The reader is encouraged to also try these models, 
which include experimenting with different values of 
the depletion factor, and in the case of HandyEquit5, 
increasing the ratio of non-workers to workers. 

4.5 Simulation Scenarios of an Unequal Socie-
ty—Elites and Commoners with Different 
Access to Wealth 

The unequal society appears to be closer to the status of 
our current world. The inequality factor ineqFactor 
is made to vary from 10 to 100 in the unequal scenari-
os. 

We will reproduce a pair of experiments intended to 
show the effects of changing birth rates and inequality 
as a means for moving from an unsustainable to a sus-
tainable mode of behavior. 
partial model HandyUnEquitableBase 
    "Uneq Scenarios: Unequal Society (with 
Elite and Commoners)" 
  extends HandyBase(ineqFactor = 100, 
    depletFactorEq = 0.00000667,    
   birthRComm = 0.03, birthRElite = 0.03); 
end HandyUnEquitableBase; 

Scenario HandyUneq2: “Full Collapse” 

In this scenario the inequality factor is set very high: 
ineqFactor = 100. Also, the initial seed for the popu-
lation of the Elite is set to elite = 0.2 and a large de-
pletion factor (including pollution effects) 
depletFactor = 1E-4 is selected. The result is a full 
collapse with no recovery, as shown in Figure 7 below. 
 
model HandyUnEq2  
  "UnEquitable society Scenario UnEq2: 
Type-II Collapse (Full Collapse)" 
  extends HandyUnEquitableBase(ineqFactor 
= 100,  
    depletFactorEq = 0.00000667, 
birthRComm = 0.03, birthRElite = 0.03); 
initial equation  
  elite = 0.2; 
  commoners = 100.0; 
equation  
  depletFactor = 15 * depletFactorEq; 
end HandyUnEq2; 
 
plot({commoners_, elites_, nature_, 
wealth_, carryingCap_, carryingCapMax_}) 

 
Figure 7. Full collapse due to over-depletion and high levels 
of inequality (ineqFactor=100). Simulation of 
HandyUnEq2. 
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As soon as the Commoners’ population surpasses the 
carrying capacity, wealth starts to decline and never 
again recovers. Before disappearing, Elites remain in-
sensitive to the wealth’s fast decrease for a long period 
after the Commoners’ population starts its massive de-
cline. This is possible due to the unequal access to 
wealth, which is a hundred times larger than that of the 
Commoners. 

Scenario HandyUneq3: “Soft Landing to Optimal 
Equilibrium” 

In this scenario several parameters and initial values are 
changed with respect to the previous case. 

• Inequality is reduced by a factor of ten, yielding 
ineqFactor = 10. 

• The depletion factor is set to its equilibrium value, 
derived analytically: depletFactor = 
depletFactorEq = 6.35E-6, much lower than in 
the previous scenario. 

• The initial values for the population are set as com-
moners=10 000 and elite=3000. 

• The birth rates are assumed to be controllable and 
selected as birthRComm=0.065 and 
birthRElite=0.02. 

The results are shown below: 
 

model HandyUnEq3     
    "UnEquitable society UnEquit3: Soft 
Landing to Optimal Equilibrium" 
  extends HandyUnEquitableBase(ineqFactor 
= 10, depletFactorEq = 0.00000635,  
    birthRComm = 0.065, birthRElite = 
0.02); 
initial equation  
  elite = 3000.0; 
  commoners = 10000.0; 
equation  
  depletFactor = depletFactorEq; 
end HandyUnEq3; 

plot({commoners_, elites_, nature_, 
wealth_, carryingCap_, carryingCapMax_}) 
 

 

Figure 8. Unequal society reaching a sustainable equilibrium 
with moderate inequality (ineqFactor=10) and birth rate 
control. Simulation of HandyUnEq3. 

The new set of parameters produces a sustainable equi-
librium in an unequal society. It represents an example 
of implementation of policies that simultaneously limit 
inequality and allow birth rates to remain below critical 
levels. In this model inequality and birth rate are sepa-
rate but simultaneous measures. In fact, in the real 
world high birth rates in poor societies are often a con-
sequence of inequality. 

Additional Scenarios for an Unequal Type of Society 

There are also scenarios HandyEquit1 “Collapse with 
Recovery of Nature” and HandyEquit4 “Oscillatory 
Approach to Equilibrium“, which perform experiments 
with different values of the depletion factor, birth rates, 
and values of initial populations. 

5 A Short Look at the World3 Model 
World3 is a rather complex world model and therefore, 
its realm, scope, and objectives are quite different from 
those of Handy. The compiled version contains 41 
state variables and 245 algebraic variables, with the 
same number of equations, representing many facets of 
human society and global ecological and economic dy-
namics.  

The model is available as part of the 
SystemDynamics.WorldDynamics library [1], devel-
oped by François Cellier and his students. They made a 
documented Modelica version of World3 by translating 
the original model from its version in Stella. 

The SystemDynamics.WorldDynamics.World3 
model is represented as a Modelica package that im-
plements Meadows et al World3 model. World3 was 
first described in the 1972 book Limits to Growth: A  
Report for the Club of Rome's Project on the Predica-
ment of Mankind [5].The book has seen two later edi-
tions, one published in 1992 (20-year edition), and the 
most recent one published in 2004 (30-year edition) 
[7]. Each of these new editions were accompanied by 
an updated model. The model in this Modelica World3 
version is the newest model discussed in the 2004 edi-
tion Limits to Growth: The 30-Year Update. 

Whereas Jay Forrester listed his entire mathematical 
model in his book World Dynamics, Meadows et al in 
Limits to Growth only discussed the results obtained 
using their model. The mathematical model itself was 
not listed. The main reason was to make the book more 
accessible to a wider public. Another reason is that 
World3 is considerably more complex than World2, 
and consequently, a thorough discussion of all aspects 
of the model would have taken up much more space in 
the book. Instead, the authors published a separate book 
of 637 pages in 1974: Dynamics of Growth in a Finite 
World [6] that describes all facets of the model. 
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Since the World3 model is rather complex, it was 
subdivided into 13 different sectors (i.e., submodels) 
describing aspects of the following: 1) arable land dy-
namics, 2) food production, 3) human ecological foot-
print, 4) human fertility, 5) human welfare index, 6) 
industrial investment, 7) labor utilization, 8) land fertil-
ity, 9) life expectancy, 10) non-recoverable resource 
utilization, 11) pollution dynamics, 12) population dy-
namics, and 13) service-sector investment.  

In the overall main model, one submodel of each 
class is placed on the screen, and the individual 
submodels are connected appropriately (Figure 9). 

 
Figure 9. Overall World3 model. 

The submodel World3.Land_Fertility, for example, 
is depicted below in Figure 10.  

 
Figure 10. A submodel of World3:   
SystemDynamics.World3.Land_Fertility. 

This submodel has 3 Inputs and 2 outputs. Two state 
variables, Land_Fertility and Yield_Tech, are repre-
sented by means of “Level” blocks, which have the 
ability to accumulate. Levels play the role of the state 
variables in a differential equation. Levels are in turn 
driven by the input and/or output “Rates” connected to 
the left and right sides, respectively, determining the 
velocities at which the accumulated quantity increases 

or decreases. These Rates, in turn can be functions of 
other variables, including the state of the Level itself. 
Said functions are defined and interconnected follow-
ing a block diagram approach, resorting to a vast li-
brary of pre implemented blocks such as Non-Linear 
Functions, Table Lookup Functions, Gains, Multipliers, 
etc. 

The “Clouds” connected to the rates have only a 
pictorial purpose, expressing the fact that a source 
and/or a sink always exists with the physical ability to 
provide and/or absorb material without limits. The lat-
ter can be considered the conceptual “boundaries” of 
the model, as no detail is given for the processes taking 
place in material supply or consumption at these ends. 

Whereas the World2 model lumps the entire popula-
tion into a single state variable, the World3 model of-
fers a demographic population dynamics model that 
distinguishes between children and adolescents, young 
adults of child-bearing age, older adults who are still 
integrated into the work force, and the retired popula-
tion.  

The capital investment is subdivided into invest-
ments in the military/industrial complex, in the service 
sector, and in agriculture.  

Both the natural resources and pollution models 
have been upgraded by including changes in technolo-
gy as factors influencing the depletion of resources and 
the release of pollutants. This is meaningful as im-
proved technology may enable us to use the available 
resources more efficiently, and may also make it possi-
ble to produce goods in a cleaner fashion.  

Scenarios with World3 

The book Limits to Growth: The 30-Year Update, de-
scribes eleven scenarios based on different sets of as-
sumptions. These scenarios are also part of the 
Modelica World3 model. We shall briefly discuss three 
of these scenarios: 

• Scenario1 is the so-called “Standard Run”. This is 
the original World3 model with basic assumptions 
and without any adjustments. 

• Scenario2 is the same as Scenario1, but with 
twice as much non-recoverable resources initially 
available, i.e., more oil, coal, metal, etc. 

• Scenario9 is based on Scenario2 but applies a 
number of measures to avoid collapse and to try to 
transform the human society into a sustainable one. 

The three scenarios are simulated between year 1900 
and 2200. 

Unfortunately, both Scenario1 and Scenario2 lead to 
population collapse rather quickly, as depicted in Fig-
ure 11. Doubling the non-renewable resources in Sce-
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nario2 does not help at all (it delays the collapse,  but 
makes it steeper). The population increases a little fur-
ther, but the subsequent collapse is even more severe, 
primarily due to increased levels of pollution. The cur-
rent developments in our world unfortunately seem to 
be rather close to Scenario2.  

If a collapse indeed should occur, will it be as quick 
as depicted in Figure 11? That must not necessarily be 
the case. The World3 model assumptions may not be 
completely valid during such a stressful transition peri-
od. Political decisions, rationing policies, etc., may lead 
to decreasing resource consumption and create a slow-
er, more controlled contraction to a sustainable level of 
consumption. 

Scenario 2
Scenario 9

Scenario 1

 
Figure 11. The world population according to Scenarios 1, 2, 
and 9 in the World3 model. 

How can a collapse be avoided? Scenario9 applies the 
following aggressive technology development plan:  

• Increased industrial resource efficiency, i.e., a re-
duction in the use of non-renewable material and 
energy, a 4% resource decrease/year. 

• Arable land protection, e.g., to decrease and prevent 
land erosion, and to preserve existing land. 

• Agricultural yield enhancement, a 4% increase/year. 
• Pollution reduction, a 4% decrease/year. 

Additionally, a program for birth control is implement-
ed with an average number of two children per family. 
The scenario furthermore assumes that there is a certain 
capital cost to implement these technologies, and that 
20 years are required for their full implementation. 

The Scenario9 simulation to year 2200 shows a 
sustainable society. However, if the simulation contin-
ues to the year 2500, we observe that it is hard to main-
tain sustainability with a large human population com-
bined with high standards of living. If the size of the 
population is gradually decreased back to its level of 
about a hundred years ago, the chances for being able 
to maintain high standards of living are much better. 

Another issue is model validity. A number of as-
sumptions behind the World3 model may not be valid 
that far into the future. However, one fact is certain: the 
human race must, in the long run, live sustainably on 
planet Earth due to limitations in resources, energy, and 
space. Consumption overshoots like the current one can 
only be temporary. 

6 Conclusion 
The Handy model has the remarkable feature of provid-
ing a minimal structure helpful for intuitive understand-
ing of the human-nature interaction. It can produce a 
rich variety of dynamical modes, leading to non-trivial 
scenarios. This combination is seldom found in most 
world models, where the quest for including more de-
tails comes at the price of lack of intuitiveness. 

Handy is very useful as a “conceptual” model that 
can trigger varied interpretations and discussions com-
paring qualitatively different scenarios.  

However, the goal of Handy is not to make quantita-
tive short-term forecasts of the world state, but to as-
sess qualitatively the impacts of various factors such as 
inequality and depletion on the long-term behavior of 
human societies. 

The explicit stratification of social classes guides 
the interpretations to an essential playground needed to 
discuss the fate of human population.  

Also worth mentioning is the fact that human socie-
ties developed a degree of cultural and technological 
complexity that prevents treating them in the same way 
as an animal species.  

Accumulation of wealth (human’s ability to save 
throughout generations) is a major distinction which 
allows for irreversible population collapses, whereas 
with predation only, the predator-prey type of models 
can only produce cyclic oscillations (i.e., partial col-
lapses). 

Several senior modelers have remarked that it is not 
reasonable to expect that any world model will correct-
ly predict how the world will develop after the onset of 
collapse, as unpredictable social disruptions and/or re-
structurings would result that invariably invalidate most 
of the model’s assumptions, parameters and even struc-
tures that might have described pre-collapse phases in a 
credible way. Such social reshaping will have its dy-
namics determined by interactions between different 
social classes, and in that regard, again, the Handy ap-
proach of disaggregating them in at least two strata rep-
resents a valuable contribution to future world model-
ing. 

Moreover, we want to draw the reader’s attention to 
the aggregation made in Handy of natural renewable 
and non-renewable resources into a stock variable. This 
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paves the way for attaining scenarios that look sustain-
able in the very long run (i.e., when simulating “to in-
finity”). Based on the principles of thermodynamics it 
can be shown that in the long run the maximum carry-
ing capacity of humans on earth will be determined 
only by the remaining renewable resources (once we 
have depleted all the non-renewables for good).  

If we consider renewable and non-renewable re-
sources independently of each other (along with the 
commoners, the elites, and their inequality factor), we 
may be able to use the resulting world model to inves-
tigate scenarios that offer possible answers to an addi-
tional highly relevant question. How should we best 
use the non-renewable resources to attain a society with 
minimum inequalities, for when the time comes that 
humanity must rely on renewable resources only? To 
investigate such a goal, the inequality factor should be 
altered from a constant parameter to a variable. 
Although models presented in this paper are from dif-
ferent classes (minimal Handy vs. more complex, real-
istic world model, World3), their conclusions are simi-
lar. In the long run, not so far into the future, humanity 
must change to living sustainably on planet Earth. This 
change can occur either as a planned gradual transition, 
preserving well-functioning societies, or as a more dis-
ruptive, unplanned transition resulting in a less pleasant 
society with a reduced ecological capacity. 
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Abstract

Cellular Automata (CA) can be used to describe
dynamic phenomena dependent of the spatial
coordinates. This approach exhibits two main
advantages: CA models are conceptually simple and
can be simulated very efficiently. A new Modelica
library named CellularAutomataLib is presented. It
facilitates describing one- and two-dimensional CA in
Modelica, and interfacing these CA models with other
Modelica models. Simulation performance and large
model support have been highest priority in the design
of the library. To achieve these goals, the CA internal
description is programmed in C and it is consequently
hidden to the modeling environment, which is released
from the burden of causalizing and manipulating the
millions of equations that typically compose CA
models. The library architecture and use are discussed
in this manuscript. Two examples illustrate the
library use: heat diffusion on a chip and spread of
an epidemic disease. CellularAutomataLib is freely
available at http://www.euclides.dia.uned.es.

Keywords: Cellular Automata, Hybrid Models,
Modelica

1 Introduction

Cellular Automata (CA) are discrete and dynamic
models initially proposed by John Von Neumann for
the study of self-reproducing automata [1]. These
models are represented as a grid of identical volumes,
named cells, that can be in any finite number of
dimensions [2]. The state of each cell in the automata
is discrete, and it is updated at discrete time steps
during the simulation following a transition function
or rule. This rule constitutes a function of the current
state of the cell and the state of its neighbors, and

defines the state of the cell for the next time step [3].
The neighborhood of a cell is usually composed of a
selection of its surrounding cells, but not necessarily.
It can be defined in different ways, such as the Moore’s
neighborhood that includes all the surrounding cells;
the von Neumann’s neighborhood that includes the
cells adjoining the four faces of one cell; or the
extended von Neumann’s that also includes each cell
just beyond one of the four adjoining cells [4].

Formally, CA can be defined as a tuple [5]:

CA ∶ < T,X ,Ω,S,δ ,Y,λ >

where T is the time base (isomorphic with N); X is
the input set; Ω is the set of all input segments ω (an
input segment may be restricted to a domain T , ω ∶T →
X); S is the state that is the same for all cells because
the cellular space is homogeneous; δ ∶Ω×S→ S is the
global transition function used to update the state of
each cell (δ(ω,si) → δl(Ni), δl is the uniform local
transition function, si is the state of the i-th cell of the
grid and Ni is the set of states that correspond to the
neighborhood of the i-th cell, usually defined as a set
of offsets from i); Y is the output set; and λ ∶ S → Y
is the output function used to observe the state of the
automata.

The application of CA in the study of systems is
broad and diverse, mainly due to the simplicity of
describing these kind of models (i.e., by describing
the state of the cell, the initial state of the space and
the transition rule) and the computational efficiency
of their simulation. They have been used to model
systems in medicine [6], architecture [7], chemistry
[8], economics [9], biology [10], among many others
[11].

The feasibility for describing CA models using
the Modelica language was demonstrated by Fritzson
[12]. He described the Conway’s Game of Life model
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in Modelica by representing the cellular space using a
matrix of integer numbers. The initial conditions are
set using a vector that contains the coordinates of the
initially active cells. At discrete times, generated using
a sample operator, the state of the automata is updated
by iterating the whole matrix using two for loops, and
using the transition function to update each individual
cell. The model uses the Moore’s neighborhood. In
this model, the description of the cellular space and the
evaluations of the transition function in each cell are
coupled, difficulting its reutilization to describe other
automata.

Another approach to describe CA models in
Modelica was performed by the authors [13]. The
CellularPDEVS package, distributed with the DESLib
library [14, 15], supports the description of CA using
the Parallel DEVS formalism [16, 17]. DESLib is
freely distributed under the Modelica License 2, and
can be downloaded from the Modelica Association
website. The cellular space is represented as coupled
Parallel DEVS models, and each cell is described as an
atomic Parallel DEVS model. CellularPDEVS allows
the user to focus on describing the behavior of the
cell and the characteristics of the cellular space. The
state of each cell corresponds to the state of the atomic
Parallel DEVS model and can be represented using
an arbitrarily complex Modelica data structure. The
transition rule corresponds to the internal transition
function of each cell, which can contain any Modelica
algorithm. This approach facilitates the description of
the model by making the simulation algorithm of the
automata transparent to the user.

CellularPDEVS also facilitates the combination of
CA models with other Modelica models. Inputs
and outputs to the cellular space can be described
using the external transition and output functions,
respectively. These functions (i.e., internal transition,
external transition and output) are used in the DEVS
formalism to define the behavior of models. However,
the performance and the scalability of this library
are not satisfactory. The reasons are twofold. First,
the size of CA models is typically in the order of
hundreds of thousands and millions of equations.
The translation of models with so large number of
equations (when even possible) is time consuming
and huge executable files are generated (see also
discussion in [18]). Second, long event chains are
executed to update the CA state. The complete model
is reevaluated after executing each event in the event
chain, which in most cases is unnecessary, degrading
the simulation performance significantly.

A new library, named CellularAutomataLib, for
describing CA models is presented in this manuscript.
The objective of this new library is to preserve
the characteristics of CellularPDEVS, in terms of
facility to describe the behavior of the model and the
characteristics of the space, and provide a solution
for its main drawbacks (i.e., simulation performance
and scalability). CellularAutomataLib is not based in
the Parallel DEVS formalism. The CA model (i.e.,
the state of the cell and the transition function) is
described as a C data structure (i.e., a C struct) and
a function. Its simulation algorithm is also directly
implemented into several C functions that are called
from Modelica by using the external function interface
provided by the language [19]. CA models defined
in this way are not manipulated by the Modelica tool
(Dymola in our case), which produces an smaller
simulation code and avoids the reevaluation of the
whole model after the treatment of an event in the
CA. The user can focus on describing the behavior
of the model and not the simulation algorithm.
Also, the simulation of CA models automatically
displays a graphical animation that is generated using
Gnuplot [20]. CellularAutomataLib provides interface
models that facilitate the connection of CA with
other Modelica models. These interface models use
user-defined external functions to translate the state of
the cell into a standard Modelica data type that can
be used in other models, and vice-versa. The library
has been developed using Dymola FD1 2013 on an
Intel Core i5 2.3GHz machine with 16GB of RAM and
running Linux 3.11 x86_64.

The structure of the manuscript is as follows. The
architecture of the library and its design principles are
detailed in Section 2. The procedure to develop new
CA models using the library is described in Section
3. The description of the interface models used to
combined CA with other Modelica models is given
in Section 4. Two case studies of 2D CA models are
presented in Section 5. Finally, some conclusions and
future work ideas are given in Section 6.

2 Architecture of the Library

The architecture of CellularAutomataLib is shown in
Fig. 1. The library is composed of the following
models and packages: License (description of
the license); User Guide (library documentation);
Path_gnuplot (path to Gnuplot binary, used to
generate the graphical animation); Input_Region
model (used as interface between CA models);
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Figure 1: Architecture of CellularAutomataLib.

CAport connector (used to connect CA models with
other models); CA_1D package (models to describe
1D CA); Examples1D package (examples of 1D
CA); CA_2D package (models to describe 2D CA);
Examples2D package (examples of 2D CA).

The library has been implemented using C functions
that are called from Modelica functions using the
external function interface. The basic functions that
perform the simulation of the automata are included in
the file CellularAutomataLib.c, which should not
be modified by the user. These functions include the
creation and initialization of the space, the simulation
of a step or the reception of an external input, among
others. The behavior of the model has to be described
as external C code (i.e., model.c).

3 Development of New Models

A CA model in CellularAutomataLib is composed
of one or several cellular spaces, that represent the
1D or 2D grid of cells, and some models, named
interface models, used as interface between cellular
spaces or between cellular spaces and other models.
Cellular spaces and interface models include functions
that call external C functions. These external C
functions are used to describe the behavior of the

Figure 2: Relationship between Modelica and external
C code in CellularAutomataLib.

models. The relationship between the external code
and the Modelica code is summarized in Fig. 2. In
this section the development of new cellular spaces is
described. The use of the interface models is described
in Section 4.

3.1 Description of New Cellular Spaces

A cellular space in CellularAutomataLib is composed
of the cellular space model and some functions. The
cellular space model is a partial model that describes
the one- or two-dimensional space represented by the
automata. The parameters of the model are shown
in Table 1. The cellular space model includes three
replaceable functions: Create, that is used to create
the cellular space, allocate memory for the cells and
set them to the default state; Initial, that is used
to initialize the cells indicated using the init_cells
parameter and; Rule, that represents the transition
function and is used to update the state of the cells at
each simulation step.

The behavior of the cellular space is described by
redeclaring these functions with functions that call
external C functions (cf. Fig. 2). The description of
these external functions is detailed below.

At the beginning of the simulation, the cellular
space model creates the space using the Create
function, and initializes the cells included in
the init_cells parameter. After that, it
performs periodic simulation steps every Tstep
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Table 1: Parameters of cellular space models.

Name Description

space_nrows defines the number of rows of the space (only used in 2D spaces).
space_ncols defines the number of columns of the space.
neighborhood defines the topology of the neighborhood. It contains a list of the relative positions of

the neighbors from the center cell.
n_inputs defines the number of inputs received from interface models connected to the

automata.
wrapped_borders defines the boundary conditions. In 1D spaces it is either 1 for wrapped or 0

for non-wrapped. In 2D spaces it can be 0 for non-wrapped, 1 for wrapped only
north-to-south, 2 for wrapped only east-to-west and 3 for wrapped in all directions.

Tstep defines the interval between two steps in the simulation of the automata.
Initial_step defines the time for performing the first simulation step.
plot_animation defines if the graphical animation is generated (value 1) or not (value 0).
plot_range defines the maximum value of the variable displayed in the animation. Thus, the

displayed variable can be in the [0, plot_range] interval.
display_delay defines a delay in the graphical animation that can be used to improve its visualization,

which otherwise could be too fast to be observed.
init_cells defines a list of coordinates of the cells that will be initialized at the beginning of the

simulation.
name defines a name for the automata that will be displayed in the graphical animation.

time, starting at time = Initial_step (i.e.,
sample(Initial_step,Tstep)).

3.2 Description of External C Functions

In order to facilitate the description of the behavior
of new cellular spaces, the library includes a template
file (named draft.c) that can be used to describe the
required external C functions.

Following the formal specification of the automata,
the user has to define the state variables that represent
the state of the cells (S) and the model behavior
(i.e., the transition function δ ) by reimplementing the
functions included in the draft.c file, into a new file
(e.g., model.c). The time base T is set using the
parameters TStep and Initial_step of the cellular
space model. The rest of the elements of the tuple
(X ,Ω,Y,λ ) are defined using the interface models.

As an example, the development of the Rule 30
model described by Wolfram [4] is presented. The
transition function for this model is shown in Fig. 3.

The draft.c file can be used as a template to
describe the behavior of the model. It has been
renamed as wolfram.c for this example. The state
of each cell is defined as an int value by modifying
the State data type in the template. The default value
for the cell state will be set using the DefaultState
function, and so it has to be modified to set the

Figure 3: State transitions for the Rule 30 model.

default state to 0. The state of initialized cells will
be set using the InitialState function, and so
it has to be modified to set the initial state to 1.
The transition function shown in Fig. 3 has to be
implemented by modifying the transition function
in the template. In order to automatically generate
the graphical animation, the Display function in the
template has to be modified to convert the state of the
cell (i.e., the State data type) into a double value.

The cellular space for the Rule30 model is
described in Modelica by extending the CellSpace1D
model from CellularAutomataLib. The Create,
Initial and Rule functions are redeclared using
functions that call the external C functions defined in
wolfram.c. The parameters for the Rule30 model
are: Space_ncols = 20, neighborhood = {-1,1},
wrapped_borders = 1, Tstep = 1, Initial_step
= 0, plot_animation = 1, plot_history = 1,
init_cells = 10, name = "Rule 30". The graphical
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animation will be automatically generated using
Gnuplot if plot_animation is set to 1. In this model,
state 0 is displayed in black, and state 1 is displayed
in yellow. The first 10 steps of simulation for the Rule
30 model are shown in Fig. 4 (the number of step is
represented in the vertical axis).

Figure 4: Simulation of the first 10 steps for the Rule
30 model.

4 Interfacing with Other Models

CellularAutomataLib includes several interface
models that facilitate the combination of CA with
other Modelica models. The inputs of the CA model
(X ,Ω) are described using input and external input
region models. The outputs of the CA model (Y,λ )
are described using the output region model. Their
behavior and use are detailed below.

4.1 Input Region

Cellular spaces can be combined to increase
the modeling functionality of the library. This
communication can be performed using the
Input_Region model. The same model can be
used between 1D and 2D spaces.

The combination is performed by translating the
state of some cells from one space as inputs for
the other. The prototype of the transition function
in C includes a vector of the received inputs, in
order to allow the user to manage them. Each
Input_Region has associated an input identifier, set
using the parameter input_id, that can be used as
index for the vector of inputs of the transition function.

The Input_Region model has two interface ports:
FROM and TO. These interface ports are used to connect
to the involved cellular spaces. The state of the cell
[i, j]∣i ∈ [RstartFrom ∶ RendFrom], j ∈ [CstartFrom ∶
CendFrom], in the FROM space, is translated using

the SetInput function into an input for the cell
[m,n]∣m ∈ [RstartTo,RstartTo + (RendFrom −
RstartFrom)],n ∈ [CstartTo,CstartTo +
(CendFrom − CstartFrom)] in the TO space.
RstartFrom, RendFrom, CstartFrom, CendFrom,
RstartTo and CstartTo are parameters of the model.
In 1D spaces, only the column parameters are used
(i.e., CstartFrom, CendFrom and CstartTo). An
additional parameter, named column_1D_2D, allows
to use a 1D region as a column, instead of a row, of
inputs for a 2D space. The communication is started
at time = comm_start and is performed every
comm_rate time.

The function void SetInput(int Fspace, int
Frow, int Fcol, int Tspace, int Trow, int
Tcol, int input_id) from the draft.c file can be
used to redeclare the SetInput of this model.

4.2 External Input Region

Similarly to the Input_Region model, the model
ExtInputRegion can be used to set an input to a
region of cells in the automata. In this case, the input is
generated using an external signal instead of the state
of the cells of other automata.

The model receives an external Real input signal
through port u, which is used as input for a region
of cells in the automata connected to port TO. As in
the previous interface model, a 2D region is defined
by the positions between Rstart and Rend (for the
rows) and Cstart and Cend (for the columns). In
1D regions only the parameters referring to columns
are considered. The input is assigned to the position
input_id of the vector of inputs which is available for
the user in the transition function. The external signal
can be observed in the following ways (defined by the
parameter Input_type), in order to be converted into
an input:

• Quantizer: the input is set every time the value of
the signal changes in a defined value or quantum.

• Cross_UP: the input is set every time the value
of the signal crosses a defined threshold in the
upwards direction.

• Cross_DOWN: the input is set every time the
value of the signal crosses a defined threshold in
the downwards direction.

• Cross_ANY: the input is set every time the value
of the signal crosses a defined threshold in any
direction.

Session 3C: Novel Modelica Applications and Libraries

DOI
10.3384/ECP14096489

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

493



Figure 5: Example of behavior of external input region, external init region and output region models.

• Sample: the input is set periodically using the
sample operator.

The signal is translated into an input using the
function ExtInput, that can be redeclared using the
void ExtInput(int space,int row, int col,
double value, int input_id) function included
in draft.c.

An example of external input is shown in Fig. 5. The
ExtInputRegion model, connected to the CA CASpace,
is used to set the state of the cells in the fifth row of
the cellular space to the value of its input const (i.e.,
5). The values of the states of the cells are graphically
represented at the right of the figure.

4.3 External Init Region

This model can be used to set the initial state of a
region of cells in the space using the value of an
external signal. The model has an input port, named u,
where a Real signal is received, and a port named TO
that connects to the CA. This signal is translated, using
the ExtInit function, into a cell state that will be
used to initialize the cells in the region of the automata
connected to port TO.

The 2D region is defined by the positions between
Rstart and Rend (for the rows) and Cstart and
Cend (for the columns). Only the column parameters
are considered for 1D regions. The ExtInit function
can be redeclared using the void ExtInit(int
space,int row, int col, double value)
function included in draft.c.

An example of external init is shown in Fig. 5. The
extInitRegion model is used to initialize the state of the

cells in the rows 1 to 4 (and columns 1 to 5) with the
value of its input const1 (e.g., 0).

4.4 Output Region

The OutputRegion model can be used to observe the
state of the cells in a region of the automata connected
to port FROM. The state is translated into an output Real
signal that can be used by other Modelica models. As
in the previous interface models, a 2D region is defined
by the positions between Rstart and Rend (for the
rows) and Cstart and Cend (for the columns). In 1D
regions only the parameters referring to columns are
considered.

The model contains two output Real ports, y
and yM[Rend-Rstart+1,Cend-Cstart+1] (being
yM[Cend-Cstart+1] for the 1D case). Depending on
the value of the parameter Output_type, the state is
observed in different ways:

1. (AVERAGE): the value of y is calculated as
the average value of the states of the cells in
the [Rstart ∶ Rend,Cstart ∶ Cend] interval, or
[Cstart ∶ Cend] for 1D.

2. (MAX): the value of y is calculated as the
maximum value of the states of the cells in
the [Rstart ∶ Rend,Cstart ∶ Cend] interval, or
[Cstart ∶ Cend] for 1D.

3. (MIN): the value of y is calculated as the
minimum value of the states of the cells in
the [Rstart ∶ Rend,Cstart ∶ Cend] interval, or
[Cstart ∶ Cend] for 1D.
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4. (MATRIX): the value of the state of the i, j-th
cell in the space is assigned to yM[m,n] (where
m = 1 ∶ (Rend−Rstart+ 1) and n = 1 ∶ (Cend−
Cstart+1)). In 1D, the i-th cell is assigned to
yM[n] (where n = 1 ∶ (Cend−Cstart+1))

The value of the state is translated into a Real value
using the ExtOutput function, that can be redeclared
using the double Output(int space, int row,
int col) function included in draft.c.

An example of output region is shown in Fig. 5. The
outputRegion model is used to calculate the maximum
value (i.e., Output_type = MAX) among the states of
the cells in the first column of the space. In the case
shown in the figure, the output port y of outputRegion
is set to 5.

5 Case Studies

CellularAutomataLib includes several examples of 1D
and 2D models, whose purpose is to demonstrate
the functionality of the library and to facilitate the
development of new models. The modeler can use
these examples as a base for constructing new CA.
Two of these examples are described in this section: a
model of heat transfer on a chip and a SIR (Susceptible
Infected Removed) epidemic spread model.

5.1 Heat Transfer on a Chip

The model describes the flow of the heat generated
in a chip by the execution of software instructions.
Two heat transfer mechanisms are considered: heat
diffusion in the chip surface and convective heat flow
from the chip surface to the air. The model contains
two bi-dimensional CA: one describes the chip and
the other describes the air. The software execution is
modeled using power sources located at certain points
of the chip surface. These points correspond to the
position of the circuit components (ALU, memory,
etc.) that dissipate more heat.

The structure of the CA model is shown in Fig. 6.
This model combines two cellular spaces, one for the
chip (named Chip) and another for the air (named
Air), with other Modelica models used to represent
the sources of power (named T+3S+N, Pg1 and Pg2).
Two external input region models (named Pext1 and
Pext2) are used to combine the external sources of
power with the Chip cellular space. Two input regions
are used to represent the transfer of heat between
chip and air (named Chip2Air), and vice-versa (named
Air2Chip). An external init region (named InitTemp) is

Figure 6: CA model of heat transfer on a chip.

Table 2: Parameters of the chip model.

Name Value Unit Description

gamma 100 W
m2.K Heat transfer coefficient

cp 710 J
kg.K Specific heat capacity

ro 2330 kg
m3 Average density

rows 10 - Number of rows
cols 10 - Number of columns

length 0.005 m Layer length
width 0.005 m Layer width

thickness 0.0001 m Layer thickness
k 149 W

m.K Thermal conductivity

used to initialize the cells of Chip at 20ºC, given by a
constant source from the Modelica Standard Library.
Finally, an output region model (named chipTEMP) is
used to observe the evolution of temperatures in the
chip.

The model has been implemented into a C file,
named chip.c. The equations that describe the
heat transfer have been implemented in the transition
function of Chip. The Air2Chip model sets the
temperature of the Air as an input for Chip, which is
used to calculate the convection of heat from the chip
to the air. The Pext1 and Pext2 set two inputs for Chip
that are used as input heat flows in the equations.

The transition function calculates the evolution of
temperatures in the chip using two alternatives: a
forward Euler and a leap-frog integration algorithms.
These are explicit integration algorithms that are easily
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(a) Euler integrator

(b) Leap-frog integrator

Figure 7: Simulation results for cell [1,3] and error
between Modelica and CA models: a) using Euler
integration; and b) using Leap-frog integration.

included in the transition function of the CA. At each
step of the simulation the transition function calculates
an integration step and updates the values of the
temperatures. The interval between steps using the
forward Euler has to be 0.0001s in order to ensure
stability. That interval can be increased to 0.001s using
the leap-frog algorithm.

An analogous model has been developed using
Modelica. In this model, the space has been
discretized using finite volumes. In order to perform a
comparison between the Modelica and the CA models,
each volume will be represented by a cell in the CA.

Both models, Modelica and CA, have been
simulated for 10s using the parameters shown in
Table 2. The simulation results at the cell [1,3] and
the error between the Modelica and CA approaches

Figure 8: Capture of the graphical animation for the
chip CA model.

Table 3: CPU time (in seconds) for integration of
models during 10s of simulated time.

Model
Grid Side Size

10 50 100 200

Modelica (DASSL) 0.02 15.3 506 error
Modelica (EULER) 1.26 1225 5046 -

CA (EULER) 22 1670 6720 -
CA (LEAP-FROG) 2 173 711 2790

Table 4: Number of equations for the Chip model.

Model
Grid Side Size

10 50 100 200

Modelica 1.2e3 2.7e4 1.1e5 4.4e5

CA 1.7e3 2.5e3 1e4 4e4

CA without
chipTEMP

70 70 70 70

are shown in Fig. 7. A capture of the graphical
animation is shown in Fig. 8. The evolution of the
simulation time with respect to the size of the grid
is shown in Table 3. The simulation using EULER
integration for the 200x200 grid was not performed
and thus it does not appear in the table. The number
of equations in the Modelica and CA models are
shown in Table 4. If the chipTEMP output region
model is removed from the CA model the number
of equations is 70, independently of the grid size.
The Modelica model rapidly reaches the maximum
number of equations that can be efficiently handled
by Modelica/Dymola, while the number of equations
in the CA model remains lower. Note that Dymola
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fails, due to an unknown internal error, to compile the
Modelica model in a grid of 200x200 cells.

5.2 Epidemic Spread

The dynamics of epidemic spread are modeled in
this example. This model was proposed in [21]. It
is a SIR model where susceptible (S), infected (I)
and recovered (R) individuals are considered. The
evolution of the number of these individuals is defined
by Eqs. (1), (2) and (3).

It
i j = (1−ε) ⋅ It−1

i j +v ⋅St−1
i j ⋅ It−1

i j +St−1
i j ⋅

∑
(α,β)∈V

Ni+α, j+β

Ni j
⋅µ i, j

αβ ⋅ I
t−1
i+α, j+β (1)

St
i j = St−1

i j −v ⋅St−1
i j ⋅ It−1

i j −St−1
i j ⋅

∑
(α,β)∈V

Ni+α, j+β

Ni j
⋅µ i, j

αβ ⋅ I
t−1
i+α, j+β (2)

Rt
i j = Rt−1

i j +ε ⋅ It−1
i j (3)

where V is the neighborhood of the (i, j) cell, and
µ i, j

αβ = c(i, j)αβ ⋅m
(i, j)
αβ ⋅ v, where c(i, j)αβ and m(i, j)αβ are the

connection factor and the movement factor between
the (i, j) cell and its neighbor cell (i + α, j + β),
and v ∈ [0,1) is the virulence of the epidemic. The
parameter ε defines the portion of infected individuals
that recover from the disease at each step.

This model has been programmed in a C file, named
epidemics.c. The size of the cellular space has been
set to 50x50 in order to validate its results with the
ones presented in [21]. Only the cell in the center of
the space (i.e., position [25,25]) is initialized at the
beginning. The parameters are set using the values:
ε = 0.4, v = 0.6, c = 1 and m = 0.5. The Moore’s
neighborhood is used. The CA model includes the
cellular space model and three output region models
(see Fig. 9), used to sum the values of the state
variables (S, I and R) of the whole CA. Each output
region model redefines the ExtOutput function using
a different function from epidemics.c, in order to
observe the desired variable. The simulation results
after 50 steps are shown in Fig. 10.

In order to demonstrate the simulation of a larger
space, this model has been simulated with an space
size of 500x500. This generates around 750,000
equations, due to the matrices defined in the output
region models. These matrices are managed by the
Modelica simulation algorithm. Dymola generates a
C file of 140MB which is difficult to compile and
simulate. Because of this the output region models

Figure 9: CA model of SIR epidemics spread.

Figure 10: Evolution of the sum of the state variables
(S,I and R) of the whole CA after 50 steps.

Figure 11: Capture of graphical animation at t = 100
for the epidemic spread model using a 500x500 grid.

are removed from the CA model before performing the
simulation. The capture of the graphical animation at
the final step (t = 100) is shown in Fig. 11.
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6 Conclusions

A new Modelica library has been developed to
facilitate the description of CA models. The
simulation algorithms are transparent to the user, who
has to focus on the description of the behavior of
the model. The behavior of the models is described
using external C functions. The use of external
functions improves the performance and scalability of
the simulations. The functionality of the library has
been demonstrated by means of two case studies.

Some future work ideas are: to support the
description of 3D models; to improve the generation
of the graphical animation using graphical libraries
instead of Gnuplot; to develop a graphical interface to
define the initial conditions of the CA model; and to
automatically parallelize the simulation of the CA in
order to improve the performance.
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Abstract 

Physiolibrary is a free open-source Modelica library 

designed for modeling human physiology. It is ac-

cessible on the Modelica Libraries web page at 

https://www.modelica.org/libraries. This library con-

tains basic physical laws governing human physiolo-

gy, usable for cardiovascular circulation, metabolic 

processes, nutrient distribution, thermoregulation, 

gases transport, electrolyte regulation, water distribu-

tion,  hormonal regulation and pharmacological 

regulation.  

 

Keywords: Physiolibrary; HumMod; Modelica li-

brary; Physiology; Integrative physiology; System 

biology 

1 Introduction 

Our laboratory have a long tradition building 

physiological libraries, starting with the 

Matlab/Simulink environment [2].  The origin of this 

Modelica Physiolibrary was in the first version of 

our HumMod Golem Edition model implementation 

[3-6], where it was called HumMod.Library. As the 

successors of Guyton's Medical Physiology School  

write, the original HumMod model [7] is “The best, 

most complete, mathematical model of human phys-

iology ever created” [8].  

We are also developing many types of smaller 

physiological models for use in medical education 

[9-11], so it was essential to separate this library 

from our HumMod Modelica implementation. Some 

other Modelica models and libraries covering the 

biological domain already existed, e.g. [12-17], 

which are useful in the process of system modeling 

and parameter identification. Especially BioChem 

Modelica library, that implements large part of 

SBML library in Modelica language [14-18].  

Our Physiolibrary contains only carefully-chosen 

elementary physiological laws, which are the basis of 

more complex physiological processes. For example 

from only three type of blocks (ChemicalReaction, 

Substance and MolarConservationMass) it is possi-

ble to compose the allosteric transitions [19] or the 

Michaelis-Menten equation.  

2 Physiology 

Physiology is a very progressive discipline, that 

examines how the living body works. And it is no 

surprise that all processes in the human body are 

driven by physical laws of nature. The great chal-

lenge is to marry old empirical experiments with the 

“new” physical principles. Many teams and projects 

in the word deal with this formalization of physiolo-

gy, for example: Physiome[20], SBML[17, 18], 

EuroPhysiome[21], VPH[22], CellML[23] etc. It is 

our hope that this library helps this unflagging effort 

of physiologists to exactly describe the processes.    

2.1 Display units in physiology 

Energy in medicine and chemistry has a very long 

tradition. One must not be confused by its different 

units and definitions. The researcher must be aware 

of multiple definitions of calorie, such as the interna-

tional calorie, the 15°C calorie, the thermal calorie or 

the Calorie with a capital "C". The origin of this unit 

is in the thermal energy needed to heat one gram of 

water by one degree Celsius. But because the meas-

urement conditions may differ, these alternative def-

initions are necessary. In physiology it is recom-

mended to use only international calorie as defined 

in Table 1. The flow of heat/energy is usually calcu-

lated in kcal/min, but in physics this is called power 

and is expressed in the SI unit watts.  

Pressure units in medicine are also mainly based 

on historical measurements. For many years blood 
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pressure was measured by the mercury sphygmoma-

nometer, where the pressure is represented by the 

change of mercury hydrostatic column height. And 

because the scale of units on the column is in milli-

metres the pressure unit is called millimetre of mer-

cury 'mmHg'. There also exists a very small differ-

ence between this unit and torrs. It is caused again by 

variance in measurement conditions. 

 

 
Figure 1, Example parameter dialog for non-SI physio-

logical units. The Dymola environment automatically 

converts this user’s non-SI-values to SI-values to en-

sure compatibility with any other  Modelica library. 

Many physiological processes are based on elec-

trical principles in the human body. The main cause 

of this is that each cell has a nonconductive mem-

brane with molecular structures called channels, 

through which the fluxes of electrolytes can be pre-

cisely regulated. Even more, the cells use energy 

from metabolism to retain a small electric potential 

between inside and outside. This view leads to a unit 

called equivalents or “eq”. A charge of 1eq, for ex-

ample, has 1mol of sodium cations (Na
+
). The fluxes 

of electrically charged ions can be in meq/min, but in 

physics the SI unit ampere is more generally used. 

 

Unit conversion table  

(for Modelica environment display-unit setting) 

 x kcal = 4186.8*x J 

 x kcal/min = 69.78*x W 

 x mmHg = 133.322387415*x Pa 

 x degC = 273.15 + x K 

 x meq = 96.4853365*x C 

 x meq/min = 1.60808894*x A 

 x mosm = 0.001*x mol 

 x litreSTP = 0.044031617*x mol 

 x litreSATP = 0.040339548*x mol 

 x litreNIST = 0.041571200*x mol 

Table 1, Selected Non-SI units in physiology 

Another strange unit describing the amount of 

substance is the osmol (“osm”), which has the same 

value as the mol, but which highlights the property 

that this substance cannot cross the membrane to-

gether with the flux of its solvent.  

For gases, it is common to measure the amount as 

volume, which for specific measurement conditions 

is equivalent to the number of molecules. 

The International Union of Pure and Applied Chem-

istry (IUPAC) set this standard condition for temper-

ature and pressure (STP) precisely at 0°C and 

100kPa. But other standards exist. For example, 

SATP is measured at 25°C and 100kPa, or the stand-

ard measurement condition at the National Institute 

of Standards and Technology (NIST), which is 20°C 

and 101.325kPa. 

2.2 Chemical domains in physiology 

In physiology books, chapters about chemical 

substances are organized by their types. The main 

reason for this is that each substance in the human 

body is regulated in a different way. For example the 

regulation of sodium is different from the regulation 

of potassium, and from the regulation of glucose, and 

so on. This view leads to the idea of having separate 

models of each substance. The origin of different 

flows and regulations is the (cellular) membrane. 

Water and solutions can cross it in different direc-

tions at the same time. Crossings occur for different 

reasons: water is driven mostly by osmotic gradients, 

electrolytes are driven by charge to reach Donnan's 

equilibrium, and some solutes can even be actively 

transported against their concentration or electrical 

gradients. And all this is specifically driven from the 

higher levels by neural and hormonal responses.   

In Physiolibrary flows and fluxes of solutes are 

supported mostly by the Chemical package. All parts 

inside this Physiolibrary.Chemical package use the 

connector ChemicalPort, which defines the molar 

concentration and molar flow/flux rate of one solute. 

This is the supporting infrastructure for modeling 

membrane diffusion, accumulations of substances, 
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reversal chemical reactions, Henry's law of gas solu-

bility, dilution with additional solvent flow, mem-

brane reabsorption, chemical degradation and physi-

ological clearance. 

For usage examples, please open the Chemi-

cal.Examples package, where the chemical reaction 

shown in Fig. 2 is implemented, along with many 

other chemical processes. 

 
Figure 2, Example of a chemical reaction: A <-> B + C. 

Purple beakers (Substance) accumulate one type of 

substance and generate its concentration in port. Block 

for chemical reaction (ChemicalReaction) can have 

any number of substrates or products with any stoi-

chiometric numbers. In this case there is only one sub-

strate and two products. Purple lines represent chemi-

cal connectors, are composed of molar concentration 

and the molar flow of substance. 

The graphically-created diagram shown in Fig. 2 

generates this Modelica code: 

model SimpleReaction2 
  import Physiolibrary.Chemical.Components.*; 
  Substance                A(solute_start=0.9); 
  ChemicalReaction   reaction(K=1, nP=2); 
  Substance                B(solute_start=0.1); 
  Substance                C(solute_start=0.1); 
equation  
  connect(A.q_out, reaction.substrates[1]); 
  connect(reaction.products[1], B.q_out); 
  connect(reaction.products[2], C.q_out); 
end SimpleReaction2; 
 

This means that before the numerical simulation 

begins, each Substance.solute_start parameter must 

be set to some initial amount of substance. 

ChemicalReaction.nP must also be configured for 

the number of products, and parameter 

ChemicalReaction.K must be configured for the dis-

sociation constant of reaction in SI-units (please note 

that concentration of 1 mol/m
3
 = 1 mmol/L). As 

mentioned before, the values in text code are in SI-

units, but the Dymola environment support non-SI 

units in the parameter dialog of each component. 

2.3 Hydraulic domain in physiology 

The main usage of the hydraulic domain in hu-

man physiology is modeling of the cardio-vascular 

system. And because there are no extreme thermo-

dynamic conditions, the system can be really simple 

—it is only necessary to model conditions for in-

compressible water, at normal liquid-water tempera-

tures and with relative pressure 5-20kPa. This boring 

thermodynamic state leads to using very simple 

blocks of hydraulic resistance, hydrostatic pressure, 

volumetric flow, inertia and finally a block repre-

senting blood accumulation in elastic vessels.  

 

 

2.4 Thermal domain in physiology 

For the human body to function optimally, it is 

critical to hold the core temperature at 35–39°C. A 

fever of 41°C for more than a short period of time 

causes brain damage. If the core temperature falls 

below 10°C, the heart stops. As in the hydraulic do-

main, the thermal domain is simplified to these con-

ditions. 

The Physiolibrary.Thermal package extends the 

package Modelica.Thermal.HeatTransfer from 

 Figure 3, Hydraulic example: the cardiovascular sub-

system of the famous Guyton-Coleman-Granger model 

[1]. Yellow circles (ElasticVessel) represent blood ac-

cumulation and pressure generation, rectangles be-

tween them are hydraulic resistances (Resistance) of 

blood vessels, blue triangles (Pump) represent a heart 

pump driven by the Frank-Starling law. Heart-filling 

pressures are determined by the block with the blue 

tube icon (PressureMeassure) and a block-rectangle 

(Blocks.Factors.Spline) converts filling pressure to 

their effect on cardiac output. Black lines connect the 

hydraulic connectors (HydraulicPort), which contains 

pressure and volumetric flow variables. 
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Modelica Standard Library 3.2 (MSL), where the 

connector is composed of temperature and heat flow. 

The main blocks in Physiolibrary.Thermal are: Con-

ductor, IdealRadiator and HeatAccumulation. The 

heat conductor conducts the heat from the source, 

such us muscles or metabolically active tissue, to its 

surrounding. IdealRadiator delivers heat to tissues by 

blood circulation. HeatAccumulation plays a role in 

accumulating thermal energy in each tissue mass 

driven by its heat capacity. We recommend using 

this block instead of Modelica.Thermal.HeatTransfer 

.HeatCapacitor to allow the possibility of variable 

mass amounts, and to have support for calculating 

steady state, described in section 2.7.  

 
Figure 4, Example of heat flow from a working muscle. 

The muscle is represented by a red beaker 

(HeatAccumulation), where heat energy is accumulat-

ed in a mass with defined weight and specific heat. 

Heat transfer is processed by blood circulation 

(IdealRadiator) with blood flow as its internal parame-

ter. The temperature of blood is set to a fixed value of 

37°C to simulate well-regulated core body tempera-

ture. 

 
Figure 5, Basic heat flow model of human body. Heat 

production occurs in each tissue via metabolism, or 

from warm (to cool) eaten food using the MSL block 

with two red arrows (Modelica.Thermal.HeatTransfer. 

Sources.FixedHeatFlow). This heat is stored in tissues 

(HeatAccumulation) and transferred out by blood 

(IdealRadiator) or together with mass (Stream, 

HeatOutstream), where the model also integrates va-

porization heat loss.  Heat radiation and conduction to 

the environment is simplified using an MSL block for 

heat conductor (Modelica.Thermal.HeatTransfer. 

Components.ThermalConductor).   

2.5 Osmotic domain in physiology 

One of the basic phenomenon of biological sys-

tems is the osmotically-driven flow of water. This is 

always connected with semipermeable membranes. 

The different concentrations of impermeable solutes 

on both sides of the membrane causes the hydrostatic 

pressure at the concentrated side to rise[24]. This 

pressure difference is called osmotic pressure. Os-

motic pressure is linearly proportional to the concen-

tration gradient of impermeable solutes. The 

osmolarity (osmotic concentration) is also one of the 

main indexes of human body balance, called homeo-

stasis. Its value should not significantly deviate for a 

long period of time from a value of 285-295mosm/l. 

In Physiolibrary the osmotic connector 

OsmoticPort is composed of the osmotic concentra-

tion and the volumetric flux of permeable liquid. The 

two main blocks are called Membrane and 

OsmoticCell. Here, inside the membrane blocks, it is 

of course possible to also define hydraulic pressure 

and temperatures effects on both sides of membrane. 

 
Figure 6, Osmotic example simulating water transfer 

between intracellular and interstitial compartments in 

hypertonic or hypotonic conditions. 

2.6 Types and units 

The most common errors in HumMod Golem 

Edition were caused by using bad physical units. The 

main problem of medical research, articles, and ex-

periments is using obscure units from medicine, 

pharmacology, biology and non-physics disciplines.  

The Physiolibrary fulfills the Modelica ideal of 

using SI units as the main unit for each variable, and 

the previously described physiological units are also 

implemented as the displayUnits for each variable. 

Using these displayUnits the user sets and sees the 

"physiological" values. The implementation can also 

be joined to any unit-correct Modelica models and 

physical equations without crashing due to unit in-
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compatibilities. The unit support of Physiolibrary is 

so strong that one can even chose the right unit-typed 

“input real”/”output real” from the library package 

Types.RealIO or one can use unit-typed constants  

(Types.Constants). As can be expected, only the non-

specific package Blocks in the Physiolibrary has var-

iables without units. 

2.7 Steady states  

One of the main questions in clinical medicine is 

how to stabilize the patient. In modeling the oscillat-

ing heart, breathing, circadian rhythm or menstrua-

tion cycle the model can be designed as non-

oscillating, using variables such as period times, am-

plitudes, frequencies, mean values and other phase 

space variables. This type of model has better nu-

merical stability for long simulation times, and even 

more importantly, it can be "stabilized". This stabili-

zation we call a steady state.  

To be mathematically exact, we define a steady 

state system (SSS) as a non-differential system de-

rived from an original differential system (DS) by 

using zero derivations and by adding additional 

steady state equations (ASSE). The number of the 

ASSE must be the same as the number of algebrai-

cally dependent equations in the non-differential sys-

tem derived from DS by setting zero derivations. The 

ASSE describes the system mostly from the top 

view, such as the equations of mass conservation 

laws or the boundary equation of environment 

sources.  

To define a model as an SSS, the user must 

switch each Simulation parameter in each block to 

the value Types.SimulationType.SteadyState and 

must have correctly defined all necessary ASSE. 

This setting causes the system to ignore any start 

values for any state and add zero derivation equa-

tions instead. There does not currently exist a 

Modelica environment which can automatically find 

and remove generated dependent equations by this 

solution. So the correct number of states must be 

marked as dependent (parameter isDependent) and 

the same number of ASSE must be inserted. Howev-

er, despite the fact that a model in this steady-state 

setting will not be locally balanced, it must be glob-

ally balanced and without any dependent equation.  

 
Figure 7, Steady state system example: equilibrium of 

chemical reaction A<->B+C is calculated with two 

ASSE. Zero change of reactant A is automatically 

propagated through a reaction to both products. So 

both products must be marked as dependent (parame-

ter isDependent), and two mass conservation laws 

must be added as green square blocks to the right 

(MolarConservationLaw). Please note that conserva-

tion laws must be included only after designing the rest 

of the system, because they are global properties, not 

properties of individual substances or reactions. 

Adding an ASSE is possible by inserting and 

connecting the energy or mass conservation law 

block from package SteadyState.Components. An-

other possibility is using environment  sources 

blocks, where setting the isIsolatedInSteadyState  

parameter adds the equation of the zero 

mass/volume/energy flow from or to environment. 

The steady state model often changes to one big 

nonlinear strong component, but without solver stiff 

or convergence problems. Especially in quick chem-

ical kinetics, it is not necessary to have very rapid 

molar fluxes, when it always reach equilibrium in the 

end. This design is also useful in creating steady-

stated parts in a dynamical model without huge re-

building. It also brings other benefits. To see these 

possibilities, one has to realize that conservation 

laws could be invariances in a dynamical simulation. 

This is really useful for debugging.  

For example see the model  

SteadyStates.Examples.SimpleReaction2_in_Equilib

rium (Fig.7), which implements the equilibrium of 

the closed system from Fig.2 as a solution of three 

chemical substances with a simple reversible reac-

tion between them extended by two conservation 

laws. Each of these laws describes the total possible 

amount of one product in its free form and in its as-

sociated form.  

It is always a big challenge to nicely solve initial 

values of differential system. However, it should be 

possible to solve the SSS in its initial phase. And this 

is the idea behind the 

Types.SimulationType.InitSteadyState option for 

models already extended with ASSE. 
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2.8 File utilities—input/output manipulations 

During the creation and debugging of huge inte-

grated models it is necessary to easily define con-

sistent input, output and test sets of all output varia-

bles for some subsystems. Let's imagine that we have 

a model composed only of subsystems that converge 

from some constant inputs to constant outputs. It 

should be possible to substitute each main subsystem 

for its chosen constant output values as parameters. 

Comparing the model with these parametric values 

and the original subsystem can show the wrong part 

of the simulation.  

For example in the huge HumMod model it is 

necessary to debug smaller parts separately. These 

tools could be use, because HumMod is the type of 

constant-converged model. Each subsystem in the 

first level has the constant input values set for its 

output variables. Simulating, for example, the cardi-

ovascular subsystem is possible by creating the high-

level system with the original cardiovascular subsys-

tem, but with a constant metabolic, constant ther-

moregulation, constant hormonal, constant water, 

constant proteins, constant gases, constant electro-

lytes and constant status subsystem.  

Because the number of output variables for each 

subsytem changes during development, it is a good 

idea to have only one list for each subsystem. And 

generating consistent sets to store, restore, compare 

initial and final values is possible by the same pat-

tern as presented in the package Types.Example. In 

this package it is also possible to define a customized  

way to save and load the variables that connect sub-

systems together. For this purpose, one has to 

redeclare the package Types.Utilities with simple 

functions for reading and writing values, such as is 

done in the default package FileUtilities.  

The typical code of a parameter set could be: 

 
model MyParameterSet 
  replaceable package T = Physiolibrary.Types.RealTypes 
        constrainedby Physiolibrary.Types.RealTypes; 
 
  T.Pressure              v1(varName="Bone-Flow.PO2"); 
  T.VolumeFlowRate v2(varName="Bone-Flow.BloodFlow"); 
  T.MolarFlowRate   v3(varName="Bone-Metabolism.O2-Need"); 
  T.Volume               v4(varName="Bone-Tissue.LiquidVol"); 
 
  BusConnector busConnector; 
 
equation  
  connect(v1.y, busConnector.Bone_PO2); 
  connect(v2.y, busConnector.Bone_BloodFlow); 
  connect(v3.y, busConnector.Bone_O2Need); 
  connect(v4.y, busConnector.Bone_LiquidVol); 
end MyParameterSet; 

 

To redefine these sets of values to use inputs from 

a file is simple. The user just redeclares the type of 

the values to type InputParameter and redirects read-

ing functions to FileUtilities: 

 
model InputParameterSet 
extends MyParameterSet( T(redeclare block Variable = 
       Physiolibrary.Types.RealExtension.InputParameter (   
  redeclare package Utilities = Physiolibrary.Types.FileUtilities))); 
end InputParameterSet; 
 

And the same set of values can also be redefined 

to file output at the end of the simulation: 
 

model OutputFinalSet 
extends MyParameterSet( T(redeclare block Variable = 
       Physiolibrary.Types.RealExtension.OutputFinal (   
  redeclare package Utilities = Physiolibrary.Types.FileUtilities))); 
end OutputFinalSet; 

3 Conclusion 

In our opinion the best way to understand this li-

brary is to download it from the Modelica web pages 

at www.modelica.org/libraries and examine the ex-

amples. We recommend examining the package 

Hydraulica.Examples, which provides an example of 

a simplified cardiovascular system; the package 

Chemical.Examples, which provides an example of 

allosteric hemoglobin oxygen binding; the package 

Osmotic.Examples, which simulates cell volume in 

hypertonic and hypotonic environments; and finally 

the package Thermal.Examples, which simulates the 

heating of circulated blood inside active muscles. 
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Abstract 

The more-electric aircraft has been identified as 

the dominant trend for the future aircraft. With the 

development of power electronics, advanced con-

trol and drive systems, a great increase number of 

new electrical loads will be seen on-board. This 

paper presents an electrical power system (EPS) 

library developed in Modelica based on the dy-

namic phasor concept. The developed library uses 

a modular modelling concept. This makes the li-

brary more flexible and user-friendly. The applica-

tion of developed library is also demonstrated 

through simulations of a MOET-architecture EPS. 

 

Keywords: Dynamic Phasor; More-Electric Air-

craft; Modelica 

1 Introduction 

The more-electric aircraft (MEA) has been identi-

fied as a dominant trend for the next-generation 

aircraft. The recent advance of power electronics, 

electrical drives and modern control theory makes 

it possible to replace many functions, which are 

conventionally managed by hydraulic, pneumatic 

and mechanical power, with electrical power driv-

en devices [1]. This move offers reduced overall 

system weight, as well as increased efficiency, re-

liability and performance of the aircraft. The future 

EPS may take many forms: AC, DC, hybrid, fre-

quency-wild, variable voltage, together with the 

possibility of novel connectivity topologies. To 

address the stability, availability and capability 

issues as well as to assess the performance of the 

power quality and transient behaviour, extensive 

simulation work is required to develop the EPS 

architectures. 

Due to the switching behaviour of power electronic 

devices and its resulted higher harmonics, it is very 

time-consuming and even impractical to simulate a 

large-scale EPS with some non-linear and time-

varying models. Considering the system dynamic 

frequency is normally much lower than that of 

higher harmonics, it is a common practice to ne-

glect these higher harmonics when studying system 

dynamic behaviour. The average modelling tech-

nique, which removes the higher harmonics by av-

eraging the variable during one fundamental peri-

od, has been widely used to model the EPS recent-

ly. In these average models, the variables are trans-

formed from the three-phase abc frame to a syn-

chronous rotating dq frame (DQ0 models). The 

DQ0 model demonstrates good performance and 

high efficiency under balanced conditions [2]. This 

model, however, becomes very slow under unbal-

anced or faulty conditions. This is due to the se-

cond harmonic present in the DQ0 model under 

unbalanced conditions.  

 

In this paper, a general averaging modelling tech-

nique, referred to as dynamic phasors (DP), is in-

troduced and a model library based on this concept 

is developed in Modelica. The DPs are in nature 

some time-varying Fourier series coefficients. 

Compared with conventional phasors, the DP can 

model the system even it is not in the steady state. 

Truncating unimportant higher order harmonics 

and only considering the significant components, 

DP models are capable of retaining the dominant 

dynamic features of the EPS and suitable for tran-

sient performance studies. The slow variation of 

DPs allows for larger simulation time steps and 

results in faster simulations under both balanced 

and unbalanced conditions. 

The software used to develop models is Dymola, 

standing for dynamic modelling laboratory. This 

software uses the open Modelica modelling lan-

guage which allows users to freely create their own 

model libraries or modify the ready-made model 

libraries. This modelling language has been widely 
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used in modelling electrical power systems [3, 4]. 

In contrast to data flow-oriented languages with 

directed inputs and outputs, such as the widely 

known Matlab/Simulink tool, Modelica employs 

an equation-based modelling technique and all the 

variables are treated equally. This avoids the alge-

braic loop issues frequently occurred in 

Matlab/Simulink. The equation-based modelling 

concept also results in a faster modelling process 

and a significantly increased re-usability, since the 

interconnection between models is easier and sim-

pler than that of the signal-flow based modelling. 

There is no need to explicitly define the interface 

equations and predefine the input and output sig-

nals. 

 

In this paper, the dynamic phasor concept is briefly 

introduced. The development of DP models in 

Modelica is explained using an RLC circuit. DP 

models of key EPS elements, such as generators, 

PWM converters etc. are introduced.  The applica-

tion of the DP library is demonstrated through 

simulation of the MOET architecture EPS.  

 

2 Dynamic Phasors 

Before introducing the developed library, a brief 

introduction of the dynamic phasor concept is in-

troduced in this section. The DPs essentially are 

some time-varying Fourier coefficients. For a time-

domain quasi-periodic waveform x(τ), defining a 

time-moving window τ(t-T, t], as shown in Fig-

ure 1, and viewing the waveforms in this window 

to be periodic, the Fourier expansion of the wave-

form in this interval can be represented by the fol-

lowing Fourier series [5]: 
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Figure 1 (a) Defined moving window at time t1 and 

t2, (b) equivalent periodic signal at time t1 

where ωs=2π/T and T is the length of the window. 

Though the window length T can be an arbitrary 

value, it is common that the fundamental period of 

the signal is chosen to avoid the DPs spreading 

over the entire frequency axis. Xk(t) is the kth Fou-

rier coefficient in a complex form and is referred to 

as a “dynamic phasor”. It is defined as follows: 

         
k

t

Tt

jk

k xdex
T

tX s  


  
)(

1
)(       (2) 

where k can be any integer and is called the DP 

index. The triangular pair ‘‹ ›’ is used as the DP 

calculation symbols for any time-domain variables. 

In contrast to the traditional Fourier coefficients, 

these Fourier coefficients are time-varying as the 

integration interval (window) slides with time. The 

selected set of DPs, or K with     , defines the 

approximation accuracy of the waveform. For ex-

ample, for DC-like variables and signals the index 

set only includes the component k=0, and for pure-

ly sinusoidal waveforms, with the window length 

equal to one period gives k=1.  

 

A key factor in developing DP models is the rela-

tion between the derivatives of the variable x(t) 

and the derivatives of kth Fourier coefficients giv-

en as: 

ks
k

k

xjk
dt

xd

dt

dx
         (3) 

It is important to notice that, the derivative term on 

the right side of (3) allows the DP to study the 

electromagnetic transients of the power system, not 

limited to steady-state studies. If we drop this de-

rivative term and fix the DP index to be k=1, the 

DP will reduce to the traditional phasors, which is 

widely used to study steady-state or quasi-steady 

power systems.  

 

3 Modelica Library 

In this session, the DP library in Modelica will be 

introduced. An RLC circuit, which is used to rep-

resent the transmission line in many cases, has 

been chosen to illustrate the DP technique. DP 

models of other essential elements are detailed in 

our previous publications [6-10] and will be briefly 

reviewed in this session as well.  
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3.1 DP model of RLC circuits 

The DP models of RLC components are based on 

their time-domain voltage dynamic equations. Us-

ing the DP definition and properties, the DP trans-

formation can be achieved conveniently.  

 

(i) Resistance element 

The time-domain voltage equation for a resistor 

can be expressed by: 

Riv                                      (4) 

If the resistance R is constant and time invariant, it 

can be moved out from the integration symbol and 

we obtain the DP form as: 

kk
iRv                              (5) 

In our model, the DP index is chosen at K={0,1}, 

the DP model in Modelica is shown below: 

 model Resistor 
   extends interface.Twopins; 
   parameter Modelica.SIunits.Resistance R(start=1); 
equation  
  v0=R*i0; 
  v1.re=R*i1.re; 
  v1.im=R*i1.im; 
 end Resistor; 

 

where v0 and v1 are corresponding to DPs ‹v›0,1.  

 

(ii) Inductance element 

The time-domain voltage equation for an inductor 

is written as: 

dt

di
Lv                                      (6) 

The DP form of (5) can be obtained by employing 

the DP definition and its differential as: 

k

k

k
k

iLj
dt

id
L

dt

di
Lv                        (7) 

In Modelica, the DP model for inductors is written 

as: 

 model Inductor 
   extends interface.Twopins; 
   parameter Modelica.SIunits.Inductance L=0.001; 
   Real w; 
   parameter Real f=50; 
equation  
  w=2*Modelica.Constants.pi*f; 
  v0=L*der(i0); 
  v1.re=L*der(i1.re)-w*L*i1.im; 
  v1.im=L*der(i1.im)+L*w*i1.re; 
end Inductor; 
 

(iii) Capacitance element 

The DP model for a capacitor can be derived the 

same way as that for the inductor and is written as: 

k

k

k
vCj

dt

vd
Ci                         (8) 

 model Capacitor 
   extends interface.Twopins; 
   parameter Modelica.SIunits.Capacitance C(start=2e-7); 
   parameter Real f(start=50); 
   Real w; 
equation  
  w=2*Modelica.Constants.pi*f; 
  i0=C*der(v0)+0*w*C*v0; 
  i1.re=C*der(v1.re)-w*C*v1.im; 
  i1.im=C*der(v1.im)+w*C*v1.re; 
end Capacitor; 

 

The application of the DP models in Modelica is 

very convenient. In reality, it even looks the same 

as the models in Modelica/Dymola standard librar-

ies. A simple RLC circuit with all the elements 

modelled in DPs is shown in Figure 2.   

 

Figure 2 DP represented RLC circuit in Modelica 

 

Figure 3 Simulation results of DP-modelled RLC 

circuit 

 

The simulation results of the circuit are shown be-

low. As can be seen, the sinusoidal source in DP 

domain becomes complex constant DC source. The 

currents flowing through the inductor turn into 

constant in the DP model.  
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3.2 DP models of synchronous generators and 

control 

The modelling of synchronous machines has been 

an important topic in power system engineering for 

many decades. Today there are a large number of 

different models used in different studies. The 

three-stage generator system in a conventional air-

craft is simplified into a synchronous generator 

(SG). Figure 4 showed the SG with its controlling 

structure. 
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Figure 4 The equivalent circuit for the generating 

system in aircraft 

The DP model of these machines is based on their 

time-domain voltage and flux equations. The fully 

detailed DP model of a synchronous machine has 

been can be found in [6] and will briefly intro-

duced here.  In DP domain, the synchronous ma-

chine can be modelled as: 

kabcs
kabcs

kabcskabcs j
dt

d
λ

λ
irv s                (9) 

kdqr
kdqr

kdqrkdqr j
dt

d
λ

λ
irv r              (10) 





n

nkdqrnsr

m
mkabcsmskabcs iLiLλ    (11) 

 



n

nkdqrnr

m
mkabcsmrskdqr  iLiLλ      (12) 

where Lss denotes the stator self-inductance matrix, 

Lrr is the rotor self-inductance, Lsr and Lrs are the 

mutual inductance. The matrix rs is the resistance 

of stator windings and rr is the resistance of rotor 

windings.  

 

The proportional-integral (PI) controllers can be 

converted into the DP domain with their state-

space equations: 

  ukx i                       (13) 

                       xuky p                         (14) 

where u is the input, x is the state variable, and kp 

and ki are the proportional and integral gains corre-

spondingly. This equation can be converted into 

dynamic phasors as: 

kki
k xjkuk

dt

xd
        (15) 

kkpk
xuky            (16) 

The model of PI controller in modelica is written 

as: 

 

model PI_DP 
  Modelica.ComplexBlocks.Interfaces.ComplexInput u[2]; 
  Modelica.ComplexBlocks.Interfaces.ComplexOutput y[2]; 
  parameter Real kp; 
  parameter Real ki; 
  constant Real PI=Modelica.Constants.pi; 
  Real w; 
  Complex x[2]; 
  Real xre; 

 
equation  
  w=2*PI*f; 
  //dc component 
   der(xre)=ki*u[1].re; 
  xre=x[1].re; 
  x[1].im=0; 
  y[1].re=kp*u[1].re+x[1].re; 
  y[1].im=0; 
  //second harmonic 
  der(x[2].re)=ki*u[2].re+2*w*x[2].im; 
  der(x[2].im)=ki*u[2].im-2*w*x[2].re; 
  y[2].re=kp*u[2].re+x[2].re; 
  y[2].im=kp*u[2].im+x[2].im; 
end PI_DP; 

 

3.3 Auto-transformer rectifier units 

The multi-pulse rectifier unit is widely used to 

supply the HVDC bus in aircraft electrical power 

systems. The DP modelling of an 18-pulse auto-

transformer rectifier unit (ATRU) has been dis-

cussed in our previous publication [11]. The sym-

metry of the ATRU is used to simplify the model-

ling process. The DP index for variables at the AC 

side terminals are set at K={1}. For the DC termi-

nal variables, the DP index is set at K={0} which is 

equal to their time-domain values. The DP model 

of ATRU is shown in Figure 5 and Figure 6.   
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Figure 6 Equivalent circuit representation of DP 

model of an 18-pulse ATRU 

3.4 Controlled rectifier units 

The PWM controlled rectifier unit is well-known 

from previous publications and the topology is 

shown in Figure 7. With the voltage vector aligned 

with the d axis in a synchronous rotating frame, 

denoted as the DQ frame, the projections of the 

current vector onto the D and Q axes correspond to 

the active power and reactive power components 

respectively. This allows independent control of 

the active and reactive power flow. The electrical 

converter of the CRU is represented with the volt-

age and current relations in DP forms. The vector 

control of the CRU is transformed into DPs with 

the same strategy used in the controlled synchro-

nous machines. The detailed development of the 

DP model for CRUs has been introduced in our 

previous publication [7].component is considered. 

Thus, the DP index is set at K={0}. 
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Figure 7 Structure of the PWM controlled rectifier 

4 System Simulation 

This simulation scheme has been shown in Figure 

8. This EPS structure is based on the MOET large 

aircraft EPS architecture from Airbus France (doc-

ument WP3.11 architecture V0 [12]). In the simu-

lation studies, the electrical frequency of the SG1 

is fixed at 400Hz and SG2 fixed at 405Hz. The 

HVAC bus voltages are controlled at 230V RMS. 

The power rating of elements in the system is 

shown in Table 1.  
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Figure 8 The EPS of the twin-generator aircraft 
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Table 1 Rated power of equipment in the example 

EPS 

Equipment Power rating 

ATRU 150kW 

WIPS 60kW 

ECS 30kW 

EMA 5kW 

AC essential bus fed CRU 10kW 

HVAC2 bus fed resistance 9kW 

HVDC bus fed resistance 5kW 

 

Table 2 Simulation scenarios of twin-generator 

aircraft EPS under normal operation conditions 

Time 

(s) 
Events 

0.00 Simulation starts; EPS starts up 

0.15 Switches SSG1 and SSG2  are closed; Switch-

es SATRU1 and SATRU2  are closed; DC loads 

on HVDC buses are connected 

0.20 ESC1 and ECS2 start to accelerate to the 

rated speed (3000rpm) 

0.50 Rated load torques applied to ECS1 and 

ECS2 (95Nm) 

0.70 WIPS changes from 60kW to 6kW 

0.80 EMA1 and EMA2 start to accelerate to the 

rated speed (900rpm) 

0.90 Rated load torque applied to EMA1 and 

EMA2 (54Nm)  

1.00 SG1 and SG2 are connected 

1.02 SSG1 opens; SG1 removes from the system 

and SG2 covers the whole load system 

1.20 Simulation ends 

 

The simulation starts at t=0s. The GCU starts to 

regulate the HVAC bus phase voltage to 230Vrms. 

After the HVAC bus voltage reaches the steady 

state, the switches SATRU1 and SATRU2 are closed at 

t=0.15s. The SG1 starts to supply ATRU1 through 

HVAC1 bus. At the same time, the SG2 starts to 

supply ATRU2 through HVAC2 bus. At t=0.2s, 

the speed reference for two ECS drive system is set 

at 3000rpm and the rated load torque 95Nm ap-

plied to these ECS systems at t=0.5s. At t=0.7s, the 

de-icing system starts to run at rated power and the 

WIPS is set at 60kW. After 50ms second, the de-

icing process finishes and the power requirement 

of WIPS is reduced to 6kW to maintain the tem-

perature of the aircraft wings. The DC-link voltage 

reference of EMA is set to 800V at t=0.6s. The 

speed reference of the EMA is set to rated speed 

900rpm at t=0.8s with rated load applied at t=0.9s. 

In order to demonstrate parallel operation of the 

two generators, SHVB is closed at t=1.0s. The two 

generators start to work in parallel for a short peri-

od, 20ms, then SHVB opens and the two generators 

work separately again. The event sequence of start-

up of the twin-generator aircraft EPS is also shown 

in Table 2. 

Results from the ABC model (the model as a 

benchmark, in the three-phase coordination with 

switching behaviour) and DP models (all the ele-

ments are modelled in DPs) are compared in the 

following figures. The dynamic responses of 

ATRU-fed HVDC bus voltages, vHVDC1 and vHVDC2 

are shown in Figure 9. The initial values of vHVDC1 

and vHVDC2 are set at zero. At t=0.15s, when the 

switches SSG1 and SSG2, SATRU1, SATRU2 are closed, 

the inrush current push the DC-link voltage of 

ATRUs vHVDC1 and vHVDC2 from 0V to around 

800V. From t=0.2s, the ECS starts to speed up and 

draws power from the generator. A slope voltage 

drop at HVDC bus can be noticed from this point. 

This is because the PMSM in the ECS acquiring a 

linearly increasing power from the generator as 

shown in Figure 10 and Figure 11. The linearly 

increasing AC currents resulted in correspondingly 

a linearly voltage drop in the transmission lines 

and at AC terminals of ATRUs. This results in a 

linear decrease of the DC voltage vHVDC1 and 

vHVDC2. When the rated loads of ECS1 and ECS2 

are applied, a slight voltage drop can also be seen 

in vHVDC1 and vHVDC2 at t=0.5s. The reduction of the 

WIPS power requirement at t=0.7s results in a 

higher vHVDC1 and vHVDC2. When the generators SG1 

and SG2 are connected, vHVDC1 and vHVDC2 decrease 

due to the difference between vHVAC1 and vHVAC2. 

With SG1 removed from the system at t=1.02s, 

SG2 starts to supply the whole load system and the 

system comes to the steady state after a short tran-

sient period. The vHVDC1 and vHVDC2 from ABC and 

DP modelling techniques are well-matched as 

shown in Figure 9.  

Since the system is assumed to be balanced, the 

currents flowing into ATRUs iATRU1 and iATRU2 are 

represented by the phase A current only. For com-

parison studies, the variables in the DP model are 
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transformed to the time domain. The simulation 

results of iATRU1 and iATRU2 are shown in Figure 10 

and Figure 11. The currents iATRU1 and iATRU2 re-

mains zero until the load connected to the HVDC 

buses at t=0.15s. The acceleration of PMSMs of 

ECS’s induces the increasing of iATRU1 and iATRU2 

starting from t=0.2s. The application of rated loads 

at ECS’s introduces the step of iATRU1 and iATRU2. It 

can be seen that the results from ABC and DP 

models are well matched during the whole simula-

tion process. The magnitude of DPs 〈i     〉 and 
〈i     〉  are also shown in Figure 10 and Figure 

11. From these two figures, it can be seen that the 

magnitudes of 〈i     〉 and 〈i     〉  give the en-

velope of the result from the ABC model.  

 

 

Figure 9 The dynamic response of vHVDC1 and 

vHVDC2. Above: response of vHVDC1; below: re-

sponse of vHVDC2 

 

Figure 10 The dynamic response of iHVAC1, phase A 

current flowing into ATRU1. Above: iHVAC1; below: 

zoom-in area of iHVAC1 

 
Figure 11 The dynamic response of iHVAC2, phase A 

current flowing into ATRU2 Above: iHVAC2; below: 

zoom-in area of iHVAC2 

 

Figure 12 Dynamic response of drive loads, (a) 

ωr_ECS1 speed of PMSM of ECS1; (b) ωr_ECS2 speed 

of PMSM of ECS2; (c) ωr_EMA1 speed of PMSM of 

EMA1; (d) ωr_EMA2 speed of PMSM of EMA2 

The speed of PMSMs of ECS1, ECS2, EMA1 and 

EMA2 is shown in Figure 12. The PMSMs are 

well controlled by their speed controllers. It pre-

sents well agreement between two modelling tech-

niques.  

Table 3 Comparison of the computation time be-

tween two different models 

Model ABC DP 

Simulation time (s) 7983 43 

Acceleration  1 185 
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The computation time consumed by the two differ-

ent models is compared in Table 3. It can be seen 

that the DP model is 185 times faster than the ABC 

model. The simulation time of ABC model is 

counted in hours compared with that of the DP 

model in seconds. Comparing the simulation time 

between the ABC and DP model, one can notice 

that the acceleration of DP model is significant. 

This is due to the fact that the variables are DC-

like in the DP model which allows larger time 

steps in the simulation process. Another average 

modelling technique based using the dq frame 

(DQ0 model) can achieve the same acceleration 

order as that of DP model. However, the DQ0 

model will lose its efficiency when the system is 

under unbalanced conditions. The DP model, on 

the other hand, can maintain its efficiency even the 

system is under unbalanced conditions. This merit 

of DP model has been demonstrated in our previ-

ous publications with subsystems of the aircraft 

EPS. Our future research will compare the three 

modelling techniques, ABC, DQ0 and DP models, 

with EPS system under MOET architecture. 

5 Conclusion 

The paper introduced a DP library for EPS studies. 

This library is developed in Dymola/Modelica. 

Based on the DP library established, a twin-

generator EPS based on MOET architecture has 

been studied under normal conditions. The com-

parison between the ABC model and the DP model 

illustrated the accuracy of the developed DP model, 

during generator starting, parallel operation, load 

change and other events. The simulation time 

comparison revealed that the DP model is about 

200 times faster than the ABC model. The accura-

cy and efficiency shows great potential of the DP 

modelling technique to be applied in EPS studies. 

In addition, since the DP modelling technique is 

essentially a frequency-domain modelling tech-

nique and its efficiency is not affected by the sys-

tem condition, this allows the DP model a faster 

simulation speed even when the EPS is in unbal-

anced or faulty conditions. This merit of DP mod-

els will be shown in our future publications. 
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Abstract

New trends such as renewable power, virtual power
plants, electric mobility and smart grids raise the im-
portance of electrical power systems. The systems
are manifold, including e.g. DC, single- and multi-
phase AC with fixed and variable frequency. Often
times such systems cover  other  physical  domains as
well, such as rotational mechanics and thermo-fluid.
Required system models range from simple flow cal-
culations of active power to detailed transient and
asymmetric studies of three-phase systems. Trans-
formed modal coordinates play an important role for
the treatment of three-phase AC systems.
The paper introduces the new Modelica PowerSys-
tems library. It covers arbitrary phase systems in one
modeling framework. Besides simple generic models
that  are  valid with all  phase systems,  also large sets
of detailed component models for DC and three-
phase AC are included. The detailed component
models have been ported from the former Spot li-
brary to PowerSystems.
The usefulness of the library is shown on behalf of
manifold examples and applications carried out so
far for power/frequency control, intraday optimiza-
tion and virtual power plants as well as electrical
drive trains of wind turbines.

Keywords: Modelica, electrical systems, power sys-
tems, dq0, quasi-static, transient, three-phase AC,
DC, wind turbines, virtual power plants, electric
mobility.

1 Introduction

The Modelica Standard Library, version 3.2.1, con-
tains the Electrical.Digital and Electrical.Analog
sub-libraries, besides Electrical.Spice3 for digital
and analog electronics. The Electrical.Multiphase
and Electrical.Machines sub-libraries cover detailed

dynamic models of power electronics in the time
domain [1]. The Electrical.QuasiStationary sub-
library treats AC systems with complex phasors [2].

Some more electrical libraries have been developed
during the last years by different authors. One of
them, the Spot library, introduced a couple of im-
portant features, such as the uniform treatment of
natural (abc) and modal (dq0) coordinates in one
framework, making it well suited for the detailed
modeling of transient effects [3]. Moreover the Spot
library supported the per-unit system for parameteri-
zation and it contained an extensive set of compo-
nent models.

Being well suited for detailed transient modeling of
three-phase power systems, the Spot library has
sometimes been considered overkill if simpler quasi-
static models were sufficient. A further drawback of
the Spot library was that the same models appeared
multiple times in distinct sub-libraries for particular
phase systems. The Spot library hasn’t been availa-
ble since Modelica version 3 anymore.

This paper introduces the new PowerSystems library
that integrates the Spot library with a new concept of
replaceable phase systems. The aim is to support dif-
ferent single and poly phase systems and different
mathematical formulations in one framework. In par-
ticular this shall cover systems like:

· AC systems, including steady-state, transi-
ent, and asymmetric,

· Variable frequency systems, e.g. in wind
turbines or for drive control, and

· DC power systems, like HVDC

The replaceable phase systems also enable the appli-
cation of one and the same library with one universal
connector to different levels of detail. This starts
from simple power balances and ranges through qua-
si-static models up to the treatment of detailed tran-
sient effects.
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2 Library Structure and Interfaces

2.1 Library Structure

Figure  1 shows the package structure of the Pow-
erSystems library.

Figure 1: Library structure of PowerSystems

The main packages are:

· Examples cover textbook power flow calcu-
lations, a demo for power/frequency control
and introductory tutorials to the detailed
component models;

· PhaseSystems defines different mathemati-
cal representations of electrical systems;

· Generic contains simple component models
that can be used with any phase system for
basic investigations;

· AC1ph_DC contains detailed component
models for DC and one phase AC;

· AC3ph contains detailed component models
for three phase AC;

· Blocks contains signal oriented models, such
as Multiplex and Transforms;

· Control contains special control blocks,
such as Exciters or Governors;

· Mechanics provides TurboGroups, comple-
menting a generator with rotor and gears;

· Semiconductors define required compo-
nents such as Diodes and Thyristors.

2.2 Interfaces and PhaseSystems

The interfaces define a general power terminal.
connector Terminal
  replaceable package PhaseSystem;

PhaseSystem.Voltage
    v[PhaseSystem.n];

  flow PhaseSystem.Current
    i[PhaseSystem.n];

PhaseSystem.ReferenceAngle
    theta[PhaseSystem.m]
      if PhaseSystem.m > 0;
end Terminal;

The connector contains a replaceable PhaseSystem
package making it applicable to different mathemati-
cal representations. The PhaseSystem defines:

· Number n of independent current and volt-
age components

· Number m of reference angles

· Types used in the connector (Voltage, Cur-
rent, ReferenceAngle) so that terminals of
different phase systems cannot be directly
connected

· Functions

o j “operator”

o angle and phase

o phase quantities for voltage, current
and power

o system quantities for voltage, cur-
rent and power

The vector of reference angles theta[m] allows
the definition of a rotating reference system for the
description of AC systems with modal components.
It is known from the Spot library that this enables the
treatment of modal quantities in the time domain,
covering transient and asymmetric systems as well.

Flexible modeling of electrical power systems – the Modelica PowerSystems library

516 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096515



The power Terminal is overdetermined with the ref-
erence angles though. This is treated with the opera-
tors Connections.root, Connections.potentialRoot,
Connections.isRoot and Connections.branch. A
Modelica tool needs to analyze connection graphs
and eliminate redundant equations.

The  following  table  summarizes  the  PhaseSystems
that are predefined in the PowerSystems library:

PhaseSystem n m Description

DirectCurrent 1 0 One voltage and one
current component in
natural coordinates

TwoConductor 2 0 Two voltage and two
current components
for Spot AC1ph_DC
components

ThreePhase_d 1 0 One modal compo-
nent for active power
— like DirectCurrent,
but converting volt-
age values to three
phase

ThreePhase_dq 2 1 Two modal compo-
nents for active and
reactive power; one
reference angle for
frequency — cf.
complex phasors
with variable fre-
quency

ThreePhase_dqo 3 2 Three modal compo-
nents for active, re-
active and dc power;
two reference angles
for Spot dqo compo-
nents

A generic steady-state impedance model can be de-
fined as:
model GenericInductiveImpedance
replaceable package PhaseSystem =

    PackagePhaseSystem;
function j = PhaseSystem.j;

  Terminal terminal_p(
redeclare package PhaseSystem =
 PhaseSystem);

  Terminal terminal_n(
redeclare package PhaseSystem =
 PhaseSystem);

  PhaseSystem.Voltage v[:] =
    terminal_p.v - terminal_n.v;
  PhaseSystem.Current i[:] =
    terminal_p.i;
  PhaseSystem.Frequency w =

der(PhaseSystem.angle(
      terminal_p.theta));
parameter

    Modelica.SIunits.Resistance
      R = 1 "active component";
parameter

    Modelica.SIunits.Inductance
      L = 1/50
        "reactive component";
equation
  v = R*i + w*L*j(i);
zeros(PhaseSystem.n) =

    terminal_p.i + terminal_n.i;
if PhaseSystem.m > 0 then

    terminal_p.theta =
      terminal_n.theta;
    Connections.branch(
      terminal_p.theta,
      terminal_n.theta);
end if;

end GenericInductiveImpedance;

Note the use of the function j that generalizes com-
plex calculations known from quasi-static AC mod-
els to arbitrary phase systems. ThreePhase_dq with
two model components for active and reactive power
defines a multiplication with the complex j:
function j

input Real x[n];
output Real y[n];

algorithm

  y := {-x[2], x[1]};

end j;

The simpler ThreePhase_d neglecting reactive power
defines:
function j

input Real x[n];
output Real y[n];

algorithm

  y := zeros(n);

end j;

The more detailed PhaseSystem_dqo also considers a
component for dc power in asymmetric systems, be-
sides active and reactive power. It defines:
function j

input Real x[n];
output Real y[n];

algorithm

  y := cat(1, {-x[2], x[1]},
           zeros(size(x,1)-2));

end j;
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The GenericInductiveImpedance model adapts to the
selected PhaseSystem.

3 Component models and Examples

The PowerSystems library contains simple examples,
including textbook power flow calculations, demon-
stration of power/frequency control, and tutorials for
the modeling of power system transients.

3.1 Network flow calculations

PowerSystems.Examples.Network contains
examples that treat power flow with the quasi-static
ThreePhase_dq by using simple generic component
models.

Figure 2 shows the Generic component models used
by these examples.

Figure 2: Generic component models

The NetworkLoop example implements a simple
power flow model; see Figure 3. The textbook ex-
ample is taken form [4].
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Figure 3: NetworkLoop example

The example demonstrates that the PowerSystems
library enables the direct implementation of power
flow models using established graphical representa-
tions. The graphical representation differs from elec-
trical circuits as treated e.g. with the Electri-
cal.Analog library. The FixedVoltageSource has on-
ly one terminal, as opposed to two pins in the Elec-
trical.Analog library. Moreover there is no Ground
component needed to treat loops.

3.2 PowerWorld

PowerSystems.Examples.PowerWorld
demonstrates the principles of power/frequency con-
trol; see Figure 4.
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Figure 4: PowerWorld example
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The example uses Generic components with the qua-
si-static ThreePhase_dq because fast electrical tran-
sients and asymmetries are neglected. Rotating
masses  in  the  power  plants  and  active  pow-
er/frequency control determine the system dynamics.

Figure 5 shows simulation results covering one day
of operation.

Figure 5: Simulation results for the PowerWorld ex-
ample

The wind farm introduces disturbances into the sys-
tem, caused by deviations of the actual weather from
the forecast – see forecast in magenta vs. actual feed-
in in green in the upper plot. A misbalance between
production and consumption leads to deviations of
the grid frequency from the nominal value of 50 Hz.
The conventional power plant and the hydro plant
accommodate for deviations with primary frequency
control by means of proportional control. The re-
maining control error is exploited by the load dis-
patcher to determine the misbalance and to send out
set points for secondary frequency control. This way
the fast primary frequency control is relieved with
the slower secondary frequency control, so that sub-
sequent disturbances can be treated as well. The
overall balance between production and consumption
is maintained.

The example does not cover tertiary frequency con-
trol and intraday optimization that form further con-
trol loops on top of secondary and primary frequency
control – see also the application in section 4.2 be-
low.

3.3 Spot examples

PowerSystems.Examples.Spot has  been
ported from the Spot  library [3].  They use the com-
ponents from AC1ph_DC and AC3ph; see Figure 6.

Figure 6: AC3ph component models

The extensive AC3ph components range from simple
impedances through special devices such as breakers
up to transformers, inverters and electrical machines.
Moreover they cover composed models for Drives
and Generation.

The Spot examples serve as tutorials for detailed
transient modeling of electrical power systems. Fig-
ure 7 shows the fault clearance by short-time line
switched off as example.
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Figure 8: Wind farm model (electrical side)

4 Applications

4.1 Drive trains of wind turbines

The ITEA research project MODRIO aims for model
driven online application. One application area ad-
dresses wind turbines. They are challenging because
multiple physical domains need to be covered to
master the overall system dynamics. The PowerSys-
tems library has been used to implement transient
models of electrical drive trains. Figure 8 shows an
example with doubly fed induction generator (DFIG)
on the right hand side. Multiple such wind turbine
models have been assembled to a wind farm model
as shown on the left hand side.

The electrical model will be integrated with a model
for the mechanical side by SIMPACK.

4.2 Intraday optimization of municipal power

Traditional power/frequency control runs into limita-
tions when facing large uncertainties due to increas-
ing use of renewable energy. Intraday optimization
reacts on new conditions by re-planning the power
production. Such an intraday optimization was de-
veloped within the project econnect Germany for the
investigation of the integration of emerging electric
mobility with power generation.

The PowerSystems library has been used as basis for
an optimization library. The optimization library
predefines component models that contain, besides
physical equations, also optimization constraints and
objective terms. This way optimization programs can
be implemented graphically like simulation models.

Figure 9 shows an exemplary model. The library is
shown as tree on the left hand side. The intraday op-
timization treats a virtual power plant (VPP) consist-
ing of multiple power generation units, such as wind,
solar,  hydro,  as  well  as  combined  heat  and  power
plants. Available storage capacities include heat
buffers and a large battery. Moreover the exploita-
tion of electric cars and of heat pumps as controlla-
ble consumers is investigated.

The Modelica model is translated to C code and ex-
ported as Functional Model Unit (FMU) to the ABB
control system. The FMU is used a basis for a large-
scale mixed integer optimization program, providing
a model predictive control of the VPP. The online
optimization approach is further discussed in [5].

Figure 10 shows the result of one optimization run.
Dotted lines mark the original day-ahead plan.
Caused by a surplus of wind production, the intraday
optimization reduces the use of combined heat and
power  BHKW  plants  (green  areas)  until  the  heat
buffers reach their lower limit (red areas). A battery
that is installed in a parking house is charged at times
when there is too much power in the grid. More de-
tails of the intraday optimization are given in [6].
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Figure 9: Optimization model for municipal power

Figure 10: Exemplary intraday optimization result
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5 Conclusions

The PowerSystems library started as a concept study
for defining configurable phase systems, together
with simple generic component models and universal
power connectors.  Later  on the Spot  library was in-
tegrated, so that extensive sets of detailed component
models for DC and three-phase AC are available.

This way PowerSystems provides the comprehen-
siveness of Spot on the one hand side. Moreover, the
new replaceable phase systems enable models at dif-
ferent level of detail, including also simple models
for active power balances, besides symmetric and
asymmetric AC models for active and reactive pow-
er, both steady-state and transient. A couple of ex-
amples and applications show the usefulness of the
library at different levels of detail.

The  PowerSystems  Library  is  available  under  the
Modelica license, version 2, at:
 https://github.com/Modelica/PowerSystems

Given sufficient interest by others, future work shall
address the integration of the PowerSystems library
or its concepts with the Modelica Standard Library.
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Abstract

This paper presents a newly developed Power
Electronic Inverter library in Modelica. The library
utilises a multi-level approach with increasing model
complexity at progressively higher levels. All levels
are fully interchangeable so as to provide a flexible
library able to be utilised for investigation at single
or multiple levels of complexity. Within this inter-
changeable multi-level approach, there are two key
attributes which are implemented into this new
library. The first is the ability to include losses
between the input and output of the Power Electronic
Inverter. This is implemented so that the losses are
included irrespective of the direction of power flow.
Secondly, this library also provides the ability to
trigger single or multiple open and short circuit faults
within the Inverter. The library therefore provides an
extremely useful tool able to compare system
response under a variety of operational scenarios.

Keywords: Inverter; Multi-Level; Losses; Faults;
Actuator

1 Introduction

Power Electronic Inverters convert DC electrical
power to AC. They are a vital part of the modern
world and are becoming increasingly common due to
the electrification of modern transport systems. They
are used to drive the electrical machines within elec-
tric vehicles [1] and are an essential part of electri-
cally driven actuator systems within the More Elec-
tric Aircraft [2]. Indeed the adoption of electrically
driven actuators is becoming widespread among air-
craft manufacturers due to the evident benefits in
terms of efficiency, weight and maintenance [3].
However, despite the high efficiency of these electri-
cal systems and low probability of fault occurrence,
it is still essential to consider the losses that do occur
and the effect of fault conditions. The Inverters

library presented here provides the ability to include
losses, analyse thermal response and introduce fault
conditions into the modelling environment. It also
gives the user multiple interchangeable models of the
Power Electronic Inverter in order to allow analysis
at multiple levels of complexity. This is a new
approach as the MSL, SPOT, Smart Electric Drives
and Modelon’s ElectricPower libraries do not
provide this flexible multi-level approach with loss
and fault capability [4][5]. The Inverters library
presented here forms part of an overall Actuator
library developed as part of Actuation 2015 [6]. For
an overview of the entire Actuator library please
see [7]. However the purpose of this paper is to give
in- depth detail on the multi-level modelling of the
Power Electronic Inverter.

At first the library structure will be presented along
with a definition of the multiple modelling levels.
Details of the individual models will be given includ-
ing both commonalities and differences. Simulation
results will be shown in order to demonstrate results
which can be obtained using the 5 modelling levels.

2 Multi-level definition

Before detailing the actual models a definition of
each modelling level must be given. This is defined
in line with the overall definition established by all
partners within Actuation 2015 [6]. Table 1 shows
the agreed definitions which are used throughout the
Actuator library [7] and are also used within this
Inverters library.

Level Colour
1 Perfect
2 Linear Effects, Invertible
3 Non-Linear Effects, Invertible
4 Hard Non-Linear Effects
5 Fully Switched Models

Table 1: Modelling level definition.
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In addition common colour coding was agreed for
each modelling level as detailed in Table 2.

Level Colour
1 Red
2 Blue
3 Grey
4 Green
5 Dark Yellow

Table 2: Colour coding of each modelling level.

3 Structure

Figure 1 shows the structure of the Inverters
library.

Figure 1: Structure of the Inverters package.

The Inverters package provides 5 levels of
complexity in line with the multi-level definitions
detailed in Section 2. As can be seen from Figure 1
the package is split into the NonSwitching
package and the Switching package. The Non-
Switching package provides colour coded
models for levels 1 to 4 and the Switching
package provides the level 5 model. Each level has a
corresponding example of its use. The colour and
level assignment of each model is in line with the
definition of the modelling levels for the overall
Actuator library as detailed previously in Section
2. The colours for each level and the icons for Non-
Switching and Switching models are extended
from the Inverters.Utilities.Icons
package.

4 Model Interfaces

A central feature of this Inverters library is that
each modelling level is fully replaceable with one
another. In order for each modelling level to be fully
interchangeable a common interface is used for all 5
modelling levels.

The electrical interfaces adopted for the DC interface
are the Modelica Standard Library (MSL) Posi-
tivePin and NegativePin. On the AC side a
PositivePlug, is used and it is assumed that a 3
phase AC side is used. A RealInput[3]is used
for input of the 3 phase AC voltage demands. If
closed loop control is used then the
RealInput[3] input signals should be the un-
modulated outputs of the current controller. A
PartialConditionalHeatPort is used as a
thermal interface for all levels. These interfaces are
defined and then extended from the package Actu-
ator.Electrical.Interfaces.

5 Non-Switching

5.1 Theoretical basis

There are two assumptions which are used as the
basis of creating the NonSwitching package of
Inverter models. The first assumption is that the AC
output voltage signals, which in a Switching Inverter
would be created via Pulse Width Modulation, are
ideally created with a pure fundamental frequency
exactly as demanded by the control signals. As such
the un-modulated voltage demand signals can be
used to ideally create the electrical Inverter output
voltages. Within Modelica this simply means taking
the 3 phase demand RealInput[3] and connect-
ing it to a MSL SignalVoltage model, with
m=3. This forms the initial basis of the Inverter
model on the AC side and is constant throughout all
the Inverter models within the NonSwitching
package. Figure 2 shows this along with the inclu-
sion of the second assumption detailed below.

The second assumption which forms a basis of the
NonSwitching package is the power equivalence
principle. This assumes that the power input to the
Inverter is equal to the power output from the
Inverter. As one side of the Inverter is AC and one is
DC then:

PDC = PAC (1)
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In addition as:

PDC = IDC VDC (2)

Therefore substituting (2) into (1):

IDC VDC = PAC (3)

Where PDC is the Inverter DC side power, PAC is the
Inverter AC side power, IDC is the Inverter DC side
current and VDC is the Inverter DC side voltage.

Now, as both the AC power and the DC voltage can
be measured, this means the DC current can be
calculated by:

Iୈେ =
ఽి

ీి
(4)

The AC power is measured on the AC side using a
MSL PowerSensor model with m=3. The DC
voltage is measured using the MSL VoltageSen-
sor model. However only the absolute value of the
DC voltage is required and so a MSL Abs model is
used. The calculated DC current is output using a
MSL SignalCurrent model. This structure
therefore creates the Level 1 Inverter and is the basis
for the Level 2, 3 and 4 Inverters. It is summarised in
block form in Figure 2. No thermal response is in-
cluded within Level 1 as no losses exist.

Figure 2: Basis of the Level 1 Inverter.

5.2 Losses

This sub-section now builds on the details given in
Section 5.1 in order to create the level 2, 3 and 4
Inverter models.

To begin, it is important to note that all the Power
Electronic Inverter models are fully multi-
directional. As a result losses are implemented
whether power flow is from the DC side to the AC

side or from the AC side to the DC side. Hence if
power flow is from DC to AC the AC side power
will be lower than the DC side and vice versa. This is
made inherent within Levels 2, 3 and 4 by use of the
MSL models shown in Figure 3. As can be seen from
Figure 3 Sign is used to detect the sign of the AC
power. This is then used, along with Switch and
GreaterEqualThreshold, with threshold=0, in
order to switch between two Constant sources.
The Constant sources provide two differing val-
ues dependent on the efficiency of the Inverter and
the direction of power flow as will be detailed below.

Figure 3: Basis of the Level 2 Inverter.

Irrespective of the direction of power flow, in order
to calculate both the Inverter losses and the DC
power the same power equivalence principle is used
as detailed in Section 5.1. However, as Inverter
efficiency is now included, (1) is now modified.

When power flow is from the DC side to the AC side
(1) becomes:

ηPDC = PAC (5)

Where η is the efficiency of the Inverter.  

When power flow is from the AC side to the DC side
(1) becomes:

PDC = ηPAC (6)

However an important aspect of this model is that a
thermal response is also given, as will be described
in Section 5.3, and as such the power lost within the
Inverter must be found. Therefore it is crucial to
have both the power losses and the DC power in
terms of the specified Inverter efficiency and
measured AC power.
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Efficiency is defined as:

η =
ోౌ

ొ ౌ
(7)

And:

P = P୍ − Pୗୗୗ (8)

Where P is output power, P୍ is input power
and Pୗୗୗ is the power lost from the device between
input and output.

Substituting (8) into (7) gives:

η =
ొ ౌିైోు

ొ ౌ
(9)

Making PLOSSES the subject gives:

Pୗୗୗ = P୍(1 − η) (10)

This therefore gives power losses in terms of the
input power. However using (7) and (8) the efficien-
cy and hence power losses can also be defined in
terms of the output power:

η =
ోౌ

ోౌାైోు
(11)

Hence in terms of PLOSSES:

Pୗୗୗ =
ోౌ(ଵି)

ఎ
(12)

Equations (10) and (12) are crucial as they define the
power losses in terms of both input and output pow-
er. As a result, when power flow is from the DC to
the AC side the AC side is the output and (12) gives:

Pୗୗୗ =
(ଵି)

ఎ
Pେ (13)

Whereas when power flow is from the AC side to the
DC side then the AC side is the input and (10) gives:

Pୗୗୗ = (1 − η)Pେ (14)

Within the Inverter models developed here, these
two results are incredibly useful as in both cases the
power losses are defined in terms of the measureable
AC power and the specified efficiency. Hence, as
shown in Figure 3 and described earlier, the AC
power can be measured and multiplied by the coeffi-
cients shown in (13) and (14) in order to find the
power lost. This is implemented using two Con-
stant sources which are selected depending on the
direction of power flow.

Next, the DC power must also be defined in terms of
the specified efficiency and AC power. Therefore if
power flow is from DC to AC then (8) becomes:

Pେ = Pୈେ − Pୗୗୗ (15)

Substituting (13) for PLOSSES and making PDC the
subject gives:

Pୈେ = Pେ +
(1−η)

ߟ
Pେ (14)

Now if power flow is from AC to DC then (8)
becomes:

Pୈେ = Pେ − Pୗୗୗ (15)

Substituting (14) for PLOSSES and making PDC the
subject gives:

Pୈେ = −Pେ + (1 − η)Pେ (16)

If equations (14) and (16) are compared it can be
seen that the only variation is the sign of the first PAC

term and the coefficient of the second PAC term.
Hence, as stated previously, both equations can be
implemented within Modelica using two Constant
sources which supply the coefficient terms and
Sign to select between them. PAC is naturally meas-
ured as positive or negative by PowerSensor.

Within Modelica (14) and (16) become:

dcPower = acPower + ((1 - data.eta)/data.eta) * acPower

And:

dcPower = acPower + (1 - data.Eta) * acPower

Finally, as the DC voltage can be measured, in both
cases the DC current is then calculated from the DC
power using (2) and implemented in Modleica as
shown on the left hand side of Figure 2.

5.3 Efficiency

The previous sub-section showed how losses are
included within the NonSwitching Inverter
models. All losses were specified in terms of Inverter
efficiency. However within the Level 2 model this
efficiency is specified in a different manner to the
Level 3 and 4 models.

When using the level 2 model the user is able to
specify a constant efficiency for the Inverter. How-
ever if no value is specified by the user then a default
value is used. This is then used under all operating
conditions and is a constant throughout. The losses
are not constant as they depend on the operating
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conditions but the efficiency is constant. As detailed
in Section 5.2 these are allowed for irrespective of
the direction of power flow.

Levels 3 and 4 both use non-linear efficiency charac-
teristics. The user is able to specify the power range
of the Inverter and also the losses within the Inverter
over the specified power range. A default character-
istic is also given, as shown in Figure 4 below.
However accurate characteristics are recommended
to be added by the user if known. The default
characteristics are per unit and are scaled within the
model by the specified, or default, power range.

Figure 4: Default non-linear loss characteristics

These non-linear losses are implemented using
CombiTable1D instead of Constant. Table 3
summarises the losses included in each level of the
Inverters package. The Level 5 losses will be
discussed in Section 6.

Level Losses
1 None
2 Linear Losses
3 Non-Linear Losses
4 Non-Linear Losses
5 Conduction Losses

Table 3: Losses modelled within each level of the
Inverters package.

An example system is now used to demonstrate the
use of the Inverters package and show the varia-
tion in Inverter losses between levels. The Inverter is
used within a system to control the speed of a Per-
manent Magnet Machine. The Inverter is fed from a
MSL ConstantVoltage and supplies a MSL
SM_PermanentMagnet. An inner current loop is
used with an outer speed control loop. Please note
the controllers used are not part of the Inverters
package. The overall system is shown in Figure 5.

Figure 5: Example use of Inverters package.

Figure 6 shows the speed response of the system
when an initial load torque is demanded at 0 seconds
and a step in speed from 0 to 200 rad/s is demanded
at 0.05s. A further increase in load torque is
demanded at 0.14s. Figure 7 shows the 3 phase AC
current response.

Figure 6: Speed response

Figure 7: 3 phase current response
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Using this response the Levels 1 to 4 Inverters
are simulated and the losses generated over the simu-
lation period are compared in Figure 8.

Figure 8: Losses produced in Levels 1, 2, 3 and 4.

It can be seen from Figure 8 that the losses within
the Inverter models are substantially different
depending on the level of the Inverters package
used. It can be seen how, in this case, the non-linear
losses in Levels 3 and 4 are always higher. This is
due to the Inverter operating at low to medium
power. It can also be seen that the increase in losses
at 0.14s is greater for the Level 2 Inverter than the
Level 3 and 4 Inverters. At 0.14s the increase in
losses in the Level 2 Inverter is greater as the losses
are proportional to the Inverter power. However
within the Level 3 and 4 Inverters the increase is less
due to the non-linear loss characteristics meaning the
Inverter efficiency is higher at higher power. This
therefore shows how the inclusion of non-linear
losses could be important. However, if accurate non-
linear information is not known, operation is known
to be in a linear region, or losses are not required
then Level 1 or 2 Inverters can easily be used.

5.4 Thermal Response

The Level 2, 3 and 4 Inverter models within the
Inverters.NonSwitching package all have
the same thermal implementation. As can be seen
from Figure 9 a MSL PrecribedHeatFlow
model is used to convert the calculated Inverter
losses into heat flow. This is connected to a
HeatCapacitor which represents the thermal
capacitance of the Inverter switch modules. A
ThermalConductor is used between the
HeatCapacitor and the output PartialCon-
ditionalHeatPort in order to represent the
thermal resistance between the switch module
and its cooling system. A PartialCondition-

alHeatPort is used so losses can still be
included if no thermal output is required.

Figure 9: Thermal implementation within Levels
2, 3 and 4 Inverter models.

The user may specify the thermal parameters for the
switch modules. All the required values can be read
directly from module data sheets. If no user specified
value is given then default values are used.

5.5 Fault

As detailed in the introduction the Inverters
library presented here forms part of an overall
Actuator library developed as part of Actuation
2015 [6]. A crucial aspect of the Actuator library
is the inclusion of fault conditions within all the
component models. In the case of the Power
Electronic Inverters these are mainly included within
the level 5 Switching model as no switches exist
within the lower level models. However within the
Level 4 Inverter a full bridge fault is possible. When
triggered the Power Electronic Inverter output
becomes zero. This represents a full-bridge open
circuit fault or deactivation of the Inverter.

Figure 10 shows the speed response of the same
system as shown in Figure 5. However in this case
the Level 4 Inverter model is used and a full-bridge
fault is triggered at 0.2s. Figure 11 shows the AC
voltage response and Figure 12 shows the Inverter
output power.

Figure 10: Faulted speed response
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Figure 11: Faulted 3 phase voltage response

Figure 12: Faulted Inverter power response

It can be seen from Figures 10 to 12 that when the
fault is triggered at 0.2s the Inverter output becomes
0. Therefore the output voltage and power both
become 0 as shown in Figures 11 and 12. Within
Figure 10 the speed response shows how, after the
fault is triggered, the Permanent Magnet Machine
accelerates in the negative direction due to the load
torque acting as a mechanical source.

Table 4 summarises the fault conditions included in
each level of the Inverters package. The Level 5
faults will be discussed and shown in Section 6.

Level Faults
1 None
2 None
3 None
4 Full-Bridge
5 Single Switch, Single Phase,

Multi-Phase and Full Bridge

Table 4: Fault conditions modelled within each
level of the Inverters package.

The Failure Triggering Toolbox detailed in [7][8] is
used within the models in order to trigger the
required faults. A Boolean coding system is used to
trigger the faults where 0 = normal operation, 1 =
faulted operation. The faults can be implemented at
any time instant but must be defined pre simulation.

6 Switching

6.1 Model Basis and Sub-Components

The Level 5 Inverter model within the Invert-
ers.Switching package is based on the 6 switch,
3 leg topology shown in Figure 13. The switches are
numbered S1 to S6 according to the order of switch-
ing. Each has a corresponding parallel diode.

Figure 13: Topology used the for Invert-
ers.Switching package

In order to build the Level 5 Inverter certain sub-
components were needed. These are contained in
Inverters.Switching.SubComponents
and include FaultSwitch, PulseWidthModu-
lation and FaultInjector.

Figure 14: Basis of the Level 5 Inverter.
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FaultSwitch is a model which represents the
parallel switch and diode combination shown in
Figure 13. Figure 14 shows how FaultSwitch is
used within the Level 5 Inverter in order to create the
topology shown in Figure 13.

Figure 15 shows the MSL models used within
FaultSwitch. An IdealClosingSwitch
MSL model is used as the main switch for power
conversion. It receives a Boolean signal which
dictates whether the switch is open or closed. In
series with this switch is a VariableResistor.
Under normal conditions the resistance of this
VariableResistor is set to be a magnitude of
10-6 smaller than the IdealClosingSwitch
resistance when conducting. It therefore has negligi-
ble effect. However this VariableResistor is
mainly included for use under fault conditions. As
the IdealClosingSwitch resistance is very
small, under short circuit conditions a very large
current is obtained. In order to counteract this, the
user is able to limit the short circuit current by defin-
ing a larger short circuit resistance. The Varia-
bleResistor is therefore used to introduce this
larger resistance under fault conditions. A Boole-
anToReal MSL model is used as an input to the
VariableResistor. This controls the resistance
value as it receives a Boolean control signal which is
false under normal operation and true under faulted
operation. This does mean that the resistance also
increases during an open circuit fault; however this
has negligible effect due to the open circuit. The
Boolean control signal comes from another
Inverters.Switching sub-component named
FaultInjector which will be detailed later in
this section.

In parallel with the IdealClosingSwitch is an
IdealDiode. The diode is uncontrolled and has
default parameters, although these can also be speci-
fied by the user. This diode is also in series with the
VariableResistor detailed above. As a result
the increased resistance during short circuits, as
detailed above, also affects the current path through
the diode. During open circuit faults the combination
of the diode and increased resistance provides a path
for the release of otherwise trapped energy. If both
paths were instantaneously open circuited then an
extremely large voltage spike would be produced
due to trapped energy. In a practical system this
would result in sparks as the air would conduct under
high voltage. However, in order to avoid these
numerical spikes in this model the diode is allowed
to briefly conduct.

Figure 15: Inverters. Switching. Sub-
Components.FaultSwitch

The PulseWidthModulation sub-component
implements sine-triangle Pulse Width Modulation in
order to create the 6 required switching signals. The
user is able to specify the switching frequency and
also the modulation index. In order to make all 5
modelling levels interchangeable the voltage demand
signals which are input to the Level 5 Inverter are
required to be un-modulated as was the case for
Levels 1 to 4.

Finally, the FaultInjector sub-component is
simply used to override the Pulse Width Modulated
switching signals when a fault is triggered by the
user. Under normal operation the switching signals
are fed through the FaultInjector unchanged
however when a fault is triggered the Pulse Width
Modulated switching signals are blocked and the
relevant fault state is output to the relevant switches.
In addition the FaultInjector sub-component
also generates the Boolean control signal which dic-
tates the resistance of the VariableResistor
contained within FaultSwitch. Boolean logic is
used to create the relevant signal required to increase
the resistance of the VariableResistor during
faulted operation.

The Failure Triggering Toolbox detailed in [7][8] is
used within FaultInjector in order to trigger
the required faults. An Integer coding system is used
to trigger the faults where 0 = normal operation, 1 =
short circuit and 2 = open circuit. The faults can be
implemented at any time instant but must be defined
pre simulation.

6.2 Faults

Figures 16 to 21 show the effect of introducing faults
within the level 5 Inverter. The same example
system, speed demand and load torque is used as
shown in Figure 5 and described in Section 5.3
except for the use of the Level 5 Inverter.
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Figure 16: Speed response with a single phase
open circuit fault at 0.2s

Figure 17: Current response with a single
phase open circuit fault at 0.2s

Figures 16 and 17 show the effect of introducing a
single phase fault. It can be seen that after the fault
occurs the speed demand is still roughly maintained
but with a lot of ripple and the faulted phase current
falls to 0. The small current on the faulted phase is
due to the dissipation of trapped energy as explained
in Section 6.1.

Figure 18: Voltage over FaultSwitch1 with a
short circuit fault at 0.2s

Figure 19: Current through FaultSwitch1 with
a short circuit fault at 0.2s

Figures 18 and 19 show the effect of a single switch
short circuit fault. Figure 18 shows the voltage over
the switch. As expected, before the fault the voltage
follows the Pulse Width Modulation signals but after
the fault it is shorted to 0. Figure 19 shows the
current through the same switch. As detailed in
Section 6.1, this is limited by the specified short
circuit resistance. In this case the specified short cir-
cuit resistance is 1Ω and as VDC is 270V then the
short circuit current is 270A. It can be seen that
during the cycles of the Pulse Width Modulation
where the switch should be open it continues to
operate correctly.

Figure 20 shows the current response for a full
bridge open circuit. As expected all 3 phase currents
fall to 0 when the fault is triggered at 0.2s. Finally,
Figure 21 shows the speed response for a full bridge
short circuit. As with the faulted speed response for
the Level 4 Inverter, shown in Figure 10, the Perma-
nent Magnet Machine accelerates in the negative
direction after the fault is triggered due to the load
torque acting as a mechanical source.

Figure 20: 3 phase current response with full-
bridge open circuit fault at 0.2s
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Figure 21: Speed response with short circuit at 0.2s

Overall this section has shown how there are a wide
range of fault conditions which can be easily intro-
duced and investigated using the Level 5 Inverter.
This again emphasises the flexibility of the
Inverters library presented here.

6.3 Losses

The Level 5 Switching model includes the
conduction losses of the switch and when conduct-
ing. Energy losses due to switching are neglected. As
can be seen from Figure 15 the FaultSwitch sub-
component contains a HeatPort which outputs the
heat flow generated from the switch and diode con-
duction losses to the Switching model. These
outputs are then all connected to the inputs of a
ThermalConductor and HeatCapacitor.

6.4 Thermal response

The Level 5 Switching model uses the MSL
ThermalConductor, HeatCapacitor and
PartialConditionalHeatPort as detailed
for Levels 1 to 4 within Section 5.4. No Pre-
cribedHeatFlow model is needed as the switch
and diode conduction losses are already in the form
of heat flow. However a HeatFlowSensor is
included to give the user a numerical representation
of the losses within the Level 5 Inverter.

7 Conclusion

This paper has presented a newly developed Power
Electronic Inverter library in Modelica. This library
utilises a multi-level approach which gives a high
level of flexibility according to the user’s needs. All
levels are fully interchangeable and provide multi-
directional power flow. In addition this new library
gives the user the ability to include multi-directional

losses at different levels of accuracy while also
providing the ability to introduce a multitude of
Power Electronic Inverter fault conditions.

Overall this library is an extremely flexible multi-
level tool which provides Power Electronic Inverter
models that can be easily inserted, parameterised,
interchanged and adapted to the user’s requirements.

8 Future

At present the whole Actuation 2015 Actuator
library, which includes this Inverters library, is
in the process of experimental verification. The
future availability and licensing of this library is also
currently under discussion within the consortium.
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Mixed phasor and time domain modelling of AC networks
with changeover management
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Abstract

Simulation studies on AC electric networks may com-
prehend periods of quasi-stationary operation and
rapid transients. The adoption of a phasor-based ap-
proach results in high simulation efficiency, but is lim-
ited to the first of the two situations above, while for
the second, time domain models are required. For sys-
tem studies where both situations have to be simulated,
a modelling paradigm is thus required that can join the
two approaches in all the described components, and
by which the simulator of an entire network can be en-
dowed with the capability of moving back and forth
from a phasor to a time domain system description au-
tomatically, taking care of the proper re-initialisations
when necessary. In this paper we propose a possible
solution, and apply our ideas by presenting the first nu-
cleus of a Modelica library designed along them. We
also show some simulation examples to support the va-
lidity and practical convenience of the proposal.

Keywords: AC networks, phasor models, time do-
main models, efficient simulation.

1 Introduction

Dynamic simulation is nowadays of great importance
for both the design and the operation of electric net-
works [5]. Indeed, the availability of reliable simu-
lation models is often enabling for the realisation of
several functionalities of “smart” grids, like those de-
scribed in works such as [9].

When addressing system studies – for example, but
in principle not exclusively, for control synthesis pur-
poses – it is frequently necessary to simulate long pe-
riods of (quasi-)stationary operation, interspersed with
abrupt events. These two situations allow (and in some
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†Corresponding author, alberto.leva@polimi.it

sense call) for different modelling paradigms, how-
ever. Stationary operation is well described by pha-
sor models, to the advantage of simulation efficiency.
Events like for example the opening of a switch, on the
other hand, require time-domain modelling, which is
far more intensive from the computational standpoint.
An intermediate case is given by “quasi-stationary”
regimes, where the phasor approach can be extended
by means of the so-called “swing equation”, which
(simplifying for brevity) turns the algebraic phasor
framework to a dynamic one, introducing machine an-
gles as the state variables.

Focusing on the two extreme cases above, it would
be highly beneficial and desired that a network sim-
ulation model could switch back and forth between
a phasor and a time domain description, possibly in
an automatic manner, and requiring as small an effort
as possible on the part of the analyst. Quite expect-
edly, a significant research effort is being spent on the
matter, but nonetheless some questions are still open,
especially if a strict application of the object-oriented
paradigm is required—i.e., more specifically, if all the
encountered modelling issues are to be managed at the
level of the individual components.

In this paper, we formulate a proposal to address
the problem just mentioned, and prove its viability by
presenting the first nucleus of a Modelica library, com-
bining time domain and phasor modelling, developed
along the devised approach.

The paper is organised as follows. Section 2 briefly
discusses some related work, also to motivate the pre-
sented research, while Section 3 introduces the pro-
posed approach, focusing on the automatic changeover
problem. In Section 4 the library nucleus is outlined,
and Section 5 reports a simulation example to demon-
strate the viability and usefulness of the approach.
Section 7 points out and synthetically discusses some
open issues, while Section 8 draws some conclusions
and sketches out future research.
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2 Literature review and motivation

The need for modelling in the context of (AC) electric
networks and their management has been recognised
since long time ago [6]. The introduction of renewable
energies and distributed generation has then increased
the interest on the matter in the last decades [10], and
further impulse to the mentioned research has been
coming from smart grids [8].

Nowadays, simulation models of electric networks
are also often combined with those of the generators’
prime movers [1] to form multi-physics, multi-scale
and potentially large overall models, for which the
object-oriented paradigm of Modelica is particularly
suited. In such cases, however, the electric part of the
model is often the bottleneck for simulation efficiency,
and the reason for that is structural.

In extreme synthesis, in fact, an AC network can
be modelled at three levels. The most efficient one
from the computational standpoint is provided by pha-
sors [2]: this framework allows to write an algebraic
model, that however is valid only in the hypothesis of
a single, constant frequency for all the network. Small
fluctuations of “local” frequencies are allowed by the
so-called “swing equation” formalism,see e.g. [7], the
application of which leads to dynamic component
models, having machine angles as state variables.

Quite intuitively, the idea of using phasor models
in Modelica is not new, but to the best of the authors’
knowledge, to date no attempt was made to have pha-
sor and time domain descriptions co-exist at the com-
ponent level. For example, in [3] the idea of coupling
phasor-domain and “transient” models is introduced,
but the connection between the two relies on causal
signals, making it difficult to represent it at the individ-
ual component level, especially for what concerns the
domain changeover. Another interesting paper is [4],
where however no changeover to time domain is con-
sidered, and the possibilities of phasor-based mod-
elling are exploited via a convenient use of the swing
equation.

As such, even a minimal literature analysis like that
reported indicates that the problem addressed herein is
of both theoretical and practical interest, and that the
attempted solution has some novelty characteristics.

3 Mixed time-domain and phasor
modelling

As anticipated, phasor models in Modelica are not a
novelty [3, 4], and as such, the proposals that we are

making with this paper are to be integrated in the sce-
nario depicted by works like the ones just quoted.

However, this research has some specific peculiari-
ties, a discussion on which (and the consequently pro-
posed solution) provide the main contributions of this
paper. Specifically, three aspects are herein addressed:

• creating models that contain both a phasor and a
time domain description of a given component,

• managing the transition (changeover) between
the two at the component level,

• managing the decision to make a changeover at
the overall model level.

As can be easily guessed, the main problem in struc-
turing the required models is to preserve object orien-
tation, the benefits of which are apparently not to be
justified here, despite some facts to be handled are not
confined to a single component—most notable, in this
respect, is the changeover decision.

The rest of this section, organised along the items
above, presents the proposed solution and provides
motivations for it, also in a view to stimulating further
discussions and improvements.

3.1 Component-level modelling

We now consider the problem of mixing phasor and
time domain descriptions in the same component
model, and of managing at that level the changeover
between the two.

First, suitable physical (i.e., in this case, electri-
cal) connectors are necessary. To this end, a positive
phasor and time domain pin is straightforwardly de-
fined (we omit trivial code like the inclusion of the
Modelica.SIunits package) as

connector p t P i n " p h a s o r / t ime p o s i t i v e
p i n "

V o l t a g e Vre "V phasor , R p a r t " ;
V o l t a g e Vim "V phasor , I p a r t " ;
V o l t a g e v " v ( t ) , t ime domain " ;

f low C u r r e n t I r e " I phasor , R p a r t " ;
f low C u r r e n t I im " I phasor , I p a r t " ;
f low C u r r e n t i " i ( t ) , t ime domain " ;

end p t P i n ;

Listing 1: connectors.

and a negative one is created in the same way. Then,
each component has to contain the constitutive equa-
tions for both the phasor and the time domain descrip-
tion, and to this end, we have to distinguish between
passive components and active ones—i.e., generators.
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Taking the Inductor component as a representative
example for the former type, and denoting by a and
b its positive and negative pin, respectively, the time
domain description is

0 = a . i + b . i ;
a . v−b . v = L∗ d e r ( a . i ) ;

Listing 2: inductor, time domain equations.

while the phasor one reads

0 = a . I r e + b . I r e ;
0 = a . I i m + b . I i m ;
a . V r e−b .V re = ( L∗ f r eqHz ∗2∗ . p i )

∗ s q r t ( a . I r e ^2+ a . I i m ^2)
∗ cos ( a t a n 2 ( a . I i m , a . I r e )

+ p i / 2 ) ;
a.Vim−b.Vim = ( L∗ f r eqHz ∗2∗ p i )

∗ s q r t ( a . I r e ^2+ a . I i m ^2)
∗ s i n ( a t a n 2 ( a . I i m , a . I r e )

+ p i / 2 ) ;

Listing 3: inductor, phasor equations.

Finally, the code for initialising the time domain equa-
tion when needed is

i f f l a g _ f o r _ r e i n i t then
when {TimeDom} then

r e i n i t ( a . i ,
s q r t ( p r e ( a . I i m ) ^2+ p r e ( a . I r e ) ^2 )
∗ s i n ( 2∗ p i ∗ f r eqHz ∗ t ime
+ a t a n 2 ( p r e ( a . I i m ) , p r e ( a . I r e ) ) ) )

end when ;
end i f ;

Listing 4: inductor, time domain (re-)initialisation.

where TimeDom is a flag indicating that the entire
model is simulated in the time domain.

Coming to generators, the relevant equations for an
ideal sine voltage one are shown below.

0 = a . I r e + b . I r e ;
0 = a . I i m + b . I i m ;
cos ( phase ) ∗V = a . V r e−b .V re " Re of V" ;
s i n ( phase ) ∗V = a.Vim−b.Vim " Im of V" ;
0 = a . i + b . i ;
i f TimeDom then

a . v−b . v = V∗ s i n ( 2∗ p i ∗ f r eqHz ∗ t ime
+ phase ) ;

e l s e
a . v−b . v = 0 ;

end i f ;

Listing 5: sine voltage generator equations.

At the component level, changeover is thus man-
aged by acting in a coordinated manner on passive
and active components, in a view to avoiding unnec-
essary events and enhance simulation speed. It can be
in fact noticed that when the phasor model is in use,
the time domain voltage is just zeroed. This makes the
state variable a.i in Listing 2 simply decay to zero,
avoiding conditional equations and limiting the trig-
gered events to the bare minimum (the transition of
TimeDom from true to false, or vice versa). Of course,
said decay to zero is meaningless as simulation result,
which is however indicated by thevalue of TimeDom.

The only caveat with the proposed solution is that
the currents of inductors in series – or, dually, the
voltages of capacitors in parallel – may be treated
by the tool at hand as a single entity. The parame-
ter flag_for_reinit in Listing 4 has the purpose of
avoiding inconsistencies in such cases. At present, it
is the user’s responsibility to ensure that in each set of
inductors in series, or capacitors in parallel, one and
only one has that parameter set to true. Apart from
this, however, object orientation (or more specifically,
the independence of a component description of how
it is connected to the others) is fully preserved.

3.2 System-level modelling

We now move to the problem of managing the
changeover between the time domain and the pha-
sor representation at the level of the entire simula-
tion model, i.e., of the network—in synthesis, thus, we
specify how the TimeDom flag is handled.

Switching from phasor to time domain is generally
the consequence of some abrupt event known to at
least one component, like for example a closing or
opening switch. It is thus assumed that in such a case,
the affected component directly sets the flag to true,
causing the changeover instantaneously.

A bit more difficult is conversely the reverse
changeover, since to make it feasible, all the currents
and voltages need settling to a sinusoidal regime. The
decision is in this case taken on the basis of local sig-
nalling from the components, and of a unanimity veri-
fication mechanism at the system level.

3.2.1 Local signalling of sinusoidal regime

Also in this case, like it was for the component-level
changeover management shown in Section 3.1, the
main goal of model design is to avoid unnecessary
events, for efficiency reasons.

Session 3D: Electrical Power Systems

DOI
10.3384/ECP14096533

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

535



Suppose therefore that we need to detect if a certain
variable x(t) – voltage or current – is “sufficiently”
close to a sinusoid with frequency freqHz, assumed
for the moment of zero mean for simplicity (releas-
ing this is straightforward, see later on). Filtering x(t)
through the continuous-time transfer function

F(s) :=
XF(s)
X(s)

=


 1

π fo

s

1 + s
π fo

+ s2

(2π fo)2




nF

(1)

produces an output xF(t) equal to the input x(t) if and
only if the frequency of the latter is exactly fo, which
is apparently set to freqHz.

Figure 1: frequency detector – Bode plots of F( jω).

Parameter nF is used to enhance the attenuation of
the frequency response F( jω) as the input frequency
moves away from fo, and a value of two (or three at
most) proved enough in practice. The operation of
F(s) is shown by the Bode plots of Figure 1, obtained
with fo = 50Hz and nF = 2.

The output of F(s) in (1) is then used, together with
its input, to form the signal

s(t) =
1 + x f (t)2

1 + x(t)2 (2)

which is structured so as to inherently avoid division
by zero errors, and finally s(t) is lowpass-filtered by
the unity-gain first-order block

D(s) :=
Y (s)
S(s)

=
1

1 + s k f
2π fo

(3)

where parameter k f is used to control the achieved
smoothing (a value of ten is a good default). As a
result, y(t) will signal the required condition on x(t)
by taking a value very close to the unity, with small
fluctuations.

Comparing the value and the time derivative of y2(t)
to suitable thresholds, where squaring the signal is to
avoid the events that would be generated if its absolute
value were conversely taken, is therefore a means to
detect that x(t) is close enough to a sine wave with
frequency freqHz.

Figure 2: frequency detector test – Modelica diagram.

To show the efficacy of the proposed technique, and
also its autonomy with respect to the rest of the pro-
posed modelling paradigm, Equations (1) through (3),
together with the mentioned thresholding mechanism,
were turned into a FreqDetector block, that is used
in the model of Figure 2 together with components
from the Modelica.Electrical library (its use in the
presented one, with the actual introduction of phasor
modelling, will be illustrated later on).

Figure 3: frequency detector test – simulation results.

Figure 3 shows a sample simulation test. Detailed
figures are inessential for its purpose, apparently, but
as can be seen, the need for time domain modelling as
caused by the switch closing and opening is detected
correctly, especially for the transition toward (the pos-
sible use of) phasor mode.

Recall that the symmetric transition is in any case
guaranteed by the locally originated signalling, see
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Section 3.1 above. This is because the phasor to time
domain transition must be instantaneous to preserve
accuracy, while if the time to phasor domain on is de-
layed with respect to the time when it is acceptable,
the only relevant effect is some waste of CPU time.

It is worth noticing that the 5s simulation of Figure 3
involves only 14 state events, which would apparently
not be true if the possibility of switching to phasor
mode were identified based on zero crossing counters,
or similar methods. Note also that the proposed tech-
nique introduces some additional state variables, but
these pertain to linear, time invariant, causal blocks
cascaded to the physical model. The resulting simu-
lation overhead is thus modest, and in any case much
lower than that of zero-crossing or similar methods.

The default values chosen allow for a safe transition
toward phasor modelling, without bounces and within
a reasonable time. In the presence of an essentially
constant-frequency behaviour interspersed with abrupt
events that make the frequency content of the involved
signals radically different from the (quasi-)stationary
one, this is a good compromise between fast transition
to phasor mode (which undoubtedly favours simula-
tion efficiency) and possibly undue switching of the
two modes (which conversely may be detrimental ow-
ing to re-initialisations). Also, the presented detec-
tion method is inherently normalised, since so are all
the involved quantities (except times, of course). This
makes the selected default values for the involved pa-
rameters valid in a wide operating range, and for an
equally wide variety of network physical parameters.

To manage a possible nonzero average of u(t), fi-
nally, the proposed filtering path is implemented as
a series of transfer function blocks from the Model-
ica Standard Library, and signal s(t) in (2) is formed
by taking the output of the first block in the place of
u(t). This ensures that the average of the signal taken
as input settles to zero with a dynamics comparable to
that of the transients superimposed to its steady-state
sinusoidal behaviour, and at the same time preserves
the exploitation of the unity-magnitude and zero-phase
frequency response values at the sought frequency so
as to realise the envisaged detection system.

3.2.2 System-level handling of TimeDom

To manage the TimeDom flag at simulation time, de-
note respectively with Npt and Nt p the number of ele-
ments entitled to cause a changeover toward time do-
main mode (typically, switches), and that of elements
the voltage across which is to be checked to approve
the reverse transition.

From a conceptual standpoint this set could well be
the totality of the present passive components, but for
optimisation reasons the user can be allowed to in-
troduce “frequency probes”, based on the described
FreqDetector component, only where deemed nec-
essary.

At the present state of the library development, this
architectural choice is still open: most likely, however,
based on the experience that is being gathered, the final
solution will be to distinguish a “basic” mode, where
any passive component has a detector, and an “expert”
one, where the user is free to configure the mechanism
at his/her best convenience.

In any case, assuming – in principle, as the imple-
mentation described in the following section is differ-
ent for efficiency reasons – two boolean vectors P2T

and T2P, of length Npt and Nt p respectively, to be de-
clared at the outermost model level, and omitting triv-
ial details on the inner/outer manner they are man-
aged, the following procedure for handling TimeDom

is adopted.

1. The simulation starts out in time domain mode,
for the safe side (possibly, in the future, unless
differently specified in the “expert” mode). All
the elements of P2T and T2P are conveniently ini-
tialised (at present, to false).

2. All entitled elements manage their local time do-
main flag based on the contained FreqDetector

element, and the system-level T2P vector collects
them all.

3. If at the system level time domain mode is in use,
and all the elements of T2P are true, then the sys-
tem switches to phasor domain mode.

4. If at the system level phasor mode is in use, any
transition to true of at least one element of P2T
causes a changeover to time domain mode, with
the required re-initialisations.

3.2.3 Modelica implementation

The solution just described serves the intended pur-
pose, and the realised one is totally equivalent from a
conceptual and functional standpoint.

However, if said solution were implemented liter-
ally, some deviation from a totally object-oriented set-
ting would be involved, since any component partici-
pating in either of the two mentioned boolean vectors,
would have to contain suitable parameters to indicate
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which position in said vectors pertain to it. The re-
sponsibility of setting those indices correctly would
stand with the user, being possibly complex and cum-
bersome to manage for large models.

In addition, and most important, even if the man-
agement of the mentioned indices were somehow au-
tomated, some model connections would in this way
be realised, that do not fall under a proper connector
abstraction.

To overcome this relevant problem, the described
solution is therefore implemented as follows. First, a
ChangeoverMgmt connector is defined as shown be-
low.

connector ChangeoverMgmt
f low I n t e g e r Ntp " # o f T−>P v o t e r s " ;
f low Real ForceP2T ;
f low Real AllowT2P ;
M o d e l i c a . S I u n i t s . F r e q u e n c y f reqHz ;
Boolean TimeDom ;
Real dum " Sque lch b a l a n c i n g w a r n i n g s " ;

end ChangeoverMgmt ;

Listing 6: the ChangeoverMgmt connector.

Each component participating in the changeover de-
cision (i.e., each model of reactive elements or of com-
muting ones like switches), and also each generator, is
endowed with such a connector, named in the follow-
ing C; also, all those models take the TimeDom flag and
the (nominal) frequency from that connector.

Reactive components (the Inductor model is an ex-
ample) furthermore contain the code

C.Ntp = −1 ;
C.ForceP2T = 0 ;
. . .
C.AllowT2P = i f C.TimeDom and not

FD.TimeDom
then −1 e l s e 0 ;

Listing 7: inductor, changeover management.

The first line reported in Listing 7 provides the
Supervisor component, described later on and that
also has a ChangeoverMgmt connector to which those
of all network elements are connected, with the num-
ber of those elements that vote for the time domain to
phasor mode transition.

The second line means that the component, given its
role, is not entitled to force a transition from phasor to
time domain model.

The last reported line, finally, casts the vote when
this is required.

Models of commuting components (like switches)
conversely contain the code

parameter Real Tsw = 0 . 0 1 ;
parameter Real t h r s w = 0 . 0 1 ;
. . .
Rea l xsw ( s t a r t = 1 ) ;
. . .
xsw+Tsw∗ d e r ( xsw ) = i f c o n t r o l

then 1 e l s e 0 ;
C.ForceP2T = i f c o n t r o l

and xsw<1−t h r s w
or not c o n t r o l
and xsw> t h r s w

then −1 e l s e 0 ;

Listing 8: inductor, changeover management.

When the control input (the switch command)
commutes, the introduced dynamic variable xsw is
used to generate a square pulse with a minimum of
state events, and this is in turn used – see the last line
in Listing 8 – to signal that the component intends to
force a transition from phasor to time domain mode.

Finally, the Supervisor component is implemented
as per Listing 9 below.

model S u p e r v i s o r
parameter Frequency fo = 5 0 ;
I n t e r f a c e s . C h a n g e o v e r M g m t C ;
Boolean P2T , T2P ;

equat ion
C.dum = 0 ;
P2T = C.ForceP2T >0 . 5 ;
T2P = C.AllowT2P >C.Ntp−0 . 5 ;
C . f r eqHz = fo ;

a lgor i thm
when T2P and not P2T then

C.TimeDom : = f a l s e ;
end when ;
when P2T then

C.TimeDom : = t rue ;
end when ;

i n i t i a l equat ion
C.TimeDom = t rue ;

end S u p e r v i s o r ;

Listing 9: supervisor.

The initial equation makes the simulation start in
time domain, as specified in Section 3.2.2. Then,
thanks to the flow connections, variables ForceP2T

and AllowT2P respectively sum the forcing to time
domain mode requests, and the permission for phasor
mode votes. based on that, when ForceP2T is at least
0.5, then at least one component is forcing time do-
main mode.
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Analogously, when AllowT2P exceeds the num-
ber of voters (collected in the Ntp connector vari-
able) minus 0.5, then all said voters are permitting
the transition toward phasor mode. Finally, the two
when clauses in the algorithm section manage the
TimeDom flag, triggering events only when necessary.

4 The library structure

As anticipated, the presented ideas were applied to cre-
ate the first nucleus of a Modelica library for mixed
phasor and time domain modelling of electric net-
works.

Figure 4: the library (nucleus) structure.

Said nucleus is structured as outlined in Figure 4,
and to date comprises only single-phase components,
connectors, and the Supervisor block to be included
in the realised models so as to implement the necessary
network-wide declarations, and the management of the
involved variables.

Plans are of course to extend the nucleus to form
a complete library, including more articulated compo-
nents such as non ideal generators, the representation
of multiphase elements, and the like. Also, care will be
taken to integrate the consequent future work with (at
least) the similar ones shown in the references quoted
above in Section 2.

5 An illustrative simulation example

We now shows a simple simulation example to demon-
strate the operation of the proposed modelling frame-
work, and specifically of the changeover management.

Figure 5: illustrative simulation example – the used
network model.

The example refers to the small network model de-
picted in Figure 5. The switch Sw1, initially closed, is
opened at t = 1s and re-closed at t = 3s. The switch
Sw2, also initially closed, is cycled at t = 2s and t = 4s.
The simulation run duration is 5s.

Figure 6: illustrative simulation example – y signals in
the frequency detectors of the two inductors.

Figure 6 shows the y(t) variables – see (3) – in the
frequency detectors of the two inductors. Recall that
those variables are meant to indicate, by assuming a
nearly constant unity value, the settling of the locally
measured frequency to freqHz (here set to 50 Hz).
As can be seen, the expected effect is obtained, and
the normalised nature of the involved signals produces
comparable transients also in the presence of different
values for the components’ electric parameters.

Figure 7: illustrative simulation example – boolean
flags.

In Figure 7, the relevant boolean flags at the system
level are instead represented. The changeover mecha-
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nism catches the switch events, passing to time domain
instantaneously, while the time domain periods are not
equal, correctly depending on the transient behaviour
of the monitored electric variables.

Figure 8: illustrative simulation example – forcing
time domain on the part of a switch.

Figure 8 illustrates how a commuting component
forces the transition to time domain mode by means
of xsd, and the role of the threshold and the time con-
stant of its dynamics in determining the width of the
generated pulse. Note that the rising edge of that pulse
is structurally synchronous to the switch command,
which is consistent with the defined specifications.

Figure 9: illustrative simulation example – current in
R3, time domain representation.

Figure 10: illustrative simulation example – current in
R3, phasor representation.

Figures 9 and 10 show the behaviour of the current
flowing through resistor R3, viewed respectively in the
time domain and as a phasor (for which the real and
the imaginary part are plotted). Notice that when the
simulation switches back to phasor mode after a pe-
riod in time domain mode triggered by a switch event,

the time domain signal has actually settled back to a
sinusoidal behaviour, making the changeover correct.

Figure 11: illustrative simulation example – current in
R3, changeover detail.

Finally, Figure 11 demonstrates the changeover and
re-initialisation mechanism, comparing the phasor and
time domain representations for the current through R3
with a reference obtained by forcing the simulation to
take place entirely in the time domain. Observe the
(re-)initialisation of the time domain representation of
the shown variable, triggered instantaneously by the
changeover to time domain mode. Note also how the
time domain representation of the same variable settles
to zero after the changeover to phasor mode occurs,
allowing the solver to exploit variable-step capabilities
to the advantage of efficiency. As can be verified, then,
taking the time or phasor domain signals as the valid
ones depending on TimeDom, conveys all the required
information.

6 A simulation example on efficiency

Although on this matter work is still in progress, we
report an example showing the simulation efficiency
gained with the proposed approach.

Figure 12: simulation example on efficiency – the used
network model.

The example refers to the network model depicted
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in Figure 12, apparently more complex than that of
Figure 5 above. The network was assembled with
components from the presented library, and a ref-
erence model for it was created with the equiva-
lents from the Modelica Standard Library, limiting of
course the scope to time domain modelling. Various
simulations were then performed with a duration of
104 seconds, cycling the switches at regular intervals
for a variable number of times.

Cycles CPU time Steps F-evals J-evals
800 161 26276873 52580944 16847
600 155 26038476 52097092 12594
400 164 26036633 52086819 8404
200 161 26103648 52214194 4259
100 160 26177418 52358292 2131

80 168 26095949 52194637 1699
40 162 26126749 52254882 853

Table 1: simulation example on efficiency – results
with the Modelica Standard Library.

Cycles CPU time Steps F-evals J-evals Events
800 134.00 1717702 5968550 759422 59257
600 97.60 1246309 4293129 538653 42139
400 67.80 857706 2980426 379132 29580
200 33.70 429941 1493272 189871 14758
100 16.90 215300 747528 95007 7424

80 13.90 173998 605417 77192 6008
40 7.12 90491 316665 40846 3207

Table 2: simulation example on efficiency – results
with the proposed models.

Table 1 shows the results obtained with the Mod-
elica Standard Library. The first column reports the
number of switch cycles in the simulation, while the
others contain the typical computational load statistics.
Table 2 conversely shows the results achieved with the
proposed models, and has a further column that reports
the number of generated state events (that apparently
is zero in the previous case).

Figure 13: simulation example on efficiency – CPU
time percent reduction versus switch cycles.

As can be seen, the efficiency improvement is quite
evident in terms of CPU time, for which the gain is
represented graphically in Figure 13, number of steps
and F-evaluations, although (owing most likely to the
numerous re-initialisation) there is quite an increase of
the Jacobian evaluations.

7 Open issues

As stated right from the introduction, the work pre-
sented in this paper is still in progress. We have
reached sufficient certainties on the viability of the ap-
proach, with particular reference to the possibility of
managing the representation changeover within a solid
object-oriented setting, and without triggering undue
event hauls. However, more than one relevant issue
stands still open, and this section is devoted to a brief
overview on them.

A first point concerns the quantification of the ob-
tained advantages. Here some figures referring to effi-
ciency were given, but no doubt, more extensive effi-
ciency assessment campaigns are in order, and to this
end, testing is underway with larger models. At a first
glance, the impression we are getting is that the num-
ber of simulation steps reduces more or less propor-
tionally to the fraction of the overall simulation run
that can be done with phasors, which is in reasonable
accordance with intuition. On the other hand, the num-
ber of Jacobian evaluation exhibits more peculiar be-
haviours, on which deeper investigations are also to
be performed. Also, it is advisable that future studies
address possible interactions with the solution algo-
rithm, of the variable-step type for apparent reasons:
at present, in fact, to date all the tests were done with
DASSL only.

A second point concerns the parameters involved in
the changeover management machinery. Despite the
use of normalised signals has proven effective, in fact,
we still observe some residual effects of the threshold
values, on which further studies are consequently in
order. In particular, it would be useful to somehow re-
late said thresholds, and also the value of the time con-
stant for the dynamics of xsd, to the desired tradeoff
between accuracy and efficiency improvement, quan-
tified (for example) on the basis of the additional time
spent simulating in time domain mode beyond neces-
sary.

Moving from efficiency to model manipulation
and structuring issues, a first point concerns the re-
initialisation flags. At present these are to be man-
aged by the user, but apparently could be set automati-
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cally if the tool manipulation chain were somehow in-
structed to recognise and treat series/parallel connec-
tions. In principle, leaving the flag responsibility to the
user does not seem a big problem, unless when deal-
ing with large models where connections are changed
frequently—not too realistic a case. Nonetheless, also
on this point further research is advisable.

A more relevant issue is relative to the use
and abstraction of non-physical connectors like the
ChangeoverMgmt one. Here, the quest for efficiency
in fact led to somehow abuse flow variables (by the
way, the authors would like to thank the colleagues
Francesco Casella and Victorino Sanz for ideas and
useful suggestions in this respect). However, with
the mechanism here adopted, more articulated voting
mechanisms than the realised ones, would be cumber-
some and possibly impossible to implement. In con-
texts like that addressed herein such mechanisms may
not be necessary, but the experience reported in this
work suggests that some way to tailor the connector
semantics would be highly desirable—a small sugges-
tion for discussions on future versions of the language.

Finally, although this is undoubtedly simpler and
less important from a conceptual point of view, some
post-processing tool would be needed that uses the
produced results (phasors and time domain variables,
together with TimeDom to say which one is significant
at which time instant) to reproduce and present all the
simulated quantities entirely in the time domain, for
the user convenience.

8 Conclusions and future work

The problem of creating models of AC networks join-
ing the phasor and the time domain approach, and
switching from one another automatically during a
simulation run, was addressed. A solution was pro-
posed, having some peculiar features in particular as
for the changeover mechanism, and motivations for
the adopted choices were provided. The approach was
put to work by creating the first nucleus of a Model-
ica library, and a simulation example – referring to a
very simple case given the purpose of this paper – was
shown to back up the viability and usefulness of the
proposal.

Future work will be essentially aimed at tackling the
issues pointed out in Section 7. In addition, the inte-
gration with models for the process sections of gener-
ators (typically, their prime movers) will be addressed,
in a view to better exploit the efficiency improvements
yielded by the proposed approach. Finally, given the

interest on the considered modelling and simulation
domain, the authors hope that this proposal can stimu-
late discussions, further ideas, and collaborations.
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Abstract

To manage complexity, modern programming lan-
guages use organizational units to group code related
by some common purpose. Depending on the pro-
gramming language, these units might be called lib-
raries, packages or modules. But they all attempt to
encapsulate functionality to promote modular code
and reusability. For the remainder of this paper,
we will simply refer to these organizational units as
packages (as they are called in Modelica).

Also common to many modern programming lan-
guages are tools to manage these packages. These
tools are generally called package managers and they
allow developers to quickly “fetch” any packages
they may need for a given project. The main func-
tions of package managers are to allow developers to
search, install, update and uninstall packages with a
simple command-line or graphical interface. In the
Java world, the most common package manager is
maven. For Python, tools like easy_install[1] and
pip[2] are used for managing packages. For client-
side web development, bower is used. For server-
side JavaScript, the tool of choice is npm[3]. For
compiled languages, these package managers often
include some additional build functionality as well.

This paper introduces impact, a package manager
for Modelica. Using impact, Modelica users and
developers can quickly search for, install and up-
date Modelica libraries. In this paper, we will dis-
cuss the functionality provided by impact. In addi-
tion, we will discuss how the functionality was im-
plemented. As part of this we will discuss the im-
portance of collaborative platforms, like GitHub[4]
in our case, for providing a means for collecting, cur-
ating and distributing packages within a community
of developers.

The impact package manager is provided to the
Modelica community as a free, open-source tool.

Furthermore, the protocols involved are all docu-
mented and we encourage tool vendors to integrate
them into their own tools so they can provide the
same searching, updating and installation capabilit-
ies that the command-line tool provides.

Keywords: Modelica, package manager, GitHub,
dependency management, Python

1 Introduction

It is increasingly the case that the adoption of new
technologies hinges on automating away the tedious
tasks required to learn and adopt these new techno-
logies. For programming languages or frameworks,
this means streamlining the process by which librar-
ies can be found and installed.

For nearly all modern languages, this issue of
“package management” has reached the point where
it is almost an element of language design. The Java
world has the maven tool, Scala has sbt, Node.js has
npm and the Go language includes built-in support
for package management via its the command line
go compiler.

In the Modelica world, this issue has been largely
overlooked. Although there have been proposals
for formats to list network accessible libraries, these
efforts have remained mere proposals without any
concrete functionality. The impact project was in-
spired by the Bower[5] project’s approach. This
lightweight, git-centric approach (discussed in Sec-
tion 3) turned out to be relatively straightforward to
implement and provides functionality otherwise un-
available in the Modelica world.

The goal of the impact project is to provide the
same basic package management features found in
most package managers. These features will be dis-
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cussed in detail in subsequent sections of this paper
(see Section 2). Our goal is to lower the barrier for
users to find, install and update libraries. At the same
time, we expect that the impact tool itself will be
just as easy to install as the libraries it supports.

The contribution of the impact project is making
installation of Modelica packages as easy as possible.
There are actually three important aspects in our ap-
proach. The first aspect is the one most apparent to
the user, a command-line interface that can be used
to easily install not just a given Modelica library, but
also its dependencies. However, such a command
line tool must rely on the second aspect which is the
avialability of a centrally served, up to date index of
packages. The final aspect is making it easy for lib-
rary developers to publish their libraries in such a
way that they are available to other Modelica users
through the impact package manager. Each of these
aspects will be discussed as part of this paper.

It is worth noting that while impact can handle
dependences, it does not solve some of the problems
currently inherent in Modelica. At the moment, de-
pendencies between packages are described by indi-
vidual versions. The result is that these dependencies
can create brittle chains which are not always pos-
sible to satisfy. The logic for unconvering depend-
encies in impact is very simple. It merely identifies
any dependencies explicitly listed by the library and
then attempts to find that version of those packages
within the impact package index. Hopefully the
Modelica annotations to express dependencies will
be refined to support a richer set of relationships. If
so, the logic used by impact to identify and install
these dependencies can be extended to support this
improved expressiveness.

2 Command Line Interface

2.1 Installation of impact

The impact tool is available from “PyPI”[6] and
can be installed by running either

$ pip install impact

or

$ easy_install impact

As an alternative one can also download the
sources from https://github.com/xogeny/
impact or https://pypi.python.org/pypi/
impact, unpack and run

$ python setup.py install

in order to install it.

2.2 Searching

Searching for librararies is done by executing:

$ impact search <search term>

This will print a list of all package whose names
and/or description strings contain the “<search
term>”. The returned list also contains the URL
where the Modelica package is hosted.

The output can also be made more verbose with:

$ impact search -v <search term>

which, in addition, will return the description string
and the available versions.

2.3 Installing packages

Once a package of interest is found using search,
it can be installed by executing:

$ impact install <package name>

This will then fetch not only the package itself and
extract it in a configurable target directory but it will
also fetch the dependencies of the packages as long
as those are available to impact.

If several versions of a package are available,
impactwill choose the latest one. If this is not de-
sirable then one can also specify the version expli-
citly. For example, in order to install Modelica ver-
sion 2.2.2 one would execute the command:

$ impact install Modelica#2.2.2

impact – A Modelica Package Manager
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Just like for the search sub-command there is also
a verbose switch “-v” available for install which
will give information on what versions are available,
which version is going to be installed, what the de-
pendencies are and where the version will be down-
loaded from.

In addition there is also a “[–dry-run|-d]” op-
tion available which does not download or extract
any files but will simply report what impact would
do. Users will generally use the “dry-run” option in
combination with the “verbose” option.

3 Candidate Packages

The question that might arise now is, how does
impact know what packages and which versions of
those packages are available.

3.1 Making packages visible

The Modelica Association (MA) has always
maintained a list of available Modelica libraries
on their website under https://modelica.org/
libraries. Initially, the list was a static web page
which listed the different packages and their latest
version as submitted to the webmasters of the MA.
Keeping the list of packages up-to-date was a manual
job for both the website maintainers and package de-
velopers.

In spring 2013, all the free packages listed on
https://modelica.org/libraries were moved
to individual repositories on GitHub. Third-party
packages can be found under https://github.
com/modelica-3rdparty and packages by the MA
under https://github.com/modelica This had
the following benefits:

• Package developers can access their package re-
pository directly without having to involve the
webmasters of the MA thus submitting updates
any time.

• All packages now have an individual issue
tracker and version control service in place.

• The webmasters of the MA can now collect the
latest information on all the packages automat-
ically in order to generate an up-to-date list-

ing on https://modelica.org/libraries
(more on this later in Section 3.3).

3.2 Semantic versioning

One thing that is important when trying to build up
a package manager that can also handle version de-
pendencies is the need for a proper approach to ver-
sion numbering.

We decided to base our package manager on a
system called Semantic Versioning[7]. As a result,
package developers are strongly encouraged to use
semantic versioning so that they are compatible with
impact. This has the additional benefit of being a
well-documented and logical approach.

Semantic versioning has the simple rule of:

Given a version number MAJOR.MINOR.PATCH, in-
crement the:

1. MAJOR version when you make incompatible API
changes,

2. MINOR version when you add functionality in a
backwards-compatible manner, and

3. PATCH version when you make backwards-
compatible bug fixes.

In addition, pre-releases (e.g., beta releases, re-
lease candidates) and build metadata (e.g., version
control hashes) are also taken care of in this system,
details can be found in the manual page[7].

3.3 GitHub API

Having all packages available as GitHub reposit-
ories means that we can use the GitHub API v3[8]
in order to collect data about those packages. All
API access is over HTTPS, and accessed from the
api.github.com domain. All data is sent and re-
ceived as JSON[9].

For example if one visits: https://api.
github.com/users/modelica/repos a verbose
list containing a series of information of all repos-
itories that exist under the user modelica is returned
in JSON format. This includes also a new API-url
for retrieving the tags of a specific repository. For
example, by visiting https://api.github.com/
repos/modelica/Modelica/tags we get a list of
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all tags for the Modelica Standard Library repository
including download links for a zipped version of the
tagged source code.

As mentioned before, all data is returned as JSON
according to a proper schema. This makes it easy
to pull out all the information we need. Initially,
this information was used to generate an up-to-date
listing of all MA and third-party packages to be
displayed on https://modelica.org/libraries
but we also noticed quite quickly the possibilities
such an API opens up. It was offering the very in-
formation we needed in order to build a catalog of
available packages including the different tagged ver-
sions for download.

3.4 GitHub only?

The mechanism described so far seems to depend
a lot on GitHub’s API. So one might wonder is there
a danger of locking us to GitHub.

The answer is actually no. We chose GitHub just
as one possible data source. It is possible to en-
hance impact with other “connectors” to other ex-
isting package hosting solutions (private or public).
As long as the schema is known to impact it can
then pull its data from basically all possible places.
For example, it would also be possible to use the API
of the GitLab project[10] to extract the same inform-
ation.

4 Package Index

Package information is maintained in an index file.
This index file is also generated by impact but the
process of building an index is not normally used by
the user or tool vendors so all discussion about the
creation of index files is presented later in Section 5.
The index file is stored in JSON format and has the
following structure:

{
"<LibraryName>": {

"homepage": "<URL>",
"description": "<description string>",
"versions": [

"<version number>": {
"version": "<version number>",
"major": <major version number>,
"minor": <minor version number>,

"patch": <patch version number>,
"tarball_url": "<URL to tarball>",
"zipball_url": "<URL to zipball>",
"path": "<path to library>",
"dependencies": [

{"name": "<DepLibName1>",
"version": "<version string>"},

{"name": "<DepLibName2>",
"version": "<version string>"},

...
]

}
...

]
}

}

All quantities listed within angle brackets, <...>,
are library specific details. The <LibraryName>
is the name of the package in Modelica. Gener-
ally speaking, all version numbers follow the se-
mantic versioning approach. However, since not all
Modelica libraries currently follow semantic version
conventions, indices can include semantic duplicates
(e.g., 1.0 and 1.0.0) which reference the same un-
derlying version. Therefore, any non-semantic con-
forming versions (e.g., 1.0) will act as “redirects” to
the semantic version (e.g., 1.0.0).

The homepage field is a URL to a web site that
contains additional information about the library.
The zipball_url and tarball_url fields point to
archives that can be downloaded, in the zip and tar
formats, respectively. The dependencies field lists
all the library’s dependencies. These are the librar-
ies that will also be installed when installing the spe-
cified library version they are listed under. The path
field specifies the name of the directory or file rep-
resenting the Modelica library within the specified
archive.

Note, we have not currently defined a schema for
this format. To promote interoperability we recog-
nize that a formal schema would be the next logical
step. We have added the creation of a JSON schema
for the index file format to our list of next steps to
promote interoperability with other implementations.
Our hope is that such a schema would further encour-
age tool vendors to support this format as a means of
publishing information about available Modelica lib-
raries.

The Modelica Association index of publicly avail-
able libraries can be found at https://impact.
modelica.org/impact_data.json.
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5 Private Packages

5.1 Using Private Indices

As mentioned in Section 4, there will be a pack-
age index hosted on modelica.org that lists any
packages connected to special Modelica related Git-
Hub accounts. This provides a means for library de-
velopers to quickly add their libraries to the set of
libraries that are publicly indexed.

However, we recognize that many users will de-
pend on libraries that cannot be hosted publicly. At
the same time, we would like for those users to
be able to benefit from the same kind of package
management features for finding and installing their
privately hosted libraries.

For this reason, users can create a special config-
uration file that lists the indices to be searched. By
default, impact will use only the index hosted on
modelica.org. But through custom configurations,
users can specify any collection of indices (public or
private) they wish to use.

To specify an alternative list of indices, a user
would simply edit their user configuration file and
add the following text:

[Impact]
indices=<ur1l>,<url2>

where the value of indices is a list of URLs
pointing to index files. The default value for the
indices variable is https://impact.modelica.
org/impact_data.json. In cases where private in-
dex are files used, the URLs for private index files
should be listed first and the URL to the index file
hosted on modelica.org should be last.

Note, the location of the user’s configuration file
will depend on the platform their are using. Inform-
ation about the location of the configuration file and
current settings is generated by the following com-
mand:

$ impact info

5.2 Generating Private Indices

In order for users to include a private index file in
the list of indices to be searched (as discussed 5.1), it
is necessary to also have the capability to easily gen-
erate such private indices. This functionality is also
available using the impact command line although
we did not discuss it previously because it is not func-
tionality that a typical user would require.

To generate an index file, the following impact
command line syntax should be used:

$ impact refresh <source1> \
<source2> ... <sourcen> \
-o <output file>

where each source is a URL that en-
codes information about a potential source.
For example, the default sources are
github://modelica-3rdparty/.* and
github://modelica/.* (in other words,
all repositories belonging to the GitHub user
modelica-3rdparty and all repositories belonging
to the GitHub user modelica, respectively). Note
that later sources have a higher priority than earlier
sources. Also, at the moment the only types of
repositories supported are GitHub repositories
although by using a URL based approach it is easy to
extend the possibilities to include Git, Subversion or
other types of repositories as long as the information
required for the index file is available.

The output file generated from this command
should then be made accessible to users so they can
incorporate it into the set of indices they search (see
Section 5.1 for more details).

6 Source Code and Licensing

The impact project started off as a simple script,
then a gist and eventually a complete repository. The
repository for the source code is hosted on GitHub
at https://github.com/xogeny/impact. Poten-
tial contributors are invited to fork the repository and
add more functionality. Contributions to improve
impact are very welcome.

The software is distributed under an MIT license.
As such, there are no significant restrictions on using
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the code in open-source, closed-source or commer-
cial projects. In fact, we welcome vendor support and
adoption. In addition to making the complete source
code for the package manager available and docu-
menting the functionality in this (freely download-
able) paper, we are also making the index data freely
available from the modelica.org domain. We hope
that all these measures will lead to the highest pos-
sible chance of adoption.

7 Conclusion

Inspired by the approach taken in Bower, we’ve
created impact, a package manager for the Modelica
eco-system. Like Bower, this approach is relatively
light and relies heavily on the GitHub API to aggreg-
ate and index publicly available libraries. Also like
Bower, our approach relies on semantic versioning,
a widely adopted approach for associating concrete
meaning to the various elements of a version. We
use these meanings to help validate and organize the
tags associated with Modelica libraries.

The impact tool also provides one of the key ele-
ments of a package manager, the ability to automat-
ically pull in dependencies during installation. With
this feature, users can list the libraries they directly
depend on and impact will automatically install any
additional dependencies. The dependency informa-
tion is constructed automatically from the version
annotation already present in Modelica libraries.

The index of publicly available libraries is hosted
on modelica.org. But impact can also be used to
index and install private libraries as well. All impact
functionality (installing, searching, etc.) is available
for both public and private libraries.
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Abstract

A vital part in development of physical models, i.e.,
mathematical models of physical system behavior, is
testing whether the simulation results match the de-
veloper’s expectations and physical laws. Creation
and automatic execution of tests need to be easy to
be accepted by the user. Currently, testing is mostly
performed manually by regression testing and inves-
tigation of result plots. Furthermore, comparisons be-
tween different tools can be cumbersome due to differ-
ent output formats. In this paper, the test framework
MoUnit is introduced for automatic testing of Model-
ica models through unit testing. MoUnit allows com-
parison of Modelica simulation results with reference
data, where both reference data and simulation results
can originate from different simulation tools and/or
Modelica compilers. The presented test framework
MoUnit brings the widespread approach of unit test-
ing from software development into practice also for
physical modeling. The testing strategy that is used
within the Modelica IDE OneModelica from which
the requirements for MoUnit arose, is introduced using
an example of linear water wave models. The imple-
mentation and features of MoUnit are described and
its flexibility is exhibited through two test cases. It is
outlined, how MoUnit is integrated into OneModelica
and how the tests can be automated within continuous
build environments.

Keywords: MoUnit, OneModelica, Modelica, test
framework, automatic testing, verification

1 Introduction

An important part of the process of developing phys-
ical models is model testing since it greatly increases
the probability that the expected behavior is accurately
modeled. Within software development it is conve-
nient to create tests and test suites using test frame-

works like JUnit1. The use of these test frameworks
ultimately lead to a “test first” development approach,
i.e., creating tests before actually developing the soft-
ware parts that must conform to the tests. Also, engi-
neers creating physical models can benefit from a test
driven development. Immediate feedback about incor-
rect model changes can assist in keeping the models
consistent during their lifecycle in the modeling pro-
cess.

By using fine-grained tests for single components,
errors in composed models can be traced back to the
erroneous element. This also simplifies the develop-
ment in teams as one modeler’s changes may have a
negative influence on another modeler’s models. How-
ever, test-based development as known from software
engineering is hard to maintain for physical model de-
veloped with Modelica. While the algorithmic parts of
models could be checked in a similar way, the behavior
expressed by equations cannot be tested directly since
the usage of time as a parameter makes it necessary to
perform simulations.

A reasonable solution for this is the use of regres-
sion tests where reference data is used as a base for
comparison with results from subsequent simulations.
When models are altered, the result can be compared
to the reference files to check if the behaviour is still
as expected. The two commonly used Modelica sim-
ulation tools OpenModelica2 and Dymola3 use regres-
sion tests for checking if changes made in the compil-
ers still result in valid simulations as well as to allow
users to create regression tests for model development.

Although these kind of tests already aid the devel-
opment process of physical models, regression tests
may not be sufficient to find all problems that may ap-
pear during the development and the tools provide a
non-uniform way of defining test cases. With our test
framework MoUnit we aim at facilitating test case and
test suite definition for single model components as

1http://www.junit.org
2https://www.openmodelica.org/
3http://www.dymola.com
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well as groups of models. Besides, the tests should be
executable with various simulation tools as well as in
different environments, e.g., directly inside the Mod-
elica IDE OneModelica4, or in continuous build en-
vironments like Hudson5, which is currently in use for
OneModelica and OpenModelica development. More-
over, we want to allow users to extend MoUnit in order
to re-use their already implemented test functionality
as well as making it possible to create more sophisti-
cated tests then regression tests.

In this paper, we demonstrate how the user can cre-
ate test cases for automatic testing. The user can use
arbitrary simulation tools, compare the results to ref-
erence data and to the results of a second experiment.
Thereby, it is possible to compare simulation tools to
each other or investigate the impact of different solvers
on the simulation results without the need to create
additional reference files. Moreover, we demonstrate
the extensibility of the test framework for example
through the implementation of a test component for
regression test of equidistant result files. As a second
tester component we implemented the calculation of
basic statistics. This allows us to validate stochastic
properties of our Modelica irregular water wave mod-
els by comparing to results from the commercial soft-
ware ASAS WAVE6. Here it is advantageous that sev-
eral input formats are supported in order to use data
from tools that are not Modelica-based. Thus, calcula-
tions from analytic formulae producing numerical re-
sults can also be used for testing in our framework.

The remainder of this paper is structured as fol-
lows: In Section 2 we describe the project structure
of Modelica projects in OneModelica. Separation into
projects allows to separate code for testing from mod-
els containing the physical behavior. The test lan-
guage is described in Section 3 along with an expla-
nation of how the test framework can be extended.
The evaluation in Section 4 demonstrates how the wa-
ter wave models developed at Fraunhofer Institute for
Wind Energy and Energy System Technology (Fraun-
hofer IWES) are tested using our framework. Finally,
Section 5 concludes our work and gives an outlook on
how we plan to further enhance the test framework in
the future.

4http://www.onewind.de/OneModelica.html
5http://hudson-ci.org/
6http://www.ansys.com/Products/Other+Products/

ANSYS+ASAS

2 Testing Modelica Models Within
OneModelica

Testing is a crucial part of model development. The
following aspects of a model should be checked:
whether it (a) can be simulated without errors, (b)
delivers the expected results, and (c) represents the
reality appropriately. Furthermore, when component
models are developed and/or modified it also has to
be checked whether the composed models deliver the
expected results. That is, the robustness of a compo-
nent model in various situations has to be ensured as
— depending on the complexity of the model — even a
small change might lead to unexpected results. Testing
a model in different situations can be a tedious process
as it involves a lot of “playing around with parame-
ters” and waiting for simulations to finish. All these
points are reasons for automated testing during model
development.

The testing strategy which is presented herein and
from which the requirements for the development of
MoUnit arose, is closely tied to the Modelica IDE
OneModelica. In OneModelica, models are organized
in model projects [2]. This approach allows to have
two model projects for each component model that has
to be implemented. The first one contains all the phys-
ical system equations and model logic. However, the
models are not yet simulatable because the parameters
do not have values yet — as they should be modified
by the user when the model is parameterized for vari-
ous application scenarios. The second one contains the
actual test models. The test models contain instances
of the models taken from the original model project.
The modifications of the original models are done with
parameter settings that correspond to defined test case
scenarios. This could also be a special set of parame-
ters that has caused problems in the past and it should
be ensured for future simulations that it will not oc-
cur again. This strategy is somewhat borrowed from
the software development: JUnit test plug-ins will be
separated from the actual Java plug-ins to divide pro-
gram logic from the test. The use of instances of the
models to be tested rather than extending it, is based
on the fact that test models can also be seen as “best
practice” examples: a look at the test models shows
how the model to be tested should be used. However,
if this aspect is not important, it is also possible to
use a test model that extends the model to be tested
within MoUnit. This would avoid possible inconsis-
tencies between the physics and test model code that
is duplicated such as parameter units. Using the ex-
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Figure 1: Model projects for both model logic and test
models for regular water waves

ample of Modelica models for regular water waves,
this is illustrated in Figure 1: The test model project
has the same name as the original model project, but
with an appended .test. This makes it clearly dis-
tinct as a test project for all the developers, who work
on the models. As can also be seen in Figure 1, the
test model project contains experiments that simulate
the test models. The structure of the model to be tested
and the testing model is shown in Listing 1: the model
RegularWave has the parameter instances and equa-
tions, while the model TestRegularWave has an in-
stance of type RegularWave and modifies the corre-
sponding parameters. The experiments that are used
to simulate the test models are set up manually. They
can also be simulated manually during the model de-
velopment. However, once the number of models and
functions has exceeded some threshold been created,
manual execution of all the experiments becomes too
cumbersome. This is the point where MoUnit should
be used. The necessary files for automated execution

model RegularWave
"kinematics of a regular linear wave"

import SI = Modelica.SIunits;
import NonSI =

Modelica.SIunits.Conversions.NonSIunits;

parameter SI.Height H "wave height";
parameter SI.Period T "wave period";
parameter NonSI.Angle_deg epsilon "phase";
// rest of parameters omitted

equation
// model logic is placed here

end RegularWave;

model TestRegularWave
"test model for ‘RegularWave ‘"

import SI = Modelica.SIunits;
import NonSI =

Modelica.SIunits.Conversions.NonSIunits;

constant SI.Height H = 5;
constant SI.Period T = 11;
constant NonSI.Angle_deg epsilon = 12;

RegularWave regularWave(H = H, T = T,
epsilon = epsilon
// rest of modifications omitted
) "instance to be tested";

equation
// test logic like assert statements
// is placed here

end TestRegularWave;

Listing 1: Example for model and corresponding test
model

of the experiments are stored in the test model project
as shown in Figure 1. These files enable checking that
all the models that have been implemented in the orig-
inal model project are fulfilling the three properties
mentioned above: it can be easily seen if a simulation
crashes and if the implementation of the model works
correctly by comparing it to reference data that can ei-
ther come from other simulation tools, measurements,
or analytical solutions.

3 Implementation of the Modelica
Test Framework

For the development of valid physical models with
Modelica it is vital to define test cases to check that
model changes do not negatively affect simulation re-
sults. A common way to assure this is using regres-
sion tests. This is used by the OpenModelica devel-
opment group using their framework to test compiler
changes by comparing results of simulations to refer-
ence data. In the same way Dymola’s model manage-
ment library allows performing regression tests with
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Modelica models.
The goal of MoUnit is to provide test-driven physi-

cal model development with Modelica. For this pur-
pose we implemented a test framework that is inte-
grated into the Modelica IDE OneModelica and is flex-
ible to be also used in automatic build environments
like Hudson. A special test language has been de-
fined that can be parameterized with custom test com-
ponents and test result listeners which are responsible
for processing test results appropriately.

In the following, the test language is described that
has been developed with Xtext [3]. It allows defin-
ing test cases and test suites for automatic execution.
Additionally, the extension mechanism is explained
to show how custom test components can be regis-
tered allowing users to write test cases for special pur-
poses — for example, basic statistics analysis. Subse-
quently, the test runner that performs the test execution
is described and the registration of listeners is demon-
strated. The listener mechanism allows to use MoUnit
in different environments, e.g., by displaying the test
results visually inside OneModelica or by generating
text files for the integration of tests in continuous build
environments like Hudson. We have implemented an
ANT task that is executed by Hudson. The task adds
a listener to the test runner creating a XML file for the
documentation of the test results. The result file can
then be used by Hudson for error reports.

3.1 Test Definition Language

Xtext is a tool for textual language development. By
providing a grammar definition of a language, editors
and views can automatically be generated with help-
ful functionality like syntax highlighting and syntax
checking. The Modelica editor being the basis for
OneModelica has been developed with Xtext. Parsed
documents are represented as Ecore-based [4] parse
trees and can be used along with other Ecore-based
languages (e.g., cross-references between elements of
different languages are supported). Since mandatory
components for automatic test execution in our IDE
are defined as Ecore-models, those components can
easily be re-used for MoUnit.

Two components can be defined with the test lan-
guage that are comparable to concepts used by the test
framework JUnit for Java code: Test cases and test
suites. Test cases (see Listing 2) define the basic ele-
ments that are needed for a test to run while test suites
(see Listing 3) combine test cases and other test suites.
Hence, a set of test cases can be accumulated to test
the correct behavior of interacting Modelica models.

name TestCase1
experiment ToTest
file "pathToFile.mat"
compare {

qualifiedname .*
test.qn -> reference.qn

TestComponent {
attribute = 1.e-5

}
error "Error message"

}

Listing 2: Example of a Test Case Definition

suite AllTests:

TestSuite1 ,
TestCase1

Listing 3: Example of a Test Suite Definition

Test cases define names that make them reference-
able and thus usable in test suites. The experiment
keyword states that a Modelica experiment is used
in the test. Modelica experiments in OneModelica
can use several tools for simulation, including Open-
Modelica and Dymola. For regression tests a path
to a reference file is provided following the keyword
file. Several checks were implemented to display
problems to the user, e.g., when the provided file can-
not be found or the experiment is set to leave the Dy-
mola window open after simulation for post process-
ing. This would cause the test execution to pause until
the user closes the window manually. It is also possi-
ble to directly compare the test results of two experi-
ments by using a second experiment instead of the ref-
erence file. This can help to ensure that the results of
simulations with OpenModelica are the same as those
obtained from simulations with Dymola. Another pos-
sibility is to check if the results are equal for different
kinds of solvers.

It is also possible to compare two result files with
each other, e.g., when it is desired to compare results
from other modeling tools and languages. The result
files can be in .mat format as provided by OpenMod-
elica and Dymola (textual or binary format) as well
as in comma separated values format. Moreover, the
user can also create results based on some analytical
formulae, if it is not desired to implement the analyt-
ical result as a test component to register it to the test
framework, and save them in one of the supported for-
mats instead.

Simulation result files can be referenced by abso-
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lute or relative paths. Using relative paths, files can
be put into a project inside OneModelica’s workspace
and can be synchronized by multiple users with source
code management tools like SVN. Since simulation re-
sult files might be large, it may be necessary to use
network drives for storage. This can be done by using
absolute paths that can be prepended with the prefix
$. The prefix will be replaced by a user defined path.
This way tests are re-usable for other users, and the
prefix only has to be configured once per workspace.

Now that the data for comparison is available, the
user needs to provide the qualified names of model el-
ements that shall be compared, following the compare
keyword. If no element is defined then all time series
from the results are compared to each other. The user
can use the asterisk character * to select groups of ele-
ments.

Next, test components are referenced that perform
the comparison of results. The components are reg-
istered via an Eclipse extension point [5, 6]. The
test components must implement a predefined inter-
face and need to be modeled with Ecore. Attributes
can be defined which must be parameterized by the
user. In the provided example a tolerance for the result
comparison is defined which will allow a small differ-
ence in the result data of the compared time series.

Possible values for the parameterization are Dou-
bles, Integers and arrays of Doubles and Integers. The
attributes are looked up by introspection [9] which is
used to validate whether the user provides correct in-
put. When the validation is performed a new instance
of the test component is created and the parameters are
set. Finally the user defines an error message that will
be displayed when a test run fails.

Test suites start with the keyword suite followed
by a name. They contain a list of test cases and addi-
tional test suites. All test cases contained in a test suite
will be performed when the suite is executed.

3.2 Test Execution and Result Processing

The test definitions are processed by a Modelica test
runner. The runner is implemented without depen-
dencies to user interface components to allow usage
in build environments that do not have graphical user
interface installed (e.g., Linux operating systems on
dedicated build servers). The test runner executes the
experiments used in the test cases and compares the
results to the referenced experiments or files. Listen-
ers can be registered to the test runner to be informed
about the executed tests and test results. The duration
of each test is measured for performance analysis. The

Test1 
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.munit 

Modelica Test 
Runner 

Test3 
.munit 

Extension Point 

Extension Point 

Test Component 
(e.g. Regression Test) 

Test Listener 
(e.g. SWT Tree View) 

Result  
(e.g. XML Report) 

Tests Defined  
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Test Framework 
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Components Provided 
via Extension Point 

Test Result  
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Test Component 
(e.g. Basic Statistics) 

Test Listener 
(e.g. XML Generator) 

Result  
(e.g. SWT View) 

Figure 2: Structure of the Modelica Test Framework

test components must return a status object that pro-
vides information about whether the test succeeded or
failed. When a test failed, a message must be provided
and an optional index (e.g., the time step) can be used
to tell the user about the erroneous location in the re-
sult file.

Besides the basic information described above, a
test component can return arbitrary objects with ad-
ditional information about an error. This can, for ex-
ample, be an SWT7 composite object for visualization
inside OneModelica or a file path to a serialized plot
which can be used for a test report. The test runner lis-
tener is responsible for checking whether it can handle
the object or not.

For the visualization of test results in OneModelica
we implemented a view (see Section 4) that is compa-
rable to JUnit’s test view. Test suites and test cases are
displayed as a tree and the nodes are marked accord-
ing to successful or erroneous execution. While JU-
nit test cases are based on assert statements that check
whether particular parts of code run correctly, we need
to compare result files to check whether the desired
behavior is matched. This results in a different kind

7http://www.eclipse.org/swt/

Session 3E: Modelica Tools 2

DOI
10.3384/ECP14096549

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

553



of test status visualization where the qualified names
of erroneous models is provided and optional graphs
can visualize deviations between expected and present
values. A JUnit like behavior could be implemented
for algorithmic code, e.g. by interpreting the algo-
rithms [1], allowing to check code very fast. However,
this is currently not yet supported by MoUnit.

For the integration with automatic build environ-
ments we developed an Eclipse ANT task8. The task is
performed on an Eclipse workspace that contains the
Modelica projects as described in Section 2 with ex-
periments and test definitions. The user provides in-
formation about which test cases and test suites shall
be executed. For test logging we implemented a test
runner listener that creates XML files according to the
format used by the JUnit ANT task. Hence, failing
Modelica tests can be handled in the same way as JU-
nit tests, e.g. by sending out notification mails to the
responsible model developers. The ANT task enables
the use of the same test definitions in continuous build
environments as well as for manually triggered testing
inside OneModelica.

4 Evaluation

In the following, the example of linear water wave
models is used for the evaluation of MoUnit. These
models were developed at Fraunhofer IWES to display
both regular and irregular waves according to Airy
wave theory with corresponding stretching methods.
The underlying theory for these models can be found
in standard offshore engineering text books like [7]
or [8].

For evaluation purposes, the variable eta corre-
sponding to the wave elevation, i.e. the instantaneous
wave height at a given position, is used. For a regu-
lar linear wave, eta is deterministic as it can be dis-
played by a cosine function. That is, it can be com-
pared to reference data through a regression test. Ac-
cordingly, this is used as a first test case denoted as
TestRegularWave.

The second test case is called TestIrregularWave
and tests the variable eta for an irregular linear wave.
In this case, eta is stochastic, i.e., a direct comparison
of time series to reference data is meaningless unless
they are generated with the exact same input. How-
ever, this is not always possible, e.g. when the simu-
lated time series are compared to reference data from
a different tool or measurements. Instead, the mean

8http://ant.apache.org/

name TestRegularWave

experiment
TestRegularWheelerWave
file
"$/WAVE_WheelerElevation.csv"
compare {

regularWaveKinematics [1]. eta
-> asas.elevation.eta

EquidistantTSValidator {
tolerance =10e-11

}
error "Wave elevation does not match."

}

Listing 4: Test Definition for Regular Waves

value and the standard deviation of the time series are
compared to those of reference data.

For the test case TestRegularWave (see List-
ing 4), we implemented the test component
EquidistantTSValidator. It can be parameterized
with a tolerance that represents the acceptable
absolute difference between the two compared time
series. The input files for the component must have
the same length as well as equidistant values. If the
input does not match the reference data, i.e., if the
absolute difference between input and reference data
exceeds the value of tolerance, an error will be
displayed. The resulting view for our example is
shown in Figure 3: the simulation time plus the time
used for validating the values is displayed as a sum
in the test case tree view. When the user selects the
erroneous test, basic information about the location of
the first assert failure is provided together with a plot
of the two compared curves.

For the test case TestIrregularWave (see List-
ing 5) a test component named BasicStatistics has
been implemented to compare mean value and stan-
dard deviation as described above. The user can pro-
vide the parameters startindex and endindex to de-
fine the range of values that shall be checked for the
provided input values.
name TestIrregularWave

file
"$/ir_periodical_elevation_dymola.csv"
file
"$/ir_elevation_asas.csv"
compare {

modelica.elevation.eta
-> asas.elevation.eta
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BasicStatistics {
startindex =0,
endindex =800,
meandeviation =0.01 ,
stddeviation =0.001

}
error "Basic statistics of wave

elevation do not match."
}

Listing 5: Test Definition for Irregular Waves

Additionally, the user can define the allowed variance
of the calculated mean values and standard deviations.
Figure 4 shows the resulting view displaying informa-
tion about the assertions that were violated. While the
mean value of the wave elevation matches the refer-
ence data, the standard deviation is not acceptable. As
for the test case TestRegularWave, a plot is provided
to visualize the compared values to the user.

5 Conclusion and Outlook

In this paper, we demonstrated that the test framework
MoUnit developed at Fraunhofer IWES can effectively
be used for testing Modelica models by unit testing.
We showed that the framework is flexible as it supports
multiple simulation tools as well as input files from
other tools for result comparison. This allows to check
the different behavior of models when using different
simulation tools as well as different solvers.

We also illustrated that it is possible to extend
MoUnit with custom test components that provide
functionality different from regression testing. Using
the example of simulating water waves, we compared
simulation results of our Modelica models to simula-
tion results of the reference tool ASAS WAVE. The
extensibility also allows to add test components that
use results from analytical calculations for result vali-
dation.

For error reporting, a flexible interface has been de-
fined. We implemented a plot for wave model tests
displaying the time series of the data that is being
compared together with the corresponding mean val-
ues and standard deviations. Thereby, the user can
directly investigate the cause for a problem visually.
Furthermore, an ANT task has been implemented that
executes test suites and registers a listener that serial-
izes a test report in an XML file compatible to JUnit.
Hence, the tests can be integrated into a build system
for continuous testing.

In the future, we plan to create additional test func-
tionality that allows to test single values of result files.
The implementation of test components for analytical

solutions are planned for the models of wind turbine
components — as far as they are available. For fast
testing of algorithms, it is furthermore desirable and
planned to interpret the algorithmic code, e.g. of Mod-
elica functions to allow direct calls and comparison to
expected result values.
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Figure 3: Result for test case TestRegularWave

Figure 4: Result for test case TestIrregularWave
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Abstract

Parameter sensitivities of mathematical models play
a vital rule in many applications of sensitivity anal-
ysis. The availability of algorithmic capabilities for
representing and computing these quantities is surly
advantageous. In this work it is shown how to sys-
tematically transform a Modelica library to another li-
brary that describes the desired models together with
derivatives of model variables w.r.t. model parameters.
The produced library remains with the same structure
and the underlying models keep the same interface
and outlook. The proposed approach relies on novel
equation-based algorithmic differentiation techniques
that are especially designed for Modelica. The illus-
tration is rather done via a compact library, the open-
source ADMSL library, but rich enough to facilitate
a lot of representative Modelica language constructs.
The ADMSL library is the algorithmically differenti-
ated version of the standard Modelica library subpack-
age Modelica.Electrical.Analog.Basic.

Keywords: algorithmic differentiation; parameter
sensitivities; sensitivity analysis, ADMSL, AD of Mod-
elica libraries

1 Motivation to algorithmic differen-
tiation

If you want to draw Bamboos, you should try drawing
Bamboos for your whole life, then you might be
able to draw Bamboos, an ancient Chinese wisdom.
In other words, the earliest modelers have already
recognized that there is no model that identically
describes the reality up to the tiniest details. This
seems to be also the case now days, at least in the
field of Systems Biology [27]. However even an
elementary model describing a complex system is
an essential initial step towards gaining insights and

winning additional knowledge of the modeled system.
Via e.g. the availability of further experimental data,
the model can be better tuned [5]. Nevertheless,
instead of trying to approach a true model for one’s
whole life, many tools of sensitivity analysis, such
as model identification, validation and optimization
[11, 12] can help the modelers to realize their visions,
hopefully in a reasonable amount of time.

Significant quantities, that can assist the imple-
mentation of such computational tools, are parameter
sensitivities, i.e. the derivatives of model outputs w.r.t.
model parameters. Straightforward ways for evalu-
ating these quantities via finite difference methods
are not recommended for accuracy reasons [16]. A
more reliable but technically difficult approach is
to symbolically derive these quantities and then to
evaluate them via a numerical integrator, e.g. the
IDAS solver within the Sundials Suite [21].

These factors among other typical applications
of mathematical derivatives increasingly attract at-
tention at a special domain of scientific computing
called Algorithmic Differentiation (AD) of computer
programs [19]. Based on the chain rule of Calculus,
procedural compiler methods and other established
techniques, many automatic differentiation tools (cf.
www.autodiff.org) are capable of:

• analyzing a large set of computer programs writ-
ten in many procedural programming languages

• adequately computing new programs additionally
representing partial derivatives

The resulting generated programs are typically used
for evaluating the derivatives of program outputs w.r.t.
program inputs among other directional derivatives.
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2 Introduction

AD and the Modelica community

While classical AD techniques and tools are targeting
a large scope of developers of mathematical programs,
only a tiny part of the Modelica community is explic-
itly utilizing AD methods, namely tool vendors and
developers of Modelica simulation environments. For
instance, in [25, 4, 7] the Jacobian is symbolically
computed for the task of index reduction and adaptive
numerical integration. For the more difficult task of
computing parameter sensitivities, some simulation
environments such as JModelica [3] and SystemMod-
eler [2] can be used. A translated Modelica model
is linked with advanced specialized integrators suite
like SUNDIALS capable of evaluating parameter
sensitivities [21]. In this context, AD techniques are
usually applied at low level C code describing the
translated equations.

In contrary, the approach of applying AD tech-
niques directly to the high-level descriptive model
represents another attractive option. An example is
given by the tool ADModelica [15, 14], which is
capable of transforming a given high-level Modelica
model into another Modelica model additionally
describing parameter sensitivities. Similar works have
been also reported with other modeling languages
[6, 20]. Nevertheless and even with the availability
of open-source developer-oriented compiler tools like
OpenModelica [26], the development and mainte-
nance efforts for such a tool attempting to cope with a
rich language like Modelica becomes a continuously
exhaustive task.

Contribution

For the first time an equation-based modeling-oriented
AD approach for differentiating Modelica libraries
is demonstrated. The approach provides the basic
guidelines for systematically transforming a library
into a topologically-identical algorithmically dif-
ferentiated library in which parameter sensitivities
are additionally represented. By reimporting the
augmented library into already existing base models
and slightly altering the declaration for specifying the
required model parameters w.r.t. which derivatives are
sought, parameter sensitivities is represented at the
model level. In this sense, transformed library com-
ponents are overloaded with semantics for describing
parameter sensitivities. Using an arbitrary Modelica

simulation environments, parameter sensitivities are
directly simulated within the model.

Due to the speciality of the Modelica language
and its significant difference from assignment-based
procedural languages for which classical AD tech-
niques were designed, new specialized equation-based
AD techniques are demonstrated in this work. These
techniques, relying on equation-based compiler
notions, utilize Modelica powerful capabilities to
provide efficient representation of partial derivatives.
Consequently, the inclusion of parameter sensitivities
within Modelica libraries can be considered from the
early design phase or alternatively, existing libraries
can be augmented with additional components for
describing the required derivatives. In this sense, AD
techniques needs to be applied only once and the
resulting library can be used for ever.

According to Naumann [24], to meister AD concepts,
AD users should be first able to manually differentiate
their own compact programs before applying AD
tools. In this work, the presented techniques are intu-
itive enough to be systematically applied on manual
basis even on sophisticated libraries with complex
mathematical models, e.g. ADGenKinetics [10]. In
this way, a larger part of the Modelica community can
possess the art of self-handing AD techniques along
their modeling activities. The presented approach
describes the basic steps subject to automation and
consideration within realistic Modelica-based AD
tools. A comprehensive algorithmic specification of
the demonstrated techniques is given in [13].

3 General scheme

The key idea of the presented approach is illustrated
via the diagram presented in Figure 1. Without loss of
generality, a model M with two connected components
C1 and C2 is given. The components are mathemati-
cally described by Differential Algebraic Equations
(DAEs) via the functions f1 and f2, respectively. xi

and pi for i ∈ {1,2} correspond to systems variables
and model parameters, respectively. The function g
describes a causal or an acausal connection relation
between C1 and C2.

The algorithmically differentiated components
C′1 and C′2 extend the components C1 and C2 with
the underlying Sensitivity Equation Systems (SESs).
A SES is obtained by forward differentiation of
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Figure 1: A general block diagram of a model with two connected components and their algorithmically
differentiated copies

the original DAE system w.r.t. the model parameters
p = (p1 p2)T . The component C′1 additionally declares
the input Jacobian of the parameters ∂ p1/∂ p, i.e. the
derivatives of the local active parameters within C1
w.r.t. the parameters of the whole model p. In general,
the model parameters are of course not known within
the separate component C′1. Therefore, input Jacobian
Jp is declared w.r.t. arbitrary model parameters p that
are first defined at the model level. An example is
given in the next Section. Analogously C′2 specifies
the active local parameters within C2 via their input
Jacobian w.r.t. arbitrary unknown parameters.

An algorithmically differentiated model M′ is
obtained by connecting the components C′1 and
C′2. The connection relation is similarly described
by forward differentiation of the equation system
g w.r.t. p. The key idea is based on the chain
rule of Calculus by which partial derivatives are
propagated among components and hence parameter
sensitivities of the whole model are inherently present.

There are many structural similarities between
the model M and its AD version M′ [17]:

1. Both models have the same interface in a GUI-
editor, the SES remains hidden from the user per-
spective

2. The Jacobian of the differentiated equation sys-
tem w.r.t. one single parameter has an identical
structure and sparsity pattern of the Jacobian of
the original system [23]

3. It can be proven that the structural indices of both
models are equal

These characteristics can be utilized for simplifying
the compilation phases within a Modelica compiler
targeting AD of Modelica libraries and models. The
next section provides a simple example illustrating the
whole paradigm in Figure 1.

4 Illustrative example: The declara-
tion part

4.1 The ADMSL library

Based on the techniques presented, an
example illustrated on a subpackage of
the Modelica standard library (MSL)
Modelica.Electrical.Analog.Basic. The
whole illustration is provided via the open-source
ADMSL library [1]. The ADMSL library serves as an
experimentation platform for:

1. Illustrating the basic steps for performing AD of
Modelica libraries

2. Identifying the best capabilities of the Modelica
language relevant for expressing parameter sen-
sitivities at the library components level

3. Recognizing current limitations from expressibil-
ity perspective with which automatic code gener-
ation becomes less systematic
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4.2 Code generation rules

In Naumann [24], basic code generation rules for per-
forming AD of procedural languages have been pre-
sented. Analogously, in this paper simple code gen-
eration rules, however, for the Modelica language are
demonstrated. These Modelica-specialized rules serve
as main guidelines for performing AD of Modelica li-
braries. Note that the presented rules are distinguish-
ably different than those provided for classical lan-
guages. For a complete understanding of the following
subsections, the reader is recommended to consult the
subpackage Modelica.Electrical.Analog.

Declaration rule 1: structure duplication

When performing AD of a Modelica li-
brary, all packages and subpackages are sim-
ply duplicated. For instance, the subpackage
ADMSL.Electrical.Analog corresponds to the
subpackage Modelica.Electrical.Analog. Within
each package, model components with the same
names are placed. Each model component extends the
original components. For instance, the corresponding
AD version of the connector Pin becomes:

Listing 1: AD version of Pin
connector Pin

extends Modelica.Electrical.Analog.

Interfaces.Pin;

...

end Pin;

For components declaring these Pins, the correspond-
ing AD version, e.g. of the OnePort component,
should declare the corresponding AD versions of Pins.
This is done by redeclaring replaceable Pins:

Listing 2: AD version of OnePort
partial model OnePort

extends

Modelica.Electrical.Analog.

Interfaces.OnePort(

redeclare ADMSL.Electrical.Analog.

Interfaces.PositivePin p,

redeclare ADMSL.Electrical.Analog.

Interfaces.NegativePin n);

...

end OnePort;

The above code assumes that the electrical pins p

and n are declared as replaceable. However, this
is not the case in the latest Modelica library version
3.2. Alternatively, as a temporary solution, the orig-
inal TwoPort model has been slightly modified and
placed under Analog.Interfaces.Bases package
as shown in Appendix A. Similarly, for models (e.g.

Capacitor) extending partial models (e.g. OnePort),
their AD versions need to extend the AD versions of
these partial models, for example:

Listing 3: AD version of Capacitor
model Capacitor

extends Bases.Capacitor(

redeclare replaceable class

OnePort = ADMSL.Electrical.Analog.

Interfaces.OnePort );

...

end Capacitor;

Declaration rule 2: duplication of data segments

Any new component needs to reference the global
number of active parameters w.r.t. which derivatives
are sought. This is done by extending the component
ADMSL.Interfaces.GradientInfo declaring global
gradient related information:

Listing 4: Declaring the number of gradients
outer parameter Integer NG

"dimension of gradient";

The parameter is declared as outer utilizing implicit
connection mechanisms. It gets first initialized only
by explicit declaration defining the same parameter as
inner at the top level model. Accordingly, for all
model components a derivative object (i.e. the gradi-
ent) is additionally declared for each real variable or
parameter within the corresponding component, e.g.
the AD version of theconnector Pin:

Listing 5: AD version of Pin
connector Pin

extends ... // as before

extends ADMSL.Interfaces.GradientInfo;

Real g_v[NG]

"gradient of the voltage";

flow Real g_i[NG]

"gradient of the current";

end Pin;

The idea is simple, potential derivative objects are as-
sociated with variables while flow derivative objects
are associated with flow variables. Similarly, in the
model capacitor:

Listing 6: Declaration part of Capacitor
model Capacitor

extends ...; // as before

parameter Real g_C[NG] = zeros(NG);

...

end Capacitor;

Here, a derivative object initialized to the zero vec-
tor is associated with the parameter C. Each entry of
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a gradient represents the derivative w.r.t. a parameter
specified via the input Jacobian at the top model. So
far the main rules for altering the declaration part has
been demonstrated. In the next section, further rules
for deriving the sensitivity equations are illustrated.

5 Illustrative example: The equation
part

5.1 Modeling SES in gradient format

Assume that a given Modelica component C is de-
scribed more or less DAE system (without discrete
variables):

F(ẋ,x, p, t) = 0 , x(t0) = x0(p) (1)

where x(t) ∈ Rn and p ∈ Rm represent state variables
and parameters, respectively. Additionally, assume
that F : R2n+m+1 → Rn is continuously differentiable
w.r.t. ẋ,x and p. Required is an additional compo-
nent C′ that augments C with additional equations for
describing the time-dependent parameter sensitivities
(∂x/∂ p)(t) ∈ Rn×m. As mentioned before, C′ needs to
include the sensitivity equation subsystems (SESub):

Fẋṡi + Fxsi + Fpi = 0 , si(t0) =
∂x0(p)

∂ pi
(2)

where si =
∂x
∂ pi

for i = 1,2, ...,m

SESub is obtained by differentiating all equations
w.r.t. desired parameters. This is a large equation
system of dimension m · n. Explicit listing all these
equations makes C′ not compactly implemented.

To overcome this drawback, Modelica array ca-
pabilities can be utilized if the equation system 2
is implemented in gradient format. Within a model
component corresponding to a DAE of the form (1),
assuming that Fi corresponds to the i-th equation in F
let Fx be defined as follows:

Fx =

[
∂Fi

∂x j
: i, j = 1,2, . . . ,n

]
∈ Rn×n

and let Fẋ,Fp, ẋp and xp be analogously defined. Fur-
thermore, let the input Jacobian Jp be defined as fol-
lows:

Jp =

[
∂ pi

∂ p j
: i, j = 1,2, . . . ,m

]
∈ Rm×m

A typical case is to set Jp = Im, the identity matrix,
for a set of independent parameters. Then the corre-
sponding differentiated equation w.r.t. a parameter p j

is derived from Equation (2) as follows:

m

∑
l=1

[ n

∑
k=1

[Fẋ(i,k) ẋp(k, l)] +
n

∑
k=1

[Fx(i,k) xp(k, l)] +

m

∑
k=1

[Fp(i,k) Jp(k, l)]
]

Jp(l, j) = 0 (3)

Using Modelica array capabilities and assuming that
the given set of parameters is independent (i.e.
∂ pi/∂ p j = 0 for i 6= j), Equation (3) can be rewritten
in a gradient format comprising m equations:

n

∑
k=1

[Fẋ(i,k) ẋp(k, :)] +
n

∑
k=1

[Fx(i,k) xp(k, :)] +

Fp(i, :) = 0 (4)

for i = 1,2, . . . ,n where A(i, :) represents the i-th row
of a matrix A.

5.2 Code generation rules

Forward differentiation rule 3: deriving sensitivity
equations

Using Equation (4), SES of simple model com-
ponents can be easily implemented. For in-
stance the equation part of the component
ADMSL.Analog.Basic.Capacitor becomes:

Listing 7: Equation part of Capacitor
model Capacitor

extends ...;

...

equation

g_i [1:NG] = g_C[1:NG] * der(v) +

C * der(g_v [1:NG]);

end Capacitor;

Deriving SES for simple mathematical formulas like
the previous one is straightforward. For long complex
formulas, common computer algebra packages can be
used. However, it is recommendable to employ the
equation-based AD techniques illustrated in Section 6.

Forward differentiation rule 4: handling blocks
within flow control

Modelica, as many other languages, provides classical
language constructs for flow control such as for,

while, if,..etc. In classical AD concepts, assign-
ment blocks within typical control flow constructs
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(e.g. for, if, . . . etc.) are directly differentiated as an
independent block. Although such constructs are
interpreted differently in an equation-based context,
the generation of SES within such blocks are similarly
intuitive. For example, the equation part of the model
Analog.Examples.Utilities.NonlinearResistor

is implemented as follows:

Listing 8: Equation part of NonlinearResistor
model NonlinearResistor

...

equation

i =

if (v < -Ve) then

Gb*(v + Ve) - Ga*Ve

else if (v > Ve) then

Gb*(v - Ve) + Ga*Ve

else

Ga*v;

end NonlinearResistor;

The implementation of its AD version becomes:

Listing 9: Equation part of NonlinearResistor
model NonlinearResistor

...

equation

g_i [:] = if (v < -Ve) then

g_Gb [:] * (v + Ve) +

Gb * (g_v[:] + g_Ve [:])

- (g_Ga [:] * Ve + Ga * g_Ve [:]);

else if (v > Ve) then

...

else

...;

end NonlinearResistor;

6 Equation-based AD

So far, the demonstrated components have short equa-
tions that can be easily differentiated. In this section,
an equation-based AD technique, especially designed
for the Modelica language, is shown. In the first ever
algorithmically differentiated library, ADGenKinetics,
the following equation corresponding to the conve-
nience kinetics of chemical reaction rates

v = ∏
a

KAa +[Aa]

KAa

·∏
b

KIb

KIb +[Ib]

·
V f wd

max ∏
i

[Si]

KmSi

−V bwd
max ∏

j

[Pj]

KmPj

∏
i

(
1 +

[Si]

KmSi

)
+∏

j

(
1 +

[Pj]

KmPj

)
−1

(5)

has been easily differentiated using the demonstrated
technique, consult [10] for more details about this

equation and the ADGenKinetics library. In this paper,
the technique is illustrated on a more simple equation
within the model Analog.Basic.Conductor which
implements conductance as:

Gactual =
G(

1 + α
(
Thp−Tre f

)) (6)

While this formula can be used within a Calculus
exam, the technique is applicable on formulas like (5).

6.1 Classical AD techniques

The fundamental terminologies and concepts of clas-
sical AD techniques for assignment-based procedural
languages have been largely developed decades ago
Application of classical AD techniques is not best suit-
able to be applied on equation-based languages due to
[15, 13]:

• Classical AD techniques are mainly designed for
explicit assignments and not implicit equations

• Excessive number of expressions evaluations is
performed

• Excessive storage for temporary variables and
their gradient computations is needed

In order to overcome these drawbacks, an equation-
based technique relying on fundamental notions of
equation-based languages has been designed.

6.2 Equation-based AD technique

Figure 2: The AST of Equation 6 and the enumeration
of expression subtrees
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Preprocessing: Intermediate elementary equations

The key idea of enabling differentiation of a com-
plex equation is to decompose it into elementary equa-
tions. Each equation is composed of a unitary op-
erator (e.g. +,−), a binary operator (e.g. +,−,∗,∏)
or an intrinsic function (e.g. sin,cos). By construct-
ing the abstract syntax tree (AST) of the equation, el-
ementary equations can be computed. In Figure 2,
non-leaf nodes correspond to operands. Leaf nodes
correspond to identities. Identities are distinguished
according to their variability, e.g. constants, parame-
ters and variables. Each subtree Tk is intuitively in-
dexed with a binary number k according to its position
in the tree. Each node with index k has childern of
index 2k and 2k + 1, if any. Intermediate equations
and their derivatives can be easily computed via a left-
right-node (LRN) traversal as follows:

T1111 = Thp−Tre f

=⇒ T ′1111 = T ′hp−T ′re f

T111 = α T1111

=⇒ T ′111 = α ′ T1111 + α T ′1111

1/T11 = 1 + T111

=⇒ T ′11 = −T ′111 T11 T11

T1 = G T11

=⇒ T ′1 = G′ T11 + G T ′11

=⇒ G′a = T ′1

where

T ′k =

(
∂Tk

∂ p1
,

∂Tk

∂ p2
, . . . ,

∂Tk

∂ pm

)

Here, only intermediate equations corresponding to
non-leaf nodes are considered. Moreover, Modelica
capabilities are utilized for providing specialized treat-
ment of the division operator, the most expensive arith-
metic operator. This is done in a way that the let
derivatives don’t include further divisions.

Processing: Accumulation

The previous intermediate equations though represent
desired partial derivatives, however it requires a lot of
storage for T ′k . To overcome this drawback one can
rather iteratively accumulate the partial derivatives,
within the same LRN traversal of the AST. On a man-
ual basis, this corresponds to an iterative process of
copy and paste of the intermediate equations one af-
ter another. In this way, the accumulated intermediate

equations become:

T ′∗1111 = T ′hp−T ′re f

T ′∗111 = α ′ T1111 + α (T ′hp−T ′re f )

T ′∗11 = − (α ′ T1111 + α (T ′hp−T ′re f )) T11 T11

T ′∗1 = G′ T11

+ G (−(α ′ T1111 + α (T ′hp−T ′re f )) T11 T11)

=⇒ G′a ≡ T ′∗1

Now, it is enough to declare only one derivative object
for Ga.

Postprocessing: Common subexpressions

The accumulated intermediate equations contain mul-
tiplicative term that are going to be evaluated m times.
Within the same LRN-traversal, these multiplicative
terms (e.g. α T11 T11) can be rather stored in an a lo-
cal variable. These terms are stored in local variables
adl_* within the Conductor model:

Listing 10: The AD version of the Conductor model
model Conductor

extends ...;

...

protected

Real T_1111;

Real T_111;

Real D_11;

Real adl_11_1;

Real adl_11_2;

Real adl_11_3;

Real adl_1_1;

Real adl_1_2;

equation

T_1111 = T_heatPort - T_ref;

T_111 = alpha * T_1111;

1/D_11 = 1 + T_111;

adl_11_1 = - D_11 * D_11;

adl_11_2 = adl_11_1 * alpha;

adl_11_3 = T_111 * adl_11_1;

adl_1_1 = G * adl_11_3;

adl_1_2 = G * adl_11_2;

g_G_actual [:] = g_G[:] * D_11 +

adl_1_1 * g_alpha [:] + adl_1_2

* (g_T_heatPort [:]- g_T_ref [:]);

g_i [:] = g_G_actual [:] * v

+ G_actual * g_v [:];

g_LossPower [:] = g_v[:] * i

+ v * g_i [:];

end Conductor;

This is an optional step, particularly, if the used
Modelica compiler is capable of recognizing common
subexpressions and treating them adequately. How-
ever this step still can be used for coming up with an
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efficient compact representation of the partial deriva-
tives.

7 Illustrative Example: The top
model

Having performed equation-based AD of the
Electrical.Analog sub-package, then pa-
rameter sensitivities of the electrical circuit in
Analog.Basic.Example.ChuaCircuit are implic-
itly represented by simple slight modification:

• reimporting the AD version of the library and

• specifying the input Jacobian

Listing 11: The AD version of the ChuaCircuit

model
model ChuaCircuit

"Chua 's circuit , ns , V, A"

// import Modelica.Electrical.

Analog.Basic;

import ADMSL.Electrical.Analog.Basic;

// import Modelica.Electrical.Analog.

// Examples.Utilities;

import ADMSL.Electrical.Analog.

Examples.Utilities;

import Modelica.Icons;

extends Icons.Example;

import ADMSL.Utilities .*;

inner parameter Integer NG = 8;

Basic.Inductor L(L=18,

g_L=unitVector (1,NG));

Basic.Resistor Ro(R=12.5e-3,

g_R=unitVector (2,NG));

Basic.Conductor G(G=0.565 ,

g_G=unitVector (3,NG));

Basic.Capacitor C1(C=10, v(start =4),

g_C=unitVector (4,NG));

Basic.Capacitor C2(C=100,

g_C=unitVector (5,NG));

Utilities.NonlinearResistor Nr(

Ga(min=-1) = -0.757576 ,

g_Ga = unitVector (6,NG),

Gb(min=-1) = -0.409091 ,

g_Gb = unitVector (7,NG),

Ve=1,

g_Ve = unitVector (8,NG));

Basic.Ground Gnd

equation

// same as before

...

end ChuaCircuit;

Figures 3 and 4 show some results of the parameter
sensitivities.

Figure 3: The sensitivities of the current at all compo-
nents (i.e. L.i,Ro.i,G.i,C1.i,C2.i,Nr.i,Gr.i)
w.r.t. the inductance L.L

Figure 4: The sensitivities of L.v w.r.t. all parameters
(i.e. L.L,Ro.R,G.G,C1.C,.. etc.)

8 Summary and outlook

In this paper, an equation-based methodology for
AD of Modelica libraries has been comprehensively
demonstrated. The new equation-based AD tech-
niques have been designed for the Modelica language.
With few simple code generation rules, parameter
sensitivities of base models are additionally described.
These rules make use of the art of AD to let modelers
themselves be capable of manually differentiating
large-set of models. Once a library is already dif-
ferentiated for once, it can be used forever. The
whole work serves as an experimentation platform
for the implementation of AD tool. Already a lot of
the functionalities are implemented within the tool
ADModelica [14].

Further ongoing works are running on several
dimensions:

• Ensuring that all used terminology is conform to
the Modelica specification

• choosing the most proper constructs allowing fur-
ther extension of this library to be compilable
with arbitrary simulation environments
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• Implementing unit tests not only for single com-
ponents but also to ensure the correctness of in-
termediate components, processed and postpro-
cessed classes

• Implementing further useful sensitivity-related
functionalities, e.g. scaled sensitivities, finite dif-
ference functions, etc.

• Utilizing Modelica capabilities for operator over-
loading

Finally, there are further two issues that are worth to
mention. First, although normal numerical solvers not
especially designed for sensitivity analysis are used,
the expensive computation of parameter sensitivities
can be reduced by following a numerical integration
approach based on Dicknson [8]. Smaller subsets
of parameter sensitivities are considered one after
another rather than considering the whole SES [9].
The structure of the proposed gradient-oriented code
easily suggests that. Moreover, this approach is
parallelizable in a scalable manner [22].

Second, the presented approach in this work is
restricted to continuous-time based components by
which large set of already existing libraries can be
considered. However, theorems and concepts for
handling discontinuous functions and hybrid systems
already exist [18], out of which further extensions to
this work can be considered.

A Some modified components in the
Modelica.Electrical.Analog li-
brary

ADMSL.Electrical.Analog.Interfaces.

Bases.OnePort

The TwoPin model with the MSL is slightly mod-
ified by letting the declared connectors become
replaceable as follows:

Listing 12: Implementation of OnePort
partial model OnePort

"Component with two electrical pins"

Modelica.SIunits.Voltage v

"Voltage drop between the two pins";

Modelica.SIunits.Current i

"Current flowing from pin p to pin n";

replaceable Modelica.Electrical.Analog.

Interfaces.PositivePin p

constrainedby

Modelica.Electrical.Analog.

Interfaces.PositivePin;

replaceable Modelica.Electrical.Analog.

Interfaces.NegativePin n

constrainedby

Modelica.Electrical.Analog.

Interfaces.NegativePin;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end OnePort;

ADMSL.Electrical.Analog.Interfaces.

Bases.TwoPin

The TwoPin model with the MSL is slightly mod-
ified by letting the declared connectors become
replaceable as follows:

Listing 13: Implementation of two pins
partial model TwoPin

"Component with two electrical pins"

Modelica.SIunits.Voltage v

"Voltage drop between the two pins";

replaceable Modelica.Electrical.Analog.

Interfaces.PositivePin p

constrainedby

Modelica.Electrical.Analog.

Interfaces.PositivePin;

replaceable Modelica.Electrical.Analog.

Interfaces.NegativePin n

constrainedby

Modelica.Electrical.Analog.

Interfaces.NegativePin;

equation

v = p.v - n.v;

end TwoPin;
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Abstract 

This paper describes the new OpenModelica Com-

piler-Compiler (OMCC) including a parser generator, 

OMCCp which is based on an LALR parser generator 

extended with advanced error handling facilities. It is 

implemented in the MetaModelica language with pars-

ing tables generated by the tools Flex and Bison. It is 

integrated with the MetaModelica semantics specifica-

tion language, based on operational semantics for gen-

erating executable compiler and interpreter modules. 

The OMCCp parser generating part of OMCC is be-

ing used for the full Modelica language grammar as 

well as for the language extensions of MetaModelica, 

ParModelica, and Optimization specifications. The 

generated parsers have reasonable performance com-

pared to other parser generators. 

 

Keywords: Modelica, MetaModelica, Flex, Bison, 

ParModelica, Optimization, OMCCp 

1 Introduction 
The OpenModelica environment currently makes 

use of the tool ANTLR (Another tool for Language 

Recognition) [11] to generate the parser for the 

OpenModelica Compiler (OMC). In this paper we pre-

sent an alternative to ANTLR, the new OpenModelica 

Compiler-Compiler parser generator (OMCCp), devel-

oped within the OpenModelica project. The tool is im-

plemented in MetaModelica which is an extension of 

the Modelica language for modeling the semantics of 

languages. The work [9] [11] is integrated with the re-

cently developed bootstrapped OpenModelica compiler 

(OMC) [14]. 

The ANTLR parser generator which has been used 

in the OpenModelica project for several years has well  

 

 

known disadvantages including memory overhead, bad 

error handling, and lack of type checking, Also it does 

not generate directly MetaModelica code for building 

the Abstract Syntax Tree (AST).  

Since the AST nodes are initially generated by C 

functions (for later conversion into MetaModelica gar-

bage collected memory space) without strong type 

checking in the C language, small errors in the seman-

tic actions of the grammar are not detected at genera-

tion time and can give rise to hard-to-find errors in the 

generated code (even small errors in the grammar ac-

tions C code lead to segmentation faults). 

When the semantic actions can be specified in Met-

aModelica and the AST builder directly generates the 

MetaModelica code, the above mentioned errors can be 

completely eliminated.  

The need for good error handling as well as avoid-

ance of certain AST-building errors has motivated the 

development of the Modelica based parser generator 

with good error handling [9][11]. 

This paper is structured as follows: Section 2 de-

scribes the different steps involved in designing a com-

piler from different specification formalism. Section 3 

presents the error-handler features added to the tool and 

also illustrates the different types of error handler mes-

sages displayed to the user in the case of erroneous 

programs. Section 4 explains the main MetaModelica 

language constructs used in this implementation for 

generating the Abstract Syntax Tree (AST). Section 5 

explains the OMCCp tool design and architecture and 

Section 6 presents test results and performance meas-

urements. Finally Section 7 concludes the paper sum-

marizing achieved results. 
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2 Background  

2.1 Generating Compiler Phases  

A compiler can be generated from a formal specifica-

tion in different formalisms, as depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Design stages of a compiler from different 

specification formalism 

Figure 1 describes the stages involved in generating a 

compiler from specifications in different formalisms. 

Generally a compiler is divided into two parts: the 

front-end and the back-end. The Scanner and Parser 

constitute the front-end phase whereas Optimization 

and Code generator constitute the back-end phase of 

the compiler. In this paper we focus on the front-end 

parts of the compiler. 

2.2 Lexical Analysis  

The Lexical analysis, performed by a scanner, is the 

first stage of the compilation process. It receives the 

source code as input and generates tokens. It identifies 

the special tokens defined by a language making it 

simpler for the next phase of the compiler. The tokens 

are usually specified by using Regular Expressions. 

There are several tools available that automate the 

process of constructing the transition rules to identify 

the tokens for a scanner. We use the Flex tool [13] for 

this purpose which generates C code; the generated C 

code is later used by OMCCp to generate the appropri-

ate lexer components in MetaModelica [1] [9] [11]. 

2.3 Syntax Analysis 

The syntax analysis (also called parsing) is the second 

stage of the compilation process. The parser takes the 

tokens generated by the lexer and determines whether 

the tokens are constructed according to the rules of the 

grammar. During this process the Abstract Syntax Tree 

(AST) is created if the input conforms to the defined 

grammar. Otherwise an error message is reported.  

The AST is used as input to the back-end. The back-

end uses the AST for type checking, optimization and 

finally generates machine specific code. The grammar 

rules are usually specified in the form of BNF (Backus- 

Naur Form). We use the popular Bison tool for writing 

the grammar rules; the generated tables are used by 

OMCCp as part of the parser algorithm written in Met-

aModelica that interprets these parse tables [1][9][11]. 

3 Error Handling 

The error handling techniques in the front-end are more 

relevant during the Syntax analysis phase than in the 

lexical analysis phase. Only a few errors can be detect-

ed by the lexical analysis, such as non-terminated 

comments, use of invalid characters, or unrecognized 

tokens. One possible error-recovery strategy imple-

mented in a lexer is to ignore invalid characters from 

the input and continue the process. 

The error handling techniques can be divided into 

two categories: Error recovery techniques and error 

message display. Error recovery techniques are con-

cerned with how the parser can keep parsing after an 

erroneous token is found. Error message display con-

centrates on how to present useful hints for the devel-

oper in order to correct the source code. In this section 

we will present the two topics for error handling during 

the syntax analysis phase [1] [9] [11] [2] [4]. 

3.1 Error Recovery 

Error recovery techniques try to improve the quality of 

the parser by different techniques such as primary re-

covery or secondary recovery. The first condition to 

start the recovery is to access the configuration ob-

tained when the token preceding the error token was 

shifted onto the stack 

Primary recovery techniques are related to single 

token modification from the list of tokens. Single modi-

fication is only possible when the error is classified as 

simple. Such a modification can be insertion, deletion, 

substitution, or merging. 
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Each attempt to perform a repair is known as a trial. A 

common technique for searching the trials is to attempt 

to repair the error token by performing one of these 

operations: merging, insertion, substitution, scope re-

covery and finally deletion. In the case of insertion or 

substitution a set of possible candidates should be gen-

erated and then from there a single candidate or none 

should be selected. 

When the error requires more than a simple modifi-

cation, the list of tokens needs to be reduced. This can 

be done by discarding tokens that precedes or follows 

the error token. This is known as secondary recovery 

[1] [9] [11] [2]. 

3.2 Error Messages 

OMCCp uses a primary recovery technique to display 

all the possible recovery candidates to the developer. 

When an error is found, the parser fires the error han-

dler function including the environmental variables that 

contain the actual configuration of the parser and the 

backed up configuration when the last token was shift-

ed. This backup is used to start an extensive search for 

the possible valid tokens to be replaced. This allows the 

developer to better understand the messages and makes 

it easier to select the correct token. 

OMCCp uses seven different kinds of error messag-

es for the syntax analysis and one more for the lexical 

analysis. The error messages displayed in this imple-

mentation are discussed below. 

3.2.1 Erase Token  

The erase token message occurs when the parser finds 

same token repeated more than once. To test if a token 

can be erased, the parser is run on the remaining list of 

tokens ignoring the current token. If the test succeeds a 

proper error message is displayed to the user suggesting 

a possible solution for erasing the repeated token [9] 

[11]. An example error message display is given below. 

[../../testsuite/omcc_test/error5.mo:10:20

-10:24:writable]  

Error: Syntax error near: 'if x == 10 then 

then', REPLACE token with '+' or '-' or 

'.' or 'NOT', ERASE token ‘then’ 

3.2.2 Insert Token 

To test if a token can be inserted before the error token, 

the parser is run on a modified list of the remaining 

tokens by placing the candidate token before the error 

token as current token. The candidate token is selected 

if the test succeeds and placed in the candidate list [9] 

[11]. If there are items in the candidate list we display 

proper message to the user. An example error message 

is given below. 

[../../testsuite/omcc_test/error3.mo:9:3-

9:4:writable]  

Error: Syntax error near: 'if x == 10', 

INSERT token 'THEN' 

3.2.3 Replace Token 

The replace token is similar to insert token error mes-

sage. The parser is run modifying the remaining list of 

tokens by placing the candidate token before the error 

token as current token. The candidate token is selected 

if the test succeeds and placed in the candidate list and 

a proper error message is displayed to the user [9] [11]. 
 

[../../testsuite/omcc_test/error2.mo:7:1-

7:6:writable]  

Error: Syntax error near: 'while x <> 99 

then','THEN',REPLACE token with 'Loop' 

3.2.4 Insert Token at End 

This message is used only at the end of the program, 

when no other token is available in the input of tokens 

and a non-finished acceptance state has been achieved. 

All the tokens are tested to verify if they can make the 

program to end in a valid acceptance state. If a token 

succeeds then the proper message is displayed to the 

user as a possible solution to fix the error [9] [11]. An 

example message is given below. 
 

[../../testsuite/omcc_test/error6.mo:14:1-

14:15:writable]  

Error: Syntax error near:'end error_test', 

INSERT at the End token 'SEMICOLON' 

3.2.5 Merge Token 

Sometimes a space can be inserted by mistake between 

two tokens and make a keyword appear as two separate 

identifier tokens. In this case the error token and the 

token that follows it are processed again by the Lexer 

with their value concatenated.  

If the lexer combines them as a valid token this to-

ken is tested to see if it satisfies the test and is a valid 

configuration for the parser [9] [11]. If it succeeds the 

system displays a proper message to the user. An ex-

ample error message is given below. 
 

[../../testsuite/omcc_test/error4.mo:10:9-

10:10:writable]  

Error: Syntax error near:'if x = = 10 

then', MERGE tokens '=' and '=' 

3.2.6 Generic Error 

It is possible that no solution or candidate is found for 

the current error token. In these cases a generic error 

message is displayed to the user without any further 

description of the error than the location of the token. 
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In this situation the developer needs to fix the error 

token without any hint [9] [11]. 

3.2.7 Custom Error Message 

While designing a grammar it is sometimes necessary 

to communicate to the developer that a certain trans-

formation rule must not be used. A more clear language 

than presented by the error messages above should be 

used. For this reason the possibility of a custom error 

message has been introduced. Such an error message is 

added in the grammar rules. The use of this custom 

message will activate the error flag in the parser and 

will start the simple error recovery technique. 

4 MetaModelica 

MetaModelica is an extension of the Modelica lan-

guage which can be used to model the semantics of 

languages, specify symbolic transformations, etc. It is 

based on the operational semantics language specifica-

tion formalism; a rule in operational semantics be-

comes a case within match-expressions [6] [7].  

4.1 Uniontype  

A uniontype in MetaModelica is a collection of one or 

more record types. It can be recursive and can include 

other uniontypes. It is mainly used for the construction 

of Abstract Syntax Trees (AST) [6] [7]. 

Example: 

uniontype Exp 

  record INT 

    Integer integer; 

  end INT; 

  record BINARY 

    Exp exp1;  

    BinOp binOp;  

    Exp exp2;  

  end BINARY;  

end Exp; 

4.2 Match Expressions 

The match expression is similar to switch statements in 

C but even closer to match in functional programming 

languages with some extra features.  

The match expression can return more than one 

value and supports pattern matching. The match con-

struct contains case blocks. Each case can contain an 

equation block. The program flow tries to execute one 

instruction after the other in a specific local equation 

block. If an instruction is not executed or failed the 

next case is tried until a match is found. The wildcard 

‘_’ (underscore) can be used to match all the cases [6] 

[7].  

For example 

function eval 

  input Exp inExp; 

  output Integer outInteger; 

algorithm 

  outInteger := match(inExp) 

    local 

      Integer ival,v1,v2,v3; 

      Exp e1,e2,e; 

  case INT(ival)  then ival; 

  case BINARY(e1,binop,e2)  

   equation 

    v1 = eval(e1);  

    v2 = eval(e2);  

    v3 = applyBinop(binop, v1, v2);  

   then  

    v3; 

  case UNARY(unop,e)  

   then v2=applyUnop(unop, eval(e));  

end match; 

end eval; 

In the above example we can see that the function eval 

contains one input formal parameter of type Exp and 

one output formal parameter of type Integer followed 

by the match-expression which tries to match any of 

the three cases according to the user input.  

The first case results in the evaluation of INT record 

constructor node applied to an integer. The second case 

results in evaluation of a binary operator node binary to 

v3, if v3 is the result of successfully applying the bina-

ry operator to v1 and v2, which is the evaluated result 

of its children e1 and e2. The third case results in the 

evaluation of unary operator node UNARY to v2.  

4.3 List 

The List constructor is used to create linked list struc-

tures. Lists are used in modeling of flexible variable-

length collections of symbolic elements. The operand 

:: is used to add an element at the front of a list (or, 

depending on the context, retrieve by matching) an el-

ement from the list [6] [7]. 

 Example 

list<Integer> a= {1,2,3}; 

i::a=a; 

a=i::a; 

The first line creates a list a of integers, the second line 

is used for the retrieve operation; it takes the top ele-

ment 1 from the list and stores it in the variable i and 

stores the remaining list in variable a. The third line 

performs the add operation which adds an item i into 

the list a. 
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5 OMCCp DESIGN 

The design architecture of OMCCp with the lexer and 

parser components is depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. OMCCp (OpenModelica Compiler-Compiler) 

Lexer and Parser Generator 

The lexer and parser are generated based on C files 

generated by the tools Flex and Bison from the gram-

mar files lexer.l and parser.y. 

The generated C file contains three main parts 

which constitutes the lexer and parser. We can identify: 

a section with the transition arrays, a section with code 

that runs the algorithm for the lexer or parser and final-

ly an action resolution section which contains the re-

turns tokens actions for the lexer and reduce operation 

which constructs the AST. 

Based on the identification of the main parts, the 

OMCCp design is divided into two parts namely the 

LexerGenerator and the ParserGenerator which are re-

sponsible for generating the necessary Lexer and Parser 

components in MetaModelica. 

5.1 LexerGenerator 

The LexerGenerator is the main package of the lexer 

generator which generates the three necessary lexer 

packages in MetaModelica, namely LexerModelica.mo, 

LextableModelica.mo and LexcodeModelica.mo.  

 

 

5.1.1 Lexer.mo 

Lexer.mo is the main file which contains the calls to 

other functions in Lextable.mo and LexCode.mo that 

constitutes the lexer. The main function of this package 

is to load the source code file and recognize all the to-

kens described by the grammar.  

To recognize the token the lexer.mo runs DFA (De-

terministic Finite Automata) based on the transition 

arrays found in Lextable.mo. When it reaches an ac-

ceptance state it calls the function action in Lex-

Code.mo which returns list of tokens that are input to 

the parser. The interface of the function which performs 

this operation is given below. 

function scan 

  input String fileName "input source 

    code file"; 

  input list<Integer> program "source  

   code as a stream of Integers"; 

  input Boolean debug "flag to activate 

    the debug mode"; 

  output list<OMCCTypes.Token> tokens  

    "return list of tokens"; 

 end scan 

5.1.2 LexTable.mo  

LexTable.mo is the source file for Lexer.mo which 

contains the transitions arrays for performing transi-

tions to new states and finding the tokens from the in-

put stream. 

5.1.3 LexCode.mo 

LexCode.mo contains all the specific actions that a lex-

er performs when a token is recognized. There are three 

types of action a lexer can perform: ignore token, re-

turn specific token, and switch to another DFA.  

The first action, ignore token, is performed by the 

lexer when a space, line feed, or block of comment has 

been found in the input stream. The tokens ignored by 

the lexer simplify the task of the parser as these tokens 

will not be used in the construction of the grammar. 

 The second action returns a specific token when a 

token is recognized by the lexer, the code of the action 

determines the tokens to be returned.  

The third action is to switch from one DFA to an-

other. This operation is performed in a few situations 

for example when the DFA finds a starting comment 

block ‘/*’, and all the subsequent tokens are required to 

be ignored or categorized as a different token, e.g. in 

case of determining a string. For this action a new 

startup state is set in the machine and new characters 

are processed by a different DFA than the original. 
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After the end of tokens is reached, i.e., ‘*/’ then the 

start state returns to the original one. 

5.2 Parser Generator 

The parser generator is the main package of the parser 

that performs the syntax analysis of the compiler. This 

package generates four packages comprising the parser 

in MetaModelica namely TokenModelica.mo, ParserT-

able.mo, ParserCodeModelica.mo and ParserModeli-

ca.mo.  

5.2.1 Parser.mo 

The main function of this package is to efficiently con-

vert the list of tokens received by the Lexer into Ab-

stract Syntax Tree (AST). The package also contains 

the implementation of the LALR algorithm. For per-

forming this task the package uses the parse table locat-

ed in the package ParseTable.mo, to perform the shift-

reduce action calls it uses the package ParserCodeMod-

elica.mo. The interface of the function which starts the 

construction of the AST is given below. 

function parse "realize the syntax  

    analysis over the list of tokens and     

    generates the AST tree" 

  input list<OMCCTypes.Token> tokens "list 

    of tokens from the lexer"; 

  input String fileName "file name of the 

    source code"; 

  input Boolean debug "flag to output 

   debug messages that explain the states  

    of the machine while parsing"; 

  output Boolean result "result of the 

    parsing"; 

  output ParseCode.AstTree ast "AST tree 

   that is returned when the result output 

   is true"; 

end parse; 

5.2.2 ParseTable.mo 

ParseTable.mo contains the arrays that allow the Parser 

package to run the Push down Automata (PDA) and 

perform the shift-reduce action which constructs the 

AST. 

5.2.3 ParseCode.mo 

The package ParseCode.mo contains the specific Re-

duce operations that each grammar performs when a 

certain rule matches the input tokens. The main func-

tion of this file is to handle the MultiTypedStack that is 

used by the parser to construct the AST. The Multi-

TypedStack handles the reduce operations requested by 

the LALR parsing algorithm. The MultiTyped stack 

contains one stack for each type found in the grammar 

specification and is defined in the MetaModelica lan-

guage. An example interface is presented. 

uniontype AstStack 

   record ASTSTACK 

     list<Absyn.Exp>  stackExp; 

     list<String>    stackString; 

     list<Integer>  stackInteger; 

   end ASTSTACK; 

end AstStack; 

When the parser finds a Shift operation it calls the 

`function push' on this file which will push a String 

value into the stackString. During the reduce operation 

the parser needs to know which stack to use for each of 

the constructions of the AST. The way this Multi-

TypedStack works can be explained in the following 

example that presents the reduce operation, the build of 

the AST operation and finally a push back into the 

stack which builds the AST. 

case (82,_) // #line 413 

"parserModelica.y" 

      equation  

        // reduce  

        (info, skToken) = 

getInfo(skToken,mm_r2[act]);  

        v2Comment::skComment = skComment;  

        v1Algorithm::skAlgorithm = 

skAlgorithm;  

        // build  

  vAlgorithmItem 

=Absyn.ALGORITHMITEM((v1Algorithm),SOME((v

2Comment)),info);  

        // push Result  

  skAlgorithmItem= 

vAlgorithmItem::skAlgorithmItem;  

   then ();     

In the above case the reduction takes three items 

from the three different stacks and constructs an Ab-

syn.ALGORITHMITEM object. After this it pushes the 

result back into the stack for the Absyn.Algorithm 

type called skAlgorithmItem. Another feature that 

can be useful for the reductions is the use of the info 

keyword. In the example, we can see that the instruc-

tion uses a stack called skToken to retrieve the token 

information.  

The token information returns an info token of type 

Absyn.Info which contains the combined information 

of the first and the last token in the stack that are used 

for this reduction. This makes it possible for the devel-

oper to insert information about the location that can be 

used later in the other phases of the compiler. The 

package also contains another important function get-

Ast which returns the result of AST tree to the parser. 

The interface of the function is given below. 

function getAST "returns the AST built by 

    the parser" 

 input AstStackastStk aststack  

    "MultiTypedStack used by the parser"; 

 output AstTree ast "returns the AST in  

       the final type of the tree"; 

end getAST; 
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5.2.4  Token.mo 

The package contains the complete list of tokens used 

by the grammar with their respective codes. This file is 

the link between lexer and parser; it is used by both the 

lexer and parser to identify the tokens in the same way. 

When the parser receives the token code from the 

lexer it performs a translation into local codes that are 

only used by the parser to simplify the addressing in 

predictive arrays. Each token is defined as an Integer-

type constant. The interface of this package is presented 

below. 

package TokenModelica  

 constant Integer T_ALGORITHM = 258; 

 constant Integer T_AND = 259; 

 constant Integer BLOCK = 261; 

 constant Integer CLASS = 262; 

 constant Integer CONNECT = 263; 

end TokenModelica 

6 Testing 

We performed testing using Modelica files from the 

OpenModelica testsuite. We also ensured that the tests 

covered full Modelica and MetaModelica grammar 

proving the correctness of the parser.  

In the later stages of testing we also covered the 

ParModelica and Optimization grammars. During the 

testing we did not face any memory overhead problems 

and also measured the performance of the parser in-

cluding AST building. The performance times are rea-

sonable when compared to ANTLR. An example of 

sample test case of correct and an erroneous model with 

the respective output message are presented. 

A Sample of correct input 

model Circle  

  Real x_out; 

  Real y_out; 

  Real x(start=0.1); 

  Real y(start=0.1); 

equation  

  der(x) = -y; 

  der(y) = x; 

  x_out = x; 

  y_out = y; 

end Circle; 

This input will generate the following success message 

Parsing Modelica with file 

../omcc_test/Test1.mo  

// SUCCEED 

// args:../omcc_test/Test1.mo 

 

 

 

This sample of erroneous input will on the other hand 

generate a parse error. 

 class error_test  

int x,y,z,w;  

algorithm 

while x <> 99   

  x := (x+111) - (y/3);  

   if x == 10 then  

    y := 234; 

  end if; 

end while; 

end error_test; 

This input will cause the following error message to 

be emitted by an OMCCp generated parser  

Parsing Modelica with file 

../omcc_test/error3.mo  

[../../testsuite/omcc_test/error3.mo:9:3-

9:4:writable] Error: Syntax error near: 

'while x <> 99', INSERT token 'LOOP' 

args:../../testsuite/omcc_test/error3.mo 

The same input will cause the following error message 

to be emitted by an ANTLR generated parser 

Loaded all files without error 

"true 

" 

"" 

{fail()} 

Take a look at a second erroneous sample input, an er-

roneous piece of MetaModelica code. 

function add 

  input Integer ininteger; 

  input Integer ininteger1; 

  output Integer outinteger; 

  algorithm 

    outinteger:=     

      match(ininteger,ininteger1) 

       local 

        Integer a,b,c; 

       case(a,b) 

        equation 

          c=a+b; 

          then 

            c; 

   end matchcontinue; 

 end add; 

This will cause the following error message to be 

emitted using an OMCCp generated parser  

Parsing Modelica with file 

../omcc_test/error2.mo  

[../../testsuite/omcc_test/error2.mo:14:13

-14:30:writable] Error: Syntax error near: 

'end matchcontinue', REPLACE token with 

'ENDMATCH' 

args:../../testsuite/omcc_test/error3.mo 

It will cause the following error message to be emitted 

using an ANTLR generated parser. 
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Loaded all files without error 

"true 

" 

"" 

{fail()} 

 

Regard a third erroneous sample input 

class error_test  

int x,y,z,w;  

algorithm 

while x <> 99 loop  

  x := (x+111) - (y/3);  

   if x = = 10 then  

    y := 234; 

  end if; 

end while; 

end error_test; 

This will cause the following error message from an  

OMCCp generated parser. 

Parsing Modelica with file 

../omcc_test/error6.mo  

[../../testsuite/omcc_test/error4.mo:6:9-

6:10:writable]  

Error: Syntax error near:'if x = = 10 

then', MERGE tokens '=' and '=' 

and this error message using  an ANTLR generated 

parser. 

Loaded all files without error 

"true 

" 

"" 

{fail()} 

6.1 Time Performance 

The performance measurements for the test cases have 

been done using the OpenModelica test server. The 

models are taken from the Modelica Standard Library 

(MSL 3.2.1) as well as from the OpenModelica test 

suite. A selection of measurements is listed in the fol-

lowing Table 1. 

Table 1. Time measurement of OMCCp and ANTLR 

generated parsers on a set of test models. 

Model Size No of 

Tokens 

OMCCp 

(time ms) 

ANTLR 

(time ms) 

Dcmotor 2kB 172 3.1 0.45 

Influenza 4kB 642 10.4 1.10 

Test1 26kB 8443 84.3 6.90 

Icon 42kB 9234 179.7 8.68 

SIunit 94kB 14330 303.8 18.57 

Electrical/ 

Digital 

366kB 71117 1576 93 

Electrical/ 

Machine 
763kB 143505 3202 158 

Test2 1MB 214617 4681.8 254 

Total 11MB 2078841 51362 2704 

We can see that the ANTLR generated parser is 

about 5 to 16 times faster than OMCCp including AST 

building. The OpenModelica implementation of an 

ANTLR generated parser is extremely fast. The 

OMCCp parser performance is comparable to typical 

non-optimized parser generators.  

The OMCCp generated parser is roughly 16 times 

slower than ANTLR for the very large Modelica mod-

els like Total.mo which contains the whole Modelica 

standard library 3.2.1 of 11 MB, but in general for 

smaller test cases the parser is only 6 times slower. 

From the table we can also see that the OMCCp 

parser does not scale as well in the case of large models 

compared to ANTLR. Even though the ANLTR parser 

is faster, the OMCCp tool has several advantages com-

pared to ANTLR. One should also note that the current 

implementation of OMCCp was not optimized and its 

performance can be further improved.  

During testing we found that the OMCCp tool did 

not have any memory overhead problems when parsing 

a large number of test cases in a single attempt whereas 

the ANTLR parser had higher memory overhead when 

many test cases were parsed in a single attempt. More-

over, the OMCCp tool has better error handling fea-

tures compared to the ANTLR tool, which makes it 

easier to use. 

6.1.1 Performance Graph 

 

 

Figure 3: Graph representation of time performance of 

OMCCp with ANTLR 

From the above graph we can see that the OMCCp par-

ser keeps its timing performance close to that of 

ANTLR for a certain number of tokens recognized by 

the lexer, but when the number of tokens increases the 

performance gap increases between the tools. 

Still the OMCCp tool has good performance when 

parsing grammars of size less than 100kB, with times 

of under a second. One of the reasons that the OMCCp 

is slower is that garbage collection is used in Meta-

Modelica whereas in ANTLR the memory alloca-

tion/de-allocation is manually programmed. 
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7 Conclusion 

In this paper we have presented a fully implemented 

OMCCp lexer and parser generator integrated with 

MetaModelica as a semantic specification language in 

the new bootstrapped OpenModelica compiler. 

We have tested this tool on number of small lan-

guages as well as on the large Modelica grammar. The 

generated parsers offer good error handling and com-

prehensive error messages to the user. OMCCp can 

also be used as a parser generator for any language for 

which an LALR(1) grammar is available. The associat-

ed language semantics can be specified using Meta-

Modelica. 

The generated parsers are still a bit slow for produc-

tion usage on large programs but we expect to improve 

the performance by further tuning. 
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Abstract

Nonlinear inverse dynamic models can be utilized in
various parts of advanced model-based control sys-
tem design: reference trajectory optimization, feed-
forward control and feedback linearization [35]. In
this paper, a new synthesis approach for nonlinear in-
verse dynamic models of satellites with flexible struc-
tures is presented. For satellite configurations with un-
stable zero dynamics, a stable inverse model approx-
imation is proposed which has been successfully ap-
plied to robots with flexible bodies.

This inverse modeling approach is part of the newly
developed DLR Space Systems Library for object-
oriented modeling and simulation of satellites and
launchers in a detailed space environment. For satel-
lites with flexible structures, the library provides mod-
els for normal simulation mode and the necessary tools
to directly generate approximate inverse models.

In this paper, trajectory optimization is shown to be
an important use case for inverse dynamic models. By
inversion based reformulation of the trajectory opti-
mization problem, the optimal reference motion of the
control system can be determined in a reliable and ef-
ficient way.

Keywords: satellite modeling; nonlinear inverse
model; trajectory optimization; flexible structure

1 Introduction

The Space Systems Library (SSL) was built to de-
velop advanced control systems for satellites / space-
craft with flexible structures. In particular, one goal
of this library is to generate nonlinear inverse models
for the controller. The library contains state-of-the-
art Low Earth Orbit (LEO) space environment models
and components. It was implemented in the Modelica
modeling language [23].

The theory of satellite dynamics is well understood
and many important aspects of spacecraft modeling

are described in publications such as [24]. A wide
range of satellite simulators exist [3, 2, 11, 5, 36] that
are able to accurately simulate a satellite in orbit.

There also exist simulators based on the Model-
ica modeling language. The authors made use of the
advantages of using the Modelica language for the
implementation and the inversion of rigid satellites
[29]. In addition, several related publications such
as [30, 20, 19] describe the simulation of satellites in
detail. Satellites with flexible appendages were con-
sidered in [33]. Many important aspects of spacecraft
modeling are already covered in these publications and
promising results were reported by these authors.

The Space Systems Library was developed to imple-
ment nonlinear inverse models of satellites with flexi-
ble structures, such as solar panels, that cannot be eas-
ily implemented within existing simulators. Having
direct access to all component equations from the SSL
allows the successful implementation of algorithms
from recent results obtained in the field of robotics re-
garding the inversion of flexible multi-body systems
and trajectory optimization based on inverse models
[32, 31].

The new DLR internal library builds upon the Mod-
elica Standard Library [23], and especially the Model-
ica MultiBody Library [25], as well as the DLR Flexi-
bleBodies Library [12], DLR Visualization Library [1]
and the DLR Optimization Library [27]. The SSL
combines their capabilities to achieve a wide range
of possible applications, ranging from visualization
of space missions to high accuracy simulations, op-
timizations and development of control systems for
satellites with flexible structures.

The objective of this paper, apart from introducing
the SSL, is to demonstrate its capabilities by model-
ing a near Earth satellite based on the TET-1 prototype
[8], which is part of the FireBird mission – a mission
of the German Aerospace Center (DLR) for fire re-
connaissance [4, 16]. The modeling of the satellite is
described in section 3.
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The satellite is modeled with flexible solar panels1.
From the nonlinear (direct) satellite model, an inverse
model is derived (sec. 4). This inverse model is used
to calculate optimal trajectories for a reorientation ma-
neuver of the satellite using the reaction wheels under
constraints (sec. 5) and can also be used as a feed-
forward controller.

2 The Space Systems Library

The SSL enables object-oriented, acausal, and
equation-based modeling of space systems dynamics
and its corresponding environments. This in turn al-
lows controller design and verification, as well as de-
velopment of path planning and other algorithms.

The Space Systems world model The default world
model of the Modelica MultiBody Library [25] is ex-
changed by a new world model which is compatible
with the default world model. It offers additional
options and methods for space environment simula-
tions. The world model handles the global simulation
time that is used to calculate planet positions and var-
ious transformations. The initial time can be given in
calendar- or Julian date format. The latter is also im-
plemented internally as time format. The basis coor-
dinate system is chosen to be the Earth Centered Iner-
tial (ECI) coordinate system, which is suitable for near
earth satellite simulations. The world model offers a
connector and transformation for the Earth Centered
Earth Fixed (ECEF) coordinate system, which is use-
ful for the simulation of objects on earth, like emitter
stations. The transformation from ECI to ECEF co-
ordinate system is computed as described in [24, 15].
This calculation also considers the difference in sec-
onds between Universal and Universal Coordinated
Time (leap seconds, tUT 1−UTC) that has to be given as
an initial value and can be taken from tabular data [37].

Gravity acceleration computation The gravity ac-
celeration g0 ∈ R3 plays a very important role for the
simulation of satellites. Hence, multiple gravity mod-
els of different complexity were implemented. The
most precise model implemented is the EGM96 grav-
ity model [18]. A computational efficient approxima-
tion of this model was implemented, which uses terms
of up to the second degree of the zonal harmonic co-
efficients of the gravitational potential. In addition,

1The term "flexible satellite" will be used hereafter as a short-
hand notation.

moon and sun gravities have been included, consid-
ering them as important perturbation factors. These
are modeled as point gravity [24]. Although newer,
more advanced gravity models exist, the accuracy of
the chosen models is sufficient for our multi-body ap-
proach that focuses on short term simulations.

Gravity gradient torque The gravity gradient
torque is modeled as a torque τa that acts on the frame
a (position r0,a ∈ R3 and orientation Ra ∈ R3×3. The
index a is used to describe a generic frame, which is
instantiated for every object) to which it is connected.
This frame should be connected to the center of mass
of the body in consideration. The torque is caused by
the mass distribution of the body in consideration, and
depends on the inertia tensor I ∈ R3×3 as follows.

τa =

(
Ra ·g0(r0,a, tJ)

3
‖r0,a‖

)
×
(

I ·Ra
−r0,a

‖r0,a‖

)
(1)

In eq. (1), the gravity acceleration vector g0 ∈ R3 is a
function of the position r0,a and the Julian date tJ (to
compute planet positions). See [17] for more details.

Solar radiation pressure The effect of the solar ra-
diation pressure p� is modeled as a force element
fsp ∈ R3 that acts on the element to which it is con-
nected. Shadows of the moon and sun are considered
using a cylindrical shadow model. The models are im-
plemented as proposed in [24].

Atmospheric drag The atmospheric drag is caused
by friction with the atmosphere depending on the
height of the satellite above the Earth. Like the ra-
diation pressure, it is modeled as a force and torque
element acting on the attached body which should be
located at the center of pressure.

The density ρ(λ ,φ ,h, tJ) of the atmosphere is com-
puted using the NRLMSISE-00 atmospheric density
model [28]. The density ρ depends on the longitude
λ , latitude φ and height above earth h, that can be
computed from r0,a, as well as the actual Julian date
tJ . The drag force fa ∈ R3 and torque τa ∈ R3 can be
computed using eq. (2).

vrel = ṙ0,a−ω⊕× r0,a (2a)

fa =−Ra
1
2

cdAadρ‖vrel‖vrel (2b)

assuming ‖vrel‖ 6= 0 (otherwise τa = 0):

τa = Ra
1
2

cdAadρ‖vrel‖2
(

vrel

‖vrel‖
× (Rascp)

)
(2c)
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In eq. (2), ω⊕ ∈ R3 is the earth angular velocity, cd
is the drag coefficient, Aad is the affected area (which
can depend on Ra) and scp ∈ R3 is the vector from the
center of pressure to the center of mass, all resolved in
the attached frame a.

Geomagnetic field The geomagnetic field can be
computed at a desired frame (position r0,a) by a ge-
omagnetic field component, using the US/UK World
Magnetic Model [22]. The model provides a magnetic
field vector Bm(λ ,φ ,h, tJ) ∈ R3 that depends on the
longitude λ , latitude φ and height above earth h, which
can be computed from r0,a and the Julian date tJ .

Variable mass systems The effects of variable mass
systems are very important for the modeling of launch-
ers but their consideration can also be necessary for
satellites that use gas thrusters, if high precision for
the simulation is required. If mass flow ṁ∈R is small,
variable mass is usually neglected. Effects of thrusters
and jets together with their tanks can be modeled as
variable mass systems.

For the SSL, variable mass systems were imple-
mented based on [9, 10] using the concept of a vari-
able mass cylinder with different models of fuel burn-
ing. The cylinder represents the fuel or gas tank that is
directly attached to the nozzle (of the thruster or jet).

3 The satellite model with flexible
structures

The satellite model consists of flexible structures that
are modeled as modal bodies as described in [12].
They are based on the definition of Standard Input
Data (SID) as defined in [38] as well as rigid bodies
and powertrain elements. The equations of motion of
each flexible part i are given in eq. (3). The ˜(.) oper-
ator is used to generate a skew-symmetric matrix of a
vector.



miI3 sym.
mid̃CM,i(qi) Θi(qi)

Ct,i(qi) Cr,i(qi) Me,i






aR,i

ω̇R,i

q̈i


 (3)

+




2ω̃R,iCT
t,i(qi)q̇i + ω̃R,iω̃R,idCM,i(qi)

Gr,i(q̇i)ω̃R,i + ω̃R,iΘi(qi)ωR,i

Ge,i(q̇i)ω̃R,i + Oe,i(qi)Ω(ωR,i)




+




0
0

Ke,iqi + De,iq̇i


=




ht,i

hr,i

he,i




The meaning of the symbols in eq. (3) are listed in
table 1. The file of a flexible body (SID) can be ob-

Table 1: SID abbreviations
aR,ωR ∈ R3 acceleration of the ref. frame
q ∈ Rne modal amplitudes
m ∈ R body mass
I3 ∈ R3×3 identity matrix
dCM(q) ∈ R3 position of center of mass
Θ(q) ∈ R3×3 inertia tensor
Ct(q) ∈ Rne×3 inertia coupling mat. (trans.)
Cr(q) ∈ Rne×3 inertia coupling mat. (rot.)
kω(ωR,q, q̇) ∈ R3+ne gyro. and centrifugal forces
Ω(ωR) ∈ R6 components of ωR

Ge(q̇) ∈ Rne×3 gyroscopic matrix (modal)
Gr(q̇) ∈ Rne×3 gyroscopic matrix (rot.)
Oe(q) ∈ Rne×6 centrifugal matrix (modal)
h(q) ∈ R3+ne external forces
Me ∈ Rne×ne modal mass matrix
Ke ∈ Rne×ne modal stiffness matrix
De ∈ Rne×ne modal damping matrix

tained from an FEM-analysis (e. g. using ANSYSr

or ABAQUSr in combination with SIMPACKr) di-
rectly from CAD and material data of the component.
In the modal reduction, ne modes are selected and the
required data to calculate eq. (3) is stored in the SID
file. The flexible bodies can be combined with other
flexible and rigid bodies to model the structural dy-
namics of the satellite.

The reaction wheels are driven by a motor together
with a powertrain including friction. Furthermore,
most powertrains used in today’s satellites are very
stiff. Future satellite designs may incorporate more
lightweight constructions with elastic effects in the
powertrains, in combination with more powerful and
agile motors, as in robotics today. For this reason non-
linear elasticity between the motor and the reaction
wheel disk can be taken into account. The elasticity
can result from the material of the drive shaft or due
to the construction of the coupling. By combining one
dimensional models of the powertrain with three di-
mensional inertia and mass elements, computational
efficient models can be designed by using mounting
and rotor elements as described in [34]. To model a
powertrain in a way which can also be used to gener-
ate inverse models is described in [32, 31]. It consists
of approximate friction and nonlinear elasticity mod-
els that have strictly monotonic characteristics.

Using the components of the library, a detailed me-
chanical satellite model can be built. The benchmark
model used here is a satellite model which is based
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Figure 1: Animation of the satellite with the SSL.

on the TET-1 prototype [8], with slightly exagger-
ated elasticities, in order to demonstrate the capabil-
ities of the library and future lightweight satellite de-
signs. Three solar panel elements have been modeled
as modal bodies. These have been generated from
CAD data, a subsequent FEM-analysis, followed by
a modal reduction and finally obtaining an SID model.
The main body of the satellite is modeled as a rigid
body because it is considerably less flexible than the
solar panels. Fig. 1 shows an animation of the satel-
lite generated with the SSL. Three reaction wheels
mounted at the main satellite body are modeled as
rigid bodies representing flywheels. They are con-
nected to one-dimensional (rotational) flexible pow-
ertrains with friction and first order motor dynamics.
The gyroscopic torques of the one-dimensional pow-
ertrain elements are considered in the model by using
the mounted rotor elements as described in [34]. The
gravity g0 which is acting on the rigid and flexible bod-
ies is calculated using the gravity model, which is de-
fined by the (global) satellite world model. Additional
force and torque elements are connected to the satel-
lite to account for the solar radiation pressure and at-
mospheric drag as well as the gravity gradient torque,
described in sec. 2.

4 Inversion of a structural elastic
satellite model

On the top level, a satellite dynamics model has the
structure as shown in the top half of fig. 2.

The motor currents Im are used to drive the reaction
wheels of the satellite, from which in turn the rota-
tion of the satellite is determined by the solution of a
differential-algebraic equation system. In particular,
the angular velocity ωACS of the central satellite frame

Figure 2: Top level view of direct and inverse satellite
model.

Figure 3: Two degree of freedom control of the satel-
lite motors. With feed-forward controller Σ f f , feed-
back controller Σ f b and satellite Σ.

is computed, it will be referred to as the ACS-frame
(Attitude Control System). This computation is a stan-
dard task of satellite simulators.

For advanced control systems, the inverse of this
model is needed, as shown in the lower half of
fig. 2. The previously given motor currents Im shall
now be computed from the desired angular velocity
ωD,ACS. The nonlinear inverse model is based on
the satellite model described in section 3. The ba-
sis for the inversion of a nonlinear (Modelica) model
are index-reduction techniques using the algorithm of
Pantelides. The index reduction method [26, 21] al-
lows to choose which equations have to be used to
generate a DAE of (at most) index one. All Modelica
simulators support this or similar algorithms and au-
tomatically perform the inversion. However, both the
generation of the inverse model, as well as the numeri-
cal computation may fail, if the underlying model does
not fulfill certain requirements. Especially, the system
must be smoothly continuously differentiable up to the
necessary order of differentiation that is determined by
the algorithm of Pantelides.

Such a nonlinear inverse model can be, for example,
used as feed-forward controller Σ f f for the inner con-
trol loop, see fig. 3. An additional outer feedback con-
trol loop based on the satellites star tracker would be
needed to achieve stationary accuracy of the satellite.
For a rigid satellite with rigid powertrains without mo-
tor dynamics ωD,ACS and the equations of motion have
to be continuous differentiable at least once so that the
equations for the inverse model can be solved via the

Nonlinear inverse models for the control of satellites with flexible structures
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ACS-Kinematics

ωD,ACS

ACS-Frame Inversion ACS-Frame Inversion
(I) (II)

Satellite (rigid)
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Reaction

with

wheels

flexible
powertrains

x,y,z

Reaction

with

wheels

flexible
powertrains

(I) (II)

Figure 4: Setup of the approximate inverse satellite
model with flexible solar panels and powertrains. The
global world model provides the gravity model and
simulation time. The environment causes forces and
torques on the satellite as described in section 2. Be-
cause the environment effects can depend on the states
of the satellite, they have to be included for both par-
allel models of the satellite (I & II).

algorithm of Pantelides. For a satellite with flexible
structures and flexible powertrains and first order mo-
tor dynamics, as described in section 3, ωD,ACS as well
as the equations of motion have to be differentiable at
least three times. In practice, this should be increased
by at least one order to avoid non-differentiable motor
currents. If these higher order derivatives of ωD,ACS

are not available, a low-pass filter can be used to ap-
proximately compute ω∗D,ACS and its derivatives (see
[35, 32, 31]). This is a reason why exact sticking
friction cannot be used as part of the inverse model
and an approximation has to be used. For compo-
nents that use non differentiable (e. g. tabular) data like
the NRLMSISE-00 atmospheric density model [28]
the derivatives have to be either approximated or ne-
glected. This can be achieved in Modelica by using
user-defined derivative-functions instead of automatic
symbolic differentiation.

It is also necessary that the inverse model is sta-
ble. For a linear model this means that the model to
be inverted has no (transmission-) zeros in the right
half of the complex plane. For the nonlinear model
this means that the zero dynamics has to be stable.
For highly nonlinear models it is usually very diffi-
cult or even impossible to calculate the zero dynam-

ics analytically (e. g. using methods described in [13]
that involve solving partial differential equations). Of-
ten, the only practical way is to calculate linearizations
of the nonlinear model to verify the stability of the
(transmission-) zeros.

One typical reason for unstable (transmission-) ze-
ros for systems with flexible structures is the non-
collocation of inputs (actuators) and outputs (sensors)
of the system. For structural elastic robots this can
be the case if motor torques are chosen as output and
the robot tip position is chosen as input of an inverse
model [32]. The same problem is also possible for
flexible satellites, e. g. if the main satellite body atti-
tude should be controlled by actuators that are posi-
tioned on a flexible mounting. In general, in order to
achieve a stable inverse model of a flexible satellite,
approximations must be used, as explained in sec. 4.1,
because the exact inverse model is unstable. A first
step for the construction of the satellite’s inverse model
is the definition of a base ACS-frame. The desired an-
gular velocity ωD,ACS of the satellite will be given with
respect to this frame. A good choice for the ACS-
frame is either the center of mass of the satellite, or
the tip-position of an important on-board instrument
of the satellite, e. g. a mounted camera or sensor. This
frame is imposed as a root frame according to the
Modelica MultiBody Library definition [25]. Hence,
the orientation Ra ∈ R3×3 as well as the angular ve-
locity ωa of the frame are computed consistently. In
addition, the kinematic tree of the satellite is rooted
in this frame, although the frame itself can be mov-
ing. This is necessary to handle overdetermined DAEs
with symbolic transformation techniques in a way that
is used in the Modelica MultiBody Library (for further
details see the appendix in [25]). The translation of the
ACS-frame is not restricted and it moves according to
the external forces and the gravity, which act on the
bodies connected to it. This results in a hybrid for-
ward/inverse model corresponding to the translation
and orientation. The model inversion is done by us-
ing the desired angular velocity ωD,ACS as input for the
local angular velocity of the ACS-frame ωa, starting
from a defined angular velocity ωa,0 and orientation.
The original input for the forward model Im, which is
the current of the three reaction wheels, is chosen as
the new output for the inverse model. The computation
of the required angular velocity ωD,ACS, for a specific
maneuver, will be described in section 5.

The ACS-frame is connected to the satellite body
with its actuators. The desired angular velocity ωD,ACS

of the ACS-frame is achieved by adding a set of equa-
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tions to force the angular velocities to the desired val-
ues (using Modelica inverse block constraints). This
results in three additional equations for the calculation
of the torques of the attached torque wheels τw ∈ R3.
The resulting equations for the ACS-frame model are
given in eq. (4).

Ra = frot(φACS) (4a)

ωa = fω(φACS, φ̇ACS) = ωD,ACS (4b)

τa = −τw (4c)

In eq. (4), frot and fω are functions to calculate the
transformation matrix Ra and local angular velocity
ωa. Although the values of the Cardan angles φACS

can jump, the internal representation of the orientation
is calculated using rotation matrices that remain con-
tinuous and show no singularities (see [25] for imple-
mentation details). The ACS-frame is forced to move
along the desired orientation and the required torques
are generated by the attached reaction wheels via τw

from which the motor currents Im can be computed
by inversion of the elastic powertrain and first order
motor dynamics [32, 31]. This is only possible if the
reaction wheels are mounted in such a way that they
can generate the required torque vector τw. Otherwise
the equation system will not be solvable (singular). If
more than three reaction wheels are used, a torque al-
location algorithm has to be implemented in addition.

4.1 Approximation of the deformation of
flexible structures of an inverse satellite
model

For satellites with flexible structures, depending on the
location of the ACS-frame, the exact inverse system
can be unstable, and therefore not useful for a con-
trol system. This can be checked by calculating the
transmission-zeros of the linearized system. If they
have a positive real part, the inverse model will be
unstable. They can be caused by the combination of
flexible structures and the chosen ACS-frame location.
In addition, the exact inversion of the equations of
motion of flexible structures with weak damping can
lead to numerical instability and stiff systems. A solu-
tion for this problem is to obtain an approximation of
the elastic deformations for the inverse satellite model.
Our method is based on a quasi-static approach using
two parallel models. A similar method was already
successfully implemented for the inversion of flexible
robot arms in [32, 31]. Starting points are flexible bod-
ies modeled after eq. (3) from an SID file. In the first

model, quasi-static approximations for the elastic de-
formation q̂∈Rne are calculated. In the second model,
these deformations are used as input for the flexible
parts and the resulting forces are re-calculated. Fig-
ure 4 shows an overview for the setup of the inverse
satellite model with flexible solar panels and power-
trains. For the first of the two parallel models, the
equations of motion for a flexible body are given in
eq. (5). The index i for each component is omitted
here.

(
mI3 sym.

md̃CM|q=0 Θ|q=0

)(
a(r)

R

ω̇(r)
R

)
(5a)

+

(
ω̃(r)

R ω̃(r)
R dCM|q=0

ω̃(r)
R + ω̃(r)

R Θ|q=0ω(r)
R

)
=

(
h(r)

t

h(r)
r

)

h(r)
e = Ct |q=q̂g(r)

re f (5b)

+
nnode

∑
j

(
ΦT

m, j|q=q̂ f (r)
re f , j + ΨT

m, j|q=q̂τ(r)
re f , j

)

= Ct |q=q̂a(r)
R +Cr|q=q̂ω̇(r)

R + Ge|q=q̂ω(r)
R

+Oe|q=q̂Ω(ω(r)
R )+ Keq̂ + De ˙̂q

The notation (.)(r) denotes variables calculated using
the assumption that forces which cause the deforma-
tions can be approximated by neglecting elastic defor-
mations (quasi-static). This also leads to a simplifica-
tion of terms that would normally depend on the elastic
deformation q. Therefore, the flexible structural parts
are calculated as rigid bodies and approximations for
the deformations q̂ are calculated using eq. (5) in the
first parallel model. To get a stable approximation,
terms for the second derivative with respect to time
involving ¨̂q are neglected in eq. (5), so that a nonlin-
ear first order differential equation (that is linear in its
highest derivative ˆ̇q) is obtained to approximate q in
the inverse model.

The approximation q̂ is used as input for the sec-
ond (parallel) inverse satellite model. In the second
model, the approximations for q̂ are used to recalculate
all forces and positions. This is necessary because the
resulting deformations change the forces and torques
that act on the connected bodies. The equations of mo-
tion of the flexible parts in the second model are given
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in eq. (6).

(
mI3 md̃T

CM|q=q̂ CT
t |q=q̂

md̃CM|q=q̂ Θ|q=q̂ CT
r |q=q̂

)



a(II)
R

ω̇(II)
R
¨̂q


 (6)

+

(
2ω̃(II)

R CT
t |q=q̂ ˙̂q + ω̃(II)

R ω̃(II)
R dCM|q=q̂

Grn|q̇= ˙̂qω̃(II)
R + ω̃(II)

R Θ|q=q̂ω(II)
R

)

=

(
h(II)

t

h(II)
r

)

Because the approximation of the modal amplitudes
q̂ are used directly as input, equations for the modal
forces he are not necessary in eq. (6). In this equation,
the second derivative ¨̂q is again considered. In gen-
eral, if the flexible parts are connected to each other,
it is also possible that the reference accelerations and
velocities as well as the external forces change, so they
are denoted with the notation (.)(II).

This approximation is valid for small deformations
and smooth reorientation maneuvers without extreme
external forces and can always be calculated where
otherwise no solution could be found (because the ex-
act inverse model would be unstable, depending on the
chosen ACS-frame location). If the approximation is
sufficient for a specific application can be verified by
simulating the approximate inverse model in combina-
tion with the original forward model and looking at the
resulting error in the calculated torques and deforma-
tions. If the resulting error is within the mission toler-
ance, the approximation can be used. A feedback con-
troller can minimize the remaining error. A typical re-
sult for the approximation shows fig. 5, where the first
bending mode of an outer solar panel is compared to
the resulting first mode of the solar panel without ap-
proximation, when using the computed motor currents
Im as feed-forward command (without any feedback
controller). The approximation q̂1 follows q1 closely,
but a residual vibration remains at the end of the move-
ment which results from the (stable) first order approx-
imation for the modal amplitude in eq. (5). This vibra-
tion can be further damped by a feedback-controller.

The resulting state xinv, input uinv and the output yinv

for the inverse model model setup of fig. 4 is given
in eq. (7). The state of the inverse model consists of
the states of several subsystems. The states of the
ACS-frame xACS, the three powertrains xPT and the
states of the approximation of the modal amplitudes
q̂s for the three solar panel elements. They are mod-
eled with ne = 3 modes for each panel. For the pow-
ertrains the flexibility of the connection to the reaction
wheels is modeled as spring damper systems (states
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Figure 5: Comparison of the first mode (normalized)
between approximation q̂1 and resulting mode q1.

ϕrel,PT , ϕ̇rel,PT ). Because the parallel model setup is
used, two sets of states (I & II) are needed for xACS

and xPT .

xinv =
(

x(I)
ACS,x

(II)
ACS,x

(I)
PT ,x

(II)
PT , q̂s

)T
∈ R51 (7a)

uinv = ωD,ACS ∈ R3,yinv = Im ∈ R3 (7b)

with:

xACS = (φACS,r0,ACS,v0,ACS) (7c)

xPT = (ϕm, ϕ̇m,ϕrel,PT , ϕ̇rel,PT ) (7d)

If the input for uinv is not differentiable, a filter has to
be used and the states of the filter are then also part of
xinv. Simulation results showed that the inverse satel-
lite model can be used to accurately calculate the re-
quired motor currents and estimate the deformations of
the flexible parts using the new approximation method
for typical trajectories.

5 Computing optimal trajectories us-
ing inverse satellite models

The goal of the attitude trajectory optimization is to
find optimal motor currents Im ∈ R3 reorienting the
satellite from a starting orientation QD,0 (using a unit
quaternion representation QD ∈ R4) at time t0 to a de-
sired end orientation QD, f at time t f . Using a forward
model of the satellite with flexible structures, this op-
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timization problem is defined by eq. (8).

min
{

ξtt f + ξI ∑3
i=1

(∫ t f
t0 |Im,iϕ̇m,i|dt

)}
(8a)

with:

F(t,x, ẋ,z,u) = 0,x(t0) = x0, t ∈ [t0, t f ] (8b)

Q(x0,z0, t0) = QD,0 (8c)

constrained by:

|ϕ̇m| ≤ ϕ̇max
m (8d)

Q(x,z, t) = QD, f for t ≥ t f (8e)

with control function:

uc(t) = Im(t) ∈ R3, |Im,i| ≤ Imax
m (8f)

The chosen criteria allows the optimization of time- or
energy-optimal attitude trajectories (or mixtures). The
term F(t,x, ẋ,z,u) = 0 represents the nonlinear satel-
lite model in implicit DAE form where t denotes the
time, x the states, u the inputs (unknown motor cur-
rents u = Im) and z the algebraic variables of the sys-
tem. The scalar factors ξt ,ξI ∈ R+ are used to weight
the criteria for the optimization. The factor ξt weights
the resulting end time t f for which the end orientation
QD, f is reached, while ξI is a weight for the energy cri-
teria and ϕ̇m ∈ R3 are the motor angular velocities for
the three motors.

The optimization problem in eq. (8) is difficult to
solve directly because of the large solution space for
Im(t) in combination with the strict constraint for the
end orientation. By using an inverse satellite model
with flexible structures from section 4 and a param-
eterization of the orientation, the optimization prob-
lem can be greatly simplified. The desired orienta-
tion is restricted to a path QD(s(t)) which is calcu-
lated by using a spherical linear quaternion interpo-
lation (SLERP, see [6]) along a scalar path parameter
s(t) ∈ [0,1]. This results in an interpolation from the
starting orientation QD,0 = QD(s = 0) to the end orien-
tation QD, f = QD(s = 1). The desired angular veloc-
ity ωD,ACS for the ACS-frame which is used as input
for the inverse satellite model can be calculated using
eq. (9) where ω0 is the initial angular velocity of the
ACS-frame resolved in the ECI-frame and qi are scalar
elements of QD.

ωD,ACS = 2




q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3


 Q̇D (9)

+2
(
(q4q4−0.5)ω0 +((q1,q2,q3)T ω0)(q1,q2,q3)T

−q4((q1,q2,q3)T ×ω0)
)

The resulting optimization problem is described in

eq. (10).

min
{

ξtt f + ξI ∑3
i=1

(∫ t f
t0 |Im,iϕ̇m,i|dt

)}
(10a)

with:

F(t,x, ẋ,z,uc) = 0,x(t0) = x0, t ∈ [t0, t f ] (10b)

constrained by:

|ϕ̇m| ≤ ϕ̇max
m (10c)

|Im,i| ≤ Imax
m (10d)

∫ t f
0 uc(t)dt = s(t f ) = 1 (10e)

with control function:

uc(t) = ṡ(t) ∈ R+ (10f)

uc(t0) = uc(t f ) = u̇c(t0) = u̇c(t f ) = 0 (10g)

To achieve a finite optimization problem, the infinite
possibilities for the path parameter s(t), given by the
integration over the control function uc(t), have to be
limited by using an appropriate parameterization. This
is performed by using a B-spline [7] of order ns = 3
to parameterize uc(t). Using inverse models in com-
bination with a path parameter s(t) ∈ [0,1] inside the
optimization offers great advantages over a direct op-
timization of the motor currents:

• The number of necessary tuners2 is much smaller.
Instead of having to parametrize all three motor
currents Im(t), only one scalar function uc(t) has
to be parametrized.

• The optimization does not have to stabilize the
system like a controller. Using the desired path
QD(s) as input for the inverse model results in
reaching QD, f exactly.

The equality condition s(t f ) = 1 can still be difficult
to achieve for optimization algorithms. There are two
possible ways to overcome this. One possibility is to
avoid the equality condition by using an additional cri-
teria for the optimization in the form of eq. (11).

(s(t f )−1)2→ min (11)

However, this can lead to an unacceptable error in the
end-orientation QD, f . A better way to avoid the equal-
ity condition is to directly reshape the B-spline control
vector dc each time the tuner vector is modified by the
optimization algorithm. The modified vector is called

2The word tuners is used for the free parameters of an opti-
mization that are changed by the optimizer.

Nonlinear inverse models for the control of satellites with flexible structures

584 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096577



d+
c ∈ Rnc and is calculated using eq. (12).

d+
c =

dc∫ t f
0

(
∑nc

i=1 dc,iNi,ns(t)
)

dt
(12a)

⇒ s(t f ) =
∫ t f

0

(
nc

∑
i=1

d+
c,iNi,ns(t)

)
dt = 1 (12b)

This reshaping leads directly to s(t f ) = 1 so that the
optimizer does not have to fulfill the equality condi-
tion by itself. For time optimal optimizations t f is also
a tuner and the discrete B-spline control points ti are
reshaped to lie in the interval [0, t f ] if t f is modified by
the optimization algorithm.

5.1 Trajectory optimization results

Trajectory optimizations on the basis of an inverse
satellite model were performed for a reorientation ma-
neuver of 28◦ around the axis erot = (1,1,1)T .
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Figure 6: Motor currents for the energy optimal con-
trol function.
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Figure 7: Energy optimal control function for fixed t f .

All optimization are performed using a B-spline pa-
rameterization of the control function with dc ∈R30 as
described in the last section. Starting values are found
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Figure 8: Motor currents for the time optimal control
function.
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Figure 9: Time optimal control function.

using a global genetic algorithm with a population size
of 100 and a rigid inverse satellite model. After good
initial parameters have been found, the parameters are
refined using a local pattern search algorithm [14, 27]
with a complete approximate structural elastic inverse
satellite model as described in sec. 3 (including flexi-
ble powertrains and flexible solar panels). For both op-
timization steps the reshaping of the tuners was used
as described in the last section.

The first optimization was performed for a fixed
end-time t f = 10s. It was the goal to minimize the
required energy of this maneuver, according to the cri-
teria given in eq. (10) with ξt = 0 and ξI = 1. The plots
in fig. 6 and fig. 8 show the resulting optimized mo-
tor currents and the corresponding control functions
as shown in fig. 9 and fig. 7. The second optimization
was performed for the parameters ξt = 1 and ξI = 0 in
eq. (10) with free end time t f (as tuner) and results in
a time optimal solution for the given path. The result-
ing trajectories allow to reorient the satellite accord-
ing to the desired SLERP path. Although there are
still oscillations of the flexible components (e. g. solar
panels), they are compensated by the reaction wheels
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such that the ACS-frame follows the desired path. In
addition, limitations on the motor currents and motor
velocities are maintained. Small errors that result from
the approximations used for the generation of the in-
verse model can be compensated by a feedback con-
troller (in addition to modeling errors in the case of a
real satellite).

6 Conclusion

In this paper, we have presented the Space Sys-
tems Library which provides components for satel-
lite/spacecraft nonlinear modeling in Low Earth en-
vironment. We demonstrated the library capabilities
with a new method for model-based attitude control of
a satellite with flexible solar panels.

The method consists on transferring the inverse flex-
ible model approach, successfully implemented in the
field of industrial robotics, to the application of flexi-
ble satellites modeling and control.

The inverse satellite model allows the computation
of the motor currents for a given trajectory of the satel-
lite in a way that the elasticity of the powertrains and
flexible solar panels is taken into account and compen-
sated. Using the inverse model, optimal re-orientation
maneuvers have been computed for energy and time
optimality. The use of inverse satellite models in this
optimization greatly improves the optimization pro-
cess by simplifying the problem considerably.

As part of a two degree of freedom control sys-
tem, the inverse satellite model can be used as a feed-
forward controller to compensate elastic effects and
other modeled nonlinear effects that act on the satel-
lite.
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Abstract

Stage separation dynamics modeling is a critical capa-
bility of future launchers preparatory studies. The de-
velopment of stage separation frameworks integrable
in end-to-end launch vehicle trajectory simulations
have been presented in the relevant literature but none
profiting from the object-oriented and equation-based
acausal modeling properties of MODELICA. The ob-
jective of this paper is therefore to present such an ap-
proach to this problematic. Based on theConstraint
Force Equation (CFE) methodology, two case studies
to evaluate the proposed approach are considered. Re-
sults demonstrate that the approach corresponds very
well with the physics behind separation. In addition,
we found easiness of implementation of the method
within a single environment such as DYMOLA , demon-
strating the benefits of an integrated approach.

1 Introduction

Stage separation dynamics modeling is a very chal-
lenging task and a critical capability that must be
considered in the preparatory studies and develop-
ment of next generation launchers [14, 16, 17]. The
integration of such stage separation modeling into
a single environment capable of end-to-end launch
vehicle trajectory simulation is also a key technology
to aim for.

The importance of such capability arises from the
fact that after separation, the integrity of each stage
must be kept in order to guarantee overall success
of the space mission pursued. In this sense, the
development of an integrated framework for analysis
and simulation of stage separation is desired.

Early efforts on the subject of multi stage launch
vehicle separation from the 60’s and 70’s are mainly

from NASA studies [1, 2, 4] and theirProgram
to Optimize Simulated Trajectories (POST) as a
generalized trajectory simulation and optimization
software [5], developed in partnership with the (then)
Martin Marietta Corporation. Renewed interest in
the subject in the 2000’s led NASA’s development
of a stage separation conceptual separation tool,
ConSep [11, 12, 13, 14]; which is a MATLAB -based
wrapper to the commercially available ADAMS solver,
as its predecessorSepSim. However, beingSepSim
and ConSep dependent on the commercial software
ADAMS, they have the disadvantage of not being
easily integrable in a generic trajectory simulation
software. This in turn eludes the capability of per-
forming efficient end-to-end launch vehicle trajectory
simulations. As a result, a generalized approach
to stage separation problems of launch vehicles
was developed [16]. The approach, coined as the
Constraint Force Equation (CFE) methodology, was
implemented into theProgram to Optimize Simulated
Trajectories II (POST2), the POST follow-up. Sep-
aration studies applied to real platforms such as the
Hyper-X or the Space Shuttle can be found in [18, 10].
The thesis [15] studies launcher separation analysis
with OPENMODELICA but results in a tool (OMSep)
which is only capable of input-output analysesat
separation time, and not for generic launch vehicle
trajectories.

As yet, an object-oriented and equation-based acausal
modeling approach to stage separation dynamics
integrable in end-to-end launch vehicle trajectory
simulations is still missing. Such approach could
potentially facilitate the integration of this and other
capabilities within a single multi-physics environment
such as DYMOLA .

The objective of this paper is therefore to present
such an alternate approach to stage separation dynam-
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ics based on the CFE methodology using MODEL-
ICA [7, 8]. We do this by means of the following
sub-objectives: We study first the modeling challenges
of multi-stage launcher separation dynamics; then we
present an approach based on CFE implemented in
MODELICA; following, we provide two case studies
for which we apply the method; and finally we present
some results and discussion, outlining benefits and dis-
advantages.

2 Modeling

For the simulation of launch vehicle stage separation
dynamics, it is necessary being able to model two bod-
ies connected together according to properly-selected
constraints prior to their physical separation; and at
the release command of such constraints, their sub-
sequent and independent flight motion must continue.
This section presents the separation dynamics and the
separation mechanisms modeling aspects.

2.1 Separation dynamics

We refer to separation dynamics in this paper the study
of the effects of forces and torques of a two-body
system during their physical separation.

Such separation dynamics modeling clearly exhibits
discontinuities similar to those described by other
phenomena such as switching, limiting, friction,
etc. Modeling must deal with these problems in
special ways since this kind of behavior is sensitive
to numerical solution errors, initial condition calcula-
tion/propagation, and integration in general.

MODELICA offers the possibility to implement a.o.
several methods for such phenomena:

− Stop and restart: The complete system is simu-
lated as a single body until separation time. Then
the system is splitted into two bodies with inde-
pendent states, and initial conditions are prop-
agated accordingly. This solution however re-
quires the split of two (or more) events.

− Regularization: This methodology consists on
applying the constraint between the two bodies
during their connected motion with a smooth but
very stiff spring-damper system. This avoids the
use of strict discrete or event behaviors. Such
methodology is commonly used for simulation of
friction, stiction, and other similar nonlinear be-
havior.

− Hybrid: This methodology consists on treating
the simulation as a hybrid state machine where
continuous and discontinuous behaviors are con-
ditioned with data flows and proper transitions.
This hybrid state machine framework is however
complex to integrate in generic form for launch
vehicle trajectory simulations.

− Constraint Force Equation (CFE) Methodology:
The CFE methodology [16, 17, 18] consists on
computing internal constraint forces and mo-
ments on two bodies during their connected mo-
tion and their application as external forces and
torques to each of them separately. On separation
command, these internal forces are set to zero,
and then each body carries their own flight mo-
tion separately.

Of these methods, particular interest due to its appli-
cability and easiness of implementation is given to the
CFE methodology, which is selected as the primary
method for the follow up of this study.

2.1.1 Constraint Force Equation Methodology

The Constraint Force Equation (CFE) methodol-
ogy [16, 17, 18] is a highly intuitive method consist-
ing in the computation of joint loads, namely internal
forces and torques, caused by joint constraints; along
with their application as external forces and torques on
each body independently, see Figure 1.
The joint loads which constrain one body’s motion
relative to the other are dependent upon the external
forces acting on each body as well as the type of joint.
The net forces and torques on each body are therefore
the sum of the usual external forces and torquesplus
the joint loads applied to each body as additional ex-
ternal forces and torques. In consequence, the CFE
joint model simply augments the external loads of the
system [17]. Quoting step by step [16, 17], the equa-

Figure 1: CFE diagram. Illustration credits: [16].
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tions of constrained motion of two rigid bodies (A and
B) connected by a single joint (pointA in bodyA and
point B in bodyB) are as follows:

F(ext)
A +F(con)

A = mAẍA, (1)

T(ext)
A +ρAF(con)

A +T(con)
A = IAω̇A +ωA × IAωA (2)

whereρA is the position vector from the mass center
of A to point A of A at which the constraint force is
applied. Similarly forB:

F(ext)
B +F(con)

B = mBẍB, (3)

T(ext)
B +ρBF(con)

B +T(con)
B = IBω̇B +ωB × IBωB. (4)

There are so far 24 unknowns and 12 equations. An-
other set of six equations can be obtained from the law
of action and reaction:

F(con)
A +F(con)

B = 0 (5)

T(con)
A +T(con)

B +(rB − rA)×F(con)
B = 0 (6)

whererA = xA +ρA andrB = xB +ρB.

Six equations are missing. Worth noticing at this
point, we only consider asingle joint which constrain
all six remaining degrees of freedom between the two
bodies. This is because our focus is towards trajectory
simulations and having multiple connections is not
necessary unless when considering actuator sizing,
sensitivity analyses, etc. In general, the CFE method-
ology allows to consider any type of joint which
allows or not any specific relative motion between
bodies; and redundancy of joints when necessary.

In this sense, for relative translation constraints ande
being unit-vectors of the corresponding (A or B) body-
frame, it is required that:

(rB − rA) · eA = 0 (7)

meaning that the distance between the two points of
a particular direction remain fixed. And finally, for
relative rotations constraints, it is required that:

eA · eB = 0 (8)

meaning that three properly selected two-unit-vector
sets must remain perpendicular.
Eqs. (7)-(8) would have to be differentiated twice with
respect to time so that the resulting relationships in-
volve the unknown accelerations and angular acceler-
ations, thus finally being able to couple them with the

equations of motion. In other words, the six missing
equations are given by the following generalized con-
straint equations of the joint:

g̈ = 0 (9)

whereg represents either of the nondifferentiated con-
straints in Eqs. (7) and (8). As it will be demon-
strated in the next section, the manual differentiation
of Eqs. (7)-(8) and their coupling with the equations
of motion can be avoided altogether by the MODEL-
ICA implementation since this is done automatically.
The last important aspect of the CFE methodology rel-
evant to this work is the accuracy of the joint loads
solution, which is sensitive to computational error
and initial joint missalignment [17]. To handle such
concern, the CFE algorithm could feature a.o. a sta-
bilization technique known as Baumgarte stabiliza-
tion [3, 6, 16]. This particular stabilization technique
consists on replacing the ODE given by Eq. (9) which
allows perturbations to grow linearly with time, by the
following asymptotically stable ODE (η > 0) involv-
ing terms of the once differentiated and nondifferenti-
ated forms ofg:

g̈+2η ġ+η2g = 0 (10)

however at the expense of more computational effort.
Many other stabilization techniques [6] could be im-
plemented; these other methods, and a guidance for
selectingη are however out of the scope of this paper.

2.2 Physical modeling of multi-stage separa-
tion mechanisms

Separation mechanism refers in this proposal to a
mechanical model (or device) that makes separation
possible in simulation (or reality). Physical modeling
refers in this context on the capability to model
separation behaviour by considering first principles
(kinematics, dynamics, mechanics, physics, etc.); and
being able to get realistic insight from such models
for other purposes such as actuator sizing, sensitivity
analyses, control, optimization, etc.

Based on our internalDLR Space Systems Library,
separation mechanism physical models of different
complexity levels can be studied. Simplified models
for preliminary and conceptual studies; and more
detailed ones for engineering validation aspects.
These varying degrees of complexity would be helpful
in order to perform separation mechanics analyses and
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to assess the performance of the overall separation.

Configuration details of the separation mechanisms as
well as their physical specifications must be provided
to achieve more detailed and realistic models. Con-
cerning the simple models, four variants have been
studied:

− Linear charge (release device): The linear charge
model performs ideal or benchmark separation
between two bodies. This mechanism “cuts”
the two-body system on command. It simu-
lates (ideal) explosive release devices, clamps, di-
aphragms, or point-release devices such as explo-
sive bolts.

− Bushing (separation impulse device): This model
performs an impulsive reaction due to the release
of a smooth but very stiff spring-damper system
which keeps the two body system connected until
separation command.

− Kick-off spring (separation impulse device):
Same as before, the impulsive reaction due to the
release of a spring-damper system simulates the
proper transmission of forces and moments of the
two-body system during separation. This model
is implemented with theConstraint Force Equa-
tion (CFE) methodology. This element is com-
bined with a release device to simulate a realistic
kick-off spring mechanism.

− Generic (auxiliary devices): Other generic de-
vices can be modeled in combination with the
previous models, or with any other physical
model from the library.

3 MODELICA implementation

In this section, the MODELICA implementation of
separation mechanism models is presented. The
challenges of this implementation strongly depends
on the method selected as outlined in Section 2.
Since the separation models in this work relies on a
proper combination of the CFE methodology with
physically-relevant elements, the implementation is
not a straightforward application of existing MOD-
ELICA libraries; other aspects such as proper setup
of initial conditions, state selection, modularity, and
extendability are also challenging.

Figure 2: DYMOLA simulation layout consisting on a
world model, two instances of rigid bodies, the sepa-
ration mechanism model, and a boolean input for the
separation command.

The baseline for the development of separation dy-
namics and separation mechanisms is the following
partial mechanism model:

p a r t i a l model Par t i a lMechan i sm
" P a r t i a l s e p a r a t i o n mechanism model "
I n t e r f a c e s . F r a m e _ af rame_a

" J o i n t f rame a " ;
I n t e r f a c e s . F r a m e _ bframe_b

" J o i n t f rame b " ;
I n t e r f a c e s . B o o l e a n I n p u tu ;

end Par t i a lMechan i sm ;

As shown in the code, the partial mechanism in-
terface model consists of two frames to connect a
two-body system, and a boolean input for the ignition
or separation command. Such interface allows the
use of several separation models depending on the
desired level of complexity by using repleaceable
instances. The approach here is bottom-up design,
where the basis of separation dynamics simulation
comes first from a single instance of a ‘release device’
mechanism.

In this work, a release mechanism model is imple-
mented to simulate both a linear charge device com-
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monly used in launcher stage separation, where the
forces and moments at separation are zero; and as a
base model for the next level of complexity. In other
words, for the implementation of a separation impul-
sive device, an instance of a release device providing
the capabilities of joint motion until separation is re-
quired on top of another physical model providing the
corresponding impulsive forces or moments at the time
of separation. Therefore, increasing the functionality
to the separation model will consist on adding impul-
sive devices or simply improving the physics behind
the device in question.

model Separa t ionMechan ism
" S e p a r a t i o n mechanism model "
I n t e r f a c e s . F r a m e _ af rame_a

" Mechanism frame a " ;
I n t e r f a c e s . F r a m e _ bframe_b

" Mechanism frame b " ;
I n t e r f a c e s . B o o l e a n I n p u tu ;
r e p l a c e a b l e I n t e r f a c e s . P a r t i a l M e c h a n i s m

end Separa t ionMechan ism ;

The implementation of the CFE procedure in MOD-
ELICA is as follows. The generalized constraint equa-
tions of the joint (9) have to be differentiated twice
as explained before. Translational and rotational con-
straints at the joint are hence implemented as:

equat ion
/ / g e n e r a l i z e d c o n s t r a i n t s
g_con = f r a m e _ a . r _ 0− f r a m e _ b . r _ 0 ;
G_con = F r a m e s . r e l a t i v e R o t a t i o n( f rame_a.R

, f rame_b.R ) ;

/ / g e n e r a l i z e d v e l o c i t y c o n s t r a i n t s
g_con_dot = der ( g_con ) ;
G_con_dot = F r a m e s . a n g u l a r V e l o c i t y 2( G_con

) ;

/ / g e n e r a l i z e d a c c e l e r a t i o n c o n s t r a i n t s
g_con_ddot = der ( g_con_dot ) ;
G_con_ddot = der ( G_con_dot ) ;

/ / CFE g e n e r a l i z e d j o i n t c o n s t r a i n t s
g_con_ddot = { 0 ,0 ,0} ;
G_con_ddot = { 0 ,0 ,0} ;

In short, we present briefly two of the main models
developed in this work:

− Linear charge (separation release device): A re-
lease device is modeled by an instance of theSep-
arationMechanism model, called for instancelin-
earCharge, which contains the partial interface
outlined before, plus a switching mechanism be-
tween the CFE methodology and free body mo-

tion.

− Kick-off spring (separation impulse device): An
impulsive device is modeled by an instance of the
SeparationMechanism model, called for instance
kickOffSpring, which contains alinearCharge
instance, plus a replaceableseparationMecha-
nism instance simulating the physics behind the
impulsive device, such as a spring-damper sys-
tem.

For a practical scenario to study, consider the trajec-
tory phase of a generic launcher where the payload
(Body B - the satellite to be placed in orbit) is to
be separated from the remaining launcher upper stage
(Body A - assuming a multi stage launcher). In this
case, the problem consists of two bodies flying to-
gether under the effect of gravity in joint motion (the
composite) up until separation is commanded. The
separation command is usually given immediately af-
ter the shut down of the upper stage main engine. In
this study however, we provide the separation com-
mand at any specified time. Figure 2 shows the DY-
MOLA simulation layout while Figure 3 shows a sim-
ulation of the physical setup of the case studies.
Initial conditions with respect to Earth-Centered-
Inertial (ECI) frame of the composite are given to
Body A as follows:

xA(t = 0) =




1.1378×107

0
0


m,

vA(t = 0) =




0
5.9188×103

0


m/s

and their translational and rotational dynamics are ob-
tained from the rigid body model of theModelica
Multibody Library [9]. In the following section, we
will study the separation dynamics implementation in
MODELICA by means of two case studies: the first one
considers the upper stage and payload (the composite)
joint motion, while the second study considers the sep-
aration phase. For both cases, the forces due to gravity
acceleration are obtained from the EGM96 model im-
plemented in our internalDLR Space Systems Library.
Both case studies are implemented in DYMOLA and
the solution is computed using the DASSL solver with
a tolerance of 1e−7. A smaller tolerance of this solver
would increase significantly the resulting chattering
when Baumgarte stabilization is used.
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equat ion
. . .

/ / CFE g e n e r a l i z e d j o i n t c o n s t r a i n t s w i th Baumgarte s t a b i li z a t i o n
g_con_ddot + 2∗ e t a∗g_con_dot + e t a∗ e t a∗g_con = { 0 ,0 ,0} ;
G_con_ddot + 2∗ e t a∗G_con_dot + F r a m e s . O r i e n t a t i o n . e q u a l i t y C o n s t r a i n t( f rame_a.R ,

f rame_b.R ) = { 0 ,0 ,0} ;

Figure 3: Simulation of the physical setup of the case
studies.

Table 1: Mechanical properties of the two-body sys-
tem.

Property BodyA Body B Units

Mass 6000 1000 Kg
I11 23000 800 Kg·m2

I22 23000 800 Kg·m2

I33 18000 600 Kg·m2

I21 = I31 = I32 0 0 Kg·m2

3.1 Case study I: upper stage and payload
(composite) joint motion

The joint motion of the composite (BodiesA andB, the
upper stage and the payload respectively) is simulated
for a total time of 2000 s. During such motion, the
MODELICA implementation of the CFE methodology
is expected to derive automatically the joint constraint
forces and torques such that the two-body system stays
properly connected, with relative zero displacement.
This case study therefore accounts for the validity of
such implementation.

3.2 Case study II: upper stage payload sepa-
ration dynamics

The upper stage payload separation is simulated in a
practical scenario setup. It consists of a simulation of
20 s, half of which is in connected or joint motion, and
then att = 10 s, the ignition command for separation is

given. At this point, a kick-off spring separation mech-
anism model is in charge of the dynamical separation
between the bodies. The subsequent independent mo-
tion of each body is then expected. This case study
therefore accounts for the applicability of the physical
models of separation mechanisms implemented.

4 Results and discussion

As outlined in the last section,Case Study I accounts
for the study of internal forces and torques of the
composite joint motion during a given portion of its
trajectory by means of theConstraint Force Method-
ology implemented in MODELICA. During such joint
motion, an important metric to assess the proposed
method is the relative joint displacement between the
two bodies when they are supposed to stay connected,
as proposed and suggested by [17].

In this respect, Figure 4 presents the resulting
constraint forcesf[i] and torquestau[i] at the joint
during the connected motion, in all ECI directions
i = x,y,z, respectively; while Figure 5 presents the
resultingrelative joint positionrrel[i] and therelative
joint velocity vrel[i], in all ECI directionsi = x,y,z,
respectively.

Results shows that the corresponding joint constraint
forces and torques, obtained automatically by MOD-
ELICA in order to satisfy the CFE methodology
constraints successfully keeps the bodies properly
connected (hence, the composite) during their con-
nected flight motion. Such result is evidenced looking
at the relative joint position and relative joint velocity
between the two bodies, which are supposed to be
zero during the connected flight. A clear disadvantage
for long simulation periods of joint composite motion
is the necessity to keep the drift within physical
boundaries, hence requiring a stabilization method.
Stability and accuracy of the solution, especially for
large simulation times, are improved with the addition
of the Baumgarte stabilization. Nevertheless at the
expense of chattering as shown in Figures 4-(b), 4-
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(a) Constraint forces at joint during connected motion with CFE
methodology, in all ECI directionsi = x,y,z.
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(b) Constraint forces at joint during connected motion with CFE
methodology plus Baumgarte stabilization withη = 2, in all ECI
directionsi = x,y,z.
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(c) Constraint torques at joint during connected motion with
CFE methodology, in all ECI directionsi = x,y,z.
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(d) Constraint torques at joint during connected motion with
CFE methodology plus Baumgarte stabilization withη = 2, in
all ECI directionsi = x,y,z.

Figure 4: Case Study A results: constraint forces and torques at joint during connected motion.

(d), 5-(b), 5-(d), meaning more computational time
and effort.

Case Study II, as outlined in the last section, accounts
for the study of absolute− and relative− position,
velocity, and acceleration, respectively, between the
two bodies from a multi-stage separation dynamics
practical scenario. In here, the ‘release device’ sim-
ulated by a linear charge model has been augmented
with an ‘impulsive device’ in parallel simulated by
a kick-off spring model in order to simulate such a
separation mechanism between the two bodies at their

time of release from each other.

In this respect, Figure 6 presents the bodies’relative
position rrel[i], velocity vrel[i], and acceleration
arel[i] along the ECI orbital flight directioni = y
(which is valid only for such a very small time frame)
during the connected motion (first 10 seconds), and
during their subsequent separation (last 10 seconds).
Figure 6 also presents a zoom of the small time
window just around the separation command.

Results of this separation scenario shows the corre-
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(a) Relative joint position during connected motion with CFE
methodology, in all ECI directionsi = x,y,z.
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(b) Relative joint position during connected motion with CFE
methodology plus Baumgarte stabilization withη = 2, in all ECI
directionsi = x,y,z.
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(c) Relative joint velocity during connected motion with CFE
methodology, in all ECI directionsi = x,y,z.
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(d) Relative joint velocity during connected motion with CFE
methodology plus Baumgarte stabilization withη = 2, in all ECI
directionsi = x,y,z.

Figure 5: Case Study A results: relative joint position and velocity during connected motion, in all ECI direc-
tionsi = x,y,z.

sponding relative states of the composite up until sep-
aration command and then their subsequent indepen-
dent flight. Once again, the benefit and ease of use of
the MODELICA implementation of the CFE method-
ology is evidenced during the connected flight of the
composite, since constraint forces and torques are au-
tomatically computed and applied to the system. At
separation, the relative states suggest an impulsive be-
haviour due to the kick-off spring separation mecha-
nism model. This model releases a pre-compressed
force stored in a replaceable spring-damper model, ev-

idencing good correspondence with the physics behind
separation. Such devices result in impulsive forces ap-
plied to the two-body system. This in turn causes a
change in relative velocity and therefore, a successful
physical separation of the system.

5 Conclusion

The objective of this paper was to present an
object-oriented and equation-based acausal modeling
approach to launch vehicle stage separation dynamics
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with MODELICA. The aim is to develop an integrated
approach for end-to-end launch vehicle trajectory
simulation within a single environment.

Based on theConstraint Force Equation (CFE)
methodology, two case studies to evaluate the pro-
posed approach were considered. The scenario under
study consisted of two bodies –representing a generic
launcher stage and its payload– prior, during, and
after their separation in orbital flight motion.

Results demonstrated that the approach, mainly
thanks to the acausal and equation-based modeling
features of the MODELICA language, corresponds
very well with the physics behind separation while
providing easiness of implementation within a single
environment such as DYMOLA . The method computes
and applies constraint loads automatically during joint
motion and removes them accordingly at separation
time, all in consistency with the CFE methodology.

A disadvantage for long simulation periods of joint
body motion is the necessity to keep the drift within
physical boundaries, hence requiring a stabilization
method. This in turn increases chattering and com-
putational time and effort, thus resulting in a trade-off
to consider for the task at hand. Validation studies are
left to future work.
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(a) Relative position between bodiesA andB. The initial relative
position (5.8 m) corresponds to the fixed distance between the
bodies center of masses during joint motion.
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(b) Same as (a) with a close view around time of separation.
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(c) Relative velocity between bodiesA andB.
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(d) Same as (c) with a close view around time of separation.
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(e) Relative acceleration between bodiesA andB.

 

 

arel[y] (along orbital direction)

R
el

at
iv

e
ac

ce
le

ra
tio

nar
el

[m
/s

2
]

Time [s]
9.95 10 10.05 10.1

−50

0

100

200

(f) Same as (e) with a close view around time of separation.

Figure 6: Case Study B results: Relative position, velocity, and acceleration from a kick-off separation scenario
along orbital flight directioni = 2. Ignition / separation command att = 10 s.
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A Modelica Library for Scalable Modelling of Aircraft
Environmental Control Systems
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Abstract

In the design process of complex technical systems
such as environmental control and cooling systems for
modern commercial aircraft, modelling and simulation
is widely used. Simulation can provide viable insight
during all phases of the system design cycle, but the
questions to be answered by a simulation activity vary
along the advancement of the design process. In this
paper, the Modelica library developed in the Clean
Sky project TEMPO is presented. The aim of the lib-
rary is to support scalable system models which can
be modified in detail and characteristic to be used dur-
ing different phases of the design cycle without the
need of rebuilding the system model or switching to
another software tool. The library structure and the
approach to integrate different detail levels is outlined
and demonstrated at the example of a generic aircraft
environmental control system architecture.

Keywords: Environmental control system, scalable
detail, object-oriented modelling, library

1 Introduction

The competitive environment and the challenge to limit
environmental impact while air traffic demand is in-
creasing, aircraft manufacturers and suppliers are un-
der continuous pressure to improve the performance
of their products. Since it becomes increasingly dif-
ficult to improve the global system performance by
independent optimization of subsystems, the need to
instead aim for an optimized global system perform-
ance during development has been identified [1]. New
and unconventional aircraft systems architectures such
as the “More Electric Aircraft” (MEA) are the subject
of past and ongoing European research programmes
[2, 3].

The design process of complex technical systems
such as aircraft environmental control and cooling sys-
tems can be broken down into characteristic design

phases. During all phases, modelling and simulation
can be used to support the design process. However,
each phase may pose different questions with regard to
the physical phenomena of interest, the accuracy, or the
simulation speed for example. Specialized tools can
be used to meet the requirements for each simulation
task. The library presented in this paper aims at using
the object-oriented features of the Modelica language
to integrate multiple layers of models. Each layer cor-
responds to a set of models designed for a specific
simulation task and is subsequently referred to as “De-
tail Level”. The Detail Levels are integrated such that
a single system model that has been assembled from
available library component models can be “scaled”,
i.e. reused, for a simulation activity of a different phase
of the system design cycle.

The ability to create polymorphic models is a core
feature of the Modelica language and it is used to cre-
ate flexible and configurable models in many published
Modelica libraries. An example are the variable dy-
namics settings and exchangeable heat transfer models
in the DynamicPipe Model of the Modelica Standard
Library. Several libraries which pick up the concept
and focus the design of the library more on scalable
models have been presented.

In [4] structuring a Modelica library with scalable
models for building simulation with the need for dif-
ferent models along the temporal evolution of a project
in mind is discussed. A library for power plant simula-
tion currently under development uses the idea of detail
levels as group of models with similar complexity and
incorporates the concept to organize the models within
the library structure [5].

A somewhat different approach towards the concept
of a “Detail Level” is taken in the library subject to
this paper. Rather than a specific parametrization of
a polymorphic model, a “Detail Level” represents the
required characteristics of a model designed for a spe-
cific simulation task. This task is to be carried out at
a certain point or in the system development process.
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Switching a system model between two “Detail Levels”
can therefore be seen as switching between different
use cases where the information about the existing sys-
tem structure is kept. The advantage of this is that the
user does not have to rebuild the same system with
another set of specialized models even though the ac-
tual model equations for each detail level may not have
much in common.

The library discussed in this paper is developed
within the scope of the TEMPO project (Thermal Ex-
change Modelling and Power Optimization). TEMPO
is a research project in the Systems for Green Oper-
ations (SGO) technology demonstrator of the Clean
Sky Joint Technology Initiative. The focus of the SGO
demonstrator is to mature technologies which were
developed during the MOET (More Open Electrical
Technologies) project [2], and demonstrate architec-
tural integration of thermal management technologies
such as the electrically driven air system which was
developed in MOET. In order to optimize and valid-
ate such architectures, extensive modelling studies are
carried out. The presented library supplies the mod-
els for the environmental control system for the SGO
demonstrator.

2 Models for Different Stages in the
System Design Process

The process of designing and implementing a technical
system is characterized by distinctive phases. In each
phase design decisions have to be made and predefined
milestones have to be reached before the development
can proceed to the next phase [6]. The V-Diagram
shown in figure 1 is a graphical representation of the
system development process.

Figure 1: System design process displayed in the form
of a V-Diagram

In this case, the process has been broken down into

four characteristic phases, System Design, Compon-
ent Design, Component Test and System Test. Based
on the tasks associated to the design phase, require-
ments for the models in the respective phase have to be
formulated. The following section describes the char-
acteristics of the Detail Levels of the TEMPO library.
Table 1 gives a brief overview over characteristic dif-
ferences of the main components for different Detail
Level settings.

2.1 Phase 1: System Design

The system development process begins with the con-
ceptual design of the system followed by preliminary
system design. Based on customer need, system re-
quirements have to be developed. From the overall
system-level requirements, design requirements for the
subsystem level are deducted. The phase covers feasib-
ility assessments and leads to the decision on a system
architecture. Simulation during this phase is used to
support decisions on a system architecture and to de-
duct performance requirements for the components of
the system.

The models designated for use during this phase are
collected in the Detail Level 1 of the library. The Detail
Level 1 models do not include dynamic effects. Per-
formance characteristics are modelled by parameter
setting. Turbomachinery components for example al-
low user defined efficiency settings, heat exchanger
models are effectiveness based where the effectiveness
can be a user defined parameter. The simple modelling
assumptions aim for very fast and robust models for
initial requirements estimation. The effects of a para-
meter variation on the system behaviour in this setting
is limited by the constraints imposed on the remaining
components.

2.2 Phases 2 and 3: Component Design and
Component Testing

In the detailed design and development phase of the
system development cycle, subcomponents and sub-
systems are brought into realization. As the design of
the component progresses, more reliable performance
predictions become available. These component per-
formance predictions can be fed back into the system
model, for example to check for compliance with over-
all system performance requirements. In parallel to
the development of the actual components and their
thermodynamic performance validation, the develop-
ment of a control strategy is started. Models for control
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Table 1: Overview of main component model characteristics for different Detail Level settings

Component Detail Level 1 Detail Level 2 Detail Level 3 Detail Level 4

Turbine Fixed operating point
(parameter)

Map based, input
filtering

Map based, input
filtering

Simplified flow model,
forward computation

Compressor Fixed operating point
(paramter)

Map based Map based Map based

Heat Exchangers Static balance eqns,
fixed effectiveness,
optional local
over/under
determination

Static balance eqns,
map based heat transfer,
optional local
over/under
determination

Dynamic balance eqns,
dynamic wall,
geometric
parametrization,
discretization

Surrogate function for
outlet temperatures
calculation

Valves Optional local under
determination

Optional local under
determination, input
filtering, flow reversal
supported

Input filtering Input filtering, forward
computation

Reservoir (tank) models Pressure boundary,
optional local
over/under
determination

Map based, optional
local over/under
determination

Map based, dynamic
balances equations,
global mass control

Map based, dynamic
balances equations,
global mass control

developments focus on the dynamic behaviour of the
components.

When component prototypes have been produced or
acquired, they are tested and additional performance
data becomes available. In the form of performance
maps, this information can be fed back into the system
model, both for thermodynamic performance models
and models for control development.

The Detail Level 2 Models of the library are designed
to be used for thermodynamic performance simulations
during these phases of the development process. The
components are static models, performance character-
istics are typically calculated from performance maps.
Turbomachinery components use efficiency and flow
characteristic maps, heat exchangers use effectiveness
maps.

In the library, the models for control development
activities during these phases are collected in Detail
Level 3. These models use a more physical modelling
approach. The heat exchanger models now include dy-
namic mass and energy balances on the fluid side and
dynamic energy balances for the core material. Heat ex-
changers with connection to the incompressible liquid
fluid domain also have the option to activate a dynamic
momentum balance. The balance equations are discret-
ized into finite volume elements. To somewhat limit
computational effort and to improve robustness, the
heat exchangers use lumped momentum balances and
flow reversal is not supported. The parametrization of
the heat exchangers is geometry based and can be mod-
ified to change surface geometries and flow patterns.

2.3 Phase 4: System Test

After the components and sub-systems have been de-
signed and the prototypes have been manufactured and
tested, they are integrated into the final system pro-
totype. Simulation activities may include analysis of
component behaviour with integration effects taken into
account or hardware in the loop simulations to validate
the developed control system.

Models for this kind of activity make up the De-
tail Level 4 in the library. The models used include
dynamic behaviour, but the models are simplified in
favour of faster simulation speed. The models are de-
signed towards the use of fixed step solvers, while ac-
tual hardware-in-the-loop capabilities have not been
implemented within the scope of TEMPO. A heat ex-
changer model of this Detail Level calculates outlet
temperatures based on transfer functions. Fast states
such as pressures in air components have to be removed
to allow the usage of a sufficiently large step size with
a fixed step solver.

3 Integration of Detail Levels

Two aspects regarding model structure for scalable
models are discussed in this paper. This section treats
how the detail level specific models are combined to
achieve the model switching capability on the system
level. Section 4 contains a description of the organisa-
tion of the models within the library structure.

The different available Detail Levels are collected on
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the component level. Components in this context are
units such as heat exchangers, valves or compressors.
To create a system model, scalable components from
the library are used to build up the desired architec-
ture. As a sum of its components, the system model
is also scalable. Scaling the system model is done by
switching all components to a different Detail Level
using a global parameter, while the system architecture
information is kept.

In order to change the Detail Level setting of a sys-
tem model, the inner/outer construct is used. The
system model contains an inner-object of the class
SystemState, in which the Detail Level setting is
stored. In the library, the default instance name of
the SystemState instance is “system”. All component
models inherit from a PartialComponent-class which
provides the interface to the inner-object “system” on
the system level. In this class, the user can access the
Detail Level setting from the graphical user interface.

3.1 Component Level Integration of Detail
Levels

Figure 2: Container model structure seen as in the
diagram layer view of a scalable component model

Polymorphism in Modelica is usually achieved by
using the redeclare and replaceable language ele-
ments. Variations of encapsulated elements of the
model can be exchanged in order to create the desired
variant of the component. However, the Modelica lan-
guage does not support parameter-based redeclaration.
As a consequence, it is not possible to invoke a series of

redeclarations by one central parameter setting. There-
fore redeclare and replaceable constructs can not
be used to achieve the Detail Level switching behaviour
needed for this application.

Instead the container method of class parametriza-
tion is applied to build scalable components from the
Detail Level specific models. The container approach
is a very basic parametrization method, where the scal-
able component model contains a set of conditionally
declared variants of the component. Figure 2 shows
the diagram layer of a scalable compressor model. De-
pending on the Detail Level parameter setting, only
the desired model is instantiated. An advantage of this
approach is the complete encapsulation of the Detail
Level specific code. Model equations and class struc-
ture (internal class hierarchy levels for example) of a
component may vary greatly between Detail Levels.
The encapsulation allows task-oriented modelling in-
dependent of requirements for other Detail Levels, as
long as the interfaces are compatible.

By default, the components are configured to follow
the global Detail Level setting. This global Detail Level
setting can be manually overridden individually for
each component.

3.2 System Level Integration of Detail Levels

Figure 3: High pressure water extraction loop model
with Detail Level dependent decoupling modules

A system model expressed in the equations of differ-
ent Detail Levels can not always naturally be decom-
posed in the same manner. By building up a scalable
system model from of scalable component models, at
least one layer of decomposition is fixed and the library
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has to address this issue. A common example of such a
decomposition issue is a closed loop fluid system like
the vapour cycle included in the application example in
section 5. With dynamic mass and energy balances on
the fluid side, the system is well-posed if it is made by
connection of balanced component models according
to the Modelica specification. A purely static variant of
the same system on the other hand can not be created
the same way. The connect-statement closing the loop
introduces a redundant mass balance while the overall
system lacks a “grounding”-equation.

A well-posed static model made from locally bal-
anced components could be achieved by removing the
connect statement and manually adding a pressure or
total mass constraint. To be able to scale a system
model without the need to modify the system topology,
the option to add or remove equations has been shifted
to the component models. The consequence is that indi-
vidual components can now be configured to be locally
over- or under-determined. With reference to the ap-
plication example, this means that for the Detail Level 1
version of the vapour cycle, that the valve is configured
to act as a loop breaker while the refrigerant reservoir
is locally overdetermined and provides the necessary
grounding. Local over- and under-determination is also
used to adapt the causality of the overall system if re-
quired by the simulation task while the system level
topology remains unmodified. In the presented vapour
cycle system, the evaporator superheat is controlled
by the expansion valve opening position. Be it that
the control logic is not available and not to be simu-
lated in the conceptual design phase (Detail Level 1).
Instead, the evaporator superheat can be fixed. The ad-
ditionally introduced equation in the evaporator model
is compensated by configuring the valve coefficient as
an unknown. This requires extra care by the user, since
a globally balanced system is no longer guaranteed.

Another aspect which has to be considered for integ-
rating the Detail Level specific models into a scalable
system model are the constraints imposed by the system
architecture information. When the Detail Level spe-
cific equations are incorporated into a scalable compon-
ent model, the architecture of the system in which they
will be used in is yet unknown. But the overall equa-
tion system which will have to be solved includes the
constraints associated with the system architecture in-
formation. Unfavourable combinations of model equa-
tions and connections can lead to high index systems or
non-linear algebraic loops. Such unfavourable equation
system structure cannot always be avoided, but the mod-
eller will generally try to adapt the system model and

the component configuration for improved robustness
and performance. In thermo-fluid systems for example,
complex networks of static components usually lead
to large non-linear systems of equations. If the time
scales of interest allow it, artificial dynamic states can
be introduced to decouple the static components. In a
scalable system model, it may occur that such measures
are necessary for one Detail Level, but not for another.
In a scalable system model, as it is presented here, mul-
tiple system models in fact “share” one set of system
level constraints, i.e. the system architecture informa-
tion. This means, that measures of which the necessity
depends on Detail Level and system level constraints,
need to be integrated into the Detail Level manage-
ment. In the presented library, dynamic fluid states for
decoupling large non-linear systems of equations are
implemented in dedicated components.

The image in figure 3 shows the Modelica Diagram
view of a model of the high pressure water extraction
loop in air generation unit of an environmental control
system (ECS). Such a system is installed on the Boeing
747-8 for example [7]. In a purely static configuration,
the component equations together with the circular con-
nections lead to a difficult to solve algebraic loop. The
decoupling modules located between the components
include the artificial state variables, but depending on
the Detail Level setting, they are only activated when
the Detail Level setting requires it.

4 Library Structure

The library structure is organized around component
models such as valves or heat exchangers, which are
ready to be connected in an executable system model
after they have been parametrized. A general modelling
philosophy is the aim for a flat inheritance structure for
improved readability at the cost of possibly duplicate
code elements. Where possible, the components con-
tain no more than two inheritance levels. A common
base class provides the component icons and common
GUI elements like start value parameters.

The library covers three fluid domains: Air-,
refrigerant- and incompressible liquid coolant domain.
Thermofluidic components are by design permanently
associated to a fluid domain. For example, there is a
dedicated valve model for the air domain and a ded-
icated valve model for the incompressible liquid do-
main. The separation allows simpler—because more
specialized—code for the components. The association
of a component to a fluid domain is indicated by col-
our marking of the icon and connectors. The colour
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of air domain components is blue, refrigerant domain
components are identified by green coloured icons and
connections and the incompressible liquid domain com-
ponents are of orange colour.

4.1 Fluid Modelling

Within TEMPO, proprietary fluid property models
provided by the SGO project partner are used. The data
is accessed using external functions. The Modelica in-
terface to the fluid data follows the Modelica.Media
model structure for easy conversion to MSL fluid mod-
els. Each of the available fluid domain—air, refrigerant
and incompressible liquid—have their own base pack-
age, fitted to the characteristics of the fluid type. The
fluid connectors are identical to the Modelica.Fluid-
connectors of the Standard Library. Currently, no dis-
tinction is made between total and static values for
pressure and specific enthalpy.

Variants of the air type fluid model cover a range of
dry and moist air models from simple and fast to more
complex and accurate. Variants of the refrigerant and
incompressible liquids cover several different fluids.

4.2 Component Organization

Figure 4: Package tree of the TEMPO library

Two main criteria are used to group the library
elements in an efficient manner. The top level cri-
terion is a generic functional classification of the type
of component as shown on the left side of figure 4.
Within each functional group, the components are clas-
sified according to the fluid domain they are associ-
ated with. On the right side of figure 4 it is illus-
trated for the HeatExchangers-package. All variants

of the Air-to-air heat exchanger model extend from a
common base class. The scalable component model
AirToAirHX_MultiDL is the container model integrat-
ing all Detail Level specific models. The finite volume
based dynamic heat exchanger model of Detail Level 3
is assembled from a set of subcomponents. These are
located in the Common package.

5 Application to a System Model

M TC

C

P

VCS

Liquid loop

Air generation

Ram Air in

Ram Air out

Condenser

MHX

Evaporator

VCS compressor

Mixer outlet

Recirculation
Liquid pump

Compressor Turbine

Pack Air in

Figure 5: Reference architecture: Generic bootstrap
cycle with motorized compressor, liquid cooling loop
for cabin air recirculation cooling and vapour cycle

The application of the library is demonstrated on a
generic ECS architecture. The architecture is modelled
with the scalable components and simulated in different
Detail Level settings. Fully real-time capable models
which could be used in a real time environment are not
yet supported by the library and are beyond the scope of
TEMPO, therefore the simulated Detail Level settings
cover the design phases 1–3 described in section 2.

The data used in the models such as performance
maps and geometry information is proprietary, so that
some the plotted results have been normalized.

5.1 Reference Architecture Description

The modelled ECS architecture is shown in figure 5.
The system includes the air generation unit (pack)
which provides pressurized air to the cabin. The presen-
ted system is based on a generic bootstrap cycle. Am-
bient air is pressurized in the compressor, excess heat
is discharged in the main heat exchanger (MHX) using
ram air as heat sink. The pack air is then cooled down
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Figure 6: Diagram layer view of the ECS model

further in a turbine before it is released into the air dis-
tribution system. A liquid cooling loop is used to cool
recirculation air from the cabin. A vapour cycle (VCS)
is used to discharge the thermal load via ram air.

The diagram view of the reference architecture
model is shown in figure 6. Boundary conditions and
system control signals are provided by additional mod-
els. Mission (ambient conditions) and controller mod-
els are not integrated into the Detail Level management,
i.e. the container model parametrization is not applied
on them. The use of ambient data is independent from
the Detail Level setting, therefore the data can be used
in all Detail Levels. The controller model is assembled
individually for a system as different controller models
may be used on one ECS model.

In the model used for the simulations for the applic-
ation example, the aircraft cabin is represented by an
altitude dependent pressure boundary. The ram air mass
flow control is simplified by directly imposing the mass
flow rates and the cooling load from the recirculation
air remains constant over time.

5.2 Detail Level 1 Use Case

All components of the system model are modelled stat-
ically. The model is intended for easy parametriza-
tion effects on the system and fast computation speed.
This is reflected in simplified modelling assumptions
and allowing to set properties as parameters that nor-
mally depend on the operating point. These proper-

ties are heat exchanger effectivenesses, superheating
or subcooling temperature differences for vapour cycle
heat exchangers, pressure ratios and efficiencies for
turbomachinery or vapour cycle pressure levels for ex-
ample.

For a simulation with the ECS model in Detail Level
1 configuration the ambient conditions for the model
were set constant to represent a cruise flight at 38000 ft
with Mach number Ma = 0.8 at ISA conditions.

With the local over- and under-determination of the
components, the degrees of freedom of the model can
be changed. In the simulated example, the effectiveness
as well as the superheat temperature difference of the
VCS evaporator are fixed, so that the heat flow rate is
determined twice. In return, the valve constant is set to
be a free variable.

In figure 7 the evolution of the required condensation
pressure and the power required is plotted for different
settings of the condenser effectiveness. The pressure
level has been normalized with a reference maximum
pressure, the power demand has been normalized with
a reference power.

5.3 Detail Level 2 Use Case

The Detail Level 2 configuration provides static models
with more complex and accurate modelling assump-
tions. The components are mainly based on perform-
ance maps. Data available from detailed component
design and prototype testing (Phases 2 and 3) can be
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Figure 7: Evolution of required VCS high pressure
level and VCS power demand for a given condenser
effectiveness

used to verify the system performance. The additional
variability of component performance properties allows
to evaluate the effects of component interaction on the
system level.

The ambient conditions for the Detail Level 2 simu-
lation are unchanged and correspond to level flight at
38000 ft, Ma = 0.8. In this example, the vapour cycle
superheat temperature is again set as a parameter. The
ram air mass flow rate is reduced during the simula-
tion. In figure 8 the output of the simulation is shown.
From top to bottom, the curves show the evolution of
the mass flow rates in the condenser, the normalized
pressure levels of the VCS, evaporator liquid side outlet
temperature deviation from target and the VCS power
demand. The mass flow rates are normalized with re-
spect to a reference mass flow rate, the pressure levels
are shown in reference to a maximum allowed pressure.
The result of the reduction of the ram air mass flow
rate is an increase of the pressure levels. The change
in evaporator pressure has an impact on the driving
temperature difference and the evaporator heat flow
rate decreases. As a result, the evaporator liquid outlet
temperature increases. The result is presented in form
of a deviation of a target temperature. In this case, the
reduced ram air flow still provides enough cooling for
the liquid cycle. However, the increased VCS power
demand counteracts the reduced ram air flow.
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Figure 8: Results of simulation in Detail Level 2 setting

5.4 Detail Level 3 Use Case

The system model in Detail Level 3 setting switches
the underlying equations to a combination of dynamic
and static components. Valve, pump, turbine and com-
pressor models are static and use performance maps
similar to the Detail Level 2 setting. System dynamics
are captured by the heat exchanger models. The liquid
cycle components dynamic momentum balance option
have been switched off.

The system model is now used to test a control
strategy. In the Detail Level 3 example, pack outlet
temperature, pack mass flow rate and evaporator liquid
side outlet temperature are controlled to maintain target
values. The controller model used together with the
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Figure 9: Dynamic mission simulation results
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Figure 10: Mission altitude and Mach number profile
for the dynamic Detail Level 3 use case

ECS model is assembled from has been implemented
with elements from the Modelica Standard Library and
the Modelica_StateGraph2 library.

Figure 10 shows the mission profile which was used
for the simulation. After an initial taxi-out period, a
climb phase follows until a cruise altitude of 38000 ft
is reached. The descent begins after 30 min of cruise
followed by a taxi-in phase on ground. The Mach
profile is a function of the altitude, cruise speed is
Ma = 0.8.

The top left graph in figure 9 displays the achieved
pack outlet temperature, which matches the target out-
put temperature except for two occasions. The bottom
left graph shows the ram air mass flow rate in the main
heat exchanger, which is modulated to control the pack
outlet temperature. The mass flow rate shown is normal-
ized by a reference mass flow rate. The controller tested
in this simulation produces some overshoot and oscilla-
tion and should probably be revised and re-tested.

The control of the vapour cycle pressure levels how-
ever is successful in this simulation as it can be ob-
served in the top right graph. The plotted data is nor-
malized by the target condenser pressure. The bottom
graph shows the condenser ram air flow which is used
to maintain the condenser pressure. With increasing
altitude, less ram air is needed due to the colder tem-
peratures.

6 Conclusion and Future Work

In this paper, the Modelica library developed within
the Clean Sky project TEMPO is presented. The lib-
rary is designed for aircraft environmental control and
cooling systems modelling. The focus of the library
is the thermo-fluid domain, covering air, vapour cycle
and liquid cooling systems. A key feature of the library
is the integration of multiple levels of detail, where
each Detail Level corresponds to a set of models spe-
cifically fitted to a certain simulation task. The detail
levels are defined according to the simulation activities
which are carried out along the process of developing
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an environmental control system from the initial con-
ceptual phase to the finished prototype. The library is
organized around the Detail Level concept and allows
to switch a system model from one Detail Level to
another. The underlying model equations are thus ex-
changed to meet the requirements of another simulation
task while preserving the information on the system
architecture, freeing the developer of the need to en-
tirely recreate the system model from scratch. As an
application example, a scalable model of a basic aircraft
environmental control system has been assembled and
simulated for three different Detail Level settings. The
development of the TEMPO library is ongoing work. A
cabin model for commercial aircraft is currently under
development. For the near future it is planned to make
the library fully compatible to the recently extended
Media-Library of the Modelica Standard library and
to separate other protected intellectual property of the
project partner from the core library. This version of
the library will then be made available to the public.
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Abstract

The peak power consumption of multi-axis produc-
tion machinery (e.g. industrial robots) is determined 
by the forces during acceleration phases of continu-
ous movements. The required high electric currents 
represent a cost factor in terms of the mains power 
supply. In this paper a new Modelica-based method 
is presented to save the mechanical braking energy 
of production machinery into a local flywheel-based 
energy recuperation system (ERS) for later utiliza-
tion. An ERS has twofold advantages: on the one 
side it reduces the apparent power peaks from the 
mains power system. On the other side the overall 
energy consumption can also be reduced therewith. 
However, a mechanical ERS with a flywheel needs 
to be controlled in advance, as its internal inertia and 
the switched magnetic field introduce some dead 
time in the process. Therefore, the here presented
approach uses an interdisciplinary Modelica model 
of the machinery to compute future power require-
ments prior execution of new movements. It is as-
sumed that the machine program is known upfront in 
a textual form. The movement commands must be 
carried out with the virtual machine model first. The 
simulation computes the energy demand, according 
to which the stored amount of energy within the ERS 
(i.e. the angular velocity of its flywheel) must be 
controlled. The here computed reference angular ve-
locity signal is put later also to the real controller, 
where the physical ERS is attached to as an extra 
motor. This paper presents the methodology along an 
example of a 3-axis robotic manipulator that is in-
stalled in the VDTC building of the Fraunhofer IFF, 
Magdeburg. This specific example has been used to 
validate the concept: 12% less power-consumption 
and 10% less power peaks were achieved during the 
operation.

Keywords: production machine, power efficiency, 
energy recuperation, flywheel, Modelica simulation, 
virtual NC

1 Introduction

Energy efficiency is nowadays a crucial competitive 
factor within the production industry. Additionally, 
in order to reduce production time, cycle times must 
always become shorter. The power requirement of 
production machinery is mostly dominated by the 
acceleration and braking of mechanical loads (e.g. 
heavy chassis parts in a car production line). As a 
common power supply for their induction motors, 
multi-axis machines are utilizing a single intermedi-
ate DC circuit. The motors of the machine are usual-
ly able to generate electric current upon external 
driving forces. This generated current can be recov-
ered by the frequency inverters into the capacitors of 
the intermediate circuit. 
The aim of this research was to develop a new meth-
odology to integrate an electromechanical energy 
storage unit here, thus larger amounts of recovered 
energy can be utilized later in the production process
again.

1.1 Energy Recuperation System - ERS

Modern high-speed flywheel-based energy recupera-
tion systems (ERS) have high durability and can 
store a large amount of energy in a relatively com-
pact space. A mechanical ERS itself is equipped with 
an AC induction machine that can also accelerate 
and decelerate the flywheel, thus convert between 
electrical and mechanical energy.
There are multiple industrial application fields where 
electromechanical ERS are being used with utmost 
efficiency. In case of production machinery they can 
be used as an uninterruptible power supply to over-
come blackouts enabling the machinery to enter a 
safe state without causing any damage of the prod-
uct. A most recent application is to compensate pow-
er fluctuations in electric networks of city trams [5].
This very application suggested the idea of this 
study: the integration of an ERS into a production 
machine.
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1.2 Storing Energy in a Rotating Flywheel

The following formula can be used to compute the 
stored mechanical energy of a rotating flywheel:

ܧ = ଵ
ଶ ଶ߱ߠ (1)

where ߠ is the  rotational inertia and ߱ is the angular 
velocity of the flywheel rotor. The bearings of the 
flywheel are utmost optimized, thus the idling short-
term friction losses are negligible. At ultra-high 
speeds (>25000 rpm, carbon-fiber flywheel) there is 
a need of a vacuum chamber to reduce drag losses. 
Nevertheless, the power consumption of this extra 
vacuum pump lessens the efficiency of the ERS.
There is a hurdle at using mechanical energy storage
units in multi-axis machines due to large differences 
in mechanical and electrical time constants. The 
speed of an inert flywheel must be controlled in ad-
vance to be able to supply energy to and from the 
process effectively.
As production machines are usually program-driven, 
the next movement command can be known a priori.
Therefore, the proper flywheel speed can be pre-
computed by utilizing a mechatronic model of the 
whole system. The flywheel speed must be decreased 
a short time earlier than the axes begin to accelerate, 
and vice versa: it must be accelerated upon recuper-
ating mechanical energy via the machine axes.

1.3 The ERMA Project

The here presented work has been done in the ERMA
project (Energy Recuperation for Multi-Axis Ma-
chines) funded by the German Federal Ministry of 
Education and Research under the project number 
02PK2192. The consortium agreed to demonstrate 
the methodology with a simple, 3-axis robotic ma-
nipulator that can be used to transport alloy wheels.

Figure 1: CAD model of the ERMA demonstrator

As production machinery in general is targeted by 
the here presented concept, a Siemens Sinumerik 

840D sl NC controller was chosen to control the de-
monstrator. Numeric control is very common in the
production industry and basically does not differ 
much from other interpreted robot programming lan-
guages. However, conventional NC controllers give 
no access to their internal axis interpolator states pri-
or execution. Therefore, a look-ahead in the inter-
preted program is not directly possible. 
Fortunately, Siemens offers a virtual NC kernel 
(VNCK), which is a software service that covers the 
whole functionality of a real Sinumerik NC inter-
preter offline, under Windows. An NC program (G-
code) can be interpreted with the VNCK the same 
way as if it would run on the real controller, thus the 
reference trajectories can be extracted for each axis 
in advance. Therefore, it is known how a given 
movement command will be executed. The commis-
sioning of VNCK is quite straightforward: once the
configuration of the real Sinumerik NC has been set 
up with the real machine axes and parameters, the 
exported settings can be used later on demand to
simply boot the VNCK. The identical configurations 
ensure a consistency between the simulated trajecto-
ries and the real executed ones.
The ERMA demonstrator system has been equipped 
with a prototype, steel flywheel-based ERS from the 
partner company rosseta Technik GmbH [5]. The 
ERS is shown on Figure 2 and has the following 
main properties:

- Mass: 52 kg
- Dimensions: 410 x 190 mm
- Induction machine: 20A peak current
- Rated power: 10 kW
- Rated energy: 22.8 kWs
- Max. speed 25000 rpm

Figure 2: The flywheel-based ERS in the cabinet

The electrical cabinet including the four motor con-
trollers (3 synchronous permanent-magnet drives of 
the manipulator + 1 asynchronous induction machine 
of the flywheel) have been developed by the partner 
company aradex AG [6].
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2 Modeling in Modelica

In this chapter the modeling workflow is described 
along the example of the ERMA demonstrator sys-
tem. It can be used to model a production machine
conveniently in Modelica environment.

2.1 Mechanical Subsystem

In the recent years in the Fraunhofer IFF there has 
been a research focusing on automated translation of 
CAD information (geometry, physical properties and 
kinematic structure) into a parameterized Modelica 
multi-body description [1]. A plug-in was developed 
to generate MKS models directly from the 
Pro/Engineer CAD system. However, a lot of 3rd par-
ty Pro/Engineer assemblies could never be translated 
to a valid model without manual work. In a CAD 
environment the effort of defining the right con-
straints of a complex articulated mechanical system 
can be a troublesome work. In order to ease this task, 
designers usually circumvent the right definition of
degrees-of-freedom between adjoined CAD assem-
blies and parts. Unfixed bodies or overdetermined 
constraints render the automated translation process
erroneous. During the model conversion the con-
straints are normally mapped to Modelica joints au-
tomatically. Although the original constraints can be 
named, no meaningful joint names can be specified 
in Pro/Engineer. Therefore, the direct usability of a 
fully auto-generated model is questionable in model-
in-the-loop scenarios.
Virtual commissioning of digital machine models 
with real controllers in the loop represents a new re-
search focus in the Fraunhofer IFF. There must be a 
clear naming convention of joints to define the 
communication channels to and from simulated axes. 
Therefore, the solution of automated model transla-
tion had to be developed further. Using the 
VINCENT framework [2][7] the multi-body structure 
can be configured separately. The rigid bodies can be 
assembled together intuitively by using drag & drop
from imported CAD assemblies and parts. The STEP 
interchange format is supported to let designers use 
various CAD systems that they have expertise in. 
Unfortunately there exists no widely-spread data ex-
change format yet, in which many CAD system de-
velopers would agree to include the constraints be-
tween the objects being designed. Therefore, the 
joints must be placed and connected with body ele-
ments in VINCENT manually, as well. However it
seems to be a tedious work, after some practice a
complete machine configuration can be defined with 
40 bodies and 30 joints within a few hours. Once the 
structure has been configured, it can easily be reused 

upon changing geometries or some other parameters. 
The Modelica model is directly generated out of the 
information in VINCENT using the same workflow 
as in [1]. Figure 3 shows the generated model ac-
cording to the simple ERMA 3-axis robot. As long as 
the internal details are also modeled, the physical 
properties (mass, inertia, center of gravity) of rigid 
body elements with known uniform density can be
simply derived from the fine-triangulated geometry 
models [3]. In case of simplified 3rd party CAD parts 
with no modeled interior the mass properties from 
datasheets of the manufacturer must be used instead.

Figure 3: The generated multi-body model 
of the ERMA demonstrator

2.2 Usage of the Modelica Model during Sizing
of the Drives

During its planned pick-and-place job of transporting 
alloy wheels the ERMA demonstrator must reach 
various points in space as fast as possible. At the ear-
ly phase of the project the aforementioned multi-
body model was used to compute acceleration limits. 
For this reason a new Modelica block was developed 
supporting point-to-point path interpolation of arbi-
trary goal positions within the workspace of a robot. 
Similar to the KinematicPTP2 model in the standard 
Modelica library, this path interpolator allows the 
specification of kinematic constraints (maximum 
velocity and acceleration) of each output. Besides the 
start and end positions any number of intermediate 
locations can be given, too. As a result, time-optimal 
trajectories between adjacent goal positions are being 
computed.
By using ideal position sources the simulator could 
compute the required torques during the sizing of the 
demonstrator. The simulated torque curves were tak-
en to select the proper drive characteristics to be 
used. After multiple simulations involving iterative 
model updates using manufacturer data, a proper 
drive selection could be found. Table 1 summarizes 
the chosen drives including the gear ratios:
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Table 1: Selection of Wittenstein-alpha permanent-
magnet synchronous drives of the ERMA demonstrator

Axis1 Axis2 Axis3

TPM+ 

power 110

TPM+ 

power 110

TPM+ 

high torque 025

Gear ratio (stages): 1:7 (1x) 1:35 (2x) 1:55 (2x)

Stall torque [Nm]: (vertical) 878 214

Max. torque [Nm]: 600 1600 530

2.3 Mechatronic Model of the Intermediate DC 
Circuit and the Electric Drive Subsystem

The prediction of future power requirements needs 
more than analyzing a pure mechanical model. Only 
an interdisciplinary model can compute the correct 
energy balance including the losses in other domains. 
The Smart Electric Drives Modelica Library has 
been developed at the Austrian Institute of Technol-
ogy [8]. The SED library allows convenient model-
ing and simulation of an entire electric drive subsys-
tem. It provides components of various electrical 
devices including motor models with power electron-
ics and also energy storage modules. As both thermal 
and transient magnetic effects are taken into consid-
eration, these models can fulfill the purpose of com-
puting realistic power requirements. Figure 4 shows 
the diagram of a synchronous permanent magnet
(SMPM) machine including field-oriented control
and voltage and current limitations. A very similar 
control strategy is used in the real motor modules of 
the ERMA demonstrator.

Figure 4: Field-oriented controlled permanent magnet 
synchronous induction machine

This torque-controlled SMPM machine model from 
the SED library is to be connected to the intermedi-
ate DC supply circuit. It utilizes an internal DC/AC 
frequency converter and a three-phase synchronous 
induction machine model with permanent magnet 
excitation. The input torque is to be computed exter-
nally: a position controller can retrieve the required 
electrical state variables over a bus connector. The 
mechanical flange is connected to the respective rev-
olute joint in the mechanical model.
Based upon the specifications from the manufacturer 
the drive models were parameterized with real data. 
Measurements were carried out at the aradex AG to 
validate some model parameters such as winding 
resistances and inductances. The electric parameters 
of the AC/DC rectifier module were taken into ac-
count in a conventional three-phase diode bridge rec-
tifier model from the SED library. It is extended with 
buffering capacitors to model the intermediate DC 
circuit that is built into the real electric cabinet. Fig-
ure 5 shows the diagram of the drive subsystem in 
Modelica:

Figure 5: Mechatronic model of the electric drive subsys-
tem including the DC intermediate supply circuit

The drive subsystem model of the demonstrator in-
cludes a 400V three-phase AC power source, the DC 
circuit model and three synchronous permanent 
magnet motor blocks with an ideal gear and a posi-
tion controller per each instance. The three-phase 
motor model uses space phasor formulation with d 
and q axes [4] and it considers thermal losses in the 
rotor bushing (mechanical friction) and electrical 
losses (eddy current, ohmic winding resistance), as 
well. Permanent magnet excitation is modeled by a 
constant equivalent excitation current feeding the d-
axis:

ܫ = ଵ
√ଶగ

ೀ (2)
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where ܷை is the RMS open circuit voltage at nomi-
nal speed, ܮௗ is the main field inductance in d-axis 
and ݂ is the nominal frequency. These parameters 
could be found on the datasheet of the real motors. 
The here implemented flux-weakening control strat-
egy weakens the magnetic rotor field so that the sta-
tor voltage is restrained to given voltage limitations 
even though the shaft speed rises.
The derivatives of the input axis position signals are 
fed to the proportional integral speed controllers. The 
internal gear ratio is taken here into consideration as 
a gain factor. The reference torque of each motor is 
computed according to the aforementioned field-
oriented control. Feedback signals are available over 
the bus connector (see Figure 4). 
The included standard Modelica power sensors allow 
measuring the momentary mechanical and electrical 
power consumption. The sums of those are the 
POWER outputs of this subsystem model. This way, 
after mathematical integration of the electric power 
signal, the energy consumption of arbitrary axis 
movements can be determined.

2.4 The Concept of the “Energy” Axis

In this work the energy demand of a production ma-
chine needs to be pre-computed with the presented 
mechatronic model according to original machine 
control programs. The energy demand within a small 
amount of time frame determines the next reference 
angular velocity of the flywheel in the ERS. For this 
reason an ENERGY spindle axis was defined in the 
Sinumerik controller of the ERMA demonstrator. 
This fourth axis represents the reference flywheel 
speed. Due to its inertia, the flywheel must accelerate 
earlier, in order to be able to recuperate the generated 
electric currents during a braking phase. However, 
the axes within the same channel of an NC controller 
are always controlled together as a bundle. There is 
no direct “predictive” way to let one of them move 
earlier than the others.
There is a solution to this problem by means of NC 
curve tables. A curve table is a way to look up and 
interpolate values of a follower machine axis based 
on the position of a leader axis. For this purpose 
there can be arbitrary pairs of leader-follower axis 
positions stored in the rows of a curve table. The on-
ly rule is that the leader positions must be increasing 
or decreasing monotonously. Upon moving the lead-
er the NC controller interpolates a smooth movement 
of the follower. In the ERMA case the aforemen-
tioned ENERGY axis takes the role of the follower in 
each curve table definition. Upon each NC move-
ment command there is at least one machine axis 

involved. As the axis interpolation during move-
ments is always monotonous, a leader machine axis 
can always be chosen respectively.

2.5 Coupling with the VNCK Service

As briefly introduced in chapter 1.2, there is a Win-
dows service that emulates the core functionality of a 
real Sinumerik NC controller. The Virtual NC Ker-
nel (VNCK) service registers a COM (Component-
Object-Model) interface for easy integration into
other Windows-based applications. Using this inter-
face a Microsoft C# .NET-based GUI application 
called IFF VNCK Manager was developed. It can 
attach the Modelica simulation to the VCNK service
and perform the transformation of an original NC 
program into a new form that includes the usage of 
curve tables to control the flywheel-based ERS.
Figure 6 shows the top-level view of the ERMA de-
monstrator model with VNCK coupling:

Figure 6: Top-level model of the ERMA 
demonstrator with VNCK binding

On the part of Modelica, a new VNCK Library has 
been created in the Fraunhofer IFF. It includes exter-
nal C functions for binding, communicating with and 
finally stopping the VNCK service over a 
.NET/Managed C++ wrapper within the ERMA
.NET solution. Modelica blocks were also developed 
for retrieving interpolated axis values and machine 
states at discrete time events. In the scenario of the 
demonstrator the latter way is used to detect com-
mands for gripper control influencing the mass being 
transported. As the real gripper can programmatical-
ly get hold of or release a car wheel during the pro-
cess, the load can vary over time. However, the vir-
tual wheel body must always remain attached to the 
simulated robot’s gripper, because the model struc-
ture cannot be changed in Modelica during the simu-
lation. Therefore a mass override input variable has 
been added to the standard Modelica rigid body 
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model. After a gripper release command is decoded
by the VNCK, the mass of the wheel is set to zero
immediately.
There is a single VCNKManager instance placed in 
this topmost Modelica model: the VNCK service is 
started during its initialization (in the initial equation 
section). The VNCK axis reader blocks are referenc-
ing this singleton instance over inner / outer Modeli-
ca constructs. During the processing of the original
(textual) NC program, the VNCK is configured to 
report the source line positions, as well. This LINE
integer output of the model is used to split the com-
puted signals into multiple curve table definitions, as 
described later. According to an example NC pro-
gram Figure 7 illustrates the splitting positions of the 
output signals (yielding six sections for six G1 com-
mands):

Figure 7: Splitting simulation signals according to NC 
statement blocks

The beginning of a new line with a movement com-
mand (in the example of Figure 7 those lines are la-
beled with N1...N6) is decoded by the VNCK and 
reported to the VNCK Manager.
The smallest step size of the VNCK service for axis-
interpolation is 12 milliseconds. As only relatively 
coarse axis angles are being output therewith, filters 
must be applied in Modelica to smooth and recon-
struct the continuous position reference signals. Each 
VNCKaxis block has a third-order Butterworth filter 
(10Hz cut-off frequency), and an additional first-
order low-pass filter is applied in sequence, too. Ac-
cording to the smooth input signals the drive subsys-
tem (Figure 5) can now compute the total power re-
quirement at each simulation step (1ms). The smooth 
machine angles together with the integrated energy 
signal and the current NC source LINE signal are
being output to the common simulation result file at
equidistant intervals of 1ms.
The model of the machine being simulated can be 
arbitrary complex. There is no requirement of real-

time capability, because buffering mechanisms are 
used with semaphores within the .NET VNCK Man-
ager application to synchronize the VNCK service 
and the Modelica simulation. The complete mecha-
tronic model of the three-axis ERMA demonstrator is 
approximately 2 times slower than real-time. If the 
simulation would be faster and could overtake the 
VNCK process, it is forced to wait for the VNCK to 
yield the goal machine angles. For this reason the 
external C function call in each VNCKaxis can block 
the calling simulator thread until the buffer receives 
the next VNCK output (@ 83Hz / every 12msec)
greater than or equal to the time step. 
However, in case of ERMA the VNCK can compute 
three interpolated angles much faster than real-time. 
Therefore, the internal buffer of target angles is filled 
beforehand, thus buffer synchronization occurs only 
upon the beginning of the simulation.
The VNCKManager block shuts down the VNCK 
service and the simulation after receiving a terminate
notification at the end of the interpreted NC program
(M30 command). After this event, the .NET applica-
tion can start to process the simulation results.

2.6 Flywheel Control Strategy

Within the ERMA project a new strategy had to be 
developed to transform the computed energy levels 
to appropriate flywheel speeds, thus allow the ERS 
to reduce the power consumption of a production 
machine. There are multiple permanent consumers in 
the electric cabinet that cannot be eliminated: such as 
frequency inverters, decentralized peripherals 
(switched magnetic valves, limit switches, etc.) or 
the Sinumerik controller itself. Besides further ther-
mal losses in the system their static power consump-
tion could neither be modeled nor compensated with 
the flywheel strategy.
According to the ERMA concept the total sum of the 
flywheel energy in the ERS together with the poten-
tial and kinetic energy of the machine must be kept 
at a constant energy level. The range of the comput-
ed ENERGY signal can be determined after the simu-
lation. This has to be transformed into a range of 
flywheel speed according the inverse of the formula
(1) in chapter 1.1. Right at the moment where the 
energy signal has its maximum, the flywheel must 
rotate at its lowest (idle) speed. Similarly, the upper 
flywheel speed-limit must correspond to the lowest 
energy state of the machine during the process. Us-
ing higher flywheel speed as needed would increase 
the friction losses, thus an optimum had to be found. 
The ideal flywheel speed range is also influenced by 
the maximum amount of energy that can be recov-
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ered during the whole process. In case of typical fast 
pick-and-place tasks in a production line the fly-
wheel of the ERS never stops, because it has rela-
tively high power consumption upon startup acceler-
ations. In case of the ERMA demonstrator the range 
of 5400-6800 rpm has been determined experimen-
tally. Within this range of 1400 rpm 1300J of process 
energy can be stored theoretically.
As mentioned earlier, the simulation result file con-
tains data about the original NC program lines, too. 
The splitting of the result file occurs at each moment 
the LINE signal changes. The example of Figure 7
yields six individual sections after the simulation. A 
new curve table definition is then created out of each 
section. It is not to forget that the flywheel must be 
controlled in advance. Therefore, prior writing the 
corresponding leader-follower axis values into the 
output curve table, the section of the energy signal is 
shifted 54 milliseconds forwards in time (towards 
prediction). This amount of time was determined 
empirically, after exhaustive testing with the real 
energy recuperation system. Figure 8 shows the 
software tool chain that is used in this work. A .NET 
solution “IFF VNCK Manager” has been created to 
modify an existing main NC program (.mpf) with the 
incorporation of curve tables, thus the NC controller 
is able to control the energy axis of the ERS trans-
parently during the real executed process.

Figure 8: Software chain to create modified 
NC programs with ERS control capability

As there are usually multiple axes moving upon a 
single NC command, the leader axis of a curve table 
definition is chosen according to the biggest position 
difference being travelled. In the example of Figure 
7 the role of the leader axis in the first three curve 
tables is A, B and C, respectively. 

3 Summary

In this paper a new concept of including a flywheel-
based energy recuperation system into production 

machinery is presented. Based on a semi-automated 
workflow of creating a detailed, realistic mechatron-
ic Modelica model of the system and coupling with a 
virtual controller, the movements to be executed can 
be assessed energetically in advance. This infor-
mation can be used to control a mechanical energy 
storage unit earlier, overcoming its intrinsic flywheel 
inertia, which otherwise would hinder effective en-
ergy recuperation. 
The demonstrator of the here presented ERMA pro-
ject is located in the Virtual Development and Train-
ing Centre of the Fraunhofer IFF in Magdeburg, 
Germany. Using this methodology a 12% reduction 
of the machine’s energy consumption was achieved.
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Abstract

This contribution presents a Modelica implementation
of the generalized power-based modeling approach
conforming to the bond graph methodology. The cor-
responding developed library BondGraph is discussed
in detail. It allows graphical modeling according
to the bond graph formalism, and contains common
bond graph elements, as well as specific nonlinear ele-
ments, especially related to hydraulic effects. Further-
more, several composed models are provided, such as
switching valves, pipes, cylinders, etc. A combination
with blocks of the Modelica Standard Library is pos-
sible. The application of BondGraph to an industrial
plant is described to demonstrate its capabilities.

Keywords: power-based model, bond graph, library,
Modelica, hydraulic

1 Introduction

Since general purpose simulation environments en-
hance their capabilities, modelers attempt to take ad-
vantage of the offered possibilities completely. Hence,
models become more comprehensive and cover the
multidisciplinarity of the considered systems. There-
fore, domain specific modeling libraries are developed
and offer possibilities to model the involved differ-
ent physical effects separately as well as to intercon-
nect them. The generalized power-based approach is
an alternative efficient modeling formalism. Based on
the generalized power definition, unified modeling ele-
ments are conceptualized applicable to the direct mul-
tidisciplinary modeling of complex systems. Conse-
quently, the modeling procedure consists of the char-
acterization of domain specific processes correspond-
ing to their unified complements and interconnect-
ing these complements to the model of complete sys-

tem according to its structure. For further advantages
of generalized power-based modeling, see e.g. [1]
and [2]. The Modelica language is particularly suit-
able for the development and representation of power-
based models, primly because of the possibility of the
acausal multiple signal connections definition.

The bond graph (BG) formalism provides a mul-
tidisciplinary, generalized power-based approach to
the modeling and also graphical model representa-
tion of dynamic systems (cf. [3]). By the object-
oriented nature, BG possess the according advantages.
The graphical system representation by a BG can be
translated automatically to a system of differential-
algebraic equations, wherefore the implementation of
the BG approach with an appropriate modeling lan-
guage is necessary.

The Modelica language and the BG formalism
are partly closely related modeling methodologies.
Hence, an implementation of the BG formalism in
Modelica is considered in this contribution. The pro-
posed implementation attempts to take advantages of
both modeling concepts. The developed open source
library BondGraph is recommended to be used with
Dymola 7 or later versions as this software supports
completely included model definitions.

The introduced BondGraph library is available on-
line at the official Modelica web page [4]. It contains
common standard BG elements, as well as specific
nonlinear elements. The included nonlinear models
were designed especially for the modeling of hydraulic
networks. For these, attention has been paid to their
numerically stable computation. Further components
provided by BondGraph include composed models of
technical units, e.g. valves, and blocks for signal gen-
eration, e.g. to control valves.

A short introduction to the BG formalism is given
in the Section 2. The implementation of a number
of representative elements in the BondGraph library is
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discussed in Section 3. In Section 3.1, the implemen-
tation of the standard BG elements, and in Section 3.2,
the implementation of the hydraulic elements are pre-
sented. Section 4 introduces an industrial plant and the
corresponding model developed using the BondGraph
library. Several examples are provided to illustrate
the described issues. A brief summary is given in
Section 5. The used formula symbols are summarized
in the Appendix.

2 Bond Graphs

Since its development, the BG approach has become
a well-known technique for object-oriented graphical
modeling (cf. [3]). This fact is based on the estab-
lished definition of generalized power (cf. [5]) as the
product of a conceptional effort e and a flow f vari-
able:

P = f · e. (1)

This generalized specification provides the feasi-
bility of multidisciplinary modeling with unified ele-
ments. The only prerequisite for this obviously advan-
tageous modeling approach is an appropriate assign-
ment of power variables i.e. effort and flow for con-
sidered domains.

For example, in the field of isothermal hydraulics,
conventionally the pressure and the volumetric flow
rate are assigned as the effort and the flow variable,
respectively. A list of corresponding possible as-
signments for different energy domains is shown in
Table 1.

Table 1: A selection of domains and corresponding
conventional variable assignments in the bond graph
formalism

Domain Flow Effort

hydraulic volume flow rate pressure

translational velocity force

rotational angular velocity torque

electrical current voltage

thermal entropy flow rate temperature

2.1 Bond Graph Elements

The basic set of BG elements consists of an effort
source, a flow source, a capacitance, an inductance,
a resistance, a transformer, and a gyrator, which are

given with corresponding constitutive equations in
Table 2.

Table 2: Basic bond graph elements

Name Element Constitutive Equation

effort source Se e = es

flow source Sf f = fs

capacitance C e = 1
c

∫ t
t0 f (t∗)dt∗+ e(t0)

inductance I f = 1
i

∫ t
t0 e(t∗)dt∗+ f (t0)

resistance R e = r · f

transformer TF e1 = rtf · e2, f1 = 1
rtf
· f2

gyrator GY e1 = rtf · f2, f1 = 1
rtf
· e2

A significant extension of the modeling opportuni-
ties is offered by modulated elements. These are gen-
eralizations of linear elements where the proportional-
ity coefficients are given by an external signal.

Two further multi-port elements referred to as junc-
tions are defined in the bond graph methodology.
These may represent conservation or equilibrium laws
but also design constraints among the variables of the
elements connected. In the graphical representation,
the two power variables are carried by one eponymous
bond connecting junctions and other BG elements, that
is usually drawn as a half arrow. The flows of all ele-
ments connected to a 1-Junction are equal, whereas the
sum of efforts carried by all incoming bonds equals the
sum of efforts carried by all outgoing bonds. Again a
0-Junction is a dual element corresponding to the 1-
Junction, hence for this the reversed relations of effort
and flow are valid. For example, related to the hy-
draulic domain, all elements connected to a 1-Junction
have the same flow as being connected in series, and
all elements connected to a 0-Junction have the same
effort as being connected in parallel.

Formally, a 1-Junction is described by the equations
n

∑
k=1

sk · ek = 0, sk ∈ {+1,−1}, (2)

f1 = f2 = · · ·= fn, (3)

where n equals the number of elements connected to
the junction. In the same manner, a 0-Junction is de-
scribed by

n

∑
k=1

sk · fk = 0, sk ∈ {+1,−1}, (4)

e1 = e2 = · · ·= en. (5)
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By convention, sk = +1 for all incoming bonds and
sk = −1 for all outgoing bonds. Hence, the contribu-
tions to the constitutive equation of a junction are de-
termined by the directions of the bonds in the graphical
representation. Nevertheless, as can be seen by (2) and
(4), formally, this is rather a property of the junction it-
self than of the connection. This fact is considered by
the proposed implementation of the BG formalism in
Modelica.

According to a specific domain, for each standard
BG element a physical interpretation can be given.
Considering a combination of linear elements, mod-
ulated elements, and sensors observing power vari-
ables, it is possible to describe a wide range of non-
linear models by case-related definitions of the exter-
nal signal. Nevertheless, the definition of application-
specific, and, where appropriate, nonlinear elements
may lead to a convenient modeling process and en-
sures the clarity of the obtained models.

2.2 Causality

Within the BG formalism, bond connections are repre-
sentations of information exchange between submod-
els. As two power variables are associated with each
bond, two equations are obliged for their calculation
and thus each end of the bond is responsible for one of
them. Graphically, the flow determining end is marked
by a short stroke. For example, energy storage ele-
ments are preferred to have integral causality, thus a
capacitance preferably computes effort and an induc-
tance preferably computes flow, whereas sources ob-
viously determine their output variables. Several rules
exist for causality assignment, e.g. listed in [3].

The graphical assignment of causality is useful if
the equations describing the system behavior are di-
rectly deduced from the graphical BG representation.
In some modeling tools as for example 20-sim (cf.
[6]), the causality is fixed during the modeling proce-
dure. However, it is not required to assign the causality
during the modeling process using Modelica, as this is
a subtask of the model compilation process, which is
performed by suitable matching algorithms. For large
models and generally for practical modeling, the man-
ually or a priori fixed causality assignment is less rea-
sonable. Therefore, manual causality assignment is
not integrated in the presented BG implementation.

2.3 Example

An example of a simple physical system and its BG
representation are shown in Fig. 1. The considered

system is a hydraulic cylinder driven by enforced pres-
sures at hydraulic ports assigned with PT1 and PT2.
On the mechanical side, a load is executed represented
by a force at the corresponding port PT3. In this simple
representation, basic BG elements are utilized exclu-
sively, which may be less suitable for modeling with
practical accuracy requirements.
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Figure 1: Simple bond graph example

3 BondGraph Library

3.1 Standard Bond Graph Elements

The set of standard bond graph elements is com-
prised of basic BG elements, their modulated com-
plements, and junctions. Thus, these are included in
the BondGraph library. Therefore, the correspond-
ing constitutive equations and element interfaces are
implemented in Modelica. The power variables are
made accessible by acausal connectors, whereas for
signals, input-output connectors are defined compati-
ble to blocks of the Modelica Standard Library (MSL).
For the energy storage elements, initial conditions are
defined locally applying start attributes for differen-
tiated variables. The element parameters are imple-
mented according to the BG methodology. Extending
this set, sensors are modeled as simple two port ele-
ments that do not affect the power variables. Via a
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signal output interface, these elements provide power
variables or their product i.e. power, corresponding
time derivatives, or integrals. Again, the compatibility
with blocks of the MSL is assured.

3.1.1 Bonds

According to the bond graph methodology, elements
are interconnected by bonds. In contrast to the bonds,
Modelica connections do not provide attributes for
variable sign and for causality assignment, and their
graphical representation. Therefore, if the bonds
should be implemented closely to the original method-
ology, they would have to be objects of a class contain-
ing required properties. This approach would make the
modeling procedure significantly more cumbersome.

The BondGraph library uses standard Modelica
connections for the element interconnection introduc-
ing the connect equation directly or graphically. The
graphical modeling technique is recommended here,
as the BG formalism is a graphical modeling approach.
Hence, an alternative method is used to determine the
signs of power variables at a junction (cf. (2) and (4)).
Therefore, junctions are equipped with a positive and
a negative multiple port. These are indicated by a blue
and a red circle, respectively. All elements connected
to the positive port are considered with a positive sign
(sk = +1) and all elements connected to the negative
port are considered with a negative sign (sk = −1) in
the sum of efforts for a 1-Junction, or in the sum of
flows for a 0-Junction. In terms of the standard BG
formalism, all incoming bonds are connected to the
positive port and all outgoing bonds are connected to
the negative port. This yields a clear graphical repre-
sentation in compliance with (2) and (4) as discussed
in Section 2.1.

3.1.2 Causality Assignment

As it has been discussed in Section 2.2, the causality
assignment is not required by using Modelica. Fur-
thermore, restrictions on algorithmic matching proce-
dures may lead to less efficient model equations reso-
lution. Hence, any regulations of this kind are avoided
in the BondGraph library. Nevertheless, a graphical in-
dication of the BG formalism specific causality assign-
ment can be implemented in the animation layer ex-
tending the models of the released library by appropri-
ate functionality. In this way, the standard BG causal-
ity assignment method might be visualized without
eventual affecting of the equation resolution proce-
dure.

3.1.3 BondGraph Example

The implementation of the example presented in
Section 2.3 is shown in Fig. 2, now using the
BondGraph library in Dymola. Here, the pressures and
force imposed at the hydraulic and mechanical ports,
respectively, are implemented utilizing effort sources
and look-up tables from the MSL.

Figure 2: Simple bond graph example implemented
using BondGraph

3.2 Hydraulic Elements and Effects

Hydraulic processes are subprocesses of fluid-
mechanical power exchange. For the modeled pro-
cesses, this is considered transient and spatially one-
dimensional along a main flow direction. Models
of the following hydraulic effects are included in the
BondGraph library: capacitive energy storage (HC
and MHC), inductive energy storage (HI), dissipa-
tion (HR, HRL, HRT, and MHRT), and processes with
source characteristics (HSe acc and HSe ind). In the
hydraulic domain, the power variables e effort and f
flow are pressure and volume flow, respectively.

3.2.1 Working Fluid Properties

For the modeling of these hydraulic processes, the
properties of the working fluid are of essential interest,
since these may vary significantly within the working
range. The hprop model of the BondGraph library pro-
vides a computation of the hydraulic fluid properties
density and viscosity depending on the fluid tempera-
ture and the absolute pressure. By default, it is param-
eterized concerning the working fluid HLP ISO VG 32
as specified by the German industry norm DIN 54524,
part 2. The introduced model is valid for the temper-
ature range of [288,363] K and the feasible pressure
lies in a wide range of [1,108] Pa. The properties com-
puted by the hprop model play an important role for

A Generalized Power-Based Modelica Library with Application to an Industrial Hydraulic Plant

620 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096617



other hydraulic effects and therefore it is contained in
the models of hydraulic processes.

For each process, a decisive pressure is defined by
the arithmetic mean of the pressures before and af-
ter the considered process. This definition assures
the independence of the flow direction and is of suf-
ficient accuracy in most cases. Different to the stan-
dard bond graph convention, hydraulic processes are
implemented as two-port elements in the BondGraph
library where the mean values of the pressures at the
ports, and also the fluid properties as determined by
hprop, are automatically considered.

The dependence of fluid properties upon other con-
ditions besides pressure and temperature is not mod-
eled. The working fluid is assumed to be a homoge-
neous mixture of hydraulic oil and air, whereby the
relative mass parts in the mixture are assumed to be
time and state invariant.

Density. The density of the hydraulic oil is described
by the equation

ρoil = ρoil,re f · exp(κoil · (p− pre f )− γoil · (T −Tre f )),
(6)

considering the compressibility and thermal expansion
of the oil by the parameters κoil and γoil , respectively,
whereby the density of air is modeled by the ideal gas
law

ρair = ρair,re f ·
p

pre f
· Tre f

T
. (7)

These densities are then used to obtain the the den-
sity of the mixture by

ρ =

(
µoil

ρoil
+

µair

ρair

)−1

, (8)

which may be parameterized by the relative mass parts
of the hydraulic oil and air.

It is also possible to obtain the compensated com-
pressibility modulus of the working fluid from this
model (cf. [7]). Thus it was verified with the con-
versed available data for the compensated compress-
ibility modulus.

Viscosity. The viscosity of the hydraulic oil is mod-
eled by the Roelands relation (cf. [8])

ηoil = ηoil,re f · exp
(

ln
(

ηoil,re f

6.315 ·10−5Pa · s

)
·ψ
)
,

(9)
with

ψ =−1 +

(
1 +

p− pre f

1.96 ·108Pa

)ζ
·
(

T −138K
Tre f −138K

)ξ
.

(10)

The viscosity of air is described by the own approx-
imation

ηair = ηair,re f ·
θ(p,T )

θ(pre f ,Tre f )
, (11)

with

θ(p,T ) = p0.01 ·T 0.75 + 0.132 · p ·T−2. (12)

Data used for the approximation is available in [9].
For the calculation of the viscosity of the mixture,

relative volume parts of the components are obtained
by

φoil =

µoil
ρoil

µoil
ρoil

+ µair
ρair

(13)

and

φair =

µair
ρair

µoil
ρoil

+ µair
ρair

. (14)

With reference to it’s physical characteristic, the
viscosity of the homogeneous mixture of hydraulic oil
and air is then described by

η =
ηoil ·φ 2/3

oil + ηair ·φ 2/3
air

φ 2/3
oil + φ 2/3

air

. (15)

3.2.2 Hydraulic Capacitance

The capacitive storage capability has a significant ef-
fect on the dynamic behavior of hydraulic systems.
This property results from the elasticity of the con-
sidered hydraulic component and consequently from
the pressure dependent variability of the enclosed fluid
volume in the component. At low pressure, the com-
pressibility of the working fluid has a considerable ef-
fect on the capacitive storage capability. Both effects
are considered by the hydraulic capacitance model HC
and mathematically described by

f =
1
ρ
· d

dt
(ρ · v), (16)

with
v = v0 · exp(cv · (e− e0)), (17)

where e is the pressure, e0 is the initial pressure, and f
is the volume flow difference taken by the component
from the main volume flow.

Whereas the initial volume v0 is a parameter in the
HC model, it can be adjusted by an external signal in
the MHC model. This extends the modeling opportu-
nities and e.g. allows the consideration of components
with moving parts as for instance cylinders.
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3.2.3 Hydraulic Inductance

From a power-based point of view, the inductive en-
ergy storage is the dual process to the capacitive stor-
age and it mainly results from the inertia of the work-
ing fluid. The relation between the power variables
in the inductive storage element is obtained from the
principle of linear momentum applied on the enclosed
working fluid in the component by

e =
d
dt

(
l ·ρ
A
· f
)
, (18)

where e is the pressure difference across the compo-
nent.

3.2.4 Hydraulic Dissipation

Dissipative hydraulic processes are highly nonlinear
and change their characteristic dependent on the tran-
sient flow conditions (cf. [10]). As the hydraulic re-
sistance is described using different models according
to the particular effect, several elements are provided
by the BondGraph library: strait pipe resistance (HR),
resistance of a pipe fitting with laminar flow (HRL),
resistance of a pipe fitting with turbulent flow (HRT),
and switchable hydraulic resistances (MHRT) are dis-
tinguished.

Strait pipe resistance. The dissipative resistance of
strait pipes is extensively studied in the literature (cf.
e.g. [11], [12], [13]). The model proposed in this con-
tribution (given by the following set of equations (19)-
(25)) is based on the Darcy equation (equation (19),
cf. [14]). The pipe friction factor for the entire range
of the Reynolds number is obtained with an explicit,
continuous approximation of the pipe friction factor
equation for laminar flow and of the Colebrook-White
equation (cf. [15]).

As can be seen by Fig. 3, the resulting pipe fric-
tion factor function λ (Re) (cf. equation (22)) is con-
tinuous as well as continuously differentiable, it does
not diverge, and also does not include distinctions be-
tween different cases (if-then contructs), which yields
stable computability. Due to the explicit form of equa-
tion (24), our approach also avoids the computation-
ally expensive solution of the originally proposed im-
plicit equation for turbulent flows.

e = λ · l ·ρ
2 ·dh ·A2 · | f | · f (19)

Re =
dh ·ρ · | f |

A ·η (20)

Ret =
2 ·6.9

1−
( rh

3.7

)1.11 (21)

λ =
λl

1 + exp
(

Re−Recrit
0.228·Rerange

) +
λt

1 + exp
(

Re−Recrit
−0.228·Rerange

)

(22)

λl =
64

Re + Remin ·
(

1− tanh
(

Re
Remin

)) (23)

λt =

( −1.8
ln(10)

· ln
(( rh

3.7

)1.11
+ χ
))−2

(24)

χ =
6.9

Re + Ret ·
(

1− tanh
(

Re
Ret

)) (25)

In this equation set, e is the pressure difference across
the component. To obtain numerical stability us-
ing sigmoidal functions, the following parameters are
utilized: Recrit is the Reynolds number value for
the laminar-turbulent flow transition, Rerange is the
Reynolds number range for the laminar-turbulent flow
transition and Remin is the Reynolds number value for
the zero-flow crossing.
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λ
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Figure 3: Proposed approximation of pipe friction fac-
tor λ according to equation (22). The inset shows the
laminar-turbulent transition region in detail with typi-
cal values for Recrit and Rerange.

Resistance of pipe fittings. The effect of dissipa-
tion due to hydraulic fittings is available by the models
HRL and HRT. These may be used in case of hydraulic
apertures, throttles, bendings, cross-section changes,
and similar components. Resistances in these compo-
nents (cf. [7]) can be described by taking their flow
characteristic into account. In case of laminar flow,
the viscosity of the fluid strongly affects the resistance
which is expressed by the equation

e =
ere f ·η

ηre f · f γ
re f
· | f |γ−1 · f . (26)
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Contrariwise, in case of turbulent flow, the density
of the fluid has to be considered:

e =
ere f ·ρ

ρre f · f γ
re f
· | f |γ−1 · f . (27)

In both cases, e is the pressure drop across the com-
ponent. For both laminar and turbulent resistances, of-
ten flow and pressure drop are not in linear relation to
each other, but their relation may be described by a
characteristic flow exponent γ , e.g. γ = 2 if the flow
is proportional to the square root of the effort. How-
ever, it usually depends on the geometry of the fitting
and may therefore be adjusted by a parameter of the
model.

Switchable hydraulic resistance. Hydraulic valves
may be interpreted as switchable resistances and thus
be modeled by switchable hydraulic elements. The
MHRT element represents a signal controlled hy-
draulic resistance with turbulent characteristic where
an input signal allows to control the state of the hy-
draulic resistance. An input value of 1 corresponds to
a complete opened valve, whereas a value of 0 cor-
responds to a completely closed valve. To generate
appropriate control inputs, several blocks are also pro-
vided by the BondGraph library. In this way the phys-
ical multi-domain nature of valves may be taken into
account: though valves affect the hydraulic resistance,
they are controlled by mechanical systems which are
actuated either manually or by further technical units,
e.g. a solenoid actuators. Therefore, array types of
power-based models can be efficiently used for the
modeling of hydraulic valves (cf. [16]).

3.2.5 Processes with Source-Characteristic

Height change. In the fluid-mechanical power ex-
change processes, two subprocesses with effort-
source-characteristic are often involved. One of them
is the pressure change e due to fluid displacement in
the earth gravitation field, therefore

e = ρ ·g ·d, (28)

which is considered by the MSe acc model.

Cross section area change. The second subprocess
is covered by the MSe ind element and models the
pressure change e due to a cross sectional area change
in hydraulic lines, thus

e =
ρ
2
· | f |2 ·

(
1

A2
1
− 1

A2
2

)
. (29)

3.2.6 Consideration of Nonlinearity

Causalized elements. As pointed out in Section 2.2,
causality does not have to be assigned in general by
using Modelica. Nevertheless, when using nonlinear
elements e.g. HR, HRT, HRL, or MHRT, it is rec-
ommended that the designer observes whether the ele-
ment has effort-out or flow-out causality in the actual
model. Accordingly, the activation of an appropriate
formulation of the element equations should be con-
trolled by a parameter. In this way, unnecessary nu-
merical inversion of the nonlinear element equations
is avoidable. Hence, the solution time of the model
can be shortened and the solution accuracy and stabil-
ity can be increased.

For instance, in (30) and (31), both causalized
forms of the turbulent resistance are given (cf. equa-
tion (27)).

e =
ere f ·ρ

ρre f · f γ
re f
· | f |γ−1 · f (30)

f =

(
ere f ·ρ

ρre f · f γ
re f

)−1
γ

· |e| 1γ−1 · e (31)

In (32), a form corresponding to the linear resistance
element is obtained. The state dependent resistance
coefficient r is separated. Different formulations for
the resistance coefficient are then used dependent on
the parcaus parameter.

e = r · f , (32)

with

r =





ere f ·ρ
ρre f · f γ

re f
· | f |γ−1 · f if parcaus = 1,

(
ere f ·ρ

ρre f · f γ
re f

) 1
γ

· |e|1− 1
γ · e if parcaus = 2.

(33)

Variation of the proportionality factors. Corre-
sponding reformulations and separations of the pro-
portionality factors are often possible and convenient
for nonlinear elements with other characteristics. As
these coefficients in such reformulated relations are
in general time and state variant, their absolute val-
ues can attain low values or zero. The same has to
be considered for the reciprocal of the absolute value.
In these cases, structural changes arise in the intercon-
nected model equations and a numerical solution is ei-
ther not possible or becomes unstable. For instance,
this might result in a non-decaying oscillation of the
power variables where the amplitude and particularly
the frequency of the oscillation depend on the chosen
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solver algorithm and solution tolerance. In this case,
an effective and simple modification of the model is
the limitation of the value of the proportionality coeffi-
cient. The mentioned numerically induced oscillations
are avoidable completely by this model extension.

3.3 Comparison Remark to BondLib

BondLib is a former successful implementation at-
tempt of the bond graph formalism in the Modelica
language presented in [17] awarded as the best free
Modelica library in the framework of the Modelica
Conference 2005. BondGraph is a conceptually dif-
ferent modeling library, intended rather for pragmatic
practical modeling using bond graph methodology
then for educational purpose. In contrast to BondLib,
BondGraph does not include elements closely corre-
sponding to bonds. Instead, Modelica standard con-
nections are utilized for the interconnection of BG el-
ements. Consequently, the assignment of the variable
signs is implemented as a property of junctions instead
of using the directional property of bonds. In this
way, BondGraph utilizes Modelica more efficiently
slightly differing from the graphical representation de-
fined in the BG methodology. Since bonds as elements
are excluded, in comparison to a model set up with
BondLib, an equivalent model set up with BondGraph
involves significantly less elements. Furthermore, the
graphical clarity for large models can be maintained
more straightforward. The junction implementation
in BondGraph permits connection of elements of un-
limited number, whereas in the BondLib, junctions
with different fixed numbers of ports are available.
Hence, model modifications and expansions are per-
formed more efficiently utilizing BondGraph, since
originally used junctions may be retained. From this
point of view, the BondGraph junction implementa-
tion is closer to the BG methodology. The BondLib
library offers bonds with fixed causality. As described
before, BondGraph avoids any regulations of this kind
well motivated following more closely the Modelica
approach. Concluding this short comparison, we sug-
gest BondGraph for practical modeling, whereas we
recognize that BondLib offers several properties very
important for bond graph beginners and educational
purpose.

4 Industrial Hydraulic Plant

The discussed library is utilized for the modeling of
an industrial hydraulic plant. The considered plant

is a riveting system with a hydraulic power transmis-
sion. The system can be structured into the following
principal units: a hydraulic power supply unit contain-
ing an inductance motor and a pump, a valve block,
a hydraulic-mechanical actuator, hydraulic pipes inter-
connecting these units, and a sequence control. Hence,
the model to be developed should cover a comprehen-
sive hydraulic network. Figure 4 shows the model top
layer.
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Figure 4: Model of the considered riveting system

The submodels representing principal units are
modeled using the BondGraph library and the MSL.
A plain example for this model set-up is the model
of a hydraulic pipe consisting of hydraulic elements
exclusively. A series of hydraulic dissipative and in-
ductive elements separated by hydraulic capacitive el-
ements may be utilized for the description of the pipe
behavior. The series starts and ends with turbulent re-
sistances representing resistances of the fittings. The
inner part is the repeating of series consisting of a
straight pipe resistance and a hydraulic inductance
again separated by capacitive elements. This repeating
incorporates spatial discretization of the pipe along the
main flow direction. Consequently it should be under-
taken an appropriate number of times to cover relevant
system eigenvalues by the model. An example of pipe
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HRT HC HI HC HR HC HRT

Figure 5: Model of the hydraulic pipe

model with one inductive storage is given in Fig. 5.
The model of the complete plant is a higher index

differential-algebraic system consisting of 4923 equa-
tion with 106 continuous time states. The operation
cycle of the plant of 1.7 s is simulated. Figure 6 shows
the normalized displacement x of the actuator effector,
the mechanical energy E supplied by the inductance
motor in the power supply unit, and the pressure p in
the hydraulic circuit.
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Figure 6: Simulation results. Plotted are the displace-
ment x of the actuator, the mechanical energy E of the
inductance motor, and the pressure p supplied by the
pump.

The model parameters are identified by an opti-
mization approach with reference to measurements
obtained at a demonstrator plant. Hence, the model
is verified against comprehensive experimental data.
Furthermore, simulation based optimization of the
plant is succeeded with the objective function defined
as the consumed energy for an operation cycle (cf.
[18]).

5 Conclusion

The bond graph methodology is a generalized power-
based modeling approach. Hence, it is particularly ad-
vantageous for modeling of multidisciplinary systems.
Therefore, BondGraph, the Modelica implementation
of this approach enables applicants to take advantage
of both, the flexible Modelica language and the well
structured generalized power-based bond graph for-
malism. Furthermore, utilizing Modelica as the im-

plementation language, efficient general purpose mod-
eling and simulation environments are made available
for the bond graph applicants. Besides the develop-
ment of BondGraph, a practical application of the li-
brary is conducted. Thereby, an industrial hydraulic
plant is modeled, simulated, and optimized utilizing
the developed modeling library.
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Appendix

List of Formula Symbols
A cross section area of enclosed fluid volume
A1 cross section area before change
A2 cross section area behind change
c capacitance coefficient
cv volumetric compliance factor
d height difference
dh hydraulic diameter
Emech mechanical energy
Emech,max maximal mechanical energy value
e effort
e0 initial effort
ek effort at port k
ere f reference effort
es source effort

f flow
f0 initial flow
fk flow at port k
fre f reference flow
fs source flow
g gravitational acceleration
i inductance coefficient
k port counter
l extend of enclosed fluid volume
n port number
P power
p pressure
pre f reference pressure
parcaus parameter for causalization
Re Reynolds number
Recrit Reynolds number for laminar-turbulent

transition
Remin Reynolds number for zero-flow crossing
Rerange Reynolds number range for laminar-

turbulent transition
Ret Reynolds number limiting parameter for

turbulent region
r resistance coefficient
rh relative hydraulic roughness
rtf power transformation coefficient
sk sign parameter of port k
T temperature
Tre f reference temperature
t, t∗ time
t0 initial time
v enclosed fluid volume
v0 initially enclosed fluid volume
x displacement
xmax maximal displacement value
γoil thermal expansion factor of oil
γ volume flow exponent
ζ parameter of Roelands relation
η viscosity of working fluid
ηair viscosity of air
ηair,re f reference viscosity of air
ηoil viscosity of hydraulic oil
ηoil,re f reference viscosity of hydraulic oil
ηre f reference viscosity of fluid
θ auxiliary function in equation for air vis-

cosity
κoil compressibility factor of oil
λ friction factor
λl friction factor, laminar region
λt friction factor, turbulent region
µoil relative mass part of hydraulic oil
µair relative mass part of air
ξ parameter of Roelands relation
ρ density of working fluid
ρair density of air
ρair,re f reference density of air
ρoil density of hydraulic oil
ρoil,re f reference density of hydraulic oil
ρre f reference density of fluid
φair relative volume part of air
φoil relative volume part of hydraulic oil
χ auxiliary function in pipe friction factor

equation
ψ auxiliary function in Roelands relation
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Abstract

This paper focuses on the physical design of hydraulic
relief and servo valves and its applications. Specifi-
cally, this paper serves to illustrate how the physical
design parameters of hydraulic components can be in-
corporated into system modeling and their effect on
the system dynamics and stability characteristics. De-
tailed physical models of a relief valve and a servo
valve developed using the Hydraulics Library R© are
discussed in this paper with particular emphasis on the
effect of design parameters on the stability characteris-
tics. A simple design of experiment (DoE) to illustrate
robust design methods for hydraulic system design is
also shown with the use of the FMI Toolbox (FMIT)
for MATLAB R©. Furthermore with the help of these
two valve models, we seek to bring to the attention
of the community, a limitation in open loop controls
analysis in an acausal modeling environment where
the feedback loops are embedded in the physics of the
model.

Keywords: Hydraulic Valves; Hydraulic Compo-
nent Design; Mechanical feedback; Stability Analysis;
Hydraulics Library; FMIT

1 Introduction

Hydraulic control valves use mechanical motion to
control or regulate fluid power in a hydraulic circuit.
These valves serve as the interface between the me-
chanics and fluid dynamics in hydraulic systems and
their performance characteristics are therefore critical
to the safe and optimal operation of the systems in
which they are employed [1]. Relief and servo valves
are among critical components used in a wide variety
of hydraulic systems and are respectively operated to
regulate supply pressure to the load and convert fluid
power to mechanical actuation.

In this paper, we discuss detailed Modelica mod-
els of a pressure relief valve and a servo valve and in-
clude the physical design parameters of these valves

and study the effect of these on the stability character-
istics.

For the modeling of these valves, the newly devel-
oped Elements package of the Hydraulics Library is
used. The Hydraulics Library is a commercial Model-
ica library from Modelon AB that enables modeling
of fluid power systems in Modelica. The Elements
package is developed to incorporate hydraulic compo-
nent sizing into the design and modeling process. The
library provides a comprehensive set of components
typically used in hydraulic system modeling and pro-
vides the flexibility to build complex models from the
basic building blocks available from the library. The
Hydraulics Library with the Elements package is avail-
able for use with both Dymola and MapleSim R©.

Due to its application in multiple engineering do-
mains, the library provides a set of basic building
blocks of components from which a more detailed
model of a hydraulic system can be constructed. The
elements package for example, provides models of a
spool and a piston, which are connected through me-
chanical and hydraulic port connectors in any number
of ways to construct detailed models of relief and di-
rectional control valves.

In this paper, we present detailed models of a Pres-
sure Relief Valve and an Electro-Hydraulic Servo
Valve (EHSV) constructed using components from
the Hydraulics Library. Further, a Functional Mock-
up Unit (FMU) of these models is imported into
MATLAB R© using the Functional Mock-up Interface
Toolbox1 for MATLAB [5] and linearized to study
their stability characteristics and demonstrate robust
design techniques. The two examples of the valves,
apart from demonstrating the physical design of hy-
draulic components, also showcase a limitation in an
acausal modeling environment where feedback loops
embedded within the physics of the model need to
be broken for analysis purposes. In controls analy-
sis, such systems can only be linearized by manually

1FMIT for MATLAB is a commercial FMI tool from Modelon
AB for the integration of physical models in MATLAB/Simulink.
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modifying the physical equations. In our opinion, this
is not an elegant solution and we illustrate this point
through the two examples of the valves.

2 Hydraulic Elements Package

The Elements package of the Hydraulics Library pro-
vides an easy to use interface to model both the
mechanics and hydraulic characteristics of hydraulic
systems. Figure 1 illustrates the elements package.
The subsequent subsections briefly discuss the vari-
ous components of the elements package and their fea-
tures.

Figure 1: The Elements package of the Hydraulic Li-
brary

2.1 Connecting port interfaces

Three types of connecting ports are used in the compo-
nents of the Elements package and these are illustrated
in Figure 2.

(a) Hy-
draulic
Port

(b) Hy-
draulic
port with
volume

(c) Trans-
lational
mechanical
connectors

Figure 2: Connecting port interfaces used in the Hy-
draulics Library

The hydraulic port connectors in Figure 2(a) are the
default connectors used throughout the hydraulics li-
brary with pressure and mass flow rate as the potential

and flow variables respectively. The connectors in Fig-
ure 2(b) are similar to those of Figure 2(a) except for
the presence of the auxiliary volume variable. This
port is used to connect the variable volume element
with components where the volume change arises. The
mechanical connectors in Figure 2(c) are the transla-
tional mechanical connectors from the Modelica Stan-
dard library with displacement and force as the poten-
tial and flow variables respectively.

2.2 Volumes

The Elements package provides two volume compo-
nents that differs from the standard lumped volume
component in the Volumes package of the library in
that the volume is computed outside of the compo-
nent and determined from the volume variable of the
hydraulic port with volume. The first volume compo-
nent (Figure 3(a)) represents a variable lumped volume
where the pressure in the volume is calculated from the
following continuity equation:

V
d p
dt

=
β
ρ

dm
dt
−β

dV
dt

(1)

where p is the pressure in the volume, V is the volume
computed from the outside of the component and used
through the port, ρ,β are the density and bulk modulus
of the hydraulic fluid computed at pressure p and m is
the mass flow through the volume component.

The second volume component (Figure 3(b)) does
not include any pressure dynamics and is solely in-
tended for connections between the standard hydraulic
port and the port with volume.

(a) Volume
(includes
pressure
dynamics)

(b) Zero volume

Figure 3: Hydraulic volumes used in the Hydraulics
Library
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2.3 Valve Components

The basic building blocks of valve components pro-
vided in the Elements package are for leakage, piston,
spool and poppet lift and these are illustrated in Figure
4.

• The leakage component (Figure 4(a)) models
laminar flow of fluid leakage due to radial clear-
ance, underlap or overlap and the leakage path
length is assumed to be a constant. Variable
length leakage is expected to be included in a fu-
ture release of the library.

• The piston (Figure 4(b)) component represents a
hydraulic piston with an open chamber ending at
both sides. The chamber volume is computed as a
function of the displacement due to the net force
on the piston head. The pressure and mass flow
rate of the fluid into/out of the piston is computed
as a function of this change in chamber volume.

• The spool valve (Figure 4(c)) component mod-
els the spool and sleeve of a 2-way single land
spool valve. The fluid flow through the spool is
a function of the spool displacement modeled as
a variable area orifice. The flow area of this ori-
fice is computed from the geometry of the valve
opening and this option is parameterized with 4
options:linear, quadratic, circular or custom (tab-
ular user input). The spool valve also includes
the effect of flow forces computed from the spool
displacement and pressure drop across the valve.
The valve openings are modeled as orifices and
the expressions are regularized for numerical sta-
bility in the orifice equations in these compo-
nents.

• Three variations of a poppet valve (Figure 4(d)-
4(f)) are also provided in the library, each differ-
ing in the geometry of the poppet lift and seat.
Like the spool valve, each of these poppet valves
includes the effect of flow forces and regularized
expressions for numerical robustness.

3 Modeling and Open-Loop Stability
Analysis of a Hydraulic Pressure
Relief Valve

Hydraulic relief valves act to regulate pressure in a
hydraulic system where the pressure to be controlled

(a) Leakage (b) Piston

(c) Spool Valve (d) Poppet Valve with sharp-
edged seat and circular pop-
pet

(e) Poppet Valve with coni-
cal seat and circular poppet

(f) Poppet Valve with
sharp-edged seat and
conical poppet

Figure 4: Building blocks to model hydraulic valves

is sensed in the valve end area and compared with a
spring force setting [1]. In this work, the pressure re-
lief valve described in [1] is modeled as a 3-way 2-
land spool valve in Dymola using components from
the Modelica Standard Library and the Hydraulics Li-
brary and the schematic of the valve is shown in Figure
5.

The spring with spring constant Ks, is preloaded
with a force of F0. This preloading sets the pressure Pc,
in the spool valve chamber such that the valve is open
with a displacement of x at steady state. As the supply
pressure to the load increases, the spring is compressed
to open the spool valve to allow more flow through
the valve and into the tank maintained at atmospheric
pressure. This relieves the excess pressure in the sup-
ply line. The opening of the valve is restricted between
the geometric constraints of the spool and the supply
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Figure 5: Pressure Relief Valve [1]

pressure determines the level of opening of the valve.
The Modelica model of the relief valve is shown in
Figure 15.

The geometric parameters of the valve were ob-
tained from data sheets from Eaton Corp. [3] and the
procedure for the derivation of valve parameters from
data sheets is described in [4]. These parameters and
the boundary conditions of the system are tabulated in
Table 1. In Figure 15, the pistons are identical with the
exception of one having a real input for the purpose
of open loop analysis. With the boundary conditions
from Table 1, the trajectories of the spool displacement
and the pressures in the volumes are shown in Figure
6. Figure 6(a) shows an increase in the flow rate of
1% in the supply line pressure modeled as a step func-
tion. This increase in the supply flow increases the net
pressure force in the spool valve and opens the valve
more (Figure 6(b)) resulting in a larger flow area (Fig-
ure 6(c)) and hence more flow through the valve. This
relieves the excess pressure in the supply line resulting
in an increase in pressure of in the supply line of about
1.6% (Figure 6(d)).

3.1 Open Loop Stability Analysis of Pressure
Relief Valve

The dynamic model of the pressure relief valve in Fig-
ure 15 was perturbed from its steady state (Figure 6)
by an increase in the supply pressure. This model
was set-up at this steady state operating point and lin-
earized for open loop analysis. The open loop model
was set-up such that the pressure in the piston and
the force the pressure exerts on the spool are decou-
pled (or “broken"). This means that the transients in
the pressure are de-coupled from the pressure-force
equation. This is an example of a feedback loop em-
bedded within the physics of the model. There ap-

(a) Supply flow

(b) Spool displacement (also valve opening)

(c) Flow area of valve compared with maximum flow
area of 4.8919×10−4m2

(d) Supply line pressure

Figure 6: Trajectories of the inlet flow, line pressure
and valve opening
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pears to be no elegant way to break these loops for
open loop controls analysis other than modifying the
equations manually. The block diagram representa-
tion of the relief valve of Figure 5 is shown in Fig-
ure 7 [1]. The inner loop represents the change in the
force due to change in the volume of the piston and
the outer loop represents the change in the force due
to the change in the supply line pressure. In this anal-
ysis, only the effect of the line pressure on the force
needs to be decoupled and is "broken" by duplicating
the section of the model connecting the supply line to
the piston using a master-slave approach as labeled in
Figure 17. In the master section, the line pressure is
held at steady-state by blocking the transients whereas
in the slave, the volume of the slave piston is held at
steady-state while allowing the transients of the line
pressure. The pressure-force in the slave piston is the
output of the open loop system representing the break-
ing of the outer loop of the block diagram of Figure 7.
The real input to this piston represents the input force
represented as F0 in Figure 7. The linearized system
has 6 states: x, ẋ, PC, PS, Pval , PCS where the sym-
bols correspond to those introduced in Table 1 with x,ẋ
representing the spool displacement and velocity and
PC,PCS are the pressure in the master and slave pistons
connected to the damping orifice and Pval is the pres-
sure of the fluid in the spool valve.

The state space system of the relief valve is repre-
sented as:




ṖC

ṖS
˙Pval
ẋ
ẍ

ṖCS




= Alin




PC

PS

Pval
x
ẋ

PCS




+ BlinF0

Fout = Clin




PC

PS

Pval
x
ẋ

PCS




+ DlinF0

where Alin =




−4.18×103 0 0 0 7.17×109 0
2.13×104 −7.74×105 6.19×105 0 0 0

0 7.74×104 −1.02×105 1.94×1013 0 0
0 0 0 1 0

−0.068 0 0.0072 −4.7857×106 0 0
0 4.18×103 0 0 0 −4.18×103




and Blin =
[

0 0 0 0 −199.998 0
]T , Clin =[

0 0 0 0 0 −3.42×10−4
]
.

The Bode plot of the above linearized system is
shown in Figure 8.

Component Parameter Value

Spring Damper
Pre-load force F0 150N
Spring Constant Ks 10000N/m

Mass m 0.005kg

Spool Valve

Chamber volume Vc 3×10−5m3

Spool area As 3.4212×10−4m2

Radial Clearance r 1×10−5m

Piston
Volume Vd 5×10−5m3

Area A 3.4212×10−4m2

Supply flow Qin 0.002m3s−1

Load Pressure PL 5bar

Damping Orifice
Area Ado 5×10−7m2

Transition Pressure 0.1bar
Metering Orifice Area Amo 5×10−5m2

Outlet Orifice Area Aout 2.5×10−5m2

Table 1: System parameters and boundary conditions

Figure 7: Block diagram representation of the relief
valve

The steady state gain of the valve as seen from the
magnitude plot of Figure 8 is affected by the flow-
pressure coefficient of the spool valve and its volume
at steady state. The coefficient is expressed as:

K1 =
qval,SS

2Pval,SS
(2)

where qval,SS and Pval,SS are the steady state flow
rate and pressure through the spool valve respectively.
This coefficient is directly affected by the geometric
parameters of the valve and the type of valve open-
ing (see Section 2.3) which gives the relationship be-
tween the spool displacement and the flow area. Simi-
larly, the sizing of the orifices in the relief valve model
also affects the corresponding flow-pressure coeffi-
cients which then impact the frequency response and
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Figure 8: Bode plot of the linearized pressure relief
valve system

therefore the stability characteristics. Further design
rules for relief valves can be found in [1].

3.2 Robust design study of the relief valve
model

The effect of design parameters on the gain and the
phase margin of the system is discussed next. A Func-
tional Mock-up Unit (FMU) of the model is imported
into MATLAB using the FMI Toolbox for MATLAB.
FMIT has tools for conducting Design of Experiments
[5] and a simple design of experiment is illustrated
here to show the effect of the geometric parameters
of the valve on the stability characteristics.

The orifice areas of the damping and outlet orifices
in the PRV model of Figure 17 are set with respect to
a constant factor of the area of the metering orifice.
These multiplicative factors are then varied in the DoE
and the changes in the frequency response analyzed.
First, the damping orifice area is varied through 100
points uniformly distributed between factors of 0.01 to
0.025 in comparison to the metering orifice area which
is constant at 5×10−5m2.

Figure 9 shows the bode plots, step response and
the variance in the gain, phase margins and the cross-
over frequency for different sizes of the damping ori-
fice. The bode plot of Figure 9(a) shows differences
in the open-loop gain at higher frequencies. While the
damping orifice area has no influence on the steady-
state gain, it can be observed that the response time
is clearly affected by the damping orifice. As the
damping orifice area increases, the damping ratio of
the system also increases. The gain margin and phase

(a) Bode plot

(b) Step response

(c) Gain, phase margins and cross-over frequency

Figure 9: Effect of the damping orifice area on the fre-
quency response
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(a) Bode plot

(b) Gain, phase margins and cross-over frequency

Figure 10: Effect of the piston area on the frequency
response

margins also do not show significant sensitivities to
changes in the damping orifice area as seen by a
change of 6dB and 6 deg in these quantities respec-
tively.

The next design parameter of interest is the area of
the piston in the valve. It is assumed that the pistons in
the spool valve, and both pistons in the PRV model of
Figure 15 are assumed to have equal areas and for the
sake of simplicity, the rod areas in these pistons are
assumed to be negligible. The piston areas are then
varied over 100 uniformly distributed points across a
range of 1×10−4 to 5×10−4m2 and linearized about
the respective steady state points.

The bode plot of Figure 10(a) shows that there is
a significant sensitivity in the steady state gain to
changes in the piston area. In fact, the steady state
gain decreases with increasing piston area with iden-

tical damping characteristics. The gain and the phase
margin (Figure 10(b)) also show significant increase
with increasing piston areas. A suitable choice of pis-
ton area can be made from this plot with a gain of 3dB
(or more) and a phase margin between 30 and 60 de-
grees to result in reasonable trade-offs between band-
width and stability.

4 Modeling and Open Loop Stability
Analysis of an Electro-Hydraulic
Servo Valve

A single stage Electro-Hydraulic servo valves is mod-
eled in this work with a torque motor directly attached
to a 2-land 4-way directional control valve. A repre-
sentation of this valve used to actuate an aircraft con-
trol surface is shown in Figure 11 [2].

Figure 11: Schematic of a single stage servo valve to
actuate an aircraft control surface

The directional control valve used in this hydraulic
actuation system was modeled using a combination of
volumes, spool valves and pistons from the Elements
package and is shown in Figure 12.

Each pair of the spool valve and the piston are iden-
tical and the sizing of these are identical to that of the
pressure relief valve discussed in Table 1. The com-
plete model of the system is shown in Figure 16.

The function of the torque motor in Figure 16 is to
convert the input voltage into the corresponding spool
displacement to displace the directional control valve
by an appropriate amount in the desired direction to
open one of the spool valves that connect port P to port
A or port P to port B for flow from port P which corre-
spondingly opens the spool valves that connect port B
to port T and port A to port T for flow into port T. Ports
A and B are connected to the two hydraulic ports of a
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Figure 12: Model of a direction control valve made
from components of the Elements package

differential cylinder to convert the fluid power into me-
chanical displacement to actuate the control surface.

The torque motor dynamics are not modeled in this
work for simplicity but are represented as the follow-
ing transfer function [2]

Xs(s) =
0.003

0.0025s + 1
E(s) (3)

where Xs(s) and E(s) are the Laplace transform repre-
sentation of the spool displacement of the directional
control valve and the voltage signal to the torque mo-
tor respectively.

The pressure differential in the cylinder moves the
piston against the preload force of the spring. This dis-
placement of the piston in the cylinder is then sensed
and acts as the feedback signal. The error be-tween the
input signal and the piston position is then amplified to
be the voltage input of the torque motor.

The piston is assumed to be at a steady state at a po-
sition of 0.3 m. A pulse signal is sent as the input and
the trajectories of the spool displacement of the direc-
tional control valve and that of the piston are plotted
in Figure 13.

From Figure 13(a), as the piston is commanded to
shift in the positive direction, the torque motor causes
the directional control valve spool to displace in the
positive direction (Figure 13(b)) to open the spool
valves connecting ports P to A and ports B to T. The
flow from port P through port A enters the piston and
increases the pressure in that chamber to cause an in-
crease in the net force on the spring to push the pis-
ton in the commanded direction. The pulse command
shows the movement of the piston in both directions
and the flows into the cylinder from the valve are plot-
ted in Figure 13(c).

(a) Piston position and command

(b) Spool displacement of DCV

(c) Flow rate into cylinder

Figure 13: Trajectories of the piston, spool positions
and flow rate into cylinder
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The stability characteristics can be studied by break-
ing the feedback loop and setting the piston position as
the output and the commanded position as the input.
The model is linearized and the Bode plot of Figure
14 shows the frequency response of the system.

Figure 14: Bode plot of the linearized servo valve ac-
tuation system

It might be noted that the loop opening in this ex-
ample is straightforward since the control law is out-
side of the physics of the model. In the case of the
relief valve, the pressure force equation is part of the
physics of the valve and there appears to be no elegant
way with any Modelica based tool to break these loops
other than to manually modifying the equations to en-
able the model to be used for controls analysis. For
modeling, Modelica provides the great advantage that
the modeler does not have to transform the model man-
ually to block diagram form. For open loop control
analysis, and a feedback loop that is embedded into
the physics, the modeler will have to derive a block
diagram form also in Modelica in order to obtain the
open loop equations. It is however possible to integrate
the open loop variant for certain typical feedback sit-
uations in library models. This will be made available
in the upcoming version of the Hydraulics Library.
In a block diagram based modeling environment like
Simulink where there is no clear distinction between
the physics of the model and the control system, such
loop breakage is straight forward. The Simulink fea-
ture to automatically apply the steady-state value as
offset at the input at which the loop is broken should
also be available in Modelica tools.

It may however be possible to provide improved
automated support for open loop stability analysis in
Modelica tools, because the symbolic processing in

Modelica compilers for efficient code generation is
very similar to the causalization process when deriv-
ing a block diagram from model equations. Another
issue with open loop analysis of hydraulic components
is that SI units, which are typically used in the model
equations, are very badly scaled for the open loop anal-
ysis. The scaling that Modelica tools apply internally
through the use of the nominal attribute does not help,
because for the stability analysis the user would like to
have properly scaled equations that are consistent be-
tween the linearized system and the closed loop model.

5 Conclusion

In this paper, we discussed the physical design of hy-
draulic components using the Hydraulics library and
illustrated the application of robust design techniques
to improve the physical design of valves with Model-
ica and FMI based tools. The application of the El-
ements package demonstrated both the modeling of
relief valves and also in constructing more complex
components from the basic building blocks already
available from the library. We also highlighted a lim-
itation in controls analysis of models where the feed-
back loops are embedded within the physics. There is
a new paradigm developing in emerging physical sys-
tems where the feedback loops are embedded tightly
within the physics of these systems and it is impera-
tive that these aspects are addressed in Modelica and
its associated tools.
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Abstract

Feedforward control based on inverse dynamic plant
models (linear or nonlinear) is a suitable method to
enhance set-point tracking performance of control sys-
tems. In reality actuators always have limits, but lim-
iting functions can not be inverted. A common ap-
proach to handle this issue is to invert the unlimited
plant model and detune the feedforward filter in or-
der to stay always in between the actuator limits. This
approach causes a loss in performance for rapid set-
point changes, because the actuator range is not en-
tirely used. In this article a rather simple but power-
ful method is presented, which overcomes this perfor-
mance issue for many types of plant models. Actuator
limits are fully exploited, and the obtained trajectories
are close to optimal ones. Simulation and measure-
ment results demonstrate the usability of the proposed
feedforward structure.

Keywords: set-point tracking; model inversion; ac-
tuator saturation; nonlinear control; model-based
control; anti-windup

1 Introduction

Assuming the dynamic behaviour of a plant is known,
and a control task is to drive the plant output to a given
set-point or track a given trajectory. A reasonable idea
is to use the known plant behaviour to compute the
needed plant input. Mathematically spoken a dynamic
plant model is inverted. The original physical model
computes the model output as reaction to the plant in-
put. Whereas the inverse model computes the plant
input for a given output. Modelica as equation-based
modeling language provides a powerful possibility to
automatically generate inverse dynamic models. In
many cases inverse models can directly be derived
from forward models. Details about model inversion
with Modelica can be found in [11].

There are different ideas, where to place the inverse

model inside a control loop. In this paper we concen-
trate on the most obvious variant: using the inverse
model in the feedforward path.

Feedforward control based on inverse dynamic plant
models (linear or nonlinear) has been proven to be
a suitable method to enhance set-point tracking per-
formance of control systems. Successful applications
have been reported in [8, 5].

But there is one issue, that often dramatically de-
creases the performance of feedforward designs: actu-
ator limits. Every real-world control system has lim-
ited actuators. That means the control signal u(t) is
constrained by

umin ≤ u(t)≤ umax (1)

The problem with Equation (1) is, that it is not in-
vertible. A common approach is, to not include input
constraints and invert an unconstrained plant model.
But what happens if the unconstrained inverse model
in a feedforward path computes plant inputs which vi-
olate constraints (1)? A straightforward solution is
sketched in Figure 1. A filter F and the inverse plant
model G̃−1 is used to compute an input signal out of
reference signal r. A limiter finally cuts off the uncon-
strained input signal v at its limits and feeds the input
signal u to the plant G.

Figure 1: Feedforward control with inverse plant
model and actuator limitation.

It’s easy to imagine, that if we apply a step jump
to r this can lead to very large values of v at the first
time points. Its magnitude of course depends on the
inverse model and the filter. Theoretically, for most
plant models a step jump of r with no filter (F = 1)
would even lead to an infinite impulse of v. But large
values of v generate actuator saturation, that means u
is equal umax or umin. The resulting difference between
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u and v causes a inconsistency between the states of
the inverse plant model and the plant. Which directly
means performance decrease of the feedforward con-
trol. This effect can be interpreted as windup, which is
well known for integral controllers. In Figure 4 exam-
ple simulation results are plotted, where saturation of
u leads to unwanted oscillation of plant output y.

Well-known anti-windup techniques for feedback
controllers, which can be described in state-space
form, are conditioning [7] or the more general
observer-based approach described in [1]. Although
these schemes are developed for feedback controllers
they could also be used for feedforward control. In
fact the proposed method in this article shows similar-
ities to observer-based approaches, but as described in
Section 2 there is one important difference.

Straightforward approaches to avoid windup for in-
verse models as feedforward are: filter detuning or ap-
plication dependent trajectory planning (e.g. set-point
ramps). Drawbacks of these methods are the lack of
generality and a loss of performance – at least if simple
approaches are used. In [11] handling actuator limits
is briefly discussed, although it is not the main scope
of this article. As one possibility it is suggested to pro-
vide feasible reference trajectories by online or offline
solving of dynamic optimization problems. This ap-
proach provides high performance potential. Due to
its optimal character actuator limits can be fully ex-
ploited. But dynamic optimization is usually a non-
trivial task.

In [10] actuator saturation is addressed with feed-
back from the plant according to internal model con-
trol. This general approach has the advantage to be
not application specific. And with only one remaining
tuning parameter its simple to parameterize. As a re-
sult the output of the inverse model v stays within its
limits but does not fully exploit them.

Instead of detuning the filter F or using application
dependent trajectory planning, a more general method
to avoid windup is presented in this article. The ba-
sic concepts and ideas are described in Section 2. No
theoretical proof of stability is given, but numerical
experiments in Section 4 and real-world experiments
in Section 5 demonstrate the usability of the proposed
feedforward scheme. Benefits of this approach are:

• applicable to nonlinear (SISO) systems

• easy to set up using Modelica

• only one tuning parameter: filter frequency

• full exploitation of actuator limits, almost time-
optimal trajectories

2 Feedforward with Actuator Limits

The basic idea of the new control structure is sketched
in Figure 2. The original feedforward system in Fig-
ure 1 is complemented with an internal feedback loop.
Similar to anti-windup schemes for integral controllers
[1] the actuator saturation signal v−u is fed back with
a constant gain k to the input signal.

Figure 2: Proposed feedforward control with internal
anti-windup feedback.

If the unconstrained signal v is beyond its limits the
negative feedback will decrease the windup effect and
the constraint violation. The actual performance of
this compensation strongly depends on the filter F and
the gain factor k. In the following we will design F
and k in a way, that there will practically no constraint
violation of v.

The basic idea is to use a very high gain k to drive
constraints violations to zero. See [12] for details on
high gain feedback for nonlinear systems. In order
to achieve stability of the feedforward loop with high
gains, the open loop FG̃−1 has to fulfill a few require-
ments:

1. FG̃−1 must be stable.

2. FG̃−1 must have stable zero dynamics (minimum
phase for linear systems).

3. Relative degree of FG̃−1 must be equal zero.

Condition 3 actually is stricter than needed. For
stability of the high gain feedback loop a relative de-
gree equal one would be sufficient. But numerical ex-
periments show, that the feedforward performance is
much better, if we restrict the relative degree to zero.
Resulting in a direct algebraic feed through from F’s
input to G̃−1’s output and a nonlinear implicit alge-
braic equation of the overall feedforward system of
equations (see Section 3). This is a crucial feature
of the proposed implicit method, which distinguishes
this method from observer-based explicit anti-windup
schemes described in [1].

The open loop requirements can be transformed into
requirements for F and G̃. Condition 1 and 2 hold also
for the classical feedforward control of Figure 1 and
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lead to the requirements that plant model G must be
stable and must have stable zero dynamics. Condition
3 can easily be fulfilled if we choose the order of the
filter F equal to the relative degree of G̃.

1. G̃ must have stable zero dynamics.

2. G̃ must be stable.

3. Order of Filter F must be equal to the relative
degree of G̃.

It is important to note, that these requirements are
not (yet) theoretical proven sufficient conditions. They
are motivated by the theory of high-gain feedback and
successful numerical experiments with various linear
and nonlinear plant models.

3 Feedforward control using
Modelica

Modelica provides a convenient possibility to gener-
ate feedforward control laws based on the proposed
method. Due to its equation-based design the error-
prone plant model inversion is handled by the Mod-
elica compiler. Using the free Modelica Standard Li-
brary (MSL) and a given forward plant model, this task
can even be done graphically. In Figure 3 the graph-
ical representation of an example feedforward con-
trol system is shown. The plant is modelled as linear
second order system, but it could be any other SISO
Modelica model. This structure corresponds exactly
to Figure 2. Plant model inversion is easily defined
by exchanging input and output with the MSL block
InverseBlockConstraints. See [11] for further de-
tails on model inversion with Modelica.

Figure 3: Graphical Modelica implementation of the
proposed feedforward structure.

According to the requirements in Section 2 the cho-
sen filter order is two – identical to the plant model’s

relative degree. This means there is a direct algebraic
relation between the filter input and the output of the
inverse plant model. Using the notation of Figure 2
this relation can be expressed as function f with

v = f (r− k(v−u),x) (2)

where x is the vector of internal states of FG̃−1. To-
gether with Equation (1) we obtain a nonlinear system
of equations

v = f (r− k(v−u),x) (3a)

u =





umax v> umax

umin v< umin

v else

(3b)

which can be reduced to one unknown v. To con-
clude this analysis: the resulting anti-windup feedfor-
ward control law is a system of differential and alge-
braic equations (DAE), with at least one nonlinear al-
gebraic equation.

A straight-forward way to test this control law at a
real plant is to use Functional Mock-up Unit (FMU)
[3] export capabilities of Modelica tools. The result-
ing FMU for model-exchange comes with an embed-
ded solver for implicit equations. The drawback is,
that one has no control of the internal iterative solution
process. But at least for prototyping purposes this ap-
proach works very well. In Section 5 a FMU exported
from Dymola is used as controller at a real plant. With
TLK-Thermo’s FMI Suite the FMU is imported into
the data acquisition and control environment LabView.

4 Simulation Experiments

In this section we look at two different linear exam-
ple plants, modelled with the Modelica Standard Li-
brary. We study the effect of different filter parame-
ters, which is the remaining degree of freedom of the
proposed feedforward control. Finally optimal con-
trol trajectories are presented and compared to the ob-
tained ones.

4.1 Plant Models and Simulation Setup

The chosen example plant models are two stable but
differently damped second order systems. Angular fre-
quency is 0.5 and gain is 1.0 in both cases. The result-
ing transfer functions are of the form
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Figure 4: Plant input and output response to reference
steps of different height. Conventional feedforward
design.

G(s) =
1

4s2 + 4Ds + 1

with

D = 0.2 (4a)

and

D = 1.2 (4b)

Plant models and the proposed feedforward control
are implemented in Modelica using MSL blocks. The
graphical representation of the total simulation model
is shown in Figure 3. For both plants actuator limits
are −2 and 2. Gain k of the internal feedback loop is
set to a comparable high number of 106, which ensures
that v virtually stays in between the actuator limits.
According to the requirements in Section 2 the filter
order is two.

4.2 Filter Tuning

The remaining degree of freedom for designing of the
feedforward control is the filter’s cut-off frequency f .
In general higher values for f lead to a more aggres-
sive feedforward control. This behaviour is identical

0.0
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y
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f = 0.1,k = 0

f = 0.4,k = 106
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u

Figure 5: Plant input and output response to a ref-
erence step. Conventional feedforward (k = 0) with
different filter cut-off frequencies f (Hz) compared to
proposed anti-windup design (k = 106).

for the proposed anti-windup scheme as well as for
the common scheme of Figure 1. In the latter case one
would choose the filter frequency, so that the uncon-
strained plant input v would stay inside the actuator
limits. There are two drawbacks with this approach.
First, by not exploiting actuator limits we lose perfor-
mance in terms of rise or settling time. Second, given
a filter frequency f1 works well for a reference step of
1, it is by no means guaranteed, that it does also work
for higher step jumps. Instead of using a pure linear
filter one would need to implement an application de-
pendent algorithm for Trajectory Planning.

The proposed additional internal feedback (see Fig-
ure 2) solves both issues. Actuator limits are fully
exploited using a general not application specific ap-
proach. In the following this is illustrated with
comparative simulation results for both feedforward
schemes with the slightly damped plant model (4a).

In Figure 4 plant input and output responses to refer-
ence steps using the conventional feedforward scheme
(k = 0) are plotted. In both cases the filter frequency
is 0.1 Hz. For a reference step of 0.5 (red) the input
signal u stays inside the actuator limits. Whereas a
reference step of 1.5 (black) leads temporarily to un-
constrained input v above umax. The plant input u is
chopped off at umax, which leads to a mismatch be-
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Figure 6: Response to reference unit step at t = 1 for
different filter cut-off frequencies (in Hz). Slightly
damped plant model with D = 0.2.

tween the states of the inverse plant model and the
plant. This wind-up effect can be observed at the plant
output y in form of unwanted oscillations (black).

Using internal high-gain feedback wind-up can be
avoided. As a result we can use higher filter frequen-
cies and fully exploit actuator limits. In Figure 5 sim-
ulation results for a step height of 0.5 are shown. The
red curves are identical to Figure 4. If we increase the
filter frequency to 0.4 Hz (black) we observe actuator
saturation and oscillations of y. Things change dra-
matically if we turn on feedback with k = 106 (blue).
Now, plant input u also hits its limit, but plant output y
behaves perfectly smooth. Compared to feedforward
without feedback (red) the settling time is decreased
by 63%.

A natural question is, what happens if the filter fre-
quency is further increased? An answer is given in
Figure 6. Using identical plant and feedforward setup
as in the simulations above, the filter frequency is
changed. Increasing f from 0.1 to 0.2 Hz leads to a
better feedforward performance. At 0.5 Hz we already
see a small overshoot of y, and at 1.0 Hz there are no-
table oscillations in u and y.

Simulation experiments with the well-damped plant
model (4b) give similar results, plotted in Figure 7.
Here, we can choose higher filter frequencies. At f =
1 Hz there is still no overshoot of y. Further increase
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0

1
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u

Figure 7: Response to reference unit step at t = 1
for different filter cut-off frequencies (in Hz). Well
damped plant model with D = 1.2.

of f finally also leads to oscillations in u and y.
To conclude these observations: Depending on the

plant dynamics there seems to be a critical filter fre-
quency fcrit. Values of f greater than this critical fre-
quency lead to overshooting or even oscillating plant
outputs.

As conclusion from additional simulation experi-
ments, that are not shown in this article: fcrit strongly
depends on the plant dynamics. Whereas dependen-
cies to actuator limits and the reference signal (e.g.
step height) seem to be very weak.

As consequence of these observations we formulate
a tuning rule for filter frequency f :

• Simulate a step jump of the reference signal with
the given plant model.

• Increase f until overshooting of the plant output
is observed. This is fcrit.

• Choose f to be less than fcrit. Smaller values
lead to increased robustness against model uncer-
tainty.

This tuning rule is by no means theoretically
founded. It is purely derived from simulation experi-
ments.
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Figure 8: Time-optimal trajectories of plant input and
output for rapid set-point changes compared to trajec-
tories obtained with anti-windup feedforward. Well-
damped plant model.

4.3 Comparison with Optimal Trajectories

In Section 4.2 several control trajectories are obtained
with the proposed feedforward algorithm. Now we
want to find out, how good they are. More precisely,
we compare them with optimal trajectories, defined by
the solution of the Optimal Control Problem

min
x(·),u(·)te

te (5a)

s.t.
dx
dt

(t) = f(x(t),u(t)) (5b)

−2≤ u(t)≤ 2 (5c)

x(0) = 0 (5d)
dx
dt

(te) = 0 (5e)

y(te) = 1 (5f)

x denotes the vector of state variables and f is the
corresponding ODE function of plant model (4). Op-
timization task is to drive the plant from x(0) = 0 as
fast as possible to steady state with y(te) = 1.

OCP (5) is solved numerically using Direct Multi-
ple Shooting within the software package MUSCOD-II

[4, 6, 9]. The obtained optimal trajectories of u and
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Figure 9: Time-optimal trajectories of plant input
and output for rapid set-point changes compared to
trajectories obtained with anti-windup feedforward.
Slightly-damped plant model.

y are plotted for both plants in Figure 8 and 9 to-
gether with feedforward trajectories. Frequencies of
feedforward filter are chosen according to simulation
results from Section 4.2. One can see that there are
differences of the feedforward control inputs u to its
optimal trajectories. But at the output y of the well-
damped plant Figure 8 there is practically no deviation
between optimal and feedforward values. In Figure 9
deviations at the output of the slightly-damped plant
can be detected, but they are comparable small. For
both plant models the proposed feedforward control
provides input trajectories for an almost time-optimal
set-point change.

5 Real-World Experiments

In this section the proposed feedforward algorithm is
tested on a real plant. To eliminate set-point tracking
errors from model/plant mismatch feedforward control
is enhanced with additional feedback. Measurement
results are presented for pure feedforward and com-
bined feedback/feedforward control.
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5.1 Electric Water Heater

The experimental plant is a water heater as part of an
existing test stand, where it is used to provide wa-
ter flow at a given temperature. As sketched in Fig-
ure 10 a water mass flow ṁ with inlet temperature Tin
is heated by electrical power Pel and leaves the heater
with outlet temperature Tout. The electrical heating
power is thyristor controlled with an analog input sig-
nal u. Control task is set-point tracking of plant output
y = Tout using input u. ṁ and Tin can be seen as distur-
bances.

Figure 10: Schematic view of the controlled plant.

5.2 Plant Model

In Modelica a mixed physical/empirical model of the
electric water heater is developed. The static behavior
is modelled with the energy balance

0 = ṁcp (Tin−Tout)+ Pel (6)

and a nonlinear empirical relation

Pel = f (x) (7)

where x is an internal state. Equation (7) de-
scribes the nonlinear static behavior of the phase cut-
ting thyristor controller.

The overall plant dynamics are modelled as second
order time delay model. The identified transfer func-
tion from u to x is

Gux(s) =
1

(1 + 5.804s)(1 + 5.809s)
e−1.885s (8)

In Figure 11 the measured step response used for
identification together with the model step response
is shown. Good agreement between fitted model and
measured dynamics can be noticed.

5.3 Feedforward Measurement Results

Measurement results of the proposed feedforward con-
trol applied to the real plant are plotted in Figure 13.

0 20 40 60 80 100
t (s)

0

1

2

3
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5

∆T
(K

)

data
fit

Figure 11: Measured input step response compared to
the response of the identified second order time delay
model.

The shown experiment spans set-point steps of varying
height. Similar to the simulation experiments the feed-
forward reacts very aggressively to set-point changes
and exploits actuator limits (0-10V). Due to model
plant mismatch the output does not exactly track the
given set-points. The static error is 1-2 K. Compared
to the full control range of 27 K this error is relatively
small.

If one would still like to drive this static error to
zero, the feedforward control can be combined with
measurement feedback, as it is done in the next sec-
tion.

5.4 Combined Feedforward and Feedback
Control

Figure 12: Feedforward and feedback control struc-
ture.

There are different possibilities, how to combine
feedforward and feedback in one control system. See
for example [11] for a brief overview. Following
the approach suggested in [2] we add the output of
an feedback filter Q to the input of the inverse plant
model. The input of Q is the difference between mea-
sured and desired plant output. The resulting control

Session 4C: Control Applications

DOI
10.3384/ECP14096637

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

643



15

25

35

45

T
(◦

C
)

reference
measurement

0 100 200 300 400 500
t (s)

0

2

4

6

8

10

u
(V

)

Figure 13: Measurement results from feedforward
control of a liquid heater.

structure is sketched in Figure 12. For Q = 1 infinity-
gain feedback is obtained. Usually Q is implemented
as low pass filter with unity gain. Filter order and fre-
quency are tuning parameters of the feedback loop.
Compared to [2] the control structure in Figure 12
has two additional elements. One is the internal feed-
back loop of the feedforward path as it is discussed
in the previous sections. The second addition is a de-
lay block. It is necessary because, plant model (8) in-
cludes delay, which is not invertible. This issue can
be solved by splitting the model in a continuous block
without delay and an additional delay block. Only the
continuous block is inverted. The delay block is added
afterwards to the desired plant output, before it is com-
pared with the measured real output.

Measurement results obtained with this control
structure are shown in Figure 14. As in Figure 13 the
closed loop shows fast reaction to set-point changes.
Additionally the static control error is eliminated.

6 Conclusion

The proposed anti-windup scheme for feedforward
control with inverse models leads to near optimal con-
trol trajectories for a broad class of plant models: sta-
ble nonlinear SISO systems with stable zero dynam-
ics. Because of its equation-based nature Modelica
provides an user-friendly possibility to generate ap-
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Figure 14: Measurement results from combined feed-
forward and feedback control of a liquid heater.

propriate feedforward control laws based on (forward)
system models of the controlled plant. With one re-
maining tuning parameter – filter cut-off frequency –
the proposed method is easy to configure. Experi-
ments with a real plant show good performance of the
anti-windup feedforward control. Control errors due
to model plant mismatch are successfully avoided by
extending feedforward control with feedback loop.
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An FMI-based Framework for State and Parameter Estimation
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Abstract

This paper proposes a solution for creating a model-
based state and parameter estimator for dynamic sys-
tems described using the FMI standard. This work
uses a nonlinear state estimation technique called un-
scented Kalman filter (UKF), together with a smoother
that improves the reliability of the estimation. The al-
gorithm can be used to support advanced control tech-
niques (e.g., adaptive control) or for fault detection and
diagnostics (FDD). This work extends the capabilities
of any modeling framework compliant with the FMI
standard version 1.0.

Keywords: Nonlinear State and Parameter Estima-
tion; Unscented Kalman Filter (UKF); Smoothing;
Functional Mockup Interface (FMI); Fault Detection
and Diagnosis (FDD)

1 Introduction

In many applications, after the system has been de-
signed, controls and/or fault detection and diagnostics
(FDD) algorithms are developed and deployed. These
techniques should be able to leverage the models de-
veloped during the earlier design stages, thereby in-
creasing the productivity of the overall product devel-
opment. Advanced control (such as adaptive control
or model predictive control) and FDD techniques re-
quire an enhanced knowledge of the system state. For
example, the flight controller of an airplane should try
to estimate the real velocity and position of the air-
craft while compensating for measurements errors and
sensor noises. When dealing with dynamic system,
having an enhanced knowledge about the system state
means estimating its state variables with associated er-
ror bounds.

This paper proposes a solution for creating a model-
based state estimator for dynamic systems described
using the FMI standard. This work extends the ca-
pabilities of any modeling framework compliant with
the FMI standard version 1.0. The FMI is a stan-

dard that allows to embed a simulation model within
a unified interface in order to couple simulation mod-
els developed using different simulation programs. Al-
though the FMI standard has been created mainly for
co-simulation, we leverage this standard for provid-
ing an algorithm that is compatible with a large num-
ber of simulation and modeling platforms, including
Modelica-based ones.

There are several characteristics intrinsic of any
model-based state estimation technique. These char-
acteristics are related to the model properties (e.g., the
Kalman filter is applicable just to linear models), the
assumptions introduced when describing the probabil-
ity distribution of the state variables (e.g., assuming
they are Gaussian) and the computational performance
of the underlying algorithm (e.g., the number of simu-
lations or computations to be done in order to provide
an estimation).

The state estimation technique used in this work is
the unscented Kalman filter (UKF) [1, 2]. The UKF is
able to deal with nonlinear systems and it just requires
to perform function evaluations of the model in order
to compute the evolution of its state variables and the
value of its outputs. The UKF has less requirements
about the knowledge of the model with respect to other
nonlinear state estimation techniques. For example the
extended Kalman filter needs to linearize the model
[3]. The computational performances of the UKF are
modest with respect to other Monte Carlo based tech-
niques (like particle filters [4]), enabling its use for
real-time applications.

The proposed work leverages the UKF technique
and provides a state and parameter estimation algo-
rithm for a dynamic system (e.g., modeled with Mod-
elica or Matlab) embedded according to the FMI stan-
dard as a Functional Mockup Unit (FMU). The model,
once exported as FMU can be used to set up a state
and parameter estimator to

• calibrate the model during the commissioning
phase in order to check if it performs as expected,

• compute a probabilistic estimation of unknown
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variables of the system (e.g., observable but not
measured) for control or FDD.

The paper is structured as follows. Section 2 starts
with a brief introduction about the state estimation
and it continues with a description of the unscented
Kalman filter and smoothing algorithm, including the
modifications required to extend the state estimation
procedure to the parameters. Subsection 2.5 gives
more information about the implementation details,
while subsection 2.6 contains a code snippet that
shows how to use the proposed algorithm. Section 3
contains an example that shows how the proposed al-
gorithm can be used to identify faulty operation in a
valve in the presence of measurement errors.

2 Method

The FMI-based state and parameter estimation algo-
rithm consists of two components: (i) a filter for the
state and parameter estimation, (ii) a smoother that im-
proves the quality of the estimation when the measure-
ments are noisy and sometimes erroneous. The pro-
posed algorithm has been written in Python and uses
PyFMI [5]. Some of the basic methods and classes
provided by PyFMI have been extended to fit our pur-
poses. For example, we modified how FMUs are exe-
cuted in parallel.

2.1 State Estimation

Kalman Filter (KF) [3] are often used to estimate state
variables. However, as they are only applicable for
linear systems, they are not suited for our applications.
For systems that are described by nonlinear differential
equations, the state estimation problem can be solved
using an Extended Kalman Filter (EKF) [3]. The EKF
linearizes around the current state estimate the origi-
nal nonlinear model. However, in some cases, this lin-
earization introduces large errors in the estimated sec-
ond order statistics of the estimated state vector proba-
bility distribution [6]. Another approach is to simulate
sample paths that generate random points in the neigh-
borhood of the old posterior probability, for example
by using Monte Carlo sampling, and adopting particle
filters for the state estimation [4]. These techniques
are robust with respect to model nonlinearities, but
they are computationally expensive. The UKF faces
the problem representing the state as a Gaussian ran-
dom variable, the distribution of which is modeled non
parametrically using a set of points known as sigma
points [1]. Using the sigma points, i.e., by propagating

a suitable number of state realizations through the state
and output equations, the mean and the covariance of
the state can be captured. The favorable properties of
the UKF makes its computational cost far lower than
the Monte Carlo approaches, since a limited and deter-
ministic number of samples are required. Furthermore,
the UKF requirements fit perfectly with the infrastruc-
ture provided by PyFMI since it provides an interface
to the FMU model that allows to set state variables,
parameter and running simulations.

2.2 The Unscented Kalman Filter

The Unscented Kalman Filter is a model based-
techniques that recursively estimates the states (and
with some modifications also parameters) of a nonlin-
ear, dynamic, discrete-time system. This system may
for example represent a building, an HVAC plant or a
chiller. The state and output equations are

x(tk+1) = f (x(tk),u(tk),Θ(t), t)+ q(tk), (1a)

y(tk) = H(x(tk),u(tk),Θ(t), t)+ r(tk), (1b)

with initial conditions x(t0) = x0, where f : ℜn×ℜm×
ℜp ×ℜ → ℜn is nonlinear, x(·) ∈ Rn is the state
vector, u(·) ∈ Rm is the input vector, Θ(·) ∈ Rp is
the parameter vector, q(·) ∈ Rn represents the process
noise (i.e. unmodeled dynamics and other uncertain-
ties), y(·) ∈ Ro is the output vector, H : ℜn×ℜm×
ℜp×ℜ→ℜo is the output measurement function and
r(·) ∈ Ro is the measurement noise.

The UKF is based on the typical prediction-
correction style methods:

1. PREDICTION STEP: predict the state and out-
put at time step tk+1 by using the parameters and
states at tk.

2. CORRECTION STEP: given the measurements
at time tk+1, update the posterior probability, or
uncertainty, of the states prediction using Bayes’
rule.

The original formulation of the UKF imposes some
restrictions on the model because the system needs to
be described by a system of initial-value, explicit dif-
ference equations (1). A second drawback is that the
explicit discrete time system in (1) cannot be used to
simulate stiff systems efficiently. The UKF should be
translated in a form that is able to deal with continuous
time models, possibly including events.

Although physical systems are often described us-
ing continuous time models, sensors routinely report
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time-sampled values of the measured quantity (e.g.
temperatures, pressures, positions, velocities, etc.).
These sampled signals represent the available informa-
tion about the system operation and they are used by
the UKF to compute an estimation for the state vari-
ables.

A more natural formulation of the problem is rep-
resented by the following continuous-discrete time
model

d x(t)
dt

= F(x(t),u(t),Θ(t), t), (2a)

x(t0) = x0, (2b)

y(tk) = H(x(tk),u(tk),Θ(t), tk)+ r(tk), (2c)

where the model is defined in the continuous time do-
main, but the outputs are considered as discrete time
signals sampled at discrete time instants tk. The orig-
inal problem described in equation (1) can be easily
derived as

x(tk+1) = f (x(tk),u(tk),Θ(tk), tk)

= x(tk)+
∫ tk+1

tk
F(x(t),u(t),Θ(t), t)dt (3)

Our implementation uses this continuous-discrete time
formulation and the numerical integration is done us-
ing PyFMI that works with a model embedded as an
FMU. Despite not shown in (2) and (3) the model may
contain events that are handled by the numerical solver
provided with the PyFMI package.

The UKF is based on the the Unscented Transfor-
mation [1] (UT), which uses a fixed (and typically low)
number of deterministically chosen sigma-points1 to
express the mean and covariance of the original distri-
bution of the state variables x(·), exactly, under the as-
sumption that the uncertainties and noise are Gaussian
[1]. These sigma-points are then propagated simulat-
ing the nonlinear model (2) and the mean and covari-
ance of the state variables are estimated from them.
This is significantly different from Monte Carlo ap-
proaches because the UKF chooses the points in a de-
terministic way. One of the most important proper-
ties of this approach is that if the prior estimation is
distributed as a Gaussian random variable, the sigma
points are the minimum amount of information needed
to compute the exact mean and covariance of the pos-
terior after the propagation through the nonlinear state
function [6].

1The sigma-points can be seen as the counterpart of the parti-
cles used in Monte Carlo methods.

Figure 1 illustrates the filtering process which we
will now explain. At time tk, a measurement of the
outputs y(tk), the inputs and the previous estimation
of the state are available. Simulations are performed
starting from the prior knowledge of the state x̂(tk−1),
using the input u(tk−1). Once the results of the simula-
tions x̂sim(tk) and ŷsim(tk) are available, they are com-
pared against the available measurements in order to
correct the state estimation. The corrected value (i.e.
filtered) becomes the actual estimation. Because of
its speed, the estimation can provide near-real-time
updates, since the time spent for simulating the sys-
tem and correcting the estimation is typically shorter
than the sampling time step, in particular for building
or HVAC applications, where computations take frac-
tions of second and sampling intervals are seconds or
minutes.

The Algorithm 1 summarize the steps performed by
the UKF. The interested reader can find more informa-
tion and details of the actual implementation in [7].

2.3 Smoothing to Improve UKF Estimation

In this subsection, we discuss an additional re-
finement procedure to the UKF. The distribution
P(x(tk)|y(t1), . . . ,y(tk)) is the probability to ob-
serve the state vector x(tk) at time tk given all
the measurements collected. By using more data
P(x(tk)|y(t1), . . . ,y(tk), . . .y(tk+N)), the posterior dis-
tribution can be improved through recursive smooth-
ing. Hence, the basic idea behind the recursive
smoothing process is to incorporate more measure-
ments before providing an estimation of the state. Fig-
ure 2 represents the smoothing process. While the fil-
ter works forwardly on the data available, and recur-
sively provides a state estimation, a smoothing proce-
dure back-propagates the information obtained during
the filtering process, after some amount of data be-
comes available, in order to improved the estimation
previously provided [8].

The smoothing process can be viewed as a delayed,
but improved, estimation of the state variables. The
longer the acceptable delay, the bigger the improve-
ment since more information can be used. For example
if, at a given time, a sensor provides a wrong measure-
ment, the filter may not be aware of this and it may
provide an estimation that does not correspond to the
real value (although the uncertainty bounds will still
be correct). The smoother observes the trend of the es-
timation will reduce this impact of the erroneous data,
thus providing an estimation that is less sensitive to
measurement errors.
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Figure 1: On-line state estimation filtering procedure.

Procedurally, the smoothing algorithm starts from a
user-specified point in the data stream and back up-
dates the previously filtered estimation. Algorithm 2
describes the smoothing procedure.

2.4 Parameter Estimation

The importance of the state estimation has been
stressed, and we described the UKF and Smoother as
solutions to this problem. While state estimation is
particularly important for controls, parameter estima-
tion is important for model calibration and fault detec-
tion and diagnostics. Consider, for example an heat
exchanger. Suppose it is characterized by one heat ex-
change coefficient that influences the heat transfer rate
between the two fluids. During the design of the heat
exchanger it is possible to compute an approximation
of it. However, it is not possible to know its value
exactly. After the heat exchanger is created, identify-
ing the value of it is important to verify if the design
requirements have been met. Another example is real-
time monitoring in which it is continuously monitored
during the operation in order to continuously check if
it has been reduced by fouling and the heat exchanger
need to be serviced.

Continuous parameter estimation is possible by ex-
tending the capabilities of the UKF and Smoother to
estimate not just the state variable, but also the param-
eters of the system. The approach is to include the
parameter in an augmented state xA(·), defined as

xA(·) =
[
x(·) xP(·)

]T
, (4)

where xP(·) ⊆ Θ(·) is a vector containing a subset of
the full parameter vector Θ(·) to be estimated. The
new components of the state variables need a function
that describe their dynamics. Since in the normal op-
eration, these values are constant, the associated dy-
namic is

d xP(t)
dt

= 0, (5)

where 0 is a null vector. These null dynamics have to
be added (2). The result is a new continuous-discrete
time system

d xA(t)
dt

= FA(xA(t),u(t),Θ(t), t) (6a)

y(tk) = H(xA(tk),u(tk),Θ(tk), tk)+ r(tk), (6b)

with

FA(xA(t),u(t),Θ(t), t) =

[
F(x(t),u(t),Θ(t), t)

0

]
(7)

Note that augmenting the state variables leads to a non-
linear state equation even if F(·, ·, ·, ·) is a linear func-
tion. Therefore, for parameter estimation, a nonlinear
filtering and smoothing technique is required.

2.5 Implementation

The former sections explained on the state and param-
eter estimation. This section describes the software
implementation and describes specific issues that we
addressed.
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Algorithm 1: Filtering

Notation: The superscript (i) indicates that the quantity is related to the i− th sigma point, w(i)
m and w(i)

c are the weights asso-
ciated to the i− th sigma point, n is the dimension of the state vector x(·), and [·]i is an operator that if applied to a matrix A returns its
i− th column. Vectors are indicated with bold characters.

Given the initial knowledge of the state distribution x(t0)∼ N(µ0,P0), and given the output measurement covariance matrix R0

1. Initialize k = 0 and set parameters α , β , λ (with 0≤ α ≤ 1 – other configuration details in [2] )

2. Define 2n + 1 sigma-points

x(tk)(0) = µk,

x(tk)(i) = µk +
[√

(n + λ )Pk

]
i
, i = 1 . . .n,

x(tk)(i) = µk−
[√

(n + λ )Pk

]
i−n

, i = n + 1 . . .2n.

3. Compute the weights associated to each sigma-point

w(0)
m = λ/(n + λ ),

w(0)
c = λ/(n + λ )+(1−α2 + β ),

w(i)
m = 1/2(n + λ ) , i = 1 . . .2n,

w(i)
c = 1/2(n + λ ) , i = 1 . . .2n.

4. Compute the predicted state (i.e. perform a simulation) for each sigma-point, and the predicted weighted mean, and the predicted
covariance

x(tk+1)(i) = f (x(tk)(i),u(tk),Θ(tk), tk) , i = 0 . . .2n + 1,

µ−k+1 =
2n+1

∑
i=0

w(i)
m x(tk+1)(i),

P−k+1 = Pk +
2n+1

∑
i=0

w(i)
c

(
x(tk+1)(i)−µ−k+1

)(
x(tk+1)(i)−µ−k+1

)T
.

5. Redefine the new sigma-points x(tk+1)(i) using the predicted mean µ−k+1, and covariance P−k+1 as shown in step (1).

6. Compute the measured outputs using the new sigma-points, then compute the mean output ŷk+1 and its covariance Sk+1

y(tk+1)(i) = H(x(tk+1)(i),u(tk+1),Θ(tk+1), tk+1) , i = 0 . . .2n + 1,

ŷk+1 =
2n+1

∑
i=0

w(i)
m y(tk+1)(i),

Sk+1 = R0 +
2n+1

∑
i=0

w(i)
c

(
y(tk+1)(i)− ŷk+1

)(
y(tk+1)(i)− ŷk+1

)T
.

7. Compute the cross covariance between the state and the output

Ck+1 =
2n+1

∑
i=0

w(i)
c

(
x(tk+1)(i)−µ−k+1

)(
y(tk+1)(i)− ŷk+1

)T
.

8. Compute the filter gain and update the predicted mean and covariance of the state

K = Ck+1S−1
k+1,

µk+1 = µ−k+1 + K [yk+1− ŷk+1] ,

Pk+1 = P−k+1−K Sk+1 KT .

9. Compute the state estimation as x̂(tk+1)∼ N(µk+1,Pk+1).

10. Increment k, and go to step (2).
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Figure 2: Improving the estimation using the smoothing. Backward propagations of the filtering results can
improve the former estimation.

Algorithm 2: Smoothing
1. Initialize k ≥ 0 and define the amplitude of the smoothing window N > 0 such as data at time tk+N are available.

2. Initialize j = 1.

3. Draw the 1 + 2n sigma-points x(tk+N− j)
(i) using x(tk+N− j) as mean value, and Pk+N− j as covariance matrix.

4. Propagate the sigma points through the dynamic model (prediction step) and compute the mean, covariance and cross covariance

x(tk+N− j+1)(i) = f (x(tk+N− j)
(i),u(tk+N− j),Θ(tk+N− j), tk+N− j) , i = 0 . . .2n + 1,

µ−k+N− j+1 =
2n+1

∑
i=0

w(i)
m x(tk+N− j+1)(i),

P−k+N− j+1 = Pk +
2n+1

∑
i=0

w(i)
c

(
x(tk+N− j+1)(i)−µ−k+N− j+1

)(
x(tk+N− j+1)(i)−µ−k+N− j+1

)T
,

Ck+N− j+1 =
2n+1

∑
i=0

w(i)
c

(
x(tk+N− j+1)(i)−µ−k+N− j+1

)(
x(tk+N− j)

(i)−x(tk+N− j)
)T
.

5. Compute the smoother gain, and post-correct the previous estimation providing the smoothed mean and covariance

K = Ck+N− j+1

[
P−k+N− j+1

]−1
,

µs
k+N− j = µ−k+N− j+1 + K

[
x(tk+N− j+1)−µ−k+N− j+1

]
,

Ps
k+N− j = Pk+N− j + K

[
Ps

k+N− j+1−P−k+N− j+1

]
KT .

6. If j < N then set j := j + 1 and go to step (2), otherwise exit.

N.B. At the end of each time step the state is estimated as x̂s(tk+N− j)∼ N(µs
k+N− j,P

s
k+N− j).

The first barrier to overcome was that the state esti-
mation procedure refers to the full vector of state vari-
ables x(·). However in many applications, the number
of state variables is higher than the ones to be esti-
mated. An example are sensors that sometimes contain
a unitary gain first order filter. Including all the state
variables in the estimation is not desirable because

• the number of sigma points required by the UKF,
and thus the number simulations to be run, grows
with the number of state variables.

• for every state variable or parameter estimated the
user must provide an initial guess for mean value
and the covariance.

Therefore, the user is allowed to select a subset of the
state variables and parameters to be estimated by the
UKF algorithm.

Similarly, an FMU may have several outputs, but
only few of them may be measured and used by the
UKF. The outputs for which a measurement is avail-
able and used by the UKF are denominated measured
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outputs. The measured outputs requires additional in-
formation such the covariance (i.e., the uncertainty as-
sociated to the measure) and a time serie containing
the data.

All the inputs and the measured outputs have to be
associated with a time serie. This can be done by as-
sociating them with a specific column of a csv file.

Another issue has been encountered regarding the
range of validity of states and parameters. For exam-
ple, the level of water contained in a tank has to be
positive but not greater than the height of the tank. We
addressed this issue by constraining the sigma points
within user specified upper and lower limits. As de-
fault, the min and max values specified in the FMU
model description file are used.

We also implemented the ability to run the simula-
tions in parallel. The computationally demanding part
of the UKF and Smoother is the time integration done
using PyFMI. However this section of the algorithm is
entirely parallelizable. By default, our implementation
uses one less thread as there are processors to run the
simulation, while a thread manages the simulation and
collects the results. The simulation results generated
by PyFMI can optionally be written to files or not.

All these functionalities have been embedded in few
classes that use PyFMI. In particular we have defined
a new class representing the FMU model in a more
general term since the state estimation is a task that
involves more than a simple simulation, which is the
aim of PyFMI.

2.6 Code snippet

This subsection contains a code snippet that illustrates
how the FMU-based state and parameter estimation
framework works. In this example the FMU model
represents a mass-spring-damper system, where the in-
put is the force F applied to the mass, and the mea-
sured output is the mass acceleration a. The two cor-
responding data series are stored in a csv file named
data.csv. The states to be estimated are the position x
and its velocity v.
# Path o f t h e FMU model
f i l e P a t h = " . / model . fmu "

# I n s t a n t i a t e t h e model
m = Model ( f i l e P a t h , a t o l =1e−5, r t o l =1e−4)

# Path o f t h e CSV f i l e t h a t c o n t a i n s t h e da ta s e r i e s
c s v P a t h = " . / d a t a . c sv "

# A s s o c i a t e t h e columns o f t h e c s v f i l e t o t h e i n p u t
i n p u t = m. GetInputByName ( "F" )
i n p u t . GetCsvReader ( ) . OpenCsv ( c s v P a t h )
i n p u t . GetCsvReader ( ) . S e t S e l e c t e d C o l u m n ( " Force " )

# A s s o c i a t e t h e columns o f t h e c s v f i l e t o t h e o u t p u t
o u t p u t = m. GetOutputByName ( " a " )
o u t p u t . GetCsvReader ( ) . OpenCsv ( c s v P a t h )
o u t p u t . GetCsvReader ( ) . S e t S e l e c t e d C o l u m n ( " a c c e l e r a t i o n " )

# S p e c i f y t h a t t h i s o u t p u t has t o be compared a g a i n s t
# measured da ta c o n t a i n e d i n t h e CSV f i l e
o u t p u t . Se tMeasu redOutpu t ( )

# S p e c i f y o u t p u t measurement c o v a r i a n c e
o u t p u t . S e t C o v a r i a n c e ( 1 . 0 )

# S p e c i f y t h e s u b s e t o f t h e s t a t e s t o be e s t i m a t e d
m. AddVar i ab le (m. G e t V a r i a b l e O b j e c t ( " x " ) )
m. AddVar i ab le (m. G e t V a r i a b l e O b j e c t ( " v " ) )

# Get a r e f e r e n c e t o t h e s t a t e s t o be e s t i m a t e d
var_x = m. G e t V a r i a b l e s ( ) [ 0 ]
va r_v = m. G e t V a r i a b l e s ( ) [ 1 ]

# S p e c i f y i n i t i a l v a l u e f o r t h e p o s i t i o n
# and t h e boundary l i m i t s ( e . g . , p o s i t i o n x must be p o s i t i v e )
var_x . S e t I n i t i a l V a l u e ( 2 . 5 )
va r_x . S e t C o v a r i a n c e ( 0 . 5 )
va r_x . SetMinValue ( 0 . 0 )

# S p e c i f y i n i t i a l v a l u e f o r t h e v e l o c i t y
var_y . S e t I n i t i a l V a l u e ( 0 . 0 )
va r_y . S e t C o v a r i a n c e ( 0 . 2 )

# I n i t i a l i z e s i m u l a t o r
m. I n i t i a l i z e S i m u l a t o r ( )

# I n s t a n t i a t e UKF and pass t o i t t h e model
UKF = ukfFMU (m)

# Run t h e f i l t e r from 0 . 0 t o 1 0 . 0 s e c o n d s
t ime , X, Sx , y , Sy = UKF. f i l t e r ( s t a r t = 0 . 0 , s t o p = 1 0 . 0 )

# p l o t t i n g . . .

This framework reduces the effort to set up a state
or parameter estimation. The model can be created in
Modelica and directly imported as an FMU, avoiding
the user to rewrite the model in the right format re-
quired by the UKF. Other functionalities provide an
easy way to specify the state variables or parameter to
be estimated, together with the data series to be used
as inputs and outputs.

3 Application: FDD

This section contains an example that shows how the
FMU-based state and parameter estimation algorithm
can be used for fault detection and diagnosis.

FDD algorithms based on state estimation tech-
niques are known to be more suitable than other ap-
proaches based on neural networks or principal com-
ponent analysis for detecting multiple faults [9, 10,
11], they can compute the fault probabilities and they
provide an indication of what is not working as ex-
pected in the system. All these features are possible
thank to the probabilistic description of the state vari-
ables and parameters the estimation techniques pro-
vide.

A drawback of state estimation based strategies is
that they require a slightly higher modeling effort, e.g.,
to include explicit fault descriptions in the model it-
self. However, various open-source modeling tools
(e.g. OpenModelica and JModelica), and modeling li-
braries for buildings (Modelica Buildings library [12])
are available, and they provide two main advantages:
reducing the effort required to set up the model, and
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Figure 3: Schematic of the system.

reducing the risk of modeling errors since they are typ-
ically validated and tested.

The availability of these tools and libraries together
with the FMU-based state and parameter estimation al-
gorithm put in place a framework for creating with a
low level of effort a model-based FDD algorithm.

The considered system is a valve that regulates the
water flow rate in a water distribution system (see Fig-
ure 3). The system is described by the following equa-
tions

ṁ(t) = φ(x(t))Av
√

ρ(t)
√

∆p(t), (8a)

x(t)+ τ ẋ(t) = u(t), (8b)

where ṁ(·) is the mass flow rate passing through the
valve, ∆p(·) is the pressure difference across it, u(·)
is the valve opening command signal, x(·) is the valve
opening position, τ is the actuator time constant, φ(·)
is the power-law opening characteristic, Av is the flow
coefficient and ρ(·) is the fluid density (please note
that the square root of the pressure difference is reg-
ularized around zero flow in order to prevent singu-
larities in the solution). The system has three sensors
(see Figure 3) that respectively measure the pressure
difference across the valve, the water temperature T (·)
and the mass flow rate passing through it. All the sen-
sors are affected by measurement noise. In addition,
the mass flow rate sensor is also affected by a thermal
drift.

T N(t) = T (t)+ ηT (t) (9a)

∆pN(t) = ∆p(t)+ ηP(t) (9b)

ṁN+D(t) = (1 + λ (T (t)−Tre f ))ṁ(t)+ ηm(t) (9c)

The measurement equations are described in (9),
where the superscript N indicates a measurement af-
fected by noise, the superscript N+D indicates the pres-
ence of both noise and thermal drift, Tre f is the refer-
ence temperature at which the sensor has no drift, λ
is the thermal drift coefficient and ηT (·), ηP(·), and
ηm(·) are three uniform white noises affecting respec-
tively the temperature, pressure and mass flow rate

Figure 4: Input signals of the faulty valve model: wa-
ter temperature (blue) and pressure difference (green).
The lines represent the data generated by simulation,
while the dots represent the sampled and noisy version
provided to the UKF.

measurements. These signals are sampled every two
seconds.

Suppose during the operation, at t = 80 s, the valve
becomes faulty. The fault affects the ability of the
valve to control its opening position. The valve open-
ing cannot go below 20% (causing a leakage) and over
60% (it gets stuck). At t = 250 s, the valve stuck posi-
tion moves from 60% to 90%.

The fault identification procedure is asked to iden-
tify whether the valve not works as expected, that is
its opening position follows the command signal. The
fault identification is performed using the UKF that
uses as input signals for its model the noisy pressure
difference (see Figure 4), the noisy water temperature
(see Figure 4) and the command signal (see Figure 6).
The command signal is noise free because it is com-
puted by some external controller and not measured.
The UKF compares the output of its simulations with
the measured mass flow rate (see Figure 5) that is af-
fected by both noise and thermal drift. The effect of
the thermal drift is visible in Figure 5 where the green
dots represent the measured mass flow rate while the
green line is the actual mass flow rate passing through
the valve.

The UKF and the smother estimate the value of the
state variable x(t) representing the valve opening posi-
tion and the parameter λ , the thermal drift coefficient.
The length of the augmented state is n = 2. Hence for
every estimation step, the UKF performs 1+2×2 = 5
simulations. The UKF has the initial conditions x(0)∼
N(0.8,0.05) and λ ∼N(0,0.7 ·10−3), the output noise

An FMI-based Framework for State and Parameter Estimation

654 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096647



Figure 5: The green line represent the mass flow rate
that is passing through the valve. The green dots are
the measurements of the mass flow rate (affected by
noise and sensor thermal drift) used by the UKF. The
red line is the UKF estimation, while the blue line is
the smoother estimation.

covariance matrix is R = [0.05], and the filter coeffi-
cients are α = 1√

3
, β = 2 and k = 3−n = 1.

As shown in Figure 5, the measured mass flow rate
(green dots) are far from the real mass flow rate (green
line). Despite the measurement error, the UKF and
the smoother provide an estimation with a good accu-
racy (red and blue lines in Figure 5). The mass flow
rates computed by the UKF, ˆ̇m, and the smoother, ˆ̇mS,
are close to the real one, ṁ, because they are able to
estimate both the valve opening position and the sen-
sor drift coefficient, as shown in Figures 6 and 7. As
expected the smoother is able to provide a better esti-
mation since it uses more data. The time spent by the
UKF to perform the simulations and computing the es-
timations was about 0.05 s, that is lower than the sam-
pling time of 2 s. The speed of this UKF based FDD
algorithm allows a real-time implementation for this
particular application.

4 General Applicability

The UKF and in general state/parameter estimation
techniques are well known solutions used in many
fields. We presented an approach that reduces the ef-
fort needed to set up a state and parameter estimation
for models created with simulation programs that are
FMI compliant. The example shows how this tool can
be used for FDD purposes in the context of HVAC sys-
tems. However, this tool can be used in other con-

Figure 6: The green line is the opening valve sig-
nal. The blue line is the actual opening value af-
fected by faults. The red and blue lines are the UKF
and smoother estimations of the valve opening po-
sition (the area surrounding the estimation is the σ -
confidence interval).

texts. For example, state and parameter estimation
techniques are used to support guidance and control
systems in the automotive, robotic and aerospace in-
dustries.

5 Conclusion

We proposed a model-based state and parameter esti-
mator for dynamic systems described using the FMI
standard. The paper explained the nonlinear state esti-
mation and smoothing techniques employed by the al-
gorithm, together with the details necessary to imple-
ment it. The last section shows how the FMU-based
state and parameter estimator can be used to set up a
fault detection algorithm capable of identifying faults
in a valve, even in presence of wrong and noisy mea-
surements.

This algorithm extends the functionalities of any
simulation program that implements the FMI standard
version 1.0. As shown in the example, this algorithm
has a direct application in FDD, but it can also be used
for model calibration and process control together with
adaptive or model predictive control schemes. The
main advantage of this algorithm is that it allows to
reuse models from the design phase, it extends the
capabilities of FMI compliant modeling frameworks
and it reduces the time and investments necessary to
develop advanced control strategies, calibration and
FDD.
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Figure 7: The green line is the sensor thermal drift
coefficient, while the red and blue lines are the estima-
tions of the thermal drift coefficient computed by the
UKF and smoother (the area surrounding the estima-
tion is the σ -confidence interval).
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Abstract

As automatic sensing and Information and Communi-
cation Technology (ICT) get cheaper, building moni-
toring data is easier to obtain. The abundance of data
leads to new opportunities in the context of energy ef-
ficiency in buildings. This paper describes ongoing
developments and first results of data-driven grey-box
modelling for buildings. A Python toolbox is devel-
oped based on a Modelica library with thermal build-
ing and Heating, Ventilation and Air-Conditioning
(HVAC) models and the optimisation framework in
JModelica.org. The tool chain facilitates and auto-
mates the different steps in the system identification
procedure, like data handling, model selection, param-
eter estimation and validation. The results of a system
identification and parameter estimation for a single-
family dwelling are presented.

Keywords: buildings, grey-box models, parameter
estimation, collocation method

1 Introduction

The continuous progress in ICT has lead to the avail-
ability of small and low-cost sensors, low power wire-
less data transfer protocols, cheap and accessible data
storage and powerful servers. Applied to the building
sector, these technologies can be used to collect mas-
sive amounts of building monitoring data at relatively
low costs. The abundance of data gives rise to new op-
portunities and applications in existing buildings like
fault detection, energy efficiency analysis and model-
based building operation. A first step in many of these
applications is the creation of a building energy model.

Building models can be classified in three cate-
gories: white-box, grey-box and black-box models
[1–3]. White-box modelling bases the model solely on

prior physical knowledge of the building. Most build-
ing simulation software falls under this category, like
TRNSYS, EnergyPlus and many others [4]. Black-
box modelling bases the model solely on response data
(monitoring of the building) and a universal model set,
including e.g. AR and ARMAX. No physical insight
is required for making a black-box model. Grey-box
identification methods and tools cater for the situation
where prior knowledge of the object is not compre-
hensive enough for satisfactory white-box modelling
and, in addition, purely empirical black-box methods
do not suffice because the involved physical processes
are too complex.

The difference between white- and grey-box mod-
elling is not in the complexity of the model. A single-
state model can be a white-box model if all param-
eters can be fixed based on physical knowledge only.
However, when one or more parameters in a white-box
model are estimated based on a fitting of the model to
measurement data, the model becomes grey, no mat-
ter its complexity. Therefore, the distinction between
white and grey cannot be made by only looking at the
model structure; one has to know how the model pa-
rameters have been identified.

All three model types can be either deterministic
or stochastic. A deterministic model cannot explain
the differences between the model output and the true
variations of the states (observations). Madsen and
Holst [2] therefore introduced a Wiener process in the
system equations to cope with the simplifications of
the model and uncertainties in inputs and monitoring.
The obtained model is a stochastic state-space model.

For existing buildings with available monitoring
data, the grey-box approach is considered to combine
the best of two worlds: physical insight and model
structure from the white-box paradigm and parameter
estimation and statistical framework from the black-
box paradigm. This paper describes an approach to
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grey-box modelling for buildings and the development
of a toolbox combining Modelica and Python. The re-
sulting framework will be referred to as the toolbox in
the remainder of this paper.

The aim of the toolbox is to identify low-order mod-
els from (limited) building monitoring datasets. When
the dataset is generated by a detailed building simula-
tion model instead of an existing building, we speak
of model order reduction. The obtained models can
be used in order to set up Model Predictive Control
(MPC) or to scale up simulations from single build-
ings to neighbourhoods and districts.

This paper describes the methodology of the tool-
box and presents some results of the application to a
model order reduction of a single-family dwelling.

2 Methodology
2.1 Overview

A high-level overview of the toolbox is shown in Fig-
ure 1. The toolbox is composed of four major compo-
nents:

1. Modelica library FastBuildings with thermal
zone models, HVAC components and building
models;

2. different .mop files specifying the model compo-
nents and which parameters to estimate;

3. JModelica.org as a middle layer for compilation
of the .mop files as well as formulation and solu-
tion of the optimisation problem;

4. Python module greybox.py delivering the user in-
terface and top-level functionality.

Figure 1: Overview of the grey-box buildings toolbox

2.2 Modelica

Modelica is gaining importance in the building simula-
tion community [5, 6]. The choice of Modelica for the
construction of the models is based on two major ar-
guments. First, Modelica allows for linear, non-linear
and hybrid model formulations and therefore it does
not limit the model structure as such. Second, Model-
ica is equation-based, thus allowing efficient Newton-
type solvers to be used as an alternative to for exam-
ple genetic algorithms. Moreover, as shown in Sec-
tion 3, the interfaces of the low-order models are iden-
tical to the detailed building model used in the IDEAS
library [7], enabling easy model exchange.

2.3 Models

Every model structure for which the parameters have
to be estimated is characterized by a different .mop file,
of which the format is very similar to an ordinary Mod-
elica (.mo) file. The .mop file extension is specified
by JModelica.org, which is described in Section 2.4.
Each .mop file has the same structure and has to define
two models: one model for simulation, called Sim, and
one for parameter estimation, called Parest. By de-
fault, the models are based on the FastBuildings Mod-
elica library, which has been developed in conjunction
with this toolbox. However, this is not required for the
toolbox to work, as long as some naming conventions
are followed. The FastBuildings library is introduced
in Section 3. Any parameter present in the model can
be estimated, including initial values of the states.

2.4 The JModelica.org platform

The toolbox relies heavily on the JModelica.org [8]
platform, which is an open-source tool for modelling,
simulation and optimisation of dynamic systems de-
scribed by Modelica code. For simulation purposes,
JModelica.org relies on the Functional Mockup Inter-
face [9]. For optimisation purposes, JModelica.org of-
fers various algorithms and also supports the Model-
ica language extension Optimica. Optimica allows for
high-level formulation of dynamic optimisation prob-
lems of the type presented in Section 2.5. The file for-
mat .mop is used for Optimica code.

The optimization algorithm used by the toolbox to
estimate the parameters is collocation-based and is
presented in Section 2.6 and described in more de-
tail in [10], where in particular optimal control is
also treated. IPOPT [11], built with the MA27 solver
of HSL [12], is used to solve the non-linear pro-
gram (NLP) that arises from the collocation method.
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Since IPOPT uses a gradient-based method, first- and
second-order derivatives of all the expressions in the
NLP with respect to all of the decision variables are
needed. To this end, CasADi [13] is used to construct
the NLP and then to compute the needed derivatives
by algorithmic differentiation.

2.5 Problem formulation

Identification of the unknown model parameters is for-
mulated as a dynamic optimization problem of the
general form

minimize
∫ t f

t0
e(t)T ·Q · e(t)dt, (1a)

with respect to ẋ,x,w,u, p,

subject to F(t, ẋ(t),x(t),w(t),u(t), p) = 0,
(1b)

x(t0) = x0, (1c)

∀t ∈ [t0, t f ].

The system dynamics are modelled by a single, possi-
bly implicit, non-linear and time-variant, differential-
algebraic equation (DAE) system of at most index one.
That is, an equation system of the form (1b), where t
is the time, x is the state, w is the vector-valued al-
gebraic variable, u is the vector-valued system input,
which includes both control variables and known dis-
turbances, and p is the vector of parameters to be esti-
mated. Since a gradient-based method will be applied
to solve the dynamic optimization problem, F needs to
be twice continuously differentiable with respect to all
of its arguments except the first one (time). This dis-
ables the use of hybrid models. Initial conditions are
given by specifying the initial state, that is, on the form
of (1c), where t0 is the start time. The initial state is
usually unknown, in which case some, or all, elements
of x0 can also be introduced as elements of the vector
p.

The objective (1a) of the optimisation is to minimise
the integrated quadratic deviation e of the model out-
put from the corresponding measurement data. The
model output y is typically some of the states, but
could also be some of the algebraic variables (and also
inputs, as discussed below). The matrix Q, which typ-
ically is diagonal, is used to weight the different out-
puts. The measurement data is assumed to be a func-
tion of time, denoted by ym. Since measurements are
typically discrete in time, they are simply interpolated
linearly to form ym. The output deviation e is then
given by

e(t) := y(t)− ym(t). (2)

The inputs can be treated in two different ways. The
first is to assume that the inputs are known exactly
by their measurement data and eliminate them from
the problem. The second way is to have an error-in-
variables approach where the inputs are kept as deci-
sion variables and treat them as model output, that is,
include them in the vector y and penalize their devi-
ation from the corresponding measurement data. The
second way is useful for coping with uncertainties in
the measurement data.

2.6 Solution algorithm

The approach taken to solve (1) is based on low-order
direct collocation, see [14]. The idea is to divide the
time horizon into a number of elements, ne, and ap-
proximate the time-variant system variables ẋ,x,w and
u by a polynomial of time within each element, called
a collocation polynomial. These polynomials are de-
termined by enforcing the dynamic constraints at a cer-
tain number of points, nc, within each element. These
points are called collocation points and ti,k is used
to denote collocation point number k ∈ [1..nc], where
[1..nc] denotes the integer interval between 1 and nc,
in element number i ∈ [1..ne]. The system variables’
values at these points, denoted by

(ẋi,k,xi,k,wi,k,ui,k,ei,k) :=

(ẋ(ti,k),x(ti,k),w(ti,k),u(ti,k),e(ti,k)),

are then interpolated based on Lagrange interpola-
tion polynomials to form the collocation polynomials.
There are different schemes for choosing the place-
ment of collocation points with different numerical
properties. In this paper we only consider Radau collo-
cation. All collocation methods correspond to special
cases of implicit Runge-Kutta methods and thus inher-
hit desirable stability properties making them suitable
for stiff systems.

This approximation reduces the Problem (1), which
is of infinite dimension, into a finite-dimensional non-
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linear program of the form

min.
ne

∑
i=1

(
hi ·

nc

∑
k=1

ωk · eT
i,k ·Q · ei,k

)
, (3a)

w.r.t. ẋi,k,xi,l,wi,k,ui,k, p,

s.t. F(ti,k, ẋi,k,xi,k,wi,k,ui,k, p) = 0, (3b)

x1,0 = x0, (3c)

xn,nc = xn+1,0, ∀n ∈ [1..ne−1], (3d)

ẋi,k =
1
hi

nc

∑
l=0

αl,k · xi,l, (3e)

∀(i,k, l) ∈ ([1..ne]× [1..nc]× [0..nc]).

The NLP objective (3a) is an approximation of
the original objective (1a) based on a Gaussian-like
quadrature formula, where the measurement error ei,k
in each collocation point is summed and weighted by
the corresponding element length hi, which is fixed a
priori, and the quadrature weight ωk, which depends
on the choice of collocation points. Notice that the de-
cision variables are not only the unknown parameters
p, but also the discretized system variables ẋi,k,xi,l,wi,k
and ui,k.

Since the states need to be continuous (but not dif-
ferentiable) with respect to time, the new continuity
constraint (3d) needs to be introduced. Because we use
Radau collocation, where no collocation point exists at
the start of each element, this also requires the intro-
duction of the new variables xi,0, which represent the
value of the state at the start of element i. With the in-
troduction of x1,0, the initial condition (1c) is straight-
forward to transcribe into (3c). The dynamic con-
straint (1b) is also straightforward to transcribe into
(3b), by only enforcing it at the collocation points in-
stead of during the entire time horizon.

Finally, we introduce the constraints (3e) to capture
the dependency between x and ẋ. The state derivative
ẋi,k in a collocation point is approximated by a finite
difference of the collocation point values of the state in
that element. The finite difference weights αl,k are re-
lated to the butcher tableau of the Runge-Kutta method
that corresponds to the collocation method.

All that remains is to solve the NLP (3) in order to
obtain an approximate solution to the original Problem
(1). This can be done using dedicated NLP software;
in our case IPOPT.

2.7 Toolbox functionality and workflow

The user interacts with the toolbox through the grey-
box.py Python module. This module defines two
classes GreyBox and Case, as shown in Figure 1.

The idea is to instantiate the GreyBox class once for
the system identification of a given building. The
GreyBox object will contain many different instances
of the Case class. Every Case is an attempt (success-
ful or not) to obtain a model for the given building.
The Case therefore keeps track of the model structure,
identification data, initial guess, solver settings and re-
sults of a single attempt. The functionality of the tool-
box is packed in methods of the GreyBox class and
can be grouped into different domains, according to
the foreseen workflow. This is shown in Figure 2. This
workflow is discussed in the following paragraphs.

Figure 2: Workflow and high-level functionality in
greybox.py

The methods under data handling are used to load
the data files, resample the data if desired, create data
slices of given lengths (for example one week, but can
be any period) and show a plot of any data slice. Typ-
ically, one data slice is the training set, and the other
slices can be used for cross-validation.

When the data has been pre-processed, a model
structure has to be specified in the model selection
step. This is accomplished by specifying the path
to a .mop file. There are two models in the .mop
file: a Modelica model for simulation, called Sim,
and a Modelica + Optimica model for parameter es-
timation, called Parest. The main difference is that
in the model Parest, the value of the Optimica at-
tribute free is set to true for each parameter to be
estimated. The compilation of both models happens
automatically by invoking the corresponding JModel-
ica.org functionality. This includes extracting infor-
mation from the model (state vector, parameter vector
and required inputs) and getting solver options.

Before the parameter estimation can be started, an
initial guess has to be specified for each element in the
parameter vector. These can be obtained by default, by
inheritance, by Latin hypercube sampling or manually.

When the default initial guesses are used, an appro-
priate value is chosen for each parameter, based on its
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name. For example, the naming convention in Fast-
Buildings forces all parameter names for thermal re-
sistances to start with ’r’ (like rWal), for thermal ca-
pacities with ’c’ (like cZon), for fractions with ’fra’
(like fraRad), etc. Based on the first letter(s) of a pa-
rameter to be estimated, a default initial value can be
set.

An alternative for obtaining the initial guess is to
start from the optimized parameter vector from a pre-
vious case. This is especially useful when a new .mop
file is selected that has similarities with a previously
processed .mop file. Due to the naming conventions in
FastBuildings, the corresponding parameters will have
the same name. Therefore, the best initial guess for the
parameters in the new model will be the optimal value
from the previous estimation. For new parameters, the
default initial guess method described above is used.

The last automated option to obtain initial guesses
is based on Latin hypercube sampling. Due to the
non-convexity of the problem, there can potentially
exist many local minima. To investigate the parame-
ter search space more systematically and increase the
chances of finding a global minimum, a Latin hyper-
cube sampling method has been implemented. This
method will take a single initial guess as well as lower
and upper bounds for each parameter and derive a
univariate beta distribution from these three values.
The distribution can be symmetric or asymmetric, as
shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

pd
f

a = 1.5, b = 4.5 a = b = 4 a = 4.5, b = 1.5

Figure 3: Symmetric and asymmetric beta distribu-
tions

The Latin hypercube sampling will then derive n
stratified samples from each distribution and combine
them randomly to obtain n different initital guesses.
Each of these guesses will be copied to a new case to
keep track of the results.

When a case has an initial guess for the parame-

ter vector, the parameter estimation can be started.
However, the NLP described in Equation (3) requires
good initial guesses for each of the decision variables
in the collocation problem (including all collocated
states and algebraic variables). This is handled by do-
ing a simulation first with the Sim model and the ini-
tial guess of the parameter vector. The resulting sim-
ulation trajectories are used as initial guesses for the
decision variables in Problem (3). Numerical scaling
factors for each system variable are also computed as
the infinity norm of the corresponding trajectory.

The solution time and the number of iterations can
vary a lot depending on the initial guess and the abil-
ity of the model to represent the measurement data.
IPOPT allows the specification of a maximum solu-
tion time and/or a maximum number of iterations after
which it will interrupt the optimisation. Both can be
set in the toolbox, but in practice, specifying a max-
imum solution time is more intuitive. It is also more
effective when the iterations become very slow. More-
over, experience shows that long execution times often
lead to solutions far away from the global optimum or
even divergence.

The estimation will add the optimized parameter
vector to the case, as well as the IPOPT solver statis-
tics.

The validation of the results is always based on a
post-simulation with the Sim model and the optimized
values of the parameter vector. There are both visual
and quantitative validation methods. The visual meth-
ods contain for example time series plots of the re-
sulting trajectories and corresponding residuals, scat-
ter plots of the residuals with monitoring data and a
plot of the autocorrelation function of the residuals.
This also implies a check on the weights of the matrix
Q from (1a) in case the error-in-variables method is
used. When a full Latin hypercube sample has been es-
timated, a visual check of the different local optima is
implemented. This can whether the sample was large
enough to suppose the global optimum to be found.
The quantitative methods are based on a computation
of the root-mean-square error (RMSE) for each trajec-
tory in the vector e from Equation (2). This can be
done on the training data (auto-validation) or on any
other dataset (cross-validation). As the RMSE is com-
puted based on the post-simulation, possible discreti-
sation errors in the collocation method are disregarded
in the model validation process.

A computation of the confidence interval for each
of the estimated parameters is implemented. This will
give an indication of the accuracy of the estimation and
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the parameter’s influence on the model’s input-output
behaviour. The standard deviation of the estimated
parameters p̂ is computed according to Englezos and
Kalogerakis [15]. The standard deviation for parame-
ter i is the square root of the diagonal element on (i, i)
in the covariance matrix cov(p̂) of the estimated pa-
rameters, which is given by

cov(p∗) = σ̂2(JT J)−1,

where J is the Jacobian of the trajectories with respect
to the estimated parameters and σ̂2 is the estimated
variance of the output deviation e.

The final step in the system identification is model
selection. Model selection should be carried out on
two levels: for a single model, and between different
models. For a single model, generally a Latin hyper-
cube sampling is executed and the resulting global op-
timum is taken if it is a valid solution. Valid means
that:

• the parameters do not lie on the specified mini-
mum or maximum bounds,

• the parameter values are physically reasonable,

• the confidence intervals are within reasonable
bounds.

The normal procedure for an inter-model selection
procedure starts by a parameter estimation on a very
simple (first-order) model. The obtained parameter
values are often a good indication of the order of mag-
nitude of the parameters for the more detailed models
later on. Then, different models of higher order and
complexity are estimated, and only those for which
the single model validation is satisfactory are retained.
Among all the retained models, the best model is the
one that leads to the lowest RMSE value for cross-
validation. This approach avoids overfitting of the
model, as will be demonstrated in Section 4. A more
focused forward selection procedure as described by
Bacher and Madsen [16] can also be applied.

3 FastBuildings library

The FastBuildings library targets low-order building
modelling. The library has sub-packages for thermal
zone models (including windows), HVAC, user be-
haviour, inputs, buildings and examples. Single and
multi-zone building models can be created easily by
instantiating one of the predefined templates in the
Building sub-package and redeclaring the desired

submodels, like the thermal zone, HVAC or window
model. The following design principles are applied
throughout the library.

• The thermal connectors are HeatPorts from the
Modelica.Thermal package.

• Thermal resistors and capacitances are not used
from the Modelica Standard Library (MSL).
Simplified versions with less auxiliary variables
are implemented. They have exactly the same in-
terface and connectors for compatibility with the
MSL.

• A strict naming convention is used for consis-
tency and to enable the greybox.py toolbox to au-
tomate certain tasks.

• The library heavily relies on the extends con-
struct in order to avoid code duplication. This
is specifically useful for the thermal zone models
that have increasing complexity as a function of
their order.

• An inner/outer component simFasBui passes
all inputs like weather data, occupancy etc. from
the top most level to all sublevels.

• The models for thermal zones, HVAC and user
behaviour have exactly the same interface as their
equivalents in the IDEAS library [7]. Therefore, it
is very easy to replace one or more detailed mod-
els from an IDEAS-based model by a low-order
equivalent from the FastBuildings library.

Currently, the thermal zone models available in the
library are based on a resistor-capacitance (RC) net-
work analogy which is often used for the modelling of
thermal processes. This is however not required; any
model that specifies a relationship between the heat
flows and temperatures at the interface of a thermal
zone can be implemented. An example of one of the
third-order models in the library is given in Figure 4.

The library is distributed with the Modelica license
2 and can be found in the open-IDEAS source code
repository on Github [17].

4 Results

The toolbox is applied on a case study for model or-
der reduction on a single family dwelling. A low-
order model is derived from the simulated trajectories
that are obtained with a detailed model. Prior knowl-
edge about the dwelling is not taken into account in the
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Figure 4: Example of a third-order thermal zone model in the FastBuildings library

model selection or parameter estimation, but is given
here. The dwelling has two construction layers with a
total heated floor surface of 196 m2. The dwelling is
designed according to a low-energy standard and has
massive walls and floor heating. A total of 33 m2 of
windows with a g-value of 0.6 is integrated as follows:
9.5 m2 on east, 10.4 m2 on south and 11.6 m2 on west.

Figure 5 shows the training and validation datasets.
Both sets consist of one week of hourly data. Al-
though the ’measurement’ data comes from a (de-
tailed) simulation, only a few variables that could eas-
ily be measured in a real dwelling are used for this
case study. These include: the ambient temperature
TAmb, global solar radiation on a horizontal surface
IGloHor, electricity consumption powEle, thermal
power of the heating system qHeaCoo, and zone tem-
perature T Zon. Hereafter the detailed simulation data
is called measurement data. All of the inputs are elim-
inated from the problem, as discussed in Section 2.5,
except for T Zon which is the fitting variable.

Nine models with different order, equations, and pa-
rameters have been identified using Latin hypercube
sampling. After validation on single-model level, three
models have been eliminated because some of their
parameters were positioned on a specified minimum
or maximum boundary. The RMSE values for auto

and cross-validation of the six remaining models are
shown in Figure 6. This figure shows that a lower
RMSE on auto-validation does not necessarily imply
a lower RMSE on cross-validation. The best model
is the one with the lowest RMSE on cross-validation.
For this case it is the model with 11 parameters, we’ll
call it model11. This is the model for which the struc-
ture is shown in Figure 4. The models with 12 and 13
parameters are overfitted.

We will now analyse the results for model11 in more
detail. The sample size was 38 and a maximum CPU
time of 5.5 seconds was set. The default solver settings
were not changed. This implies that the number of col-
location elements corresponds to the number of data
points (ne = 168), and each collocation element has
two collocation points (nc = 2). From the 38 cases, 10
converged to a solution within the limit of 5.5 seconds.
Figure 7 shows the RMSE (auto-validation) compared
to the IPOPT objective function for each of these 10
solutions. This plot reveals that 4 local optima have
been found; the (supposed) global optimum has been
found 3 times. The results also show that the discreti-
sation in the collocation method did not lead to signif-
icant errors: there is a strong consistency between the
optima found according to Equation (3) and the RMSE
of the post-simulation.
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Training data Validation data

Figure 5: Measurement data for two weeks (first week as training data, second week as validation data)
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Figure 6: RMSE values for auto and cross-validation
for the different models as a function of the number of
estimated parameters
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Figure 7: Relation between the IPOPT objective value
and RMSE for auto-validation (obtained by post-
simulation)
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A time series plot of the cross-validation is shown in
Figure 8. It is important to note that this plot shows an
open-loop simulation over one week. The prediction
power of the model is very good, with absolute devia-
tions of the zone temperature always below 0.5 K.

Jan 23 2011 Jan 24 2011 Jan 25 2011 Jan 26 2011 Jan 27 2011 Jan 28 2011 Jan 29 2011293.0

293.5

294.0

294.5

295.0

295.5

296.0

296.5
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TZon, simulated

Figure 8: Comparison of the model output with the
measurement data for an open loop simulation on the
validation dataset

The normalized confidence intervals are shown in
Figure 9. All parameters seem to have well defined
confidence intervals. The most unconfident parameter
values are found for the thermal resistance of the infil-
tration (resInf in Figure 4) and for the thermal capacity
of the zone air (capZon in Figure 4).
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Figure 9: Normalized confidence interval for the pa-
rameters in the selected model

5 Conclusion

Inverse modelling is gaining attention in the build-
ing simulation community. More specifically grey-box
modelling is considered as a strong framework for the
creation of low-order models for analysis and control
of monitored buildings. This paper presents an ap-
proach to obtain useful grey-box models in a largely
automated way.

The first step is the creation of a building library
with many potential model candidates. The Model-
ica package FastBuildings contains low-order models
for thermal zones, HVAC, users, single and multi-zone
buildings.

Next, a toolbox is presented that largely automates
the parameter estimation of the FastBuildings mod-
els. It is implemented as a Python module that wraps
the functionality of JModelica.org and presents the
user a high-level interface for all common operations.
The use of a gradient-based method allows an efficient
numerical solution of the estimation problems. Spe-
cific attention is paid to robustness and ease-of-use.
A Latin hypercube sampling of the parameter search
space overcomes issues related to the non-convexity
of the optimization problem.

The toolbox is applied to a model order reduction
case study for a single-family dwelling. Only vari-
ables that can easily be measured in a real building
are used. The selected model has 11 parameters and is
able to predict the indoor temperature in an open-loop
simulation (with a priori knowledge about weather and
electricity consumption) with an RMSE of 0.16 K.

The real value of the toolbox can only be assessed
by using the obtained models for model predictive
control or for large-scale district simulations. Both ap-
plications are foreseen in future work.

Acknowledgement

Roel De Coninck wishes to acknowledge the EU
ITEA2 project Enerficiency for supporting his work
on behalf of 3E and the EU FP7 project Performan-
cePlus (contract nb. 308991) for supporting his work
on behalf of KU Leuven. Fredrik Magnusson and Jo-
han Åkesson gratefully acknowledge support from the
Lund Center for Control of Complex Engineering Sys-
tems (LCCC) and the ELLIIT Excellence Center at
Lund University.

Session 4C: Control Applications

DOI
10.3384/ECP14096657

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

665



References

[1] T. Bohlin, “Editorial - Special issue on grey box
modelling,” International journal of adaptive
control and signal processing, vol. 9, pp. 461–
464, 1995.

[2] H. Madsen and J. Holst, “Estimation of
continuous-time models for the heat dynamics
of a building,” Energy and Buildings, vol. 22,
pp. 67–79, 1995.

[3] N. R. Kristensen, H. Madsen, and S. B. Jor-
gensen, “Parameter estimation in stochastic
grey-box models,” Automatica, vol. 40, pp. 225–
237, Feb. 2004.

[4] D. B. Crawley, J. W. Hand, M. Kummert, and
B. T. Griffith, “Contrasting the capabilities of
building energy performance simulation pro-
grams,” Building and Environment, vol. 43,
pp. 661–673, Apr. 2008.

[5] M. Wetter, “A view on future building system
modeling and simulation,” in Building per-
formance simulation for design and operation
(J. L. M. Hensen and R. Lamberts, eds.), no. i,
p. 28, 2011.

[6] M. Wetter and C. Van Treeck, “IEA EBC
Annex 60 - New generation computational
tools for building and community energy sys-
tems based on the Modelica and Functional
Mockup Interface standards.” http://iea-
annex60.org/about.html, 2013.

[7] R. Baetens, R. De Coninck, J. Van Roy, B. Ver-
bruggen, J. Driesen, L. Helsen, and D. Saelens,
“Assessing electrical bottlenecks at feeder level
for residential net zero-energy buildings by in-
tegrated system simulation,” Applied Energy,
no. (Special issue on Smart Grids, Renewable
Energy Integration, and Climate Change Mitiga-
tion - Future Electric Energy Systems), 2012.

[8] J. Åkesson, K.-E. Årzén, M. Gäfvert,
T. Bergdahl, and H. Tummescheit, “Mod-
eling and optimization with Optimica and
JModelica.org—languages and tools for solv-
ing large-scale dynamic optimization problems,”
Computers and Chemical Engineering, vol. 34,
pp. 1737–1749, Nov. 2010.

[9] T. Blochwitz, M. Otter, M. Arnold, C. Bausch,
C. Clauß, H. Elmqvist, A. Junghanns, J. Mauss,

M. Monteiro, T. Neidhold, et al., “The func-
tional mockup interface for tool independent
exchange of simulation models,” in Model-
ica’2011 Conference, March, pp. 20–22, 2011.

[10] F. Magnusson and J. Åkesson, “Collocation
methods for optimization in a Modelica envi-
ronment,” in 9th International Modelica Confer-
ence, (Munich, Germany), Sept. 2012.

[11] A. Wächter and L. T. Biegler, “On the imple-
mentation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear
programming,” Mathematical Programming,
vol. 106, no. 1, pp. 25–57, 2006.

[12] HSL, “A collection of Fortran codes for large
scale scientific computation.” http://www.
hsl.rl.ac.uk, 2013.

[13] J. Andersson, J. Åkesson, and M. Diehl,
“CasADi – A symbolic package for automatic
differentiation and optimal control,” in Re-
cent Advances in Algorithmic Differentiation
(S. Forth, P. Hovland, E. Phipps, J. Utke, and
A. Walther, eds.), Lecture Notes in Compu-
tational Science and Engineering, (Berlin),
Springer, 2012.

[14] L. T. Biegler, Nonlinear Programming: Con-
cepts, Algorithms, and Applications to Chemical
Processes. MOS-SIAM Series on Optimization,
Mathematical Optimization Society and the So-
ciety for Industrial and Applied Mathematics,
2010.

[15] P. Englezos and N. Kalogerakis, Applied Param-
eter Estimation for Chemical Engineers, vol. 81
of Chemical Industries. CRC Press, Oct. 2000.

[16] P. Bacher and H. Madsen, “Identifying suitable
models for the heat dynamics of buildings,” En-
ergy and Buildings, vol. 43, pp. 1511–1522,
Feb. 2011.

[17] KU Leuven and 3E, “open-IDEAS source code
repository.” https://github.com/open-
ideas, 2014.

Grey-box Building Models for Model Order Reduction and Control

666 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096657



Interfacing Models for Thermal Separation Processes with Fluid
Property Data from External Sources

Kai Wellner ∗1, Carsten Trapp2, Gerhard Schmitz1 and Francesco Casella3

1Hamburg University of Technology, Institute of Thermo-Fluid Dynamics
Denickestraße 17, 21075 Hamburg, Germany

2Delft University of Technology, Propulsion and Power, Kluyverweg 1, 2629 HS Delft, The Netherlands
3Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria

Via Ponzio 34/5, 20133 Milano, Italy

Abstract

So far, when modelling processes that demand for
multi-phase and multi-component fluid property data,
the user has to implement the required media models
in the Modelica language as these types of fluids are
not supported by Modelica.Media. This paper presents
a first approach on how to implement fluid property
data in process models of an existing library from ex-
ternal sources and highlights which problems have to
be overcome. Furthermore, it provides recommenda-
tions for the design of an efficient and user-friendly
interface to external media packages.

Keywords: thermal separation; two-phase; multi-
component mixture; external fluid property data; tran-
sient simulation

1 Introduction and motivation

Using existing model libraries for the modelling of
complex chemical processes is especially challenging
because it can be hard to comprehend the structure of
the models. Nevertheless, when using these models
one might want to implement different media models
from what is already available. One convenient way is
accessing external property packages instead of devel-
oping and implementing required fluid property mod-
els in the Modelica language. In this context it might
be necessary to provide, next to the primary thermo-
dynamic property data, also property derivatives.

The main objective is to develop an interface
between existing Modelica libraries such as the
ThermalSeparation library and fluid property pack-
ages, which successfully deal with situations where

∗kai.wellner@tuhh.de, schmitz@tuhh.de

the total time derivative of fluid properties is required.
This can be the case for several reasons:

• The formulation of the model equations results in
a higher index problem.

• The system states do not equal the variables in the
derivative operator.

• There are more variables in the derivative opera-
tor than there are differential equations.

The simulation tool handles all three situations the
same way which is by applying Pantelides’ algorithm
and deriving the necessary equations in this process
[1]. In contrast to the first bullet point, the last bullet
points do not necessarily result in a high index prob-
lem. But in both cases additional equations have to be
derived by time (which can include fluid property re-
lations) to solve the whole set of equations. In the fol-
lowing this technique is referred to as automated index
reduction, regardless of the origin of the problem.

In comparison to developing models from scratch
where it is possible to maintain an index-1 form of
the system, reducing the index of existing models is
in general not feasible. Further information on the
differential index and index reduction is provided by
Fritzson [2].

An earlier attempt to couple the
ThermalSeparation library to an external property
package still lacked a proper interface [3]. Later on
a coupling to external fluid properties was successful
although the balance equations had to be modified for
this purpose because no derivatives were available and
the automated index reduction failed [4].

Some general advantages and reasons for the need
to interface external thermodynamic property data
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with Modelica models are summarized in the follow-
ing:

• The Modelica language is increasingly used
for process modelling in the field of chemi-
cal engineering which entails the modelling of
multi-phase, multi-component media. Currently,
this type of fluids are not supported by
Modelica.Media. In case the user needs such me-
dia models, an implementation from scratch is re-
quired. This also involves coding of flash cal-
culations in order to determine the equilibrium
composition for example for a given p, T, xtotal .
Depending on the complexity of the fluid mix-
ture and the used equation of state (EoS), the
implementation can be quite cumbersome, time-
consuming and error-prone.

• Using existing property packages provides a
higher flexibility in terms of available compo-
nents and EoS. For a Modelica model library de-
veloped for a wide range of different applications
it is typically not practical or even possible to im-
plement a large number of media models cover-
ing any application case. Therefore, providing a
user-friendly interface to external property pack-
ages is an important feature.

• Calculating property data in an external envi-
ronment can significantly increase the simulation
speed [5]. However this is not a general feature
because in some cases it can have the exact oppo-
site effect and decrease the simulation speed.

2 The ThermalSeparation library

In process engineering the purification of a product
plays an important role. Usually the intermediate
products are not of the desired purity and have to
be treated in a downstream process. Such processes
often involve thermal separation like absorption in
gas-liquid separation columns. As the operation of
post-treatments like separation can be highly dynamic,
computer simulations are indispensable for a better un-
derstanding of the process and its optimization target-
ing for example energy consumption or control strat-
egy design.

The ThermalSeparation library has been devel-
oped for the simulation of absorption and rectification
processes. The challenge when interfacing external
fluid property data is that in the current implementa-
tion the balance equations are written in an way that

forces the simulation tool to apply automated symbolic
index reduction. If that happens, implementing fluid
property data from external sources demands special
requirements. Further information on how the formu-
lation of balance equations can affect the use of exter-
nal fluid property packages and how these problems
can be overcome is given in section 3.

2.1 Library Structure

Compared to earlier versions of the
ThermalSeparation library [4] a new feature
that has been implemented in the framework of this
paper is the replaceability of the balance equations
which easily allows to switch between different
formulations of balance equations.

For this work a modified set of balance equations
that does not require automated symbolic index reduc-
tion is added to illustrate the differences to the original
equations in terms of computational performance. A
UML class diagram of the library structure is shown
in figure 1.

Vapour and liquid medium models that invoke ex-
ternal fluid property calls are added to the respective
classes. Moreover, a film model for the external call
of the flash calculations is implemented. The classes
that are adapted to use external media data are indi-
cated with a bold frame in the UML diagram.

BaseFilm

n

BaseReaction

BaseColumn

BaseMediumVapour

BaseHoldup

FeedColumn

SprayColumn StructuredPackedColumn TrayColumn

BasePressureLoss

BaseWall BaseGeo

n

BaseMediumLiquid

RandomPackedColumn

BaseInitialization

n

BaseBalanceEquations

Liq. Medium ModelVap. Medium Model

Reaction Model

Equation Model

Holdup Model

Initialization Model

Wall Model

Pressure Loss
Model

Geometry
Model

Film ModelBaseFilm

Figure 1: UML diagram of the column model struc-
ture.
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2.2 Interfacing the property package

The use of external sources for the computation of
thermodynamic properties is in this paper exemplary
demonstrated with the FluidProp package, which is
interfaced via the ModelicaFluidProp library [6,
7]. For calculating the actual properties the "PC-
SAFT" (perturbed chain statistical associating fluid
theory) EoS is employed due to its success in pre-
dicting vapour/gas-liquid equilibria of complex flu-
ids and mixtures for a broad range of conditions and
due to fact that it also provides the partial derivatives
of specific molar enthalpy and specific molar volume
with respect to pressure, temperature and composi-
tion. These derivatives are necessary to compute the
total time derivative (cf. section 3.2). The deriva-
tives are obtained by separate function calls. To en-
able the use of the total time derivatives in the models
of the ThermalSeparation library, the implemented
Modelica property functions are modified such that
these derivatives are specified by using the derivative
annotation. This way the simulation environment can
perform automated symbolic index reduction using the
specified total time derivatives of the fluid property
functions which enables the modeller to perform sim-
ulations with variable system states or of higher order
index, which would otherwise fail when using external
property packages. An example on how the FluidProp
calls are implemented in the ThermalSeparation li-
brary media models is illustrated in listing 1. The
medium definition is programmed in a separate class
and mainly consists of string operators that define the
fluid constituents and the medium model (EoS) used
for the property calculations.

The implemented property functions require as in-
put a string with the thermodynamic state definition
(e.g. "PT" for pressure and temperature), the actual
values for these states and the overall molar compo-
sition. Partial derivatives are currently available with
respect to temperature, pressure and composition.

model BaseProperties

ThermalSeparation .Units.MolarEnthalpy h

"Specific enthalpy of medium ";

ThermalSeparation .Media.Types.Density d

"Density of medium ";

FluidPropMedium . AllPropsOut prop_mol

"external property record";

SI.MoleFraction conc [nSubstance ]

"total composition ";

SI.Pressure p "system pressure ";

SI.Temperature T "system temperature ";

equation

(prop_mol ) = Medium.AllPropsMole (

"PT",

p,

T,

Conc );

h=prop_mol .h;

d=prop_mol .d;

annotation ( derivative =

Medium. AllPropsMole_der );

end BaseProperties ;

Listing 1: Fluid property call.

The computation of the equilibrium compositions
for the vapour-liquid phase boundary is treated in a
separate class. The respective function call requires
the same inputs as the property calls and returns the
equilibrium composition for each phase:

model ThermodynamicEquilibrium

SI.MoleFraction conc [nSubstance ]

"total composition ";

SI.Pressure p "system pressure ";

SI.Temperature T "system temperature ";

SI.MoleFraction x_eq [nSubstance ]

"liq. phase equilibrium composition ";

SI.MoleFraction y_eq [nSubstance ]

"vap. phase equilibrium composition ";

equation

(x_eq , y_eq) =

Medium. AllProps2phMole (

"PT",

p,

T,

Conc );

end BaseProperties ;

Listing 2: Flash calculation call.

3 Modelling approach

There are two different approaches when using exter-
nal fluid property data concerning the modelling struc-
ture of the Modelica process models.

In the first approach an automated index reduction
is avoided by writing (or rewriting in case of existing
models) the balance equations in an explicit manner
with respect to the state variables. The external prop-
erty data can easily be integrated in general without
the necessity to provide any partial derivatives.

In the second approach, the balance equations are
written in the most "natural" way which might foster
numerical robustness and simulation speed or ease of
initialization in case of new models. In case of existing
models the balance equations are maintained as coded.

Session 4D: Thermofluid Systems, Models and Libraries 1

DOI
10.3384/ECP14096667

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

669



Typically this leads to an implicit formulation of the
balance equations.

Both approaches are explained in the following:

3.1 Explicit modelling of balancing equations

For a separation column with rate-based modelling ap-
proach the balance equations for one stage can be writ-
ten as:

dNL
i, j

dt
= ṄL

in, j+1 · xL
in,i, j+1 − ṄL

out, j · xL
out,i, j + ṄL

PB, j (1)

dNV
i, j

dt
= ṄV

in, j−1 · xV
in,i, j−1 − ṄV

out, j · xV
out,i, j + ṄV

PB, j (2)

dUL
j

dt
= ṄL

in, j+1 ·hL
in, j+1 − ṄL

out, j ·hL
out, j + Q̇L

PB, j (3)

dUV
j

dt
= ṄV

in, j−1 ·hV
in, j−1 − ṄV

out, j ·hV
out, j + Q̇V

PB, j (4)

Where Ni, j refers to the molar content of component
i on stage j for the liquid and vapour phase respec-
tively. Ṅin and Ṅout are the molar flow rates into and
out of the stage. Furthermore, x is the molar fraction,
h is the specific molar enthalpy, ṄPB and Q̇PB are the
mole and energy flow rates across the phase boundary
and are calculated using constitutive equations. Figure
2 shows a schematic diagram of such column stage.

ṄPB, j

Q̇PB, j

ṄV
out, j ṄL

in, j+1

ṄV
in, j−1 ṄL

out, j

V L
j VV

jvapour
bulk

liquid
bulk

phase
boundary

Figure 2: Schematic diagram of a column stage.

In order to avoid the differentiation of additional
equations and therefore the necessity to provide to-
tal time derivatives of the fluid properties, the system
states have to be the same as the differentiated vari-
ables, in this case NL

i , NV
i , UL and UV . To further

increase simulation speed, the system states should
equal the thermodynamic states, which are the inputs
to the property calls. In this way, the fluid properties

can be directly computed from the state variables and
therefore no iterations are required. For this purpose
the left hand sides of the differential equations have to
be rewritten as a function of the thermodynamic state
variables. A recommendation how this can be imple-
mented is given in section 5.

Now the model is designed work without fluid prop-
erty derivatives. However, as soon as the user chooses
a different state variable as the ones named above, ad-
ditional derivatives are required again. Hence, these
types of models are not flexible because variable states
can be an advantage in model flexibility as they pro-
vide additional robustness.

3.2 Implicit modelling of balance equations

Using existing model libraries with external fluid
properties can be somewhat more complicated because
the balance equations may not always be modelled in
an explicit manner as explained in equations (1)-(4).
For example in the ThermalSeparation library the
balance equations are formulated like this:

d(V L
j · cL

i, j)

dt
=ṄL

in, j+1 · xL
in,i, j+1 (5)

−ṄL
out, j · xL

out,i, j + NL
PB, j

d(VV
j · cV

i, j)

dt
=ṄV

in, j−1 · xV
in,i, j−1 (6)

−ṄV
out, j · xV

out,i, j + NV
PB, j

d[V L
j ·∑n

i=1(u
L
j · cL

i, j)]

dt
=ṄL

in, j+1 ·hL
in, j+1 (7)

−ṄL
out, j ·hL

out, j + Q̇L
PB, j

d[VV
j ·∑n

i=1(u
V
j · cV

i, j)]

dt
=ṄV

in, j−1 ·hV
in, j−1 (8)

−ṄV
out, j ·hV

out, j + Q̇V
PB, j

Where V is the volume, c is the concentration and u
is the specific internal energy.

Experience has shown that this way of modelling
balance equations in the ThermalSeparation library
provides the best performance in terms of numerical
robustness and robust initialization. Moreover, to pro-
vide the full flexibility it is necessary to be able to
choose the system states freely. Further information
on this is given in Dietl [4].

It is obvious that the number of differentiated vari-
ables (V L

j , VV
j , cL

i, j, cV
i, j, uL

i, j and uV
i, j) is higher than

the number of differential equations (5)-(8). This re-
sults in a system that can only be solved if the missing
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derivatives are provided by deriving additional equa-
tions. In the present case this also includes the dif-
ferentiation of fluid properties, which subsequently
causes the compilation to fail as the external property
functions cannot be differentiated by the simulation
environment. One way to circumvent the compilation
failure without changing the governing equations is to
provide the total time derivatives for the property data
according to equations (9) and (10). Therefore, the
partial derivatives of the properties with respect to the
system states are required. Equations (9) and (10) are
contained in the function that is invoked by the deriva-
tive annotation in listing 1. In the column model the
specific molar volume v is used to convert the molar
fraction x to the concentration c.

dh
dt

=

(
dh
d p

)

T,xi

·
(

d p
dt

)
+

(
dh
dT

)

p,xi

·
(

dT
dt

)
(9)

+

(
dh
dxi

)

p,T
·
(

dxi

dt

)

dv
dt

=

(
dv
d p

)

T,xi

·
(

d p
dt

)
+

(
dv
dT

)

p,xi

·
(

dT
dt

)
(10)

+

(
dv
dxi

)

p,T
·
(

dxi

dt

)

In contrast to this a higher index problem in chem-
ical process models can arise for example because of
the volume constraint when assuming incompressibil-
ity of the fluid or when chemical reactions are mod-
elled in an equilibrium fashion [8].

4 Example of use

In the following the implementation of both ap-
proaches (use of explicit balance equations and use
of implicit balance equations) is demonstrated and
compared for the simulation of a rate-based column
model employing a fluid mixture of n-propane and n-
pentane using external property data. Both approaches
of modelling balance equations are successfully im-
plemented, which has been proven by the fact that with
both models the same solution has been obtained.

Inside the medium models the specific volume, the
specific enthalpy and the specific heat capacity are
used from FluidProp for both vapour and liquid phase.
The specific internal energy can be directly calculated
from the specific enthalpy. Additionally, the equilib-
rium composition is used in the film model. The prop-
erty calls are invoked using pressure and temperature

Figure 3: Diagram of the Modelica column model.

as thermodynamic states. The system states of the col-
umn model are pressure, temperature and molar com-
position of liquid and vapour phase.

Figure 4 depicts the comparison in simulation time
of both models, implicit and explicit balance equa-
tions, for a step change in the feed flow rate at 500
seconds when the system has reached a steady-state
after initialization.
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Figure 4: Comparison of simulation times.

When comparing both models it can be observed
that the simulation time for the implicit model is much
higher. This is explained by the fact that the calcula-
tion of partial derivatives is computationally very ex-
pensive which can be seen in sections with high gra-
dients like initialization or change of boundary condi-
tions. There the simulation of the implicitly modelled
system slows down significantly in comparison to the
model that does not use external derivatives. Thus it
can be concluded that from a performance point of
view it is advantageous to model the system in an ex-
plicit manner in order to avoid the necessity to com-
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pute partial derivatives.
While the calculation of the external fluid properties

requires the biggest part of the computational effort
(especially when partial derivatives are needed), it also
possesses a large room for improvement and thus for
the decrease of the overall simulation time.

Aside from the external calculation of the par-
tial derivatives there are other possible sources for
the slowdown of the simulation in this specific case.
First of all this modelling approach combined with
the use of external property data introduces numer-
ical jacobians that have to be calculated in order
to obtain the solution of the system. These jaco-
bians can both destabilize and slow down the simu-
lation. Furthermore, implicit modelling of the balanc-
ing equations in combination with the use of external
derivatives can lead to larger blocks of non-linear sys-
tem of equations that have to be solved iteratively as
tearing cannot be applied in an efficient way. Table 1
shows a comparison for the sizes of non-linear system
of equations between explicit and implicit modelling
approaches for the example of use.

Implicit model Explicit model

(1) {58, 52, 68, 1, 1, 1, 1} {58, 50, 54, 1, 1}
(2) {6, 2, 56, 0, 0, 0, 0} {8, 2, 6, 0, 0}

Table 1: Sizes of non-linear system of equations be-
fore (1) and after manipulation (2).

The presented simulations are using rate-based col-
umn models from the ThermalSeparation library,
which means that in terms of external property com-
putations one call is required for each phase and one
additional call for the film model in order to determine
the thermodynamic equilibrium. If the partial deriva-
tives are needed they are invoked via the derivative an-
notation additionally for each property call. Having
three property calls per column stage is obviously
computational expensive, especially when derivatives
are calculated, in comparison to e.g. an equilibrium
stage model where only one property call per column
stage would be sufficient.

5 Recommendations for improve-
ment of the interface and balance
equation modelling

The current interface does not provide the possibility
to choose between function calls with or without the

output of the total time derivatives via the derivative
annotation. If they are needed, they have to be cal-
culated from partial derivatives which have to be in-
voked with a separate function call. For a future in-
terface it should be possible to opt between functions
that provide derivatives and such that do not. In princi-
ple it would be sufficient to have one function and the
derivatives in the annotation are only calculated when
needed. In practice however this does not work be-
cause for complex models (like in the example of use)
the derivatives are also computed when they are not
needed. So on the one hand calculating the derivatives
all the time consumes too much CPU time if it is not
required but on the other hand sometimes the deriva-
tives are absolutely necessary.

Furthermore it would be convenient if the user can
specify the needed derivatives to be able to adapt them
to the system states of the model that the derivatives
are used in (e.g. the column model). Listing 3 shows
a suggestion how such an interface can look like for
both options, with and without output of derivatives.
The design is inspired by the current implementation
and expanded with a NumericalState record in case
the derivatives are required. The derivatives in the
prop_der.dh[:] array are arranged in the same order
as the numerical states inside the NumericalState

record. Although these recommendations are related
to the current interface of the ModelicaFluidProp li-
brary they can be taken as general recommendations
for the design of future interfaces.

(prop ) = Medium.AllProps (

ThermodynamicState ,

Value1 ,

Value2 ,

Conc );

h=prop .h;

(prop_der ) = Medium.AllPropsDer (

ThermodynamicState ,

Value1 ,

Value2 ,

Conc ,

NumericalState );

h=prop_der .h;

dhdp =prop_der .dh [1];

dhdT =prop_der .dh [2];

dhdx [1]= prop_der .dh [3];

dhdx [2]= prop_der .dh [4];

Listing 3: Design recommendation for fluid property
interface

In addition, the general way of modelling balance
equations for processes involving multi-phase and
multi-component fluids should be reconsidered. The
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modelling of balance equations with mass, internal en-
ergy and mass fractions originates from the modelling
of energy systems. This approach might not be opti-
mal for problems in the field of chemical engineering.
For chemical processes the balance equations should
rather be set up with volume related properties like
for example density or the molar specific volume as
explained in Pantelides [8]. For an equilibrium stage
model the left hand side of the mole balance can be
rewritten according to equation (11).

dNi

dt
= V · d(v · xi)

dt
(11)

The advantage of this structure is that fluid property
calls can directly be invoked with the system states
"u,ρ" or "u,v" (depending on whether the model is
on mass or molar basis) and still an automated index
reduction due to the need of additional derivatives is
avoided.

6 Summary and conclusions

This paper demonstrates and compares two ap-
proaches on the use of external property packages for
the computation of fluid data interfaced to Modelica
process models. With the exemplary column model
using an explicit formulation of the balance equations
the use of partial derivatives is avoided. This model is
in terms of computational speed favourable in compar-
ison to the model with an implicit formulation of the
balance equations. However, especially when utilizing
existing model libraries rewriting balance equations is
not convenient or feasible. The paper shows that in
this case the external property package has to provide
partial derivatives of the fluid properties with respect
to the system states. This enables the simulation envi-
ronment to perform automated symbolic index reduc-
tion and maintains the flexibility of choosing the state
variables freely.
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Nomenclature

Ṅ molar flow rate (mol/s)

Q̇ heat flow rate (W)

c concentration (mol/m3)

h specific molar enthalpy (J/mol)

N amount of substance (mol)

p pressure (Pa)

T temperature (K)

U internal energy (J)

u specific internal energy (J/mol)

V volume (m3)

v specific molar volume (mol/m3)

x mole fraction (mol/moltot )

Superscripts

L liquid phase

V vapour phase

Subscripts

i component i

in inflow stream/attribute

j column stage j

out outflow stream/attribute

PB phase boundary
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Abstract 

In this article a real-time model for dynamic simula-

tion of a fuel processor is presented. The model is in-

tended for HIL testing of the PLC for a truck Auxil-

iary Power Unit (APU) system.  

The APU comprises a PEM fuel cell and fuel proces-

sor to enable direct utilization of on-board diesel. The 

system is under development in FCGEN, an EU pro-

ject under the FP7 program FCH JU [1]. One critical 

challenge is to design the control system (PLC) to en-

sure failsafe and environmental friendly startup and 

operation. The startup phase of the fuel processor is 

the most critical part, since it is a highly dynamic pro-

cess involving several complex reactors. It is advan-

tageous to verify the control system before the fuel 

processor is assembled to avoid possible breakage of 

components. Such verification can be done with a 

real-time model representing the physical system. In 

this study such a model is created using Modelica and 

Dymola. It is shown that it is possible to load and ex-

ecute a real-time Modelica model capable of realisti-

cally mimicking the system response on a HIL plat-

form. The model runs in real time using a first order 

explicit (Euler) solver with a time step size of 25 ms. 

 

Keywords: HIL simulation; fuel reformation; fuel 

processor, fuel cell, PLC, real-time simulation 

Abbreviations 

APU Auxiliary Power Unit 

ATR Auto-Thermal Reformer 

BoP Balance of Plant 

CAB Catalytic After Burner 

CSB Catalytic Start Burner 

DS Desulphurizer 

FPM Fuel Processing Module 

HIL Hardware In the Loop 

PEM Proton Exchange Membrane 

PLC Programmable Logic Controller 

PrOx Preferential Oxidation 

WGS Water Gas Shift 

1 Introduction 

Fuel cell systems are an attractive technology for 

Auxiliary Power Units for e.g. trucks, because of the 

high efficiency and low emissions. However, PEM 

fuel cells operate most efficiently with hydrogen, 

while at gas stations usually only liquid fuels like die-

sel and gasoline are available. To circumvent this 

problem a fuel processor may be used to convert the 

high order hydrocarbons to a hydrogen rich gas mix-

ture. The aim of the FCGEN [1] program is to design 

and demonstrate such an APU. 

 

The fuel processor is a complicated system of reac-

tors, heat exchangers and BoP components. System 

startup needs to be carefully designed to avoid poison-

ing of reactors and system failure and ensure as short 

startup time as possible. The control system must be 

designed to give a smooth and secure startup. Verifi-

cation and adjustment of the control system is nor-

mally performed against the real system. However 

since the system is complex, such testing may become 

very expensive and time consuming. Hence it is ad-

vantageous to test the system against a model in a HIL 

(Hardware-In-the-Loop) setup before assembling the 

full system. In this work such a model is developed 

and tested.  
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An example of a previous related work is a physical 

model made in Modelica of a food processor line 

tested in a HIL set up in 2008 [2]. 

2 Fuel processor 

The fuel processor module (FPM) is based on an 

Auto-Thermal Reformer (ATR) which converts diesel 

to syngas through steam reformation. Required heat 

for the endothermic reformation reaction is supplied 

by oxidation with a limited amount of air.  

A desulphurizer (DS) is added downstream of the 

ATR to remove sulphur to protect downstream cata-

lysts and the fuel cell. 

The PEM fuel cell tolerates only very low CO con-

centrations (ppm levels). To remove CO from the syn-

gas to the fuel cell, a water-gas shift (WGS) reactor 

and a preferential oxidizer (PrOx) are added down-

stream of the DS. To avoid poisoning of the fuel cell 

during the startup phase, a bypass route is used. A cat-

alytic afterburner (CAB) is used to clean the exhaust 

gases before release to the atmosphere. In the early 

start phase a start system is in operation burning diesel 

in a catalytic start burner (CSB) to pre-heat the FPM. 

The system scheme is shown in Fig. 1 below. 

 

 
Figure 1: Fuel processor system scheme 

The fuel processing module (FPM) is developed by 

the following partners of FCGEN: 

 Volvo Group Trucks Technology, Sweden – 

coordinator 

 PowerCell Sweden AB - plant components, 

system specification, integration and testing  

 Forschungszentrum Jülich GmbH, Germany - 

ATR and CAB reactors 

 Institut für Mikrotechnik Mainz GmbH, Ger-

many - DS, WGS and ProX reactors 

 Johnson Matthey PLC, UK – catalysts for re-

actors 

 Jozef Stefan Institute, Slovenia -  control sys-

tem 

 Modelon AB, Sweden – dynamic system 

model 

 

2.1 Startup strategy 

The main steps of the startup strategy are;   

1. Use the start burner to heat the ATR and 

downstream reactors to sufficient tempera-

ture. 

2. Use the start burner to produce steam for the 

ATR. 

3. Ignite the ATR, keep start burner in operation 

to ensure sufficient fuel and emission conver-

sion. 

4. Shut down start burner, start normal opera-

tion. 

5. Stop by-pass of fuel cell. 

3 Requirements on HIL model 

The aim of this work is to create a model that can be 

used to test the PLC logic. The simplifications needed 

to meet the real-time requirement sets a limit on 

model accuracy. Hence the model will not be suitable 

nor be used for calibration of PLC logic parameters. 

The requirements of the HIL simulation model are de-

fined as: 

 

1. The model should be robust and never crash. 

2. The PLC requires real-time communication 

with the plant model. Consequently, no 

solver step may require a CPU time longer 

than real time (so called overrun). 

3. The model should respond realistically to 

changes in input signals. For example ATR 

temperature should respond in the right di-

rection when changing air-fuel ratio or steam 

mass flow. 

4. Trends need to be captured for temperatures 

and mass flows. Exact numbers are not nec-

essary. 

5. Response times are allowed to deviate 

slightly from reality. In general model re-

sponse times are longer than real response 

times, because of the constraint on minimum 

time constants. 

 

To meet requirement no 2 the model must be fairly 

simple, and an explicit solver such as the first order 

Euler method need to be applied. Fast dynamic time 

scales need to be removed by changing dynamic equa-

tions to static. Events need to be eliminated to avoid 

solver reinitialisation and subsequent overruns. At the 

same time the model needs to respond realistically to 

signal changes, as defined in requirement no 3. How-

ever, because of the simplicity of the model it cannot 

be expected to correctly predict absolute temperatures 
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or times of the system. This accuracy is not needed for 

the PLC tests.  

4 Model description 

The Modelica model is based on the Fuel Cell Library 

from Modelon [3]. This newly released product con-

tains a number of component models and examples 

aimed at PEMFC and other fuel cell applications in-

cluding fuel processing reactors. The library depends 

on Modelon Base Library for base classes common to 

several Modelon libraries. Early work and corner-

stone of FCL was carried out by Andersson and Åberg 

[4]. Dymola features such as drag and drop function-

ality, graphical user interface, equations in text layer 

and numerical solvers facilitate development of a dy-

namic fuel cell model.    

The full system includes more than 25 components, 

including compressors, heat exchangers, valves, reac-

tors and pumps. All relevant components of the fuel 

processor have been included in the model. The real-

time model comprises 217 continuous time states and 

is of index 1. 

Two-phase water medium has been used where nec-

essary. For model robustness pure steam medium was 

applied wherever possible. Multi-component gas 

phase media was used for reformate gas and air.  

To enable HIL simulations and meet real-time re-

quirement, all extended component models (submod-

els) need to be simple. 

The Dymola model is initially developed for the 

DASSL implicit ODE solver. To avoid overruns in the 

HIL simulations an explicit fixed-step solver must be 

used. The first order Euler solver is applied in this 

work. To match the real time requirement a suffi-

ciently large time step size need to be used in the Euler 

solver. 

In the following sections the main submodels, real-

time adaptations and HIL setup are described. 

4.1 Chemical reactors 

Chemistry is very complex and the final composition 

is highly dependent on the initial state and local phe-

nomena. Simplified chemistry models are usually 

valid in a narrow state space. The purpose of this 

study is to validate and test the FPM control system 

during normal system startup. It is enough to predict 

reasonable heat release in each reactor. Detailed spe-

cies concentrations are not required. Hence simple 

chemistry models designed for the normal startup and 

operation range are suitable. 

 

In the ATR fuel is reformed by steam under presence 

of a limited amount of oxygen. Fuel lean combustion 

does not need to be covered by the model, and com-

plete conversion is a valid assumption. 

The reactors are implemented as homogeneous 

(lumped) reactor models, utilizing different reaction 

objects to simulate reaction time characteristics typi-

cal for each reactor. The reaction objects used are 

equilibrium chemistry, complete conversion and reac-

tion kinetics using Arrhenius equation. Heat exchang-

ers, flow losses and heat losses are included where ap-

plicable. See Fig. 2 for Dymola model schematics of 

the WGS reactor. The following chemical reactions 

are applied in the system: 

Combustion (ATR): 

𝐶𝑛𝐻𝑚 + (𝑛 +
𝑚

4
) 𝑂2 → 𝑛𝐶𝑂2 +

𝑚

2
𝐻2𝑂 

Partial oxidation (ATR): 

𝐶𝑛𝐻𝑚 +
𝑛

2
𝑂2 → 𝑛𝐶𝑂 +

𝑚

2
𝐻2 

Hydrocarbon steam reformation (ATR): 

𝐶𝑛𝐻𝑚 + 𝑛𝐻2𝑂 → 𝑛𝐶𝑂 + (𝑛 +
𝑚

2
) 𝐻2 

Water-gas shift (ATR, WGS): 

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 

H2 oxidation (PrOx, CAB): 

2𝐻2  +  𝑂2 ↔ 2𝐻2𝑂 

CO oxidation (PrOx, CAB): 

2𝐶𝑂 +  𝑂2 ↔ 2𝐶𝑂2 

 

 
Figure 2: WGS model in Dymola 

4.2 Start system 

The catalytic start burner from Zemission is simply 

modeled by tabulated temperatures and mass flows as 
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function of power load. The table based start burner is 

connected to heat exchangers transferring the heat to 

the rest of the fuel processor (see Fig. 3). The startup 

logics involves electrical pre-heating, ignition, certain 

delays, ramping to operating point etc. 

 

 
Figure 3: Start system in Dymola 

4.3 Achieving real-time 

A number of model simplifications and changes were 

introduced to enable real-time simulations: 

 Non-linear equations: The submodels were 

simplified to avoid non-linear equation sys-

tems.  

 Model simplifications: The model complex-

ity was decreased. The discretized heat ex-

changers were replaced by lumped models. 

The discretized ATR, WGS, PROX and CAB 

reactors were described by lumped reaction 

volumes connected to lumped heat exchang-

ers. 

 Event elimination: The Modelica operator 

noEvent() was added for applicable func-

tions. Functions not supporting noEvent were 

exchanged by functions supporting or includ-

ing noEvent(). In particular IF constructs 

were removed. 

 Minimum flow values: In the real system zero 

flow or back flow may occur. This can lead to 

division by zero or very fast dynamics. To 

avoid this, a negligibly small mass flow is in-

itiated where the real system has zero flow. 

 Chemical time scale: The time scale of chem-

ical reactions is generally several orders of 

magnitude smaller than the required model 

time step size. Hence the complex dynamic 

reaction system is replaced by static equa-

tions for most reactors. For reactors with dy-

namic time scales close to the model time step 

size the chemical reaction rates are damped 

sufficiently. 

 Time scale for flow: Pressure waves travel 

fast and yield short time scales. To increase 

the time scales flow losses and volumes 

were lumped and increased. 

 Simplified media: The higher order original 

NASA Glenn correlations [5] for thermody-

namic properties were replaced by linear 

correlations for the full temperature range. 

Hence the possible discontinuity by the 

break temperature is removed.  

 

To enable offline testing of the fuel processor a simple 

control system was implemented in Dymola and con-

nected to the bus signals in the fuel processor model. 

An overview of the control system is shown in Fig. 4. 

Ramps and tables were used for opening and closing 

of valves and changing set points for mass flow regu-

lators. Simple integrator controllers were used. The 

purpose of the model control system is only to test the 

robustness of the model and the model response; 

hence it is kept simple. 

 

 

 
Figure 4: Model control system 

4.4 HIL setup 

The HIL set-up comprises 5 units. The HIL core form 

the Host computer, where the model is put together 

and compiled and the Real-time computer, which ac-

tually runs the model simulation in real time. The 

Real-time computer is connected to the PLC running 

the FCGEN APU control system via CAN buses. For 
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operation monitoring and adjustment of control sys-

tem parameters another computer is used running the 

SCADA-HMI. This computer can be accessed re-

motely from J. Stefan Institute, allowing frequent 

checks and test execution without additional costs. 

The scheme of the HIL set-up is presented in Fig. 5. 

 

The Real-time computer is a Speedgoat performance 

real-time target machine running xPC Target. The 

Dymola Simulink interface is used to import and build 

the Modelica model in Simulink. 

The communication to the PLC includes more than 

100 sensor and actuator signals. All signals are added 

to the model and connected in Simulink. An overview 

of the model setup in Simulink is seen in Fig. 6.  

The time step of the model is 25 ms, which is a trade-

off between model accuracy and the real time require-

ment. The sample time is 500 ms to mimic the real 

system response times. The communication interval 

to the PLC is 1 ms to ensure sufficient signal transfer 

rate. 

 

 

 

Simatic&HMI PC 
(supplied by JSI, 

located at Powercell) 

Remote access PC 
(remote access from 

Slovenia) 

Ethernet  

Internet 

PLC 
(APU Control 

System) 

Real time 

computer  
(runs real-time model) 

Host computer 
(Dymola/Simulink plant 

model) 

Ethernet 

Ethernet 

CAN bus 

data signals 

PLC 
with 

CS 

Simatic & HMI 

computer 

Host 

computer 

Real-time 

computer 

Figure 5: HIL testing assembly scheme 

Figure 6: Simulink implementation using the Dymola Simulink interface 
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5 Results and Discussion 

The model is tested offline for phase 1 to 4 in the 

startup strategy (see section 2.1). Air-fuel ratio and 

steam mass flow is changed to verify the model re-

sponse. Following the discussion in section 3, the 

model cannot be expected to deliver correct absolute 

values or times. Hence temperatures and times are 

normalized, and absolute values are not presented. 

 

Temperatures through the system are shown in Fig. 7 

and 8. Fig. 7 shows the inlet temperatures to the ATR, 

Fig. 8 shows the reactor exhaust temperatures through 

the system. The startup events are indicated on the x 

axis.  

The overall dynamics of the model is reasonable; inlet 

air and steam are heated by the startburner, and the 

temperature drops when the startburner is turned off. 

The ATR temperature is increased by startburner 

heating. By ignition, the temperature is increased, and 

when CSB is turned off the temperature drops to a sta-

ble value.  

 

The transient overshoots seen in the figures arise from 

the use of simple integrator controllers. 

 

 
Figure 7: ATR inlet temperatures. The numbers below the x axis 

indicate start of phase 1-4 defined in section 2.1. 

 
Figure 8: Reactor exhaust temperature. The numbers below the x 

axis indicate start of phase 1-4 defined in section 2.1. 

To test the model response the air-fuel ratio was de-

creased by lowering the inlet air flow. Since the ATR 

is run under fuel rich conditions this should lead to 

decreased ATR outlet temperature. This is confirmed 

by Fig. 9, where ATR exhaust temperatures for differ-

ent conditions are plotted. 

From this figure it is also confirmed that the ATR tem-

perature is decreased when increasing steam mass 

flow, as expected. 

 

 
Figure 9: ATR exhaust temperature for different conditions 

To meet the real time requirement reactor volumes 

and flow losses were increased. To evaluate the effect 

of these necessary changes comparisons of results 

with and without these changes are shown in Fig. 10 

and 11 below. Both simulations were run with the 

Development of a Real-Time Fuel Processor Model for HIL Simulation

680 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096675



Dassl solver. The deviation between original and real 

time model is considered acceptable. 

 

 
Figure 10: Temperatures before (*_orig) and after (*_realtime) 

modifications of volumes and flow losses to eliminate time con-

stants below 25 ms. 

 
Figure 11: Mass flows before (*_orig) and after (*_realtime) 

modifications of volumes and flow losses to eliminate time con-

stants below 25 ms. 

Using DASSL on a laptop with an Intel Core™ i7-

3740QM CPU @ 2.70 GHz, the model is 68 times 

faster than real-time. With the Euler solver each time 

step takes about 4.5 ms without overruns; the model 

is 5.6 times faster than realtime when using a time step 

size of 25 ms. The results are confirmed to be con-

sistent using DASSL and Euler, see Fig. 12. At the 

Speedgoat machine each time step requires slightly 

more than 20 ms. For this reason a 25 ms step size is 

chosen for the HIL simulations. 

 

Figure 12: Simulations with DASSL and Euler Solver  

The major difficulty in achieving real-time capability 

was to ensure large enough time constants under all 

conditions. Lumping volumes in reactors and heat ex-

changers was not enough. The smallest time constants 

of the lumped system were < 0.05 ms. To increase the 

time constants the volumes were increased until the 

results started to deviate from the original results. 

Since the time constants were still too small, it was 

decided to also increase flow losses through the sys-

tem. This increased the time constants sufficiently 

while still keeping sufficient accuracy in temperature 

and mass flows (see Fig. 10 and 11). 

 

The second major difficulty was to ensure stable op-

eration under all circumstances. This was handled by 

extensive testing of the model, eliminating issues one 

by one. The major difficulties were connected to back 

flow and negative mass fractions. Backflow is diffi-

cult to consistently handle under all circumstances 

without event generation and without obtaining non-

linear equation systems. Hence a large enough mini-

mum flow from the compressors, pumps and valves 

was imposed. Negative mass fractions occur when the 

solver takes a too large step size for a dynamic reac-

tion where one of the reactants is completely con-

sumed. Hence reactions were limited and max limiters 

were applied on species mass fractions. 

 

The model is currently tested on the SpeedGoat ma-

chine using xPC Target. It is confirmed to success-

fully load and start. Full HIL tests with a PLC will be 

the subject of future work. Additional model revisions 

may be required during the course of the PLC tests. 
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6 Conclusions 

A real-time model for dynamic simulation of a fuel 

processor is developed. The following main conclu-

sions are made: 

 It is possible to create a real-time capable 

model using Modelica and Dymola for such a 

fuel processor system. 

 A system of 217 dynamical states needs Euler 

time steps of about 25 ms to enable HIL sim-

ulation on the current hardware configura-

tion. 

 Several simplifications were needed to in-

crease the time constants to 25 ms. 
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Abstract

This paper presents the results of an on-going project
to develop ThermoCycle, an open Modelica library for
the simulation of low-capacity thermodynamic cycles
and thermal systems. Special attention is paid to ro-
bustness and simulation speed since dynamic simula-
tions are often limited by numerical constraints and
failures, either during initialization or during integra-
tion. Furthermore, the use of complex equations of
state (EOS) to compute thermodynamic properties sig-
nificantly decreases the simulation speed. In this pa-
per, the approach adopted in the library to overcome
these challenges is presented and discussed.

Keywords: Thermodynamic systems, numerical
methods, simulation speed, robustness

1 Introduction

Dynamic simulation of thermodynamic systems is re-
quired to evaluate and optimize their response time,
or to define, implement and test control strategies.
[13, 6, 22]. The Modelica language is well adapted
to the formulation of thermo-flow problems, mainly
because it is an a-causal language that allows inter-
connecting the models in a "physical" way [5]. In
recent years, several libraries have been developed
to model thermodynamic and thermal systems in the
Modelica language [6, 27]. A number of libraries
are now available to model steam and gas cycles (e.g.
ThermoSysPro, Power Plants, Thermal Power, Ther-
moPower, etc.) or refrigeration systems (TIL, AirCon-
ditioning, etc.).

However, not all of them are open-access, and few
are able to handle non-conventional working fluids
such as refrigerants or fluids used in Organic Rank-
ine Cycle (ORC) systems. Thermophysical substance

properties of (moist) air and water are indeed well
known and implemented in most simulation tools
while those of organic fluids require complex equa-
tions of state available only in external libraries such
as FluidProp [10], Refprop [16] or CoolProp [1]. Two
common solutions when modelling thermodynamic
systems requiring external computation of working
fluid properties include TIL and ThermoPower:

• TIL is a commercial library for steady-state and
transient simulation of thermodynamic systems
[26]. The thermodynamic properties are obtained
through TILMedia, a library for the calculation of
thermophysical substance properties, for example
using custom high performance EOS, fast table
based bicubic spline interpolation or via an inter-
face for Refprop. It should be noted that TIL-
Media is not designed according to the Modelica
Media standard but provides an interface with the
Modelica.Media library. The TIL library includes
a variety of models for thermodynamic compo-
nents (e.g. heat exchangers, expanders, pumps,
etc.).

• The ThermoPower library has proven to be well
suited for the modelling of power plants, includ-
ing ORC systems [8]. It can be coupled to the
ExternalMedia library [9], an interface between
Modelica and, among others, FluidProp. Ther-
moPower and ExternalMedia are open-source,
FluidProp is freely available but not open-source.
The models are mainly designed for large-scale
power plants with tube heat exchangers. Smaller
systems using e.g. plate heat exchangers are less
adapted to the ThermoPower library.

The ThermoCycle Modelica library has been devel-
oped for the simulation of thermal plants (heat pumps,
steam and gas cycles, etc.) with a focus on smaller-
capacity systems. It aims at addressing three typical
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challenges inherent to the modelling of thermo-flow
systems:

1. Computing the thermophysical substance proper-
ties of working fluids

2. Computational efficiency

3. Robustness during initialization and integration

Several numerical methods have been developed and
implemented in order to enhance the robustness and
the simulation speed of the models during initial-
ization and integration. Furthermore, the computa-
tion of the working fluid thermophysical properties is
achieved by a strong coupling with the open-source
thermodynamic properties database Coolprop [1]. The
interface between CoolProp and Modelica is based on
the Coolprop2Modelica library, a modified version of
the ExternalMedia library [9].

2 The ThermoCycle Modelica li-
brary

The ThermoCycle library aims at providing a robust
framework to model small-capacity thermodynamic
cycles. The goal is to provide an integrated and fully
open-source solution ranging from the thermophysi-
cal substance properties, using CoolProp, to the sim-
ulation of complex systems with their control strat-
egy. In comparison with alternative libraries dedicated
to power plants (ThermoPower, ThermoSysPro, Ther-
mal Power), the ThermoCycle library includes var-
ious models dedicated to the modelling of smaller-
scale thermal systems, such as volumetric compressors
models used for the simulation of heat pump or refrig-
eration cycles. The key features of the Library are the
following:

• Designed for system level simulations

• Full compatibility (connector-wise) with libraries
such as MST or ThermoPower, use of stream con-
nectors

• Ability to handle reverse flows and flow reversals

• Various numerical robustness strategies imple-
mented in the components and accessible through
Boolean parameters

• High readability of the models (limited levels of
hierarchical modelling)

The components provided in the library are designed
to be as generic as possible. For example, no detailed

geometry records should be provided by the user to
compute the heat exchanger heat transfer and pressure
drop. Instead, the user is expected to build a separate
detailed model of the component and extract simpli-
fied laws to be used in the Modelica component: for
a given fluid and operation conditions range, detailed
heat transfer correlations can usually be replaced by
simplified equations depending on the flow rate only:

h = hnom ·
(

Ṁ
Ṁnom

)n

(1)

where the n exponent depends on the flow regime (typ-
ically 0.6 for laminar and 0.8 for turbulent). This ap-
proach aims at increasing the computational efficiency,
and also allows using the same model for different
types of components. As an example, the same model
can readily be used for shell & tubes or plate heat ex-
changers only be modifying the hnom and n parameters
of the simplified heat transfer law.

The same applies for the pressure drops, which can
usually be lumped in a single pressure drop on the va-
por lines and expressed as a quadratic function of the
flow rate. This approach increases the computational
efficiency and avoids specific models suitable for one
particular component type or geometry only. It is il-
lustrated in Figure 1 for the case of a heat pump: the
pressure drops in each line are lumped into two pres-
sure drop components that were calibrated in a sepa-
rate and more detailed steady-state model. It should be
noted that this assumption is valid only if the pressure
drops remain limited in both heat exchangers: their
influence on the temperature profile should be small
compared to the temperature differences and the pinch
points of the process.

2.1 Modelling of fluid flows

The finite volume approach is selected as general
method to simulate fluid flows. Homogeneous one-
and two-phase flow are taken into account, while non-
homogeneous, multi-phase flows are not considered,
yet. The basic fluid flow component is a cell in which
the energy and mass conservation equations are ap-
plied (Figure 2). Two types of variables can be dis-
tinguished: cell variables and node variables. Node
variables are distinguished by the "su" (supply) and
"ex" (exhaust) subscripts, and correspond to the in-
let and outlet nodes of each cell (Fig. 2). The rela-
tion between the cell and node values depends on the
discretization scheme. Two schemes are implemented
in the cell component, the central difference scheme
(h = (hsu + hex)/2) and the upwind scheme (h = hsu).
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Figure 1: Model of an R407c heat pump

Since the model accounts for flow reversal, a condi-
tional statement is added depending on the flow rates
at the inlet and outlet nodes. For the central difference
scheme, hsu is expressed by Equation 2 (an equivalent
equation applies to hex):

hsu =





h∗ex if Ṁsu ≥ 0
2 ·h−hex if Ṁsu < 0 and Ṁex < 0

h if Ṁsu < 0 and Ṁex ≥ 0
(2)

where the flow rates are defined as positive when the
fluid flows in the nominal direction (from "su" to "ex"),
and where h∗ex indicates the exhaust node enthalpy of
the previous cell.
For the upwind scheme:

hsu =

{
h if Ṁsu < 0

h∗ex if Ṁsu ≥ 0
(3)

Figure 2: Discretized flow model with cells and node
variables

The energy balance for one cell is expressed by [21]:

V ρ
dh
dt

= Ṁsu(hsu−h)−Ṁex(hex−h)+ Q̇+V
d p
dt

(4)

and the mass balance is written as a function of the two
differentiated state variable p and h

Ṁex− Ṁsu = V · dρ
dt

= V ·
(

∂ρ
∂h
· dh

dt
+

∂ρ
∂ p
· d p

dt

)
(5)

where ∂ρ
∂h and ∂ρ

∂ p are considered as thermodynamic
properties of the working fluid and are computed in
CoolProp. Pressure is considered constant in the cell
component.
The cell model has been developed for compressible,
incompressible, and constant heat capacity fluid. The
overall flow model can be obtained by connecting sev-
eral cells in series. The final discretization scheme cor-
responds to a staggered grid, i.e. the thermodynamics
states and the state variables (the enthalpies) are cal-
culated inside the cells and the node values ("su" and
"ex") are deduced using equations 2 and 3.

2.2 Library structure

The library is organized into different sub packages,
including:

1. Components, is the central part of the library. It is
divided in three sub packages: FluidFlow, Heat-
Flow and Units. It contains all the models avail-
able in the library from the simple cell model for
fluid flow to complete models of heat exchang-
ers, expanders and control units. A more detailed
description of this package is presented in sub-
section 2.3.

2. Examples, contains simulation models where the
components of the library are tested. It includes
several ORC plant models and it also provides a
step by step package where the procedure to build
an ORC power unit and an heat pump system is
described in detail.

3. Functions, includes the empirical correlations
used to characterize some of the library models as
well as general purpose mathematical functions.

4. Interfaces, contains the connectors used for the
library components.

5. Media, predefines a list of the fluids available in
the library.

Figure 3 shows an overview of the library structure.
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Figure 3: An overview of the library structure from the
Dymola graphical user interface

2.3 Physical components

The Components package of the library provides a set
of models from the basic cell model to higher-level
components commonly used in thermal systems. The
most common ones are described hereunder.

2.3.1 Expansion and compression machines

Since the time constants characterizing expansion and
compression processes are small compared to that of
the heat exchangers [14], the basic pump expander
and compressor models are described by empirically
derived algebraic correlations. In particular, pumps
are modelled by two empirical equations expressing
the isentropic and volumetric efficiencies as a function
of the operating conditions, e.g. rotational speed and
pressure ratio.
Low capacity systems generally use volumetric expan-
sion machines instead of turbomachinery. Therefore,

special attention has been paid to their modelling in
ThermoCycle. Advanced empirical expressions of the
efficiency and filling factor are used and implemented,
such as the one proposed by Declaye et al. in the case
of an open-drive scroll expander [11].
In the case of volumetric compressors, the efficiencies
(isentropic, volumetric) can either be user-defined or
based on the standard EN12900, which a well known
standard to express the compressor performance as a
polynomial function of the evaporation and condensa-
tion temperatures.
In addition to these empirical models, more detailed
physical models are also available, such as the one pro-
posed by Lemort et al. [17] for scroll machines which
takes into account thermal losses, friction losses, in-
ternal leakage, internal pressure drop or under and
over-expansion (Figure 4). Finally, detailed models of
the expansion machine have been included, in which
the thermodynamic state of the fluid in the expansion
chambers is computed throughout one whole revolu-
tion [28]. This type of model is well adapted to the
optimization and to the simulation of the component
alone, but can hardly be integrated into a more general
model because of its significant computational time.

Figure 4: Semi-empirical compressor model

2.3.2 Heat exchangers

The base component for all heat exchangers is the
cell model, see Figure 2. Two types of cells are
distinguished: one for compressible (and two-phase)
flows, and one for incompressible flows. Heat ex-
changer models are built by interconnecting these cells
in the appropriate manner together with a wall model
[27]. Parallel, counter flow and cross flow models for
compressible and incompressible fluids are available.
More complex structure can also easily be developed
by modifying the interconnections between the differ-
ent fluid flow models.
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In addition to the above models based on the finite
volumes method, a moving boundaries heat exchanger
model for evaporators has also been included. This
type of model is known to be more computationally
efficient than discretized models and is less likely to
be subject to chattering.

2.3.3 Pressure drop and valves

Pressure drops are modelled by lumped parameters
used to compute the pressure difference as a function
of the flow rate. This function includes a constant term
(to model static pressure differences), a linear term
(e.g. to model laminar pressure losses) and a quadratic
term (to model turbulent pressure losses):

∆p = ρ ·g ·h + K ·V̇ +
1

A2 ·
Ṁ2

2 ·ρ (6)

where ρ is the fluid density, g is the gravitational con-
stant, V̇ is the volume flow rate, Ṁ is the mass flow
rate. The three parameters are h (the static head), K
(the linear pressure drop coefficient) and A (the equiv-
alent turbulent orifice area).
Infinite derivative at zero flow in the case of the
quadratic term is avoided by using the Modelica
regSquare function. The fluid is assumed to be incom-
pressible and ambient losses are neglected.
Valves are modelled as a pressure drop whose orifice
cross-sectional area can be adjusted by an external sig-
nal.

2.3.4 Tanks and liquid receivers

Different tank (fully mixed) and liquid receiver mod-
els are available. They are modelled using the energy
and mass conservation principles, and assuming ther-
modynamic equilibrium at all times inside the control
volume.

2.3.5 Solar field

In recent years, several studies have underlined the po-
tential of small-capacity thermal solar organic power
systems [19, 18, 20]. Different models of parabolic
trough solar collector have therefore been added to the
library. The large ratio between diameter and length
allows a one dimensional discretization of the absorber
tube.

The model is composed by two subcomponents,
as shown in figure 5: the Flow1Dim component
which models the heat transfer fluid flow in the heat
collector element (HCE) and the SolAbs component

a 

b 

c d 
Tamb 

Vwind 

Θincid 

DNI 

SolAbs Flow1Dim 

Figure 5: Object diagram of the solar field model. a
and b indicate respectively the fluid inlet and outlet
ports of the flow model (Flow1Dim). c and d indicate
the thermal ports.

which solves the dynamic one dimensional energy bal-
ance around the HCE. The solAbs component imple-
ments the relations between the environmental param-
eters, direct normal radiation (DNI), incidence angle
(Θincid), ambient temperature (Tamb), wind velocity
(vwind) and the axial temperature distribution along
the absorber, either based on the Forristal model [12]
or based on an empirical correlation derived from the
Schott test analysis [3]. The user can choose between
different collector geometries based on commercial
products. The solar field model is available for com-
pressible and incompressible fluids.

3 The CoolProp2Modelica library

The ThermoCycle library aims at modelling different
kinds of thermodynamic cycles, including those with
unconventional working fluids. The efficient com-
putation of their thermophysical properties is there-
fore a key aspect of the proposed models. As previ-
ously mentioned, the currently available Modelica so-
lutions for computing organic fluid properties are lim-
ited to non-open-source databases. In order to propose
a fully open-source tool, ThermoCycle has been cou-
pled to CoolProp, an open-source library developed at
the University of Liège [1]. The main features of the
CoolProp library are the following:

• Fully open-source

• High accuracy Helmholtz energy-based equa-
tions of state.

• More than 110 different working fluids

• Properties over 40 incompressible fluids (e.g.
thermal oils) and brines (only accessible with p,T
or p,h as input variables).
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• Low computational time

The interface between Modelica and CoolProp is
implemented in the CoolProp2Modelica library, a
modified version of the ExternalMedia library [9].
In thermo-flow systems, the computation of the ther-
mophysical properties amounts for a significant share
of the total computational time. In order to enhance
fluid property calculation speed, two interpolation
methods, the tabular Taylor series expansion (TTSE)
and the bicubic interpolation method, have been
developed and integrated into the CoolProp main
source code [1]. The interpolation tables (the working
fluid properties computed on a 200x200 grid over
the whole are of states) are built at the beginning of
the simulation (at the first property call) and stored
in memory for further use. This process requires be-
tween 2 s and 10 s. All subsequent property calls are
performed using the selected interpolation method. It
should be noted that, contrary to the bicubic method,
the TTSE method generates discontinuities in the
computation of the fluid properties. This discontinuity
is however very small and does not constitute an issue
during simulation.

In order to assess the effectiveness of the developed
methods, a benchmark test was carried out comparing
the different available fluid properties database with
respect to the elapsed time per property call from Mod-
elica. The properties were called a large amount of
times and in different areas of the thermodynamic di-
agram (liquid, two-phase and vapor). The results are
presented in figure 8 and show that Coolprop is signif-
icantly faster than Fluidprop and slightly slower than
the commercial library TILMedia/RefProp. However,
when the TTSE method is activated, the computational
time is one order of magnitude lower than TILMedia,
demonstrating the efficiency of the proposed interpo-
lation method.

Figure 6: Elapsed time per property call from Model-
ica in the case of propane (in ms)

In addition to the interpolation methods, smoothing
methods to deal with the discontinuity of the density
derivatives in the two-phase zone, described in section
4, have also been implemented. The open-source char-
acteristics of CoolProp is a non-negligible advantage
since it allows the process to be fully transparent for
the end-user, who only needs to activate a flag in the
Modelica property call, as shown in figure 7. In this
example, the fluid name is modified to instruct Cool-
Prop not to compute the transport properties, the debug
level is set to unity, the density is smoothed out in the
vapor quality interval from 0 to 0.15, and the TTSE
interpolation method is activated.

Figure 7: Modelica code to define a fluid. A flag for a
numerical and an interpolation method is activated

4 Numerical aspects

Dynamic modelling of thermodynamic cycles can be a
challenging task, among others because of the numer-
ous numerical issues arising both during initialization
and during integration. In order to enhance the perfor-
mance and the robustness of the ThermoCycle library,
different numerical methods have been implemented
and tested. They are presented and discussed in this
section.

4.1 Initialization

The convergence of the Newton Solver during ini-
tialization is a key challenge when modelling com-
plex system. Several strategies have been developed,
such as the homotopy method [25]. In addition to this
method, a slightly different approach is proposed in
ThermoCycle: the system is initialized on a simplified
system of equations, and the more complex non-linear
equations, such as the computation of the heat transfer
coefficients as a function of mass flow, are activated
one by one during integration using an initialization
component developed for that purpose.
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4.2 Chattering and flow reversals

The phenomenon of chattering may occur when dis-
continuities in the model variables are present [15].
This phenomenon can lead to extremely slow simu-
lation, or to simulation failures because the computed
variables exceed acceptable boundaries. In discretized
two-phase flow models, the main discontinuity often
occurs in the density derivative on the liquid saturation
curve. Simulation failures or stiff systems can occur
if the cell-generated (and purely numerical) flow rate
causes a flow reversal in one of the nodes due to this
discontinuity. The computation of hsu and hex switches
from one value to the other in equations 2 and 3.
In addition to chattering, flow reversals can also re-
sult in a singular and non-solvable set of equations, as
shown in [24]. A solvability criterion can be expressed
as

hsu > h +
ρ
∂ρ
∂h

, (7)

where ∂ρ/∂h is a negative term.
This inequality states that in cases of flow reversal,
an unsolvable system of equations appears, if the en-
thalpy of the entering fluid is below a certain limit.
A formal demonstration of this effect can be found in
[24].
Therefore, to ensure the robustness of the simulation
and to avoid chattering or unsolvable systems, two
strategies can be employed:

1. Avoid flow reversals caused by the density deriva-
tive discontinuity, see Eq. 5.

2. If flow reversal occurs (it is physically possible),
make sure that the backward flow enthalpy is
higher than the limit described in Eq. 7.

The first strategy can be expressed by an inequality
stating that purely numerical, cell-generated flow rates
must be lower than the flow rate circulating through
the cycle, which can be written (for a single cell):

Ṁext �
V
N
· dρ

dt
=

V
N
·
(

∂ρ
∂h
· dh

dt
+

∂ρ
∂ p
· d p

dt

)
(8)

According to Eq. 8, flow reversals and thus chattering
or simulation failures are likely to occur if:

• The number of cells (N) is low
• The working fluid flow rate (Ṁext) is low
• The internal volume (V ) is high
• The working conditions are highly transient (i.e.

d p/dt and dh/dt are high)

Different methods are implemented in ThermoCy-
cle to avoid the simulation issues described above.
Some are implemented at the Modelica level while
others require a modification of the thermodynamic
properties of the working fluid and are therefore im-
plemented into CoolProp. It should also be noted that
some of these methods have already been proposed in
the literature, while some others are new. They are
briefly described hereunder. A more comprehensive
description is available in [23].

• Filtering method: In this strategy, a first order
filter is applied to the fast variations of the den-
sity with respect to time. This filter therefore acts
as "mass damper" and avoids transmitting abrupt
variations of the flow rate due the density deriva-
tive discontinuity.

• Truncation method: This strategy acts on the
terms ∂ρ/∂ p and ∂ρ/∂h of Eq. 8. The peak
in the density derivative occurring after the tran-
sition from liquid to two-phase is truncated, re-
ducing the numerical flow rate generated by the
density derivative discontinuity.

• Smoothing of the density derivative: The idea be-
hind this method is to smooth out the density
derivative discontinuity using a spline function.
Modifications of the thermophysical properties
are implemented at the level of the equation of
state, i.e. inside the CoolProp database. The main
drawback of this method is that the density func-
tion is still calculated with the original equation
of state: the smoothed density derivative is not
consistent with the density function provided by
the EOS. This might cause a mass defect during
the simulation.

• Smoothing of the density function: In order to
avoid the mismatch between the density func-
tion and its derivative, one possible solution is to
smooth the density for a range of vapour qualities
(i.e. making it C1-continuous) and recalculating
its partial derivatives in the smoothed area. In this
situation, the density derivatives are continuous
but not smooth, which should still be manageable
for the solver.

• Mean densities method: The mean densities
method was originally proposed by Casella [4]
and successfully tested by Bonilla et al. [2].
It is also the method implemented in the Ther-
moPower Modelica library [7]. A mean density
and its partial derivatives are computed in each
cell as a function of the node densities, which
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eliminates the discontinuity in the partial deriva-
tives.

• The enthalpy limiter method: Contrary to the pre-
vious methods, the enthalpy limiter method does
not aim at avoiding flow reversals. Instead, it en-
sures that the system of equations remains solv-
able even in case of flow reversal. As indicated
in Eq. 7, the enthalpy of the fluid entering a cell
should have a minimum value, ensuring that the
system of equations can be solved. The enthalpy
limiter method is the practical implementation of
this constraint in the cell model. It was originally
proposed by Schulze et al. [24] and implemented
in the TIL Modelica library.

• Smooth Reversal Enthalpy: In case of flow rever-
sal a discontinuity appears in the computed node
enthalpy. In this method, this is solved using a
smooth transition function for the computation of
the enthalpy as a function of the flow rate close
to zero. The main drawback is the generation of
a highly nonlinear algebraic system that has to be
solved by the simulator.

A comparison of these different methods, based on
the simulation of a flow model with a high number of
cells, in terms of simulation speed, simulation accu-
racy and mass and energy imbalance shows that adopt-
ing the proposed methods can dramatically improve
the simulation performance and even allow to simu-
late flow reversals where traditional models generate
simulation failures. The main concern is the error they
introduce in the simulation results and the possible
mass and energy unbalances they generate. In [23],
the methods have been tested on a test system submit-
ted to highly transient conditions. Results have shown
that although numerical artifacts are generated, the er-
ror remains of the same order of magnitude as the error
linked to the standard finite volume model with a 10−4

tolerance. This is an important statement showing that
the proposed models can ensure failure-free simula-
tion even in highly transient conditions. It should also
be noted that those transient conditions are likely to
generate chattering or stiff systems are usually concen-
trated in specific times of the simulation (e.g. start-up
and shut-down), in which robustness is more important
than accuracy.

5 ThermoCycle Viewer

When debugging or interpreting simulation results, it
is generally useful to post-process the raw time-data

before displaying it. To that end, an analysis tool has
been developed, which scans the simulation results
and automatically detects all thermodynamic states to
display them on a thermodynamic diagram (e.g. T-s
or p-h). The heat exchanger temperature profiles are
also detected, displayed, and animated as a function of
time.

Figure 8: Graphical interface to display thermody-
namic states and temperature profiles

6 Conclusion

The development of the ThermoCycle library is an
on-going process aiming at providing a completely
open-source tool for the dynamic modelling of ther-
modynamic cycles. The library comprises a num-
ber of components which can be used to simulate a
wide range of physical systems. Special attention has
been paid to the implementation of new and exist-
ing numerical methods to enhance the robustness and
the simulation speed of the models during initializa-
tion and integration. The ThermoCycle and Cool-
Prop2Modelica libraries are being released together
with ThermoCycle Viewer through the library website
(URL: www.thermocycle.net). Current work now fo-
cuses on the integration of new components (moving
boundaries models, thermocline and stratified storage,
evaporator with frosting, etc.) and on the experimental
validation of the proposed models. At the present time,
the library and the thermophysical properties database
are both open-source, but are running exclusively un-
der Dymola. Porting the library to the OpenModelica
platform is another ongoing work, which should lead
to a fully integrated open-source solution for the mod-
elling of thermal systems.
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Abstract

We discuss the challenges of building a simulation
framework for hybrid systems, in particular the well-
known Zeno effect and correct composition of models
idealised by abstracting irrelevant behavioural details
(e.g. the bounce dynamics of a bouncing ball or the
process of fuse melting in an electrical circuit). We ar-
gue that the cornerstone of addressing these challenges
is the definition of a semantic framework with an ap-
propriate underlying model of time.

Using two simple examples, we illustrate the prop-
erties of such a model and explain why existing models
are not sufficient. Finally, we propose a new Zeno-free
semantic model that allows mixing discrete and con-
tinuous behaviour in a rigorous way and provides for
the compositional behavioural abstraction.

Although it is based on non-standard analysis, we
explain how our semantic model can be used to de-
velop hybrid system simulators.

Keywords: Hybrid Modeling Languages; Non-
Standard Analysis; Models of Signals; Behavioral Ab-
straction; Operational Semantics

1 Introduction

A large number of modelling, verification and sim-
ulation frameworks for hybrid systems have been
designed in the past years. Although, a complete
overview is beyond the scope of our paper, we ob-
serve that they broadly fall in two categories: those
that put special emphasis on a rigorous model defi-
nition, such as, for instance, the Ptolemy project [6]
(based on [14]), the Zélus synchronous language [3]
(based on the semantics in [1]) and SpaceEx [7]; and
those that have chosen a more pragmatic, informal ap-
proach, such as the Modelica language [8] and the as-

sociated tools, and the Scicos block-diagram modeller
and simulator [4].

All the associated tools share the same basic model
of execution alternating between continuous phases
and sequences of ‘run-to-completion’ discrete actions
[3] as formalised by the notion of hybrid automata
[11]. None of these approaches attempts to include
the operational semantics of differential equations in
their core semantic model: execution of the continu-
ous phases is delegated to numerical solvers, which are
used to advance physical time and compute the values
of physical signals.

Except for Zélus, none of the above semantic mod-
els are Zeno-free, which means that, as explained in
the next sections, they do not reflect the fact that time
diverges and rely on analysing the solver output to de-
tect and advance past the Zeno points [13] (cf. Sec-
tion 2). This poses a fundamental problem, since the
solver behaviour at this point is usually unspecified.

Furthermore, none of the above proposals al-
lows compositional behavioural abstraction: idealised
models do not account for the physical nature of
phenomena, in particular the fact that original, high-
fidelity signals are continuous. However, this property
is assumed by most users and validated by most real-
life systems. Hence, it must be a fundamental property
of signals and should be reflected in their idealisations.

In our view, to achieve maximum robustness of a
simulation framework, it is crucial to define the se-
mantic model before designing either the language or
the simulator. Thus, the design of a hybrid simulation
framework should involve the following steps.

First of all, one must define a semantic model that
properly accounts for the expected elementary prop-
erties of systems to be simulated. This includes dy-
namic behaviour properties, but also “higher level”
ones, such as modularity.

The second step consists in designing a simulator
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capable of computing acceptable approximations of
the dynamics of models conforming to the semantic
model above. Successful completion of this step vali-
dates the semantic model by showing that all conform-
ing models can be simulated.

The third step involves the design of a language
powerful enough to express a useful subset of models
that provably conform to the semantic model. In or-
der to avoid errors at simulation time or, worse, spuri-
ous simulation results, the semantic validity of a model
must be provable statically, e.g. by type-checking.

Finally, once both the semantic model and the lan-
guage have been defined, one has to design a compiler
for this language, which would perform the necessary
static checks and reject the invalid models.

In this paper, we focus on the first step above, i.e.
defining the appropriate semantic model. Indeed, in
our opinion, current semantic models still lack some
of the properties required by real-life systems.

In particular, modularity is an extremely important
property for both correctness and practical usability of
hybrid simulation frameworks. One of us has already
discussed some modularity issues in Modelica [9].
In the present paper, we focus on another—probably
the most important—aspect contributing to modular-
ity, which is compositional behavioural abstraction.

Realistic hybrid models almost always require part
of the physical behaviour to be abstracted by means
of “ideal equations”—such as conditional and reset
equations—that typically yield discontinuities in phys-
ical signals. Below, we will use the term behavioural
abstraction more generally to designate any mecha-
nism that enables concrete physical behaviour to be
“hidden” by considering idealised models. Intuitively,
from the point of view of an external observer, be-
havioural abstraction makes the model “jump” over
instants corresponding to activations of abstraction
mechanisms. Thus, idealisation consists in explicitly
providing a constraint to be met after these instants.

It is well known from physical system modelling
experts that, although extremely useful in practice,
behavioural abstraction often leads to inconsistencies
and even to singularities in simulation code, especially
when abstractions are composed. Informally, we say
that behavioural abstraction is compositional if substi-
tuting an ideal sub-model—instead of a high-fidelity
one—within a larger model does not introduce new be-
haviours that were not present in the original model (a
counter-example is given in Section 3.1).

The cornerstone of a semantic framework that
would address the above issues is the underlying

model of time.
Traditional definition of the simulation time-line ei-

ther relies on a fixed basic step, provided as a sim-
ulation parameter, or a variable step adjusted based
on events detected during the simulation. The former
has the advantage of being Zeno-free by construction,
since at each simulation step the time advances by a
constant value, but produces wrong simulation results
whenever the signal activity is higher than the fixed
sampling frequency. Variable step simulation, on the
other hand, improves the simulation precision by sac-
rificing Zeno-freeness. However, in both cases, the se-
mantics of a model is only defined at simulation time
depending on the choice of time steps. Hence, model
validity cannot be statically proven.

In Section 3.1, we argue that, to ensure compo-
sitionality of behavioural abstraction and reflect the
intrinsic continuity of physical phenomena, the time
model must be densely ordered.1 Indeed, as a result
of behavioural abstraction, several causally dependent
events happen at the same instant. Traditional time
models above do not provide any possibility to pre-
serve the causality information in the semantic model,
leading to spurious behaviours.

The super-dense time approach [14] addresses this
problem by defining time as a subset of the cartesian
product R×N0. However, solutions of differential
equations are obtained by means of standard opera-
tional semantics. Thus, although causality between
instantaneous events can be preserved, the problems
related to the Zeno effect persist.

Recent use of Non-Standard Analysis [12] in the
design of operational semantics for hybrid systems
[1, 2, 16] has led to the definition of a linear time that
is 1) discrete, i.e. instants can be considered in isola-
tion; 2) well-ordered, i.e. for each time instant, there
is a uniquely defined next instant respecting the usual
temporal order; and 3) it can be treated as a continuum.
These properties make it suitable to express both dis-
crete and continuous dynamics in a unified fashion and
avoid the Zeno effects. However, as a consequence,
such time model cannot be densely ordered. Indeed, it
features consecutive instants, which, by definition, do
not have any instants between them.

In this paper, we propose a new, Zeno-free se-
mantic model also based on a non-standard model of
time, which allows mixing discrete and continuous
behaviour in a rigorous way. In addition, this new
model also allows compositional behavioural abstrac-

1A partially ordered set is said to be densely ordered if for all
elements x and y for which x< y there exists a z such that x< z< y.
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tion: density of time is reestablished so that physical
signals remain continuous even when idealised, which
avoids the emergence of “impossible behaviours”.

The key idea behind our proposal is to discretise
the value of signals instead of time. Discretisation
is necessary in order to associate dates with events
[1, 2, 16]. However, discretising signal values allows
us to choose these dates among all non-standard reals,
rather than fixing a regular time-line in advance. Thus,
we consider discrete signal activity in the frame of a
densely-ordered time-line compatible with the require-
ments of compositional behavioural abstraction. This
approach has something in common with [10], where
well-ordered time scales are constructed as subsets of
a common densely-ordered time reference.

The paper is structured as follows. In Section 2, we
explain the need for an operational semantics that can
cope with the Zeno paradox, and how non-standard
analysis can be used to define such a semantics. In
Section 3, we show why previous proposals based on
non-standard analysis do not ensure compositional be-
havioural abstraction, by taking an example involving
the composition of several abstractions. Finally, in
Section 4, we present our proposal, also based on non-
standard analysis, but where discretisation is no longer
applied to the time-line but to signal values, leading to
a more intuitive definition of time that, moreover, al-
lows compositional behavioural abstraction.

2 Why non-standard semantics?

2.1 Behavioural abstraction example

The famous bouncing ball model, whereof a Modelica
implementation is given in Listing 1, is probably one
of the simplest models involving behavioural abstrac-
tion. In this model, the physics of the bounce have
been abstracted away: we consider that, at bounce
time, the velocity, which was negative just before the
ball hits the ground, instantaneously becomes positive,
with a magnitude decreased by 20%. Figure 1 shows
the simulation results for x in the [0,1.1] time interval.

Despite its apparent simplicity, this model poses se-
vere challenges to language theorists as we shall see.

2.2 The Zeno effect

We suppose here that physical time is based on stan-
dard reals (i.e. R). How does our model behave with
such a time model?

Let’s introduce the following notations:

Listing 1: A bouncing ball model, in Modelica.
model BouncingBall

Real v, x;

constant Real g = 10;

initial equation

v = 1.0;

x = 0.0;

equation

der(v) = -g;

der(x) = v;

when x < 0 then

reinit(v, -0.8 * pre(v));

reinit(x, 0.0);

end when;

end BouncingBall;

Figure 1: Simulation results for the bouncing ball
model with the DASKR solver (altitude of the ball
with respect to time)

• ti, for i ∈ N0, denotes the initial instant of the ith

flight of the ball;

• vi, for i ∈ N0, denotes the (positive) velocity of
the ball at ti.

According to the model, the trajectory of the ball in-
flight has to verify:

v̇ =−g (1a)

ẋ = v (1b)

Equations (1a) and (1b) can be solved analytically for
v and x, for t ∈ [ti, ti+1), giving:

v(t) =−g · (t− ti)+ vi (2a)

x(t) =−1
2

g · (t− ti)2 + vi · (t− ti) (2b)

Since at ti+1 the ball hits the ground (that is, x = 0), we
must have:

0 =−1
2

g · (ti+1− ti)2 + vi · (ti+1− ti) (3)

From (3) we deduce the duration of the ith flight (notice
that it only depends on the velocity of the ball at ti):

ti+1− ti =
2
g

vi (4)
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Also, from (2a) and (4), we deduce that:

lim
t→ti+1
t<ti+1

v(t) =−vi (5)

It follows that:
vi+1 = 0.8vi (6)

From (4), (5) and (6), we deduce the total duration of
all flights until the nth bounce, for any n≥ 0:

tn− t0 =
n−1

∑
i=0

ti+1− ti =
2
g

n−1

∑
i=0

vi =
2v0

g

n−1

∑
i=0

0.8i

=
2v0

g
· 1−0.8n

1−0.8
(7)

Finally, we conclude from (7) that:

lim
n→∞

tn− t0 =
10v0

g
= 1 (8)

In other terms time converges, meaning that the lifes-
pan of the model is finite! This unexpected result is
a manifestation of the Zeno effect which prevents the
model from moving forward in time past the conver-
gence limit, called the Zeno point. As a consequence,
simulating a physical model past its Zeno point—
which solvers kindly accept to do, as illustrated on Fig-
ure 1—means that we are no longer executing the al-
leged semantics of our favourite modelling language:
we are observing a free and necessarily wrong inter-
pretation of our program by the simulation tool. This
is extremely embarrassing since Zeno effects cannot
be spotted during simulation and since many practi-
cal models contain abstraction mechanisms such as
Modelica’s reinit operator, conditional equations, etc.,
whose composition is known to yield such issues: how
to prove that we are not actually running a model out
of its actual time domain?

2.3 Discussion of the example

Physical system theorists may argue that the issue with
our bouncing ball model comes from the usage of in-
appropriate abstraction mechanisms. Indeed, appli-
cation of a classical energetic approach (such as the
standard Bond Graph for instance) instead of the more
direct equation-based approach would have naturally
lead to a time-diverging model: from this point of
view, a bouncing ball model is no more than a damped
oscillator, whose solution exhibits an exponential de-
cay as time diverges.

However, in practice, the price to pay to benefit
from the virtues of energetic modelling is often too

high in terms of model complexity. Applied to our
example for instance, such an approach would force
us to express contact with the ground in a more de-
tailed fashion (typically, by means of modulated C
and R elements in Bond Graph, which poses the ad-
ditional problem of finding an adequate modulation
constraint). Quite often, we do not know enough of
the phenomena to be able to write meaningful high-
fidelity equations.

Furthermore, simulation performance may suffer
dramatically from excess modelling details. For in-
stance, if we simulate our original bouncing ball model
with a solver based on the Trapezoidal rule (which is
an order 2 method) we see that it performs very well
(this is not very surprising since the flight trajectory
is a parabola). On the other hand, performance dra-
matically collapses when the same solver is given a
detailed version of the bouncing ball model. Inter-
estingly, a closer look at the performance profile re-
veals that most of the CPU time is spent in solving the
contribution of additional details of the high-fidelity
model, which correspond precisely to the phenomenon
we wanted to abstract away! Experimenting with real-
world models brings us to similar conclusions: ab-
straction mechanisms help focusing on important parts
of models, making the result often simpler and more
efficient (but error-prone).

So it seems that we have to live with “dirty” abstrac-
tions: does it mean that we also have to accept unsound
semantics for the sake of performance and simplicity?
Fortunately no, as shown in the next sections: remem-
ber that our conclusions follow the initial premise as-
suming a time model based on R.

2.4 Non-standard approach

A closer look at (7), which actually represents the
work performed by our bouncing ball model in the
course of the simulation, reveals the profound cause
of our problem: we are assuming that any count-
able family of joined, nonempty sub-intervals (our
[ti, ti+1)) eventually partitions any simulation interval.
Of course, this property does not hold: it would be
equivalent to assuming that the sum of the terms of any
sequence of positive reals would certainly diverge.

How could it be possible to define an operational
semantics that would ensure time divergence even in
presence of behavioural abstractions? Let us make
the following experiment: We successively apply the
fixed-step forward Euler method (see Listing 2) to our
bouncing ball model with decreasing step sizes, as
shown in Figure 2. We observe progressively better
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approximations of the solution, since the problem is
stable and since we can find a step size that ensures
stability of the method itself. Notice that since we have
chosen a fixed-step scheme, the process of simulation
simply cannot exhibit Zeno effects: it terminates after
at most d tend−t0

h e steps, where h is the step size.
So why not define step-by-step calculation of the

ideal trajectories generated by models—which is what
operational semantics of hybrid systems is all about—
in terms of the standard forward Euler method? The
reason is that whatever the step size we choose this
method only gives approximations of the trajectories
of interest. Furthermore, as small as a candidate
step size would be, it would always be possible to
forge models that would require a smaller one, for in-
stance, linear models having eigenvalues large enough
to make the solution unstable and divergent (the first
slope on Figure 2 shows the behaviour of the method
in such a situation).

Notice also that this reasoning applies to any nu-
merical integration method, not only forward Euler.
The point is: numerical methods have to perform steps
and there is no smallest possible step that would fit all
models.

In order to define our reference calculation steps,
we would have to choose a step that would be smaller
than any positive real number. Furthermore, this ref-
erence step would have to be positive to ensure time
divergence. This is precisely the definition of a posi-
tive infinitesimal, as these have been used in 17th and
18th centuries by mathematicians and physicists such
as Leibniz and Newton.

The common idea of real numbers was different
from the modern one. For instance, to compute the
derivative of a given function f (x), one would con-
sider the increment of this function given an infinites-
imal increment dx to x. Thus the derivative f ′(x) was
defined by setting

f ′(x) =
f (x + dx)− f (x)

dx
.

For example, applying this reasoning to f (x) = x2, one
obtains the following computation

f ′(x) =
(x + dx)2− x2

dx
=

2xdx + dx2

dx
= 2x+dx≈ 2x ,

where the last relation signifies that dx, being infinites-
imal, vanishes in the final expression.

The notion of infinitesimal was formalised in 1960s
by Robinson (see [15]), by defining a set ∗R of non-
standard reals, which is an ordered field extension of

Figure 2: Simulation results for the bouncing ball
model using forward Euler on [0,1.1] with step sizes
0.1, 0.01, 10−3 and 10−6 respectively (altitude of the
ball).
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R that contains all usual real numbers, but also the in-
finitesimal reals and their inverses, which are the in-
finitely great reals, i.e. those with an absolute value
strictly greater than any usual real number r ∈ R. One
also speaks of finite (or limited) reals x, such that
|x|< y for some positive y ∈ R;

In particular, two non-standard real numbers x and y
are said to be infinitely close (denoted by x≈ y) if and
only if x− y is infinitesimal.

Among all non-standard real numbers, one can, of
course, consider the set ∗Z of non-standard integers
that, on top of standard integers, contains infinitely
great ones, having absolute value greater than any
n ∈N. Similarly, it is possible to define the set of non-
standard natural numbers ∗N0 (including zero).

The field ∗R of non-standard reals has been used
by several authors to define operational semantics of
continuous and hybrid systems [1, 2, 12, 16]. The key
idea is to change the definition of time, by replacing
standard reals with a subset of non-standard ones.

The proposal in [2, 16] consists in defining time as:

T de f
= {ε ·n | n ∈ ∗N0} (9)

for some reference positive infinitesimal ε (notice
that any positive infinitesimal fits our constraints). It
should be noted that T contains arbitrary large num-
bers: in particular, it is possible, given any positive
real t, to find n ∈ ∗N0 such that ε · n is greater than t.
This property is due to ∗R being Archimedean in the
non-standard sense2, as shown in [2]. Also, it should
be noted that although T may contain absolutely no
standard real (for some “unfortunate” choice of ε), it is
possible to approximate any standard real x by a non-
standard real of the form ε ·n such that:

|x− ε ·n|< ε

which means that the error committed in the approxi-
mation is negligible in comparison to any positive ele-
ment of R (recall that ε is a positive infinitesimal).

We are now ready to define the meaning of a differ-
ential equation:

ẋ = f (x, t)
de f≡ xnext = x + ε · f (x, t) (10)

where:

• ε is the reference time step introduced in (9);

• xnext is the “next” value of x, that is x(t + ε).

2It can be shown, however, that ∗R is not Archimedean in the
standard sense, because of the existence of infinite elements.

Listing 2: A Haskell program implementing the for-
ward Euler method to the bouncing ball model.
euler t0 tEnd (v0, x0) h = step 0 (v0, x0)

where

step i (vNow, xNow)

| tNow > tEnd = []

| otherwise =

(tNow, xNow) : step (i + 1) (vNext, xNext)

where

tNow = t0 + h * fromInteger i

(vNext, xNext) = advance tNow (vNow, xNow)

advance _ (vNow, xNow)

| xNow < 0.0 = (-0.8 * vNow, 0.0)

| otherwise = (vNow - h * 10.0, xNow + h * vNow)

Why would an operational semantics based on (9)
and (10) prevent Zeno effects? For exactly the same
reason why standard forward Euler method prevents
them: because time is forced to advance by fixed—
although infinitesimal—steps and because the non-
standard Archimedean property of ∗R allows arbitrar-
ily large times to be overstepped.

However, we are not completely done yet. Indeed,
due to the multiplication by ε in (10), our opera-
tional semantics maps time instants as well as values of
real signals to non-standard reals, although we would
like our models to eventually yield standard real val-
ues. Fortunately, any limited non-standard real can be
uniquely represented as the sum of their standard and
infinitesimal parts [2, 12, 16]. All we need to do is to
eventually discard infinitesimal parts of non-standard
reals in order to construct our final standard signals.

Operational semantics based on this idea lead to uni-
form treatment of discrete and continuous dynamics:
differential equations, reset equations (e.g. Modelica’s
reinit operator) and difference equations are actually
all treated as non-standard difference equations.3 As
an illustration of this, the program of Listing 2 imple-
ments the operational semantics of our bouncing ball
model, provided

• v0 and x0 are standard reals and h is an arbitrary
infinitesimal;

• integers (used as step indexes) are non-standard;

• infinitesimal parts of the output are discarded.

Notice that, past t = 1, as experiments with standard
Euler method suggest, the ball sticks to the ground—
more exactly, standardisation of the model’s variables

3It is interesting to contrast this uniformity with Modelica’s
informal semantics as given in the current language specification.
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Figure 3: Velocity of the ball on [0,1.1] resulting from
interpretation of the bouncing ball model with non-
standard semantics.

yields two standard functions of time which map ev-
ery t ≥ 1 with zero. Indeed, from (6) we know that the
standard part of v converges to zero as t converges to
1. It follows that for every t ≥ 1, dynamic equations of
the model, as a consequence of (10), only produce in-
finitesimal values since the product of ε by any limited
real yields an infinitesimal number.

3 Behavioural abstraction issues

As shown in [1, 2], operational semantics built on time
model (15) successfully explain the behaviour of pro-
grams like the bouncing ball model of Listing 1—even
beyond t = 1. In particular, abstraction of the bounce
phenomenon meets our expectations: velocity and alti-
tude instantaneously take an explicitly specified value
at bounce time and then continuously evolve from this
new starting point until the next bounce.

It should be noted that, in this model, while altitude
keeps its continuous character around bounce instants,
velocity looses it, as illustrated in Figure 3. Never-
theless, interpretation of the bouncing ball model re-
mains satisfactory with respect to the requirements
which only demand a high-fidelity behaviour between
bounces and a correct (and instantaneous) reposition-
ing of velocity and altitude at bounce time for the next
flight to start.

However, as shown below, loss of continuity due to
abstraction may cause practical models of systems to
fail unexpectedly.

3.1 A problematic example

We consider in Listing 3 a simple fuse sub-model,
which behaves like an electrical switch that is closed
by default but that can eventually become open if the
branch current exceeds a limit.

Listing 3: A fuse sub-model, in Modelica.
import Modelica.Electrical.Analog.*;

model Fuse

extends Interfaces.OnePort;

parameter Real iMax;

parameter Real Ron;

parameter Real Roff;

protected Real R;

protected Boolean on;

initial equation

on = true;

equation

when i > iMax then

on = false;

end when;

R = if on then Ron else Roff;

v = R * i;

end Fuse;

Figure 4: An electrical circuit using two instances of
the fuse sub-model defined in Listing 3.
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Listing 4: A ramp voltage source sub-model, in Mod-
elica.

import Modelica.Electrical.Analog.*;

model RampVoltageSource

extends Interfaces.OnePort;

parameter Real startTime;

parameter Real k;

parameter Real vMax;

equation

v =

if time >= startTime then

min(k * (time - startTime), vMax)

else 0.0;

end RampVoltageSource;

Using this sub-model, we build a model of the sys-
tem shown in Figure 4, which is composed of a ramp
voltage source (defined in Listing 4), two fuses and
a simple linear resistor, in series. We suppose in this
model that the fuses have distinct rated currents. No-
tice that, according to the definition of the fuse sub-
model, the time required by a fuse to break the circuit
is negligible with respect to the time required by the
ramp voltage source to reach its maximum value4.

Suppose we are given these parameter bindings:

src.startTime = 0.1 (11a)

src.k = 2 (11b)

src.vMax = 1 (11c)

f1.iMax = 0.005 (11d)

f1.Ron = 10−6 (11e)

f1.Roff = 106 (11f)

f2.iMax = 0.006 (11g)

f2.Ron = 10−6 (11h)

f2.Roff = 106 (11i)

r.R = 100 (11j)

and this initial state:

time = 0 (12a)

f1.on = T (12b)

f2.on = T (12c)

According to our non-standard semantics, we have
to solve the following dynamic equations to determine

4This property is enforced by the use of a when clause in the
definition of the fuse sub-model in Listing 3.

the dynamic behaviour of our model:

src.v =
{

min(2(time−0.1),1) if time≥ 0.1
0 otherwise

(13a)

src.i = i (13b)

f1.R =
{

10−6 if f1.on
106 otherwise

(13c)

f1.v = f1.R · i (13d)

f1.i = i (13e)

f2.R =
{

10−6 if f2.on
106 otherwise

(13f)

f2.v = f2.R · i (13g)

f2.i = i (13h)

r.v = 100i (13i)

r.i = i (13j)

timenext = time+ ε (13k)

f1.onnext = f1.on∧¬(i> 0.005) (13l)

f2.onnext = f2.on∧¬(i> 0.006) (13m)

where

i =
src.v

100 +f1.R+f2.R
(13n)

Notice that this model has three state variables,
namely time, f1.on and f2.on, hence the three non-
standard difference equations (13k), (13l) and (13m).

Figure 5 shows the corresponding results. Notice
that, as expected, only the first fuse melts (see second
slope in Figure 5) since its rated current is lower than
that of the first fuse (see (11d) and (11g)).

In this first experiment, only the behaviour of fuses
has been abstracted away by considering their melt du-
ration to be negligible with respect to the raise duration
of the ramp source. But what happens if we also ab-
stract the behaviour of the ramp source, considering
its raise duration negligible with respect to the entire
operating duration of the system?

Abstracting the ramp source in this context means
replacing it with a step source, leading to a new system
of dynamic equations, where (13a) is replaced with:

src.v =

{
1 if time> 0.1
0 otherwise

(14)
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Figure 5: Solution of (13) with parameter bindings
(11) and initial state (12).

Figure 6: Solution of the system of dynamic equa-
tions resulting from the abstraction of the ramp voltage
source.

Figure 6 shows the corresponding results. We can
see that both fuses melt as a consequence of the raise
of the voltage source signal. This fact contradicts our
initial assumption of a model where only one fuse may
melt, if ever. This last experiment has shown that
an operational semantics based on a global, fixed in-
finitesimal step does not preserve strict ordering of
events when behavioural abstractions are composed.

3.2 Conclusions from the experiments

The reason why we observe an accidental synchroni-
sation of events after abstracting the behaviour of the
ramp voltage source is that the time-line is “running
out of available free slots” where to insert possible in-
termediate events. In our example, events correspond-
ing to melts, whenever they eventually occur, must
necessarily do so strictly before the ramp signal of
the voltage source reaches its maximum value.5 How-
ever, in a fixed-step non-standard operational seman-
tics, when a standard difference equation is activated

5Because it is the voltage raise itself, after its “conversion” to
current through the load r, that triggers an eventual melt.

to reset the value of a state variable, or when a con-
ditional equation switches (as in our example), new
values are scheduled for the next instant, leaving no
room for possible intermediate events to occur during
this transition. So it seems that we should densify time
in the neighbourhood of “urgent” actions.

4 Proposed semantic model

In this section, we introduce some basic notions that
will be used to construct our model of a signal as well
as defining the meaning of a differential equation.

We suppose given a positive infinitesimal real ε that
we call the real activity threshold. Notice that, con-
trary to traditional fixed-step simulation, the semantics
of the system is independent from the specific choice
of ε .

For r ∈ ∗R, we denote r + ε · ∗Z de f
= {r + ε · k |k ∈

∗Z}, where ∗Z is the set of non-standard integers. We
define the base time-line ∗T as a the non-negative val-
ues of ∗R:

∗T de f
= ∗R+

0 (15)

Thus, ∗T is a linear continuum (under the standard
temporal order <), which contains all non-negative
standard real numbers. An instant is an element of
∗T. In particular, we have non-standard instants.

Notice that, contrary to [1, 2, 16], we propose here
a base time-line that is neither discrete, nor well-
ordered. However, since ∗T is densely ordered, inter-
mediate instants exist between any two given distinct
instants.

The question that arises now is: how to recover dis-
creteness (as required to express the notion of next in-
stant) as well as time divergence? The key idea lies in
a generalisation of the usual concept of clock as en-
countered in synchronous languages.

4.1 Time, signals and dates

4.1.1 Time

A time signal t with the initial value t0 ∈ ∗R is defined
as the following right-continuous step map:

t : ∗T→ t0 + ε · ∗Z
τ 7→ t0 + ε ·nτ (16)

with
nτ = ∗

⌊ τ
ε

⌋
∈ ∗N0

where ∗b·c denotes the non-standard floor function.
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In particular, for any τ ∈ R+
0 we have:

st
(
t(τ)− t0

)
= τ

meaning that the standardisation of t coincides with a
standard time signal that would start from st(t0).

By definition, a date is an element of the co-domain
of a time signal.

Notice the fundamental change of perspective with
respect to [1, 2, 16]: instead of discretising the do-
main of the time signal, we discretise its co-domain.
Thus, we can associate a discrete and well-ordered set
of dates with a time signal, despite its densely ordered
domain. Notice also that dates and instants are differ-
ent concepts: while instants are densely ordered, dates
are not. In the next sections, we show how to extend
this idea to any signal.

4.1.2 Signals

We call a (non-standard) signal x a map from a subset
of ∗T—the domain of the signal, denoted Domx—to a
discrete set—its co-domain, denoted Codomx. A sig-
nal maps instants to values.

We distinguish two families of signals:

discrete-time signals have their domain (called their
clock) in a discrete subset of ∗T;

dense-time signals are right-continuous step signals,
whereof the domain is ∗T.

A few remarks can be made regarding this taxonomy:

• We do not require zero (i.e. the least element of
∗T) to belong to the domain of a discrete-time sig-
nal: zero is only guaranteed to be a lower bound
of the domain. In other terms, the birth instant of
a discrete-time signal does not necessarily coin-
cide with the birth instant of the model.

• Physical signals introduced in [1, 2] belong to the
discrete-time family of signals.

• In some sense, compared with [2], we loose some
uniformity by introducing two kinds of signal do-
mains, with distinct topologies. However, practi-
cal implementations of modelling languages have
to make a semantic distinction between signals at
some point (to avoid ill-posed problems). In [1],
for instance, the type system classifies signals in
“discrete” and “continuous” ones (although they
share the same representation).

Notice that, according to the definition of a signal,
the co-domain of any signal is discrete. This raises the
question of the representation of real signals in gen-
eral, and continuous (or physical) signals in particular.
We impose the following restrictions:

real signals have co-domains of the form r + ε · ∗Z,
where ε is the real activity threshold and r the
start value of the signal;

continuous (or physical) signals are dense-time real
signals that can only change their value by ±ε .

4.1.3 Signal activity

The activity of a signal x, denoted Actx, is the discrete
(possibly finite, but often non enumerable) subset of
Domx defined as:

Actx = {τ | x(τ−) 6= x(τ)} (17)

where
x(τ−) = lim

τ ′→τ
τ ′<τ

x(τ ′)

Intuitively, the activity of a signal can be seen as
the set of instants corresponding to its “perceptible
changes” from the point of view of an external ob-
server. Notice that we have required the co-domain
of signals to be discrete: this implies that the activity
of a signal x contains all the instants at which “some-
thing happened” to x from an external observer point
of view, whatever the accuracy of the measure.

4.2 Differential equations

If one assumes the existence of a maximal clock such
as

{ε ·n | n ∈ ∗N0}
then the sole concept of non-standard difference equa-
tion suffices to express dynamic behaviour of mod-
els. Indeed, as explained in previous sections, the
solution yielded by the (non-standard) forward Euler
scheme coincides with the actual, standard solution of
the corresponding differential equation, after standard-
isation. But we have also seen that this uniform ap-
proach reaches its limits when composition of abstract
models comes into play.

Density of possibly detectable events should be ide-
ally correlated to the behaviour of signals instead of
being imposed by a rigid, fixed-step scheme: indeed,
more activity potentially implies more events.

Also, if one would be able to predict the occur-
rence of an event from the behaviour of the implied
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signal(s) instead of waiting for the next time instant
and then realise that several pending events need to be
(wrongly) treated simultaneously, one would avoid the
issues mentioned in previous sections.

The key idea is to define differential equations in
such a way that activity of signals can be predicted,
and then to use the concept of activity instead of the
concept of clock to represent (mutually desynchro-
nised) event sources. This idea is not new: B. P. Zei-
gler [17] already introduced most of the necessary con-
cepts in his theory of systems. QSS solvers [5] are
practical applications of this theory.

Recall that in [1, 2], the semantics of a differential
equation was defined by means of a non-standard ver-
sion of the forward Euler method, which is the sim-
plest order-one method based on the classical time
slicing approach. In the following, we will define the
meaning of a differential equation by means of a non-
standard order-one QSS-like method and show how
this new approach solves behavioural abstraction is-
sues.

Assume that the following are given:

- a non-empty interval [τa,τb)⊆ ∗T,

- a non-standard real number x0 ∈ ∗R,

- a non-standard real signal y : [τa,τb)→ y0 +ε ·∗Z.

Then the differential equation

der(x,x0) := y (18)

defines x on [τa,τb) as follows.
Let (wi)i∈∗N0 be a family of ∗R-valued maps defined

as:

w0(τ) = x0 +(τ− τ0) · y(τ0) (19a)

wn+1(τ) = wn(τn+1)+(τ− τn+1) · y(τn+1) (19b)

where

τ0 = τa (20a)

τn+1 = Inf [τa,τb]

(
{τ | τ > τn∧ eventn(τ)}∪{τb}

)

(20b)

and

eventn(τ) =

(τ ∈ Acty)∨
((

wn(τ) ∈ x0 + ε · ∗Z
)
∧
(
wn(τ) 6= wn(τn)

))
(21)

Defining the co-product

w =
⊕

i∈∗N0

wi
∣∣
[τi,τi+1)

(22)

then, finally:

x : [τa,τb)→ x0 + ε · ∗Z
τ 7→ w

(
last(τ)

)
(23)

where

last(τ) =

Sup [τa,τb){τ ′ | τ ′ ≤ τ ∧w(τ ′) ∈ x0 + ε · ∗Z} (24)

The idea is the following:

• w represents the “private” behaviour of the de-
fined signal x: starting from x0 at τa, it evolves
linearly between two consecutive event instants
((19a) and (19b)) until τb;

• as stated by (21), events affecting the behaviour
of w have two possible causes:

– y (defining the right-hand side of the differ-
ential equation) has evolved perceptibly, i.e.
its value has drifted by ±ε , since the previ-
ous event (including initialisation),

– w itself has evolved perceptibly since the
previous event (including initialisation);

• each time an event affecting w occurs, its gradient
is reevaluated, then w evolves linearly until the
next event;

• the “public” behaviour of x (i.e. as seen by an ex-
ternal observer) is a piece-wise constant approxi-
mation of its “private” behaviour w such that both
maps coincide at event instants corresponding to
perceptible changes of w, as stated by (24).

Figure 7 illustrates the process (the wi appear as
black linear slopes, and x is the blue slope):

• blue bullets indicate events resulting from the
evolution of w itself;

• red bullets indicate events resulting from the evo-
lution of y (notice that they are not necessarily
“synchronised” with ε-steps);

• green bullets indicate “skipped targets” (i.e.
events that would have resulted from the sole evo-
lution of w but that have been “intercepted” by an
event caused by y).
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Figure 7: Semantics of a differential equation.

Notice that we have defined the semantics of a dif-
ferential equation on an interval of the form [τa,τb) in-
stead of defining it on the whole time-line ∗T. The rea-
son is that we want differential equations to be defined
modularly, as required in particular by behavioural ab-
straction: it should be possible to define signals where
ideal phases alternate with high-fidelity ones.

Clearly, the set of continuous signals is closed under
the application of continuous functions. Therefore any
family of signals defined solely by means of differen-
tial equations and by algebraic constraints like

y = f (x1, . . . ,xn) (25)

only contains continuous signals. Regarding (25) we
have in particular:

Acty⊆ Actx1∪·· ·∪Actxn (26)

meaning that such an algebraic constraint acts as an
“activity filter”.

4.3 Behavioural abstraction support

Below, we suppose given an additional positive in-
finitesimal constant δ .

We model a reset equation constraining a continu-
ous signal x on [τa,τa + δ ) by means of the following
differential equation:

der(x,x0) :=
x1− x0

δ
(27)

where x0 is the value of x at τa, and x1 is the “target
value” to be reached by x at τa + δ as a result of the
reset operation.6

6In Modelica, this is given by the second argument of reinit
(see Listing 1 for an example).

Notice that the right-hand side of (27) is constant
and infinite. By the definition of a differential equa-
tion given in Section 4.2, x reaches x1 (more precisely:
the first element of x0 + ε · ∗Z that is greater than or
equal to x1) after δ units of time (i.e. the length of
[τa,τa +δ )). Notice that this definition of a reset equa-
tion involves a duration (i.e. the time spent by the sig-
nal to reach its target value). Since this duration is in-
finitesimal, we actually observe the desired behaviour:
the reset is infinitely fast compared to any standard
phenomenon.

Recall, however, that we want to support proper
composition of such abstraction mechanisms. In or-
der to refine the above definition to achieve this goal,
we first associate with each continuous signal defined
in the model an abstraction level n ∈ N0

7 which rep-
resents the maximal number of nested reset equations
that might contribute to the definition of the signal:

• a independent signal that is not reset in the model
has the abstraction level 0;

• a signal that is reset in the model by equations
involving only signals whose abstraction level is
at most n−1 has abstraction level n;

• a signal that is defined by an algebraic constraint
inherits the highest abstraction level among those
of the signals appearing in its definition.

Notice that, in a language implementing our semantic
model, the abstraction level defined as above can al-
ways be statically computed by elementary data-flow
analysis for an arbitrary model without circular depen-
dencies between reset equations.

We are now in the position to refine (27) as follows.
A signal x with abstraction level n and the current
value x0 is reset to x1 at τa by means of the follow-
ing differential equation activated on [τa,τa + δ n):

der(x,x0) :=
x1− x0

δ n (28)

The idea is that signals with higher abstraction lev-
els should reset infinitely faster than others: by taking
successive powers of δ , we achieve precisely this ef-
fect.

What about the Zeno effect under behavioural ab-
straction in such a semantic model?

Notice that we can assume that continuous signals
do not diverge in value during integration (otherwise
the model is considered singular) and let the highest
level of abstraction in a given model be n. By (28), this

7A standard natural number.
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means that in this model, the fastest reset terminates in
δ n units of time. Hence, integration of each signal ter-
minates in at most d(τend − τ0)/δ ne steps, where τ0
and τend denote respectively the start time and the end
time of the integration. Thus, provided that the max-
imum abstraction level in the model is finite, continu-
ous signals always diverge in time.

4.4 Application Example

Let us consider again the model of Figure 4, where we
suppose that the behaviour of the voltage source and of
the fuses have been abstracted. How does our proposal
fare in such a case?

Before we answer this question, we need to examine
the case of conditional equations.

Conditional equations are used to express “mode
changes” in physical models, typically leading to
equation switching, as in our electrical model exam-
ple. As a consequence, conditional equations poten-
tially lead to the exact same issues encountered with
reset equations. Same symptoms, same medication:
we just need to find a way to introduce the concept of
infinitely fast transition in the semantics of conditional
equations. This is achieved as follows.

Suppose that c : ∗T → {F,T} is a boolean signal
whose value is F until the event instant τ0, after which
it takes the value T. Suppose also that x : ∗T →
x0 +ε · ∗Z and y : ∗T→ y0 +ε · ∗Z are two given phys-
ical signals. Then the semantics of a conditional real
function can be defined as:

if c then x else y
de f
= λ · x +(1−λ ) · y (29)

where

λ =





0 on {τ | τ ≤ τ0}
τ−τ0

δ on {τ | τ0 < τ ≤ τ0 + δ}
1 on {τ | τ > τ0 + δ}

(30)

It can easily be shown that signals defined by con-
ditional real functions are continuous signals.

Coming back to our example, what happens when
the voltage source makes a step? The voltage src.v

gradually evolves from its start value 0 to its maxi-
mum value 1. During the rise, it traverses the surface
corresponding to

src.v = f1.iMax · (r.R+f1.R+f2.R)

because, given our parameter settings and the values
of the internal resistances of both fuses before the first
melt, we have:

f1.iMax · (r.R+f1.R+f2.R) = 0.500000001

Figure 8: Solution of the system of dynamic equa-
tions resulting from the abstraction of the ramp voltage
source.

which belongs to [0,1].
But, according to (13n), this is precisely the voltage

required to induce a current equal to the rated current
of f1 in the circuit. Consequently, f1 melts, but not
f2. Figure 8 illustrates the result of interpreting the
model with our semantics.

5 Conclusion and Future Work

In this paper, we have extended the pioneer work
of [2, 16] by proposing a non-standard operational
semantics supporting compositional behavioural ab-
straction. As demonstrated by [1], non-standard se-
mantics can be used to give rigorous interpretation of
hybrid modelling languages such as Modelica.

The most obvious practical application of our work
would certainly be the design and development of a
simulator that would conform to our semantic model:
one of us (S. Furic) is currently working in this di-
rection in the course of the French funded project
AGéSys.
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Abstract

This paper introduces a rocket model and discusses the
advantages of refining it using a variable-structure ap-
proach to remodel critical parts. Both versions of the
model are implemented in Modelica and were simu-
lated using Dymola as simulation environment. The
DySMo framework, which supports the simulation of
variable-structure models in common simulation envi-
ronments, was used to facilitate the redesign. The gen-
eral benefits of the variable-structure approach are pre-
sented, and on the basis of the rocket model we present
that simulation time and the data volume of the simu-
lation can be reduced while maintaining the accuracy
of the simulation results.

variable-structure modeling, simulation speed, data
reduction, reduce equation stiffness, rocket launch

1 Introduction

In this paper, we regard the benefits of modeling
a moon bound rocket using variable-structure to in-
crease the simulation speed and to reduce the amount
of saved simulation data.

The aim of our simulation is to predict the trajectory
of the rocket, beginning with the ignition on earth’s
surface up until it reaches the moon as destination. The
rocket is multi-staged, and as such consists of three
booster modules and a payload module without means
of propulsion. The model takes into account the chem-
ical reactions in the boosters combustion chambers,
which generate the thrust, the gravity of both earth
and moon as well as atmospheric influences. First,
we introduce a classical implementation of the model,
which we will then compare to a redesigned version
that uses the variable-structure approach.

The classical model calculates all components dur-
ing the entire simulation. However the time frame

of the chemical reactions and of the rocket’s move-
ment are very different, which results in a stiff system
of equations. This stiff equation system necessitates
small step sizes, although a great part of the equation
set would permit rather large time steps. Additionally,
the chemical reactions only need to be calculated as
long as the thrust of the rocket has not reached a steady
state.

As a result, the simulation of the classical model
generates an exceeding overhead of unnecessary sim-
ulation data and calculations. The ability to enable and
disable equations during runtime, holding certain val-
ues constant for a given period of time, would allow to
reduce this overhead. However, Modelica requires a
constant set of equations and does not allow to change
the equation system while simulating. All equations
have to be solved during the whole simulation. In spe-
cial cases and with the use of some workarounds the
equation system can be manipulated to a certain de-
gree, but not in the extend we want to use in this paper.

In section 2, we introduce the concept of variable-
structure models and discuss different approaches to
implement and simulate them. We will then give a de-
tailed overview over the rocket model as well as the
redesigned version in section 3. We compare the sim-
ulation results of both models, regarding performance
and accuracy as well as the volume of generated data,
in section 4.

2 Variable-Structure Modeling

The aim of variable-structure modeling is to improve
models by introducing the means to change their equa-
tion and variable set during simulation. This is re-
alized by encapsulating certain sets of equations and
variables into different models, to which we refer as
modes, and implementing a way to switch between
them. Each transition is triggered by a predefined
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switching condition. The mode switch is then realized
by storing the end values of certain variables and us-
ing them to initialize variables of the next mode. The
decision, which end values are used to initialize vari-
ables of the subsequent mode, has to be made by the
modeler.

Variable-structure models are the topic of numerous
publications, although they are often referred to by dif-
ferent names. In [6, 8] they are introduced as ’Multi-
models’, whereas they are referred to as ’Structurally
dynamic systems’ in [4] and ’Variable structure sys-
tems’ in [10]. As they feature discrete mode switches
as well as continuous equation systems they are often
considered a variant of hybrid systems. A noteworthy
method of formally specifying hybrid systems is the
DEVS formalism, introduced in [9, 7].

Currently, altering the set of equations at runtime is
not easily achieved using common Modelica simula-
tion environments, which we want to use for the rocket
simulation. However, several approaches to introduce
variable-structure to a Modelica model have been de-
vised, an overview is given in [1]. One way is pre-
sented in [2], where conditional statements are used
to enable and disable certain equations based on dis-
junct conditions, which distinguish the current mode
of the model. Such an approach is classified as Maxi-
mal state space, as the models state space is static and
holds all states regardless of the current mode. This
may lead to complicated mode switching procedures,
as more than just the equations relevant at the current
time have to be taken into account. Additionally, it
may prove difficult to add new modes to an existing
model. We followed another approach, termed Hybrid
decomposition, where each mode is implemented as a
separate model and the simulation switches between
these models based on switching conditions. Mosi-
lab [5] and SOL [10] are two approaches which enable
the user to create variable-structure models. But since
they are based on own languages it would be neces-
sary to re-implement the rocket model in the specific
language. In our approach we want to use common
simulation environments. A framework to use com-
mon simulation environments is DySMo [3]. This
framework is implemented in Python and allows a user
to define a variable-structure model. The framework
then handles the switches between the different modes
automatically. In this framework Simulink, Dymola
and OpenModelica are integrated. The communica-
tion with the tools is based on a communication inter-
face integrated in Python. New interfaces can easily be
added to the framework and then be used as simulation

environments for the variable-structure model.
A basic overview of the sequence used in the frame-

work for switching between different modes is illus-
trated in Figure 1. Each of the gray boxes is a method
defined in the communication interface from the spe-
cific simulation environment for the currently active
mode.

As a first step, all modes are compiled, which is nec-
essary for the Modelica simulation environments.

When all modes are compiled, the simulation pa-
rameters (determining start time, stop time, solver,
etc.) are set in the framework.

Mode Control

Compile modes

Write init file

Simulate

Read endvalues

Read observer Find transition

Input/Output mapping

Update mode

Save observer

t < stop time

Figure 1: Schematic view of the steps to simulate a
variable-structure model in DySMo

After this initial setup, the simulation of the first
mode, using the appropriate executable and initializa-
tion file, is started. Each mode contains a certain num-
ber of stop conditions, which define when a simulation
is terminated. When such a stop condition is reached,
a variable switch_to is set, which indicates the next
mode of the simulation. Then the simulation termi-
nates. The framework now reads the simulation results
of the recently terminated simulation, and maps those
endvalues to the starting values of the variables of the
subsequent mode. Finally, the mode is updated to the
new mode and a new simulation is started.

When the final stop time of the simulation is
reached, the simulation terminates and the saved sim-
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ulation data is stored in a file.
Using DySMo allows us to introduce variable struc-

ture to an existing model without having to completely
re-model it, as only minor changes have to be made to
add the stop conditions and make the desired adjust-
ments to the equation sets of each mode. Furthermore,
in certain modes we are able to greatly reduce the state
space to only hold the needed information. This ap-
proach shown here is of course only suitable and sensi-
ble for models with a small number of modes. If many
mode switches occur this framework is not suitable
and in the future, creating and simulating variable-
structure models should be integrated into Modelica
or other languages. But since this is not the case yet,
we want to illustrate the positive effects these kinds of
models have with the DySMo prototype.

3 Rocket Model

In this section we introduce the classical as well as
the redesigned model in greater detail. Both models
were implemented in Modelica and simulated using
Dymola. The object-oriented, component-based na-
ture of Modelica allowed us to separate our model into
different components which facilitated the variable-
structure redesign.

Earth
Fg
Fd

near earth⇒ Fd 6= 0
f ar f rom earth⇒ Fd = 0

Rocket body
movement
speed
direction

Propulsion stage
chemical reactions create thrust

start of stage⇒ Fprop 6= 0
steady state⇒ Fprop = const
empty fuel⇒ Fprop = 0

Moon
gravitational force (Fg)
orientation point

Fg_moon

Fg_earth , Fd

Fprop ,

m

Figure 2: Components of the rocket model and prop-
erties that are calculated by them

Basic mathematical description of the rocket
Since the complete Model consists of many equations,
it would be too long to explain all equations in detail.
However we give a short overview about the most

important physical laws necessary to create the rocket
model.

As the main interest was the trajectory of the rocket,
we needed Newton’s law of motion

F (s, t) = Fprop + Fg−Fd = m · s̈.

The remaining task was to determine F . In our model
the force consists of three parts. The aerodynamic drag
(Fd), the gravitational force (Fg) and the propulsive
power (Fprop). The gravitation force is dependent on
the planets (Earth and Moon) and their masses. Also
the position and mass of the rocket have an influence.

The aeoredynamic drag is essentially

Fd =
1
2

cW ρAv2

and is only calculated while the rocket is still in the
atmosphere of the earth.

The remaining force is calculated by simulating the
combustion of hydrogen in the combustion chamber.
Therefore many thermodynamical and chemical laws
come into play. We will mention only a few.

It is possible to model the change of concentration
during a chemical reaction

A + E→ D + F

with ordinary differential equations

ĊA = −kCACE ,

ĊD = kCACE etc.

where

k = BT n f exp
(
− E

RT

)
.

Moreover we assume the ideal gas law

p = n
RT
V
.

It is then possible to determine the temperature using

ρcv
dT
dt

=
r

∑
k=1

(−∆uk)wk

plus vaporization and heating terms. Here ∆uk is the
reaction energy of reaction k. For a chemical reaction i
where two substances A and B react, the coefficient wi

is defined as wi := kiCACB. This energy leads to pres-
sure which leads to a massflow through a thottle with
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a certain velocity. At the end the propulsive power can
be calculated with

Fprop = ṁv.

The original and the variable-strucutre model were
separated into different components, namely the
rocket body, the propulsion stage and two celestial
bodies, as shown in Figure 2. The figure already gives
a short overview of what different calculations are nec-
essary in each component.

3.1 Original Model

Basically, the rocket body calculates the movement of
the rocket by taking into account the forces it is ex-
posed to. The propulsion stage is responsible to cal-
culate the thrust the rocket produces. It contains three
booster modules that are used in succession. Each of
the booster modules has a specified amount of fuel
available and calculates the chemical reactions for the
combustion of the solid propellant. This combus-
tion builds up a pressure in the combustion chamber,
through which the thrust of the rocket is determined.
After starting a new stage the thrust is build up quite
fast and afterwards is almost constant. These chemical
reactions necessitate the solver to employ very small
step sizes, as they take place very rapidly. Whenever
the fuel of a booster module runs out, the propulsion
stage will reinitialize using the next booster module
available. Once the last booster module is emptied,
the rocket will no longer generate thrust.

The celestial bodies are used to represent the moon
and the earth. They supply the gravitational forces in-
fluencing the rocket. Air resistance and wind are also
calculated in the earth component, as the rocket is sub-
jected to these while passing through the atmosphere
of earth. The moon, however, has no atmosphere, but
is used as orientation point for the rocket.

All calculated forces are passed to the rocket body,
where the movement of the rocket is calculated. The
mass of the rocket changes substantially during the
course of the simulation, as fuel is burned up and
booster modules are discarded. The current mass of
the rocket is determined by adding up the masses of the
rocket body component, all remaining booster mod-
ules and the remaining fuel. When compared to the
chemical reactions calculated in the propulsion stage
of the model, the position of the rocket changes at a
very slow pace.

The original rocket model takes about 50 seconds to
simulate with the Dassl solver. The solver has to re-
sort to a very small step size in order to simulate the

propulsion stage accurately, even though the propul-
sion is no longer needed after a steady state is reached
or once the rocket runs out of fuel. As each simula-
tion step generates data for all variables of the model,
the overall data volume of a simulation measures about
1.5GB and postprocessing this data becomes rather te-
dious work.

3.2 Variable-structure Redesign

When introducing variable structure to a model, the
first step is always to identify the modes that are to
be implemented, or, to put it another way, to deter-
mine in which way the model could benefit from vari-
able structure. As already discussed, the rocket model
has a stiff equation set, which necessitates very small
step sizes for the simulation to be reasonably accu-
rate. However, only during the ignition of each booster
module it is necessary to calculate the chemical reac-
tions inside the combustion chamber with such accu-
racy. Afterwards, the thrust is almost constant and re-
garding the chemical reactions is not necessary any-
more.

Furthermore, the rocket has to travel a great distance
without any thrust at all to reach the moon. The result
is that the simulation runs with a very small step size
for a long time while the variables feature only mini-
mal changes.

The aim of our redesign is to eliminate this problem
by holding the thrust constant once it has fully build
up and take the equations for the chemical equations
out of the model. After fuel runs out, the rocket either
switches to another booster and builds up the thrust
anew (regarding the chemical reactions), or it switches
to a mode where thrust is assumed as zero if no further
rocket stage is available. This leads to three differ-
ent modes for the propulsion stage: building the thrust
by regarding the chemical reactions, having constant
thrust, or no thrust at all.

Another improvement is to calculate air resistance
only while traveling through earth’s atmosphere. This
leads to two earth models, one that contains an atmo-
sphere and one that does not. This sums up to six
combinations of submodels, and therefore six modes,
which are shown in Figure 3. Conditions for transi-
tioning between the modes are also shown. At the
bottom of the figure the actually performed mode
switches from our model are listed. We can see that
at the beginning of the simulation the rocket alternates
between the modes I and II. This is due to the fact that
only during the last propulsion stage of the rocket it
is able to clear the atmosphere and therefore switch to
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Mode I

Mode III Mode IV

Mode VI

Mode VMode II

Thrust calculated

Atmosphere
Zero thrust

Mode switches: I -> II -> I -> II -> I -> II -> IV -> VI

leave atmosphere

enter atmosphere

thrust build up

new stage

fuel empty

enter atmosphere

leave atmosphere

fuel empty

new stage

thrust build up enter
atm

osphere

lea
ve

atm
osphere

Figure 3: Division of the rocket model into six submodels used as modes for the variable-structure redesign

mode IV, which has constant thrust and does not cal-
culate the atmosphere anymore. This mode is active
until the rocket’s fuel is burnt up, in which case mode
VI becomes active and sets the rocket thrust to zero for
the remainder of the simulation.

It is noteworthy that, considering the given model,
the modes III and V are never used. For mode III to be
active the rocket would have to leave the atmosphere
when it is in mode I. Meaning that the thrust of the
current stage is not build up yet and the rocket left the
atmosphere. With the given set of parameters this does
not occur and therefore mode III is never used. Mode
V is not used either, it would require the rocket to run
out of fuel before it leaves the atmosphere, which it
does not. We modeled these modes nonetheless, as
they could be relevant if the simulation parameters
were altered (consider for example starting from the
moon which would necessitate mode III).

For the chosen approach, all six modes had to be im-
plemented in Modelica, since Modelica does not allow
to specify the necessary changes inside the submod-
els. Switching conditions were added to each mode,
which define the modeID of the next mode and ter-
minate the current simulation. In the DySMo frame-
work the mode switches then have to be defined. This
means that the initialization for each transition has to
be regarded. For convenience, the modes for the rocket
were implemented in such a way that variables are
called the same if possible and therefore only a name
matching is necessary for each switch. The framework
then handles the occurring mode switches automati-
cally and saves the simulation data. Each mode is only
compiled once and then the executable is used in case

Figure 4: CPU time needed for the simulation in Dy-
mola

the mode needs to be simulated again (as modes I and
II are). This saves execution time since less compila-
tions are necessary and therefore less communication
with Dymola.

4 Results and Discussion

By redesigning the rocket model in a way that takes
advantage of variable-structure modeling we intended
to reduce the stiffness of the equation set, to speed up
the simulation and to reduce the excessive amount of
generated data without loosing accuracy. In this sec-
tion, we will discuss if these goals were reached, as
well as the drawbacks of our approach.

Figure 4 shows the needed CPU time of the simu-
lation runs in Dymola. Only the first 180 seconds af-
ter the launch of the rocket are shown to visualize the
CPU time of the mode switches.

Three different simulation runs can be seen in this
figure.
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1. original model (black)

2. model with modes I, II, IV and VI

3. model which starts with the original model until
the fuel runs out

At the beginning the CPU time is basically the same,
the slight alterations could not be avoided. As can be
seen the model with the many mode switches is con-
siderable faster then the other ones. This becomes evi-
dent when the first switch occurs and the thrust is con-
sidered constant.

As can be seen when mode VI is reached only about
half the time was needed for the simulation. When
mode VI is reached the CPU time’s increase is rather
insignificant. The CPU time needed is about 0.4 sec-
onds for the entire simulation. The CPU time for the
original model increases constantly and needs about
50 seconds for a simulation time of 150 000 seconds.

So far, we only took into account the needed time
for the simulation, but we also have to account for the
time it takes to switch modes and to compile the ad-
ditional models. The overall time it takes to simulate
the redesigned model including all necessary steps is
4 seconds, of which only 0.4 seconds consist of actu-
ally simulating the model. The majority of the time,
3.1 seconds, is used to compile the models in Dymola.
The framework, employed to switch between modes,
accounts for the remaining 0.5 seconds. Still, the nec-
essary time to simulate was significantly reduced com-
pared to the 50 seconds it takes to simulate the original
model.

Since the longest time was necessary for the compi-
lation and the major speed advantages were seen when
mode VI is active, we build another model, which is
basically the original model until the fuel runs out.
Then a switch to the last mode occurs. The result is
also shown in Figure 4. Here we can see that we loose
time compared to the first variable-structure model,
but when the fuel is empty the CPU time becomes al-
most constant. Since only two modes need to be com-
piled and only one mode switch occurs the overall time
necessary for this model is about 2.5 seconds, with
switching, compiling and CPU time. Which is even
faster then the originally designed variable-structure
model. This shows that choosing the correct modes
is not an easy task and needs to be done carefully.

Even though the needed time to simulate the rocket
launch could be reduced, if the simulation results
would be less accurate this improvement would lose
meaning. In Figure 5 we can see two of the simulation

Figure 5: Rocket position comparison

results plotted on top of one another (the third simu-
lation did show the same behavior). It is evident that
the difference between both results is not discernible.
Both results are essentially the same.

Another issue we had with the original model was
the huge volume of generated data, 1.5GB, which re-
sulted from storing variable data of every time step
combined with the very small step sizes necessary to
maintain accuracy for the stiff equation system. When
simulating the redesigned model we are left with 8 re-
sult files; one for the simulation of each mode. When
combined, the size of those files is about 1MB of infor-
mation. Using the two mode model the simulation data
of the two result files adds up to 30MB. It is evident
that the major part of the original data was not needed
to accurately calculate the trajectory of the rocket.

Dymola does support an option to choose the
amount of data to be stored during a simulation run,
but changing the setting for the original model resulted
in failed simulations. It seems that this setting has an
effect on the solver in Dymola. Imagine it would be
possible to chose the amount of stored data: Due to
the different time scales of the model we would have
to find a compromise between storing many values of
very fast changing variables while the thrust is built
up and less values of slow changing variables during
the flight to the moon with maximum thrust. With this
compromise we could reduce the amount of data but
may also lose information about dat af the chemical
reactions.

A problem we encountered with the variable-
structure model was that the solver of Dymola seems
to be influenced by the start time of the model. When-
ever we started a simulation at a time other than zero,
the simulation failed. The rocket model does not de-
pend on the starting time, as the time variable is not
used in the model. Thus, the solver should have been
able to start at any given time and still calculate the
same results. This was not the case for this model
though. Therefore, we had to start each mode’s simu-

An example of beneficial use of variable-structure modeling to enhance an existing rocket model

712 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096707



lation at zero seconds and later add a time offset to get
correct results.

5 Summary

In this paper we have shown that modeling with vari-
able structure is worthwhile. We accomplished our
goal to lessen the necessary time to simulate the flight
to the moon without loosing accuracy and were able to
significantly reduce the volume of generated data. We
have also shown that it is not a trivial task to choose
good modes and that when choosing different modes it
is even possible to save more simulation time without
disadvantages. Using variable-structure models seem
to be a good choice for stiff equations in case the stiff-
ness can be taken out for parts of the simulation.
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Abstract 
This paper proposes an efficient approach to model 
stochastic hybrid systems and to implement Monte 
Carlo simulation for such models, thus allowing the 
calculation of various probabilistic indicators: relia-
bility, availability, average production, life cycle cost 
etc. Stochastic hybrid systems can be considered, 
most of the time, as Piecewise Deterministic Markov 
Processes (PDMP). Although PDMP have been long 
ago formalized and studied from a theoretical point 
of view by Davis (Davis 1993), they are still difficult 
to use in real applications. The solution proposed 
here relies on a novel method to handle the case 
when the hazard rate of a transition λ depends on 
continuous variables of the system model, the use of 
an extension of Modelica 3.3 and on Monte Carlo 
simulation. We illustrate the approach with a simple 
example: a heating system subject to failures, for 
which we give the details of the modeling and some 
calculation results. We compare our ideas to other 
approaches reported in the literature. 
Keywords: Stochastic hybrid system; PDMP;  
dynamic reliability; state-dependent hazard rate; 
continuous time state-machine; Monte Carlo Simula-
tion. 

1 Introduction 
Usually, Modelica models are deterministic; they are 
built to simulate the nominal behavior of the systems 
they represent. In order to challenge the functioning 
of these systems in diverse situations, or in the pres-
ence of a varying environment, a degree of random-
ness is sometimes added to the system inputs.  

But the kind of models this paper is dedicated to 
is quite different: here, the random behavior can be 
due to the system itself, mainly because of failures 
and repairs of components. The purpose of reliabil-
ity, and more generally, of dependability studies is to 

calculate probabilities of undesirable events such as 
the failure of the mission of a system, or to estimate 
the probability distribution of some performances of 
the system: total production on a given time interval, 
maintenance cost, number of repairs etc. Usually, 
dependability studies are performed with dedicated 
methods and tools, based on discrete (and often even 
Boolean) models of systems: fault trees, Markov 
chains, Petri nets, etc. 

However, in some situations, a purely discrete 
representation of a system cannot be a good enough 
approximation: this is the case of hybrid systems, 
having both discrete and continuous parts, with 
strong interactions between the two. Reliability ana-
lysts call the study of such systems "dynamic relia-
bility".  

Below are two examples showing the need for 
powerful tools for dynamic reliability studies: 

In the probabilistic safety analysis of nuclear 
power plants, so-called "level 1" studies, that are 
those aiming at assessing the probability of a core 
melt, rely on discrete (mainly Boolean) models. But 
after a core melt, components are subject to physical 
stresses (temperature, humidity and radioactivity) 
that may modify their behavior and increase very 
much their failure rates, and this should be taken into 
account in "level 2" studies that try to assess the risks 
of radioactivity release in the environment. Even for 
level 1 studies, there is a competition in time be-
tween the decay of the thermal power that must be 
evacuated and the failures of components, and the 
coarse decomposition of scenarios according to large 
time intervals in which failures can happen can be 
excessively pessimistic. 

Another example of system associated to very 
high stakes and whose behavior cannot be captured 
correctly without a stochastic hybrid model is the 
electrical grid. In this system, transients with ex-
tremely different time scales can happen and evolve 
to blackout situations. For example, after the failure 
of a line, the intensity increases in the remaining 
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lines; it can augment their temperature which, be-
cause of dilatation, makes them come closer to the 
ground. This increases the probability of a new fault 
due to a contact between a line and a tree.   

Recent results have shown that numerical 
schemes can solve PDMP with a small size, however 
Monte Carlo Simulation remains the only possible 
method for quantification in larger cases. 

The purpose of this paper is twofold: it shows 
how to model a hybrid stochastic system and it gives 
an efficient Monte Carlo scheme that works even in 
the case of failure rates varying with the continuous 
variables of the system.  

2 A review of formalisms used for 
hybrid system modeling 

In this section, we will first give the theoretical mod-
el called PDMP (Piecewise Deterministic Markov 
Processes). Then we will explain the limits of PDMP 
and why these limits are not a real problem as long 
as we intend to model physical systems (and not, for 
example, financial systems). Finally we will see how 
some existing formalisms (including Modelica) can 
be used to represent PDMP.  

2.1 The theoretical model PDMP 

The state at time t (x(t), m(t))t≥0 of a hybrid system is 
composed of two parts: a continuous one, ( ) nx t ∈  
and a discrete one, ( )m t ∈ . 
x(t) usually models physical variables such as tem-
perature, pressure, volume, flow rate, etc., whereas 
m(t) is the index of the state of the discrete "part" of 
the system: to each value of m(t), one can associate 
discrete states (such as working or failed, open or 
closed etc.) to each component of the system. 

What makes the resolution of dynamic reliability 
problems difficult is the existence of bi-directional 
interactions between x(t) and m(t). Here are some 
examples of such interactions: 
• x(t) acts on m(t). When a physical variable 

reaches a threshold, it can provoke a discrete 
change: explosion of a tank because of high 
pressure, evaporation of steam because of high 
temperature, reaction of the instrumentation and 
control system. A physical variable can also 
make a discrete event happen earlier or later: for 
example, a failure rate may increase with the 
temperature. 

• m(t) acts on x(t). The opening or closure of a 
valve, the failure of a pump changes the differen-
tial equations governing physical variables. 

From a mathematical point of view, PDMP contain 
all the ingredients needed to model stochastic hybrid 
systems such as those exemplified above (Davis 
1993). 

The general equations governing the evolution of 
the PDMP whose state is described by (x(t), m(t))t≥0 

( ) ( ( ), ( ))

Pr( ( ) / ( ) , ( )) ( , , ( )) ( )

=

+ ∆ = = = + ∆

dx t g x t m t
dt

m t t j m t i x t i j x t o tλ
Here, λ(i,j,x(t)) denotes a function that defines the 
hazard1 rate from state i to state j for the discrete part 
of the system: n λ× × →    . In other words, 
it defines the probability that a transition occurs from 
discrete state i to state j. 

2.2 Scope and limits of PDMP 

The scope of PDMP is quite large: it generalizes all 
discrete models used in dependability analysis, even 
those considered as non markovian, (like for exam-
ple Petri nets with arbitrary probability distributions 
for delayed transitions) due to the modeling "trick" 
explained below. 

Thanks to the insertion into x(t) of the time elapsed 
since the beginning of the life of an aging compo-
nent, it is possible to model the probability distribu-
tion of the time to failure of this component, whatev-
er this distribution may be. 

For example, here is how we can transform a non 
markovian process with two states modeling a com-
ponent with a Weibull distributed lifetime into a 
markovian process, thanks to the addition of time in 
the definition of the state: 

 
• the "usual" definition (m = 1 corresponds to a 

working state, and m = 0 corresponds to a failed 
state): 

Pr( ( ) 0) 1 exp ( )tm t β

α
 = = − − 
 

 (1) 

In this expression, *α +∈  α  is the scale factor 
and *β +∈  is the shape parameter of the 
Weibull distribution. 
 

• definition with a PDMP whose continuous vari-
able represents the time:  

( ) 1dx t because x t
dt

= =   (2) 

                                                      
1 Here, reliability analysts would rather use the term "tran-
sition rate" instead of "hazard rate". These two expres-
sions are synonyms, but we use the second one because it 
is the most neutral. It is the quantity defined in eq. (6). 
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1

Pr( ( ) 0 / ( ) 1), t)

exp ( ) ( )

m t t m t

t t o t
β

ββ
α α α

−

+ ∆ = = =

   − + ∆   
   

 (3) 

Pr( ( ) 0 / ( ) 0), t) 1m t t m t+ ∆ = = =

 

(4) 
In equation (3), we use the hazard rate of the 
Weibull distribution. 

This kind of representation by a PDMP can be gen-
eralized to any lifetime distribution; the remarkable 
case when the hazard rate is in fact constant corre-
sponds to the exponential distribution (see section 
3.1). 

The large expressive power of PDMP unfortu-
nately comes with a heavy additional burden for ana-
lysts: as one can see from the very elementary exam-
ple given above, PDMP are not at all easy to ma-
nipulate. In fact, they are both difficult to specify, 
and to solve by methods other than Monte Carlo 
simulation. 

How about their limits? Of course, PDMP do not 
address all the needs for reliability studies of systems 
involving uncertain dynamics. Neither random con-
tinuous inputs nor measurement noise can be cap-
tured. Still, PDMP offer a first interesting step be-
yond classical dynamic dependability models with 
discrete space. PDMP are interesting in that they do 
not require the modeling and simulation of full 
fledge stochastic differential equations. Their Monte-
Carlo simulation can be performed at reduced cost, 
as we shall see. 

2.3 Modeling in practice 

Modeling hybrid systems has long been a concern 
for the study of purely deterministic systems.  

For relatively simple models, the graphical repre-
sentations used in control and signal processing can 
suffice. They allow the graphical construction of 
transfer functions, using assemblies of elementary 
blocks representing integrators, differentiators, mul-
tipliers, adders, thresholds etc. 

For more complex models, a higher level of ab-
straction is needed. This can be achieved by the en-
capsulation of algebraic, differential and discrete 
equations in objects corresponding to physical com-
ponents. This is the solution made possible by Mod-
elica. Thanks to Modelica libraries, it is possible to 
quickly build models of mechanical, electrical, fluid 
etc. systems, encompassing thousands of equations. 
However, so far this kind of representation has not 
been extended to allow a convenient modeling of 
stochastic hybrid systems.  

Thanks to a comparison between various existing 
modeling languages for PDMP done in (Bouissou 

and Jankovic 2012) and (Bouissou et. al. 2013), the 
missing features in Modelica 3.3 can be identified:  
• Asynchronous state machines in which transi-

tions are triggered by events (instead of synchro-
nous state machines triggered by a clock) 

• Transitions that can be associated to random de-
lays (this is the most important and delicate 
point) 

• Allowing several instantaneous transitions from 
one state having specified probabilities of firing.  

Section 4 will describe the two first points in detail2, 
but before that, we will give what is in fact the main 
point of this paper: a smart algorithm allowing to 
perform Monte Carlo simulation on PDMP. This 
algorithm is usable whatever the interactions be-
tween the discrete and continuous parts of the pro-
cess and is very economical in terms of CPU usage.  

3 Making the Monte Carlo  
simulation of a PDMP efficient  

3.1 State of the art 

The state of the art Monte Carlo simulation method 
for PDMP is described in (Zhang et al. 2008). This 
paper recalls the mathematical definition of PDMP 
as it was set up by Davis and gives an iterative simu-
lation algorithm that determines the successive times 
of process jumps due either to a random event or to 
the fact that the continuous part of the system reach-
es the boundary of the currently valid domain for the 
differential equations. 
Starting from the initial state of the system, the first 
jump date is the minimum of the dates of the set of 
events corresponding to: 
- Boundaries crossings: the corresponding dates 

are obtained by solving the current set of differ-
ential equations until one of the continuous vari-
ables crosses a threshold; 

- Random events. In most cases, there is a compe-
tition between several transitions associated to 
individual probability distributions of the times 
to firing of these transitions (like in a stochastic 
Petri net). For example, several components can 
fail at any moment, but if their failures are inde-
pendent, one will fail first, and this will deter-
mine the instant of the first jump date. 

When the random processes are independent from 
continuous variables, it is easy to determine, at t=0, 

                                                      
2 The third point will not be developed in this article, both 
because of a lack of space and because it is not related to 
the two other points.   
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the dates of all random events (details given hereaf-
ter). But if they are not, their determination is more 
difficult. We will first recall the definition of the 
hazard rate, associated to the distribution of any ran-
dom variable such as the time to a failure or a repair 
then explain a method able to find in one run, with-
out any backtrack, the date of the first event in the 
system, whatever its nature (random of boundary 
crossing).  
Given a random time T whose cumulative distribu-
tion function (cdf) F is defined as 

𝐹(𝑡) = Pr (𝑇 < 𝑡) (5) 

the corresponding hazard rate, λ(t), is defined as: 

0

Pr( | )( ) lim
t

T t t T tt
t

λ
∆ →

< + ∆ >
=

∆
 (6) 

The hazard rate can then be expressed as 

𝜆(𝑡) =
𝐹′(𝑡)

1 − 𝐹(𝑡)
 (7) 

that is 
𝑑𝐹(𝑡)
𝑑𝑡

= (1 − 𝐹(𝑡))𝜆(𝑡) (8) 

For Monte Carlo simulation, the time to the next 
event, T, is determined by drawing a uniform random 
number, r in [0,1], and solving: 

𝐹(𝑇) = 𝑟 

When λ is constant, the solution to the differential 
equation (7) is: 

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 

and 

𝑇 = −
ln (1 − 𝑟)

𝜆
 (9) 

 
Figure 1: The "inverse cdf" technique for drawing a ran-
dom number according to a given distribution  
 
In figure 1, this approach is visualized (here: tstart is 
the time instant when the random number r is drawn, 

and tfire is the time instant of the stochastic event, so 
T = tfire - tstart, the blue curve is the cumulative 
distribution function F). 
When the hazard rate of a transition depends on con-
tinuous variables x, so, 𝜆(𝑡, 𝑥(𝑡)), the cumulative 
distribution function F can be obtained by integra-
tion of eq. (7) and is equal to 

𝐹(𝑡) = 1 − 𝑒−∫ 𝜆(𝑢)𝑑𝑢𝑡
0  (9) 

Then, the usual and "naïve" way to proceed is to in-
tegrate the differential equations up to a "large 
enough" time, draw a uniform random number r and 
calculate T as 1( )F r− . 
This process involves solving the differential equa-
tions of the model during a sufficiently large time 
interval and calculation of λ(t) which is dependent on 
variables of the model. A numerical method is then 
used for integration of λ(t) followed by calculation of 
F(t). After this, the integrator of the differential 
equations needs to be rewound to tfire, an operation 
normally not present in numerical integration meth-
ods. 

3.2 New method for state dependent  
hazard rates 

Instead of this complex and slow procedure, a new 
method has been developed that utilizes the fact that 
F is monotonically increasing and the zero crossing 
solver for events available in modern integration rou-
tines can be used to find the next event time 𝑡𝑒,𝑖+1. 
The complete set of equations can be defined in the 
following way: 
 
At event  𝑡 = 𝑡𝑒,𝑖: 

𝑚�𝑡𝑒,𝑖� = 𝑔�𝑚�𝑡𝑒,𝑖−1�, 𝑡𝑒,𝑖� 
𝐹�𝑡𝑒,𝑖� = 0 
𝑟�𝑡𝑒,𝑖� = 𝑟𝑎𝑛𝑑𝑜𝑚() 

 
for 𝑡𝑒,𝑖 < 𝑡 < 𝑡𝑒,𝑖+1: 

0 = 𝑓 ��̇�,𝑥,𝑦, 𝑡,𝑚�𝑡𝑒,𝑖�� 

�̇� = (1 − 𝐹) ∙ 𝜆 ��̇�,𝑥,𝑦, 𝑡,𝑚�𝑡𝑒,𝑖�� 
𝑡𝑒,𝑖+1 = min

𝑡>𝑡𝑒,𝑖
𝑡,  such that  𝐹 ≥ 𝑟�𝑡𝑒,𝑖� 

where 
𝑡 ∈ ℝ,𝑥(𝑡) ∈  ℝ𝑛𝑥 ,𝑦(𝑡) ∈  ℝ𝑛𝑦 ,𝐹(𝑡) ∈ ℝ 

𝑚�𝑡𝑒,𝑖� ∈  ℕ, 𝑓(. . ) ∈  ℝ𝑛𝑥+𝑛𝑦 ,𝜆(. . ) ∈ ℝ  
This system consists of a continuous-time DAE (Dif-
ferential Algebraic Equation system) defining the 
physical model, together with a state machine. The 
active state of the state machine is characterized by 
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the integer variable m. The DAE is a function of this 
active state m, and of continuous-time states x and 
algebraic variables y. 

At an event instant  𝑡 = 𝑡𝑒,𝑖 a transition to the 
next state of the state machine occurs, the cumulative 
distribution function F is re-initialized to zero, and a 
random number r is drawn. 

Afterwards the DAE together with the differential 
equation for F is integrated until 

𝐹(𝑡) − 𝑟�𝑡𝑒,𝑖� = 0  
This means that the zero crossing of 𝐹(𝑡) − 𝑟�𝑡𝑒,𝑖� 
triggers a state event3 and the corresponding (sto-
chastically determined) time instant is the next event 
instant 𝑡𝑒,𝑖+1. 

For notational convenience this description was 
given for a special case. It is easy to generalize for 
several state machines where one or more stochastic 
and/or deterministic transitions are defined at the 
active states. 

Remark: the above approach can be seen as a 
generalization of the simulation of nonhomogeneous 
Poisson processes (Sheldon 1990). Indeed, two 
methods of generating a Poisson process with known 
time-varying hazard rate function 𝜆(𝑡) are proposed 
in Section 5.5 of this reference, of which the second 
one can be seen as a basis of our method: it is pro-
posed in Section 5.5 to compute  

𝐹(𝑡 − 𝑡𝑒) = 1 − 𝑒−∫ 𝜆(𝑢)𝑑𝑢𝑡−𝑡𝑒
0  

and then to invert the equation 𝐹(𝑡 − 𝑡𝑒) = 𝑟(𝑡𝑒) for 
t, where r is a random number drawn at the last event 
time 𝑡𝑒. We propose to differentiate the above equa-
tion, thus making clear that the time-varying intensi-
ty 𝜆(𝑡) can be given on-line. With this observation, 
we can now allow that 𝜆(�̇�,𝑥,𝑦, 𝑡,𝑚) is a function of 
the variables of a DAE describing the physical sys-
tem, F is computed by integrating the differential 
equation for F together with the system DAE, and 
the stochastic event time is computed as the state 
event where F ≥ r becomes true. We discovered our 
method independently, however, and this reference 
was subsequently pointed to us by Pierre Brémaud. 

4 Modeling PDMP in Modelica  
In this section it is shown how PDMP can be mod-
eled in Modelica and how Monte Carlo simulations 
can be carried out over such models. Furthermore, 
                                                      
3 State events are supported by modern ODE and DAE 
solvers; the solver will automatically iterate around the 
time instant where this function crosses zero, will back-
track, and will find the event time up to a certain preci-
sion. 

with the novel technique from section 3.2 it is possi-
ble to model hazard rates that depend on the states of 
continuous variables in an efficient way. 

4.1 Overview 

In Modelica 3.3 support for hierarchical, synchro-
nous, clocked, state machines (Elmqvist et.al. 2012) 
was added. Such state machines are evaluated at 
clock ticks of sampled data systems, and are now the 
preferred way to model state machines in Modelica. 
In a prototype of Dymola, this state machine type 
was extended to model also continuous-time state 
machines (Elmqvist et.al. 2014) and is the basis for 
the PDMP implementation in Modelica.  

The basic mechanism is a generalization of transi-
tions in the Modelica synchronous state machines, as 
sketched in the following figure: 

 
Figure 2: Transition between two states in a state machine 
 
A transition in a Modelica 3.3 synchronous state ma-
chine fires, if its source state is “active” and the tran-
sition “condition” becomes true. If transition flag 
“immediate=true”, the transition fires immediately 
(so at the same clock tick). If “immediate=false”, the 
actual firing occurs at the next clock tick, so it is de-
layed. This approach is generalized in the following 
way for continuous-time asynchronous state ma-
chines: 

- If “immediate=true”, the behavior is as before, 
so the transition fires immediately (at the current 
model evaluation). 

- If “immediate=false”, by default a new event 
iteration is triggered and the transition fires at 
the next event iteration (so with an infinitesimal 
small delay that breaks algebraic loops).  

There are several useful ways to delay a transition, 
such as by a fixed time period (e.g. firing after 2ms), 
or by a time period that is defined stochastically in 
different ways (as needed for a PDMP). Since there 
are many possibilities, it seems not possible to pre-
define this behavior in a language element, but it 
needs to be configurable by a user. 

In the following sub-sections, the different ingre-
dients needed for such a Modelica extension are dis-
cussed. 
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4.2 Random number generation 

In order to draw random numbers for the triggering 
of stochastic transitions, a random number generator 
is needed. A standard random number generator in a 
programming language is an impure function and is 
typically called as “r = random()”, so the function 
has no arguments and returns for every call a differ-
ent random number, typically in the range 0 ≤ r ≤ 1. 
It is clear that such a function cannot be implement-
ed as a Modelica function, because Modelica func-
tions are “pure”, and return always the same value, 
when called with the same input arguments. There 
are the following remedies: 

(1) Explicitly pass the internal memory (usually 
called “seed”) of the random number function as 
input and output arguments:  
   (r, seed) = random(pre(seed))  
As a result, the random function can return a dif-
ferent (r, seed) value only at an event instant, 
as it should be, because the operator pre(..) 
can only be used in a discrete equation. It is 
therefore guaranteed that the random number 
function cannot be called during continuous in-
tegration which would give severe problems 
with the integration method. 

(2) Use an external Modelica function as interface to 
a C-function, r = random(), and mark this func-
tion as impure:  
   impure function random 
      output Real r; 
      external "C" r = random(); 
   end random;  
The “impure” keyword introduced in Modelica 
3.3 guarantees that the random function can be 
basically only called in a when-clause, so at 
event instants. 

Calling a random number generator in any simula-
tion environment is tricky, because there are differ-
ent requirements and depending on the analysis, 
simulation runs should (a) use different random 
number sequences in every simulation run, as for 
Monte Carlo simulations, or (b) should use the same 
random number sequences in specific simulations, as 
for Optimization over Monte Carlo simulations 
(Looye, Joos 2006) or when developing a model. 

                          
                 option 1                      option 2 
Figure 3: Two options for the pseudo random generator 

Taking into account the above observations, a Mod-
elica model was designed to define the random prop-
erties globally: The user has to drag model “Glob-
alSeed” in the model and can then select from two 
options: in the first case (by default), for every simu-
lation run a different initial seed is selected. In the 
second case, defined by a flag, initial seeds can be 
explicitly defined and every simulation run will use 
the same random number sequence. The selected 
seeds are displayed in the icon.  

In a model, the random number generation func-
tion is called in the following way: 
protected 
  outer GlobalSeed globalSeed; 
  Real  r "random number"; 
equation 
  when condition then 
    r = globalSeed.random(); 
  end when; 

Since globalSeed.random is defined as an impure 
function, it can only be called in a when clause, so 
only at an event instant. Every call returns a different 
number in the range 0 ≤ r ≤ 1. 

4.3 Delayed transition blocks 

As already mentioned, there are many ways to define 
the delay of a transition. In order to keep this user 
configurable, it is proposed to define the delay by a 
Modelica block, with one Boolean input and one 
Boolean output signal, which has the following 
properties: 

The input signal of such a block, called enable-
Fire, signals when the source state is active and the 
transition condition becomes true. The signal is then 
set to true, until it is explicitly reset (either because 
the transition fired, or the source state became inac-
tive, e.g., due to the earlier firing of another transi-
tion). 

 
Figure 4: Behavior of a delay block 
 
The delay block triggers an event after a defined “de-
lay time” and at this time instant the output signal 
fire is set to true. This raising signal triggers the 
firing of the transition. Immediately, when the source 

time 

delay time 

output fire 

input enableFire 

false 

true 

false 

true 
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state becomes inactive, enableFire and fire are 
both reset to false. 

Based on this principle, a small library of delay 
blocks has been implemented. The two deterministic 
delay blocks FixedTimeDelay and Variable-
TimeDelay define the delay by a fixed or variable 
deterministic time delay, respectively. The core part 
of the FixedTimeDelay block implementation is 
(t_start is the time instant when the input enable-
Fire is rising4): 
if enableFire then 
   fire = time >= t_start + delayTime; 
else 
   fire = false; 
end if; 

Therefore, a time event is triggered after the defined 
delayTime and the output fire changes to true at 
this time instant. Conceptually, the equations in a 
transition are defined as: 
algorithm 
  when initial() then 
    enableFire := stateActive and  
                  condition; 
  elsewhen stateActive and condition then 
    enableFire := true; 
  elsewhen not stateActive then 
    enableFire := false; 
  end when; 
   
equation 
  if immediate then 
     fire = enableFire; 
  else 
     delayBlock.enableFire = enableFire; 
     fire = pre(delayBlock.fire); 
  end if; 

Note, the output fire of the delay block needs to 
have an infinitesimal small delay via the pre(..) 
operator in order to break algebraic loops. 

4.4 Randomly delayed transitions 

The approach sketched in section 3 for fixed (not 
state-dependent) hazard rates leads the following 
implementation in Modelica, where the implementa-
tion of eq. (9) can be easily identified: 
  outer GlobalSeed globalSeed; 
  Real r, t_next; 
  parameter Real hazardRate;  
 
equation 
  when enableFire then 
    r = globalSeed.random(); 
    t_next = time – log(1-r)/hazardRate; 
  end when; 

                                                      
4 At the time instant where enableFire becomes true, the actual 
value of the variable delay time is inquired and this value is used 
as delay time. 

 
  if enableFire then 
     fire = time >= t_next; 
  else 
     fire = false; 
  end if; 

Since the condition time >= t_next is a purely time 
dependent condition, a Modelica tool will determine 
the time instant of the fire time in advance and will 
directly (and therefore efficiently) integrate to this 
time instant. 

Other stochastic distributions can be implemented 
in a similar way, provided that the distribution of the 
time to the firing is invariant once the enableFire 
Boolean has become true. 

4.5 State dependent 
randomly delayed transitions 

In this section the implementation of the innovative 
approach from section 3.2 is sketched: the corre-
sponding delay block can be defined in Modelica as:  
  outer GlobalSeed globalSeed; 
  Real r; 
  input Real hazardRate(min=0);  
equation 
  when enableFire then 
    r = globalSeed.random(); 
    reinit(F,0);   // start at F=0 
  end when; 
 
  der(F) = (1-F)*hazardRate; 
  if enableFire then 
     fire = F >= r; 
  else 
     fire = false; 
  end if 

The expression F >= r defines a state event and will 
therefore trigger a search process to determine the 
time instant when this condition becomes true up to a 
certain numerical precision. At this time instant an 
event is triggered. 

4.6 Asynchronous state machines  

As already mentioned, in a prototype of Dymola the 
Modelica 3.3 synchronous state machines have been 
extended to continuous-time (= asynchronous) state 
machines. For all details see (Elmqvist et.al. 2014). 
As a very short summary: the states of a state ma-
chine might be non-clocked Modelica models or 
blocks. The “active” state is always simulated to-
gether with the rest of the DAE system and all out-
going transitions from this state are monitored. If one 
of these transitions fires, an event is triggered, the 
active state is changed and simulation continues with 
the new active state. All de-activated state models or 
blocks are “frozen”, so all variables in these objects 
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keep their values until these states become again “ac-
tive”. 

In Modelica 3.3 a transition is defined with the 
following built-in operator (see Modelica 3.3 speci-
fication, section 17.1): 

transition(from, to, condition, immediate, reset, 
                 synchronize, priority) 

Here “from” and “to” are the instance names of the 
blocks used as source and target state of the transi-
tion, “condition” is the firing condition and “imme-
diate” is the flag that defines whether the transition is 
immediately firing or is firing at the next clock tick 
(the remaining arguments are not important for the 
following discussion). 

This “transition” operator holds in principal also 
for continuous-time state machines. However, the 
case for “immediate=false” needs to be differently 
defined: As sketched in the previous sections, a wide 
variety of useful delay definitions can be provided by 
different blocks. Therefore, one approach would be 
to use a replaceable block as additional argument in 
the transition operator. Example: 

transition(“state1”,“state2”,true,false,true,true,1, 
                 redeclare FixedHazardRateDelay  
                                      delay(hazardRate=0.03)); 

This call would use block “FixedHazardRateDelay” 
for the block instance “delay” with the given modifi-
er. Built-in operators in Modelica have the syntax of 
a function call. However, a block, being replaceable 
or not, cannot be passed to a function, and therefore, 
this construct seems to be unnatural to a built-in op-
erator. It would be possible to pass a function object, 
such as: 

transition(“state1”,“state2”,true,false,true,true,1, 
         delay = function FixedHazardRateDelay  
                                              (hazardRate=0.03)); 

However, with a function object, it would not be 
possible to define stochastic transitions that depend 
on continuous-time states (see section 4.5) because a 
differential equation needs to be solved in the object 
and state events need to be triggered. 

It is therefore proposed to define the transition 
built-in operator with a syntax that is close to the 
function object: 

transition(“state1”,“state2”,true,false,true,true,1, 
         delay = block FixedHazardRateDelay  
                                              (hazardRate=0.03)); 

Informally, the semantics is that the provided block 
(here: FixedHazardRateDelay) with its modifier is 
instantiated in the scope of the source state, so this 
block is only active and running, when its source 

state is active and otherwise is “frozen”. If a delay 
block is not explicitly given, the default block will 
just implement the equation 

fire = pre(enableFire); 

so an infinitesimal small delay will be introduced. 
Unfortunately, such a built-in operator is uncom-

mon in Modelica (having a replaceable block as an 
argument to a built-in operator) and it is unclear 
whether this complicated definition should be intro-
duced into the Modelica language specification. 

For this reason, another approach is used in the 
prototype: The desired delay block is instantiated 
inside the source state. In the transition, the output of 
the delay block is utilized. The implementation in the 
source state is basically straightforward by instantiat-
ing from the desired delay block: 

FixedHazardRateDelay delay( 
          enableFire=enteringState(), 
          hazardRate=0.3);  

An issue is to define, when the random number shall 
be drawn (that is, when the input enableFire has a 
rising edge). In the prototype, enableFire is defined 
to have a rising edge, when the source state is en-
tered. This is inquired, with the (not yet standard-
ized) built-in operator “enteringState()”, that is 
available as a prototype in Dymola. As transition 
condition simply “<source-state>.delay.y” is used. 

5 Case study 

5.1 Preamble 

The test case we are going to use to illustrate our 
ideas was first used to screen a number of potential 
tools and approaches adapted to dynamic reliability 
(Bouissou and Jankovic 2012), (Bouissou et al 2013) 
It has the advantage that it is easy to understand. 

Although this test-case is very simple it has been 
quite difficult to solve it with tools that were initially 
designed only for modeling deterministic systems 
(and this includes Modelica tools). We intend to 
solve a more complex test-case in the future, such as 
the well-known "heated tank" problem used by T. 
Aldemir in (Aldemir 1991), that has been solved 
since then with many different approaches e.g. (Lair 
et. al. 2010), (Zhang et. al. 2008), (Broy et. al. 
2011), (Zhang et. al. 2013). 

5.2 The "heated room" test case 

Consider a room containing a heater. A temperature 
sensor with a hysteresis switches the heater on when 
the ambient temperature falls below 15°C and 
switches it off when the temperature reaches 20°C. 
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The outside temperature is constant: 13°C. At time t 
= 0, the temperature of the room is 17°C, and the 
heater is on. 

The flow of energy (power) traversing the walls 
is proportional to the difference of temperature be-
tween the inside and the outside of the room. When 
the heater is on, it injects a constant power in the 

room. Let us suppose that the isolation of the room 
and the heater power are such that the differential 
equation giving the evolution of the temperature is as 
follows (with t in hours, and T in °C):  
In this expression, heater_is_on is an indicator func-
tion, with the value 1 if the heater delivers power and 
0 otherwise. 

If the heater was not subject to failures, the trajec-
tory of temperature as a function of time would be a 
deterministic succession of portions of exponential 
functions, alternatively convex and concave, "oscil-
lating" between 15 and 20 °C. 

But in fact, the heater has a constant failure rate λ 
= 0.01/h, and a constant repair rate µ= 0.1/h. How 
does this random behaviour affect the evolution of 
the temperature? 

6 Modelica models for the case study 
The system consists of 5 classes: globalSeed (de-
scribed in section 4.2) heaterController, heater, out-
sideWeather and heatedRoom. There is only one ob-
ject of each class. 

 
Figure 5. Structure of the Modelica model 

In this case we can have a causal model, where each 
box has outputs calculated from its inputs. This is 
why the links are all directed.  

The box outsideWeather just contains a constant 
parameter: the outside temperature, set to 17°C; this 
value is sent to heatedRoom. In heatedRoom there is 
the differential equation:  

equation  
der(T)= 0.1*(Outside_Temperature-T)   
        + 5 * Heater_is_on; 

The box heaterController just contains a hysteresis 
taken from the Modelica standard library. The two 
bounds (minimal and maximal temperatures respec-
tively set to 15 and 20) are defined in this box. The 
output is a Boolean sent to the box heater; this Bool-
ean is true whenever the heater is supposed to heat. 

6.1 Heater model with stochastic transitions  

With the method sketched in section 4, the heater is 
modelled as a continuous-time state machine where 
stochastic delay blocks with constant hazard rates are 
used inside the states (Figure 6). 

For example “working” is the state when the 
heater is working. Inside this state a vector of delay 
blocks with fixed hazard rates are defined and the 
hazard rates are displayed in the icon ({0.01}/h), so 
defining here 0.01 failures per hour. This state is in-
stantiated with one delay block, and the transition 
from “working” to “notWorking” is just referencing 
the output of this delay block (working.delay[1].y). 
 

 
Figure 6: The heater model with a continuous-time state 
machine. In every state an instance of a delay block with 
constant hazard rate is present. In the transitions, the out-
puts of these delay blocks trigger the firing of the transi-
tions. 
This output becomes true after the stochastic delay 
defined by the hazard rate (a random number is 
drawn when state “working” is entered). In this case 
the state machine switches to “notWorking”. The 
repair rate is defined as 0.1 failures/h and the state 
switches back to “working” again, after this stochas-
tic delay. The output of the heater model is true, if 
the state machine is in state “working” and the input 
of the heater (the signal coming from the controller) 
is true. The result of one simulation of the overall 
system is shown in figure 7. 

0.1 ( _ ) 5 ( _ _ )dT Outside temperature T heater is on
dt

= × − + ×
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6.2 Monte Carlo Simulation  

The above model can directly be used to simulate 
one realization of the random process corresponding 
to the life of the system. To perform a Monte Carlo 
simulation to estimate, for example, the mean tem-
perature as a function of time, it is necessary to gen-
erate a large number of such trajectories using differ-
ent initial seeds for every simulation. This task can 
be performed in Dymola by using appropriate script 
functions (that are based on the algorithmic part of 
the Modelica language). A special Modelica/Dymola 
script has been implemented for this case to run the 
simulations and store the desired fractiles5. In figure 
8, the mean value of the room temperature is shown, 
as well as the 1% and 99% fractiles at each time 
point respectively. 10 000 simulations were per-
formed with 500 output points per simulation. On a 
notebook, these simulations took 25s. Computing the 
result values for figure 8 took another 45s (the rea-
son is that a very simple algorithm was implemented 
to compute the fractiles and a better implementation 
will give a considerable speed-up). 

 
Figure 7: A single random trajectory of the temperature 
(containing one failure and one repair over 100 hours). 
 

 
Figure 8: Statistics obtained from 10000 trajectories 
                                                      
5 The computation of the 99 % fractile z from 10000 simu-
lation runs means that at every grid point of the result 
10000 result points are available and that 99 % of these 
are smaller than z. In other words, 1 % of 10000 values = 
100 values are larger than z. 

7 Comparison with approaches in the 
literature 

The same problem (heated room) had been already 
modelled and solved with three other tools. The de-
tails about these experiments can be found in the two 
ESREL papers already mentioned.  

The tool Vensim, which is well known in the do-
main of so called "system dynamics" was originally 
designed for modelling deterministic differential 
equations. Its graphical input interface is extremely 
limited, does not allow encapsulation of models, nor 
reuse by another means than copy-paste. This tool is 
not usable for real size systems, the building of mod-
els being much too error prone. 

The tool KB3, based on the Figaro modeling lan-
guage, is dedicated to the construction of discrete 
state stochastic models, for reliability and dependa-
bility calculations. With this tool it has been very 
easy to build a graphical model representing the 
heated room, using a library for hybrid stochastic 
Petri nets. The model was solved using the YAMS 
Monte Carlo simulator, able to process any Figaro 
model. The main concern with this approach is the 
impossibility to "separate" in the processing the cal-
culations on the discrete and on the continuous part 
of the model. Thus it would probably be inefficient 
in terms of CPU consumption on a large model, just 
like the approach described in (Zhang et al. 2013), 
commented 15 lines below). 

Finally, the tool PyCATSHOO based on Python 
libraries had also been tested. This tool is new and 
has no graphical interface. However, it uses an object 
oriented approach such as Modelica, with two dis-
tinct hierarchies, corresponding to the relations "is 
included in" and "inherits from". The PyCATSHOO 
models include a native notion of stochastic transi-
tion, since this tool was designed specifically for 
solving dynamic reliability problems. Its scalability 
is ensured by the use of state of the art libraries for 
solving differential equations and parallelisation of 
computations.  

It will be interesting to make further comparisons 
of Modelica and PyCATSHOO models resolutions 
for larger systems.  

In (Aldemir 1991) a more complex benchmark is 
described. From the solutions to this well-known 
benchmark (already mentioned in section 5.1), the 
one from (Zhang et.al. 2013) is interesting, because 
here a general purpose continuous-time modeling 
environment (Simulink) is used together with a state 
machine (Stateflow) to solve a problem with a state 
dependent hazard rate. However in this reference, a 
fixed time step integration is utilized for the simula-
tion and in every step the approximation is used that 
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the hazard rate is constant. The constant hazard rate 
is integrated over every time step and at the end of 
every time step random numbers are drawn to check 
whether the failures of components are to be trig-
gered in the next time step, according to the current 
values of components failure rates. This technique is 
less precise and requires a lot more computations 
compared to the one explained in (Zhang and al. 
2008). This seems to be the price to pay in order to 
be able to use high level models with a small model-
ing effort instead of ad hoc programs developed at a 
high cost in terms of manpower. But in fact, our new 
approach from section 3.2 is an improvement of the 
simulation strategy given in (Zhang and al. 2008), 
without backtracking and able to use error con-
trolled, variable step-size integrators for the continu-
ous part of the system and yet it allows the use of 
high level models, as usual in a Modelica environ-
ment.  

8 Conclusions 
In this paper we have pinpointed the need for con-
sidering probabilistic safety analyses in which the 
fault occurrence and propagation behavior can de-
pend on the physical and control state of the consid-
ered system. Indeed, we advocated that reliability 
modeling should not be kept separate from modeling 
of physics and control, as it is today. One specific 
subtlety of the subject is that the joint consideration 
of reliability and physics require being able to con-
sider state dependent hazard rates for time to failure 
distributions. As a first contribution, we provided an 
on-line procedure for Monte-Carlo simulation of 
such phenomena in the presence of coupling between 
fault events and system physics. Then, we proposed 
an extension of the Modelica language to support 
this kind of modeling. The extension has been meant 
minimal in that it most possibly relies on existing 
features. Not all probabilistic phenomena relevant to 
the joint simulation of reliability and physics are 
covered by our proposal, but we believe it is a first 
and significant contribution addressing a large part 
of the remaining open issues with current approach-
es. 
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Abstract
The paper introduces a continuous-time architecture
and a Modelica library for mission planning based on
behavior trees. It allows to study the long-time behavior
of complex aircraft models in interaction with reactive
mission plans by means of efficient simulations. The de-
veloped Modelica library is used in a mission example
for a solar high-altitude aircraft and the advantages of
the behavior tree formulation in both simulation speed
and modularity are discussed. The architecture will
further be used to deploy automatically coded mission
plans to actual flight computers using the functional
mockup interface.

Keywords: UAV; Mission Management; Behavior
Trees; Autonomy; Artificial Intelligence

1 Introduction
Missions currently envisaged for Unmanned Aerial
Systems (UAS) pose increasing demands on model-
ing, planning and simulation capabilities. For example,
solar UAS are highly dependent on environmental con-
ditions and must execute autonomous missions lasting
several weeks (see Fig. 1).

long-term missions environmental conditions

integrated systems

Figure 1: The growing complexity of integrated un-
manned aircraft systems, environmental conditions and
long-term missions call for efficient and intuitive tools
for mission design and simulation.

With growing complexity of the systems, integrated
simulation schemes have to be employed, not only mod-
eling the vehicle’s flight dynamics but also its avionics
systems or even aeroelasticity. Such models have to
be as detailed as possible, while maintaining sufficient
simulation speed to also run simulations of long-term
missions. We have shown previously that Modelica is
an excellent tool for this purpose [1].

Additionally, missions of increased complexity and
diversity make use of a range of distinctly developed
UAS capabilities such as collision avoidance, forma-
tion flying or physical interaction with the environment.
In order to further improve a system’s versatility, devel-
opers seek to employ the same system for a variety of
purposes, providing as much autonomy to the system
as possible (see e.g. [2]).

In order to face these challenges, a flexible, scal-
able and intuitive scheme for UAS control systems and
mission plans has to be provided. Ögren recently pro-
posed behavior trees for this purpose [3]. They are
distinguished by their standardized structure providing
a mission design scheme, which Champandard argues
to combine important advantages of different schemes
such as state machines and task planners [4].

However, conventional behavior tree implementa-
tions rely on periodically updating the tree’s status
based on its inputs. This clocked or discrete-time pro-
cessing makes previous behavior tree formulations un-
suitable for continuous-time simulation of long-term
missions. The tree’s update rate would have to be cho-
sen high enough to correctly reflect the system’s behav-
ior. The smaller integrator time-steps and additional
time events would in turn slow down the overall simu-
lation speed considerably.

In order to combine efficient long-term simulations
with the capabilities of behavior tree mission plans,
a continuous-time formulation for behavior trees was
thus developed and implemented in Modelica. The
present paper describes this formulation and the result-
ing Modelica library:
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• The conventional behavior tree formulation is
characterized by discrete-time, sequential, top-
down processing of the tree. The new scheme
is laid out as continuous-time, event-driven, and
bottom-up processing, see Sec. 3. This allows a
simulator to chose large integration step-sizes as
desired for long-term mission simulation. The for-
mulation can be generalized to other languages
supporting event notifications.

• Section 4 introduces the Modelica implementation
of the modified system. A library of base tasks
with clear internal and external interfaces allows
the user to graphically design mission plans and
also easily implement new task types. Additional
infrastructure is provided to simplify communica-
tion with the tree. The processing of an exemplary
simple task is shown in Sec. 5.

• The example shown in Sec. 6 show-cases the mod-
ular assembly of a mission plan for a solar UAS.
The simulation speed of the controlled system
is maintained. A comparison to a state-machine
based approach using the StateGraph2 library [5]
gives identical results.

2 Behavior Trees
Behavior Trees are a technique developed for artifi-
cial intelligence in computer games. They are first
mentioned in this context by Damian Isla [6]. A good
introduction is found in Millington’s textbook [7]. The
approach is introduced to the UAS world by Ögren [3].

Using behavior trees, complex missions are built up
using atomic tasks. These can e.g. query the aircraft’s
state (conditions) or send commands to the underlying
control system (actions). A typical combination of the
tasks is to conditionally execute an action. A solar UAS
e.g. might need to harvest solar energy by maximizing
its flight altitude, if a surplus of energy is available. In
behavior trees, this is expressed using a sequence of
sub-tasks as shown in Fig. 2a.

The task of maximizing potential energy could then
be further composed of two alternatives: Either the
maximum altitude is already reached or the aircraft has
to climb. A set of alternative approaches to a common
goal is expressed using a selector as shown in Fig. 2b.

A sequence executes all its sub-tasks in the given
order until all sub-tasks are finished successfully. The
selector also executes its sub-tasks in the given order,
but returns successfully with one successfully finished
sub-task. The two basic composite tasks can thus be
compared to logical AND and OR operators.

harvest
→

surplus? potential!

(a) A sequence can be used
to conditionally execute ac-
tions, e.g. harvesting po-
tential energy based on the
condition that a surplus of
solar energy is available.
Sub-tasks can be decom-
posed further, such as the
"potential" task shown in
Fig. 2b.

potential

?

ceiling? climb!

(b) Selectors are used to dy-
namically select alternative
ways to approach a com-
mon goal, such as simply
asserting the goal condi-
tion of maximum altitude
or moving towards it by
climbing.

Figure 2: In a behavior tree, simple tasks are connected
to a tree in order to achieve more complex goals.

The main advantage of behavior trees for UAS mis-
sion management is their standardized and intuitive
structure. All atomic tasks describe self-contained and
goal-directed behaviors. Higher-level plans are built
by intuitively decomposing complex goals into sub-
goals. Since all tasks have a common interface and
the switching of tasks is determined by implicit logics,
the user can modularly interchange arbitrary tasks in
the tree. The plans are thus very scalable and human-
readable on all levels of the hierarchy. Additionally,
behavior trees are inherently memory-free and work
with persistent statuses. They thus execute the correct
task immediately after a restart or online modification.

In previous studies, I have augmented behavior trees
with state-machine-like entry and exit hooks [8]. The
necessary notion of transient tasks is complemented in
that paper with an introduction to the processing of ba-
sic behavior trees and further discussion of advantages
as well as prospects of behavior trees for UAS mission
management. A first step towards logical verification
and validation of behavior trees is also covered by pre-
vious research [9]. Here, the formalism is refined for
continuous system simulation.

3 Continuous-time Processing
Conventional behavior trees are processed at a fixed
update rate. At each instance of time, a tick is issued to
the top-most node of the tree. A tick requests a task to
report its status back to the superior task. The standard
statuses of a task are Success, Failure and Running.

The tick is propagated in a top-down manner through
the tree to its leaf nodes. Each composite task, such as
a sequence or a selector, sequentially ticks its sub-tasks
to determine their statuses. Figure 3a uses a sequence
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surplus? potential!

Success

tick
tick

tick

Accept
Accept

Running

activate
activate

Running

discrete time

t2

t1

(a) In conventional processing, a tick is propagated from
the root node of the tree down to the leaf tasks. After all
sub-tasks have been ticked, a task returns its own status
to its superior task. If necessary, additional activation
routines are executed subsequently. This processing is
done in each discrete time step.

t

surplus? potential!

Running

activate
activate

Running
event iteration

Accept
Success

Accept

Failure
Failure

continuous time

(b) The proposed continuous-time processing relies on the
sub-tasks notifying their superior tasks of status changes.
In Modelica, these notifications are generated in event
iterations and passed up the tree. Activation procedures
are still triggered from the top. This processing can be
done in continuous-time.

Figure 3: The processing of tasks in behavior trees is conventionally done sequentially in discrete time. In the
new processing scheme, status notifications are passed through the tree in continuous time. Both variants are
contrasted here in form of sequence diagrams showing processing of the example sequence from Fig. 2a.

diagram to illustrate the process of ticking the example
sequence from Fig. 2a. The sequence is not running at
first. In the illustrated time-step, it asserts a surplus of
solar energy and then decides to accept being activated.
It is subsequently activated by its superior node, and
then activates its harvesting sub-task in turn. The sepa-
rate decision and activation parts of the process are a
consequence of the activation/deactivation procedures
introduced previously [8].

The downside of this straight-forward processing is
that a tick must be issued to the root node with a suffi-
ciently high repetition rate in order to react adequately
to changes in the environment. On the Modelica side,
this is solved using discrete-time events. These in turn
slow down long-term continuous simulations, which
cannot make use of large integrator step-sizes anymore
and have to handle additional integrator restarts.

In order to overcome this downside, I introduce the
bottom-up approach for the decision part of the process-
ing shown in Fig. 3b. Instead of periodically querying
the sub-tasks’ statuses, the superior task is notified by
its sub-tasks about status changes. The superior task
may then adapt its own status to the new situation and
propagate the new status towards the root of the tree.
The activation part of the processing is not changed.

Using this scheme, the example sequence starts with
a Failure status, because it cannot assert a surplus of
solar energy. The harvesting sub-task can then asyn-
chronously decide to accept being activated. This does
not require any status change of the sequence, such
that the change event is not passed up the tree. Finally,
the surplus sub-task notifies the sequence of its new
Success status. The sequence then passes on its Accept
status to the higher levels of the tree and is activated
as in conventional processing. Each of these status
notifications is processed in an event iteration.

If the behavior tree processing is changed in the pro-
posed way, it is relieved of most of the discrete-time
events. Instead, state events will be triggered in Mod-
elica whenever a task changes its status. This allows
for continuous-time simulation. Additionally, status
changes of the behavior tree are resolved instantly as
if the tree had an infinitely high update rate. The addi-
tional cost of iterating state events is moderate, because
typical behavior tree mission plans change their status
at a much larger time-scale than the simulation of the
controlled system.

The new processing scheme additionally addresses
the known limitation of behavior trees in handling
events like a finite state machine as pointed out in pre-
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vious work [8]. With the presented processing, the
foundations are laid to implement event-based behavior
trees in any programming language supporting event
notifications. Additional work will have to be spent on
adding internal or external storage to the tree in order
to convert instantaneous events to permanent statuses.

4 Modelica Implementation
In Modelica, all tasks are implemented as models ex-
tending from a super-class Task, in which the common
properties of all tasks are defined. The Task model in
particular implements the status switching logics of the
tasks. The status cycle used in this work is an extended
version of the one introduced previously [8]. It makes
a distinction between transient tasks and non-transient
tasks. Transient tasks such as conditions can be evalu-
ated without activation. Non-transient tasks such as an
action must be activated in order to evaluate them.

All possible statuses of a task are defined in a Status
enumeration. It defines the following eight statuses:

Success and Failure are the standard transient sta-
tuses and indicate, if the task (usually a combina-
tion of conditions) evaluates successfully or not.

Accept indicates that the task will accept being acti-
vated. It marks the entry point to the non-transient
part of the status cycle. A task can only enter the
non-transient part of the status cycle, if it is acti-
vated by its superior task. This status was called
Activating in [8].

Activating now designates a task, which was prop-
erly activated by its superior task and is currently
performing initialization procedures. This status
can be used to execute the entry hook of the task.
It is introduced here in order to allow for time-
consuming initialization procedures. These were
not possible previously.

Running denotes a properly initialized, non-transient
task during its nominal execution.

Finished and Aborted are the non-transient equiva-
lent statuses to Success and Failure. They indicate,
if a task has finished running successfully, or if it
failed during its execution. These statuses mark
the exit point from the non-transient part of the
status cycle. A task can only leave these statuses,
if it is deactivated by its superior task.

Deactivating, equivalently to Activating, designates a
task, which was deactivated by its superior task
and is currently performing finalization proce-
dures. It can be used to run the task’s exit hook.

Accept
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Figure 4: The status of a task is triggered by the internal
trigger flags returns, success and switching (- -)
or by (de-)activation through the active flag (—).

Figure 4 summarizes the complete status cycle. The
task may internally determine status changes marked
with dashed arrows. The status changes marked with
solid arrows can only be initiated by the superior task
through activation or deactivation.

Until the task is activated it can choose its status
freely from Success, Failure and Accept. This allows
transient tasks, especially conditions, to be evaluated
without activation. As soon as the task enters the non-
transient part of the status cycle by being activated, it
is basically bound to iterate its status in the marked
clockwise direction. The task can finally leave the non-
transient status cycle only if deactivated by its superior
task and after passing the Deactivating status.

In order to relieve task designers from coping with
the correct implementation of the status cycle, three
additional trigger flags are introduced. These indirectly
trigger a task’s status:

returns determines, if the task can be evaluated in the
sense of returning a successful or unsuccessful
status or if the task needs to be activated first.

success determines the correct status, if the task has a
returning status.

switching is used to mark initialization and finaliza-
tion of tasks. It can be used e.g. while powering
up resources needed by the task.

The task’s status can now be uniquely determined us-
ing these trigger flags and an additional active flag
provided by the superior task. The trigger flags are also
illustrated in Fig. 4 by the labels of the arrows.
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The appropriate equation is common to all tasks and
a base Task model is thus provided (see Listing 1). It
contains the status switch logics, the three internal trig-
ger flags returns, success and switching as well
as a public uplink connector to the superior task. In
this way, the status dynamics of all tasks are forced to
be consistent and new task types can be conceived by
simply assigning values to the trigger flags.

Listing 1: The basic Task interface contains an uplink
to the superior task, three additional status triggers and
the status switch logics. The function f() implements
the status cycle shown in Fig. 4.
partial model Task

UpLink uplink;
protected

Status status = uplink.status;
Boolean active = uplink.active;
Boolean returns;
Boolean success;
Boolean switching;

equation
status = f(pre(status),

active ,
returns ,success ,switching );

end Task;

A Condition is e.g. defined by Listing 2. It can al-
ways be evaluated to Success or Failure and thus fixes
the returns flag to true. The success flag deter-
mines whether to return Success or Failure. It can be
filled by arbitrary conditional equations, e.g. using an
additional BooleanInput. Because a condition cannot
be activated, the switching flag must actually only be
filled in order to balance the model.

Listing 2: Defining a new Condition task is done by
binding the trigger flags to boolean expressions.
model Condition

extends Task;
BooleanInput u "A boolean input";

equation
success = u; //is used as condition
returns = true; //and always returned
switching= false;// => Not used!

end Condition;

All inter-task communication described in Fig. 3 is
handled by the Task’s UpLink connector and corre-
sponding DownLink connectors of the superior tasks.
The UpLink connector is outlined in Listing 3. The
status variable carries the status information, while
the active flag is used by the composite tasks to acti-
vate or deactivate their sub-tasks. Using these connec-

tors as public interfaces, single tasks can be connected
in a tree to almost arbitrarily complex mission plans.

Listing 3: The BehaviorTrees UpLink connector for
connecting sub-tasks to their respective superior task
passes the sub-task’s status up the tree and receives
an active flag from the superior task.
connector UpLink

output Status status "The task status";
input Boolean active "(De -) Activation";

end UpLink;

Using the interfaces described above, a library of
basic tasks is provided. The library’s structure is shown
in Fig. 5. It includes the most common tasks encoun-
tered in behavior trees such as Condition, Action,
Selector and Sequence. The Root task is needed to
steer the overall execution of the tree.

Additionally, a communication structure is provided
in order to simplify the information flow between the
tree and its environment (Blackboard). The sys-
tem relies on a global memory block using Model-
ica’s inner/outer functionality. Continuous-time
Real variables can be written to the system using the
SetReal block. Each slot is provided with a name and
an active flag. The GetReal block retrieves the cur-
rently active value with a given name from the black-
board. Using this structure, it is possible for several
tasks to write to the same input of the controlled system.
It especially allows to also encapsulate continuous-time
controllers in tasks and to switch between them auto-
matically based on the current behavior tree status.

Figure 5: The BehaviorTrees library contains a num-
ber of standard task implementations. It also provides
infrastructure to facilitate communication with the tree.
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5 Processing of a Sequence
In this section, the processing of the last event shown
in Fig. 3b is detailed with respect to the implementa-
tion described in the previous section. The Sequence
task uses the implementation shown as pseudo-code in
Listing 4. It first processes the sub-tasks’ statuses to
determine its own status triggers. These can then be
processed by the standardized status cycle implemen-
tation as shown in Fig. 4. If the sequence is active, it
passes on this flag to its first accepting sub-task.

Listing 4: The Modelica pseudo-code for the imple-
mentation of a Sequence Task determines the status
triggers and steers the active flag of its sub-tasks.
model Sequence

extends Composite "Task with sub -tasks";
equation

returns = not any substatus[:] is
Accept , Activating , Running;

success = all substatus[:] are
Success or Finished;

switching = any substatus[:] is
Activating , Deactivating;

// <-- Apply status cycle from Task
if active then

subactive[first accepting] = true;
end if;

end Sequence;

Initially, the surplus sub-task has the status
Failure and the potential sub-task has the status
Accept. The sequence consistently returns Failure.

When the surplus status changes to Success, the
sequence’s returns flag changes to false. Apply-
ing the status cycle, the sequence changes its status to
Accept and passes on this status to its superior task.

According to the switch logics contained in the su-
perior tasks, the sequence’s active trigger is then
changed to true. The sequence passes on this value
to its first accepting sub-task, the potential energy
harvesting. This action then changes its status to
Activating, which in turn changes the sequence’s
switching trigger to true. According to the status
cycle, the sequence also assumes Activating status
and passes it up the tree.

Eventually, the potential sub-task generates a new
event, when it switches its status to Running. The
sequence adapts to this change by changing its own
switching flag to false, applying the status cycle,
and passing its new Running status to its superior task.

Figure 6 shows a sequence diagram of this sequence
of events. The single final event from Fig. 3b is split
in three events here. Depending on the superior tasks

and the sub-tasks, these events can also happen imme-
diately one after the other. An action without activation
procedure e.g. immediately leaves the Activating status.
This combines the latter two events into one.

t

surplus? potential!

Activating

active=true
active=true

Activating

Running

Running

Accept

Success

Failure Failure Accept

returns=false

switching=true

switching=false

Figure 6: The detailed processing of a sequence acti-
vating its potential sub-task includes the status triggers.

6 Application Example
The described system is used for show-casing its ap-
plicability to actual UAS mission scenarios. To this
end, a mission plan is built for an electric high-altitude
solar-powered aircraft. This plan is used to steer the in-
tegrated simulation model developed in previous work
[1]. The aircraft is implemented as the non-linear in-
verse of a point-mass model of the flight dynamics
with two controlled propellers. It has 26 individually
controlled solar panels. The total number of continuous-
time states for the aircraft is 72.

The plan is divided in a longitudinal and a lateral
part. The lateral part steers the aircraft towards a hold-
ing position and commands a holding pattern at this
point. This part is not described here in detail. The lon-
gitudinal part of the plan is shown in Fig. 7. It consists
of two sub-goals. The first is to ensure that a maximum
of solar energy is stored in the aircraft. The second
includes the main mission, such as operating a commu-
nication relay at the holding position. In this example,
it is simplified by issuing an altitude holding command.

The energy-maximizing plan is comprised of two
alternative plans. One is used to harvest solar energy. It
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Figure 7: The BehaviorTrees mission plan uses en-
capsulated inputs and outputs specialized for the spe-
cific UAS application. The conditions are marked with
colored frames for comparison with the transitions in
Fig. 8. The plan’s modularity is shown by introduc-
ing a new sub-task of the harvest task (shaded, dashed
line). Only one additional connection is required for
this extension.

is described already in Sec. 2 as the introductory exam-
ple. It commands the aircraft to climb to its maximum
altitude, whenever a surplus of solar energy is avail-
able. The second alternative ensures that a minimum
of energy is used, if no energy can be stored. To this
end, the aircraft first descends to a minimum altitude
and holds this altitude in a way, which minimizes bat-
tery use. This type of using altitude to store potential
energy is called a "jojo" mission. It is important to
notice, that in this plan formulation, the main mission
is only allowed to be executed, if no energy task of
higher priority needs to be executed.

Figure 8 shows a StateGraph2 [5] implementation
equivalent to the behavior tree. It consists of the four
states mission, climb, sink and hold as well as nu-
merous transitions with conditions equivalent to the
behavior tree logic. The corresponding state graph tran-
sitions and behavior tree conditions are marked with
colored frames in Fig. 7 and 8 respectively. It can be
noted, that some transitions have to be reused multiple
times in order to replicate the behavior tree’s results.

The advanced modularity of the behavior tree can
be appreciated even more, when an additional task is
introduced. Figures 7 and 8 also include a sketch of
loading a fuel cell as an additional energy harvesting
task. While the behavior tree only requires one addi-
tional connection, the state graph has to be extended
with a number of transitions. The extension is done
here in an ad-hoc way and optimizations of the state
machine are possible. However, the typical mission

designer will appreciate the facilities to create ad-hoc
plan changes in an efficient way such as provided by
the BehaviorTrees library.

The results of both the BehaviorTrees and the
StateGraph2 mission plans are shown in Fig. 9. A
full day of flight (86400 s) is shown including a full
jojo mission between 6000 m and 13000 m of altitude.
The results of both mission plans are identical: The
simulation starts before sunrise, such that the aircraft
holds its lower altitude limit. When the sun rises at
about 07:50, the batteries start charging. Only when
the batteries are fully charged at about 11:30, the air-
craft climbs to its mission altitude. With decreasing
solar energy in the early evening, the aircraft starts to
sink to its lower altitude limit again.

Figure 9 also shows the related current productions.
The repeated switching with critical battery stems from
highly different power demands for the altitude holding
and sinking tasks in combination with discontinuous
commands from the mission plan. Providing fully con-
tinuous switching will alleviate this behavior.

In order to compare the computational complexity
of the different implementations, the required CPU
time on a standard laptop computer and the gener-
ated number of time- and state-events are given in
Tab. 1. The values are compared for the discrete-time
formulation of the behavior tree and the continuous-
time BehaviorTrees modification. The tree is ticked
once per minute in the discrete-time case. The impor-
tant reduction of both time events and execution time
can be seen. The continuous-time formulation saves
about 80 % of the simulation time and removes all time
events. For completeness, the execution times of the
StateGraph2 implementation are also given, as well
as the results from simulating only the aircraft model
with the recorded command inputs for the same period.

Table 1: The execution measures of the different con-
figurations are determined for a single simulation ex-
periment of the discrete-time and the continuous-time
behavior tree as well as the state graph implementation
and a direct simulation with recorded inputs. CPU time,
number of time events and number of state events are
extracted from the simulation log file.

Configuration CPU time time- / state events

Discrete 368 s 1442 249
Continuous 72 s 0 247
State graph 76 s 60 242
Direct inputs 66 s 25 183
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Figure 8: The StateGraph2 mission plan consists of four places corresponding to the actions of the
BehaviorTrees mission plan. The conditions of the behavior tree are translated into transitions. They are
marked with colored frames for comparison with Fig. 7. It can be seen that the state machine implementation
requires a number of redundant transitions. The complexity of this implementation becomes more visible, when
an additional task is introduced similarly to the one included in Fig. 7 (shaded, dashed lines).
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Figure 9: Both mission plans are simulated with an integrated aircraft model for a full day of flight. The results
are identical for both plans.
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7 Conclusions and Outlook
The conventional discrete-time formulation of be-
havior trees can be argued unsuitable for long-term
UAS mission simulation in Modelica because of its
forced update rate. A continuous-time formulation
is thus devised and implemented in the Modelica
BehaviorTrees library. The formulation allows the
simulator to choose large step-sizes, allowing for long-
term mission simulation with behavior tree mission
plans in Modelica. The approach relies on passing
event notifications between composite tasks and their
sub-tasks.

The new formulation also addresses the limitations
of previous behavior tree formulations with respect to
event-handling. It provides the capability needed to pro-
cess behavior trees based on events also in languages
other than Modelica. By providing a suitable data stor-
age, the approach can be used to create event-driven
behavior trees also in real-time environments such as
flight computers.

The Modelica library described in this paper presents
clear public and internal interfaces, allowing the user
to design mission plans graphically on the one hand
and to implement new tasks types on the text layer
on the other hand. The behavior tree infrastructure
is complemented with a communication infrastructure
allowing to conveniently pass signals from and to the
plan without direct connections.

A plan implemented with the BehaviorTrees li-
brary gives identical results compared to an equivalent
plan using the StateGraph2 formalism. The simu-
lation speeds confirm that long-term simulations are
possible with both methods. However, the plan’s modu-
larity is increased using the BehaviorTrees facilities
as compared to a StateGraph2 implementation.

The comparison of results and timings should be re-
garded as an initial qualitative result. It indicates that
behavior trees can indeed conveniently be used to steer
a solar-powered high-altitude aircraft on long-term mis-
sions. Quantitative evaluations and comparisons to
conventional state machines and discrete real-time im-
plementations still need to be carried out. Formal vali-
dation and verification need to be addressed in order to
guarantee consistent behavior between the continuous
and discrete formulations.

The BehaviorTrees library is currently only used
in internal studies and research projects. A commercial,
or open-source, release is currently not planned but not
ruled out either. The library will be further developed
in the scope of a doctoral project and interested users
are invited to contact the author for further information.

Future versions of the library will make use of the
new synchronous elements provided by the Modelica
3.3 specification. These should provide for even bet-
ter performance and robustness. Comparisons to pure
Modelica 3.3 state charts should give similar results as
the comparison to StateGraph2: Similar performance
with improved modularity. Additional improvements
can be made with respect to repeated switching by pro-
viding for continuous switching, where possible.

In summary, the prospects of using BehaviorTrees
mission plans in Modelica are excellent, both in usabil-
ity and in performance. The approach can be valuable
not only for UAS applications, but also for other fields
such as vehicle test automation. Future research effort
will additionally be spent on deploying such mission
plans to actual flight computers using automatic code
generation and the functional mockup interface.
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Abstract

An electrical machine library, developed within the
framework of the European project Actuation 2015,
is presented in this paper. The library has been de-
veloped adopting a multi-level approach, in order to
minimize the models complexity and reduce the
computational time. Multi-level approach consists in
creating several models of the same electrical ma-
chine topology, with different levels of complexity.
Indeed, model complexity increases at higher model
levels and each model takes into account specific
physical effects. In addition to the fundamental be-
havior, the presented models address physical effects
such as losses, magnetic saturation, torque ripple and
fault conditions. The interchangeability among mod-
el levels is ensured by using common interfaces. An
overview of the library structure is given; however,
particular attention is paid on the permanent magnet
synchronous machine (PMSM) models, since they
are becoming increasingly widespread in aerospace
applications. The PMSM models description and
simulation results are provided, in order to highlight
the implemented physical effects and confirm the
models effectiveness.

Keywords: Permanent Magnet Synchronous Ma-
chine, Multi-Level, Losses, Magnetic Saturation,
Torque Ripple, Fault conditions.

1 Introduction

According to the concept of the More Electric Air-
craft (MEA), an increasing number of hydraulic ac-
tuators for primary and secondary flight control sur-
faces are being replaced by Electromechanical Actu-
ators (EMAs), in order to improve efficiency, weight
and maintenance of the aircraft [1]. For this reason,
EMAs are becoming an attractive research area and
part of the research work is focused on developing
virtual testing environments and analysis tools. In-
deed, EMAs’ manufacturers require simulation tools
capable of analyzing EMAs performance and explor-
ing different design configurations. In response to

these requirements, a suitable simulation and analy-
sis tool for EMAs, named Actuator library, has
been developed within the framework of the Europe-
an project Actuation 2015.
The multidisciplinary architecture of EMAs could
lead to a large simulation time or even numerical
non-convergence due to the model complexity [2]. In
order to avoid these issues, the idea of implementing
several models of the same component (i.e.: inverter,
electrical machine, gear box etc…), with different
levels of complexity has been exploited. Hence, a
multi-level approach has been adopted, with the aim
of keeping the models as simple as possible, since a
good model is a wise trade-off between realism and
simplicity.
The model levels are categorized by the complexity
of the physical effects implemented within the mod-
el. In particular, higher model levels take into ac-
count more complex physical effects. Considering
that several models of the same component are avail-
able within the library, the interchangeability among
the model levels is crucial, in order to investigate
different physical effects by simply replacing the
model level. For this reason, the interchangeability
has been ensured by using common interfaces among
the model levels.
In this paper, the Electrical Machines li-
brary, which is part of the Actuator library, is
presented. The Electrical Machines library
has been implemented using Modelica [3], as model-
ling language, and Dymola, as simulation environ-
ment. This library is organized as three packages and
each of them considers a specific machine topology,
such as PMSM, synchronous reluctance machine
(SRM) and direct current (DC) machine. Each one of
these packages contains the sub-package Exam-
ples, which provides several case studies, helpful
for highlighting the features of each modelling level.
Due to space constraints, not all the machine topolo-
gies included in the Electrical Machines li-
brary will be considered in this paper. Indeed, the
presented work is mainly focused on describing the
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PMSM models as these machines are characterized
by an excellent efficiency, together with a high pow-
er density [4]. These features make PMSMs very
attractive for aerospace applications [5]. Whilst ini-
tially resistance to the adoption of these machines
was shown by airframes to the possibility of unsup-
pressed short-circuit currents, it is now more accept-
ed that through fault tolerant design and heath moni-
toring schemes these machines offer an optimum
solution.
In the next sections, an overview of the Electri-
cal Machines library is presented along with a
description of the model interfaces. Moreover, de-
tails of the PMSM modelling levels and the physical
effects (i.e.: losses, magnetic saturation, torque ripple
and fault conditions), taken into account, are given.
Simulation results obtained using Dymola are also
included.

2 Library Structure

An overview of the Electrical Machines li-
brary is provided in this section and figure 1 shows
the library structure.

Figure 1: Structure of the Electrical Machines
library as part of the Actuator library.

The machines considered in this library are PMSM,
SRM and DC machine. The PMSM type covers a
number of topologies from non-salient surface mount
to high reluctance interior permanent magnet (IPM)
machines. The library is organized in three packages,

one for each machine topology earlier mentioned,
plus the package Basic, which considers a generic
alternating current (AC) electrical machine. Accord-
ing to the multi-level approach previously intro-
duced, several models with different level of com-
plexity are included within each of the four packag-
es. The level of complexity is related with the physi-
cal effects that the model takes into account. In other
words, a higher level of complexity implies the mod-
elling of more complex physical effects, such as non-
linear effects.
The package Basic contains only one model level
(model Basic), which is the simplest model for an
AC electrical machine. Indeed, model Basic is de-
fined by means of the torque constant and its behav-
ior is ideal (losses and non-linear effects are neglect-
ed). Package PermanentMagnet includes the
three-phase PMSM models and three model levels,
such as Standard, Saturation and Fault
models, are provided. Three-phase SRM models are
organized in the package Reluctance and two
model levels (Standard and Saturation) are
implemented. Finally, the package DirectCur-
rent considers the DC machine models with inde-
pendent excitation. This package consists of two
modelling levels (Standard and Saturation).
As previously underlined, the sub-package Exam-
ples is provided for each of the mentioned packag-
es, in order to support the user in both familiarizing
with the models and exploring their features.
It is worthy to remark that the contribution of this
work is mainly focused on the package Perma-
nentMagnet and all the considerations presented
in the coming sections are made considering PMSM.

3 Models Interfaces

As mentioned earlier, every model belonging to a
level is replaceable with one belonging to another
level. This feature has been achieved by adopting
common interfaces, which are defined in Actua-
tor.Electrical.Interfaces. The adopted
model interfaces can be classified according their
function in:
 electrical interface;
 mechanical interface;
 thermal interface.

All quantities accessible at the mentioned interfaces
are shown in physical units.
Considering AC electrical machines (packages
Basic, PermanentMagnet and Reluctance),
the electrical interfaces adopted are the Positive-
Plug and NegativePlug, since the stator wind-
ing is assumed as three-phase winding. In particular,

Multi-Level Library of Electrical Machines for Aerospace Applications

738 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096737



the AC machine models have been built up consider-
ing a wye-connected stator winding, with floating
neutral point. The adopted electrical interfaces allow
connecting the AC machine to a power converter or
to a driven voltage source (SignalVoltage). In
the case of the DC machine models, PositivePin
and NegativePin have been used as electrical
interfaces, for both armature and field windings (the
DC machine excitation is independent).
All the machine models adopt Flange and Sup-
port as mechanical interfaces and they are included
in the models by extending the PartialOne-
FlangeAndSupport. The developed electromag-
netic torque and the load torque are applied on the
machine Flange, while the reaction torque is avail-
able on the Support, in case the machine housing
is not grounded.
The PartialConditionalHeatPort is used
as thermal interface for all the machine models and
housing temperature and heat flow are available at
the heat port.

4 Model Basic

The model Basic is included in the package
Basic and it is the simplest model for a generic
three-phase AC machine. The machine behavior is
described through the torque constant, which estab-
lishes the relationship between current and electro-
magnetic torque. Copper, iron and mechanical losses
are not considered at this level, as well as, effects
such as magnetic saturation, torque ripple and fault
conditions are neglected.
Data records have been used to organize the model
parameters and for the model Basic the required
parameters are:
 Phase resistance ( R );
 Magnetizing inductance ( L );
 Pole pairs number ( pp );

 Torque constant ( tk );

 Rotor’s moment of inertia ( rJ );

 Stator’s moment of inertia ( sJ ).

The stator’s moment of inertia will be used by the
model only when the machine housing is not
grounded. Since plugs are used as electrical interfac-
es, the model Basic is fed using phase quantities
( abc ) and Park’s transformation (invariant ampli-
tude transformation) [6] is adopted for implementing
the model in the rotating reference frame ( dq ), ac-

cording to the following equations:

2

3

d d d e q

t
q q q e d e

d
v R i L i L i

dt

kd
v R i L i L i

dt pp



 

      


        



(1)

where e is the electrical speed in rad s . The elec-

tromagnetic torque ( e ) developed by the model

Basic is given by:

e t qk i   (2)

The electrical equations are implemented in the
Modelica Text Layer, while the mechanical model is
realized in the Modelica Diagram Layer, using an
object-oriented approach. In figure 2, the Modelica
Diagram Layer of the model Basic is shown. Mod-
el Basic, as well as all the other machine models
presented in the Electrical Machines library,
is reversible. This means that the model Basic can
work reversibly as motor or generator.

Figure 2: Modelica Diagram Layer of the model Basic
included in the Electrical Machines library.

In order to verify the model Basic functionality,
the simple EMA architecture, reported in figure 3,
has been implemented and simulated in Dymola. The
chosen EMA architecture consists of an inverter,
which supplies a PMSM mechanically coupled to a
500 rad m transmission ratio roller screw, through

a gearbox with transmission ratio equal to 5. The
inverter is fed using a 270 V DC link and the

PMSM parameters are: 14 pole pairs, 56.2 2g m

rotor inertia, 0.05  phase resistance, 2 mH mag-

netizing inductances and 2.1 Nm A torque constant.

Control unit (controller) implements the convention-
al position control, hence the position is controlled
by a cascaded structure, where the inner loop con-
trols the q  axis current, the outer loop controls the

speed and finally the outermost loop controls the
position. During the simulation, the controlled sur-
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face is moving 0.02 m forward and backward, while
an external load force of -80000 N (equivalent to
-32 Nm load torque on the PMSM shaft) is acting
on the flight surface. The simulation results are
shown in figure 4. In particular the mechanical quan-
tities (position, speed and torque) of the PMSM are
reported and a good agreement between actual and
reference position is highlighted.

Figure 3: EMA architecture simulated in Dymola, using
the model Basic.
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Figure 4: Simulation results obtained using the model
Basic under position control: mechanical rotor position
(top), mechanical rotor speed (middle) and developed
torque (bottom).

5 Model Standard

The model Standard, included in the package
PermanentMagnet, is based on a lumped pa-
rameters approach and it describes the behavior of
PMSMs taking into account torque generation, losses
and thermal model. Non-linear effects, such as mag-
netic saturation, torque ripple and fault conditions
are neglecting at this level.

The model is developed in the rotating reference
frame synchronous with the rotor ( dq ) and Park’s

transformation (invariant amplitude transformation)
is used to pass from the abc to the dq reference

frame. Figure 5 reports the equivalent circuits in the
rotating reference frame.

Figure 5: d  and q  axis equivalent circuits implement-

ed within the model Standard.

These equivalent circuits take into account the iron
losses using an equivalent iron losses resistance
( feR ), placed in parallel with the series between the

magnetizing branch and the electromotive force term
[7]. Applying the Kirchhoff’s voltage law (KVL) at
the main loop of the circuits in figure 5, the follow-
ing equations can be written:

d t d d dm e q qm

q t q q qm e d dm e PM

d
v R i L i L i

dt

d
v R i L i L i

dt



  

      

        

(3)

where tR is the phase resistance (which is function

of the winding temperature), PM is the permanent

magnet flux, dL and qL are the d  and q  axis

magnetizing inductances respectively. These pa-
rameters ( R , dL , qL and PM ) are provided by the

model user, through the model's mask. On the other
hand, applying the Kirchhoff’s current law (KCL) at
the circuit nodes results:

d dfe dm

q qfe qm

i i i

i i i

 

 
(4)

According (4), the total currents ( di and qi ) are split

into iron losses currents ( dfei and qfei ), given by (5),

and magnetizing currents ( dmi and qmi ). The formers

flow through the equivalent iron losses resistance,
while the latters are responsible of the torque genera-
tion.
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dfe d dm e q qm fe

qfe q qm e d dm e PM fe

d
i L i L i R

dt

d
i L i L i R

dt



  

 
     
 

 
       
 

(5)

In order to complete the PMSM model, the electro-
magnetic torque equation has to be explicit. In gen-
eral, the torque developed by the PMSM is the sum
of two terms: the field torque due to the permanent
magnets and the reluctance torque due to the ma-
chine saliency. PMSM model Standard includes
both these torque terms, hence the behavior of sur-
face mounted (SMPM) and interior permanent mag-
net (IPM) machines can be simulated. The electro-
magnetic torque is given by (6):

 3

2
e PM qm d q dm qmpp i L L i i           (6)

where pp is the pole pairs number, which is provid-

ed by the model user.
Model Standard is a power balanced model and
the losses taken into account are copper, iron and
mechanical losses. Copper losses ( cuP ) are a func-

tion of the current and the winding resistance, ac-
cording to the following equation:

 2 23

2
cu t d qP R i i    (7)

The coefficient 3 2 arises from the adoption of the

amplitude invariant Park’s transformation. As previ-
ously said, the phase resistance tR is function of

winding temperature ( w ), through the equation:

 1t w refR R          (8)

where R is the phase resistance at the reference
temperature ( ref ) and  is linear temperature coef-

ficient, which depends on the winding material (i.e.
copper or aluminum).
Iron losses ( feP ), both hysteretic and eddy current,

are a function of voltage and frequency as well as the
material composition. These losses are calculated as
equivalent copper losses:

 2 23

2
fe fe dfe qfeP R i i    (9)

Equivalent iron losses resistance is obtained consid-

ering the specific iron losses ( pC ) and the stator

mass ( Sm ):

 
2 22 50 PM

fe

p S

R
C m

   



(10)

Both these parameters ( pC and Sm ) are provided by

the model user, using the model’s mask. Specific
iron losses gives the iron losses in 1 Kg mass of a

given magnetic material, when it is subject to a flux

density of 1 2Wb m at 50 Hz .

Finally, mechanical losses ( mecP ), due to friction and

windage, are functions of rotor speed and they are
included in the model using the equivalent viscous

friction torque ( f ):

e
f B

pp


   (11)

e
mec fP

pp


  (12)

where B is the friction coefficient. The stray losses
are neglected in the model Standard, due to their
small amount compared to the other losses.

Figure 6: Modelica Diagram Layer of the model Stand-
ard included in the Electrical Machines library.

Total losses are applied in input to the thermal model
adopting the component PrescribedHeatFlow.
The implemented thermal model considers the
PMSM as a whole block and it is composed by a
heat capacitor and a thermal conductor. The heat ca-
pacity ( C ) is defined as:

p TC c m  (13)

where Tm is the total motor mass and pc is the

equivalent specific heat capacity, which depends by
the motor materials (mainly copper and iron). How-
ever, the convective thermal conductance ( G ) be-
tween windings and housing is given by:

G h A  (14)
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where A is the convection area and h is the heat
transfer coefficient, which depends upon the cooling
system adopted. Both these parameters, together with

Tm and pc are provided by the model user. The

winding and housing temperatures are respectively
available on port_a and port_b of the thermal
conductor. Finally, the heat flow is available at the
heat port of the thermal model (heatPort).
Equations (3)-(14) are implemented in the Modelica
Text Layer, while the mechanical and thermal mod-
els are included in the Modelica Diagram Layer, as
shown in figure 6.

Figure 7: Speed control scheme simulated in Dymola,
using the model Standard.

Model Standard has been simulated under speed
control using the block diagram reported in figure 7,
with the purpose of highlighting the PMSM losses
and the thermal behavior. The PMSM parameters
are:
 pole pairs number 14;

 rotor’s moment of inertia 56.2 2g m ;

 phase resistance 0.05  ;
 d  and q  axis inductance 2 mH ;

 permanent magnet flux 0.1 Wb ;

 specific iron losses 1.1 W kg (M300);

 stator mass 3 kg ;

 friction coefficient 0.0002 Nm s ;

 motor mass 5 kg ;

 specific heat capacity 424  J kg K ;

 convection area 0.75 2m ;

 heat transfer coefficient 12  2W K m .

During the simulation, the mechanical speed refer-
ence signal is a ramp from 0 rpm (at 0.01 s ) to

1500 rpm (at 1.01 s ), while the d  axis current

reference signal is kept equal to 0 A . Once the speed
reaches the steady state value (1500 rpm ), a load

torque step of -25 Nm is applied at 1.5 s . Figure 8
shows the PMSM losses (copper, iron and mechani-
cal losses) together with the electrical and mechani-
cal powers. In steady state, the machine efficiency is
equal to 93.45%.
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Figure 8: Simulation results obtained using the model
Standard under speed control: mechanical rotor speed
(top), PMSM losses (middle) and PMSM power (bottom).

The trends of the windings and housing tempera-
tures, over a working period of 1 hr , are reported in
figure 9.
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Figure 9: Simulation results obtained using the model
Standard: winding and housing temperatures.

6 Model Saturation

The model Saturation, included in the package
PermanentMagnet, has been obtained as an ex-
tension of the model Standard. Therefore it takes
into account all the physical effects already present-
ed in the model Standard section, plus the mag-
netic saturation and the torque ripple. As with the
model Standard, the model Saturation is
also developed in the rotating reference frame ( dq )

and Park’s transformation (amplitude invariant trans-
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formation) is used to pass from the abc to the dq

reference frame.
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Figure 10: Field torque component against q  axis cur-

rent: analytical curve (blue line) and finite element results
(green dots).

In ferromagnetic materials, the relationship between
the field strength and flux density is not a straight
line (i.e. constant permeability), but it is defined
through the magnetization curve. Since ferromagnet-
ic materials reveal a variable permeability according
to the field strength, the magnetization curve has a
knee point. Past this knee point, further increases in
the field strength do not result in proportional in-
creases in flux density. The PMSM performance is
affected by the magnetic saturation; in particular, it
influences both the permanent magnet flux and the
inductances. Since the permanent magnet flux and
the inductances are a function of the operating point,
the developed torque (both field and reluctance
terms) is not proportional to the current anymore.
In the model Saturation for PMSM, the magnet-
ic saturation is taken into account considering only
its influence on field torque term (i.e. permanent
magnet flux), while the reluctance torque term (i.e.
magnetic saliency) is not affected by the magnetic
saturation. In the presence of magnetic saturation,
the curve of the field torque term against the q  axis

current (torque-current curve) has a trend, like shown
in figure 10. The torque-current curve can be includ-
ed in the model Saturation using two approach-
es:
 the look-up table;
 three given points, which identify the torque-

current curve.
In the former case, the data stored inside the look-up
table may be obtained by finite element simulations.
In the latter case, the model user provides the follow-
ing data:
 q  axis current at the knee of the torque-current

curve ( qmkneeI );

 field torque at the knee of the torque-current
curve ( knee );

 field torque at the saturated region of the torque-
current curve ( sat );

and the developed torque is analytically calculated
using (15).

4 2
1

2 2
2

qm qm

e

qm

c i i

c i


 



(15)

where qmi is the actual magnetizing current along the

q  axis, while 1c and 2c are the torque function

coefficients. These coefficients are expressed as
shown below.

1 satc   (16)

4 2 2 2

2

qmknee sat qmknee qmknee knee

knee

I I I
c

   



(17)

Figure 11: Modelica Diagram Layer of the model Satu-
ration included in the Electrical Machines li-
brary.

In addition to the magnetic saturation, the model
Saturation, also implements the torque ripple,
which is function of the electrical rotor position
( e ). In particular, the model Saturation allows

to superimpose a sinusoidal torque ripple ( ripple ) on

the developed electromagnetic torque ( e ). The

torque ripple waveform is defined according (18).

sin
ripple

ripple ripple e

n

f
A

f
 

 
   

 
(18)

where rippleA is the ripple amplitude, ripplef is the rip-

ple frequency and nf is the PMSM rated frequency.

These parameters are provided by the model user by
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means of a dedicated mask. rippleA and ripplef are

function of [8]:
 stator winding (concentrated or distributed, sin-

gle or double layer);
 motor geometry (slot opening, tooth shape,

etc…);
 air-gap flux density quality (harmonic content);
 load conditions.

Equations (15)-(18) are implemented in the Modelica
Text Layer, while the look-up table is placed in the
Modelica Diagram Layer, as shown in figure 11.
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Figure 12: Simulation results obtained using the model
Saturation under speed control: mechanical rotor
speed (top), developed torque (middle) and q  axis cur-

rent (bottom).

In order to verify the magnetic saturation influence
on the PMSM performance, model Saturation
has been simulated under speed control within
Dymola. PMSM parameters are the same adopted for
the simulation test shown in the previous section,
while the magnetic saturation parameters are:
 q  axis current at the knee equal to 5 A ;

 field torque at the knee equal to 10.5 Nm ;
 field torque in the saturated region equal to

30 Nm .
These parameters define the torque-current curve
reported in figure 10 (blue line). During the simula-
tion, the mechanical speed reference signal is a ramp
from 0 rpm (at 0.1 s ) to 2000 rpm (at 0.2 s ),

while the d  axis current reference signal is kept
equal to 0 A . Once the speed reaches the demanded
steady state value (2000 rpm ), a load torque ramp

from 0 Nm (at 0.3 s ) to -25 Nm (at 0.5 s ) is ap-
plied, in order to emphasize the magnetic saturation
effect. Figure 12 shows the simulation results. In
particular, the comparison between the q  axis cur-

rents flowing into the PMSM, with (green line) and

without magnetic saturation (blue line), is highlight-
ed. When the magnetic saturation is considered, in
order to develop the same electromagnetic torque (as
in the absence of magnetic saturation), a higher
q  axis current is required. Even during the acceler-

ation phase, the q  axis current draw is higher when

the magnetic saturation is taken into account. This is
due to the analytical implementation of the torque-
current curve (15). Indeed, torque-current curve is
not a straight line in the linear region (see figure 10).
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Figure 13: Simulation results obtained using the model
Saturation under position control: mechanical rotor
position (top), mechanical rotor speed (middle) and devel-
oped torque (bottom).

Figure 13 reports the simulation results obtained
when the PMSM is position controlled and the
torque ripple is considered. Torque ripple parameters
have been set equal to 0.5 Nm amplitude (2% rip-
ple) and 11200 Hz frequency. During the simula-
tion, a -25 Nm load torque is applied. The enlarge-
ment in figure 13 (bottom plot) highlights the super-
imposition of the torque ripple on the developed
torque. Torque oscillations, due to the ripple, have
repercussions on both mechanical speed (middle
plot) and q  axis current.

7 Models Fault

Models including fault conditions have been imple-
mented only for PMSM (package Permanent-
Magnet), since the presence of permanent magnets
is the source of concern in the event of fault condi-
tions. Indeed, fault condition is supplied by the back
electromotive force due to the permanent magnets
[9]. PMSM models including fault conditions have
been implemented in the phase reference frame
( abc ), since asymmetric faults are considered as
well. Winding short-circuits, winding open-circuits
and permanent magnet demagnetization are the three
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fault conditions considered during the failure model-
ling. For each of the mentioned fault conditions a
specific model has been developed, in order to keep
low the model complexity. The realized models are
listed below:

 model ShortCircuit, which implements
single- and three-phase short-circuits;

 model OpenCircuit, which considers sin-
gle- and three-phase open-circuits;

 model Demagnetization, which takes into
account the permanent magnet demagnetization.

As suggested in [10], the winding faults have been
implemented by means of ideal electrical switches.
Such switches are driven by Boolean variables in
order to open or close the phase windings and inject
the fault conditions. Figures 14 and 15 show the
Modelica Diagram Layer of model ShortCir-
cuit and model OpenCircuit respectively.

Figure 14: Modelica Diagram Layer of the model
ShortCircuit included in the Electrical Ma-
chines library.

Figure 15: Modelica Diagram Layer of the model
OpenCircuit included in the Electrical Ma-
chines library.

Demagnetization is caused by increasing of tempera-
ture inside the permanent magnet and/or high current
values. In the model Demagnetization, the fault
condition is considered as consequence of the fault

(i.e. permanent magnet flux reduction) neglecting the
causes that led to the fault.
Figure 16 shows the Dymola block diagram used for
testing the models including fault conditions. In par-
ticular, PMSM is current controlled (with qi  10 A

and di  0 A ) and its rotor is speed driven at a con-

stant 500 rpm . For the sake of brevity, only the sim-

ulation results regarding model ShortCircuit
and model OpenCircuit are reported here. More-
over, the PMSM parameters are the same as those
adopted in the model Standard, within section 5.
Using model ShortCircuit, a three-phase short-
circuit (symmetric fault) has been injected at 0.3 s .
By this time, the mechanical speed and currents have
reached the steady state values. The corresponding
simulation results are reported in figure 17. From the
top plot, it is evident that the rotor speed is kept con-
stant even after the fault injection. The middle plot
shows the braking torque ( brT ) and its the steady

state value is equal to -3.57 Nm . The same value
can be obtained applying the formula reported in
[11] and written below:
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(19)

Figure 16: Block diagram implemented in Dymola, for
testing both model ShortCircuit and OpenCir-
cuit.

Since the three-phase short-circuit is a symmetric
fault, the current components in the dq reference

frame can be defined (see bottom plot). The steady
state values of the dq current components are

qshi  -1.7 A and dshi  -49.9 A . These values are in

line with those obtained applying the analytical for-
mulas reported in [11].
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Figure 17: Simulation results obtained using the model
ShortCircuit, in case of three-phase short-circuit:
mechanical rotor speed (top), developed torque (middle)

and dq currents (bottom).
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Figure 18: Simulation results obtained using the model
OpenCircuit in case of single-phase open-circuit: me-
chanical rotor speed (top), developed torque (middle) and

abc currents (bottom).

In figure 18, the simulation results obtained using
model OpenCircuit are reported. In this case, a
single-phase open-circuit (asymmetric fault) is in-
jected into phase a at 0.3 s . After the fault injec-
tion, the developed torque (middle plot) becomes
oscillating, since the PMSM currents are unbalanced.
The pulsating torque component is shown alongside
the demanded torque under healthy conditions
(21 Nm ). Its frequency is twice the operating fre-
quency of the PMSM. Since the stator winding is
assumed wye-connected, with a floating neutral
point, and the current in phase a is null, due to the

phase opening, the phase currents in phases b and c
must be shifted by 180 degrees. The described situa-
tion can be observed in the bottom plot of figure 18.

8 Conclusions

An electrical machines library developed using
Modelica has been presented in this paper. Particular
attention has been paid to the PMSM models, since
PMSMs are becoming widespread in aerospace ap-
plications, due to their inherent features. A multi-
level approach has been adopted, in order to keep the
model complexity low and reduce the computation
time. The interchangeability among modelling levels
has been ensured by using common interfaces. All
the models are power balanced and can work as ei-
ther a motor or generator. The main physical effects
taken into account are losses, thermal behavior,
magnetic saturation, torque ripple and fault condi-
tions. Physical effects included in the models have
been discussed and their implementation has been
detailed. The effectiveness of the various modelling
levels has been proven through simulation results
obtained in several operating conditions.
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Abstract

More electrically powered aircraft reveals some sig-
nificant advantages such as weight decrease, reduced
maintenance requirements and increased reliability
and passenger comfort. However, the development
of the future more-electric aircraft (MEA) systems is
a very challenging task. Its complexity may be han-
dled by a model supported design approach for the to-
tal aircraft design process. A key factor of applying
model based design is dedicated modeling and sim-
ulation techniques for all design phases. The high-
est complexity can be seen in the systems validation
and verification phase where the aircraft system is in-
tegrated from the supplier’s models.

While the capability to conveniently model complex
physical systems with Modelica is generally accepted,
the capability to perform large scale model integra-
tion and analysis as part of a validation and verifica-
tion process remained unproven. In this paper we give
evidence of Modelica/Dymola to be suitable for the
virtual testing of complex energy systems in the future
MEA design process. We demonstrate the modeling
and the simulation results of component stand-alone
tests as well as the tests of an integrated aircraft power
network.

Keywords: V&V; electrical network; simulation;
aircraft

1 Introduction

The model based design approach is a key factor for
more efficient aircraft design with its growing demand
to optimize the complex physical systems contain-
ing mechanical, electrical, hydraulic, thermal, control,
electric power or process-oriented sub components
[15] . Especially the more electric aircraft concept
relies on incorporating high quality system models in
the complete aircraft design process [1]. The process
itself briefly can be divided into 4 major phases: con-

cept phase, system specification phase, system devel-
opment phase and system verification phase [5].

• Concept phase: During concept phase a two-
fold iterative optimization is performed on air-
craft manufacturer side. This includes aircraft
concept and global energy system architecture
optimization.

• System specification phase: In this phase, a
frozen energy system concept is provided by the
aircraft manufacturer. Additionally, more de-
tailed aircraft data about structure, cabin, light
physics, engine and electrical power generation
are available. The selected system suppliers con-
duct full concept definition where all the require-
ments and risks are understood. The aircraft man-
ufacturer’s requirements is transformed to the
level of equipment suppliers by the system sup-
pliers. Stability studies and failure analysis of air-
craft electrical network are typical activities dur-
ing the system specification phase.

• System development phase: In this phase pre-
liminary and detailed design of equipment takes
place. Verification and validation for artifacts are
done, which are produced during this phase.

• System verification phase: The objective in the
system verification phase is to demonstrate the
maturity of the systems in a realistic integration
and verification of more-electric aircraft systems,
capable of covering all phases of the development
process. The virtual integration platform for en-
ergy systems allows addressing integration issues
prior to their physical integration on the test rigs
and also extend test coverage. Power quality in-
vestigation of the integrated network will be of
the interest in this phase. The typical tasks of the
aircraft manufacturer in this phase are: monitor
supplier system development by verification of
system performance and functions, integrate sys-
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tems in physical and functional aircraft, verify in-
tegrated systems and validate simulation models
versus test results.

The model types and level of detail change for every
phase. For example an advanced concept phase tool
like ENADOT [14], applicable for optimal architec-
ture design of the electrical energy system, in general
does not demand more detailed electrical circuits than
resistive elements. In contrast, the aircraft electrical
network validation and verification process strongly
relies on software for detailed and numerical complex
modeling, simulation and analysis of network compo-
nents and systems. Substantial efforts were made to
reach platform independence and link simulation tools
each with special strengths and dedicated for specific
domains. Especially the FMI standard was a major
step forward and was verified to improve an aircraft
systems design process. Nevertheless, for the sake of
performance and transparency, industrial processes of-
ten rely on a single common tool.

The software used in an aircraft project for the
systems integration validation and verification (V&V)
process is defined by the airframer for all model sup-
pliers and contributors. While Modelica has found
attraction in the automotive sector, it is not the stan-
dard for detailed simulation in aeronautic industry yet.
Inspired by the success in the prior design phases, a
study was performed in the context of the CleanSky
project [4] to evaluate the potential and performance
of Modelica and the commercial tool Dymola for elec-
trical V&V . In this paper we give an overview of the
necessities of the infrastructure which had to be de-
veloped. Necessary tools are addressed and lessons
learned from the study are documented. It is the aim
of this paper to rise awareness of the needs to conduct
V&V studies. This paper quotes parts of [7, 6] with
special focus on the Modelica community.

In chapter 2 the general procedure for model V&V
is presented. The following paragraph gives an
overview of the models and library structure. Some
results and lessons learned from simulation are docu-
mented in the “simulation” chapter. It is concluded by
an overview of the methods and tools developed for
the study.

2 Procedure of virtual testing

In this chapter we want to reveal the general procedure
of the V&V process. Details were published in [7].

Today, virtual testing of the integrated aircraft en-
ergy system is becoming an indispensable task in the

system verification design phase. The virtual testing
procedure enables integration of the system by soft-
ware before the real physical integration on the test
rigs and extends test coverage. The behavior of the in-
tegrated system is estimated to be representative since
component models are verified by in-house hardware
tests at the suppliers. Each component is delivered
as detailed (behavioural) and abstracted (functional)
model.

The virtual testing process can be briefly divided
into two steps. First, each subsystem or component
model shall be tested for correct operation by so-called
component standalone tests. A standalone test usually
consists of a bunch of single tests such as power con-
nection, power disconnection, power consumption at
steady state, current harmonic analysis and so on, for
one component. Standalone tests are required for both
functional and behavioral models.

Once standalone tests for all components and sub-
systems are successful finished, in the next step simu-
lations and tests of the total integrated system model
are performed. Finally, specific analysis and post-
treatment tasks can be performed based on the sim-
ulation results of the integrated models.

3 Modeling

To illustrate the type of system under investigation, a
typical MEA energy system is depicted in figure 1.
The system is powered by the variable frequency gen-
erator which controls the bus voltage by the generator
control unit (GCU). The AC voltage is rectified by an
auto transformer rectifier unit (ATRU) which feeds the
environmental control system (ECS), DC loads and the
direct current charging unit (DCCU) connecting low
voltage DC loads. Low level AC voltage loads are sup-
plied by an auto transformer unit (ATU).

3.1 Functional/behavioural model

As written before, different modeling levels apply for
different test scenarios. Today, aircraft industry uti-
lizes a three multi-level approach for the design of the
aircraft system [10]. 1

The models are split into three types:

1To improve the international common understanding of mod-
eling levels and modeling needs, SAE Aerospace organisa-
tion will publish a document titled “AIRCRAFT ELECTRICAL
POWER SYSTEMS. MODELLING AND SIMULATION. DEF-
INITIONS.” in the near future
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Figure 1: Electric network architectures for More
Electric Aircraft

• Architectural models consist of algebraic equa-
tions and are used for steady-state power con-
sumption calculations.

• Functional models reflect the low frequency be-
havior of the original system till around one third
of the base grid frequency excluding switching
ripples. Functional models are derived from be-
havioral models by state space time averaging of
high frequency periodical switching waveforms.
Typical applications are stability studies [12, 11]
and control design. For the AC network in re-
search often a dq equivalent network representa-
tion [9] is chosen. For an industrial project this
might be further restricted to an equivalent one
phase DC system. While this simplifies the sys-
tem essentially by neglecting the AC phase infor-
mation, no calculation of reactive power is possi-
ble .

• The behavioral models reflect both low and high
frequency dynamics including switching effects.
Behavioral models are based on equations de-
rived from the subsystem structure and electrical
circuit. The behavior at the terminals should be
equivalent to the real hardware up to frequencies
in the hundred kilohertzs. Applications include
power quality simulation and analysis of transient
effects [8, 16].

The table 1 presents an overview of model require-
ments in all aircraft design phases.

For the system verification phase, functional models

are used for long term studies of the integrated system.
Behavioral models are mainly used for detailed inves-
tigation of transients as power on phases.

3.2 Electrical components

The library of components and systems developed for
the project can be seen in figure 2. The structure fol-
lows the needs of the V&V procedure: All models are
implemented as a “behavioural” and “functional” rep-
resentation.

All models have to be verified by associated stan-
dalone tests. The Modelica language concept showed
to be beneficial in organizing integrated libraries with
both, models and scripts. For example, in figure
2 the test routines for the 230VAC/115VAC auto-
transformer rectifier model are emphasized. Scripts
can contain procedures for parameter setting, simu-
lation commands and post processing and documen-
tation features. The newly developed scripts are ad-
dressed in chapter 5.3.

In the project it was confirmed, Modelica language
and the Modelica standard library are capable of mod-
eling all subsystems sufficiently. While the Modelica
electrical library is known to be of limited size com-
pared to design environments specialized for electrics,
it was found out most components can be modeled by
generic objects (e.g. rectifier unit) or they are very
specific and need to be written textually by equations
anyway (e.g. the generator). The only type of model
which was missing showed to be a detailed magnetic
hysteresis model. Magnetic hysteresis is of special im-
portance for electrical power systems since the initial
magnetizing effect of electrical transformers at power
connection can lead to short-time excessive currents
flowing into the transformer. This effect is called “in-
rush current” and investigated in [6]. The Modelica
magnetic hysteresis model [17] was developed from
JTI resources and will be part of the Modelica stan-
dard library in the future.

As an example for the library the ATU model is
shown in figure 3 which is one of the critical mag-
netic elements. The component tests include harmonic
current test, inrush current test, power connection and
power disconnection test. The harmonic current anal-
ysis aims to determine disturbances due to the equip-
ment on different frequency levels. Fast Fourier trans-
formation (FFT) is performed after simulation of the
ATU model reaches steady state condition (figure 4).
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Design phase Typical task Required model
Concept Architecture optimization Level 1

System specification Stability studies Level 2/3
System development Control design Level 2/3
System verification Virtual testing Level 2/3

Table 1: Model requirements in different aircraft design phase

3.3 Integrated aircraft power system

The stand alone test are essential prerequisites to de-
bug the single components for stable simulation be-
fore the integration. After successful stand-alone tests
for all components, various scenarios for testing the
complete electric power network can be performed.
To demonstrate the capability of Modelica/Dymola to
deal with large scale power systems, the proposed
electric power network depicted in figure 5 has been
simulated in Dymola at both behavioral and functional
levels. The behavioral model is reduced by Dymola
to a simulation model with 69 continuous time states.
The linear system to be solved reduces to one equation
system of order 18. The initialization system was re-
duced to five independent nonlinear equation systems
where the largest was of order 33. While the numbers
by itself seem not to be very impressing, complexity
comes from the switching system.

In the demonstrated electric power network, the
ATRU is connect to grid at 0.0025 second. After the
pre-charging ATRU with 25e-3 second, the DC output
of the ATRU is connected with the HVDC network.
The PMSM which has a 20e-3 second pre-charging
time is connected with the HVDC network at 0.055
second. After the power inverter in the PMSM is ac-
tivated, a constant speed command is given for the
PMSM under a constant load. AC currents and volt-
ages of the VFG is recorded in the figure 6 for behav-
ioral model and in figure 7 for the functional model.
In the simulation results, it is clear to see the inrush
currents at the moment of switching on ATRU and DC
ripple at the ATRU output. These values are very im-
portant indicators for the stability study for the electric
power network in MEA. [12]

4 Simulation and lessons learned

4.1 General

As benchmark of the study, the components and espe-
cially the large aircraft power systems had to be sim-
ulated to demonstrate the performance and robustness
of Dymola’s numerical solver for such a usually very

stiff power system and suffering from huge amount of
event handling actions due to switching components.

In the study it could be demonstrated Model-
ica/Dymola is capable of simulating all component
and integration tests. Compared to the traditional
simulation platform for V&V tests, numerical speed
showed to be excellent for the smaller component tests
and competitive for the large integration test and might
be further improved. Also it was detected, simula-
tion speed is overwhelmingly dependent on the model
quality and the experience of the designer. Stable and
fast operation of the components with non-specialized
integration algorithms as DASSL was almost manda-
tory for the successful large system integration.

From the example in the previous chapter it was
seen, the complexity of the initialization in many
cases prevents simulation already before start. As a
workaround the designer may test initialization with
the steady state option.

4.2 Identification of modeling errors

A typical problem for large scale simulation is abor-
tion, slow progress of simulation or chattering caused
by modeling problems. For a limited number of mod-
eling errors, the simulator’s log usually gives impor-
tant hints while they are not easy to interpret. For ex-
ample, in the V&V study dynamic state selection was
indicated by the simulator for a (working) component
model. For the large scale test this inhibited numer-
ical problems. This phenomenon and a workaround
for the magnetic system is documented in [ifeec]. As
a second example, for the generator model standalone
test algebraic loops were indicated in the simulator’s
log. Algebraic loops can occur for feedback loops
with feedthrough part, which can not be simplified by
the symbolic routines. While algebraic loops are un-
usual for standard electric circuits they appear easily
for saturated elements. In the V&V study the equation
system conditioned by the algebraic loop accounted
for numerical problems. While it does not necessar-
ily help, there is the option to cut the loop by insertion
of a first order delaying element.
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Figure 2: Library of the electrical system
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Figure 95: Spectral current analysis at 720Hz 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

current A 100 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

current B 100 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

current C 100 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

voltage A 100 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

voltage B 100 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

votlage C 100 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

current A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

current B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

current C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

voltage A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

voltage B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

votlage C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

Figure 4: Current harmonic analysis of ATU at 230V
and 720Hz input voltage
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 Figure 6: Simulation result of integrated electric
power network: VFG current and HVDC voltage (be-
havioral level)
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Figure 7: Simulation result of integrated electric
power network: VFG current and HVDC voltage
(functional level)

In practice the most common error is a stiffness of
the equation system which can be traced back to mod-
eling problems. Stiff means the eigenvalues of a lin-
earized system have a real part which is negative and
large in magnitude, compared to the reciprocal of the
time span of interest [3, chapter 5]. For this problem
usually no distinct warning is generated by the sim-
ulator. For small systems experienced designers may
detect the sources of the problem by inspection. For
larger systems built from verified components, new
stability problems may arise while troubleshooting by
inspection may fail due to the complexity.

The problem of modeling errors and its identifica-
tion shall be illustrated via the circuit depicted in fig-
ure 8.

Cp

Cn

Figure 8: Example of switching circuit with induc-
tance

The inductance on the right hand side is powered
via the the transistors by positive or negative voltage.
The most simple implementation of the transistor is
a switching resistor with the levels high or low resis-
tance, controlled by a Boolean input signal (e.g. Mod-
elica.Electrical.Analog.Ideal.IdealClosingSwitch).
For a pulse width modulation scheme, the inductor
is powered by the upper or lower transistor where
the control signal Cn is always the opposite of Cp.
Since an overlapping operation of the transistors
would result in a short circuit, for real systems
the turn over of the complementary control signals
includes a dead-time where both transistors are
in high resistance mode. In simulation, a sudden
interruption of the current path in the dead-time
period results in a high voltage peak in the inductor
due to v = Li̇. The inductor´s flux vanishes slowly
(stiff) due to the high switch resistances. This might
sound like a simulation problem but in fact this is
even a physical problem: For real transistors those
voltages would also occur and could severely damage
the semiconductor. This effect has to be prevented
in design by a free wheeling diode or a “snubber
circuit” in case of an inductive source. In the study
this problem occurred for the motor inverter unit. As
a counteraction the snubber circuit (a capacitance in
parallel to the switch) was foreseen. While inserting
tiny resistances/capacitances in the circuit is a well
known but poor method to solve simulation problems,
here the application adds physical meaning.

An other problem which can be related to physics is
the “floating ground” problem. In the example, only
the voltage difference of the voltage source is defined
but the absolute levels of the connectors are calculated
from the circuit. This may again result in chattering
of the simulation if state variables are sensitive to this
floating ground. The mathematical background of the
problem is a ill-conditioned Eigenvalue vector and a
high numeric sensitivity of the state. As in simula-
tion “floating grounds” are problems of the real phys-
ical system as well which can lead to malfunctions of
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the circuit. Both, circuit designer and model designer
should be aware of it and should consider a direct con-
nection to ground or a connection to ground via a large
resistor. Floating ground problems often are shown in
the simulator’s translation log while the user may be
overwhelmed by the amount of information at first.

For large systems there remains the problem of
identification of the source of the stiffness. In the
course of the study the following approach showed to
be successful (Dymola specific):

1. DLR’s Modelica Linear Systems 2 library is a
very powerful tool to analyze a model. Since
version 2013 its functions are embedded in Dy-
mola’s main window. The command “Full lin-
ear analysis” linearizes the system and gives the
eigenvalues. A stiff system exhibits at least one
large eigenvalue. The participation factors relate
the states variables to the eigenvalues which iden-
tifies the critical components. In the example in
figure 8, a large eigenvalue could be related to the
inductor’s state variable “current”. The problem
of the circuit can be detected by observing the
current paths in the system.
Often the stiffness does not appear in the original
system but in the course of the simulation. The
“Full linear analysis” command can be invoked
to linearize at a specified simulation time. For
this, the next rules apply:

2. Simulation needs to start successfully. If the sys-
tem does not initialize correctly a simulation from
a no-load condition and successive connection
of the loads may be successful. For Dymola,
the “Dassl” solver generally shows a good com-
promise between accuracy and speed. For stiff
systems there exist special solvers as “RadauIIa”
(see [3, chapter 5] for example). In many cases
the perpetual use of the solvers for stiff systems
only conceals problems of the models which may
return for slightly more complex systems. Nev-
ertheless, for the identification of the problem
it generally is a good idea to use a solver as
“RadauIIa” to get the simulation running.

3. Simulation to the critical condition/time: The first
step is to identify the critical condition by simu-
lation. In many cases the critical time is the last
successful simulation step. Then the “Full linear
analysis” command is evoked with linearization
at the critical time. Follow instructions 1..

4. If the simulation stops in the course of the simu-
lation before an anticipated critical time or if no

evidence can be found at the last successful simu-
lation step, a condition with similar critical condi-
tions might be found in the earlier simulation. By
observation of the “CPU time” (simulation time
at each simulated time step) stiff conditions can
be identified by steeper periods in the plot of the
CPU time vs. simulated time.

5 New developments

In the course of the project, some deficiencies were
identified for the implementation of the models and the
automation of the results within a single environment.
The following tools and scripts were newly developed
to overcome the obstacles:

5.1 Signal processing tool

In an industrial design process, a tool chain must fulfill
higher demands on automation, ergonomics and sin-
gle tools are preferred than in usual research projects.
Especially, tools for signal post operation are needed
integrated in the design tool and must be script-
able. In JTI, Dymola was selected as single simula-
tion platform and there was co-funding in the project
MODELSSA to extend it by the necessary features.
Amongst other features, a library of signal analysis
methods in time domain (e.g. min/max, period, duty
cycle, root-mean-square) and frequency domain (like
FFT, IFFT, total harmonic distortion) was developed.
All features are accessible graphically from the user
interface and scriptable. The features are documented
in [3] and were presented on the Modelica conference
vendor sessions.

5.2 Modelling of magnetic hysteresis

For efficient modeling of magnetic circuits, the free
Modelica.Magnetics.FluxTubes library [2] was ap-
plied for this study. The library is well established
and was proven by hardware design studies. Mate-
rial properties can be taken into account by linear and
nonlinear permeability. As an important extension in
the frame of the Cleansky project, DLR commissioned
and supervised the development of magnetic hystere-
sis models for Modelica. As an outcome, a high fi-
delity model based on Preisach’s equations was em-
bedded (the original publication goes back to 1935, for
implementation see [13] for example). For the study
of inrush currents which was industrially motivated
it was preferred to use another more efficient one.
The so called “Tellinen hysteresis model” showed to
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model the flux density B versus magnetic field strength
H relationship of a measured ferromagnetic material
well via moderate complex equations and thus by effi-
cient simulation speed. Details and comparisons about
the first release of the magnetic hysteresis models for
Modelica were published in [17].

5.3 Dedicated scripting for tests

Most simulation tools provide basic post processing
functions but with a limited perimeter. Thus, specific
analysis functions usually have to be developed for the
simulation platform using a post treatment language.
Also systematic design and test automation often de-
mands user specific scripts. When performing sim-
ple/single simulations, it is sufficient to select menu
commands or to type commands in the command input
line of the command window. But wanting to perform
more complex actions as part of an industrial process
(e.g. automatically repeat more complicated parame-
ter studies a number of times) it is much more conve-
nient to use the scripting facility. The goal is often to
fully automate the simulation. Just to name some fea-
tures, the script facility makes it possible to load model
libraries, set parameters, set start values, simulate and
plot variables.

Dymola supports easy handling of scripting, both
with functions and script files (.mos files). Whether a
function or a Modelica script file (.mos) should be used
is up to the user, essentially the same functionality can
be obtained with both. When a function should be the
final result, a function is created, and the functionality
is then created as an algorithm in this function using
the Modelica Text layer of the function as an editor.
When a Modelica script file (.mos) should be created,
the command input line can be used for input, creating
a command log that can be saved as a script. Scripts
can be nested; functions can be nested and a Modelica
script file may run other Modelica script files.

The test scripts were customized by DLR from ex-
isting commands of Modelica language and Dymola
functions. The built in functions and model manage-
ment tools of Dymola were found to be sufficient for
the study. Among others, the following scripts and
tools were found to be necessary repeatedly for the
V&V study:

• Transformation of input data: From input files
data are edited into a Modelica compatible type.
This function is of major relevance in an indus-
trial process since input data might not be Mod-
elica compatible and use of additional software

is undesirable in standardized processes. By help
of some Dymola buildt in functions conversions
from text files, Microsoft Excel sheets and more
was performed. Matlab’s matrix data format .mat
is supported immanent.

• Transformation of output data: Same as for the
import, the output features are important. Typi-
cal outputs programmed in functions were time
domain results (.mat result files), tables (Excel)
and generic data (.txt). For generation of fre-
quency domain data, it was necessary to have the
Fast Fourier Transformation (FFT) function exe-
cutable by script. Thanks to the co-funding by the
JTI project this function is now provided in Dy-
mola. Application of the FFT function include
parameter studies with tabulated output of total
harmonic distortion (THD) or harmonic content
at specified harmonics.

• Coherency test models: Test of linear dependence
of signals in time domain by convolution. Co-
herency is an important criterion in verification
tests to analyze the validity of models and model
abstraction levels. It is applied for verification of
models versus hardware test data or between dif-
ferent models. The script calculates coherency by
application of the coherency function to two sim-
ulation or measurement waveforms.

• AC modulation envelope: The AC envelope func-
tion is the smooth curve outlining the extreme
positions of a distinctive alternating wave with a
fixed frequency. The modulation envelope shows
its amplitude variation in frequency domain. The
AC amplitude is an important measure for the
voltage quality which must be stabilized by the
generator control. The developed function relies
on peak finding and transformation of data to fre-
quency domain by FFT.

As an example of an integrated test, the Dymola script
for the worst case study of sympathetic effect is pre-
sented in Fig. 9. This script function firstly simulates
the test bench till 5.791 second and records the simula-
tion result in a “end.txt” file. This result will be always
defined as initial condition for the following 20 time
simulations with different connecting time for ATU2.
A real variable Tatu2 is defined to vary the connecting
time of ATU2 and has a time step ε = 0.000125 sec-
ond for each simulation loop. Simulation setups such
as used integrator, simulation time are also defined in
the script function. Additional scripts have been made
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for post-processing. It is a big advantage for users, that
a complex test like analysis of sympathetic effect can
be easily formulated with Dymola scripting language
in a very compact manner.

function Script_Case1_with_simulation_paper 
  import Modelica.Utilities.Flies.*;
 
protected 
  Real Tatu2 = 5.791;

algorithm 
  
  //performe simulation till steady-state
  translateModel("Case1");
  simulateModel("Case1",
   stopTime=5.79,
   numberOfIntervals=0, 
   method="Radau",
   resultFile="Case1");
  
  //backup dsfinal
   copy("dsfinal.txt","end.txt",true);

  //do parameter studies about
  //switch on time of ATU2 with
  //time step 0.000125s
  
for i in 1:1:20 loop
  
  Tatu2 :=5.791 + i*0.000125;
  importInitial();
  simulateExtendedModel("Case1",
    startTime=5.79,
    stopTime=5.8,
    numberOfIntervals=0,
    method="Radau",
    resultFile="dres_"+String(i),
    initialNames={"Tatu2"},
    initialValues={Tatu2},
    finalNames={"Tatu2"});

  //re-initialization
  Files.copy("end.txt","dsfinal.txt",true);

end for;
end Script_Case1_with_simulation_paper;

1

Figure 9: Scripting for the worst case study of sympa-
thetic effect

6 Conclusion

By the study, the applicability of Modelica and Dy-
mola for large scale testing of aircraft electrical sys-
tems in V&V studies was demonstrated successfully.
All demands on new functionality, additional models
and specialized scripts could be met within the project.

It could be detected the reliability of simulation
highly depends on mature models. The developed li-
brary therefore is an important base for propagation to
a Modelica based V&V process in aircraft electrical
systems simulation. Further effort should be made for
robust initialization of the simulation.
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Abstract 

The goal of the A2015 library presented in this paper 
is to develop a Modelica based, tool-independent 
standard for electromechanical actuators (EMA). 
This will contribute to the establishment of a “com-
mon language” throughout the development of 
EMAs for aircraft and helicopters and through the 
supply chain. All stages of the design and validation 
process (conceptual design, specification, develop-
ment and validation) are covered. The modeling ap-
proach addresses specific aspects of the EMA design 
process not covered by existing tools. The library 
scope, engineering need and implementation are de-
scribed. Modeling of selected EMA components is 
discussed in more detail. An application example of 
the library is given (linear actuator, A320 aileron) 

Keywords: Actuator, EMA; Library; Multi Physics 

1 Library scope 

1.1 Introduction 

Protecting the environment and providing efficient 
onboard energy supply is one of the top goals in the 

development of future aircraft. A key technology 
towards the realization of these goals is the “More 
Electric Aircraft”. Various research initiatives have 
been launched in recent years to get closer to this 
goal. The ACTUATION2015 project [1] will com-
plete this approach by focusing on Electro Mechani-
cal Actuator (EMA) technologies. EMAs are manda-
tory in order to substitute hydraulic circuits, pumps 
and reservoirs. The objective of the ACTUATION 
2015 project is to develop and validate a common set 
of standardized, modular and scalable EMA modules 
that address cost, reliability and weight requirements 
from the air framers. In the context of that project the 
A2015 simulation model library is developed to sup-
port and streamline the EMA design process. 

1.2 Engineering needs 

The focus of the ACTUATION2015 project is on 
aircraft families including business, regional and 
large commercial aircraft as well as helicopters. The 
actuation systems covered include primary and sec-
ondary flight controls, main landing gears and 
breaks. A further major focus is on modularization 
and scalability of EMA modules. All the needs and 
architecture differences of such systems and all dif-
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ferent stages of the development process (conceptual 
design, specification, development, and validation) 
through the whole supply chain must be covered by a 
universal simulation model library. 

Apart from covering the relevant physical effects and 
general system dynamics aspects, the library should 
support the development in terms of concept and 
performance assessments, sizing (as far as system 
aspects are involved), component requirements defi-
nition and fail case assumptions, system reaction and 
performance in case of failures (static and transient), 
and virtual design validation. Electromechanical ac-
tuators have mostly a reduced reliability compared 
with conventional hydraulic actuators. Therefore the 
library must allow assessing redundant actuator con-
cepts. 

Since simulations on system and subsystem level 
can’t cover all computational needs of an EMA de-
velopment, interoperability with established tools is 
vital. Because many tools support it, the FMI stand-
ard [13] is the natural choice for model exchange of 
Modelica libraries. The library does not provide dis-
tributed parameter models (for e.g. stress computa-
tions) and monitoring and state of health algorithms, 
because specialized tools for these tasks are already 
available. 

1.3 Library architecture 

In order to cover the described range of applications 
several models of different scope and level of detail 
are implemented for each of the core EMA compo-
nents (multi-level approach, see e.g. [14]). Since 
each group of models shares the same interface they 
are easily replaceable. In the A2015 library five 
modeling levels are predefined, mostly associated 
with nonlinearities included and events triggered (for 
easier handling each level has an associated icon 
color): 

1. Perfect (linear, no losses) 

2. Linear, invertible 

3. Nonlinear, invertible (e.g. using tanh instead of 
sign functions) 

4. Hard nonlinear (state events are triggered by 
nonlinearities) 

5. Fully switched (e.g. switching inverter, based on 
state events) 

This scheme does not imply that for all components 
models of all levels are included, or for each level 
only a single model is included. Instead, the model-
ing level scheme is introduced to give the user a 
quick idea what kind of effects a certain model does 
include. 

Naturally, the A2015 library follows a standardized 
model breakdown structure with common interfaces 
based on the Modelica Standard Library (MSL) and 
uses its predefined implementations of thermal flows 
and heat exchange, and mechanical support flanges 
[9]. Parameters are organized in records, signals are 
bundled in busses. In order to unify failure injection, 
a dedicated library is used [12]. 

2 Selected library components 

The A2015 library contains model components from 
the following domains: Electrical (inverters, motors), 
mechanical (rotation to rotation and rotation to trans-
lation transformers), sensors (position, speed, force, 
etc.), thermal (heat sinks, housings), and control (e.g. 
force fight compensator). Selected components are 
described in this paragraph. 

2.1 Fault Triggering Library 

The development of health monitoring algorithms, 
but also the design of fault tolerant redundant actua-
tors is aided by the possibility to easily trigger faults 
in the models. 
The FaultTriggering library [12] is used as a 
standardized approach to trigger all failures imple-
mented in the library. At the moment the motor, in-
verter, gear and nut screw models have predefined 
faults that can be enabled. Further model compo-
nents will follow. 

2.2 Inverters 

This section gives an overview of the implementa-
tion of the multi-level Power Electronic Inverter 
modeling provided within the A2015 library. For 
further technical details see [3]. 

2.2.1 Package Structure 

As described previously, a multi-level modeling ap-
proach is used within the A2015 library. For the 
Power Electronic Inverters 5 levels of complexity are 
provided. The Inverters package is split into the 
NonSwitching and the Switching subpackag-
es, see figure 1. The NonSwitching package pro-
vides models for levels 1 to 4 and the Switching 
package provides a level 5 model. A core feature of 
the A2015 library is that for each individual compo-
nent every modeling level is fully replaceable with 
one another. In order for each modeling level within 
the Inverters library to be fully exchangeable a 
common interface is used for all 5 modeling levels. 

Implementation of a Modelica Library for Simulation of Electromechanical Actuators for Aircraft and
Helicopters

758 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096757



 
 
Figure 1: Structure of the Inverters package as part 
of the Actuator Library. 

2.2.2 Losses 

It is important to note that all the Power Electronic 
Inverter models are fully multi-directional. Therefore 
losses are fully implemented, regardless the direction 
of the power flow. Hence, if power flows from DC to 
AC the AC side power will be lower than the DC 
side power and vice versa. This is inherent within the 
model and will be calculated automatically even 
when the direction of power flow changes during 
simulation. Table 1 summarizes the losses included 
in each level of the Inverter models. 

 

Level Losses 

1 None 

2 Linear Losses 

3 Non-Linear Losses 

4 Non-Linear Losses 

5 Conduction Losses 

 

Table 1: Losses modeled within each level of the 
Inverters package. 

 

Using the level 2 model the user may specify a con-
stant efficiency for the Power Electronic Inverter 
under all operating conditions (a default value is 
provided, if no data is available). Levels 3 and 4 both 
use non-linear loss characteristics. The user can 
specify the power range of the inverter and the losses 
within the inverter over the specified power range. A 
default characteristic is also given, as shown in fig-
ure 2 below, however accurate characteristics are 
recommended to be added by the user if known. The 
default characteristics are per unit and are scaled 
within the model by the specified, or default, power 
range. 

 

Figure 2: Default non-linear loss characteristics 

 

Level 5 includes switches and Pulse Width Modula-
tion in order to create the required electrical outputs. 
The losses included are the conduction losses due to 
the switch and diode resistances when conducting. 
Energy losses due to switching are neglected. 

2.2.3 Faults 

Another core aspect of the A2015 library is the in-
clusion of fault conditions within all component 
models. In the case of the Power Electronic Inverters 
these are mainly included in the level 5 model be-
cause failure of switches are the most likely failure 
conditions and no switches exist within the lower 
level models. Table 2 summarizes the fault condi-
tions included in the Inverter models. 

 

Level Faults 

1 None 

2 None 

3 None 

4 Full-Bridge 

5 Single Switch, Single Phase, 

Multi-Phase and Full Bridge  

 

Table 2: Fault conditions modeled within each level 
of the Inverters package. 

For level 4 a full bridge fault is implemented. When 
triggered the Power Electronic Inverter output be-
comes zero. This represents a full-bridge open circuit 
fault or deactivation of the Inverter. The level 5 
model includes the ability to activate open circuit 
and short circuit faults. These can be injected for a 
single switch, multiple switches, a single phase, mul-
tiple phases and full bridge. The Fault Triggering 
library described in [12] is used in order to trigger 
the implemented faults. The actual faults can be in-
jected at any time instance but must be predefined. 
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2.3 Motors 

2.3.1 Package Structure 

According to the machine topologies considered, the 
Electrical Machines package is divided in four sub-
packages: 

 Basic, which considers a generic AC machine 

 PermanentMagnet, which includes the perma-
nent magnet synchronous machine (PMSM) 
models 

 Reluctance, which models synchronous reluc-
tance machines (SRM) 

 DirectCurrent, which contains the models of DC 
machines with independent excitation 

An Example package is provided for each of the de-
scribed sub-packages, in order to highlight the model 
features. The Electrical Machines package has been 
developed adopting a multi-level approach as de-
scribed in chapter 1. Several model levels of the 
same machine type, with different physical effects 
taken into account have been implemented. 

2.3.2 Model Interfaces 

The interchangeability among model levels is en-
sured using common interfaces. Considering AC 
electrical machines PositivePlug and Nega-
tivePlug have been used as electrical interface. In 
case of DC machine models, PositivePin and 
NegativePin have been adopted as electrical in-
terfaces, for both armature and field windings. All 
the machine models adopt Flange and Support as 
mechanical interfaces and contain a heat port provid-
ing housing temperature and heat flow. 

2.3.3 Basic Model 

The basic model is the simplest model for a generic 
AC machine. The machine behavior is described by 
a torque constant, which establishes the relationship 
between current and electromagnetic torque. Losses, 
non-linear effects and thermal behavior are not con-
sidered at this modeling level. The basic model, as 
all the other machine models, can work reversibly 
representing both motor and generator. 

2.3.4 Standard Models 

Standard models are based on a lumped parameter 
approach. They describe the behavior of the machine 
considering losses and thermal behavior, but neglect-
ing magnetic saturation, torque ripple and fault con-
ditions. Standard models have been developed for 
PMSM, SRM and DC machine. These models are 
power balanced. The losses taken into account are: 

copper, iron [4], mechanical and for DC machine 
brush losses. Finally, standard models provide a ma-
chine thermal model, which gives the winding and 
housing temperatures, and the heat flow. 

2.3.5 Saturation Models 

Saturation models for PMSM, SRM and DC ma-
chines have been obtained by extending the standard 
models. The main features of the Saturation models 
are magnetic saturation and torque ripple. Magnetic 
saturation is taken into account using two approaches 
(which can be user-selected): look-up table and ana-
lytical implementation. In the former case, the 
torque-current curve data (may be obtained by a fi-
nite element simulations) are stored in a look-up ta-
ble, within the model. In the latter case, the torque-
current curve is implemented using three given 
points (current and torque at the knee and torque at 
the saturation region). Finally, Saturation models 
allow superimposing a sinusoidal torque ripple on 
the computed electromagnetic torque. The torque 
ripple parameters (amplitude and frequency) must be 
given by the user. 

2.3.6 Fault Models 

Models including fault conditions have been imple-
mented only for PMSM, since the presence of per-
manent magnets (PMs) is source of concerns in the 
case of failures. Fault conditions such as winding 
short-circuits, winding open-circuits and PM demag-
netization have been considered. For each of these 
cases a specific PMSM model has been developed in 
order to minimize the model complexity. The fault 
models are: 

 ShortCircuit, which implements single- and 
three-phase short-circuits 

 OpenCircuit, which considers single- and three-
phase open-circuits 

 Demagnetization, which takes into account the 
PM demagnetization. 

As suggested in [5], the winding faults have been 
implemented by means of ideal electrical switches. 
In the demagnetization model, the fault condition is 
taken as a consequence of the fault (i.e. PM flux re-
duction) neglecting the causes that led to the fault. 

2.4 Mechanical rotational (reducers) 

The rotational mechanical models include gear re-
ducers and torque limiters. As with the other compo-
nents, multiple modelling levels are included for dif-
ferent accuracy needs. 
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2.4.1 Package Structure 

The package structure is given in figure 3. Only se-
lected packages are expanded to give a good over-
view of the used models. 

 

 
 

Figure 3: Structure of the Rotational package. 

2.4.2 Model properties 

All rotational models are fully balanced models with 
optional support flange. Using this approach, the 
support torques can be modelled and used for hous-
ing design. Also all models are energetically bal-
anced. All losses are available in the (optional) heat 
ports. 

2.4.3 Gear reducers 

The GearReducer, EpicyclicReducer, 
GearedRotaryActuator and Harmonic-
Drive packages model geared transmissions with 
following levels of detail: 

 Basic: no losses 

 Linear: losses dependent on speed 

 Nonlinear: losses dependent on the speed using a 
hyperbolic tangent approach to approach the 
nonlinear friction effect at zero velocity. 

2.4.4 Torque limiter 

The torque limiter restricts the torques on a shaft to a 
safe level by transferring the rest torque to a support 
flange.  

2.5 Mechanical translational (nut screws) 

As illustrated by table 3, the most simple models of 
nut screws (NS) start from the MSL IdealR2T 
model to reproduce the functional effect of perfect 
power transformation between rotational and transla-
tional domains. 

For the most simple case, end-stops and bearings are 
not explicitly considered in the NS model: 

 When the displacement is out of physical stroke, 
a warning is generated or the simulation is 
stopped. 

 Anti-rotation and anti-translation devices are 
included implicitly, assuming no translation of 
the drive shaft and no rotation of the actuator 
rod. 

When using the support options, the NS model be-
comes a mechanical quadriport model which com-
bines the rotation and translation of nut and screw. 
This enables the explicit modelling of anti-rotation 
and anti-translation outside the NS model [6]. Iner-
tial effects are also to be added outside of the NS 
model. 

Technological imperfections are progressively intro-
duced and modelled with increasing complexity. 
Among all candidate topologies, the NS model struc-
ture is selected in order to meet major engineering 
needs for aerospace actuators. For this reason, it as-
sociates in series (from drive to load flanges): 

 a perfect rotational to translational power trans-
former, with warning or error generated when 
the position is out of stroke 

 an optional friction loss that applies to a rigid rod 

 an optional and generic compliance that can rep-
resent in addition either backlash or preloading, 
depending on parameterisation. 

2.5.1 Friction models 

There are a lot of candidate options for friction mod-
elling and parameterization [7]: efficiency (di-
rect/indirect), parametric model of friction force (e.g. 
Coulomb or Stribeck), coefficient of friction with rod 
diameter and lead, etc. Using efficiency (direct and 
indirect) has been selected for non linear friction 
models because it is widely used by engineers. As a 
drawback, using efficiency exclusively does not al-
low to compute the no-load driving force or no-drive 
back-driving force. For non preloaded designs, a los-
sy rod model has been developed with the same 
structure as the MSL LossyGear [8]. 

For continuous models, the transition between stick-
ing and sliding has been approximated by a hyper-
bolic tangent function in order to avoid triggering 
state events. In addition, removing any conditional 
statements has contributed to typically reduce the 
simulation time of the friction model by 25%. By 
setting negative values for the indirect efficiencies, 
irreversibility (impossible to back drive the NS) is 
parameterized without introducing an additional pa-
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rameter for that case. When activated the thermal 
port of the friction model outputs the heat generated 
by friction. 

2.5.2 Compliance models 

In order to enable failure injection or design explora-
tion, a non-linear model has been developed to re-
produce backlash, pure compliance or preloading, 
depending on its parameterization. NS compliance 
has been modelled as a transmission device involv-
ing two unilateral elastic contacts that act in opposi-
tion. The compliance model structure was defined in 
order to maintain consistency with the MSL, as illus-
trated by table 3. 

The MSL Elastogap model has been modified for 
non-linear continuous models in order to avoid any 
event triggering or conditional statements, even for 
structural damping. Each direction of contact be-
tween nut and screw has been modelled by a serial 
combination of a lossy-rod and an elasto-gap, with 
one elasto-gap being flipped. This choice has the 
major advantage of reproducing the friction force 

due to preload without any modification of the fric-
tion model. For non continuous models, the strength-
ening length of contacts has been used as the unique 
parameter of preload and backlash, enabling contin-
uous transition between these characteristics. Posi-
tive values correspond to backlash, zero values to 
pure elastic and negative values to preload condi-
tions. 

2.5.3 Fault triggering 

The two major types of NS failure are jamming and 
free-run. Jamming has been modelled by increasing 
friction through modification of the friction model 
parameters. Free-run has been modelled by manipu-
lation of the compliance model parameters: decreas-
ing stiffness (linear model) or preload, then increas-
ing backlash. The failure injection library can also be 
used to introduce progressive degradation through 
continuous evolution of friction and compliance pa-
rameters. This is of particular interest for virtual as-
sessment of health monitoring strategies. 

 

 

Properties of different nut screw models MSL Basic Linear 
Nonlinear 

Continuous 

Nonlinear 

non continuous

Perfect power transformation 

Optionally activated ports of mechanical support 

Replaceable models and data records 

     

Warning or stop if out of stroke      

Offset of displacement transformation      

Optionally activated heat port      

Optional version for Failure injection 
(jamming or free-run) 

     

Compliance   
Linear 
spring 

  

Friction loss 
Direct/Inverse 

efficiency 
 

Viscous 
damper 

Direct/Inverse 
efficiency 

Direct/Inverse 
efficiency 

Irreversibility      

Preload      

Backlash      

Effect of velocity on friction    Planed Planed 

Effect of temperature on friction    Planed Planed 

 

Table 3: Properties of A2015 library nut screw models 
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2.5.4 Model verification 

All models have been designed to accept implemen-
tation in causal simulation software. In addition, 
their ability to run correctly for any causality case in 
the Modelica environment (any combination of two 
imposed variables out of drive torque, drive velocity, 
load force, and load velocity) has been addressed in 
detail. 

2.5.5 Future work 

The last part of the model development will include 
the consideration of the dependency of friction on 
velocity and temperature. Unfortunately, these ef-
fects are rarely documented in supplier's catalogues 
and are generally considered as confidential. How-
ever, it is intended to enable varying efficiencies ver-
sus velocity and temperature, either through a para-
metric equation or by a 3-D table. 

2.6 Sensors 

The A2015 library includes models for linear and 
angular position sensors, force sensors, torque sen-
sors, current sensors, and temperature sensors. 

They extend ideal sensor models from the MSL [9] 
and add effects and failures to the sensor output that 
are present in real sensor devices. Offset, non-
linearity, saturation, and temperature dependency, as 
well as hysteresis, drift, and signal discretization are 
the effects taken into account. Most common sensor 
failures, such as open-circuit and short-circuit, will 
also be implemented. 

The sensor models are parameterized according to 
typical data sheets in order to provide the end user 
with a practical library. This approach results in very 
general sensor models, independent from the sensor 
technology, which can be easily customized. 

Figure 4 shows the structure of the Sensors package, 
which follows the general modeling approach for the 
whole library: different model levels (here: Ideal, 
Linear, and NonLinear) sharing a common in-
terface, parameters included in records, and a bus 
connector predefined with the ideal and real signals 
of the sensor, and a status flag. 

2.7 Controllers 

2.7.1 Package Structure 

This package contains blocks suitable for designing 
the control system of actuators [10]. The blocks can 
be combined with actuators of different modelling 
levels. 

 

Figure 4: Structure of Sensors package 

The structure of the Controllers package is shown in 
figure 5. Due to the function of the models within the 
package, the structure of the Controllers package 
follows a slightly different approach than other 
packages of the A2015 library. 

The package consists of four sub-packages. The 
Continuous and Discrete sub-packages contain basic 
controller blocks built up from proportional, integra-
tor and derivative blocks. The main purpose of the 
blocks in the Filters sub-package is to smooth control 
demand signals or filter measurements. The last sub-
package contains blocks performing direct and in-
verse Park transformations. The package contains 
wrapper classes that allow the user to conveniently 
exchange blocks with similar functionality. The 
blocks in the library are parameterised via dedicated 
parameter records, organized in a separate sub-
package. 

2.7.2 Description of selected blocks 

The PID controller variants include a symmetrical 
output saturation and integrator anti-windup (when 
applicable) and can be parameterised according to 
both the serial and parallel convention. They differ 
from the counterpart in the Modelica Standard Li-
brary in the implementation of the integrator anti-
windup. Within the A2015 library, the integrator an-
ti-windup is based only on the output of the integra-
tor, not on the overall output. The output saturation 
is therefore implemented separately. 

The filter blocks include both continuous and dis-
crete time blocks, as well as general blocks that can 
be parameterised by specifying the numerator and  
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Figure 5: Structure of the Controllers package. 

denominator of their transfer functions and also the 
well-known continuous time filter types available in 
the Modelica Standard Library (Butterworth, type I 
Chebyshev, etc). These model classes are wrappers 
for the blocks from the Modelica Standard Library in 
order to allow the user to switch between the differ-
ent filter types. 
A specialised force-fight compensator, the position, 
speed and current controllers are available as distinct 
standalone blocks. The measurements required by 
these blocks are collected via specialised sensor bus-
ses (see chapter 2.5). The user is free to select the 
controller and control demand filter types. These 
blocks can be connected to motor models via a three-
phase interface and also to simplified motor models 
with one input. This is used in the two variants of the 
current controller, one of which performs space vec-
tor control. 

2.7.3 Failure modes 

The actuator control library also provides the user 
with a means for simulating the effects of various 
control failure scenarios. The following failure 
modes will be implemented: control output freeze, 
controller reset, short spikes in the controller output, 
non-return to zero error, runaway and no valid data 
faults. 

3 Application example 

To test the library and give a realistic example, a lin-
ear actuator based on an A320 aileron actuator has 
been modeled using the described library. The actua-
tor model is set up using the base class Linear-
GearedEMA. This is a predefined base class for lin-
ear actuators which fully supports all redeclaration 
schemes of the library. It is extended by a position 
controller and an extra position sensor. 

The final model can be seen in figure 6. In the mod-
el, the multi disciplinary approach of the library is 
directly visible. Electrical, mechanical and thermal 
effects are taken into account as well as the actuator 
control. 

 
Figure 6: Overview of complete Linear EMA 

3.1 Model structure 

The mechanical model is built using a 2x1DOF ap-
proach. The rotational as well as the translational 
forces and support forces generated by each part are 
accessible outside the model. This may be used for 
the design of anti-rotation devices. The parameter 
data of the motor, gear, inverter, nut screw and con-
troller are stored in parameter records. They extend 
from base records of these data to facilitate easy re-
declaration in the models.  

 

Figure 7: Overview of the library with the compo-
nents for a specific linear EMA 
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In figure 7 an overview of the library for this specific 
linear EMA is given. All specific parts are combined 
in the package Parts and all parameters in the 
package ParameterRecords. 

3.2 Simulation results 

Simulation results of the described actuator can be 
seen in figure 8. The shown current response is the 
result of a position step input of 4.3 mm. In the 
Modelica model, the aerodynamic damping is ne-
glected and a continuous controller is used. For 
comparison the simulation result of a discrete Simu-
link reference model is also plotted. Both simulations 
show a comparable dynamic response. 

By modelling the controllers using the existing dis-
crete blocks, it is possible to also model the effects 
of discrete controllers and increase the match be-
tween the model results. 

To showcase the more advanced features of the li-
brary, an advanced model, including motor satura-
tion and motor ripple is included. The effect of a mo-
tor ripple is visible from 1.15 to 1.3 seconds. 

The shown simulation run takes 0.2 seconds of simu-
lation time on an Intel® Xeon® E5-1620 Processor. 
The reference model in Simulink takes 6.5 seconds 
simulation time on the same machine. Including a 
sampled model using the same sample time as the 
Simulink model increases the simulation time to 1.7 
seconds. 

The frequency response of an actuator is also an im-
portant design criterion. It can be calculated using 
the FrequencyResponce package [11] by T. 
Bünte. The amplitude and phase response for 3 am-
plitude values (1, 5 and 10 mm) is calculated. The 
response from the input reference to the output rod is 
shown in figure 9. The frequency response of the 
same system with different amplitude changes de-
pending on the stroke. This clearly shows the nonlin-
earity of the system. As expected, the system cannot 
follow the high frequencies at high amplitudes due to 
limitations on the motor current. 

4. Conclusion and outlook 

In this paper we have presented a library for model-
ing Electromechanical Actuators (EMAs). In the li-
brary, electrical machines, inverters, controllers, me-
chanical parts (rotational and translational) as well as 
sensors have been included. All model components 
have been set up using replaceable parameter sets 
and replaceable parts. The standardization of the in-
terfaces of the components using partial classes  

enables the user to build an EMA model as a modu-
lar system. This supports the exchange of models 
between partners and makes it possible to reuse these 
models for different simulation tasks without a struc-
tural redesign. The integration of component faults 
helps to quickly assess the actuator performance for 
failure cases.  

To test the library, an existing Simulink model has 
been reworked into a Modelica model using mostly 
the components from the library. The results of the 
Modelica model show a good agreement with the 
Simulink reference model.  

 
Figure 8: Simulation of actuator system 

 
Figure 9: Frequency response of controlled actuator 
from position reference input to rod output. 
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The presented library is developed with a strong fo-
cus on Electromechanical Aircraft and Helicopter 
Actuators. This is not the only field the library can 
be used; It can help developers of all electromechan-
ical actuators like automotive actuation (air path ac-
tuators for diesel engines, automatic hatch door actu-
ation) , automation systems (packaging machines) or 
printing systems. 

Possible future library extensions include mass, vol-
ume, cost, etc. design optimization (by providing 
specialized modeling levels while maintaining the 
EMA model topology) and automated safety and 
reliability analysis. 

The availability of the library in- and outside of AC-
TUATION 2015 is currently under clarification by 
the partners of ACTUATION2015. 
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Abstract

A computational framework for the efficient analy-
sis and optimization of dynamic hybrid energy sys-
tems (HES) is developed. A microgrid energy sys-
tem with multiple inputs and multiple outputs (MIMO)
is modeled using the Modelica language in the Dy-
mola environment. The optimization loop is imple-
mented in MATLAB, with the FMI Toolbox serving
as the interface between the computational platforms.
Two characteristic optimization problems are selected
to demonstrate the methodology and gain insight into
the system performance. The first is an unconstrained
optimization problem that optimizes intrinsic proper-
ties of the base generation, power cycle, and electri-
cal storage components to minimize variability in the
HES. The second problem takes operating and capital
costs into consideration by imposing linear and non-
linear constraints on the design variables. Variability
in electrical power applied to high temperature steam
electrolysis is shown to be reduced by 18% in the un-
constrained case and 11% in the constrained case. The
preliminary optimization results obtained in this study
provide an essential step towards the development of a
comprehensive framework for designing HES.

Keywords: hybrid energy systems; dynamic simula-
tion; optimization; renewable energy; FMI

1 Introduction

Hybrid energy systems (HES), which may combine
multiple energy resources to achieve improved per-
formance or cost efficiency, have attracted consider-

able attention in the United States and internationally
due to developments in renewable energy technolo-
gies as well as economic, political, and environmen-
tal concerns regarding existing energy infrastructures.
One notable challenge to the design and deployment
of HES is the difficulty in modeling the operation and
performance of such systems. Traditionally, electric-
ity is produced from baseload generation (e.g., nuclear
and coal plants), which operate at near steady state
conditions with little variability. In contrast, renewable
energy sources (e.g., wind turbines and concentrated
solar plants) are highly dynamic with very significant
variability. The addition of a renewable component to
the energy infrastructure creates an enormous increase
in the number of possible operational situations that
must be considered, and thus greatly complicates the
design process. Although it is well understood that a
large energy storage device capable of achieving high
rates of charge and discharge is necessary for mitigat-
ing the variability of renewable energy sources, the de-
sign and control of HES makes little use of proper de-
sign optimization methodology. In this study, we seek
to apply optimization methods in order to gain a bet-
ter understanding of the complex dynamics governing
HES, and to obtain insights towards how to properly
design such systems to maximize performance and
cost efficiency.

To achieve the desired improvements in HES de-
sign, appropriate simulation and optimization tools
need to be selected. The Modelica language is well
suited for studying complex systems such as HES due
to its object-oriented structure and acausal approach
to modeling. On the other hand, the MATLAB envi-
ronment provides a variety of optimization methods,
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including those available in the Optimization Toolbox.
In numerical optimization, it is of critical importance
to automate the simulation process, because manual
iterations quickly become impractical as the problem
size is increased. Since our HES model and optimiza-
tion algorithms are implemented in different software
environments, a suitable tool for coupling diverse nu-
merical tools is required. For this purpose, we use
Functional Mockup Interface (FMI), which has been
successfully demonstrated for both model exchange
[1] and co-simulation [2]. In the present framework,
we apply the FMI for model exchange.

The organization of the paper is as follows. First, we
introduce the computational framework established in
this study, with a brief summary of the HES model for-
mulation and optimization approach. We then present
two benchmark optimization problems to demonstrate
the established methodology, followed by a discussion
of the simulation and optimization results. Finally,
we offer some concluding remarks in addition to an
overview of future research directions related to this
topic.

2 Computational framework

An illustration of the computational framework estab-
lished in this paper is provided in Figure 1.

Initialize
Problem

Optimality
Satisfied?

Update
Iteration

Interface

HES Model

Optimized
Solution

No

Yes

Optimizer
MATLAB

FMI

Dymola

Figure 1: Schematic of computational framework.

Note that, as previously mentioned, the FMI is used
to allow the MATLAB-based optimizer to modify in-
puts to the HES and setup additional simulations by
building a Functional Mockup Unit (FMU) of the
Modelica HES model. Also note that the optimization
loop conducted in MATLAB may require a large num-

ber of iterations before converging to the optimized so-
lution, and thus it is important that the HES model be
sufficiently robust and flexible to handle a variety of
potential operating scenarios. In the following section,
we present the HES model considered in this work and
discuss the concepts used in creating the model to en-
sure this robustness.

2.1 HES model

As mentioned above, the HES model considered in
this work is implemented in the Dymola environment
of the Modelica modeling language. As shown in Fig-
ure 2, the HES model has a configuration that includes
multiple energy inputs and outputs. In this case, ther-
mal and electrical energy in excess of the demand to
the grid is dynamically distributed to a high temper-
ature steam electrolysis (HTSE) process, which pro-
duces chemical products (hydrogen and oxygen) to
complement the electricity produced by the HES. In
a traditional hybrid energy system, multiple input en-
ergy sources are combined to provide a single output
(MISO), i.e., electricity. The drawback of such a con-
figuration is that in case the energy supply exceeds
the demand, excess energy is either wasted or must be
transferred to large storage devices, which are expen-
sive. Therefore, the MIMO system can be expected
to offer significant advantages in flexbility, utilization
and efficiency over the MISO system, as reported in,
for example, [3, 4].

 

HTGR

Renew able

He_Dist

Battery

DemandE_Dist

HTSE

Brayton

Grid

H2

O2

Figure 2: Model of Advanced HES configuration, im-
plemented in Dymola.

Note that the HES considered here contains two
types of energy flows: thermal (in the form of heated
helium) and electrical. The conversion of thermal to
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electrical energy occurs in the Brayton power plant,
where heated helium (the working fluid) carries ther-
mal energy provided by a high temperature gas reactor
(HTGR). Electrical power from the Brayton plant is
combined with that produced by a wind turbine (the
renewable source), which is regulated by an electrical
battery. Two distribution centers, one for helium and
one for electricity, are used to dynamically calculate
the amount of each energy type to be distributed to the
HTSE to match the necessary electrical power output
to the grid. Note that the HES model in Figure 2 in-
cludes two types of arrows: the solid (blue) arrows rep-
resent energy flows (helium and electricity), while the
dotted (red) arrows represent information flows. For
example, the amount of electricity distributed to the
HTSE unit is needed at the HTGR and helium distri-
bution center to calculate the required mass flow rate
of helium. Similarly, the electricity distribution center
makes use of information about the electricity demand
in the grid to calculate the relative amount of electric-
ity to be dynamically distributed between the grid and
HTSE. For computational simplicity, detailed compo-
nents within the subsystems such as pipes, valves, tur-
bines, etc. are not considered in this initial effort; the
system dynamics are instead captured by a series of
transfer functions, switches, logic blocks, and other
signal-based elements. The plan is to eventually re-
place these with models that more accurately capture
the relevant physics; this topic is discussed further in
the Conclusions and future work section. We next de-
tail the models for the individual subsystems and com-
ponents in the present computational framework.

KHe,h
htgr

τhtgrs+1

Ke
htgr

P e
htse

Ke,b
htgr

KHe,b
htgr

τhtgrs+1

ṁHe
total

ṁHe
htse

+

-
+

P e
brayton

+

ṁHe
brayton

Figure 3: High temperature gas reactor model.

A schematic diagram for the HTGR is shown in Fig-
ure 3. The electrical power entering the HTSE (Pe

htse)
is provided by the electricity distribution center, and is
the input to the HTGR. The HTGR model then uses
this information to calculate the amount of high tem-
perature helium that would correspondingly be needed
by the HTSE. Also note that the total amount of helium
entering the Brayton plant is controlled by the amount
of electricity directed to the HTSE. In an actual re-
actor, the operating conditions and output should ide-

ally be constant, as fluctuations can cause excessive
wear on the components and significantly shorten the
lifespan of the system. Therefore, the variability in the
HTGR generation will be an important component to
the cost function used in the optimization of the HES
in future work.

Revisiting Figure 2, we note that the mass of heated
helium from the HTGR then enters the helium distri-
bution center, where some of the helium is channeled
to the HTSE for chemical production and the remain-
der is sent to the Brayton plant for electricity genera-
tion. As in the HTGR, the amount of electricity enter-
ing the HTSE is used as an input to the helium distribu-
tion center to calculate the flow of helium that needs to
be directed to the HTSE to achieve near-stoichiometric
conditions there. This is accomplished with the fol-
lowing equations:

ṁHe
brayton = ṁHe

total− ṁHe
htse (1)

ṁHe
htse = KHe

htsePe
htse (2)

The Brayton plant is represented by a first-order
transfer function

Hbrayton(s) =
Ke

brayton

τbraytons + 1
(3)

where the gain Ke
brayton is a lumped quantity that ac-

counts for efficiency and unit conversions, and the time
constant τbrayton can be varied according to the design
and operation of the Brayton plant.

The Brayton power plant is one source of electric-
ity in the system; the other is a series of wind tur-
bines, which serve as the renewable source in this
HES configuration. Note that as shown in Figure 2,
the wind power is not inputted directly to the elec-
tricity distribution center, but via a grid-scale battery.
This is because the battery model does not model the
charge and discharge behavior of the battery directly,
but rather the operational impact of the battery on
dampening excessive unsteadiness due to high vari-
ability in available wind power. The renewable power
is modeled as a time-varying input signal to the battery
based on available wind speed data from the National
Renewable Energy Laboratory (NREL), for a site in
Wyoming.

As shown in Figure 3, there are four operating
regimes for a wind turbine, separated by critical wind
speed values. At wind speeds below a minimum cut-in
velocity, there is insufficient kinetic energy in the wind
to cause any rotation, and thus no electrical power
is produced. At wind speeds above a cut-out veloc-
ity, a braking system is activated for safety reasons,
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Figure 4: Turbine power vs wind speed.

and again no power is produced. Between the rated
and the cut-out velocity values, the turbine provides a
steady maximum power level, also known as the rated
power. Finally, for the range between the cut-in and
rated speeds, the power is calculated by the following
equation:

P = η
1
2

ρU3 πd2

4
(4)

where η is the conversion efficiency of the wind tur-
bine, ρ is the density of the air at the site, U is the wind
velocity, and d is the diameter of the turbine blades. In
essence, this equation relates the power delivered by
the turbine to the amount of kinetic energy available
in the wind, via an overall lumped efficiency number.
At a typical site, the majority of the turbine operation
occurs in this regime.

Like the Brayton plant, the battery is modeled using
a first-order transfer function:

Hbattery(s) =
1

τbatterys + 1
(5)

We assume the maximum power delivered by the bat-
tery is equal to the renewable power, so a unity gain
is used. It is important to not confuse the time con-
stant τbattery with the charge or discharge rate of the
battery. Instead, the time constant is used to charac-
terize the smoothing effect that the battery would have
on the electricity delivered by a renewable and battery
arrangement.

Electrical power from the Brayton plant Pe
brayton

and the renewable and battery arrangement Pe
battery are

combined in the electricity distribution center. The
electrical distribution center contains a logic block that
dynamically calculates the distribution of electricity
to the grid and HTSE. When the combined electrical
power Pe

avail is less than the grid demand, all available
power is directed to the grid. When excess power is

available, it is directed to the HTSE. This is modeled
using the following equations:

Pe
avail = Pe

brayton + Pe
battery (6)

Pe
grid =

{
Pe

demand if Pe
avail > Pe

demand

Pe
avail otherwise

(7)

Pe
htse =

{
Pe

avail−Pe
demand if Pe

avail > Pe
demand

0 otherwise
(8)

Finally, electricity and helium energy flows are com-
bined in the HTSE system, whose corresponding
model is shown in Figure 5.

P ehtse
K

H2
htse

τhtses+1
ṁH2

htse

KO2

htse ṁO2

htseṁHe
htse

Hydrogen

Oxygen

Figure 5: High temperature steam electrolysis model.

As illustrated by the dotted line in Figure 5, the mass
flow rate of helium ṁHe

htse enters the HTSE but is not
used in any calculations. This is because the helium
distribution center ensures that the appropriate flow of
helium is directed to the HTSE in accordance with the
amount of electricity being consumed there. There-
fore, only one of the two parameters is needed in the
HTSE model.

Values of all simulation parameters, including gains
in the blocks shown in Figures 3 and 5, can be found
in Table 1 in section 3.

2.2 Optimization methodology

A general optimization problem can be written as a
function minimization problem, as follows:

minimize f (x), f : ℜn→ℜ (9)

In general, the values of the design variables x are
selected within a bounded range, while satisfying in-
equality constraints ck and equality constraints ĉ j:

subject to





xlower ≤ x≤ xupper

ck(x)≤ 0, k = 1, ...,m
ĉ j(x) = 0, j = 1, ..., m̂

(10)

Solving this general optimization problem requires an
algorithm that iteratively adjusts the values of the de-
sign variables until some termination criterion regard-
ing the values of the objective and constraint func-
tions is met, most commonly when the Karush-Kuhn-
Tucker (KKT) conditions are satisfied [5]. Many dif-
ferent types of optimizers have been developed and ap-
plied to a wide variety of engineering problems. These
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include gradient-based and gradient-free methods, as
well as hybrid approaches for mixed-integer problems
[6, 7] and surrogate-based methods [8, 9]. As shown
in Figure 1, in this case we adopt a black-box op-
timization approach, in which the optimization algo-
rithm uses the HES model output to update each itera-
tion of the optimization loop, but does not access any
state variables within the HES model. In selecting an
appropriate optimization algorithm, it is important to
consider the nature of the objective function and as-
sociated design variables, and match the optimizer ac-
cording to the mathematical properties of the problem.
In general, gradient-based methods converge more ef-
ficiently than gradient-free methods, and are thus pre-
ferred for smooth problems [10]. However, the objec-
tive function in this study, defined in section 3 as the
total variability in the electrical power delivered to the
HTSE, is very noisy with a large number of local min-
ima that are problematic for gradient-based methods.
Since the optimization routine is conducted in MAT-
LAB, we select the fminsearch function as the opti-
mizer. This is an implementation of the Nelder-Mead
simplex method [11] included in the MATLAB Opti-
mization Toolbox.

The Nelder-Mead method creates a simplex with
n+1 vertices in an n-dimensional design space, and it-
eratively manipulates the size and shape of the simplex
using operations such as reflection, expansion, con-
traction and reduction based on the relative objective
function values at the vertices. The method is gradient-
free because only the values of the objective functions
at the vertices are used, and thus it is suitable for noisy
or discontinuous functions. The general Nelder-Mead
method is valid for unconstrained optimization prob-
lems; to handle constraints, we modify the objective
function f (x) by introducing a penalty function:

f̂ (x) = f (x)+ p(x) (11)

The penalty function p(x) is equal to zero in the fea-
sible space, and gives a positive value when a con-
straint is violated. We then apply the optimizer to min-
imize the modified objective function f̂ (x) instead of
the original function f (x). We use a quadratic form of
the penalty function that can be easily computed:

p(x) = ρ
m+m̂

∑
i=1

max(0,ci)
2 (12)

where m and m̂ are the number of inequality and equal-
ity constraints, respectively. This penalty function is
valid for both inequality and equality constraints [12].
The coefficient ρ must be large enough to force the

optimizer into the feasible space when a constraint is
violated; a value of ρ = 10 is found to be sufficient in
this study.

The time constants of the HTGR, Brayton plant,
and battery are designated as the design variables.
Although the Nelder-Mead simplex method has been
shown to suffer from poor convergence rate for prob-
lems involving a large number of design variables, it is
suitable for the three variables considered here [13].

3 Problem formulation

Available wind velocity data are sampled at time inter-
vals of 600 seconds; we conduct our simulations with
the same time step size in order to avoid numerical er-
rors that would arise from interpolating between data
points. All simulations are conducted for a time period
of one week (6.048×105 seconds), for a total of 1009
time steps per simulation. This time period is selected
to balance the need to capture the effects of variability
in the renewable energy input, with the need to con-
duct simulations at a feasible computational cost. As
shown in Figure 6, the wind turbine experiences very
fast dynamics, with numerous transient peaks and val-
leys observed in the velocity and power profiles within
a single week. This high degree of variability confirms
that the time period selected provides a representative
sample of the overall long-term variability in renew-
able energy input experienced by the HES.
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Figure 6: Wind velocity and turbine power profiles for
one week sample time period.

Since the properties of the wind turbine are assumed
to be constant throughout the simulations, we lump all
of these values from Equation 4 together, such that
each individual turbine provides maximum of 2 MW
rated power. This is equivalent to an overall conver-
sion efficiency of 55%, air density of 1.2 kg/m3 and
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Parameter Symbol Value Units

HTGR

Power output Ke,b
htgr 135 MWe

He reactor gain KHe,h
htgr 0.464 kg/MJ

Power to mass flow KHe,b
htgr 1.06 kg/MJ

Electrical gain Ke
htgr 0.0838 -

Brayton Mass flow to power Ke
brayton 0.9429 MJ/kg

HTSE
H2 gain KH2

htse 0.00724 kg/MJ

O2 gain KO2

htse 7.94 -
Time constant τhtse 1 s

Wind

No. of turbines nT 15 -
Cut-in speed Ucut−in 3 m/s
Rated power speed Urated 14 m/s
Cut-out speed Ucut−out 25 m/s

Grid Target load Pdemand 100 MWe

1

Table 1: Fixed system properties and simulation pa-
rameters.

turbine diameter of 53 m, for an overall gain value of
kwind = 7.28×10-4 MW-s3/m3 between the cut-in and
rated power wind speeds:

P = kwindU3 (13)

We also simplify the scaling problem by assuming that
the individual turbines, which constitute the renew-
able component of the HES, are separated sufficiently
far apart so as to not experience mutual interference.
A simple linear scaling in renewable power with the
number of turbines is thus used.

The fixed simulation parameter values are listed in
Table 1. The thermal and electrical outputs from all
system components are initialized to be zero in order
to analyze the impact of the initial start-up phase on the
overall system performance, and a constant electricity
profile of 100 MWe delivered from the HES to the grid
is assumed. For simplicity, we select a fixed HTGR
power output (135 MWe) that exceeds this output level
to ensure that the HTSE unit can be operated contin-
uously even when no renewable power is provided to
the system. This is necessary because frequently shut-
ting down the HTSE process entails a high cost while
also making the system susceptible to damage.

Given these considerations, it is logical to design
HES in which energy flow variability is minimized.
For this purpose, we define the objective function to
be minimized in our optimization problem as the total
amount of variability in the electrical power input to
the HTSE:

Pe
var(t) = |Pe

htse(t)− P̄e
htse| (14)

f (x) =

t f∫

0

Pe
var(t)dt (15)

where the quantity P̄e
htse is the time-averaged value of

electrical power input to the HTSE.
For optimization, this integral can be approximated

by first computing P̄e
htse, and then applying a numerical

integration scheme to the HES simulation data. Using
the trapezoidal method, we obtain the following form
of the objective function used by the optimizer:

f (x) =
n

∑
i=1

(ti− ti−1)
Pe

var,i + Pe
var,i−1

2
(16)

where n = 1009 is the number of time steps.
We consider two optimization problems, one uncon-

strained and one constrained. Three design variables
are considered in both cases: the time constants for
the battery (τbattery), HTGR (τhtgr), and Brayton cycle
(τbrayton). In the unconstrained case, the design vari-
ables are bounded but allowed to vary independently.
An arbitrary baseline case (τbattery = 3600 s, τhtgr =
1200 s, τbrayton = 600 s) is used as the starting point
for the optimization routine, and the following upper
and lower bounds shown in Table 2 are specified.

Variable Minimum Maximum
τbattery (s) 1800 18000
τhtgr (s) 240 3600
τbrayton (s) 180 3600

1

Table 2: Upper and lower bounds on design variables.

From an understanding of the physics governing the
performance of the system, we can expect the opti-
mizer to converge towards these bounds in the ab-
sence of constraints. This is because a larger time
constant for the battery allows greater smoothing of
the variability in the wind power profile, thus reducing
the variability of electricity distributed to the HTSE.
Conversely, a smaller time constant for the HTGR
and power cycle allows them to track the electrical
power demanded by the grid more closely, which again
would reduce variability in electricity directed to the
HTSE. Due to this understanding of the expected so-
lution, the unconstrained optimization problem serves
as a good benchmark case to verify whether the opti-
mizer performs as expected.

Of course, the unconstrained case provides limited
insight into the design of HES, because there are im-
portant constraints that need to be considered. As the
time constant of the battery increases, so does the min-
imum battery size required to accommodate the nec-
essary charging and discharging. This is illustrated
in Figure 7, where the renewable power profiles, with
and without the operation of the battery, are plotted to-
gether for three different battery time constants. To
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Figure 7: Effect of time constant on required battery
size and delivered electrical power.

facilitate a comparison between the three cases, the
difference between the two profiles is shaded (blue
for when the battery is being charged, red for when
it is being discharged). The required battery size (in
terms of energy storage capacity) is represented by the
largest shaded area, and is observed to increase with
the battery time constant. Since the capital and op-
erating costs of the battery are directly related to its
size, it is clear that a constraint is needed to assess a
penalty to increasing its time constant. Similarly, the
time constant for the HTGR and Brayton plant can-
not be arbitrarily decreased, as faster dynamics put a
greater strain on the system components and lead to
damage and reduced reliability - ultimately leading to
increased total cost.

To address these cost issues, we consider a second
optimization problem in which the following linear
constraint is applied to the design variables:

c1(x) = k1τbattery− k2τhtgr− k3τbrayton− k4 ≤ 0 (17)

where the weighting coefficients (k1=1, k2=3.5, k3=1)
reflect the relative cost associated with each compo-
nent. The nuclear reactor is the most capital-intensive
of the three, and thus has the highest weight applied to

it in the constraint function. Note that the signs of the
coefficients manipulate the optimizer into decreasing
τbattery while increasing τhtgr and τbrayton. The coeffi-
cients are selected such that the constant term vanishes
(k4 = 0).

In addition to the linear constraint in Equation 17,
we also apply two nonlinear constraints governing the
relative speeds of the HTGR and Brayton cycle:

c2(x) =
τhtgr

τbrayton
−2≤ 0 (18)

c3(x) =
τbrayton

τhtgr
−2≤ 0 (19)

These two constraints are included to ensure that nei-
ther component becomes a significant bottleneck to the
other. Note that all constraints in this case are inequal-
ity constraints; our optimization problem does not con-
sider equality constraints (i.e., ĉ j(x) in Equation 10).

4 Results and discussion
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Figure 8: Progression of design variables (top) and ob-
jective function (bottom) for unconstrained optimiza-
tion problem.

Optimization results for the unconstrained problem
are shown in Figure 8. For illustration purposes, non-
dimensional time constants are plotted by normalizing
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using the upper and lower bounds reported in Table 2:

τ∗i =
τi− τi,min

τi,max− τi,min
(20)

As expected, the optimizer converges the battery time
constant to the upper bound, and the others to their
lower bounds. The value of the objective function
at the optimum is f (x) = 1181.1 MW-hr, which rep-
resents a reduction of 17.7% in the HTSE electrical
power variability. Although this may not seem like an
especially large improvement, the impact can in fact
be quite substantial due to the highly capital-intensive
nature of HES. A substitution of the unconstrained
optimum into Equation 17 shows that the linear cost
constraint is not satisfied, and thus the unconstrained
optimum is not a feasible solution for the constrained
problem.

As shown in Figure 9, the constrained optimum is
located at τbattery = 15311 s, τhtgr = 3600 s, τbrayton =
2712 s, with HTSE variability of f (x) = 1275.5 MW-
hr - a 11.2% improvement over the baseline case. The
HTGR time constant experiences the most significant
change compared to the unconstrained case, increas-
ing from its minimum to its maximum bound. This
is due to the high weighting assigned to the cost con-
straint c1. Although the HTSE variability is increased
by 6.5% compared to the unconstrained case, this loss
is outweighed by the benefits in operational costs due
to fast reactor dynamics. Note that in the final solu-
tion, the linear constraint c1 is active since the con-
straint function value is equal to numerical zero, while
the nonlinear constraints c2 and c3 are inactive. This
can be verified by inspection using Equations 17-19. A
comparison of the optimization solutions with respect
to the baseline case is summarized in Table 3.

Baseline Unconstrained Constrained
τbattery (s) 3600 18000 15311
τhtgr (s) 1200 240 3600
τbrayton (s) 600 180 2712
f(x) (MW-hr) 1435.4 1181.1 1275.1

1
Table 3: Design variables and objective function
results for baseline, unconstrained, and constrained
cases.

In addition to considering the values of the design
variables, constraints and objective function at the op-
tima, it is also important to examine the HES simula-
tions themselves to gain a better understanding of the
physics occurring within the system. Figure 10 plots
the electrical power profiles in the HTSE for the three
cases, as well as the mean power level in each case.
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Figure 9: Progression of design variables (top), ob-
jective function (middle), and constraints (bottom) for
constrained optimization problem.

The shaded area between the two is the numerically
integrated area used to compute the value of the ob-
jective function. We note that in both optimization
cases, not only is the total shaded area reduced, but
the power profile is also generally smoother, with fluc-
tuations of lesser amplitude and frequency. The main
difference between the unconstrained and constrained
solutions occurs in the initial ramping of the HTSE,
where the constrained case incurs a substantial penalty
due to slower reactor and power cycle dynamics. This
is a direct consequence of the initial conditions in the
problem formulation. For example, a long-term analy-
sis that ignores the start-up phase of the system would
likely exhibit a smaller difference between the two so-
lutions.
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strained, and constrained cases.

5 Conclusions and future work

In this paper, we have successfully established a com-
putational framework for simulating and optimizing
the performance of HES by interfacing the Modelica
system model with analysis and optimization tools via
the FMI for model exchange. Results from two op-
timization problems, one unconstrained and one con-
strained, illustrate the complex interplay between HES
system components in the presence of high variability
in the renewable power source. These preliminary re-
sults also highlight the difficulty of designing resilient
and robust systems, again due to the high degree of
variability and uncertainty over the lifespan of the sys-
tem. The results obtained in this study represents an
important step towards our goal of developing a flexi-
ble, efficient, and expandable framework for optimiz-
ing HES and achieving a level of understanding of the
system dynamics and performance that would enable
the deployment of HES in real world applications.

An important focus of future research efforts will
be the models of the HES components. Since the
main objective of the present study is to demonstrate
the framework and to gain a better understanding of

the performance of HES through simulations, the sim-
plistic but computationally efficient signal-based HES
model is considered adequate in this case. However,
to properly utilize the available analysis and optimiza-
tion tools, a system that more closely models the rel-
evant physical phenomena is needed. This would
entail replacing the signal block component models
with, for example, process models for the HTSE [14]
and equivalent-circuit models for the battery [15]. To
retain reasonable computational cost, reduced-order
models constructed using surrogate-based techniques
may also be applied [16, 17, 18]. Furthermore, a
comprehensive design process for such systems must
take into account a large number of variables and con-
straints, which cannot be investigated to a sufficient
level of detail using the present model. Therefore,
current efforts are aimed at creating higher fidelity,
physics-based models to incorporate into the compu-
tational framework established in this study.

Another topic that warrants future investigation is
the comparison of different HES configurations and
assessment of new technologies. A valuable benefit
of conducting the simulations in Modelica is the flexi-
bility of the resulting framework, allowing for certain
model components to be readily replaced with those
representing different technologies - and for the per-
formance of the different systems to be directly com-
pared. For instance, we may be interested in examin-
ing the relative performance of nuclear and natural gas
power plants, or the relative cost of electrical versus
thermal storage in grid-scale applications.

Finally, our present efforts have focused on design
optimization - i.e., optimizing certain properties of the
system components. Another equally important con-
sideration, however, is the operation of the HES after
it has been properly designed. In the present study, pa-
rameters related to the system operation (such as those
located in the helium and electricity distribution cen-
ters) are assigned fixed empirical values; the proper
operation of the system will require incorporation of
additional factors such as economics and energy ef-
ficiency into optimization problems of much greater
scale.
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Abstract 

This paper shows how different kinds of optimi-

zation related task such as offline optimization 

or optimal control are solved using a combina-

tion of Modelica, Optimica, JModelica.org and 

Python. The application examples presented in 

this paper are all real industrial applications in 

the field of Combined Cycle Power Plants. 

Therefore different workflows have to be com-

bined to solve the underlying task. This paper 

shows that these workflows can be conveniently 

connected using Python.  

 

Keywords: Dynamic optimization, Nonlinear Model 

Predictive Control, Extended Kalman Filter  

1 Introduction 

Using simulation models to study plant behavior 

is state of the art today. So more and more attention 

is paid to applications related to optimization tasks. 

This includes e.g. offline optimization of plants, op-

timal plant control or parameter estimation using 

measurement data. These tasks often need different 

parts as initialization, simulation and optimization.  

This paper shows a methodology which combines 

the optimization platform JModelica.org [1], the 

modeling language Modelica, an optimization exten-

sion to Modelica (Optimica) and a scripting envi-

ronment (Python [2][1]) in order to solve the differ-

ent optimization tasks mentioned above.  

Each optimization task is illustrated by an indus-

trial application.   

The paper is structured as follows: Section 2 

gives some background information about Optimica 

and Python, while section 3 explains the different 

industrial applications with focus on scripting. Sec-

tion 4 summarizes the results of the paper.  

 

2 Background 

JModelica.org is an extensible Modelica-based open 

source platform for optimization, simulation and 

analysis of complex dynamic systems. A unique fea-

ture of JModelica.org is the support for the extension 

Optimica. Optimica enables users to conveniently 

formulate optimization problems based on Modelica 

models using simple but powerful constructs for en-

coding of optimization interval, cost function and 

constraints. For user interaction JModelica.org relies 

on the Python language. Python offers an interactive 

environment suitable. The following subsections 

give an introduction to Optimica and show the ad-

vantages of the scripting language Python.  

2.1 Optimica 

The Optimica extension mainly consists of an addi-

tional class, optimization, which includes the attrib-

utes such as startTime, stopTime and objective, 

which specify the objective function of the optimiza-

tion problem. Another supplement is the constraint 

section, which can handle different kinds of linear 

and non-linear equality- and inequality constraints. 

A wide range of optimization problems may be 

solved formulated with Optimica, for example: pa-

rameter estimation, tracking, optimal control and so 

on. Here is a simple example, an optimization prob-

lem, based on the double integrator: 

 

 
Subject to: 
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For this problem, is considered to be free and the 

objective is to minimize the time it takes to transfer 

the states from (0, 0) to (0, 1) without violating the 

constraints. The corresponding problem formulated 

in Modelica and Optimica looks like this: 

 

 
 

The attribute free = true indicates that the variable 

is an optimization variable and the attribute initial-

Guess provides the numerical solver with an initial 

guess. 

The optimization problem is solved numerically 

and there is hence an aspect of discretization to con-

sider, but this is considered outside of Optimica. Op-

timica only represents the mathematical formulation 

of the problem and several different solver algo-

rithms can be used for solving the different problems 

at hand. For details on Optimica, see [9].  

2.2 Python 

Python is open source and a very powerful dynamic 

programming language that is used in a wide range 

of application domains. Especially interesting fea-

tures of Python related to the applications covered in 

this paper are how well it works with other tools and 

its scripting possibilities. There are for example in-

terfaces for Gnuplot [10] and Matplotlib [11], which 

are both suitable for plotting purpose. 

Python is compatible with Optimica and it is pos-

sible to interact with Modelica and Optimica models 

through Python scripting (the Python interface of the 

Jmodelica.org platform is great for this). For exam-

ple, it enables the possibility to do parameter manip-

ulations and to perform simulation and optimization 

for a variety of setups. The discretization and solver 

options (e.g. tolerances) for simulation and optimiza-

tion can easily be set through the Python script. 

The Modelica and Optimica models consists of a 

set of states, algebraic variables and input variables 

and they are represented by two model object types; 

FMU (Functional Mock-up Unit) and JMU (JModel-

ica Model Unit), respectively. FMUs are mainly used 

for simulation and they follow the FMI-standard 

(Functional Mock-up Interface), which specifies how 

the models should be represented and stored [16]. 

JMUs are mainly used for optimization and follow 

the JModelica.org standard, similar to the FMI 

standard for FMUs. For more details see [14]. Both 

model object types can be imported in to Python. 

Besides JModelica.org the open source simulation 

and optimization tool OpenModelica [8] supports 

Python with its interface called OMPython enabling 

the user to use the modeling and simulation capabili-

ties of OpenModelica within the Python environ-

ment. 

The Python packages SciPy [12] and NumPy [13]  

support linear algebra and matrix operations and are 

useful when scripting, both for pre- and post-

processing, in plotting and in the implementation of 

algorithms. 

Below is a simple example that demonstrates 

what scripting in Python may look like, using JMod-

elica.org. The script solves the optimization problem 

described in section 2.1. DoubleIntegrator.mo con-

tains the model and DIMinTime.mop contains the op-

timization model. A JMU object is created based on 

these. 

model DoubleIntegrator 

Real x(start=0); 

Real v(start=0); 

input Real u; 

equation 

der(x)=v; 

der(v)=u; 

end DoubleIntegrator; 

optimization DIMinTime ( 

objective= finalTime,  

startTime=0, 

finalTime(free=true,initialGuess=1)) 

 

extends DoubleIntegrator( 

u(free=true, initialGuess = 0.0)); 

constraint 

x(finalTime)=1; 

v(finalTime)=0; 

v<=0.5; 

u>=-1; 

u<=1; 

end DIMinTime; 

Industrial application of optimization with Modelica and Optimica using intelligent Python scripting

778 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096777



 
 

 
Figure 1: The optimization results 

3 Case studies 

The JModelica.org platform can be used to perform 

offline optimization. Python scripting is used for pre- 

and post-processing.  

 

3.1 Offline optimization: Start-up of a com-

bined cycle power plant 

The aim of this offline optimization is to maximize 

power output of gas and steam turbines without vio-

lating given constraints on temperature differences in 

several components. The optimizer shall find opti-

mized control inputs for gas turbine power and four 

different control valves (see Figure 2). 

This model is an extension of the model presented in 

[6]: the model scope has been enlarged to also in-

clude high pressure (HP) and intermediate pressure 

(IP) turbine and the corresponding valves. 

 

 
Figure 2: Model for startup optimization 

3.1.1. Python Scripting 

Figure 3 illustrates the steps written in Python to per-

form offline optimization. 

 

Since the gas turbine power is fixed until synchroni-

zation of the gas turbine, the optimization can not 

start at t = 0s, but only after synchronization, at t = 

t_opt_start. Therefore a first simulation determines 

the initial conditions for the optimization. Addition-

ally to the state initialization at optimization starting 

point, the optimization algorithm also needs a guess 

trajectory for all variables. If no explicit guess trajec-

tory is supplied it can be obtained using a second 

simulation. After the optimized control input has 

been obtained, several post-processing steps are tak-

en (see Figure 3). In this specific application, the 

optimization result and the result of the first simula-

tion (until synchronization of the gas turbine) are 

concatenated to obtain the complete time-dependent 

behavior of the plant. Also it proved to be useful to 

run a check, whether all variables are well scaled and 

whether the constraints are also kept between the 

collocation points. It has to be stated, that the Python 

scripting environment offers a very convenient and 

flexible way to include different pre- and post-

optimization tasks. 

 

# Importing necessary packages and functions 

import numpy as N 

from pymodelica import compile_jmu 

from pyjmi import JMUModel 

import matplotlib.pyplot as plt 

 

# Compiling a JMU- object for optimization  

# based on the double integrator 

jmu_name= compile_jmu("DIMinTime",  

["DoubleIntegrator.mo", "DIMinTime.mop"]) 

 

# Loading the JMU-object 

model_opt = JMUModel(jmu_name) 

 

# Calling the optimiztion function with  

# default settings 

res = model_opt.optimize(); 

 

# Plotting the results 

x= res['x'] 

v =res['v'] 

 

# u is the optimal trajectory 

u =res['u']  

time = res['time'] 

 

plt.plot(time, x, ':k',  time, v, '--k',  

time, u,'-k') 

plt.grid(True) 

 

# Increasing the plot window to show results 

plt.ylim([-1.5,2])  

plt.legend(('x','v','u')) 

plt.title('Simple example') 

plt.show() 
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Figure 3: Steps written in Python when performing 

offline optimization 

3.1.2. Results of the offline startup optimization 

An offline startup optimization of the system shown 

in Figure 2 has been performed where the character-

istics are given below: 

 

Constraints: 

 Model equations 

 Maximum pressure of 170 bar  

 Pressure dependent maximum wall tem-

perature difference for several compo-

nents (i.e. HP and IP turbine casing, heat 

exchanger manifolds etc.) 

 Minimum mass flow rate change for a 

certain mass flow range 

 Maximum negative GT power derivative 

 

Control inputs: 

 Gas turbine power 

 HP and IP turbine bypass valve 

 HP and IP turbine control valve 

 

Optimization objective: 

 Maximization of total power output (gas 

turbine power + power of HP and IP tur-

bine) 

 

Some optimization results are presented in the fol-

lowing figures. 
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Figure 4: Normalized gas turbine (GT) load (actual 

divided by maximum gas turbine load). 
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Figure 5: Normalized steam turbine power (solid line: 

HP turbine, dashed line: IP turbine) 

1st simulation:  

Simulate optimization model with given control inputs 

from t=0s to t=t_opt_start to obtain initial states at the 

starting point of the offline optimization. 

Generate initial trajectory 

Optimization model: initialize states to the values ob-

tained in the 1st simulation at t_opt_start  

Run optimization:  

Obtain optimized control input 

Concatenation 

Concatenate result of 1st simulation with optimization 

result to obtain one single result showing the dynamic 

plant behavior from t = 0s to t = t_opt_end 

Run test whether all constraints are kept at all times 

Search for scaled values far away from 1 

Set optimization options and guess trajectory. 

Use existing 

initial trajectory 

as .txt-file  

2nd simulation: 

Simulate optimization model 

with guess control input values 

from t_opt_start to t_opt_end to 

generate initial trajectory 

3rd simulation:  

Simulate optimization model with optimized control 

input to check accuracy of the discretization when us-

ing collocation 
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Figure 6: Normalized temperature differences (actual 

temperature difference divided by maximum allowable 

temperature difference) in critical components  

 

It can be seen that the optimizer first strongly in-

creases the gas turbine power to maximize the power 

output (Figure 4). Then the gas turbine power is de-

creased again to keep the temperature difference in 

the critical components below their maximum value 

(Figure 6). 

3.2 Nonlinear Model Predictive Control with 

State Estimation: Extended Kalman Filter 

The basic concept of Nonlinear Model Predictive 

Control (NMPC) is to use a dynamic model to fore-

cast system behavior and optimize the forecast to 

produce the best decision. In practice an optimal 

control problem is solved over a finite future hori-

zon, but only the first optimal control signal is ap-

plied to the system. Then the optimization horizon is 

shifted and the calculations are repeated.  

The solution of the optimal control problem de-

pends on the initial state of the model which is the 

current state of the plant. In general, measurements 

are disturbed by noise or are missing, so that a state 

estimation algorithm is needed to determine the ini-

tial states under consideration of the past record of 

measurements. 

3.2.1 Python Scripting  

The python script for optimization with JModeli-

ca.org looks as in Figure 7. 

 

This scheme describes the NMPC loop with two 

dynamic models – one model called optimization 

model, the other real plant model. The real plant 

model illustrates the real plant behavior and is more 

detailed than the optimization model. In future the 

real plant model will be replaced by measurements 

of the real plant. 

 

The NMPC loop starts with the generation of an 

initial trajectory for the optimization. As an alterna-

tive the optimization can be initialized with an opti-

mization result too. The initial trajectory is generated 

by simulating a FMU of the optimization model. 

The second step is to solve the optimization prob-

lem from t to t+H, where t is the actual time and H 

the length of the finite optimization horizon (see 

Figure 8). The optimization horizon is divided into N 

steps, but only the first control signal is applied to 

real plant model and the model is simulated to get 

the new state of the plant. The following step is the 

state estimation which is explained in more detail 

below. After the initial state of the model is updated 

the optimization horizon is moved and the optimiza-

tion is solved again from t= t+h (h= H/N) to t+2*h. 

All steps will be repeated until the final time of the 

optimization t_opt_end is reached.  

 

 
Figure 7: Steps written in Python performing NMPC 

with state estimation 

 

Simulate optimization model over complete opti-

mization horizon to generate initial trajectory for 

optimization 

At time t: Solve optimal control problem over a 

finite horizon H with N steps 

Apply first optimal control u[0] to real plant model  

Simulate real plant model from t to t+h with calcu-

lated value of optimal control 

Estimate the current state of x (t+h) and initialize 

the states of the optimization model 

Shift time and restart with the second step. 
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Figure 8: NMPC scheme 

 

The strategy of Extended Kalman Filter (EKF) is 

used for state estimation. The Kalman filter origi-

nates from probability theory and it is well estab-

lished that the Kalman filter is the optimal state es-

timator for a linear system affected by white noise. 

The Kalman filter minimizes the estimation error by 

considering past data of the system. This can be de-

scribed in a recursive way which is convenient for 

implementation purposes [15]. Concerning the nota-

tion,   corresponds to the estimation of x at 

time = t+1 given the information at time = t.  

The setup of EKF is according to Figure 9. The 

estimation consists of two main steps; the prediction 

and the correction. In the prediction step, the state 

values at time t+1 are estimated from the system rep-

resentation ( ). The covariance matrix of the 

estimation error at the prediction step ( ) is also 

updated in this step. 

In the correction step, the Kalman gain ( ) is 

updated. It is then used to derive the corrected state 

estimation ( ) by combining the result of pre-

diction step and the latest plant measurements ( ). 

The covariance matrix for the estimation error at the 

correction step (Pt+1|t+1) is also updated here. The 

steps are described in more detail below. 

 

 
Figure 9: Structure of EKF, where ref corresponds to 

the control reference, u to the control signal, and x to 

the state estimation at different stages and y to the real 

plant measurements. 

 

The EKF is an extension of the Kalman filter for 

nonlinear process models and the approach is basi-

cally the same as in the linear case, with an addition-

al linearization to get approximations of  and 

 matrices (using standard notation for linear 

systems), which are used by the filter. The lineariza-

tion step was realized with the JModelica.org library 

pyjmi.linearization. 

 

Prediction: 

 By simulating a FMU of the optimi-

zation model. 

 By linearizing a JMU of the optimi-

zation model (at ). 

  

 

Correction: 

 By linearizing a JMU of the optimi-

zation model (at ) 

  

 By simulating a FMU of the real 

plant model. 

  
   

 

Q and R represent the covariance matrices for 

process and measurement noise.  

For this example, we assumed that both noises are 

uncorrelated and conform to a normal distribution. Q 

and R are diagonal matrices. The entries on the diag-

onal of the covariance matrices Q and R are the vari-

Controller  

Prediction step 

Correction step 

 

Process 

EKF 

 

u 

 

t= t+1 

 

 

ref 
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ances of each process variable and measurement and 

are set to 1 in most cases. Q and R where approxi-

mated to be uncorrelated in time and the diagonal 

elements where set to: one over the square root of the 

standard deviation of the corresponding 

state/measurement, in most cases to 1. 

 

The EKF does not consider constraints, and this 

has to be compensated for in an additional step (the 

feasibility correction). This is important to note since 

the optimization strategy is interior point optimiza-

tion, and no solution will be found if the starting 

point is outside of the feasible region.  

The strategy to considering this fact was simply 

to use the prediction as state estimation, without the 

correction step, since the prediction always will be 

feasible.   

3.2.2 Results of NMPC with State Estimation: 

Extended Kalman Filter 

In reality, there will be large differences between the 

controller model and the real plant, this is natural. 

However, for the evaluation of the implementation, 

the models were kept basically the same, with the 

same state representation. The optimization model 

was augmented in order to compensate for the differ-

ences between the plant models. The differences 

were approximated as constant disturbances, by in-

troducing the additional states d, here on referred to 

as the disturbance states. These are unmeasurable 

states of the real plant and their values can be esti-

mated by the EKF.  

See a simple example of the augmentation below, 

where x represent the original states, f(x, u) repre-

sents the process with input u and d represent the 

disturbance states.  

 

 

 

The NMPC loop combined with state estimation was 

evaluated using the example of an enthalpy control-

ler of the heat recovery steam generator (HRSG) 

(consisting of economizer, evaporator and superheat-

er, see Figure 10) of a combined cycle power plant.  

 

Economizer

Evaporator

Superheater

flue gas

steam

water

 
Figure 10: Rough sketch of the system to be controlled. 

Two disturbance states were added to the optimiza-

tion model (one to the flue gas mass flow rate and 

one to the water pressure) in order to consider differ-

ences. Additionally a parameter related to the heat 

transfer was modified to represent a typical modeling 

error in addition to initial offsets for each state. 

 

There were three objectives for the controller and 

they were considered in the formulation of the opti-

mization problem: 

1. Keep the steam temperature at the super-

heater outlet at desired set point. 

2. Guarantee subcooling at the evaporator inlet 

by keeping the temperature below a speci-

fied maximum value. 

3. Have an adequate degree of superheating at 

the outlet of the evaporator section. 

 

Figure 11 and Figure 12 display the results for this 

setup. 

 
Figure 11: The progress of the state estimation, scaled 

according to nominal value and time. The red line rep-

resents the real plant behavior. The top plot represents 

one of the process states, the enthalpy at the inlet of 

first evaporator. The bottom plot represents the intro-

duced disturbance state, with an initial error 
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Figure 12: The control objective, scaled according to 

nominal value and time. The top plot displays the tem-

perature set point control; the red line represents the 

set point. The middle plot displays the sub cooling con-

trol; the red line represents the maximum value for the 

temperature at the economizer outlet (pressure de-

pendent). The bottom plot displays the superheating 

control, the red lines represents the mini-

mum/maximum degree of superheating. 

 

The jumping in Figure 11 is related to the correc-

tion step of the EKF. Also worth noting is that the 

disturbance state does not estimate the constant dis-

turbance to 0, and this is probably due to the intro-

duced modeling error. The disturbance state tries to 

compensate for this as well. 

The controller performance is quite satisfying, but 

there are some offsets that should be considered in 

the future work with optimization problem formula-

tion. The reason for the offset can for example be 

related to the fact that the plant did not reach steady 

state within the time frame for the experiment. It is 

not clear from Figure 11, but it is however the case. 

Evaluating the performance for a longer time might 

get rid of the offset, but this was not possible to real-

ize at the time of the application evaluation because 

of some memory leaks. Modifications to the objec-

tive function could be increasing the weight on the 

elements in the objective function related to set point 

deviations. 

3.3 Parameter estimation 

Parameters are typically estimated by some form of 

least squares. This method minimizes the sum of the 

squared discrepancies between measurement and 

expected value. M is the number of measurements 

and N the number of discrete time steps.    

      














N

i

M

j
ji

meas
ji itXX

1 1

22
,,min  

The default algorithm for solving optimal control 

problems and parameter estimation problems in 

JModelica.org is the collocation algorithm. For our 

application we used the Nelder-Mead method, a heu-

ristic search method using the concept of a (N+1)-

dimensional simplex, where N is the number of es-

timated parameters. These kinds of derivative free 

algorithms are implemented in JModelica.org ([2]).  

The Nelder-Mead algorithm was the preferred 

choice, although this method is quite slow, but has 

the best convergence behavior especially for many 

measurements and a lot of parameters. 

3.3.1 Python Scripting  

As the Nelder-Mead method is already implemented 

in JModelica.org as described in [9], the python 

script is quite simple. In a first step all measurements 

are imported from .mat file. Then the Nelder-Mead 

function nelme is called which solves the optimiza-

tion problem and uses the defined objective function 

as input.  

3.3.2 Results of Parameter estimation 

A parameter estimation of the Modelica model for 

optimizing the start up process of a combined cycle 

power plant in 3.1 has been implemented.  

The real plant measurements were given for a period 

of 1h. The data were loaded in python as .mat file. 

The gas turbine power, the gas turbine mass flow, 

the injection mass flow and the back pressure meas-

urement were set directly as boundaries of the mod-

el, the other measurements (wall temperatures, fluid 

temperatures and pressure) are used to minimize the 

error between the measurements and their simulated 

values.  

The algorithm was tested for two measurement 

sets to verify the result, one for a hot start and one 

for a warm start of the power plant. As expected the 

estimated parameters have smaller differences, but 

have equal dimensions. 

Figure 13 shows the simulation result with origi-

nal and optimized parameters compared to measure-

ments. As can be seen, the simulation result with the 

optimized parameter fits better to the measurements. 

Nevertheless there are still differences between the 

model and the real plant behavior. Uncertainty of 

measurements, not modeled effects and components 

are some reasons for the deviations. 
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Figure 13: Simulation result with original parameters 

(green) optimized parameters (blue) and measure-

ments (red). The top plot displays the wall temperature 

of the separator; the middle plot displays the reheat 

mass flow and the bottom plot the outlet temperature 

of the first superheater. 

 

4 Summary 

This paper shows how different industrial optimiza-

tion applications can be solved combining Modelica 

and Optimica with the scripting language Python.  

Three different optimization tasks have been consid-

ered to improve the dynamic processes in a com-

bined cycle power plant: offline optimization of the 

start-up process, online enthalpy control of the 

HRSG and parameter estimation for the start-up op-

timization. 

All optimization tasks have been formulated with 

Optimica based on Modelica models. For pre- and 

post processing issues and interaction of JModeli-

ca.org and the Modelica models, the scripting tool 

Python was used.  

As shown in section 3 ‘Case studies’, for complex 

optimization techniques like NMPC with combina-

tions of several optimization and simulation steps, 

Python is ideally suited. For industrial applications 

of power plant sector the definition of such control-

lers inside the Modelica model is not desired and 

unnecessary since other interfaces (e.g. connection to 

database) have to be realized additionally. 

The work presented in this paper is one step towards 

a complete online-optimization tool chain for 

NMPC.   
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Abstract

Concepts such as smart grids, distributed genera-
tion and micro–generation of energy, market–driven
as well as demand–side energy management, are
becoming increasingly important and relevant as
emerging trends in the design, management and con-
trol of energy systems. Appropriate modeling and
design, efficient management and control strategies
of such systems are currently being studied. In this
line of research a very important enabling compo-
nent is efficient and reliable simulation. However
those energy models are typically large, stiff and ex-
hibiting heavy discontinuities, and at the same time
consist of interconnected multi–domain subsystems
encompassing electrical, thermal, and thermo-fluid
models. Object-Oriented (O–O) languages such as
Modelica are obviously well-suited for the model-
ing of such systems; however, traditional state-of-
the-art hybrid differential algebraic equation solvers
cannot efficiently simulate these systems especially
when their size grows to the order of hundreds, thou-
sands, or even more interconnected units.

The goal of this paper is to show, through a
couple of exemplary case studies, that Quantized
State System (QSS) integration methods are ideally
suited to solve models of such systems, as they scale
up better than traditional methods with the system
size, and provide time savings of several orders of
magnitude, while achieving comparable numerical
precision.

Keywords: Quantization–Based Integration
Methods, QSS, DASSL, Smart–Grids, EnergyMarket,
Modelica

1The authors contributed equally to this work.

1 Introduction

The growing interest in new paradigms for energy
systems such as Smart Grids (SG) is posing new chal-
lenges in the control of procurement, conversion, dis-
tribution and use of energy to meet environmental and
economic objectives.

Computer simulation of SG systems is a funda-
mental tool for production planning and control, price
regulation, logistics, etc. To carry out the simula-
tion one must deal with two problems. First, model-
ing complex SG systems involves taking into account
components from various domains such as thermal,
electrical, ventilation, etc. Each component could
be developed by different specialists, possibly using
different languages or formalisms that must then be
coupled to produce the complete model. SG mod-
els are commonly composed of energy production
facilities, energy transmission networks and usually
hundreds or thousands of energy consumption units.
Thus the modeling of these types of systems is a dif-
ficult task. Second, once the problem is modeled, the
actual simulation of a large hybrid model (with con-
tinuous and discrete subcomponents) can turn out to
be prohibitively expensive in terms of CPU time, as
the scale of the system grows.

Modelica [13] is an Object–Oriented (O–O) lan-
guage for modeling and simulation of complex
multi-domain physical systems, described by hybrid
differential-algebraic equations. In the literature sev-
eral research efforts show the use of Modelica as
a language for modeling SG problems [6, 7, 8, 19,
20, 21]. State-of-the-art Modelica simulation tools
generate simulation code that solves the differential
equations using classical numerical integration meth-
ods, such as Euler, Runge-Kutta, or DASSL, which
are based on time discretization.
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Another approach is the use of Quantized State
System (QSS) methods [4, 14, 15] which replace time
discretization by state quantization. The QSS meth-
ods have certain features (sparsity exploitation, effi-
cient discontinuity handling, explicit stiffness treat-
ment) that make them particularly effective for large,
sparse, hybrid, dynamical systems like the SG mod-
els.

In this work we investigate the suitability of the
QSS methods for simulating SG models described
in Modelica and compare their efficiency, as well as
simulation quality, against classical integration meth-
ods.

We shall focus on two models, first a District Cool-
ing System taken from [5] and then an Energy Mar-
ket with houses as energy consumption units adapted
from [6].

The paper is organized as follows: Section 2 intro-
duces the main concepts used along the article, then
Section 3 describes the two smart–grid applications,
and in Section 4 we compare different numerical in-
tegration methods. Finally, Section 5 concludes the
article and outlines future work.

2 Background

This Section introduces the main concepts used along
the remainder of the article.

2.1 Classical Numerical Integration Meth-
ods

The mathematical models describing Energy Man-
agement problems such as the SG are usually time de-
pendent dynamical systems. These can be expressed
in the form of a set of Differential Algebraic Equation
(DAEs) or directly in a set of Ordinary Differential
Equations (ODEs) as:

ẋ(t) = f(x(t), t) (1)

where x(t) is the state vector.
Classical numerical integration methods discretize

the time variable computing the states variables for
certain time points.

We shall focus on two well–known numerical inte-
gration methods [4]:

Runge-Kutta An explicit variable step algorithm of
fourth order.

DASSL An implicit variable step algorithm based
on a series of Backward Difference Formulae

(BDF) of different orders of approximation ac-
curacy.

As both methods are based on time discretization,
discontinuity detection is an expensive mechanism.
Also, only implicit algorithms are able to efficiently
simulate stiff systems, i.e. systems that exhibit simul-
taneous fast and slow dynamics, without resorting to
unnecessarily short time steps.

2.2 QSS Integration Methods

Quantized State System (QSS) methods replace the
time discretization of classic numerical integration
algorithms by the quantization of the state variables.

Given the ODE of Eq.(1), the first order Quantized
State System method (QSS1) [16] approximates it by

ẋ(t) = f(q(t), t) (2)

Here, q is the quantized state vector. Its entries are
component-wise related with those of the state vector
x by the following quantization function:

q j(t) =

{
x j(t) if |x j(t)−q j(t−)| ≥ ∆Q j

q j(t−) otherwise
(3)

where ∆Q j is called quantum and q j(t−) denotes the
left-sided limit of q j at time t. The quantization func-
tion q(t) in QSS methods also contains a hysteretic
term (not shown here for simplicity) that is necessary
in order to avoid illegitimate models [16].

It can be easily seen that q j(t) follows a piecewise
constant trajectory that only changes when the differ-
ence between q j(t) and x j(t) becomes equal to the
quantum. After each change in the quantized vari-
able, it results that q j(t) = x j(t).

The QSS1 method has the following features:

• In the solution, the quantized states q j(t) follow
piecewise constant trajectories.

• The state variables x j(t) follow piecewise linear
trajectories.

• The state and quantized variables never differ
by more than the quantum ∆Q j. This fact en-
sures stability and global error bound properties
[4, 16].

• The fact that the state variables follow piecewise
linear trajectories makes the detection of discon-
tinuities a trivial task. Moreover, after a dis-
continuity is detected, its effects are no different
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from those of a normal step (because changes in
q j are discontinuous). Thus, QSS1 is very effi-
cient in simulating discontinuous systems [14].

• Each step is local to a state variable x j (the one
that reaches the quantum change), and it only
provokes evaluations of the state derivatives that
explicitly depend on it. This fact implies that
QSS1 performs intrinsic sparsity exploitation.

• If some state variables do not change signifi-
cantly, they will not provoke any step or eval-
uation at all. This feature reinforces the efficient
sparsity exploitation.

The last two points show that QSS methods inte-
grate each state variable at its own pace i.e. a fast
changing variable would provoke more local integra-
tion steps than a slow one.

As QSS1 only performs a first order approxima-
tion, good accuracy cannot be obtained without a sig-
nificant increment in the number of steps. Also as
QSS1 is an explicit solver, the algorithm is not suit-
able for simulating stiff systems. The former limita-
tion was solved with the introduction of higher order
QSS methods like QSS2 and QSS3 [15]

For the simulation of stiff systems, a family of lin-
early implicit QSS methods (LIQSS) of orders 1 to 3
was also proposed in [17]. LIQSS methods are semi–
implicit methods that can handle certain types of stiff
systems.

In the context of this work, the efficient sparsity
exploitation, the the semi-implicit treatment of stiff
systems and the native handling of frequent discon-
tinuities compose the main advantages of the QSS
methods.

2.3 Stand–Alone QSS Solver

It was shown that the behavior of the QSS approxi-
mation of Eq.(2) can be described as a Discrete EVent
System (DEVS)[22]. Thus, a straightforward imple-
mentation of these algorithms is through their equiv-
alents in a DEVS simulation engine.

DEVS–based implementations of QSS methods
are simple but they are not efficient. The prob-
lem is that the DEVS simulation engines waste a
large amount of the computational load attending the
DEVS simulation mechanism. This fact motivated
the development of a stand-alone QSS solver.

Recently, the complete family of QSS methods was
implemented in a stand–alone QSS solver coded in
plain C language [9]. This solver simulates models

described in a subset of the Modelica language, called
µ-Modelica [3].

In this work all simulations are performed using
the stand–alone QSS solver.

2.4 OpenModelica

OpenModelica [12] is an open-source Modelica-
based modeling and simulation environment. Open-
Modelica offers different numerical integration meth-
ods for simulation, amongst them, the before men-
tioned DASSL and Runge-Kutta. In this article we
shall use this tool as a reference to compare the per-
formance of different integration methods.

2.5 Related Work

The goal of this article is to study the application
of QSS methods to Smart Grid problems described
in the Modelica language. To the best of the au-
thors’ knowledge, this problem has not previously
been studied.

The application of QSS methods to Modelica mod-
els was studied in [3, 10, 11], showing the benefits
of QSS methods for problems with frequent discon-
tinuities. Also the use of QSS methods (not using
Modelica) for a large hybrid sparse load management
problem was studied in [18].

The use of the Modelica language for Energy Man-
agement problems was studied in [6, 7, 8, 19, 20, 21]
showing the powerful advantages that the language
offers to this set of models.

An advanced control system for the optimal energy
management of a building cooling system is studied
in [5]. In this system, a centralized facility produces
chilled water that is then distributed among a cer-
tain number of thermal zones (e.g. small houses or
apartments). The optimal control algorithm requires
multiple simulations of the whole system model for
different parameter settings. A simplified, equation-
based version of that model is presented in this pa-
per. Although the original system was designed for
a reasonably low number of users (5 to 20, i.e., a
micro-grid), this simplified model is representative
of a larger class of systems with a centralized heat
or cooling source, and many end users with their in-
dependent control systems. Such systems can eas-
ily scale up to contain hundreds, thousands, or even
more individual units. The controllers have also been
simplified in this work, as the achieved speed-up fac-
tor is not depending on the specific control laws, but
rather on the efficient way the QSS algorithm exploits
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the sparsity and weak coupling of the system model,
combined with the efficient event handling.

3 Case Studies

In this section we present two case studies. First a
District Cooling System and second an Energy Mar-
ket model. As stated before, the Modelica language
is suitable for describing multi-physics and multi-
energy problems like SG models. In fact there are
Modelica libraries for modeling energy problems that
help the development process.

The QSS stand–alone solver accepts models de-
scribed in a subset of the Modelica language, there-
fore all models used in the article are coded in this
simplified language called µ-Modelica. Being a sub-
set of the complete language, µ-Modelica is accepted
by all Modelica simulation tools enabling us to sim-
ulate the same model both in OpenModelica and
in the QSS stand–alone solver. For more informa-
tion regarding the transformation of Modelica to µ-
Modelica models, we refer the reader to [3].

3.1 Case Study I: A District Cooling System

As mentioned above, the District Cooling System is
adapted from [5] and consists of the following ele-
ments:

• The Cooling Plant that generates cooling power
used to control the temperature of a cooling
load.

• The Chilled Water Circuit that connects the
cooling plant to the cooling load allowing heat
transfer between the two.

• The Cooling Load that transfers heat to the
chilled water circuit. The load is composed by
a group of zones affected by heat exchange with
the outside ambient and by internal heat gains
such as occupants and office equipment. The
chilled water circuit exchanges heat with the
zones by means of fan coils.

• The Chilled Water Temperature Controller that
keeps circuit temperature at a specified set-
point. The control variable is the cooling plant
cooling power set-point.

• The Zone Temperature Controller that keeps
each zone at the desired temperature. The con-
trol variable is the fan coil valve opening.

In the following paragraphs, the model adopted for
each element is described.

Cooling Plant The cooling plant is simplified in
this article to deliver exactly the energy needed for
the Chilled Water Circuit set-point QC SP.

Chilled Water circuit Chilled water circuit dy-
namics are described using a lumped RC model. The
following power balance equation can be written:

CCW
dTCW

dt
=

N

∑
i

(QZAi(t)−QC(t))

where TCW is the circuit temperature and CCW its ther-
mal capacity. QZAi is the heat exchanged with the i-th
zone and QC(t) is the cooling power contribution pro-
vided by the Cooling Plant. Heat losses in the circuit
are neglected.

Cooling Load Zones are modeled as lumped RCs
as well. Their power balance equation is:

CZA
dTZAi

dt
=−QZAi +kout(TOA(t)−TZAi(t))+QINT i(t)

where TZAi is the zone temperature and CZA its ther-
mal capacity, QZAi is the heat exchanged with the
chilled water circuit, XC,Z i is the heat exchanger valve
opening, and QINT i is the heat produced by zone oc-
cupants. QZAi evolves according to the following ex-
pression:

τex ·Q̇ZAi(t)+QZAi(t) = XC,Z i(t)kcw(TZAi(t)−TCW (t))

where τex is the heat exchanger time constant. It is
worth noticing that the introduction of the exchanger
dynamics has the twofold purpose of a more accurate
modeling and of obtaining a stiff model in order to
test the QSS solver’s performance in such conditions.
QINT i is modeled according to the following polyno-
mial function of the zone temperature:

QINT i(t) = (p1T 2
ZAi(t)+ p2TZAi(t)+ p3)npeople i(t),

where npeople i is the number of zone occupants. Such
a model is proposed in [2] where suitable coefficient
values p1, p2 and p3 can be found.

The number of occupants is generated by a simple
stochastic model: the next arrival/departure time of a
person is given by a fixed time (1000 seconds) plus a
uniform random variate between 0 and 1000 seconds.
At each event, a person either comes in or leaves with
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Figure 1: District Cooling System model graphical representation (a) and, in more detail, the submodel used
for each zone (b). In (c) the simulated trajectory of the temperature state variable in zone 10 is plotted against
the ambient temperature, while in (d) the number of the people being present in zone 10 is depicted over time.

a 50% probability. Although this model does not rep-
resent any specific realistic pattern for the coming and
going of occupants, it serves the purpose of gener-
ating a number of uncorrelated time events, whose
density in time grows with the number of zones. Any
realistic system will exhibit this kind of behavior, as
events happening in different buildings will usually
be uncorrelated, no matter what their actual probabil-
ity distribution is.

Chilled Water Temperature Controller A PI con-
troller is adopted to control chilled water circuit tem-
perature. The control variable is the power set-point
for the cooling plant QC SP. Since no dynamics are
considered for the chillers, the power set-point coin-
cides with the actual power generated. The controller

is modeled as follows:

żC,CW (t) =− kI,CW

kP,CW
· zC,CW (t)+

kI,CW

kP,CW
·QC SP(t)

QC SP(t) = Φ[0,QC,max] (kP,CW · eC,CW (t)+ zC,CW (t))

eC,CW (t) = TCW (t)−TCW SP(t)

where zC,CW (t) is the integral state, kP,CW and kI,CW

are the PI gains, and Φ[a,b](·) is the saturation func-
tion:

Φ[a,b](x) =





a, x< a
x, x ∈ [a,b]

b, x > b.

Zone Temperature Controller Each zone temper-
ature is controlled by a PI controller as well. The
control variable is the heat exchanger valve opening
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XC,Z , spanning the range [0,1].

żC,Z(t) =− kI,Z

kP,Z
· zC,Z(t)+

kI,Z

kP,Z
·XC,Z(t)

XC,Z(t) = Φ[0,1] (kP,Z · eC,Z(t)+ zC,Z(t))

eC,Z(t) = TZA(t)−TZASP(t),

Model scaling The presented model is designed to
scale with the number of zones N, while providing a
reasonable behavior for all controlled variables. For
this purpose, certain model parameters are propor-
tional to the number of zones N. In particular, the
cooling plant maximum power QC,max and the cool-
ing plant controller (chilled water temperature con-
troller) gains kI,CW and kP,CW are proportional to N.
The chilled water circuit thermal capacity CCW is also
linearly scaled with the number of zones N.

3.2 Case Study II: An Energy Market

The Energy Market model was introduced in [6] as a
typical toy model written in Modelica and capturing
many of the aspects typically found in realistic smart
grid applications. The interactions between the dif-
ferent components in the Energy Market model are
graphically sketched in Fig. 2. The model consists of
the following components:

Environment We assume that the temperature of
the environment is given by a sinusoidal function:

Tamb = Tamb + ∆T sin(ωt + φ)

where the mean temperature Tamb is set to 10oC,
while the frequency and offset are selected such that
the minimum temperature is reached every midnight.

Heaters Each house has a heater that is controlled
by an agent that switches it on and off, according to:

Q̇heater
i =

{
0 if Ti > T max

i
Pheat if Ti < Tmin

(4)

Walls Each house has one wall that acts as a ther-
mal resistor with the heat flow given by:

Q̇wall
i =

1
Rth

(Ti−Tamb), (5)

where Rth is the thermal resistance of the wall.

Windows We assume that each house has one win-
dow that exhibits a stochastic behavior. More specif-
ically, we assume that the opening time of each win-
dow is drawn randomly from a uniform distribution.
It is closed again a random amount of time later.

openNextT [i]∼U (pre(openNextT [i])+ 1000,50)

closeNextT [i]∼U (openNextT [i])+ 100,200),

Each time a window is open, heat is exchanged be-
tween the environment and the house according to:

Q̇window
i = G(Ti−Tamb), (6)

where G is a large heat conductance constant.

Agents Each house has a simple controller that
controls the heater settings optimizing the power con-
sumption. The agent turns the heater on at a lower
goal temperature Tmin and turns it off at an upper tem-
perature Tmax. If the energy price calculated in the en-
ergy market exceeds a threshold pmax, the agent de-
creased the upper level Tmax to T alt

max.

T max
i =

{
Tmax if p< pmax

T alt
max if p≥ pmax

(7)
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Figure 3: Simulated trajectories of the average tem-
perature in the houses against the ambient tempera-
ture.

Houses Houses act as energy consumption units.
The temperature inside each house is related to the
heat flows described in the previous paragraphs with
the following formula:

Ṫi =
1

ρVCth
(Q̇heater

i − Q̇window
i − Q̇wall

i ) (8)
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Figure 2: Energy Market model graphical representation (a) and, in more detail, the submodel used for each
house(b)

The energy consumed per unit of time for a specific
house is the power of its heater integrated over a time
unit, as given by:

Ei = Q̇heater
i · tunit (9)

Energy Market The energy market component
simulates the behavior of an energy price regulator
for the whole network. According to the estimated
energy price the house agents decide if they should
reduce the energy consumption or not. Various en-
ergy price models could be employed, but for sim-
plicity we choose to linearly relate the energy price
to the mean energy consumed in the houses:

p = p + p1×
1
N

N

∑
i=1

Ei

4 Results

In this Section we show the simulation results for the
two models presented before. Both µ-Modelica mod-
els can be downloaded from [1]. We compare the run-
time efficiency and quality of the solutions obtained
by different integration methods for different system
sizes and tolerance values.

Simulation Benchmark

The simulation benchmark is as follows:

• Runge-Kutta and DASSL results were computed
using OpenModelica 1.9.1 (r18381) (RML ver-
sion).

• LIQSS2,3 and QSS3 results were computed us-
ing the QSS Stand Alone Solver from [9] r645.

• The simulation platform is a Dell 32bit desktop
with a quad core processor @ 2.66 GHz and 4
GB of RAM.

• The Jacobian matrices of the presented models
are quite sparse and banded. This information
could be exploited by all algorithms to make the
simulation more efficient, however this has not
been investigated for DASSL and Runge-Kutta
methods. The QSS methods exploit this fact na-
tively without having to get any information on
the structure of the Jacobian matrix.

Calculating the accuracy of the simulations can only
be performed approximately, since the state trajecto-
ries of the models cannot be computed analytically.
To estimate the accuracy of the simulation algorithms
for a given setting, reference trajectories (tref,yref)
were obtained using LIQSS3 with a tight tolerance
of 1 · 10−9 on an equidistant grid consisting of 5000
points. To calculate the simulation error, all methods
were forced to output points on the same equidistant
grid, without changing the integration step, thus ob-
taining simulated trajectories (tref,ysim). Then, the
mean absolute error is calculated as:

error = mean(|ysim−yref|). (10)

Regarding the error calculation we have to note
that special care had to be taken in order to achieve
comparable solutions from two independent runs of
each model, since both models are based on the gen-
eration of random event sequences. To this end, we
implemented a special random generator that, at ev-
ery call, outputs the seed for its next call. Therefore,
starting from the same seed, two independent model
simulations generate the exact same sequence of ran-
dom events.
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The measured CPU time (simulation time) should
not be considered as an absolute ground-truth since it
will vary from one computer system to another, but
the scaling of the algorithms as well as their relative
ordering is expected to remain the same. Another im-
portant aspect is that, in order to objectively compare
the simulation time needed by different algorithms
we did not compare the time measurements of the al-
gorithms for the same requested tolerance, but for the
same achieved error.

4.1 Case Study I
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Figure 4: Simulation time for varying size of the Dis-
trict Cooling System model. All algorithms achieve
a mean error on the order of 10−4.

The District Cooling System model is a compar-
atively stiff model and this becomes apparent when
comparing the measured CPU time of the QSS3 and
LIQSS methods in Fig. 4. This is confirmed by es-
timating the different time constants. The time con-
stants of the temperature controlled zone (∼ 3,8×
103 sec) and of the temperature controlled chilled wa-
ter circuit (∼ 7,5× 103 sec) proved to be greater by
three orders of magnitude than the time constant of
the heat exchanger (∼ 1 sec).

Regarding the scaling of the algorithms, Fig. 4
suggests that DASSL scales quadratically (∼ 6N2),
while QSS methods scale linearly with the number of
variables (∼ 3N). Due to the time constraints for the
present study we had to stop the DASSL experiments
at N=300, but the linear scaling of the QSS methods
allowed us to test their performance up to N=3000,
thus for a 10 times larger model.

Besides time, another factor that prohibited us
from performing further experiments with DASSL
on larger models, was that the OpenModelica com-
piler failed to compile larger models. For the largest
model, that all methods could simulate (N=300), the
LIQSS methods are more than two orders faster than
DASSL (102 sec compared to 600×102 sec).

Finally, a very interesting and useful aspect of the
QSS methods is that they exhibit a strong correlation
between the requested tolerance and the achieved er-
ror. This correspondence is depicted in Fig. 5a for
the LIQSS2 method (the other QSS methods exhibit
similar behavior). In contrast, the performance of
DASSL was only slightly affected by changing the
requested tolerance. This is a very important feature
of the QSS methods as it allows the user to exploit the
trade-off between computational speed and achieved
error. Indeed in Fig. 5b, we see that a user who
is willing to sacrifice one order of simulation accu-
racy will be rewarded by a simulation that executes
roughly ten times faster when using LIQSS2.

4.2 Case Study II

As the Energy Market model is not stiff we sim-
ulated it in OpenModelica using both DASSL and
the fourth-order explicit Runge-Kutta algorithm. The
measured simulation timings are shown in Fig. 6
where all methods achieve a mean error of order
10−5. The scaling of the algorithms, as well as their
relative performance, agrees with the one obtained
for the District Cooling System model. However, all
methods perform better on this benchmark, because
it is a simpler model in general.

More precisely, DASSL scales quadratically with
the number N of variables (∼ 2N2) while Runge-
Kutta scales linearly (∼ 5N) since it is an explicit
algorithm and does not have to perform any matrix
inversion calculations. All three QSS methods ex-
hibit a linear scaling (∼ N) with the explicit QSS3
being marginally faster than the LIQSS3 algorithm
(QSS3 needed 250 sec for N=10000, while LIQSS3
270 sec). For N=300, the LIQSS methods are over
three orders more efficient than DASSL and over two
orders more efficient than Runge-Kutta (10 sec com-
pared to 5000×10 sec and 180×10 sec respectively).

Besides the linear scaling of the QSS methods be-
comes prominent their advantage over classical meth-
ods when simulating large sparse hybrid models with
discontinuities. Each variable is being updated lo-
cally at its own speed, with no need of making global
computations on the whole system matrix. Further-

Simulation of Smart-Grid Models using Quantization-Based Integration Methods

794 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096787



10 30 50 100 300
1e−4

1e−3

1e−2

N (number of variables)

M
ea

n 
E

rr
or

 

 

LIQSS2 (tol = 1e−4)
LIQSS2 (tol = 1e−5)
LIQSS2 (tol = 1e−6)

(a)

10 30 50 100 300
0.1

1

10

100

1000

N (number of variables)

S
im

ul
at

io
n 

T
im

e 
(s

ec
)

 

 

LIQSS2 (tol = 1e−4)
LIQSS2 (tol = 1e−5)
LIQSS2 (tol = 1e−6)

(b)

Figure 5: District Cooling System model - Mean Simulation Error (a) and Simulation Efficiency (b) for LIQSS2
and varying requested tolerances.

more, discontinuities are being handled as native sim-
ulation steps without the need of backtracking to de-
tect the zero–crossings. Therefore, we observe that
even though Runge-Kutta methods scale linearly with
the system order just like the QSS methods, the lat-
ter are much more efficient than the former. QSS
methods can simulate a system with N=10000 states
within the same execution time as a Runge-Kutta al-
gorithm needs to simulate a much smaller system
with N=300 states.
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Figure 6: Simulation time for varying size of the En-
ergy Market model. All algorithms achieve a mean
error on the order of 10−5.

5 Conclusion and Future Work

In this article we study the use of Quantized State
System (QSS) integration methods for Smart–Grid
(SG) simulation problems. The QSS methods have
certain features (intrinsic sparsity exploitation, semi-
implicit stiffness treatment and efficient discontinuity
handling) that make them suitable for simulating SG
models.

After analyzing two large hybrid SG models and
comparing the efficiency and the quality of the solu-
tion obtained by the QSS methods against standard
numerical integration methods we can conclude that:

• In both cases QSS methods outperform DASSL
(and Runge-Kutta) by more than two orders of
magnitude in terms of simulation speed, while
at the same time, achieving a comparable simu-
lation error.

• The QSS methods scale linearly with system
size, while DASSL scales quadratically. The
Runge-Kutta solvers also scale linearly, but they
are far less efficient than their QSS competitors
nevertheless.

• In both examples the QSS stand–alone simulator
is able to handle larger model without running
out of memory.

• We were able to simulate with the QSS meth-
ods up to 1000 times larger models than with
DASSL, while still needing much less time to
perform the simulations.
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However, there still remain open problems to be ad-
dressed in the future. First of all, we need to perform
experiments with a larger set of models typically used
in the SG community, while at the same time test-
ing more numerical integration methods against the
QSS family. We note here that other implicit meth-
ods included in the OpenModelica environment, such
as Radau and Lobatto, have been tested but failed to
simulate the models. A necessary step that has to
be performed in the future is including the family of
QSS methods as integration methods in OpenModel-
ica.

Finally, an interesting line of research could be the
utilization of QSS methods in energy optimization al-
gorithms, such as the one proposed in [5].

6 Acknowledgments

This work was in part funded by CTI grant
Nr.12101.1;3 PFES-ES and supported by the
OPENPROD-ITEA2 project. The authors would like
to thank the developer of the stand–alone QSS solver,
Joaquín Fernández, for fixing several bugs that en-
abled us to correctly and efficiently simulate the ana-
lyzed models.

References

[1] http://people.inf.ethz.ch/florosx/modelica2014/.

[2] CIBSE Guide A: Environmental Design. CIBSE
Publications, Norwich, UK, 2006.

[3] F. Bergero, X. Floros, J. Fernández, E. Kofman,
and F. E. Cellier. Simulating Modelica models
with a Stand–Alone Quantized State Systems
Solver. In 9th International Modelica Confer-
ence, 2012.

[4] F. E. Cellier and E. Kofman. Continuous System
Simulation. Springer, New York, 2006.

[5] N. M. Ceriani, R. Vignali, L. Piroddi, and
M. Prandini. An approximate dynamic pro-
gramming approach to the energy management
of a building cooling system. In European Con-
trol Conference, Zurich (Switzerland), July 17-
19, pages 2026–2031, 2013.

[6] A. Elsheikh, E. Widl, and P. Palensky. Simulat-
ing complex energy systems with modelica: A

primary evaluation. In Digital Ecosystems Tech-
nologies (DEST), 2012 6th IEEE International
Conference on, pages 1–6, 2012.

[7] F. Felgner, S. Agustina, R. C. Bohigas, R. Merz,
and L. Litz. Simulation of thermal building be-
haviour in modelica. In 2nd International Mod-
elica Conference, March 2002.

[8] F. Felgner, R. Merz, and L. Litz. Modular mod-
elling of thermal building behaviour using mod-
elica. Mathematical and Computer Modelling
of Dynamical Systems, 12(1):35–49, 2006.

[9] J. Fernández and E. Kofman. Implementación
autónoma de metodos de integración numérica
QSS. Technical report, FCEIA - UNR, Rosario,
Argentina, 2012.

[10] X. Floros, F. Bergero, F. E. Cellier, and E. Kof-
man. Automated simulation of modelica mod-
els with qss methods - the discontinuous case
-. In 8th International Modelica Conference,
March 2011.

[11] X. Floros, F. Cellier, and E. Kofman. Discretiz-
ing time or states? a comparative study between
dassl and qss. In 3rd International Workshop
on Equation-Based Object-Oriented Modeling
Languages and Tools, EOOLT, Oslo, Norway,
October 3, 2010, pages 107–115, 2010.

[12] P. Fritzson, P. Aronsson, H. Lundvall, K. Nys-
trom, A. Pop, L. Saldamli, and D. Broman. The
OpenModelica Modeling,Simulation, and De-
velopment Environment. Proceedings of the
46th Conference on Simulation and Modeling
(SIMS’05), pages 83–90, 2005.

[13] P. Fritzson and V. Engelson. Modelica - A
Unified Object-Oriented Language for System
Modelling and Simulation. In ECOOP, pages
67–90, 1998.

[14] E. Kofman. Discrete Event Simulation of Hy-
brid Systems. SIAM Journal on Scientific Com-
puting, 25(5):1771–1797, 2004.

[15] E. Kofman. A Third Order Discrete Event Sim-
ulation Method for Continuous System Sim-
ulation. Latin American Applied Research,
36(2):101–108, 2006.

[16] E. Kofman and S. Junco. Quantized State
Systems. A DEVS Approach for Continuous

Simulation of Smart-Grid Models using Quantization-Based Integration Methods

796 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096787



System Simulation. Transactions of SCS,
18(3):123–132, 2001.

[17] G. Migoni, M. Bortolotto, E. Kofman, and F. E.
Cellier. Linearly implicit quantization-based in-
tegration methods for stiff ordinary differential
equations . Simulation Modelling Practice and
Theory, 35:118 – 136, 2013.

[18] C. Perfumo, E. Kofman, J. Braslavsky, and
J. Ward. Load Management: Model-Based
Control of Aggregate Power for Populations
of Thermostatically Controlled Loads. Energy
Conversion and Management, 55:36–48, 2012.

[19] A. Sodja and B. Zupancic. Modelling thermal
processes in buildings using an object-oriented
approach and modelica. Simulation Modelling
Practice and Theory, 17(6):1143 – 1159, 2009.

[20] M. Wetter. Modelica-based modelling and sim-
ulation to support research and development in
building energy and control systems. Journal
of Building Performance Simulation, 2(2):143–
161, 2009.

[21] M. Wetter. Co-simulation of building energy
and control systems with the building controls
virtual test bed. Journal of Building Perfor-
mance Simulation, 4(3):185–203, 2011.

[22] B. Zeigler, H. Praehofer, and T. G. Kim. Theory
of Modeling and Simulation - Second Edition.
Academic Press, 2000.

Session 5B: Power, Energy & Process Applications 1

DOI
10.3384/ECP14096787

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

797



798 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096



On the Simulation of Offshore Oil Facilities at the System Level

Joris Costes1,2 Jean-Michel Ghidaglia2 Philippe Muguerra3 Keld Lund Nielsen4

Xavier Riou3 Jean-Philippe Saut1 Nicolas Vayatis2

1Eurobios SCB, 86 avenue Lénine, 94250 Gentilly, France
{joris.costes, jpsaut}@eurobios.com

2CMLA, ENS Cachan, UMR 8536 CNRS, 61 avenue du président Wilson, 94235 Cachan cedex, France
{jmg, vayatis}@cmla.ens-cachan.fr

3eni saipem, 7 avenue de San Fernando, 78180 Montigny-le-Bretonneux, France
{Philippe.MUGUERRA,Xavier.RIOU}@saipem.com

4eni spa, exploration & production division, San Donato Milanese (Mi), Italy
Keld.Lund.Nielsen@eni.com

Abstract

Offshore oil facilities are complex systems that in-
volve elaborate physics combined with stochastic as-
pects related, for instance, to failure risk or price vari-
ation. Although there exist many dedicated software
tools to simulate flows typically encountered in oil ex-
ploitations, there is still no tool that combines physical
(mostly engineering fluid mechanics) and risk simula-
tion. Such a tool could be useful to engineers or de-
cision makers for specification, design and study of
offshore oil facilities. We present a first step towards
the creation of such a tool. Our current simulator is
based on new Modelica components to simulate fluid
flows and on stochastic simulation at a higher level, for
modeling risk and costs. Modelica components imple-
ment physical models for single and two-phase flows
in some typical devices of an offshore field. The risk
simulation uses Markov chains and statistical indica-
tors to assess performance and resilience of the system
over several months or years of operation.

Keywords: fluid flow; two-phase flow; risk estima-
tion; Monte Carlo simulation

1 Introduction

With the increasing rarity of readily accessible reser-
voirs, as oil has to be extracted from deeper undersea,
capital investments and risks associated to offshore oil
facilities become higher and higher. In this context,
a careful evaluation of cost and risk represents a cru-
cial step in the conception of a new offshore facility.
This evaluation must be performed at the system level
because it involves phenomena of very different na-

tures and scales, that can interact together. We identify
three main types of phenomena to be taken into ac-
count in the simulation: Physical, failure-related (risk)
and economic (cost). The physical phenomena obvi-
ously include fluid flow through common components
(pipes, tanks, valves, etc.) but can also include vari-
ous other aspects like e.g. strength of materials, heat
transfer or chemistry of wax or hydrate formation. The
failure phenomena are the discrete-time events due to
specific (extreme) conditions (e.g. break due to com-
ponent fatigue) or to accidental situations. Simulat-
ing failures is useful to evaluate the potential risks of
a particular architecture/design. The economic phe-
nomena encompass all that is related to cost or price
but does not directly depends on physics (unlike e.g.
the oil production). For instance the oil barrel price,
the price of pipe wall material (typically steel) or the
transportation cost. All these variables directly impact
the profitability of an exploitation.

This paper presents our first effort in the conception
of a system-level offshore facility simulation. Before
starting the work, it was necessary to point out simula-
tion requirements and expected difficulties. Require-
ments are more related to the user point-of-view while
difficulties are more related to the physics of an off-
shore oil facility:

• Reasonable computation times are preferable
since we want the simulator to be usable as a de-
sign tool,

• Complexity: An offshore exploitation can in-
volve dozens or hundreds of elementary compo-
nents,

• Modularity: A model is meant to be built by as-
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sembling elementary components of typical parts
of an offshore field,

• Accurate prediction of highly-turbulent fluid flow
is not possible (typical Reynolds number in oil &
gas industry flows is > 10000),

• Many physical parameters are known only in cer-
tain ranges or even uncertain,

• Experimental validation is difficult or limited to
existing literature.

Henceforth it was decided to build first physical mod-
els with moderate complexity in order to follow the
large-scale behavior of the real components within rea-
sonable computation time. Another choice was to de-
compose the simulation into two different layers: One
for the physics and one for the cost/risk estimation.
The physics layer models deterministic phenomena
only, while the cost/risk layer is based on probabilities
to model risk and uncertainty. The physical simulation
takes advantage of the flexibility and modularity that
are possible with Modelica features (object-oriented,
acausality). Other authors have used a similar ap-
proach of employing a stochastic simulation layer on
top of a Modelica-based simulation. For instance in
the context of Building Performance Simulation [14]
to model weather and room occupancy as stochastic
processes. Propositions were recently submitted by
Bouskela et al. [3] to enrich the Modelica language
with the possibility to define uncertain variables with
user-configurable probability law. The authors ex-
posed some applications in power plant or combustion
engine field to perform data reconciliation or uncer-
tainty propagation. With the current Modelica ver-
sion, the authors had to rely on the external program
OpenTURNS [7] to compute uncertainty propagation
on a fluid pipe system example. It seems presently un-
avoidable to work with this kind of architecture (Mod-
elica + external program with an interface layer) since
stochastic modeling is clearly out of the scope and ob-
jectives of the current Modelica specifications.

The paper is divided as follows. Section 2 focuses
on fluid flow simulation. It describes the hypothe-
ses and equations used to build the Modelica com-
ponents of the offshore facility. Section 3 deals with
the estimation of cost and risk. It details the dif-
ferent variables of interest and their stochastic model
(Markov chain representation and Monte Carlo simu-
lation). Section 4 presents some first results obtained
on a simplified architecture used as a proof of concept.

2 Simulation of flows in an offshore
oil facility

The first choice when conceiving the fluid flow sim-
ulation was to decide the accuracy level that would
give the appropriate balance between fast computa-
tion time and physical coherence. To ensure the com-
putational tractability of the models we have chosen
1D or 0D models depending on the component. This
for permanent-regime study. The latter choice comes
from the considered time scale that is rather large in
order to estimate typical daily production (hours ex-
trapolated to a full day). In the current development
stage, we are not yet concerned with heat transfer so
isothermal transformations are assumed. The fluid that
flows from an oil reservoir is usually a mixture of oil
and gas (in particular because gas might be injected
inside the reservoir to increase the flow rate of produc-
tion). The basic connector used in our simulation is
then defined by three parameters (p,q,ϕ):

connector TPPort "Two-phase port"

SIunits.Pressure pressure "Pressure";

//Volumetric flow:

flow SIunits.VolumeFlowRate q;

//Volume ratio of liquid in the mixture:

stream SIunits.VolumeFraction phi;

end TPPort;

In addition to the permanent-regime assumption, we
assume that fluids are incompressible with exceptions
for a few components (e.g. the oil-gas separator in
Section 2.4). The aforementioned assumptions are
more restrictive than the ones of the Fluid library [4]
in the Modelica Standard Library that is more generic,
at the price of a higher computation time.

2.1 Single-phase flow in a pipe

The model of single-phase flow in a pipe is encoun-
tered only in limited areas of the offshore field, e.g.
after an oil-gas separator. It is however useful in order
to compute the virtual single-phase pressure drop used
in the two-phase pipe model (Section 2.2). It requires
a variant of the TPPort connector where ϕ (phi) is
removed. The fluid velocity v is computed from the
volume flow rate q and the pipe cross-sectional area A:

v =
q
A
. (1)
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Since we have volume flow conservation, q = qa = qb
where qa and qb are the values of q in the two connec-
tors at the ends of the pipe.

Reynolds number is

Re =
ρDh|v|

µ
, (2)

where ρ is the fluid density, Dh the pipe hydraulic di-
ameter and µ denotes dynamic viscosity of the fluid.

The frictional pressure loss is computed as

∆p =± fd
L

Dh
ρ
v2

2
, (3)

where fd is the Darcy friction factor and L the pipe
length. The sign of ∆p must be chosen so that the
pressure decreases in the direction of the flow.

The Darcy friction factor fd depends on the flow
regime. As only turbulent flows are encountered in the
considered oil and gas applications, only the turbulent
regime is of interest. For this regime, among the many
existing correlations, we chose Haaland’s formula [9]:

fdturbulent =

(
−1.8log10

(
6.9
Re

+

(
ks

3.7Dh

)1.11
))−2

,

(4)
where ks is the roughness height that characterizes the
rugosity of the pipe inner wall. It is typically between
1µm and 1mm.

2.2 Two-phase flow in a pipe

Several Modelica models have been proposed to deal
with two-phase flow modeling [1, 6, 10, 2], with ap-
plications to steam generators or refrigerators. These
models are centered on accurate simulation (1D,
boundary model) of a few components. To simulate an
offshore field architecture, since we are for now only
concerned with the related evolution of pressure loss
and flow rate, we chose a much simpler model with
very low computational requirements, based on the
work by Lockhart and Martinelli [12]. Lockhart and
Martinelli proposed a correlation to compute the pres-
sure drop of a two-phase mixture in a pipe, from the
pressure drops computed for the two (virtual) single-
phase flows. Chisholm [5] gave some theoretical basis
for the correlation and recommended a simplified ver-
sion of the formula, for engineering calculations:

∆pT P =±
(

∆pL +C
√
‖∆pL∆pG‖+ ∆pG

)
, (5)

where:

- ∆pT P is the pressure drop for the two-phase mix-
ture,

- d∆pL is the pressure drop as if the liquid flowed
alone,

- d∆pG is the pressure drop as if the gas flowed
alone,

- C is a correction coefficient which depends on the
flow type of each phase (see Table 1). In practice,
only the turbulent-turbulent case is of interest.

The sign of ∆p must be chosen so that the pressure
decreases in the direction of the flow.

Flow regime
Liquid Gas Coefficient C

turbulent turbulent 20
laminar turbulent 12

turbulent laminar 10
laminar laminar 5

Table 1: Coefficient C for two-phase pressure drop
computation (from [5]).

Note that the library FluidDissipation[16] also
refers to the work of Chisholm, in a more complete
implementation1.

2.3 Junctions

They are components used to direct the flows in two
pipes into a single one. The junctions can be for in-
stance used to inject gas in a liquid flow in order to in-
crease its flow rate. When the two mixing fluids are in
the same phase, a simple model can be used that just
averages their characteristics. When the two phases
are different a finer model is necessary. We consider
here the cases of horizontal and vertical junctions.

2.3.1 Horizontal junction

The configuration of Figure 1 is considered.
(p1,v1,ρ1), (p2,v2,ρ2) and (p3,v3,ρ3) are the
pressure, velocity and density at the liquid inlet, gas
inlet and mixture outlet respectively,

Fluid velocities are v1=q1
A , v2= q2

Ag
and v3=q3

A where
A is the cross-section area of the liquid inlet and mix-
ture outlet and Ag is the cross-section area of the gas

1http://xrg-simulation.de/en/products/xrg-library/xrg-
fluiddissipation-library
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Gas flow
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Mixing point

Figure 1: Schematic of the horizontal two-phase junc-
tion.

inlet. Conservation of both mass and volume flows
gives:

ϕ =
v1A

v1A +v2Ag
, (6)

ρ3 = ϕρ1 +(1−ϕ)ρ2 , (7)

v3 = −(v1A +v2Ag)/A . (8)

From Ji et al. [11] we took the empirical equa-
tion for the momentum correction coefficient K that
is computed from the momentum flux ratio M. The
equations are:

M =
ρ1v

2
1

ρ2v2
2
, (9)

K = 1 + 0.256M0.223 , (10)

p1− p3 = K
(
ρ3v

2
3−ρ1v

2
1
)
. (11)

Note that we use here the most generic formula in [11],
because the roles of gas (side inlet) and liquid (front
inlet) are swapped compared to what is in the paper.
At this point, the system is under-determined since p2
does not appear in any of the above equations (it would
if the junction angle was 6= 90◦) so we need an extra
equation. We choose the assumption that both inlet
1 and inlet 2 are close enough to the mixing point in
order to have

p1 = p2 . (12)

2.3.2 Vertical junction

A vertical junction is a horizontal junction rotated with
a 90◦ angle (Figure 2). Compared to the horizontal
junction, a correction term is added to take into ac-
count the weight of the fluid:

p1− p3 = K
(
ρ3v

2
3−ρ1v

2
1 + 0.5Lg(ρ1 + ρ3)

)
, (13)

where g is the gravitational acceleration and L the
junction length.

L

Liquid flow

Gas flow

Mixture flow

Inlet 1

Inlet 2

Outlet

Mixing point

Figure 2: Schematic of the vertical two-phase junc-
tion.

Figure 3: Schematic of the oil-gas separator.

2.4 Separator

The purpose of an oil-gas separator is to output two
single-phase flows (one of liquid and one of gas) from
one two-phase inflow (liquid+gas) (Figure 3). The
studied separator dissociates the two phases by gravity,
inside a tank or vessel. The physical input to the sep-
arator is the volume flow of oil-gas mixture that goes
into the tank, while the outputs are the volume flows
out of the tank. The device contains control loops to
maintain the liquid level and the inside gas pressure at
desired reference values. The oil-gas separator is con-
sequently modeled as a controlled system. The two
controlled values are the height of oil in the tank (de-
noted by h) and the gas pressure inside the tank (de-
noted by pgas

in ). Internal sensors (supposedly perfect)
measure both h and pgas

in so that they can be compared
to their respective reference values hset and pset . There
is one control loop for each of h and pgas

in and some
variables are involved in the two control loops [8] (Fig-
ure 4).

The controllers are simple PIDs (Proportional-
Integral-Derivative). Transmission lines conduct the
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Figure 4: Liquid level and gas pressure control loops.

controller outputs to the control valves. They are mod-
eled as first-order low-pass filters [8]. The valve aper-
ture control parameter σvalve is the line signal yline

out after
a [0;1] saturation is applied:

σvalve ∈ [0;1] = max(0,min(yline
out ,1)) . (14)

We give more details on each control loop in next sec-
tions.

2.4.1 Level loop

The vessel is a horizontal cylinder with diameter d�,
radius r and length L. Let us introduce the distance h̃
from the liquid height h to the vessel middle (i.e., h=r):

h̃ =

{
h if h≤ r ,
d�−h if h> r .

The liquid level h is then related to liquid volume flows
according to

qliq
in −qliq

out = 2
√

d�h̃− h̃2 L
dh
dt

, (15)

where

qliq
in = ϕqliq+gas

in . (16)

Finally qliq
out is related to pliq

in − pliq
out with a friction law

like in Section 2.1, which is denoted ffric(). The factor
σvalve is added because we assume the valve aperture
to act linearly on the flow:

qliq
out = σvalve ffric(pliq

in − pliq
out) . (17)

2.4.2 Pressure loop

The gas volume flows are:

qgas
in = (1−ϕ)qliq+gas

in , (18)

qgas
out = σ ′valve f′fric(pgas

in − pgas
out ) , (19)

where σ ′valve is the gas valve aperture and f′fric() a fric-
tion function like in Section 2.1. The ideal gas law in
the vessel gives:

pgas
in V gas = ngasRT , (20)

where V gas is the volume of gas inside the tank (above
the liquid), ngas is the gas mass quantity (moles) inside
the vessel, R the ideal gas constant, and T the temper-
ature inside the tank.

Differentiating Eq.(20), while replacing V gas with
(V total−V liq), leads to:

(V total−V liq)︸ ︷︷ ︸
V gas

d pgas
in

dt
− pgas

in
dV liq

dt
=

RT (qgas
in,mass−qgas

out,mass) , (21)

where V total is the tank volume, V liq the volume occu-
pied by the liquid, qgas

in,mass and qgas
out,mass are the gas mass

inflow and outflow respectively. The tank volume is

V total = πr2L . (22)

Volume V liq is computed from the liquid height by in-
troducing

Vtmp = L
(

r2 arccos(1− h̃
r

)− (r− h̃)
√

2rh̃− h̃2

)
,

(23)

V liq =

{
Vtmp if h≤ r ,
Vtotal−Vtmp otherwise .

The mass flows are computed from the ideal gas law
(also assuming pliq+gas

in = pgas
in ):

qgas
in,mass = qgas

in
pliq+gas

in
RT

, (24)

qgas
out,mass = qgas

out
pgas

in
RT

. (25)
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Figure 5 shows the system response when the sepa-
rator receives a sequence of inflow steps.
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Figure 5: Responses to a square-wave input flow. The
system shows a second-order behavior (overshooting
and pseudo-oscillations).

2.5 Other models

Other models are necessary to simulate an offshore
field. For instance, valves, pumps or tanks. The mod-
els are not described in detail here due to lack of space.
They are chosen as simple as possible at this stage of
the work. Hence ideal behavior is assumed:

• Valve: Two ports: port_a, port_b, one parame-
ter: open=aperture signal:
equation

if noEvent(open >= 0 ) then

port_b.q = -port_a.q;

port_b.p = port_a.p;

port_b.phi = inStream(port_a.phi);

port_a.phi = inStream(port_b.phi);

else

port_a.q = 0;

port_b.q = 0;

end if;

• Pump: Two ports: port_a, port_b, one parame-
ter: q0=imposed flow rate:
equation

port_a.q = q0;

port_b.q = -q0;

port_b.phi = inStream(port_a.phi);

port_a.phi = inStream(port_b.phi);

• Tank: One port: port_in, one parameter:
A=horizontal area, one variable: h=liquid level:

equation

//hydrostatic pressure:

port_in.p = rho * g * h;

der(h) = port_in.q/A;

3 Estimation of costs and risks

Estimating costs and risks requires a different model-
ing level than fluid flow simulation since it depends
on exogenous factors, possibly stochastic (oil market,
steel market, weather), or endogenous stochastic fac-
tors (failures). Dividing the simulation in two lay-
ers does not mean however that the layers are uncou-
pled. There is instead a strong dependency between
them. For instance, the production income depends
both on the extracted oil volume, computed in the
physical simulation with an additional random pertur-
bation term, and on the oil market and system state, the
latter being modified by possible failures. Next sec-
tions describe the stochastic modeling of the facility.
As further explained in Section 4, this part is not per-
formed with Modelica but interacts with the Modelica
simulation used for fluid flow modeling.

3.1 Stochastic model of the offshore oil facil-
ity

3.1.1 Markov chain model

The system is assumed to be a Markovian process (i.e.,
memoryless) with discrete time. The time step is long
(e.g. day or week) compared to the physical simula-
tion time. The Markovian process is modeled as a
Markov chain i.e., a finite state machine with transi-
tions described as conditional probabilities. Each state
of the chain corresponds to a particular operation state
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Figure 6: Markov chain representation of the offshore
field with four possible operation states. The operat-
ing costs are given as percentages of the cost when in
optimal state (state 1).

of the oil facility. Production volume of each state is
computed with the physical simulation. It means that
as many physical simulations will be conducted as the
number of defined system states. The Markov chain
requires the definitions of the possible transitions be-
tween states and their respective probability. These
definitions are typically obtained from experimental
data or expert knowledge. Figure 6 shows an exam-
ple of Markov chain for four defined states with their
associate operating cost and production volume. The
Markov chain is used to simulate virtual life-cycles
of the field under the randomness hypotheses on the
events (price change, failure) that may occur over time.
One such virtual cycle corresponds to one realization
of randomness. Repeating many simulations allows to
build empirical distributions of the output of interest
(production, cost, resilience performance, etc.). This
is the principle of Monte Carlo simulation.

3.1.2 Monte Carlo simulation

The goal of Monte Carlo simulation is to derive statis-
tics from repeated simulations. With the Markov chain
model, it means computing the evolution of the sys-
tem state by random selection of the transition at each
time step. The transition selection depends on the
previously-defined transition probabilities. We now
present some of the statistical quantities that are in-
teresting in the context of offshore field simulation.

3.2 Assessment indicators

Various indicators can be calculated to obtain informa-
tion about the system performance. Some indicators
concern for instance how the production is affected by
the failure events. We will present the resilience in-
dicator that aims at quantifying the impact of failures
on the production. Other indicators are related to the

gain and the risk of loss. Both types of indicator (pro-
duction and gain) can be applied to one or many sim-
ulations. In the latter case, new indicators might be
derived to estimate the uncertainty of the performance
indicator, from its estimated variance for instance.

3.2.1 Production resilience

Resilience is the ability of a complex system to re-
spond and recover from damages. The definition
comes from ecology but can be found in various fields.
For oil facility study, we will refer to the concept as de-
fined in the study of urban resilience [13]. For a given
simulation, resilience is used to quantify the effect of
sub-optimal (i.e., disturbed) states on the level of per-
formance. Resilience R is expressed in % and, for a
discrete-time system, is computed as

R = 100
(

1− (Vopt −V )

Vopt

)
, (26)

where V is the production volume for the considered
time period and Vopt is a reference production vol-
ume that corresponds to optimal production state. Re-
silience will vary from 0% (no production) to 100%
(optimal production). Repeated experiments give sta-
tistical values of duration and occurrences of distur-
bance situations.

3.2.2 Gain and risk of loss

The gain represents the difference between the value
of recovered oil and the operation and capital costs:

gain = recovered_oil×barrel_price×Φ0−OPEX×Φ1

−CAPEX×Φ2− risk_losses , (27)

where OPEX stands for operating expenditure (i.e.,
ongoing cost to run the field), CAPEX stands for
capital expenditure (i.e., cost to acquire or upgrade
the equipments) and Φ0,Φ1,Φ2 are factors due to in-
come/cost sharing with consortium partners (Φ0, Φ1,
Φ2) or extra bank/insurance costs (Φ1, Φ2).

The cumulative distribution function (cdf) of gain is
denoted Fgain(x) and defined as

Fgain(x) = P(Xgain ≤ x) , (28)

where P(Xgain ≤ x) is the probability that the gain ran-
dom variable Xgain is smaller than x. The considered
gain is the gain over a given time period (e.g. a week
or a year if several years are simulated). Risk indica-
tors can be computed directly from the cdf. For in-
stance, the probability of loss can be simply estimated
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Figure 7: Estimation of the cumulative distribution
function of the gain (green curve), from a one-year
simulation. Intersection of the curve with the vertical
line (Gain=0) gives an estimation of the probability of
loss (blue dashed line). Intersection of the curve with
the horizontal line at 10% gives an estimation of the
first 10%-quantile (red dashed line). The gain is nor-
malized so that the maximum weekly gain is 1.

as Fgain(0) and the k-th q-quantile (k ∈ [1..q]) is the so-
lution of Fgain(x) = k

q . Figure 7 shows the example of
an estimated cdf with the estimated probability of loss
and the estimated first 10%-quantile.

3.2.3 Uncertainty and performance

All the aforementioned indicators are estimations of
the real quantities that could be obtained only from
an infinite number of random paths. Therefore, all
decisions made on behalf of the performance indica-
tors must include some consideration about indica-
tor uncertainties. A tradeoff between estimated per-
formance and reliability of the estimation should be
found; for instance by representing the indicator in the
space (performance,uncertainty). Monte Carlo simu-
lation already provides insights on the variability of
indicators based on the gain cdf. Indeed, confidence
intervals on risk indicators can be derived as shown
in Figure 8. The uncertainty can be estimated in vari-
ous manners, e.g. as a function of the variance of the
performance estimator. The variance can be approx-
imated with the results of several experiments. The
number N of experiments can also quantify the relia-
bility of an estimation since the latter increases with
N.

4 Results on a simplified design

A simplified design has been chosen to illustrate the
methodology (Figure 9). Oil is extracted from three
wells whose flows are combined and sent to one
among two vertical pipes (risers). The specific model
for the riser is not detailed here. The two-phase flow is
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Figure 8: The cumulative distribution of gain aver-
aged on 1000 one-year simulations (blue curve) and
the confidence interval (magenta dashed curve) for
a 30% and a 60% threshold. How far are the ma-
genta curves from the blue curve tells how uncertain
is the blue curve at a given time. The gain is normal-
ized so that the maximum weekly gain –over the 1000
simulations– is 1.

Riser 2Riser 1
Liquid Tank

Figure 9: The studied simplified design of the offshore
facility.

then received in an oil-gas separator and the two out-
put single-phase flows are sent to a gas flare and an
oil tank. The corresponding Markov chain is shown
in Figure 6. States 1 and 2 are normal states with one
of the two risers selected. States 3 and 4 are failure
states (well 3 is blocked) with one or the other riser se-
lected. Note that even though the characteristics (i.e.,
cost and production) of state 3 and 4 are identical, the
states themselves are not as they do not have the same
connections nor transition probabilities.

4.1 Fluid flow simulation

Some outputs of the fluid flow simulation are shown
in Figure 10. In the presented results, initial oil level
in the separator is far below the reference value, there-
fore all the input flow is used to fill the separator and
the level in the tank does not increase until t≈2000s.
Then, because of overshoot in the controlled system,
level exceeds the reference value before eventually
reaching the reference. A step is added to well flow
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at t=5000s that explains the little peak in oil level.
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Figure 10: Some results of the fluid flow simulation
with Modelica. From top to bottom: Pressure drops
in a pipe with two-phase flow and at gas-oil separator
outlet; oil level in final tank; oil level in separator.

4.2 Cost and risk simulation

Whereas all the fluid flow simulation is performed
with Modelica, the cost and risk simulation uses
Scilab [15]. Scilab has a built-in block diagram
modeler/simulator called Scicos that can use blocks
based on Modelica code. The block diagram of
Figure 9 is from Scicos interface. The simula-
tion can then be ran from a Scilab script using the
scicos_simulate(...); command. Results are re-
turned in Scilab workspace and can consequently be
directly post-processed for statistical estimation. Fig-
ure 11 shows the post-processed resilience of a one-
year simulation with several computed indicators. Fig-
ure 7 is also an output of statistics processing in Scilab.

Failure 1:
Number of occurrences: 3
Mean duration[week]: 4
Mean resilience value[%]: 51.7

Failure 2:
Number of occurrences: 1
Mean duration[week]: 1
Mean resilience value[%]: 50.8
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Figure 11: Resilience computed for a one-year simu-
lation. For each type of failure, several indicators are
computed like the number of occurrences or the mean
duration.

4.3 Discussion

The presented simulation framework can be used to
compare different designs of an offshore oil facility,
in order to choose the most productive and/or robust,
depending on the choice of a performance evaluator
like those of Section 3.2.3. At the current stage of the
project, the operating states and their occurring prob-
abilities were defined arbitrarily. In further steps, they
have to be set from technical data and part of the com-
plexity of failure dependencies has to be handled au-
tomatically.

5 Conclusion and perspectives

We have presented our first results on the simulation
of an offshore oil facility at the system level i.e., simu-
lating all the plant components while considering also
risk and failure estimations. Modelica is used to de-
scribe the physics of the flow through the various com-
ponents of the offshore field. All the stochastic pro-
cesses that can affect an offshore oil exploitation (fail-
ure, price variations, etc.) can be integrated in the
stochastic layer of the simulation. Statistical indica-
tors are obtained using simulation. Ongoing research
is focused on up-scaling the approach and addressing
industrial scale-one designs.

Acknowledgments

The authors would like to thank Arnaud Antkowiak,
associate professor at Université Pierre et Marie Curie
for his help on two-phase flow modeling, Jean-Louis
Grange, former senior expert at EDF and Gérard
Le Coq, former head of department at EDF for their
support on junction models. The authors are also

Session 5B: Power, Energy & Process Applications 1

DOI
10.3384/ECP14096799

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

807



grateful to Jean-Philippe Chancelier, senior researcher
at CERMICS lab of École des Ponts ParisTech, for his
precious advice concerning Scilab/Scicos and its inter-
face with Modelica. Finally, special thanks go to Lei
Zhang for his several contributions to the work [17].

References

[1] Olaf Bauer. Modelling of Two-Phase Flows
with Modelica. Master’s thesis, Department of
Automatic Control, Lund University, Sweden,
November 1999.

[2] Javier Bonilla, Luis J. Yebra, Sebastián Dormido,
and François E. Cellier. Object-Oriented Library
of Switching Moving Boundary Models for Two-
phase Flow Evaporators and Condensers. In 9th

International Modelica Conference, pages 71–
80, September 2012.

[3] Daniel Bouskela, Audrey Jardin, Zakia
Benjelloun-Touimi, Peter Aronsson, and
Peter Fritzson. Modelling of uncertainties
with Modelica. In 8th International Modelica
Conference, pages 673–685, March 2011.

[4] Francesco Casella, Martin Otter, Katrin Proelss,
Christoph Richter, and Hubertus Tummescheit.
The Modelica Fluid and Media library for model-
ing of incompressible and compressible thermo-
fluid pipe networks. In 5th International Mod-
elica Conference, pages 631–640, September
2006.

[5] D. Chisholm. A theoretical basis for the
Lockhart-Martinelli correlation for two-phase
flow. International Journal of Heat and Mass
Transfer, 10(12):1767–1778, 1967.

[6] Jonas Eborn and Karl Johan Åström. Modeling
of a Boiler Pipe with Two-Phase Flow Instabili-
ties. In Modelica Workshop, pages 79–88, Octo-
ber 2000.

[7] EDF-EADS-PhiMeca.
http://www.openturns.org/.

[8] H. Genceli, K.A. Kuenhold, O. Shoham, and J.P.
Brill. Dynamic Simulation of Slug Catcher Be-
havior. SPE Annual Technical Conference and
Exhibition, October 1988.

[9] S.E. Haaland. Simple and Explicit Formulas for
the Friction Factor in Turbulent Pipe Flow. Jour-
nal of Fluids Engineering (ASME), 105(1):89–
90, March 1983.

[10] Jakob Munch Jensen and Hubertus
Tummescheit. Moving Boundary Models
for Dynamic Simulations of Two-Phase Flows.
In 2nd International Modelica Conference, pages
235–244, 2002.

[11] Lijun Ji, Bin Wu, Kui Chen, Jiawen Zhu, and
Haifeng Liu. Momentum Correction Coeffi-
cient for Two Jet Flows Mixing in a Tee Junc-
tion. Chemical Engineering Research and De-
sign, 87(8):1065–1068, 2009.

[12] R.W. Lockhart and R.C. Martinelli. Proposed
Correlation of Data for Isothermal, Two-Phase
Two-Component Flow in Pipes. Chemical En-
gineering Progress, (45):39–48, 1949.

[13] Angela Peck and Slobodan P. Simonovic.
Coastal Cities at Risk (CCaR): Generic System
Dynamics Simulation Models for Use with City
Resilience Simulator. Technical report, Facility
for Intelligent Decision Support, Department of
Civil and Environmental Engineering, London,
Ontario, Canada, April 2013.

[14] Gregory Provan and Alberto Venturini. Stochas-
tic Simulation and Inference using Modelica. In
9th International Modelica Conference, pages
829–838, September 2012.

[15] Scilab. https://www.scilab.org, ©1989-2011 (IN-
RIA) ©1989-2007 (ENPC), Scilab Consortium
(DIGITEO).

[16] Thorben Vahlenkamp and Stefan Wischhusen.
FluidDissipation for Applications - A Library for
Modelling of Heat Transfer and Pressure Loss in
Energy Systems. In 7th International Modelica
Conference, pages 132–141, September 2009.

[17] Lei Zhang. Modélisation et Simulation d’une
installation industrielle complexe. Technical re-
port, Eurobios SCB/ENSTA ParisTech, 2013.

On the Simulation of Offshore Oil Facilities at the System Level.

808 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096799



Parameter Selection in a
Combined Cycle Power Plant

Niklas Anderssona Johan Åkessonb,c Kilian Linkd

Stephanie Gallardo Yancesd Karin Dietld Bernt Nilssona

aLund University, Department of Chemical Engineering, Lund, Sweden
bLund University, Department of Automatic Control, Lund, Sweden

cModelon AB, Lund, Sweden
dSiemens AG, Erlangen, Germany

Abstract

A combined cycle power plant are modeled and con-
sidered for calibration. The dynamic model, aimed for
start-up optimization, contains 64 candidate parame-
ters for calibration. The number of parameter sets that
can be created are huge and an algorithm called sub-
set selection algorithm is used to reduce the number
of parameter sets. The algorithm investigates the nu-
merical properties of a calibration from a parameter
Jacobean estimated from a simulation of the model
with reasonably chosen parameter values. The cali-
brations were performed with a Levenberg-Marquardt
algorithm considering the least squares of eight output
signals. The parameter value with the best objective
function value resulted in simulations in good compli-
ance to the process dynamics. The subset selection
algorithm effectively shows which parameters that are
important and which parameters that can be left out.

Keywords: Combined Cycle Power Plants; Start-
up; Calibration; Parameter Selection

1 Introduction

Increasing environmental awareness has resulted in
more demanding requirements. Energy supply is get-
ting more attention and more and more wind turbines
and solar power stations are built to adapt to a more
environmentally friendly world. The challenge how-
ever is that the sun doesn’t always shine and the wind
doesn’t always blow. Combined cycle power plants
(CCPP) work as a good complement, because of its
fast startup and shutdown time. Furthermore, the
CCPPs have high thermal efficiency and are relatively
environmentally friendly [1].

The market energy price fluctuates every day, which

affects the profitability of the CCPPs. Because of this
it is of importance to adapt to the market and be able
to quickly start up and shut down the process. A quick
start-up is important because energy is not produced
until the gas turbine reaches full speed and is synchro-
nized to the grid. However, this cannot be done too
quickly because a rapid temperature change wears out
sensible parts. The startup follows three phases: the
first to accelerate the gas turbine to full speed, the sec-
ond to increase the load of the gas turbine and the third
to drive the steam to the steam turbine. The model of
this work focuses on the second part which is the most
critical during a startup. Sensible parts as the drum
after the evaporator and the header of the superheater
are important to model for a successful startup opti-
mization. A model was therefore set up aimed for op-
timization of the startup, considering the temperature
gradient in the sensible parts to estimate the tensions.
The model has previously been used in optimizations
[2, 3]. The startup of combined cycle power plants has
been optimized in several studies before [4, 5, 6, 7, 8].

Accurate modelling of the CCPP is a difficult task,
which if successful can cut expenses. This requires
a good calibration of the model to make the discrep-
ancy to the real process dynamics as small as possi-
ble. The main purpose of the calibration is to enable
a valid model for optimization of startups. The pa-
rameter estimation is performed using a Levenberg-
Marquardt algorithm, which effectively uses the pa-
rameter Jacobean to find the optimum.

A model usually contains many parameter candi-
dates for calibrations. Estimating many parameter si-
multaneously leads to ill-conditioned calibration prob-
lem due to dependency between the parameters, that
make convergence bad and with wide confidence in-
tervals as a result. A parameter-selection algorithm,
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called subset selection algorithm (SSA) is proposed
that ranks the parameter by two properties, α and κ
[9]. The parameter α is correlated to the size of the
confidence regions for a parameter set and κ is a mea-
sure of how well-conditioned the parameter Jacobean
for a parameter set is. The algorithm that significantly
reduces the number of parameter sets to study, has
recently been proven to work good for a model of a
polyethylene plant [10].

2 Theory

2.1 Differential algebraic equation systems

The general non-linear index-1 differential algebraic
equation (DAE) form is defined by

0 = F(ẋ,x,w,u,p) (1)

y = g(ẋ,x,w,u,p) (2)

x(t0) = x0 (3)

where x, w, u and p are vectors denoting state and
algebraic variables that describe the inputs and param-
eters of the model. In Eq 2, the output variables of the
system that is subject to calibration are denoted y. The
initial state is defined by x0 and is expressed in Eq 3.
To solve the steady-state problem the state derivatives
ẋ are set to 0 and x and w are solved to fulfill Eq 1.

2.2 Non-linear regression methods for differ-
ential algebraic models

Regression methods are roughly classified into two
broad categories: gradient methods and direct-search
methods [11]. The former depends on accurate pa-
rameter gradients, while the latter does not. Gra-
dient methods include the Gauss-Newton Method,
the steepest descent method and the Levenberg-
Marquardt method, while direct-search include the
simplex method, differential evolution algorithms and
pattern search [12, 13]. The Gauss-Newton method
gives the best results when gradients are available [14].

The Levenberg-Marquardt method is a more stable
variant of the Gauss-Newton method [12] and can be
used to solve the problems of estimating dynamic pa-
rameters, where the Newton step ∆p is calculated from

(
JT WJ+ δdiag(JT WJ)

)
∆p = JT W(ŷ− y) (4)

where ŷ is the measurements for the output and δ is
a Levenberg-Marquardt parameter, which controls the
allowed step length and is updated in each iteration,

based on the quality of the Newton step. The sensitiv-
ity matrix is defined as the parameter Jacobean matrix

J =
dy
dp

(5)

and was estimated with finite differences using the
central approximation.

A single shooting approach is common to solve
problems of estimating dynamic parameters [15]. It
starts with a guess of the parameters. The dynamic
model is then simulated, and the parameters are up-
dated iteratively by a regression method, such as
Levenberg-Marquardt method.

2.3 Statistics

Confidence regions are calculated to assess the quality
of the parameter estimates. A confidence interval of
1−β , with ny number of measurements and np number
of parameters, is estimated from

p∗ ± spTinv(β/2,ny − np) (6)

and means that there is a probability of 1 − β that the
true parameter lies within the estimated interval. Here,
p∗ is the calibrated parameters, Tinv is the inverse of the
Student’s T test and sp is the estimated standard error
of the parameters defined as

spk =
√

(χ)kk, for k = 1,...,np (7)

where χ is the covariance matrix calculated as

χ = σ 2 (
JT WJ

)−1
. (8)

where σ 2 is the error variance and can be estimated by

σ 2 =
1

ny − np
|ŷ− y|2 (9)

and the diagonal weighting matrix, W, used to scale
the outputs, is defined as

W =




ŷ−2
1 0 · · · 0
0 ŷ−2

2 · · · 0
...

...
. . .

...
0 0 · · · ŷ−2

ny


 (10)

2.4 Subset selection algorithm

The numerical properties of a parameter estimation
can be estimated from the sensitivity matrix, J. An
algorithm is suggested [9] that investigates parameter
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sets from a nominal operating point, and ranks the pa-
rameter sets according to two quantities: the condition
number, κ , and the parameter selection score, α . Here,
κ is defined as the ratio between the largest and small-
est singular value of J, and α is defined by α(p) = |υ |,
where υ is the scaled standard error for the parameters

υi = spi/pi for i = 1,. . . ,np (11)

The quantities κ and α are used to estimate the param-
eter dependencies and the uncertainties in the param-
eters. A low value of α shows that the estimated pa-
rameters have been accurately determined, while a low
value of κ shows that the calibration problem are well
conditioned. Both α and the confidence interval are
calculated from the standard error of the parameters
and the quantities are closely related. A low value of
α indicates narrow confidence intervals. The parame-
ter κ is a measure of how well the calibration problem
is conditioned. Low values are preferable because it
indicates that the parameters are independent of each
other, while high values indicates a difficult calibra-
tion, where an inverse of the sensitivity matrix does
not exist or can only be calculated with low accuracy.

Both α and κ can be calculated without any calibra-
tion of the model, by setting some reasonable param-
eter values, referred to as nominal values, and deter-
mine the sensitivity matrix from a simulation. From
the full sensitivity matrix, α and κ can be calculated
for every parameter subset. The sensitivity matrix for
a parameter subset is created by taking the correspond-
ing columns from the full sensitivity matrix.

3 Methods

3.1 Modelling Languages and Tools

The mathematical model has been implemented in
Modelica [16], which is a high-level language for de-
scribing complex physical systems, supporting object-
oriented concepts such as classes, components and in-
heritance. It can also encode textbook-style declara-
tive equations. This modelling paradigm has signifi-
cant advantages over the block-based paradigm that is
often used in the context of physical modelling. In par-
ticular, acausal modelling systems do not require the
user to solve the derivatives of a mathematical model.
Instead, differential and algebraic equations may be
mixed, which then typically results in a differential al-
gebraic equation.

The calibrations in this paper have been performed
using JModelica.org, which is a Modelica-based open-
source platform targeted at dynamic optimization
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Figure 1: A schematic figure of the process.

[17]. The optimization is enabled by an extension to
Modelica, Optimica, which strengthens its optimiza-
tion capabilities by adding a small number of con-
structs. JModelica.org uses an interior point algo-
rithm, IPOPT, to solve for feasible solutions, that fulfil
the equation system[18]. Further, JModelica.org uses
the Assimulo package [19], which interfaces the IDA
solver from the Sundials suite [20].

To handle the high number of calibrations in this
work in a reasonable time, a simple parallelization was
performed. A simulation can only utilize one proces-
sor core, while it takes several simulations in every
iteration of a calibration. By distributing the simula-
tions with the python package subprocess, all eight
processor cores could be utilized.

3.2 Mathematical plant model

A simple model scheme is found in Figure 1. The
model has previously been used in startup optimiza-
tion where it is described in more detail[2, 3]. The
model, consisting of both differential and algebraic
equations, has been derived from a combination of first
principles and semi-empirical relations. It is focused
on the heat recovery steam generator (HRSG) where
the water side, indicated with blue arrows, are mod-
eled by dynamic balance equations. The heat from the
gas turbine (GT), shown with a red arrow, is statically
modeled from the temperature (u9) and the mass flow
(u10) of the GT. The water side is modeled as two dif-
ferent streams, one through the high pressure super-
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Notation Description

u1 RH inlet enthalpy
u2 IP mass flow
u3 water injection flow I1
u4 IP back pressure
u5 water injection I3
u6 water injection I4
u7 HP back pressure
u8 HP mass flow
u9 temperature GT
u10 mass flow GT

Table 1: A list of the inputs used.

heaters (HPSHs) and the other through the reheaters
(RHs). The water is evaporated in the evaporator and
going through the drum before it is superheated in
three steps, HPSH1, HPSH2 and HPSH3. Finally the
steam is led through the header and continues to the
high pressure steam turbine. The drum and the header
are similarly modeled as a volume, where the wall are
subject to high stress during transients that needs to be
constrained. The wall is spatially discretized so that
the temperature gradient can be modeled, which is an
indicator of the stress. The right blue line is going
through the three reheaters RH1, RH2 and RH3 and
continues to the intermediate pressure steam turbine.
There are also four water injections modeled, shown
in boxes in the Figure, where the first I1 is located be-
tween RH2 and RH3 and I2−4 are located after RH3,
between HPSH2 and HPSH3 and after the header, re-
spectively. In the model there are also several valves
to control the flow rates. The temperature sensors are
also modeled to account for sensor lags.

The model is simulated with ten inputs following
measurement data and are shown in Table 1. Three
of the inputs are mass flows of the water injections,
two describe the temperature and mass flow of the ex-
haust gas from the GT and five describe the state of
the water on the HPSH and RH side. The mass flow of
the exhaust gas from the GT are not measured directly,
but calculated from balance equations. Eight objective
signals are considered in the calibration and are shown
in Table 2. The input and objective signals are also
shown in Figure 1.

There are 64 potential parameters to calibrate in the
model. The parameters are roughly divided in eight
categories, see Table 3. Heat transfer coefficients are
denoted as kin, describing the transfer between the ex-
haust gas and metal wall, kout , describing the heat
transfer between the metal wall and the cold water,
and k, describing either the heat transfer in the sensors
or the heat transfer in the metal walls of the header

Notation Description

T1 temperature before I1
T2 temperature after I1
T3 temperature before I2
T4 temperature before I3
T5 temperature after I3
T6 temperature before I4
T7 temperature after I4
P pressure evaporator

Table 2: A list of the objective signals used.

k kin kout mH2O mFe V cap kv

Header 1 7 15
Evaporator 3 17 2 20

Drum 10 8 4
SH 9 5 18 21

SH1 28 22 56 62
SH2 29 23 57 63
SH3 30 24 58 64
RH 12 6 19 11
RH1 34 25 59 31
RH2 35 26 60 32
RH3 36 27 61 33

valves 13,37,38,
39,40,41

sensors 14,42,43, 16,49,50,
44,45,46, 51,52,53,

47,48 54,55

Table 3: The parameter used in the SSA analysis.
Merged parameters are indicated in bold.

and drum. There are two categories of masses, de-
noted as mH2O for water volumes and mFe for iron
walls. The last categories are the fluid volume V for
the header and drum and the heat capacity of the sen-
sors, cap. Last category is kv that affects the dynamics
of the valves, that is modeled with a constant pressure
drop. There are seven sensors measuring the outputs
T1−7, each with two parameters and paired as {42,49},
{44,51}, {43,50}, {45,52}, {47,54}, {48,55} and
{46,53}.

Some parameters describe the same kind of param-
eter in different places of the model. For example, in
the superheaters SH1, SH2 and SH3, the kout parame-
ter is described with the parameters 22,23,24 that has
the same nominal values. A merged parameter is intro-
duced that enables a reduction of parameters, which is
important in calibration problems. For kout in the su-
perheaters, the parameter 5 is a merged parameter. Set-
ting this parameter means that the children parameters
22,23 and 24 gets the set value. There are 11 merged
parameters in the analysis, where kin, kout , mH2O and
mFe are set by the parameters 9,5,18,21 for the su-
perheaters and the parameters 12,6,19,11 for the re-
heaters, the parameter 13 sets all the other kv parame-
ters and k and cap for the temperature sensors are set
with the parameters 14 and 16. A merged parameter
can not be in the same parameter set as its children.
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Naturally, many of the parameters are highly corre-
lated, such as kin and kout . For convenience the param-
eter set {p1, p2, p3} is denoted as p1,2,3

4 Calibration methodology for large-
scale systems

4.1 Calibration procedure

The calibration is made by minimising the objective
function described by a least square formulation of the
error between the plant data and the model response. If
all parameters are included in the calibrations, it leads
to badly conditioned problems. The number of param-
eter sets that can be combined grows rapidly with the
number of parameters. To reduce the number of pa-
rameters to estimate in the model a parameter selec-
tion algorithm called subset selection algorithm was
used. Information from the sensitivity matrix is used
to avoid ill-conditioned parameter estimations and to
find parameter sets that can be determined with low
parameter uncertainty.

The calibration procedure is solved by a single
shooting procedure, where the model is simulated for
every iteration of parameters. An attempt is made in
each iteration to find the initial states for the updated
parameters. The system simulation then proceeds dur-
ing the whole start-up. The initial states are found by
solving a steady-state problem, defined in Eqs. (1)-(3)
and with ẋ = 0. The system is subsequently simulated,
with the inputs u following the measurement data. The
parameters can be updated by minimising the objec-
tive value defined as the weighted sum of squares of
the residuals

Q(p) =
nt

∑
i=1

(ŷi − y(ti,p))T W(ŷi − y(ti,p)), (12)

where nt is the number of time points and yz(ti,p) is
the model outputs from the simulation at time ti. The
calibration problem is solved iteratively by updating
the parameters using the Levenberg-Marquardt algo-
rithm, described in Section 2.2. The dynamic calibra-
tion is formulated as an optimization problem

min
p

Q(p)

subject to Eqs. (1) − (3)

xmin ≤ x ≤ xmax

wmin ≤ w ≤ wmax

pmin ≤ p ≤ pmax (13)

In this work, only one data set was used for calibra-
tion and no validation was performed. In a previous
work, several calibration and validation data sets were
used with a similar approach on another model, which
showed good compliance [10].

4.2 Reduction of parameter sets

Models often have many potential parameters to cal-
ibrate, where many of the parameters are dependent
of each other. If all parameters are included in the
calibration it results in parameter Jacobeans that are
highly ill-conditioned and a calibration that is impos-
sible to solve. It is desirable to choose a subset of the
parameters that are independent of each other, mini-
mizes the objective function and with parameters that
can be determined with good accuracy. The number
of parameter combinations increase rapidly with the
number of parameters and the exploration of all pa-
rameter sets is heavy computationally. An approach
to reduce the parameter sets is suggested, where the κ
and α numbers of the SSA algorithm are used to rank
the parameters. The selection method consists of two
loops, the SSA loop and the calibration loop, each one
consisting of three base parts: combination, evaluation
and filter blocks, Figure 2. The blocks are defined as
follows:

Combination is the process of taking an input pop-
ulation Pin that contains the nPin parameter sets{

p1
in, ...,p

nPin
in

}
and mixing it with all nP0 parame-

ters P0 = {p1, ...pnP0} to create a new parameter
set population Pout that contains parameter sets
with one more parameter than the parameter sets
of the input population. The input population is
empty before the first iteration, and thus the out-
put population will contain one parameter set for
every parameter in P0. Pin is not empty before
the next iteration, and thus the p1

in will enter the
output population as nP0 parameter sets defined
by

{{
p1

in, p1
}

, ...,
{

p1
in, pnP0

}}
, and the parame-

ter sets p2
in, ...,p

nPin
in will be combined in the same

way. The same parameter set can be created from
two different parameter sets in the input popula-
tion, and thus an operation is carried out to re-
move all duplicates. The maximum number of
parameter sets in the output population is nP0nPin,
but this may be reduced when duplicates are re-
moved. There are two combination blocks, Block
1 (SSA loop), where Pcomb1 is created and Block
4 (calibration loop), where Pcomb2 is created.

SSA Evaluation evaluates α and κ values for each
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parameter set of the input population as defined in
Section 2.4, and calculates a SSA score θ , given
by θ = lgα + lgκ , that is later used in the filter
block to determine the best parameter sets in the
SSA loop.

Calibration is the step where calibrations are made
for all parameter sets in the input population, that
consists of both Pcal1 and Pcal2. All parameter
sets are calibrated and the objective value that
measures the deviation between model and mea-
surements is returned. The calibration step is the
most computationally expensive step.

Filters are used to reduce the number of parame-
ter sets, which otherwise would increase rapidly.
There are three filter blocks, one in the SSA loop
and two in the calibration loop. The filter block
takes a population of parameter sets, a score that
has been calculated to rank the parameter sets,
and a cutoff that defines how many parameter sets
should pass. In Block 2 and 5, θ is used as score
and nSSA1 is used as cutoff for PSSA, ncal1 for Pcal1
and ncal2 for Pcal2. In Block 8, Q is used as score
and nQ is used as cutoff. The choice of the cutoffs
are arbitrarily, but should not be chosen too small
for a good analysis.

The

+
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SSA filterSSA filter
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Figure 2: The SSA selection procedure used.

SSA evaluation is relatively cheap, but the number
of parameter sets increase rapidly as np increases.
The number of parameter sets increases as the bi-
nomial coefficients

(nP0
np

)
, which for nP0 = 64 are

{64,2016,41664,635376,7624512, ...}. Setting a fil-
ter cutoff limits the population that must be examined
to nSSAnP0 per iteration instead. The number of cali-
brations are dependent of nP0 and the filters ncal1 and
nncal2. In the first iteration, ncal1 calibrations were per-
formed and in the following rounds, ncal1 + ncal2 cali-
brations are performed.

In this work, the cutoffs have been chosen to nSSA =
300, ncal1 = 5 (10 in the first iteration), ncal2 = 4 and
nQ = 1 in the work presented here. In this work the
loops were iterated for parameter sets ranging from
one parameter to seven parameters. The total num-
ber of calibrations performed is around five in the first
iteration and nine in the rest, totally 59 calibrations.

5 Calibration results

5.1 Calibration

The calibration of the model was done for many pa-
rameter sets in the calibration loop of the SSA method.
The parameter set with the best objective value with
seven parameters, p6,13,16,17,22,24,47 , is called C3 and
is shown in Figure 3. The parameters in the set con-
sist of four kout parameters for SH1, SH3 and all RHs,
one valve parameter and two sensor parameters. No
parameters for masses, volumes and heat transfer in
walls and gas side are represented. The calibration
reduces the objective function value from 1.85 with
nominal parameter values to 0.585 and improves all
eight objective signals. The largest improvements are
for T1, T4,T6 and P, with 72%, 70%, 87% and 74%
reduction.

In Table 4 the calibrated parameters with confidence
interval for the three calibrations C1−3 are compared.
The confidence intervals are narrow for all parameters,
except for p24 that is kout in SH3. This parameter af-
fects mainly the objective T6, which transient for the
nominal parameter value are far below the measure-
ments. To increase the temperature, the obtained pa-
rameter value is therefore very high, with the values
64.9, 79.3 and 79.5. The confidence intervals are al-
most as big as the parameter which is a very inaccurate
parameter. The α and κ values are also notably worse
at the optimum.

5.2 Parameter selection

The SSA analysis was performed for the parameters
and is shown in Figure 4. The evaluated parameter
sets results in dot clouds that move upwards and to
the right, the more parameters that are added. The dot
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Figure 3: Simulation profiles from the best calibration
for all states in the objective. The measurement data
(dotted line) are shown together with the simulation
with nominal (solid line) and optimal (dashed line) pa-
rameter values are shown in solid and dashed line.

parameter C1 C2 C3

p6 3.89±0.45 4.28±0.62 4.58±0.71
p13 1.97±0.027 2.17±0.043 2.16±0.042
p16 0.92±0.023 0.964±0.027
p17 0.66±0.020 0.665±0.020
p22 0.38±0.014 0.375±0.014
p23 0.54±0.021
p24 64.9±46.2 79.3±78.7 79.5±79.5
p47 9.6±0.078 1.26±0.069

Table 4: Calibrated parameter values with a 95% con-
fidence interval for calibrations C1 and C2. All param-
eters are scaled with the nominal parameter value.
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Figure 4: The SSA analysis for np from 1 to 8. The
dot clouds move to the right and up when parameters
are added. Parameter sets with best θ is marked as (•)
and parameters from the best objective loop (×)

clouds are created from the SSA loop of the SSA anal-
ysis, with 64 parameter sets for np = 1 and 64*300
parameter sets for np from two to eight. The parame-
ter sets with the lowest values of θ (Pcal1) are shown
with black dots and are located in the lower left corner
in each figure. Those parameter sets were calibrated
and the objective values are shown in Table 5. The
objective value improves when parameters are added
for np from one to five. After that the calibration gets
worse for np equal to six and seven.

In the calibration loop of the SSA analysis, the best
parameter sets were combined with new parameters to
create Pcal2 that were calibrated and is presented in
Table 6. Those parameter sets, marked with crosses
are also located in the lower left corner for np from two
to seven. The objective values of this loop gets better
for every iteration as new parameters are added to the
best parameter set of the previous iteration until eight
parameters are reached where the calibrations do not
converge. Also the α and κ values for those parameter
sets are very bad.

In Table 5 there is 20 unique parameters {5, 6, 12,
13, 14, 16, 17, 22, 23, 24, 26, 43, 45, 46, 47, 48, 52, 53,
54, 55} where {5,6,12,13,14,16} are merged parame-
ters. Seven of the parameters, {5,6,17,22,23,24,26}
are kout parameters, while only one parameter, {12}
is a kin parameter, indicating that the parameters for
heat transfer between the metal wall to the cold wa-
ter have greater impact than the heat transfer between
the exhaust gas and the metal wall. No drum or
header parameter are visible in the best parameter
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Table 5: The calibration results from the left loop of
the SSA analysis, sorted by θ . *C1 † The 8th value
of θ

parameters log10(α) log10(κ) θ obj

p5 -1.87 0 -1.87 1.77
p14 -1.65 0 -1.65 1.77
p16 -1.65 0 -1.65 1.77
p17 -1.56 0 -1.56 1.85
p22 -1.55 0 -1.55 1.85

†p24 -1.46 0 -1.46 1.03

p6,23 -1.51 0.0369 -1.48 1.79
p6,22 -1.54 0.0947 -1.45 1.79
p6,17 -1.54 0.109 -1.43 1.8
p5,14 -1.7 0.31 -1.39 1.73
p5,16 -1.7 0.31 -1.39 1.73

p6,23,24 -1.67 0.152 -1.52 0.832
p6,17,24 -1.69 0.19 -1.5 0.895
p6,24,47 -1.64 0.147 -1.49 0.899
p6,24,54 -1.64 0.148 -1.49 0.899
p6,22,24 -1.68 0.192 -1.49 0.808

p6,17,24,47 -1.6 0.225 -1.38 0.895
p6,17,24,54 -1.6 0.225 -1.38 0.895
p13,26,46,48 -1.44 0.0756 -1.36 1.53
p13,26,46,55 -1.44 0.0756 -1.36 1.58
p13,26,48,53 -1.44 0.0761 -1.36 1.53

*p6,13,23,24,47 -1.5 0.227 -1.28 0.675
p6,13,23,24,54 -1.5 0.227 -1.28 0.675
p12,13,46,48,54 -1.41 0.144 -1.27 1.53
p12,13,46,54,55 -1.41 0.144 -1.27 1.58
p12,13,46,47,48 -1.41 0.144 -1.27 1.53

p12,13,45,46,48,54 -1.34 0.202 -1.14 1.52
p12,13,45,46,54,55 -1.34 0.202 -1.14 1.57
p12,13,45,48,53,54 -1.34 0.202 -1.14 1.52
p12,13,45,53,54,55 -1.34 0.202 -1.14 1.56
p12,13,45,46,47,48 -1.34 0.203 -1.14 1.52

p13,26,43,45,46,48,54 -1.27 0.264 -1.01 1.49
p13,26,43,45,46,54,55 -1.27 0.264 -1.01 1.54
p13,26,43,45,48,53,54 -1.27 0.264 -1.01 1.49
p13,26,43,45,53,54,55 -1.27 0.264 -1.01 1.54
p13,26,43,46,48,52,54 -1.27 0.264 -1.01 1.5

sets of the analysis. For the valves, only the merged
parameter {13} is visible in the tables. There are
many sensor parameters visible in the result, namely
{43,45,46,47,48,52,53,54,55}, corresponding to the
sensors for T1,4,5,6,7.

In Table 6 there is only 11 unique parameters
6,13,14,16,17,22,24,47,48,54,55. All of those are
not surprisingly also visible in Table 5, because they
are partly derived from the best parameter sets of that
table.

The parameter set with the lowest objective value
for parameter sets with one parameter is p24 with
Q = 1.03. This parameter is also visible for all of the
best parameter sets, even though the confidence inter-
vals are wide. The α and κ values at the optimum
were much worse at the optimum than for the nominal
parameter values.

The parameter sets with p47 and p54 are replace-
able in several places, for instance in p6,22,24,47 and
p6,22,24,54 that give the same objective value. Both of

Table 6: The calibration results from the right loop of
the SSA analysis, sorted by θ . ** C2 ***C3

parameters log10(α) log10(κ) θ obj

p17,24 -1.36 0.119 -1.24 1.04
p24,47 -1.28 0.0518 -1.23 1.04
p24,54 -1.28 0.0522 -1.23 1.04
p22,24 -1.36 0.125 -1.23 1

p6,22,24 -1.26 0.192 -1.07 0.808
p16,22,24 -1.29 0.263 -1.02 0.935
p14,22,24 -1.29 0.263 -1.02 0.935
p22,24,47 -1.22 0.204 -1.02 1

p6,22,24,47 -1.16 0.24 -0.923 0.806
p6,22,24,54 -1.16 0.24 -0.923 0.806
p6,13,22,24 -1.15 0.256 -0.89 0.662
p6,17,22,24 -1.18 0.299 -0.88 0.773

p6,13,22,24,47 -1.08 0.262 -0.823 0.659
p6,13,22,24,54 -1.08 0.262 -0.822 0.663
p6,13,16,22,24 -1.11 0.389 -0.718 0.655
p6,13,14,22,24 -1.11 0.39 -0.717 0.741

**p6,13,16,17,22,24 -1.05 0.488 -0.563 0.583
p6,13,16,22,24,47 -1.02 0.528 -0.487 0.655
p6,13,16,22,24,54 -1.01 0.528 -0.487 0.655
p6,13,16,22,24,48 -0.999 0.536 -0.463 0.666

***p6,13,16,17,22,24,47 -0.975 0.576 -0.398 0.585
p6,13,16,17,22,24,54 -0.975 0.576 -0.398 0.585
p6,13,16,17,22,24,48 -0.961 0.579 -0.383 0.598
p6,13,16,17,22,24,55 -0.961 0.579 -0.382 0.596

those are sensor parameters for output T5. Also the T6
parameters p48 and p55 seem replaceable, apart from
some small difference in objective value.

6 Discussion and summary

The objective function values became better when
adding more parameters, but reached a point where
adding of parameters made the calibrations too hard
to solve. The best parameter set (C3) chose parameters
from different parts of the model to minimize as many
outputs as possible in the objective function.

The trend in the calibrations is that the parameter
sets get harder to solve when more parameters are
added and take more iterations. For eight parame-
ters and more the calibrations fail to converge more
often. Apart from that the calibrations are more com-
plex when parameters are added, it is also harder to
find independent parameters for a larger parameter set.
Ill-conditioned calibration problems leads to parame-
ter steps that make the simulations infeasible.

The analysis shows that the kout parameters occur
more frequently than the kin parameters and indicates
that the cold water side has greater impact of the model
than the exhaust gas side. This is probably because the
exhaust gas is only statically modeled in contrast to
the cold water side. The analysis also shows that some
parameters are replaceable, such as p47 and p54. Only
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one of the parameters are therefore needed for further
analysis.

The merged parameters performed well in the anal-
ysis where six of the 11 merged parameters appeared
in the best parameter sets. Merged parameters are ef-
fective for parameters that is expected to behave sim-
ilarly and keeps the number of parameters in the cali-
bration problem less.

The information to the SSA analysis is estimated
from uncalibrated parameters but give a good indica-
tion about the best parameter sets considering the α
and κ values. The values are dependent of the parame-
ter values and will obviously change for the calibrated
parameter values, but hopefully not much. For most
parameter sets, the α and κ values stayed roughly the
same, but for parameter sets including p24 resulted in
worse α and κ values at the optimum. Still, the anal-
ysis highlights p24 as a crucial parameter, that can de-
crease the objective function value the most, but with
very wide confidence intervals as a result. A further
analysis is required to understand this behavior.

Both the SSA and calibration loop of the analysis
is dependent of the cutoff numbers for good perfor-
mance. The calibration numbers were consciously set
to low numbers, because of long calibration times that
were performed on a single computer. The numbers
can be set higher for a more thorough analysis if time
or a computer cluster is available. The result shown
here proves that satisfactory calibration results can be
reached even with low cutoff numbers.

The parameter estimation results are in good com-
pliance to the process dynamics. The subset selection
algorithm effectively shows which parameters that are
important and which parameters that can be left out.
Considering the few number of calibrations that were
performed, the result is satisfactory.
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Restarting algorithms for simulation problems with
discontinuities
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Abstract

Modelica’s language support includes so-called events
for describing discontinuities. Modern integrating en-
vironments, like Assimulo, provide elaborate event de-
tection and event handling methods. In addition, the
overall performance of a simulation of models with
discontinuities (hybrid models) depends strongly on
the methods for restarting the integration after an event
detection. The present paper reviews two restarting
methods for multistep methods, both based on Runge–
Kutta starters, and presents preliminary first experi-
ments with Assimulo and LSODAR as a proof of con-
cept, which motivates to apply the technique to hy-
brid systems described in Modelica and simulated by
JModelica.org/PyFMI and Assimulo [1, 3, 2].

Keywords: events, discontinuities, hybrid systems,
multistep method, Runge–Kutta method, simulation
restart

1 Introduction

When dealing with hybrid systems, i.e. dynamic sys-
tems with state or time discontinuities, much empha-
sis has been put on the modeling aspect. Attempts to
standardize the formulation of events and algorithms
for event detection were in the focus of development
and research, e.g. [4]. On the other hand, the question
of restarting complex integration methods like mul-
tistep methods, with their sophisticated internal error
and order control algorithms and internal data repre-
sentations, did not attract much attention. In this pa-
per we want to take up and review two early ideas for
restarting and to present some experiments using the
JModerlica.org - PyFMI - Assimulo toolchain.

A multistep method is classically started by step-
wise increasing the order of the method, starting with a

∗partly supported by LCCC - Lund Center for Control of Com-
plex Engineering Systems

first order method (implicit Euler method) and leading
to a method having the operational order of the prob-
lem at hand. Simulations are often done for a set of
parameterized models for which the operational order
and also good guesses of initial step sizes are avail-
able from other simulation runs. Thus, a goal for im-
proving the integration performance is to avoid costly
starting phases and directly start the integrator with a
method already having the operational order. To start
such a higher order method several internal values are
required. Here we consider two ideas for providing
these values. In both cases the starting values are ob-
tained from the stage values of a single Runge–Kutta
step of a specially designed method. One of them uses
state values, while the other is geared to Nordsieck
based multistep methods like LSODAR.

2 Runge–Kutta starter with state val-
ues

We demonstrate the principle by constructing a
Runge–Kutta starter for a third order multistep
method, [8].

Furthermore, we construct two error estimates for
determining the starting step of both the Runge–Kutta
starter and a class of multistep methods, i.e. Adams
methods.

Such a Runge–Kutta starter has to have an internal
stage of order 3 as soon as possible and all subsequent
stages need to be at least of order 3. In addition; the
final result should be of order 4 for the purpose of er-
ror estimation. It is well-known that to get third-order
accuracy at least three internal stages are necessary,
and to conserve this accuracy for subsequent stages we
need to aim for a Runge–Kutta method with at least six
stages, [5]. We will thus consider a 6-stage Runge–
Kutta method.

For the initial value problem

y′ = f (t,y), y(0) = y0, (1)
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Figure 1: Runge–Kutta starter after a discontinuity

an s-stage explicit Runge–Kutta method can be written
in the form,

ki := f (t0 + ciH,gi−1),

gi :=y0 + H
i

∑
j=1

ai jk j, i = 1, . . . ,s,

y1 :=y0 + H
s

∑
j=1

b jk j,

(2)

where y1 is the numerical solution at t1 = t0 + H, H is
the Runge–Kutta step size and ki are stage derivatives.

f may be discontinuous but it is assumed to be
piecewise smooth.

In the construction of an order 4, 6-stage explicit
Runge–Kutta method, order conditions up to order
four need to be satisfied. Let

b : = (b1,b2, · · · ,bs)
T ,

ai : = (ai1,ai2, · · · ,aii),

Ci : = diag(c1, · · · ,ci),

Ai : = (a jk)
i
j,k=1,

ei : = (1,1, · · · ,1)T .

(3)

When deriving the stage order conditions, we make
use of the fact that in Eq. (2), the stage values gi and
yi have structurally the same form. Therefore, we can
derive the order conditions for internal stages in the
same way.
The order conditions for a fourth-order Runge–Kutta
method are

• order 1
bT es = 1.

• order 2

bTCses =
1
2
.

• order 3
bTC2

s es =
1
3
,

bT AsCses =
1
6
.

• order 4

bTC3
s es =

1
4
,

bTCsAsCses =
1
8
,

bT AsC2
s es =

1
12
,

bT A2
sCses =

1
24
.

(4)

Additionally we require
s

∑
j=1

ai j = ci. (5)

The remaining order conditions for internal stages i =
4,5,6 are

• order 2
aT

i Ciei =
1
2

c2
i .

• order 3

aT
i C2

i ei =
1
3

c3
i ,

aT
i AiCiei =

1
6

c3
i .

(6)

We want to both obtain third-order accuracy and min-
imize the truncation error bound. Raltson [6] showed
that the third-order Runge-Kutta method which has
the minimal error bound among all third-order Runge–
Kutta methods is

k1 =h f (tn,yn),

k2 =h f (tn +
1
2

h,yn +
1
2

k1),

k3 =h f (tn +
3
4

h,yn +
3
4

k2),

yn+1 = yn +
2
9

k1 +
1
3

k2 +
4
9

k3.

(7)

This implies the Butcher tableau for the first four
stages is

0 0

1
2 c4

1
2 c4 0

3
4 c4 0 3

4 c4 0

c4
2
9 c4

1
3 c4

4
9 c4
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From condition (5) we find

a21 = c2, a31 = (1−θ)c3, a32 = θc3. (8)

We now substitute (6) and (5) in (4) to calculate the
values bi for the six stage Runge–Kutta method.

b2c3
2 + b3c3

3 + b4c3
4 + b5c3

5 + b6c3
6 =

1
4
,

b3c3θc3c2 +
1
2

b4c3
4 +

1
2

b5c3
5 +

1
2

b6c3
6 =

1
8
,

b3c3θc2
2 +

1
3

b4c3
4 +

1
3

b5c3
5 +

1
3

b6c3
6 =

1
12
,

1
6

b4c3
4 +

1
6

b5c3
5 +

1
6

b6c3
6 =

1
24
.

(9)

For the first three stages we require c2 6= 0,c3 6=
0 and θ 6= 0, otherwise a third-order Runge–Kutta
method cannot be obtained. So b2 = b3 = 0 and Equa-
tions (9) reduce to a single equation

b4c3
4 + b5c3

5 + b6c3
6 =

1
4
.

We repeat this process for order 2 and 3 conditions,
getting

b4c2
4 + b5c2

5 + b6c2
6 =

1
3
,

and

b4c4 + b5c5 + b6c6 =
1
2
.

respectively.
Here we have a system of equations for given

c4,c5,c6,




c4 c5 c6
c2

4 c2
5 c2

6
c3

4 c3
5 c3

6






b4
b5
b6


=




1
2
1
3
1
4


 .

We obtain a Vandermonde type matrix, which has, for
distinct c4,c5 and c6, a unique solution:

b1 = 1−b4−b5−b6,

b4 =
3−4c5−4c6 + 6c5c6

12c4(c4− c5)(c4− c6)
,

b5 =
3−4c4−4c6 + 6c4c6

12c5(c4− c5)(c5− c6)
,

b6 =
3−4c4−4c5 + 6c4c5

12c6(c4− c6)(c5− c6)
.

In order to obtain an equidistant grid for starting mul-
tistep methods, we can choose

c4 =
1
4
, c5 =

1
2
, c6 =

3
4
,

which gives

b1 = b2 = b3 = 0, b4 =
2
3
, b5 =−1

3
, b6 =

2
3
.

Finally, by solving the equations that guarantee the
remaining order conditions, we obtain the Butcher
tableau for the Runge–Kutta starter:

0 0

1
8

1
8 0

3
16 0 3

16 0

1
4

1
18

1
12

1
9 0

1
2

5
12 −1

3 −4
9 1 0

3
4 −1

4
3
4 1 −3

2
3
4 0

0 0 0 2
3 −1

3
2
3

We can apply the explicit Runge–Kutta starter to start
k = 3-step Adams methods. We need k data points
(ti, fi), i = n− k + 1, . . . ,n to compute the respective
polynomials for either the Adams–Moulton corrector
or the Adams–Bashforth predictor.

3 Error estimation and step size con-
trol

The error of the numerical solution depends on the
function f and on the step size H. The step size influ-
ences the size of the global error increment. Thus, for
a given tolerance the step size is chosen in such a way
that the global error increment meets a user-supplied
tolerance bound.

We use an embedded formula to obtain an error
estimate for the Runge–Kutta starter of the Adams
method. The estimation can be done by reusing the
available stages to produce a formula of different or-
der. To do so, we apply stages k4,k5,k6 of the Runge–
Kutta method in Section 2 and obtain ŷ1 by the third-
order Adams–Bashforth method. We generate the dif-
ference table

c4 = h k4
Ok5

c5 = 2h k5 O2k6
Ok6

c6 = 3h k6
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where h = H
4 and H is the Runge–Kutta step size. The

third-order Adams–Bashforth method is

ŷ1 = g6 + h
3

∑
i=1

γi−1Oi−1k6 = g6 + h
3

∑
i=1

γ?i ki+3, (10)

The latter is the Lagrange form of the Adams–
Bashforth method and

γ?1 = γ2 =
5
12
,

γ?2 =−γ1−2γ2 =−4
3
,

γ?3 = γ0 + γ1 + γ2 =
23
12
.

As we have

g6 = y0 + H
5

∑
j=1

a6 jk j, (11)

we can rewrite equation (10) as

ŷ1 = y0 + H
6

∑
j=1

b̂ jk j

Thus, the error estimate is

y1− ŷ1 =

y0 + H
6

∑
j=1

b jk j−
(

y0 + H
6

∑
j=1

b̂ jk j

)
=

h
6

∑
j=1

ê jk j, (12)

giving the following coefficients

j 1 2 3 4 5 6

b̂ j −1
4

3
4 1 −67

48
5

12
23
48

ê j
1
4 −3

4 −1 99
48 −3

4
3
16

This error estimation is the difference of a third-order
predictor and the fourth-order result of the Runge–
Kutta method that is applied to determine the step size
for the Runge–Kutta starter.

We will now develop a second error estimate, to de-
termine a step size for Adams method. We evaluate the
right-hand side function f at the solution value y1 and
call it k7. Then we generate the third-order Adams–
Moulton corrector using k5,k6,k7,

c5 = h k5
Ok6

c6 = 2h k6 O2k7
Ok7

c7 = 3h k7

The third-order approximation by the Adams–
Moulton method is

ỹ1 = g6 + h
3

∑
i=1

βi−1Oi−1k7 = g6 + h
3

∑
i=1

β ?
i ki+4, (13)

where the latter is the Lagrange form of the Adams–
Moulton corrector and

β ?
1 = β2 =− 1

12
,

β ?
2 =−β1−2β2 =

2
3
,

β ?
3 = β0 + β1 + β2 =

5
12
.

From Equation (11) we can rewrite the third-order
corrector in Runge–Kutta form

ỹ1 = y0 + H
7

∑
j=1

b̃ jk j.

resulting in the following table:

j 1 2 3 4 5 6 7

b̃ j −1
4

3
4 1 −3

2
35
48

1
6

5
48

ẽ j
1
4 −3

4 −1 13
6 −51

48
1
2 − 5

48

The error estimate is used in determining the step size
for starting the third-order Adams-Moulton method.

4 Runge–Kutta starter as an extrap-
olation method

The starting values of a multistep method can also
be stored as a differentiation array, which constitutes
the Nordsieck vector of scaled derivatives hiy(i)

i! , i =
0, . . . , p. It is possible to convert a vector of state val-
ues at consecutive grid points into a Nordsieck array
and vice versa without loss of accuracy. Classical mul-
tistep codes like LSODAR are based on Nordsieck for-
mulations.

Based on such a Nordsieck formulation an alterna-
tive way of constructing a Runge–Kutta starter was de-
veloped by Gear, [5]. Here, the asymptotic expansion
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of the global error of a base method is used to con-
struct a Runge-Kutta method with higher order stage
values.

We use the explicit Euler method as a base method
to compute ym

i (the super-script m refers to the corre-
sponding step size, hm = H

m ) for i = 1, . . . ,m, m =
p, p− 1, . . . ,1. From these values the terms in the
asymptotic expansion, [7],

ym
i = y(ihm) +

p

∑
q=1

eq(ihm)hq + O(H p+1). (14)

can successively be eliminated by an extrapolation
technique until a method of a required order is ob-
tained. The resulting method is known to be a Runge–
Kutta method.

We exemplify the approach by aiming for third-
order accurate Nordsieck values and restricting our-
selves to autonomous differential equations for sim-
plicity. The same process can be employed to obtain
higher order accuracy.

Let h = H
m , and integrate the autonomous form of

the differential equation (1) on the interval [y0,y0 +H]
with Euler’s method, using m steps of size H

m for m =
3,2,1.

For m = 3

y3
1 = y0 + h f (y0) = y0 + k1, k1 = h f (y0),

y3
2 = y3

1 + h f (y3
1) = y0 + k1 + k2, k2 = h f (y3

1),
y3

3 = y3
2 + h f (y3

2) = y0 + k1 + k2 + k3, k3 = h f (y3
2).
(15)

For m = 2

y2
1 = y0 +

3
2

h f (y0) = y0 +
3
2

k1,

y2
2 = y3

1 +
3
2

h f (y3
1) = y0 +

3
2

k1 +
3
2

k4, k4 = h f (y2
1).

(16)

For m = 1

y1
1 = y0 + 3h f (y0) = y0 + 3k1.

(17)

with h = H
3 . We use approxmation formulas for higher

derivatives

hk
my(k)(

H
2

) =
m

∑
i=0

diky(ihm)+
p

∑
s=k+1

cskhs
mys(

H
2

)

+O(H p+1), m≥ k

and (14) to obtain, after some algebraic manipulations,

D3
3 = y3

3−3y3
2 + 3y3

1− y0 = h3y(3),

D3
2 = y3

3− y3
2− y3

1 + y0 = 2h2y(2) + 2h3e(2)
1 ,

D2
2 = y2

2−2y2
1 + y0 = (

3h
2

)2y(2) +(
3h
2

)3e(2)
1 ,

D3
1 = y3

2− y3
1 = hy(1) + h2e(1)

1 + h3e(1)
2 +

h3

24
y(3),

D2
1 = y2

2− y0 = 3hy(1) +
9
2

h2e(1)
1 +

27
4

h3e(1)
2 +

9
8

h3y(3),

D1
1 = y1

1− y0 = 3hy(1) + 9h2e(1)
1 + 27h3e(1)

2 +
27
24

h3y(3).

(18)

All derivatives are evaluated at H
2 and O(h4) terms are

dropped. Estimates of the derivatives can be derived at
any point within a constant multiple of the interval H
with the same accuracy. We solve the system (18) to
remove the error terms for hky(k)(H

2 ), for k = 1, . . . ,m,
to get

h3y(3)(
H
2

) = D3
3 +O(h4),

h2y(2)(
H
2

) =
3
2

D3
2−

8
9

D2
2 +O(h4),

hy(1)(
H
2

) =
9
2

D3
1−

4
3

D2
1 +

1
6

D1
1 +

9
8

D3
3 +O(h4).

(19)

The Dm
k can be expressed as combinations of stage val-

ues ki. All O(h4) terms are neglected.

D3
3 = k1−2k2 + k3,

D3
2 =−k1 + k3,

D2
2 =−3

2
k1 +

3
2

k4,

D3
1 = k2,

D2
1 =

3
2

k1 +
3
2

k4,

D1
1 = 3k1.

(20)

From (19) and (20),

h3y(3)(
H
2

) = k1−2k2 + k3 +O(h4),

h2y(2)(
H
2

) =−1
6

k1 +
3
2

k3−
4
3

k4 +O(h4),

hy(1)(
H
2

) =−3
8

k1 +
9
4

k2 +
9
8

k3−2k4 +O(h4),

y(
H
2

) = y0 +
3
16

k1 +
18
8

k2 +
9

16
k3−

12
8

k4 +O(h4).

(21)

The first element of the Nordsieck vector, y(H
2 ), is

computed by Taylor expansion.
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It follows that

Γ H
2

=




1 0 0 0
3

16 −3
8 −1

6 1
18
8

9
4 0 −2

9
16

9
8

3
2 1

−12
8 −2 −4

3 0




. (22)

If the derivatives are instead computed at the origin,
the matrix above becomes

Γ0 =




1 0 0 0
0 1 −5

3 1

0 0 3 −2

0 0 0 1

0 0 −4
3 0




. (23)

The matrix A of coefficients αi, j in equation (2) is ob-
tained from Equations (15) and (16)

A =




0 0 0 0
1 0 0 0
1 1 0 0
3
2 0 0 0


 . (24)

For a fourth-order method we need at least six func-
tion evaluations, [5], and the relevant matrices Γ0 and
A are

Γ0 =




1 0 0 0 0
0 1 −5

6
4
9 −1

9

0 0 0 0 0

0 0 1
2 −4

9
1
9

0 0 7
3 −19

9
7
9

0 0 −3 10
3 −4

3

0 0 1 −11
9

5
9




,

A =




0 0 0 0 0 0
1 0 0 0 0 0

0 2 0 0 0 0
3
4 0 9

4 0 0 0
1
2 1 1

2 2 0 0
1

12 2 1
4

2
3 2 0




.

The cost of this process in terms of function eval-
uations is 1 + p(p−1)

2 , since the interval H is inte-
grated by Euler’s method m times with step size H

m for

m = p, p− 1, . . . ,1. For the first value of m we have
p function evaluations because the initial value of y′

has to be evaluated once, so for the next value of m we
have p−2 function evaluations, and so on.

We constructed a Nordsieck vector with third-order
accuracy. To do this we used four stages k1,k2,k3,k4
as in (15) and (16) with lower order and an extrapo-
lation technique. It can be shown that there exists no
method of the same order with less stages and thus less
function evaluations.

5 Order tests

To verify that the starter indeed achieves the expected
order we consider the harmonic oscillator

y′′ =−4y, y0 = 1, y′0 = 0.

1
3

Figure 2: Both Runge–Kutta starters achieved third-
order accuracy when solving the harmonic oscillator
problem with the 3-step Adams-Moulton method

6 The bouncing ball test example

In this section we demonstrate the method on the ex-
ample of a bouncing ball with linear damping d = 0.1:

ẏ1 = y2

ẏ2 = −dy1 + 9.81

The bounces are modeled using a coefficient of resti-
tution was chosen to be c = 0.88 to give the sys-
tem sufficiently many impacts to be able to make a
statement about the effect of restarting, see Fig. 3.
The model includes two events, one to trigger bounc-
ing and a second one which triggers the upper turn-
ing point. At the upper turning point the differen-
tial equation and its states remain unaltered, and only
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Figure 3: A simulation of a bouncing ball (damping:
d = 0.1, coefficient of restitution c = 0.88).

the switch to control the bouncing event becomes ac-
tivated. At the bouncing event the velocity ẏ(t−) is
altered to ẏ(t+) =−cẏ(t−).

In Fig. 4 the step size and order history of both
restarting techniques is compared. The classical start-
ing procedure clearly shows a drop in order and step
size. The method recovers quite quickly from the re-
duced step size as LSODAR allows exceptionally big
step size changes during the initialization phase.

0 1 2 3 4 5 6 7 83.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0 Classical restart: Step size

0 1 2 3 4 5 6 7 84.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0Runge-Kutta restart: Step size

0 1 2 3 4 5 6 7 80

1

2

3

4

5 Classical restart: Order

0 1 2 3 4 5 6 7 81.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0 Runge-Kutta restart: Order

Figure 4: Comparison of the step size and order his-
tory for the two restarting approaches. A logarithmic
scale is used for the step size plot.

The run statistics, cf. Tab. 1 show the effect of the
Runge–Kutta starter in Assimulo. The gain in the
number of function evaluations for this example is
about 58%.

7 Conclusions

The aim of this paper is to study the effect of Runge–
Kutta restarting techniques on the performance of the

Classic starter Runge–Kutta starter
# steps 455 129
# function evals 1027 428
# event function
evals

919 538

# events 38 37

Table 1: Run time statistics for the bouncing ball ex-
ample with absolute and relative tolerance set to 10−8.

simulation of hybrid systems. Tests were made on a
system with relatively small numbers of discontinu-
ities. The tests give a clear indication that investigat-
ing a more sophisticated restarting procedure like the
fourth-order Runge–Kutta starter presented here has a
potential impact on the overall performance of an sim-
ulator.

The flexibility in selecting the order of the restarter
as well as doing error control of the restarter is the
topic of future research.
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Abstract

Often integrating ordinary differential equations or
differential algebraic equations (DAE) do not consti-
tute the problem alone. A common complement is
finding the root of an algebraic function (an event
function) that depends on the states of the problem.
This formulation of a model enables the possibility
of including discontinuities, an important part of the
Functional Mock-up Interface standard which allows
hybrid models of differential algebraic equations. The
problem of root-finding during integration is however
difficult. Both in a theoretical aspect and as a software
problem.

An implementation of software for root-finding is
done in Assimulo, a Python/Cython wrapper for in-
tegrators. The implementation takes the Functional
Mock-up Interface standard into consideration. The
implementation is made usable for a wide variety of
integration algorithms and is also verified and bench-
marked with advanced industrial models, showing
good indications of being robust and scaling well for
large systems.

Keywords:FMI; JModelica.org; Assimulo; events;
discontinuities; Illinois algorithm; safeguard

1 Introduction

Models based on differential equations may contain
discontinuities. One simple example is the bouncing
ball. Gravity acting on the ball is modelled with a dif-
ferential equation while the bouncing on the floor will

The authors gratefully acknowledge the support from the
Lund Center for Control of Complex Engineering Systems
(LCCC).

result in discontinuities in the velocity. A result from
the velocity changing sign by impact. A reasonable
way to model this would be to restart the integration
of the differential equation with new initial values as
the ball hits the floor. In this way, the discontinuity is
modelled with what is called an event and the handling
of that event (event handling).

Models with discontinuities are not only interest-
ing theoretically but are also widely used in industry,
something the Functional Mock-up Interface (FMI)
standard 1 contributes to by making distribution and
use of these models convenient. The explanation for
why it is used by the industry can be found in [3],
where the elements that give rise to discontinuities in
models are listed. Some of them are:

• Friction

• Impact phenomena

• The degrees of freedom vary in time

• Time dependent input functions

Most advanced models in industry consist of many
separate but interacting parts and, therefore, have at
least one or some of the listed properties. With to-
day’s modelling tools and computational power, more
and more advanced models become realistic to sim-
ulate. Which means new and increased demands on
the integrators to support the solving of models with
discontinuities robustly and with good scaling of the
performance regarding the size of the models.

There are many difficulties with having discontinu-
ities in differential equations. Missing a discontinuity
or acting on the wrong discontinuity can be disastrous,

1See https://www.fmi-standard.org/.

DOI
10.3384/ECP14096827

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

827



leading to integrating the wrong equations or missing
impacts. Furthermore the integration methods make
assumptions on the smoothness of the solution and the
incorrect handling of the discontinuities will most cer-
tainly violate these assumptions. The result will be
an incorrect error estimate, leading to a significant de-
crease in the integration performance[6], or even lead-
ing to an incorrect solution.

To construct a state of the art event detection algo-
rithm, undertaking these considerations of the need for
correct event handling and performance, the demands
will be that it should be robust and scale well, handling
large systems originating from industry. It should also
be clear what data is expected from the user, and in re-
turn the algorithm should guarantee correct event de-
tection and event handling.

The contributions of this article is an implementa-
tion of an event algorithm with robust event handling
and good performance. Using a safeguard and apply-
ing the domain formulation (used for event localiza-
tion in the FMI specification, explained in Section 2.4)
as opposed to the zero-crossing paradigm that uses a
sign change to detect events. This algorithm converge
and gains a robust performance and has an advantage
for a special set of problems, this will be seen for the
clutch example later. Given the additions to the event
algorithm, a benchmark using advanced industry rele-
vant models following the FMI standard was made to
ensure that the performance is not compromised. In
Assimulo2 the algorithm can be utilized as a module
that can be mounted onto solvers as needed. This re-
sult in an extension of Sundials and increases the num-
ber of solvers that can handle discontinuities and there-
fore the number of solvers that support the FMI stan-
dard.

Section 2 starts by giving background and motiva-
tion and moves on to highlighting the principles of
event detection and event localization and the difficul-
ties associated with it. In Section 3, the ideas for the
event location algorithm are laid out. Leading up to
the presentation of the algorithm in Section 4, where
details of the implementation are discussed. Section
5 demonstrates and verifies the implementation on a
number of test examples together with testing the per-
formance. A summary and critical examination of the
algorithm and the results are given in Section 6.

2See http://www.jmodelica.org/assimulo.

2 Background

Assimulo is a Cython/Python wrapper around various
Ordinary Differential Equations (ODE) and Differen-
tial Algebraic Equations (DAE) solvers. An important
aspect of Assimulo is to make it easy to access both
state of the art solvers and more experimental solvers
for both industry and the academic world. Assimulo
is also the back-end simulation engine for JModel-
ica.org.

On the other hand, for enabling the exchange of
models in industry and the academic world there is the
FMI standard, which is a standardized way of formu-
lating models of ODEs. PyFMI can be used to wrap
models that are instances of the FMI standard (FMUs)
making them easy to simulate with Assimulo.

A powerful use of Assimulo and the FMI would be
to give industry a larger variety of solvers from the aca-
demic world, while the academic world is given access
to a large number of relevant models from industry,
offering remedies for two weaknesses often present in
the world of numerics.

The FMI allows advanced hybrid dynamic models
by also allowing event functions. This standard there-
fore demands that the solver can handle discontinuities
in the form of events. Currently, the only solvers in
Assimulo that can do so are those of Sundials [12] and
LSODAR and many solvers do not have the possibil-
ity of handling discontinuities on their own, leading to
the need of a module in Assimulo that can handle the
discontinuities for all solvers.

2.1 A motivating example

A motivational example for when the zero-crossing
approach fail to detect the event correctly is:

model motivating_example

Real y;

Real x(start = 1.0);

equation

y = noEvent(if 1-time > 0 then (1-time)^5

else 0);

der(x) = if y <= 0 then -x else x;

end motivating_example;

The model has a variable y that smoothly goes to
zero at t = 1 which should result in an event there.
With the usual approach for detecting events, using an
FMU from JModelica.org, the event is found signifi-
cantly later than it occurred because the event is not
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localized. This is especially a problem when the inte-
grator take large steps. It is clear that the robustness of
the event detection is questionable in for this case.

With an FMU from Dymola the event is not detected
at all.

2.2 The theory of event location

Integration methods are dependent on that the problem
has a continuous solution with continuous derivatives
to a certain order [3]. Moreover, mathematically, con-
tinuity is needed to guarantee a unique solution. For
example for the problem of an explicit ODE

ẏ(t) = f (t,y(t)), y(t0) = y0,

f should be continuous in t and Lipschitz continu-
ous in y to guarantee a unique solution by the Picard-
Lindelöf theorem. This is a big concern with multi-
step methods, which will incorrectly use information
before and after discontinuities if the problem is inte-
grated straight forwardly without explicit event han-
dling.

To avoid integrating over a discontinuity, the event
formulation can be used. One way of looking at a
problem formulated with events is to imagine that it
has two states, each state representing a different con-
tinuous right hand side. The discontinuity then be-
comes switching between these two states (an event).
More formally, the point in time of switching is de-
cided by the sign change of an event function, g(t,y),
and at this time the integration is re-initialized with
updated continuous variables and discrete variables,
where the different states are represented by discrete
variables that only change at events. For example, the
discontinuous problem:

ẏ = f (t,y) = |y|,
is rewritten with the event formulation as:

ẏ = f (t,y,s) =

{
y if s = s1

−y if s = s2,

g(t,y,s) = y,

where g and f are continuous for a fixed value of the
discrete state s (that represent a state). The downside
being that this add a root-finding problem for the event
function g on the interval of the latest time steps, tn and
tn+1, in case an event is detected.

What is described in this section is usually called
discontinuity handling. It can intuitively be divided
into three steps:

• Event detection

• Event localization (in [tn, tn+1])

• Event handling

The detection is often done by checking the sign of
g after every time step. Locating the event is done
with a root-finding algorithm and the event handling is
mainly a modelling question that is done by the user.

The integrating of ODEs with discontinuities has re-
ceived a lot of attention over the years. Many of the
differences between the approaches is how g will be
represented on [tn, tn+1] and how the time of the event
is localized.

Most of the methods for localizing the event require
the ability to evaluate g(t,y) on [tn, tn+1]. In doing so
effectively, a continuous extension of y(t) on [tn, tn+1]
is desired. Not using a continuous representation when
solving problems with discontinuities result in larger
global error and more evaluations of f , see [4]. Also,
the dependence between the global error and the tol-
erance was smoother for problems with discontinu-
ities when using an interpolation polynomial for root-
finding.

Further theoretical results strengthening the use of
interpolation polynomials for problems with disconti-
nuities are that if the interpolation polynomial is of the
same order as the integration method the entire method
has this order [16].

Besides the representation of y with an interpola-
tion polynomial, there is the idea that additional states
could be introduced through new state equations of the
form ẏny+1:ny+ng = ġ, where ny is the dimension of y
and ng is the dimension of g [2] [17]. This will force
the integrator to take steps such that the dynamics of g
is captured, if this is not the case it is more likely that
an event will be missed due to two changes in sign of
g are canceled out or that not the first event of many
on [tn, tn+1] is found.

2.2.1 The root-finding problem

The root-finding problem for localizing the event with
the event function, g, have the properties that g ∈
C0 (on a bounded interval [a,b]) and g(a)g(b) < 0.
Through the intermediate value theorem, the existence
of a zero in the interval [a,b] is guaranteed. Due to
the nature of solving the problem numerically, the zero
can often not be found exactly. Therefore the problem
is said to be solved if an interval [a∗,b∗] is found, such
that:
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g(a∗)g(b∗)< 0 and |a∗−b∗|< δ .

This means that the zero of g is contained in a small
interval of length δ . Also, note how the condition
g(a)g(b) < 0 functions as an enclosing property; this
will from here on be known as a regula falsi. The goal
is to find an algorithm that always converge and do-
ing so as quickly as possible for a wide range of func-
tions. The goal can be considered delicate because of
the large spectrum of functions that are allowed.

2.3 Integrators in Assimulo

Presented here are some of the ODE integrators
wrapped by Assimulo that are suited to be used to-
gether with an event localization algorithm and there-
fore use to simulate FMUs. Their types, orders and
interpolation are listed.

Explicit and Implicit Euler: Fixed step-size meth-
ods of order 1 with linear interpolation implemented.

RungeKutta34: Adaptive Runge-Kutta of order
4(3) with a Third-order Hermitian polynomial for in-
terpolation.

Radau5ODE: Runge-Kutta method based on
Radau IIA of order 5, with interpolation from its col-
location solution. The interpolation polynomial is of
order 3 [9] [10].

Dopri5: Runge-Kutta method, is of order 5(4) with
an interpolation of order 4 [9] [10].

RodasODE: A Rosenbrock method of order 4(3).
The order of the interpolation is not stated explicitly,
but it is said to fulfil conditions such that the continu-
ous solution is of the same order as the discrete points.
Uses variable step-size [9] [10].

CVode: Uses BDF methods for stiff problems and
Adams-Moulton methods for non-stiff problems. For
both cases, the solver is of variable-order and has vari-
able step-size. Contains an internal event localization
algorithm [12].

2.4 FMI semantic and domain formulation

The condition that an event occurs when g changes
sign (a change between g< 0 and g> 0, zero-crossing
formulation) means that the zero needs to be treated
as an exception. An option is that one should instead
look for an alternation between the domains g< 0 and
g ≥ 0 [14]. This leads to a formulation similar to the
event formulation in the FMI standard, where the en-
closing and detection properties (regula falsi) change

from g(a)g(b)< 0 to (g(a)> 0)
⊕

(g(b)> 0)3.

3 Event algorithm

3.1 Domain or zero-crossing formulation

The arguments for using the domain formulation, in
addition to being consistent with the FMI standard, are
that the zero is no longer a special case. [11].

The FMI formulation also has a major advantage
when modeling systems that can take an unknown in-
put. Let us suppose that g(t,y) = u(t), where u is a
signal that can become and stay at zero. A practical ex-
ample would be if u is the power to a system. Imagine
now that the system as a safety measure has a magnet-
locking system or clutches that locks when the power
disappears. An event is then expected when u> 0 goes
to u≤ 0 or vice versa. This is an intuitive way to state
the model and would, with the zero-crossing formula-
tion, force the user to modify g or the inequality with a
small ε to ensure zero-crossing. Moreover, the choice
of ε is often not an easy task in this case because of
scaling.

3.2 Event detection

One of the usual ways to detect an event is to check
the regula falsi for g(tn,yn),g(tn+1,yn+1) after having
integrated from tn to tn+1. Other ways are, of course,
possible - such as also checking g in the middle of
[tn, tn+1] - but these are considerably slower. This is
the case for many of the more sophisticated methods
for detecting events and they furthermore demand ac-
cess to the partial derivatives of g. This is also the case
for the methods of adding extra states. Demanding the
user to supply these or compute them numerically, giv-
ing the user a solver that scales badly (computing the
derivatives numerically would also result in extra eval-
uations of g) is not an option. It does not align with our
demands of speed, it would also exclude models of the
FMI standard.

Going with the simpler method of checking for a
regula falsi, there is the possibility of having two
events in [tn, tn+1] for a component of g. This is a
problem, as pointed out in Section 2.2. The practi-
cal solution used here lies in letting the user supply a
maximum stepping length, hmax, such that all events
are separated by at least hmax in time.

3The logical symbol
⊕

is XOR and in code the condition
would be (g(a)> 0)! = (g(b)> 0)
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3.3 Locating the event

A root-finding algorithm that is usually used in this
context is the Illinois algorithm [5] [13] [12] 4. Natu-
rally, it gives fast convergence for most functions when
doing event localization. There are of course other
root-finding algorithms that would perform well for
event localization, Illinois is however well tested. Fur-
thermore, if g is multidimensional and the first root in
time should be found for any of the components of g
and this vectorization is best done for the Illinois algo-
rithm.

The Illinois algorithm uses a linear interpolation
that weights the function values to ensure conver-
gence. The weight is applied so that the algorithm will
not keep any bracket constant indefinitely. This gives
major advantages when it comes to convergence com-
pared to the false position algorithm. This is especially
evident for all convex functions, a comparison can be
seen in Figure 1.

An improvement can be done for when the function
is zero for most of the interval as Illinois algorithm
behaves badly in this case. This comes from the Illi-
nois algorithm’s inability to use its weights properly -
zero times two is still zero. The intuitive remedy for
this would be to use a bisection step if either g(tn) or
g(tn+1) are equal to zero. With this modification, the
Illinois algorithm behaves better for this case.

3.3.1 Safeguard

To ensure that the algorithm converges a safeguard
method is used [7]. It consist of three points that, if
followed, guarantee that the root-finding algorithm al-
ways converge. These are:

• The new bracket is inside the current interval

• The new bracket is closest to the best bracket 5

• The new bracket is not too close to an existing
bracket

Point one is incorporated in the Illinois algorithm.
Point two is not always valid during the iterations, due
to the weights. Point two is however only meant to
ensure the speed of convergence, something that the
weights do very well.

4The origin of the method is unknown - some believe it to come
from the staff at the computer centre at the University of Illinois
computer department.

5The best bracket is the one with the lowest function value, as
it is expected to lie closer to the root.

Point three is often done by choosing a small num-
ber δ and check if the new bracket is closer than δ to
a previous bracket, if it is the new bracket is moved by
δ towards the middle. It should be noted that Illinois
algorithm dose not originally account for this. There
is, however, no technical problem in implementing this
(Sundials has this modification in its implementation).

4 Implementation

4.1 User interaction

The form of the event function g defined by the user
should be a function returning an array of all the com-
ponents of g. This is also how the event function is
evaluated in the FMI standard, but results in that all
components are evaluated, even if only one compo-
nent has a change in sign when iterating with the Illi-
nois algorithm. However, this gives the possibility of
detecting roots that otherwise would have been missed
due to being close to another root.

Also, the reporting of the found roots should be
done with a separate array. The user cannot know
for which component a root was detected in the case
where the exact zero is not found due to scaling.

The tolerance for enclosing the event cannot be set
and has a default value such that the error caused by it
is small compared to that caused by the interpolation
polynomial.

4.2 Algorithm details

The tolerance for which the domain change is locked
into is somewhat weaker than machine precision.
Specifically, the tolerance is set to:

TOL = max(|tn|, |tn+1|) ·10−13,

being roughly a factor 100 times larger than machine
precision, it still does not introduce an error that is no-
ticeable compared to that of the interpolation polyno-
mial.

The small step δ in the safeguard (see Section 3.1.1)
is taken from Sundials as:

δ =
|a−b|

2 ·min(5, |a−b|/TOL)
,

note that δ is a minimum of a tenth of the current
length of the interval and a maximum of half the in-
terval, going from a tenth to a half as the interval goes
toward TOL.
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Figure 1: Comparison between the Illinois algorithm and the false position method, showing how the failing
mode is escaped and fast convergence is achieved.

The domain formulation and the bisection step for
the special case mentioned earlier are used by the al-
gorithm. The algorithm is implemented in Assimulo
using Python. It is called before the complete step
function is called just after a successful step is taken.

5 Application example

For evaluating the implementation, benchmark mod-
els are selected to assert the correctness and scalability
of the event location algorithm. A Furuta pendulum
is chosen for having many event functions, a clutch
model with inputs is chosen for causing events when
the input reach zero for a finite time and a racing car is
chosen for being a large advanced model with events.

The models are FMUs and PyFMI is used for sim-
ulating these models in Assimulo. Benchmarks are
made for each model and each ODE solver that the
event location is implemented for. The quantities in-
cluded in the benchmark are: steps taken, function
evaluations, Jacobian evaluations, event-function eval-
uations, number of events and simulation time in sec-
onds.

The options for the solvers are tuned so that the so-
lution at the final step is found with a relative error of
roughly 10−6 compared to a reference solution, with
10−6 here roughly meaning that the relative error is in
the interval [10−6,2 · 10−6], preferably as close to the
left bracket as possible. Formally, this means that the
solution should satisfy the condition:

10−6 ≤ ||y(tfinal)− yref(tfinal)||2
||yref(tfinal)||2

≤ 2 ·10−6.

This error is foremost tuned by changing the relative-
and absolute-tolerance. In case the integrator takes too

large steps and events therefore are missed, a maxi-
mum step length is also used to tune the accuracy of
the solution. For RungeKutta34, the optional initial
step length is also used - RungeKutta34 would oth-
erwise have a problem reducing the tolerance suffi-
ciently, as it has no possibility to reject its first step.
The other steps are affected by the tolerance through
the variable step-size (even though the step cannot be
rejected ).

For finding the reference solution, CVode with its
internal event location is used. The options for rel-
ative and absolute tolerance is set to 10−12. At this
tolerance, the relative error estimate does not change
if the tolerance is increased or decreased by a factor
10, meaning that significantly more correct decimals
are found for this solution compared to the solutions
satisfying the condition on relative error.

An important reason for using CVode is that it is
extensively tested and well established.

Following the numerical results there is a discussion
of them. In the discussion, important differences be-
tween the solvers are pointed out, and extra emphasis
is placed on the differences between CVode with in-
ternal event location and CVode with Assimulos event
location, here after known as CVode(I) and CVode(A).

5.1 Furuta pendulum

The Furuta pendulum (see Figure 2), generated by Dy-
mola, is an extremely non-linear model and is often
investigated in the field of control theory [18]. This
model of the problem generates events from intro-
duced friction, resulting in a problem with 32 event
functions. When simulated for 5 seconds, 21 events
occur for this problem, making it a good test model
for the.
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Solver options CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Relative tolerance 2 ·10−8 3.1 ·10−8 1.81 ·10−6 1.42 ·10−6 1.8 ·10−7 5 ·10−7

Absolute tolerance 2 ·10−8 3.1 ·10−8 1.81 ·10−6 1.42 ·10−6 1.8 ·10−7 5 ·10−7

Initial step length - - - - - 10−6

Table 1: The solver options to obtain the desired accuracy for the Furuta pendulum. CVode(I) is CVode with
its internal event location, while CVode(A) is Cvode with Assimulo’s event location.

Run statistics CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Steps taken 1107 1050 113 329 231 589

f evaluations 1468 1430 776 2109 1680 2945

J evaluations 34 30 - 329 156 -

g evaluations 1332 1266 372 615 504 787

Execution time 2.760 2.888 0.6183 3.165 0.9516 6.157

Relative error 1.05 ·10−6 1.08 ·10−6 1.13 ·10−6 1.03 ·10−6 1.18 ·10−6 1.13 ·10−6

Table 2: Run-time statistics for the solvers used on the Furuta pendulum. CVode(I) is CVode with its internal
event location, while CVode(A) is CVode with Assimulo’s event location. All other solvers relies on Assimulos
event handling algorithm.

Figure 2: A Furuta pendulum. The red cylinders being
joints with given frictions and the blue cylinders being
bars with given weights.

The first thing to note is that CVode(A) achieves
the same error as CVode(I) with higher tolerances,
somewhat adding robustness to the solving process.
Nonetheless, the execution time is longer despite us-
ing fewer function evaluations.

Dopri5 is the solver that performs best.

5.2 Clutches with input

This system is of practical industrial interest, where
an input signal causes events when reaching zero for

Figure 3: Plot of the input and where the first event
is found for the different solvers. The event found by
the reference solution and CVode(A) can not be distin-
guised in the figure.

a finite time, very much as described in Section 3.1.
The number of events that occur for the 5 seconds that
the system is simulated varies, as some of them are
handled internally by the FMI’s event iteration. How-
ever, all the events are detected and handled in one
way or another, as indicated by the small relative er-
rors the problem is solved for. The FMU is generated
by JModelica.org.

The events caused by the input signals are lo-
cated with close to machine precision for CVode(A)
and only with the current step length when de-
tecting g(tn+1) = 0 for CVode(I). Despite this, the
same choices for tolerances give the same rela-
tive error. This is however still considered an
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Solver options CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Relative tolerance 6 ·10−7 6 ·10−7 1.7 ·10−6 7 ·10−5 4.39 ·10−5 5.033 ·10−9

Absolute tolerance 6 ·10−7 6 ·10−7 1.7 ·10−6 7 ·10−5 4.39 ·10−5 5.033 ·10−9

Max step length - - - 0.1 0.1 -

Initial step length - - - - - 10−10

Table 3: The solver options to obtain the desired accuracy for the Clutch system with the input signal. CVode(I)
is CVode with its internal event location, while CVode(A) is CVode with Assimulo’s event location.

Run statistics CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Steps taken 1594 1594 656 305 233 5312

f evaluations 2568 2552 4498 2370 1275 26545

J evaluations 71 71 - 305 93 -

g evaluations 2480 2733 1876 1739 1746 6223

Execution time 8.476 8.425 17.56 7.709 6.756 55.42

Relative error 1.11 ·10−6 1.07 ·10−6 1.16 ·10−6 1.08 ·10−6 1.24 ·10−6 1.09 ·10−6

Table 4: Run-time statistics for the solvers used on the Clutch system with the input signal. CVode(I) is CVode
with its internal event location, while CVode(A) is CVode with Assimulo’s event location. All other solvers
relies on Assimulos event handling algorithm.

important result, finding the events with good ac-
curacy is desired and is expected to pay off for
other models. The first event from the input sig-
nal at 0.0375 is found to be 0.375000000000015,
0.378400333934374, 0.375000000000025 for the ref-
erence solution, the CVode(I) and the CVode(A) re-
spectively, a significant improvement as can be seen in
Figure 3. Radau5 performs best for this model.

5.3 Racing car

A large and advanced model from industry is the rac-
ing car. Here, the model not only contains the racing
car but also a virtual driver. It consists of a regulator
that tries to drive the car on an eight-shaped course.
One reason for simulating this might, for example, be
to investigate the dynamic response of the car.

Consisting of 47 states, 44 event functions and sim-
ulated for 30 seconds, this is the largest model used
for testing. During simulation, the model caused 11
events. The model is developed and generated from
Dymola originating from the Vehicle Dynamics Li-
brary, see Figure 4.

Here, CVode(A) performs better than CVode(I), in
the sense that it needs less tolerance for achieving the
same error. This is a good sign of robustness and scal-
ability.

For the racing car model, evaluations of f are more

Figure 4: A picture of the car in Dymola.

costly compared to those in the Furuta model. This
makes CVode the most effective integrator. Also note
that Radau5 need the setting hmax = 0.1 for its maxi-
mum step length to capture all the events.

5.4 Summary

The event localization of Assimulo, using the domain
formulation, finds the events caused by the inputs in
the clutch model significantly better than Sundials, us-
ing the zero-crossing formulation.

If the event localization of Assimulo is compared
by looking at the results for CVode(A) and CVode(I),
it is clear that Assimulos event algorithm do not per-
form significantly worse than that of Sundials. For all
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Solver options CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Relative tolerance 5.5 ·10−6 10−5 3 ·10−3 8 ·10−5 3.5 ·10−5 7.3 ·10−3

Absolute tolerance 5.5 ·10−6 10−5 3 ·10−3 8 ·10−5 3.5 ·10−5 7.3 ·10−3

Max step length - - - - 0.1 -

Initial step length - - - - - 10−9

Table 5: The solver options to obtain the desired accuracy for the racing car. CVode(I) is CVode with its internal
event location, while CVode(A) is CVode with Assimulo’s event location.

Run statistics CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Steps taken 1248 1287 2163 333 358 2817

f evaluations 1720 1736 13152 2143 2330 14085

J evaluations 38 34 - 333 248 -

g evaluations 1485 1478 2409 539 638 3039

Execution time 14.45 14.59 23.76 21.44 17.78 27.49

Relative error 1.31 ·10−6 1.54 ·10−6 1.39 ·10−6 1.57 ·10−6 1.17 ·10−6 1.31 ·10−6

Table 6: Run-time statistics for the solvers used on the racing car model. CVode(I) is CVode with its internal
event location, while CVode(A) is CVode with Assimulo’s event location. All other solvers relies on Assimulos
event handling algorithm.

models except the racing car CVode(A) uses more g
evaluations than CVode(I). Sometimes, this results in
better accuracy for the selected tolerances. This is the
case for the Furuta pendulum and the racing car model.
For the clutch model with an input signal, there is,
on the other hand, nothing to be gained and all that
is achieved is extra g evaluations.

The new solvers that now support event localiza-
tion all performed reasonably. For this set of models
CVode and also Dopri5 performs well, making it to-
gether with all the new solvers supporting event loca-
tion a welcome addition to the toolbox of integrators
supporting event location and therefore also FMUs.

For some of the models, it is noted that Runge-
Kutta methods performs very well as indicated by the
small number steps taken. This is made possible by
the sparse occurrence of events and it is worth not-
ing that none of the models here has events occurring
with a high frequency. In [8], this was investigated
using small balls bouncing around, receiving different
frequencies for the events by changing the number of
balls.

6 Summary and conclusions

It was found that an algorithm based on the Illinois
algorithm works well. The improvements include ap-
plying the domain formulation, extra safeguarding and

the special case when g = 0 resulting in a bisection
step. It was implemented in Assimulo and was shown
to locate certain types of events more accurately for an
industry-relevant model with clutches than Sundials,
without losing much in performance. Much of the per-
formance lost is, of course, because Assimulo’s event
location is written in Python while Sundial’s is written
in C. Further improvements can be made reducing this
difference by typing the variables using the possibili-
ties of Cython in Assimulo, leading to the code exe-
cuting more like C code, even though the differences
in speed can probably never be fully remedied.

The implementation can be used together with many
solvers as it is a separate subroutine, a module that is
easily mounted onto solvers. Resulting in the possi-
bility to choose among many solvers when simulating
FMUs. Also, solvers with interpolation polynomials
of lower order than the method itself still performed
well, without any guarantees from the theory.

For the case of a problem containing a large num-
ber of event functions, the improvement is being able
to choose Runge-Kutta methods, which are good at
solving many of the models with sparse occurrence
of events. In the case of the extreme opposite, many
events occurred with high frequency, CVode with a
hmax matching this frequency would probably perform
best.

More work for the future might include the possibil-
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ity of supplying the partial derivatives of g or of cal-
culating these numerically. Uses might be enhanced
event location, as with [17] or [1]. Further work in
investigating event location for implicit DAEs is also
needed, for example implementing consistent event lo-
calization [15] and test the gain in accuracy and the
loss in computational speed on relevant industry prob-
lems.
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Abstract
Adding random disturbances to Modelica models is nec-
essary to represent stochastic fluctuations like sensor
noise, air gusts and road irregularities. In this paper, we
present a library to specify a pseudo random noise for
continuous-time simulations. The random number gen-
erator, a probability density function and a frequency
spectrum can be defined independently. A new random
number generator is proposed to generate a continuous
random signal, which is proven to be highly suitable
for continuous models. The performance of the noise
models is tested in two benchmarks using an academic
as well as a realistic model both showing a remarkable
increase in simulation speed.

Keywords: Noise, Stochastic Models, Random Num-
ber Generator

1 Motivation
When simulating real-world systems, the problem of
introducing disturbances to the nominal system even-
tually becomes an issue. Especially, when dealing
with controlled systems, important tasks are to check
whether the controller is able to reject realistic distur-
bances, and to assess the performance of the system
including noise. The problem is not limited to the field
of control design, but is also of interest in e.g. specifica-
tion of aircraft airworthiness requirements with respect
to turbulence, estimation of the power outcome of wind
energy farms or when interpreting contaminated sensor
readings of experiments.

These kinds of distortions are typically taken into

controller system

noise

Figure 1: Noise is typically introduced additively into
a controlled system.

account by additive injection of a noise signal into
the system as shown in Fig. 1. The noise signal can
have a strong impact on the system’s performance and
must thus be specified carefully. However, there are
no convenient means of specifying noise properties
in Modelica, such that typical approaches implement
ad-hoc modifications of a simple random signal.

Additionally, injecting noise into a continuous sys-
tem typically decreases the simulation speed drastically,
because standard noise generators are sampled systems,
which generate time events by definition. These time
events lead in most cases to integrator restarts, impos-
ing a big penalty on simulation performance.

In this work, we present ways to solve the two issues
outlined above in an integrated library:

1. We describe a general procedure to specify a suit-
able noise signal by means of selecting a high-
quality random number generator, a probability
distribution and a power spectrum (see Sec. 3).

2. By providing a continuous noise signal formula-
tion using the sample-free generators introduced
in Sec. 3.1 and a smooth interpolation (Sec. 3.3),
we provide means for continuous noise genera-
tion. Avoiding events and using a smoothly fil-
tered signal speeds up the simulation as compared
to standard methods (see Sec. 5).

3. The methods and processes are integrated in a
library with convenient user interfaces (see Sec. 4).
This enables a user to easily specify a desired
noise signal and to use it in complex simulation
models (see Sec. 6).

2 Theoretical Background of Noise
Noise is omnipresent in technical systems. However,
it is not usually a physical process per se. The term
noise is rather used to describe influences in a system,
which are not covered by the model of the system itself.
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These influences can e.g. include rough road conditions
in vehicle dynamics, wind in aerodynamics or electrical
radiation compromising sensor readings. In any case,
a suitable model for such influences must be found in
order to account for them in simulation, control and
signal processing applications.

A common model for noise is white noise (see e.g. [1,
p. 19]). It is described by a stream of random variables
w(t) dependent on the time t. The main property of
such white noise is that it has a flat power spectrum, i.e.
that all frequencies contribute equally to the noise sig-
nal. In a statistical sense, this means that all instances
of the random signal w(t1) and w(t2) are uncorrelated:

Cov(w(t1),w(t2))
!
= 0 ∀t1 6= t2. (1)

The second property of white noise is that the proba-
bility distribution W of the signal’s values is equal for
all time instants:

W (t1)∼W (t2) ∀t1, t2. (2)

However, the actual distribution W is not specified by
the term white noise and must be specified additionally.
Gaussian white noise e.g. refers to the case that the
signal is normally distributed.

In actual applications, noise is very rarely white but
can be specified with a given power spectrum. In aero-
dynamics e.g. the von Kármán spectrum is used to
model turbulence and in signal processing the noise is
usually low-pass filtered and sampled. Such signals are
referred to as colored noise.

Especially for numerical simulations, this band-
limitation of natural noise is very convenient, because
signals with infinite frequency contributions cannot
be simulated. Using the above observation, we can
correctly reflect the influence of natural noise on a
simulated system by specifying a distribution of the
random process and a suitable filter. The sampling rate
of the raw noise can then be chosen just high enough
to generate all contributions to the desired spectrum.

Figure 2 illustrates the properties of natural noise
from a mechanical test-rig entering a continuous sys-
tem. The noise is sampled with 6 kHz and passed on as
a continuous-time sample-and-hold signal. The power
spectral density (PSD) is estimated by oversampling
the signal at 50 kHz and using Welch’s method as im-
plemented in the Matlab signal processing toolbox.

The noise appears approximately normally dis-
tributed. We can see that the noise does not have the flat
power spectrum specified for white noise. The power
spectrum shows a strong influence of the initial sam-
pling with 6 kHz. In the following sections, we will

discuss how to numerically generate a representative
signal of such nature.

a
c
c
e
le

ra
ti

o
n

/(
m

m
/s

2
)

time /s

0 0.2 0.4 0.6 0.8 1
−20

0

20

d
is

tr
ib

u
ti

o
n

/(
s2

/m
m

)

acceleration /(mm/s2)

−20 −10 0 10 20
0

0.05

0.1

oversampling / aliasing

P
S

D
/(

d
B

/H
z)

frequency /kHz

3 6 12 18
−160

−140

−120

−100

−80

−60

Figure 2: A noise sample from a static mechanical ac-
celeration sensor is approximately normally distributed
and has a characteristic power spectrum.

3 Noise Generation
In order to conveniently generate a realistic noise for
use in continuous system simulations, a couple of crite-
ria must be met:

a. The noise should be realistic with respect to the
specifications given in Section 2: The signal should
be uncorrelated, match a specified distribution and
also match the specified frequency content.

b. A clear and modular approach should provide sup-
port in independently specifying these properties of
the desired noise signal.

c. It should be possible to evaluate the noise signal con-
tinuously without the need to incrementally increase
the internal states as is the case with conventional
noise generators.

Noise Generation for Continuous System Simulation
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To comply to the specifications of above, the process is
split in three steps:

1. A random number generator (RNG) implements an
algorithm to generate a sequence of uncorrelated,
uniformly distributed random numbers Ui.

2. These are transformed according to the same proba-
bility density function (PDF) for each discrete time
instance separately to yield random numbers Xi with
a specified distribution.

3. The random numbers are filtered to match a power
spectral density (PSD) specified in the frequency
domain. This results in a continuous-time noise
signal r(t) with the desired characteristics.

3.1 Uniform Random Number Generators
Truly random numbers are difficult to generate in nu-
merical simulations. Fortunately, they are typically not
desired to be truly random, because simulations should
be repeatable and thus deterministic. Pseudo-random
numbers are thus usually used, which are deterministic
but appear random to the simulated system.

Pseudo-random numbers are usually generated com-
putationally using recursive arithmetic generators. The-
se generate random numbers Yi recursively based in
the last random number Yi−1. The initial value Y0 is
known as the seed of the recursive generator. This dis-
crete state Yi of the random number generator must be
advanced incrementally, which limits the time steps
taken by an integrator to be smaller than the generator’s
update period.

One of the simplest recursive arithmetic generators
is the linear congruential generator (LCG). It uses the
parameters a, b and m to generate random integers
Yi in the interval [0, m−1] and uniformly distributed
numbers Ui according to the following formulas:

Yi = (a ·Yi−1 + b) mod m, (3)

Ui = Yi/m. (4)

Better implementations of recursive arithmetic genera-
tors are e.g. the algorithms of the WELL family (Well
Equidistributed Long-period Linear) [2], which feature
much larger repetition periods.

In order to avoid the performance limitation intro-
duced by the discrete state of recursive generators, we
propose to use non-recursive arithmetic generators for
generating random numbers. These implement a pure
function Yt(t), which is solely dependent on the simu-
lation time t. This allows to evaluate random numbers
deterministically in continuous time without using dis-
crete states.

In this work, we introduce the new random number
generator DIRCS Immediate Random with Continuous
Seed. It relies on the quick recovery of LCGs from a
poor (i.e. small, non-random) seed Y0, a property called
diffusion capacity. If a poor seed Y0 is chosen, an LCG
will irrespectively generate high quality random num-
bers after a few iterations. This property allows to
continuously seed an LCG with a very simple func-
tion of the time t, apply a few iterations and treat the
resulting number as random, i.e.

Yt(t) = LCG(...(LCG( seed(t) ))). (5)

The quality of the generated random numbers Ui

can be investigated using a number of different mea-
sures. All these measures quantify the fulfillment of
the requirements that the random number must be (a)
uniformly distributed and (b) uncorrelated for different
time lags as requested by Eqs. 1 and 2. Fig. 3 confirms
the LCG’s diffusion capacity for small seeds between 1
and 200.

The uniformity of the distribution is checked here
with the Kolmogorow-Smirnow test. The correlation is
tested with a two-sided Z-test of the correlation. The
given p-values indicate the confidence in the assump-
tions on a scale from 0 to 1. p-values larger than 0.10
indicate that the property under test is confirmed.
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Figure 3: After ten iterations, the random numbers from
an LCG can be assumed to be uniformly distributed
and uncorrelated with the seed.

Table 1 gives an overview of the quality of the most
important random number generators used in this work.
They are compared to two standard solutions from
the Modelica_LinearSystems2 library [3] and the
Design.Experimentation library [4]. It can be seen
that all generators produce uncorrelated uniform ran-
dom numbers.
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Table 1: All RNGs produce uniform and uncorrelated
random numbers.

Generator Uniform Uncorrelated

WELL1024a p = 0.396 p = 0.405
LCG p = 0.456 p = 0.253
DIRCS p = 0.432 p = 0.523
LinearSystems2 p = 0.508 p = 0.373
Design p = 0.305 p = 0.899

3.2 Probability Density Functions
Each uniform random number Ui generated with the
methods presented in the previous section must be trans-
formed to match the desired noise characteristics. The
first step is to apply a mapping

Ui 7→ Xi (6)

according to a probability density function (PDF) f (x).
This yields random numbers Xi with a specified dis-
tribution. Informally, the function f (x) describes the
probability that a random variable Xi equals x.

There are several methods to achieve this step (see
e.g. [5]). If an analytic PDF is given, then often its
primitive F(x) =

∫ x
−∞ f (x̃)dx̃ can be derived. This cu-

mulative density function (CDF) describes the proba-
bility that the random variable Xi is smaller or equal to
x. Using the inverse of the CDF, a random number with
the given distribution can be analytically calculated
by Xi = F−1(Ui). This method is illustrated below for
the heavy-tailed Cauchy-Lorentz distribution with the
location parameter µ and the scale parameter γ .

fCauchy-Lorentz(x) =
1
π

(
γ

(x−µ)2 + γ2

)
(7)

FCauchy-Lorentz(x) =
1
π

arctan
(

x−µ
γ

)
+

1
2

(8)

F−1
Cauchy-Lorentz(Ui) = γ tan

(
π
(

Ui−
1
2

))
+ µ (9)

= Xi,Cauchy-Lorentz (10)

If an analytical inverse of the CDF cannot be derived,
different methods have to be employed. A prominent
example is the normal distribution, which does not have
an analytical CDF. To generate a normally distributed
random variable, we employ the Box-Muller transform
[6]. It uses two uniform random numbers U1i and U2i

to calculate Xi according to

Xi,normal = µ + σ
√
−2lnU1i cos(2πU2i) . (11)

Finally, if no direct transformation is given in the
literature, some common distributions can also be cal-
culated directly according to their definition. The Bates
distribution e.g. describes the distribution of an average
over n uniform random numbers and can be calculated
directly from

Xi,Bates =
1
n

n

∑
k=1

Uk·i. (12)

3.3 Power Spectral Densities
In the previous sections, we have shown how to gen-
erate a discontinuous sequence of random variables Xi

at an arbitrary sampling rate ∆t. This sequence has to
be processed further, in order to shape a continuous
signal r(t) with a specified frequency content. A com-
mon method is to apply a simple low-pass filter to the
noise sequence. Although being common practice, this
method has two main disadvantages:

1. The simulation speed is limited by the high sam-
pling frequency of the noise signal, the small time-
constant of the low-pass filter or both.

2. It is often unclear which statistical properties the
filtered signal has. It often differs widely from the
PDF of the discrete signal.

For many applications it is thus favorable to com-
pute the continuous signal directly out of the discrete
sequence without using dynamic states as in usual im-
plementations of low-pass filters. In this work, we
continuously interpolate the discrete sequence using
kernel functions.

If a kernel function K(t) is given, then the interpo-
lation can be expressed as a linear combination of the
kernel function with different weights Xi and offset i∆t:

r(t) = ∑
i

Xi ·K(t− i∆t). (13)

In order for this sum to be a proper interpolation, the
kernel must equal 1 at the origin and 0 at all multiples
of ∆t:

K(i∆t) !
=

{
1 for i = 0 and
0 for i 6= 0.

(14)

A prominent kernel function, which fulfills these
constraints, is the hat function used to create a linear
interpolation.

Khat(t) =

{
1−
∣∣ t

∆t

∣∣ if t ∈ [−∆t,+∆t]
0 else

(15)
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Figure 4: Different interpolations can be applied to the
random sequence. The sinc interpolation achieves a
very smooth signal r(t).

The resulting signal r(t) is a linear combination of
the kernel functions. Its frequency content is thus fully
determined by the frequency content of the kernel func-
tion. If the sum is truncated by limiting the number
of involved sampling points Xi, additional content is
introduced by the discontinuous support. In practice,
however, the truncated contributions are often negligi-
ble, leading to acceptable approximations. This espe-
cially holds true for the hat function, which can be well
truncated to only include two random samples.

Another important kernel function is the normalized
sinc function:

Ksinc(t) = 2Bsinc(2Bt) =
sin(2Bπt)

πt
. (16)

It only contains frequencies up to its bandwidth B. If
B = 1/(2∆t) is chosen to match half the sampling rate,
the normalized sinc function also fulfills the constraints
of an interpolation kernel. Interpolation with the sinc
function can thus be used to apply an optimal low-pass
filter to the random sequence.

Figure 4 shows the different interpolation methods
described above. The interpolation is applied to a
random sequence Xi generated with 100 S/s. The fre-
quency contents of the signals are compared in Fig. 5.
The raw sample-and-hold signal of Xi contains frequen-
cies higher than the sampling frequency. Using the
interpolation with the sinc function, the frequency char-
acteristic can be nicely limited to the desired cut-off
frequency of half the sampling frequency. It is im-
portant to understand how the interpolation affects the
statistical properties of the random signal r(t). Since
r(t) is a weighted sum of statistically independent ran-
dom variables, we can use the following two laws to
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Figure 5: The frequency characteristic are shaped by
the interpolation function. The sinc function achieves a
very good low-pass characteristic.

determine the change of variance for any valid filter:

Var(Xi · c) = Var(Xi) · c2, (17)

Var(Xi + X j) = Var(Xi)+ Var(X j). (18)

Here, Xi and X j denote the statistically independent
random variables generated by the RNG and c denotes
a constant weight. The variance of the random vari-
ables is fixed by the selected PDF and the constant c is
given by the interpolation kernel. The time-dependent
variance of r(t) from Eq. 13 can thus be expressed as

Var(r(t)) = Var(Xi) ·∑
i

(K(t− i∆t))2 . (19)

Due to the constraints for interpolation kernels Eq.
(14), the variance of r(t) at the sampling points is equal
to the variance of the random variable Xi. In between
the sampling points, the variance of the random signal
is a function of the time. We can compute the expec-
tation value of the variance for the entire signal by
formulating the integral over the interval ∆t:

E [Var(r(t))] =
1
∆t

∫ ∆t

t=0
Var(r(t))dt

=
Var(Xi)

∆t

∫ ∆t

t=0

n

∑
i=−n+1

(K(t− i∆t))2 dt

=
Var(Xi)

∆t

n

∑
i=−n+1

∫ ∆t

t=0
(K(t− i∆t))2 dt

=
Var(Xi)

∆t

∫ n∆t

t=−n∆t
K(t)2 dt. (20)

Doing this computation for the linear interpolation
using the hat function leads to

E [Var(r(t))] =
2
3

Var(Xi). (21)
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Thus, any linear interpolation reduces the variance
of the input signal by one third, independently of the
PDF used to generate Xi. In a similar manner, the result
can be computed for the optimal bandwith limitation.
Fortunately,

lim
n→∞

1
∆t

∫ n∆t

t=−n∆t
Ksinc(t)2 dt = 1 (22)

and hence the variance is only minorly affected for n
chosen large enough. In fact, with n = 3, the expected
variance is only changed by less than 5 %.

Not only the variance may be affected but also the
shape of the PDF. It is possible to compute this effect
for specific PDFs but the most general statement can
be drawn from the central limit theorem. It states that a
sum of many independent random variables (with finite
variance) is approximately normally distributed. Hence
we can state that the application of a filter transforms
all PDFs with finite variance gradually to look like the
normal distribution and that this effect is expected to
be stronger the wider the domain of K(t) is.

Our analysis suggests a very suitable combination
for generating a continuous random noise signal: if the
discrete noise is generated by a normal distribution and
if it is interpolated by an ideal bandwith limitation, the
resulting signal is also of a normal distribution with
the same variance and a frequency characteristic below
the cut-off frequency that represents white noise. The
cut-off frequency will be half the sampling frequency.

4 Implementation in Modelica
The concepts laid out in Sec. 3 are implemented in the
Modelica Noise library. An overview of the library’s
components is shown in Fig. 6. The library provides a
single block PRNG as the interface to all of its facilities.
This block is described here.

In order to provide the user with a convenient inter-
face, the PRNG block combines all parts of the noise
generation process described in Sec. 3. The block’s
parameter pane is shown in Fig. 8.

All three parts of the noise generation can be (al-
most) independently parametrized. The Random Num-
ber Generator (RNG) parameters allow the user to se-
lect whether a sampling-based or a sampling-free gen-
erator shall be used. Two selectors allow to maintain
parametrized instances of both variants in the PRNG
block. The parameters of the generators can all be set
via the PRNG’s parameter interface. The criteria listed
in Table 1 may assist in choosing a suitable RNG.

The Probability Density Function (PDF) can also be
selected in the PRNG’s parameter pane along with its pa-
rameters. Some of the available distributions are shown

in Fig. 7. Cauchy-Lorentz, Irwin-Hall, Bates and Dis-
crete distributions are also available. The distribution
should be selected according to the specification of the
desired noise. Additional distributions can be imple-
mented according to the literature by filling a common
function interface.

Finally, a kernel function for the desired Power Spec-
tral Density (PSD) can be selected and parametrized.
The kernels are set up with standard parameters to
match the update rate of the block. For example, the
ideal low-pass filter is set up with a cut-off frequency
of half the update rate. The implemented filters are
shown in Fig. 9. A typical choice of the PSD would be
to use the raw random sequence or the ideal low-pass
interpolation with n ≥ 5. Additional kernels can be
added easily by the user.

The (Pseudo-) Sampling parameters of the PRNG
block are the same as for most sampling Modelica
blocks. A startTime determines the first sample to
be generated. A samplePeriod determines the step-
size of the sampler. For sample-free generators, the
sampling is relaxed to a pseudo-sampling of the ran-
dom number, i.e. imposing an upper limit to the update
rate. An additional infiniteFreq switch can be used
to completely disable (pseudo-)sampling and let the
simulation tool handle the step-size of the generator
based on the desired integration accuracy. This also
disables the PSD filtering, because the interpolation
needs discrete noise samples.

The Enable/Disable parameters finally are used to
enable noise generation or to output a simple dummy
variable y_off. It can be used to parametrically restore
the ideal system without noise.

Figure 6: The Noise library provides a ready-to-use
noise block as well as a collection of RNG, PDF and PSD
implementations.
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Figure 8: The PRNG block can be used to collectively set up custom noise by modularly combining all available
RNG, PDF and PSD implementations. Additional switches are provided to set the samplePeriod, enable sample-
free RNGs and enable infinite frequency emulation.

(a) Uniform (b) BoxMuller (c) Weibull

Figure 7: Some of the provided PDFs are a uniform, a
normal and a Weibull distribution.

5 Evaluation of Filtered Noise
Relevant noise in realistic applications is in most cases
sampled and filtered (see e.g. Fig. 2). The process of
sampling and filtering changes the probability density
as well as the frequency content of the signal. In the
following sections, we will show how these character-
istics can be modeled using the Noise library. First, a
synthetic example is used.

In this section, the probability distribution and fre-
quency content of noise generated with a standard ap-
proach and with the Noise library are compared. A
digital sensor is used as an example. The sensor has
a uniform noise distribution with amplitudes between
−0.05 rad and 0.05 rad. The signal is sampled with

(a) Raw (b) IdealLowPass (c) LinearInterp

Figure 9: The provided PSDs include an unfiltered white
noise, an ideal low-pass filter and a linear interpolation.

6 kS/s. The signal is subsequently smoothed with a
running mean filter using 20 samples and then down-
sampled by a factor of 20. This procedure is repre-
sentative for a typical angular resolver signal used for
control purposes. In order to introduce a model of a
simple system, a CriticalDamping block from the
Modelica standard library is used. It has a fixed cut-off
frequency of 10 Hz and a variable number of states.

5.1 Model using the LinearSystems library

In Fig. 10a, the reference implementation using the
Modelica_LinearSystems library is shown. Uni-
form noise is generated with at a rate of 6 kS/s, filtered
with a running mean FIR filter and then down-sampled.
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(a) LinearSystems (b) Noise

Figure 10: Generation of realistic filtered noise using the LinearSystems and the new Noise library.
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Figure 11: Histograms of the different noise signals

5.2 Model using the Noise library
Using the Noise library, it is possible to generate the
filtered and down-sampled noise signal without sam-
pling at a high frequency. In order to achieve an equiv-
alent signal, the PDF must be adjusted to match the
distribution of the filtered signal. This is done select-
ing the Bates distribution described in Sec. 3.2 with
n = 20. The noise signal can then be generated at the
down-sampled update rate of 300 S/s. Additionally, the
DIRCS generator is used to suppress all time-events in
the simulation. The Modelica block diagram is shown
in Fig. 10b.

5.3 Probability density distribution
The empirical probability density functions of the gen-
erated noise signals are shown in Fig. 11. To show
that down-sampling the signal has no influence on the
PDF, the down-sampled, as well as the original sig-
nals are shown. The probability density function of the
generated noise signal is obtained experimentally by
simulating both noise models for 200 s and by using
250 bins between the minimal and maximal values (-
0.05 to 0.05). The results of the analysis show a good
match between the different signals.

5.4 Frequency content
The frequency content of the signal is an important
property of a noisy signal. To show that also the
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Figure 12: Frequency analysis of the noise signals.

frequency content of the PRNG block mimics the
frequency content of the sampled and filtered signal
Welch’s power spectral density analysis is applied to
the signals (see Sec. 2). The results are shown in Fig-
ure 12. The plot shows that the frequency contents of
all signals correspond very well. Especially the low
frequency content up till 300 Hz is a very good match.

5.5 Simulation times
In order to compare the simulation times of the pre-
sented models, the models are simulated again for
200 s. As a reference, a standard noise block from the
LinearSystems library without downsampling is in-
cluded using 300 Samples/s, the same update rate as the
PRNG block updates internally. Only 10 output points
are generated in order to make sure the output routine
does not influence the simulation times. The simula-
tions are performed using Dymola 2014 FD01 Beta 3
on an Intel R© Xeon R© E5-1620 processor. The results of
the simulations are summarized in Table 2. Addition-
ally to the model structure, the number of states in the
CriticalDamping system is varied.

The results clearly show the advantage of using the
Noise library for modeling noise in a system. The sim-
ulation time for the Noise model with a system of sec-
ond order is six times faster than the standard approach.
If the complexity of the system is increased by using a
number of 50 states, the Noise model is 26 times faster
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Table 2: Simulation times and number of steps of the
models with noise for 200 seconds simulation. LS
6kS/s filtered marks the Noise from Figure 10a,
LS 300S/s raw marks the simulation results of the
noise generation using the LinearSystems library us-
ing a direct noise output of the signal and LS 300S/s
Bates using a Bates distribution using an averaging of
20 random samples at each timestep.

Model States Time Events

LS 6kS/s filtered 2 45 s 12e6
LS 300S/s raw 2 6 s 60e3
LS 300S/s Bates 2 8.7 s 60e3
Noise 2 7.5 s 0
LinearSystems 50 256 s 12e6
LS 300S/s raw 50 23 s 60e3
LS 300S/s Bates 50 24.5 s 60e3
Noise 50 9.7 s 0

than the model using LinearSystems noise. The ap-
proaches without downsampling (LS 300S/s methods)
have a better performance. The Bates distribution at
300S/s has a similar calculation time as the method
using the Noise library. However, at higher model lev-
els, for a system with 50 states, the speedup ratio is a
little over 2. This result show that integrator restarting
due to the event generation becomes more expensive at
increasing system complexity.

6 Industrial Application Example
In order to test the performance of the presented noise
models in an application of industrial complexity, the
example of an electro mechanical actuator is chosen.
This actuator is generated using the Actuator toolbox

Figure 13: Actuator model overview. The motor posi-
tion sensor is used to include the noise effects.

[7]. In Figure 13, an overview of the model is given.
The position sensor of the motor can be chosen from

an ideal sensor or two sensor versions with noise. The
sensor readings are used for controlling the motor cur-
rent as well as the speed and position of the actuator. To
obtain the motor speed, position is differentiated. For
these reasons, adding noise to the system is expected
to strongly influence the system’s behavior.

To test the presented noise generation and com-
pare it with a traditional approach, two sen-
sors with noise were derived. The first sensor
uses a traditional sampled noise using the blocks
from Modelica_LinearSystems.Sampled, the sec-
ond uses the Noise library presented in this work. The
two noise models are the same as presented in Sec. 5.
The noise is assumed to be additive as shown in Fig. 1.

6.1 Simulation results
The actuator model is simulated with each of the three
sensor versions. The actuator is commanded to follow
a change in position of 43 mm at t = 1s. Figure 14
shows the responses with the three sensor versions. The
results match very well. The simulations were carried
out using the Dassl integrator with a tolerance of 10−4.
For the following comparison, only 10 output intervals
are requested in order not to influence the simulation
times by the output intervals. The simulation times and
generated events are summarized in Table 3.

6.2 Time and state events
One of the main benefits of the presented noise model
is that no time events are generated. As expected, the
sampled noise using the LinearSystems library gen-
erates 15000 time events, which is the product of the
sample rate and the simulation time. The model built
with the Noise library, however, does not generate any
time events. The amount of state events generated by
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Session 5C: Numerical Aspects of Modelica Tools

DOI
10.3384/ECP14096837

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

845



Table 3: Simulation results of the actuator models over
2.5 seconds.

Events

Model Time Time State

No Noise 0.037 s 1 12
LinearSystems 27.5 s 15000 1642
Noise 10.5 s 1 1791

both models is roughly the same. These events are
generated by the nonlinearities in the model. Mainly
the inverter reacts to the high-frequency changes of
the demanded current, which is generated by the noisy
sensor readings.

6.3 Simulation speed
Especially in more complex models the penalty of an
event becomes large. Restarting the integrator can use
as much time as an integrator step itself. In Table 3, the
simulation time of the models is shown. The noise itself
has a big penalty on the simulation performance. This
is expected, as the position sensor is used in all con-
trol algorithms. The simulation time using the Noise
library, however, is decreased with respect to the stan-
dard implementation due to the reduced number of time
events.

7 Conclusions and Outlook
We have shown how to properly implement a noise
signal in Modelica by selecting a high-quality random
number generator (RNG) and by specifying a probabil-
ity density function (PDF) as well as a power spectral
density (PSD) of the desired signal. In order to aid the
user in this process, we have proposed a library with
modular implementations of the three parts of the noise
generation. The library provides a convenient interface
to set all parameters. It is further possible for the user
to freely implement new modules.

The proposed combination of sample-free RNGs and
continuous PSDs provides for a satisfactory increase
in simulation speed by a factor between 2.5 in a real
world actuator example and up to 26 using an academic
model.

Time events due to the noise model can be com-
pletely eliminated from the simulation by using the
proposed continuous DIRCS random number genera-
tor, which relies on continuously seeding a standard
RNG with a function of the time.

Further extensions of the library can be seen in tak-
ing advantage of the Modelica 3.3 function arguments.

The library could additionally be improved in modular-
ity by introducing separate seeding functions. In this
way, also the continuously seeded generator could be
modularized. Some convenient features such as global
seeding or seeding based on the machine time may also
be addressed in future versions. Additionally, the cur-
rent interpolation filter may be extended to allow for
arbitrary filter functions implemented by the user.
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Abstract 

For the 0D-1D modelling of thermal-hydraulics sys-
tems, it is common practice to use static mixing 
models to compute the mixing specific enthalpy in 
fluid junctions such as mergers or splitters. However, 
this simplification leads to a well known singularity 
when the mass flow rate inside the junction goes to 
zero. The origin of the singularity is explained, and a 
rigorous physical solution is proposed to eliminate 
the singularity. A prototype implementation has been 
developed in the ThermoSysPro library for power 
plant modelling that illustrates the interest of the 
proposed solution, shows the impact on the structure 
of the library and enables to evaluate the computing 
overhead with respect to several possible variants. 
Keywords: thermal-hydraulics; mixing models; con-
vection; diffusion; ThermoSysPro 

1 Introduction 

When modelling thermal-hydraulics at the system 
level, such as power plants, it is common practice to 
use static equations to compute fluid quantities in 
mixing equipments such as mergers and splitters. 
This simplification stems from the fact that the vo-
lume of mixing is often neglected in junctions, there-
fore eliminating the differential term in the balance 
equations. It also occurs when computing isolated 
operating points that only require static models. 

Neglecting diffusion is very common when one 
deals with large mass flow rates, as diffusion is only 
significant when mass flow rates approach zero. 
When diffusion is neglected, the only thermal phe-
nomenon remaining in the model is convection. 
However when mass flows go to zero, convection 
disappears. So if diffusion is neglected, when mass 
flow rates go to zero, as convection also disappear, 
there is no thermal phenomena left in the model, 
leading to a possible indetermination of the enthalpy. 
This indetermination results in a singularity when 

static models are used, because in such case there is 
no differential variable to act as a memory for the 
enthalpy when mass flow rates are equal to zero. 

In subsequent chapters, the mathematical origin 
of the singularity is explained. Then a rigorous ma-
thematical formulation is proposed based on physical 
insight to remove the singularity. The idea is to rein-
troduce diffusion in static mixing models. Finally, a 
performance benchmark is given, based on a proto-
type implementation in ThermoSysPro. ThermoSy-
sPro is a Modelica library developed by EDF for the 
modelling of power plants of all types [1]. 

2 Computing the state of a thermal-
hydraulics system 

As the objective is to find the origin of the physical 
singularity before giving a solution for removing the 
singularity, it is useful to understand how the physi-
cal state of a thermal-hydraulic system such as a vo-
lume is defined. 

A volume is an abstract physical component 
where incoming flows mix. Figure 1 features four 
incoming flows. Flows are positive when they enter 
the volume and negative otherwise. 

1Q

2Q

3Q

4Q

1h

2h

3h

4h

 
Figure 1: volume 

 
In general, the state of a physical system is given 

by the set of independent physical quantities that 
completely define the state. There are many ways to 
choose the state variables for a given physical sys-
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tem. For a thermal-hydraulic volume a , a common 
choice is to use the average pressure aP  and the av-
erage specific enthalpy ah  inside the volume. Then 
the state of the volume a  will be defined if aP  and 

ah  can be computed. 
In the sequel, we are only interested in computing 

ah  which is called the mixing enthalpy in volume 
a . 

To compute ah , one must consider the neighbor-
ing volumes of a  which are collectively denoted b  
(see Figure 2). 

 

Volume a

Volume b2

Volume b3

Volume b4

Volume b1

11, bb hP

22 , bb hP

aa hP , 33 , bb hP

44 , bb hP

)( 1 abQ 

)( 2 abQ 

)( 3 abQ 

)( 4 abQ 

 
Figure 2: grid scheme 

 
Each volume is assumed to be in thermodynamic 

equilibrium, so that their thermodynamic state is 
physically defined. However neighboring volumes 
may have different physical states, so that pressure 
and temperature gradients may exist that cause mass 
and energy flows between neighboring volumes 
through their common limiting boundary. 

Mass flowing from volume b  to volume a  is 
denoted )( abQ  . Therefore )( abQ   is posi-
tive if the flow actually occurs from b  to a , and 
negative otherwise. So )()( abQbaQ  .  
Notice that the relation 

0)()(  abQbaQ  
is not a mass balance equation between volumes 
b and a , but merely states the fact that )( abQ   
and )( baQ   denote the same physical quantity 
with opposite sign conventions. 

The specific enthalpy of flow )( abQ   is de-
noted abh : . The meaning of notations is recalled in 
chapter 7. 

 
The dynamic mass and energy balance equations are 
given by 

 


b

aa abQ
dt

Vd
)(

)(
 

  a
b

ab
aaa WabJabQh

dt

uVd


  )()()(
:



  
)( abJ   is the energy flow through diffusion. 

)()( :: abTkAabJ abab           (1) 
The static mass and energy balance equations are 
obtained by eliminating the dynamic terms on the 
left hand sides. 

 
b

abQ )(0                            (2) 

  a
b

ab WabJabQh   )()(0 :     (3) 

As the quantity ah  does not appear explicitly in the 
static energy balance equation, it must be computed 
though the quantities abh : . So the relation between 

ah  and abh :  must be established. 
To that end, the fluid vein between volumes a  

and b  is considered (see Figure 3). 
 

Volume a Volume b

LP0P

dx

L0

)( baQ xQ

x

Figure 3: fluid vein 
 
The static mass and energy balance equations in the 
volume limited by dx  is 

x

Qx




0                                      (4) 







 








 x
x

xx W
x

T
kAQh

x
0              (5) 

Eq. (4) states that  xQ  is constant. Therefore: 
)()( abQbaQQx   

In order to find an analytical solution to Eq. (5), the 
following relation between xdh  and xdT  is consi-
dered:  
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xPx dTcdh                                (6) 
In the sequel, it is assumed that the relation given by 
Eq. (6) is valid (i.e. outside of the saturation line, for 
isobaric transformations, or for ideal gases, or when 
the contribution of the pressure variation to the varia-
tion of the specific enthalpy is negligible as com-
pared to the contribution of the variation of tempera-
ture). 
Under the additional assumption that 0xW , the 
energy balance equation writes: 

x

h

c

kA

x

h
baQ x

p

x












2

)(0            (7) 

Eq. (7) can be solved analytically [2]: 















L

x
P

ba
P

abPx

e
e

e
ehhehh

e
h )(

1
1

  (8) 

with  

)(1
baQPe 


                         (9) 

Lc

kA

P 


                                  (10) 

abh :  is the value of xh  for 
2
L

x  : 

beaeab hPshPshh L  )()(
2:

          (11) 

with  

21

1)(
x

e

xs



                              (12) 

 
Figure 4 gives a plot of ŝ . 
 

 
Figure 4: plot of ŝ  

 
If diffusion is neglected, then 0 , eP  
and abh :  becomes: 

baab habQshbaQsh  ))(())((:     (13) 
where s  is the step function: 














00
0
01

)( 2
1

xif

xif

xif

xs                          (14) 

This is the well known upwind scheme approxima-
tion for flow reversal. This relation is widely used, 
even if the assumptions used in this derivation are 
not fulfilled. 

Note that s  is discontinuous at 0x , whereas ŝ  
is continuous and differentiable everywhere. 

3 Origin of the singularity in static 
mixing models 

The objective of this chapter is to show that the sin-
gularity in static mixing models arises when diffu-
sion is neglected.  

So in the sequel diffusion is neglected, which 
means that 0)(  abJ . Also )( abQ   is de-
noted bQ  to simplify the notation. 

The mass and energy balance equations become 


b

bQ0                                (15) 

 
b

bab Qh :0                            (16) 

The value of the enthalpy 
abh :  is given by the upwind 

scheme (see Eq. (13)): 
abbbab hQshQsh  )()(:                  (17) 

 
In the sequel, the following relations are used: 

xxx  )sgn(                            (18) 

)()()sgn( xsxsx                      (19) 
)(1)( xsxs                            (20) 

where sgn is the sign function. 
 

Then using Eq. (15), (16), (17) and (20) 

0)()(

)()(

)()(:



















 

b
bba

b
bbb

b
bb

b
ba

b
bbb

b b
bba

b
bbbbab

QQshhQQs

QQsQhhQQs

QQshhQQsQh

 

 
Therefore 









b
bb

b
bbb

a QQs

hQQs
h

)(

)(
                       (21) 
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when 0)( 
b

bb QQs . 

To find out when this condition is satisfied, using 
Eq. (15), (18), (19) and (20): 

 

 







 









b
bb

b
bb

b
b

b
bb

b
bb

b
bb

b
bb

b b
bbbbb

b
b

QQsQQQs

QQsQQs

QQsQQs

QQsQsQQQ

)(*2)(*2

)(1)(

)()(

)()()sgn(

 

 
Hence: 


 


b
b

b
bbb

a Q

hQQs
h

)(
2                     (22) 

when 0
b

bQ . 

So when all mass flow rates are equal to zero, the 
mixing enthalpy ah  is indeterminate ( 0/0ah ). 

Although the indetermination occurs only at an 
isolated point (all mass flow rates equal to zero), it is 
not obvious to extend ah  in order to remove the sin-
gularity at zero (contrary to other functions with iso-
lated singularities such as xx /)sin( ). 

In particular, it is not sufficient to replace s  by ŝ  
(or in other words get rid of the upwind scheme by 
introducing diffusion in the flow reversing formula 
given by Eq. (17)) because then 









b
bb

b
bbb

a
QQs

hQQs
h

)ˆ(ˆ

)ˆ(ˆ
                   (23) 

with  

ab

b
b

Q
Q

:

ˆ


                               (24) 

 
The singularity still remains since 0)ˆ(ˆ 

b
bb QQs  

when all mass flow rates are equal to zero.  
However, noticing that  

)0,max()( bbb QQQs   
Eq. (21) may be written as 











0

0

b

b

Q
b

Q
bb

a Q

hQ

h  

Therefore, if one is not interested in the correct value 
of  ah  near zero flows, which is in general the case 
when diffusion is neglected, then as suggested in [3] 
one can replace bQ  by ),max( QQb  where Q  is a 
small positive mass flow rate. Then when all mass 
flow rates bQ  are below Q  ( QQb  ): 


b

b
a

a h
N

h
1

                           (25) 

where aN  is the number of neighboring volumes b  
of volume a , so the singularity is removed for zero 
flows.  

Noticing that yyxyxsyx  )()(),max( , 
one can even have a C  way  of removing the sin-
gularity by (1) considering the function  

xpp e
xs 


1
1)(                          (26) 

by (2) replacing s  by ps  in the max function above 

yyxyxspyxsmoothMax p  )()(),,(  
and by (3) properly adjusting the value of p  wrt. 

Q . 
This solution will not be developed here any fur-

ther, as a full physical solution is sought. The reason 
is that replacing bQ  by Q  when QQb   for 
computing the mixing enthalpy violates the energy 
balance fundamental law, so requires a proper choice 
of Q  wrt. the problem at hand. 

As suggested in [3] there are also other ways to 
write smoothMax . 

Notice also that 5.0ˆ ss   and  ss  (see Eq. 
(12), (14) and (26). 
 

4 Removing the singularity at zero 
flows 

Diffusion is reinstalled in the energy balance equa-
tion. Then 

 
b

abQ )(0                           (27) 

  
b

ab abJabQh )()(0 :              (28) 

assuming without loss of generality that 0aW . 
Using Eq. (1) and (6): 
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Taking the derivative of Eq. (8) wrt. x  at 
2
L

x   

yields: 
)()()( 0 abJPrabJ e                 (29) 

with 
)()( :0 abab hhabJ                    (30) 

abP
ab Lc

kA

:
: 











                             (31) 

)(1

:

abQP
ab

e 


                    (32) 












 

01

0
)( 22

xif

xif

ee

x

xr xx                     (33) 

)(0 abJ   is the energy flux when 0)(  abQ . 
For easier computation )(xr  may be approximated 
by the Gaussian 

2033.0)( xexr                              (34) 
The plot below compares r  in red with r̂  in blue. 

 
Figure 5: plot of r̂  and r  

 
When all flows bQ are equal to zero, the energy bal-
ance equation writes 

 
b

abab
b

hhabJ )()(0 :0   

As the coefficients ab:  are always strictly positive 
( 0: ab ), when all flows are equal to zero the mix-
ing enthalpy ah  is defined and takes the value: 


 



b
ab

b
bab

a

h
h

:

:




                         (35) 

If all coefficients ab:  are equal, then ah  is the 
arithmetic mean (see also Eq. (25)) 


b

b
a

a h
N

h
1

                             (36) 

where aN  is the number of neighboring volumes b  
of volume a . 

As a conclusion to this chapter, when diffusion is 
taken into account, the energy balance equation is 

  
b

abab abQhhabQh )()()(0 :  (37) 

with 

ab
ab

abQrabQ :
:

)(1)( 
 








         (38) 

The terms )( abQ   are in general small but are 
always strictly positive and have the same physical 
unit as a mass flow rate (kg/s). So they never go to 
zero, even when all mass flow rates go to zero. They 
act therefore as small positive mass flow rates that 
remove naturally in a C way the singularity of the 
mixing enthalpy at zero flows.  

5 Benchmark of the proposed solu-
tion 

To evaluate the computing overhead of introducing 
diffusion to solve the singularity problem, the 
benchmark consists in comparing two alternatives 
for the static energy balance equation (see Eq. (28)): 

 Alternative 1: without diffusion, with or 
without upwind scheme. 

 Alternative 2:  with diffusion, with or with-
out upwind scheme. 

 
Without diffusion means that 

0)(  abJ  
With diffusion means that 

)()ˆ(ˆ)( : ababb hhQrabJ    
With upwind scheme means that 

abbbab hQshQsh  )()(:  
Without upwind scheme means that  

abbbab hQshQsh  )ˆ(ˆ)ˆ(ˆ:  
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)ˆ(ˆ bQr  and  )ˆ(ˆ bQs  are defined by Eq. (12), (24) 
and (34). 

The equations are implemented as a prototype in 
the ThermoSysPro library using the scheme shown 
in Figure 6. 
 

aa hP ,)( 1 abQ  )( 3 abQ 

)( 4 abQ 

33, bb hP
11, bb hP

44 , bb hP

22 , bb hP

)( 2 abQ 

 
Figure 6: grid scheme in ThermoSysPro 

 
The quantities ( aP , bP ) and ( ah , bh ) are com-

puted in the multi-port elements with the mass and 
energy balance equations. Multi-port elements 
represent the control volumes a  and b . For this rea-
son, they are also called ‘volumes’. The quantities 

)( abJ   and abh :  are also computed in the vo-
lumes. 

The quantities )( abQ   are computed in the 
two-port elements with the momentum balance equa-
tions. Two-port elements represent the interfaces 

ab :  between a  and b .  
The interface ab :  is oriented positively from the 

blue port to the red port of the two-port element that 
represents ab : . So the mass flow rate is positive 
when the fluid flows along the positive direction of 
the interface orientation, i.e. from the blue port to the 
red port. To reflect this sign convention for mass 
flow rates, the blue port is called ‘input port’, and the 
red port is called ‘output port’. 

The components are connected together via the 
input and output ports that correspond to Modelica 
connectors. Input and output connectors have the 
same structure. In order to handle diffusion, they are 
somewhat different from the usual fluid connectors 
used in Modelica fluid libraries, and in particular in 
the current distribution of the ThermoSysPro library. 
The meaning of the variables in the connector de-

pends on whether the connector is attached to a vo-
lume or to a two-port element. 

If the connector is attached to a two-port element 
representing the interface ab : : 
 
P Pressure aP  in volume a , or pressure bP  in 

volume b , depending on whether the connec-
tor is on the side of a  or on the side of b . 

Q Mass flow rate )( abQ   of the fluid going 
through interface ab : .  

h Specific enthalpy abh :  of the fluid going 

through interface ab : . 

h_vol_1 Specific enthalpy bh  or ah  of the fluid in 

volume b  or a  located on the side of the 
input port of the two-port element that 
represents ab : . 

h_vol_2 Specific enthalpy bh  or ah  of the fluid in 

volume b  or a  located on the side of the 
output port of the two-port element that 
represents ab : . 

 
If the connector is attached to a multi-port ele-

ment that represents volume b , and the connector is 
connected to the two-port element that represents 
interface ab : : 
 
P Pressure bP  of the fluid in volume b . 

Q Mass flow rate )( abQ   of the fluid going 
through interface ab : . 

h Specific enthalpy abh :  of the fluid going 

through interface ab : . 

h_vol_1 If the connector is an input port: specific en-
thalpy bh  of the fluid in the neighboring vo-

lume b  located in the direction of negative 
flow rates. 

If the connector is an output port: specific 
enthalpy ah  of the fluid in volume a . 

h_vol_2 If the connector is an input port: specific en-
thalpy ah  of the fluid in volume a . 

If the connector is an output port: specific 
enthalpy bh  of the fluid in the neighboring 

volume b  located in the direction of positive 
flow rates. 
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The purpose of h_vol_1 and h_vol_2 is to provide 

both ah  and bh  to volumes a  and b  even if they 
are separated by a line of connected two-port ele-
ments. 

When connecting together two connectors, the 
variables inside the connectors are made equal be-
cause they represent the same physical quantities. So 
connectors are used to assemble the model from the 
different components, and not to generate extra phys-
ical equations (such as balance equations for in-
stance). 

This scheme for distributing the equations be-
tween multi-port and two-port elements and connect-
ing them together enables to connect together several 
two-port elements without having to separate them 
by volumes. The connected line of two-port elements 
is then equivalent to a single two-port element. Also, 
there are no infinitesimally small volume elements 
implied between two connected two-port elements, 
so the connections do not generate the kind of singu-
larity dealt with in this paper. 

The test model is shown in Figure 7. 
 

 
Figure 7: test model 

 
A mixing volume (VolumeA1) is connected to two 
fluid sources (SourceQ1, SourceP1) and a fluid sink 
(SinkP1) via a pipe (Tube) and two control valves 
(Valve1 and Valve2). The test scenario consists in 
performing a flow reversal, and then setting all mass 
flow rates to zero. 
 
SourceQ1 The specific enthalpy is constant equal to 

1.e5 J/kg. 

The mass flow rate follows the following 
curve (kg/s vs. s). 

 
SourceP1 The specific enthalpy is constant equal to 

1.e5 J/kg. 

The pressure is constant equal to 3 bars. 

SinkP1 The temperature is constant equal to 320 K 

The pressure is constant equal to 1 bar. 

Valve1 The position varies from 100% to 0% in 2 
seconds starting from t = 1 s.  

Valve2 The position is constant equal to 100% 

 
Four simulation runs are performed: 

 Run 1.1: without diffusion, with upwind 
scheme 

 Run 1.2: without diffusion, without upwind 
scheme 

 Run 2.1: with diffusion, with upwind scheme 
 Run 2.2: with diffusion, without upwind 

scheme 
 

For each run are plotted: 
 The mass flow rates at each connected port 

of the mixing volume (3 curves) 
 The specific enthalpy inside the mixing vo-

lume (1 curve) 
 The specific enthalpies inside each source 

and sink (3 curves). 
 

Figure 8 gives the mass flow rates for all runs (no 
difference in results for all runs). 
 

 
Figure 8: mass flow rates for runs 1 and 2 

 

Session 5D: Thermofluid Systems, Models and Libraries 2

DOI
10.3384/ECP14096847

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

853



Runs 1.1 and 1.2 
 

Figure 9 gives the specific enthalpies for run 1.1, and 
Figure 10 gives the specific enthalpies for run 1.2.  
 

 
Figure 9: specific enthalpies for run 1.1 

 

 
Figure 10: specific enthalpies for run 1.2  

 
For run 1.1, when all mass flow rates are set to zero 
(at t = 8 s), the specific enthalpy in the mixing vo-
lume keeps its last value prior to the zero mass flow 
rates condition, just as though there were some kind 
of memory holding this value when all mass flow 
rates become zero. This is probably an artifact due to 
the numerical methods used to solve the algebraic 
equations. The result is physically correct, but this 
looks as sheer luck as the theory predicts that the 
result is in fact mathematically undefined when dif-
fusion is neglected. 

To the contrary, for run 1.2, when all mass flow 
rates are set to zero (at t = 8 s), the specific enthalpy 
in the mixing volume continues to vary until it takes 
a seemingly final constant value. This is a false tran-
sient which is of course unphysical because, since 
the model is static, all values should stay constant 
when the boundary conditions are constant (after t = 
8 s). 

In both cases, the theory predicts that the mixing 
enthalpy can take any value when all mass flow rates 
are zero and diffusion is neglected, so the result is 
consistent with the theory. 
 
 
Runs 2.1 and 2.2 
 
Figure 11 gives the specific enthalpies for runs 2.1 
and 2.2 (no difference in results for both runs). 

 

 
Figure 11: specific enthalpies for runs 2.1 and 2.2 

 
When all mass flow rates are set to zero, the specific 
enthalpy in the mixing volume takes the value that 
corresponds to the thermal equilibrium between the 
mixing and the sources and sink it is connected with, 
which is a correct physical result. The transition to 
thermal equilibrium is sharp but continuous. 

The following table gives the computing times in 
seconds and the sizes of the non-linear systems after 
manipulation for each run with Dymola.  
 

Run CPU time Sizes of non-linear 
systems 

1.1 0.125 { 3, 1 } 
1.2 1.22 { 3, 1 } 
2.1 0.219 { 4 } 
2.2 0.313 { 7 } 

 
The conclusion from this experiment is that the 

best solution is to take into account diffusion in the 
energy balance equation, but still use the upwind 
scheme, i.e. neglect diffusion in the flow reversal 
equation. The overhead over the standard approxi-
mation of neglecting diffusion everywhere is 75%. 

More diverse experiments should be made in or-
der to decide whether it is better to take into account 
diffusion in the flow reversal formula or not, because 
avoiding the upwind scheme enables to remove the 
discontinuity due to the use of the step function. 

6 Conclusion 

Neglecting diffusion in thermal-hydraulics systems 
is a common approximation when dealing with large 
mass flow rates, as diffusion is only significant when 
mass flow rates are near zero. 

However, this approximation leads to undefined 
values for the mixing enthalpies when all mixing 
mass flow rates are equal to zero. This is due to the 
fact that convection, which is the only thermal phe-
nomena taken into account when diffusion is neg-
lected, vanishes when mass flow rates go to zero, so 
there is no physical phenomenon left to describe the 
thermal physical state inside the mixing volume. 
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A rigorous mathematical and physical solution to 
this problem is to reinstall diffusion in the energy 
balance equation. This solution indeed removes the 
singularity for zero flows in a continuously differen-
tiable way, as theoretically demonstrated in this pa-
per. 

A prototype implementation has been made in the 
ThermoSysPro library for power plant modelling, 
developed by EDF. The introduction of diffusion 
into the library has an impact on the structure of 
connectors. 

The prototype has been tested on a small static 
model that features a mixing volume connected to 
fluid sources. The test scenario consists in perform-
ing a flow reversal, then bringing all flows to zero. 
The results are consistent with the theory developed 
in this paper. They also show that the upwind 
scheme, which is the equation for computing flow 
reversal that neglects diffusion, can be kept, as reins-
talling diffusion in the flow reversal equation as well 
does not make any difference in the computing re-
sults, but provokes a significant overhead in compu-
ting time. However, more numerical experiments 
should be made to confirm this last point. 

7 Notations 

aP : fluid pressure in volume a  

ah : fluid specific enthalpy in volume a  

au : fluid specific internal energy in volume a  

a : fluid density in volume a  

aV : volume of volume a  

aW : external energy brought to the volume a  
)( abQ  : mass flow rate of the fluid flowing from 

volume b  to volume a  
)( abT  : temperature gradient from volume b  

to volume a  
abh : : specific enthalpy of the fluid flowing from vo-

lume b  to volume a  
abpc :)( : specific heat capacity of the fluid flowing 
from volume b  to volume a  

abk : : diffusion coefficient at the interface between 
volumes b  and a  

abA : : area of the interface between volumes b  and 
a  

abL : : distance between the centers of volumes  b  
and a  

abG : : more generally, value of quantity G  at the 
interface between volumes b  and a  
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Abstract

Accurate and computationally efficient borefield mod-
els are important components in building energy sim-
ulation programs. They have not been implemented
in Modelica so far. This paper describes the imple-
mentation of an innovative approach to model bore-
fields with arbitrary configuration having both short-
term (minutes) and long-term accuracy (decades) into
Modelica. A step response is calculated using a com-
bination of a short-term response model which takes
into account the transient heat transfer in the heat car-
rier fluid, the grout and the immediately surrounding
ground, and a long-term response model which calcu-
lates the boreholes interactions. Moreover, an aggre-
gation method is implemented to speed up the calcu-
lations. Validation shows good results and very high
computational efficiency.

Keywords: Borefield; short- and long-term; Model-
ica; Aggregation method;

1 Introduction

Building energy simulations have gained significant
importance in the last decades resulting in several dy-
namic simulation platforms such as EnergyPlus [1]
and TRNSYS [2]. Modelica might become the next
generation tool for energy system simulations in build-
ings and communities as is the aim of the IEA EBC
Annex 60 project. To achieve this goal, libraries are
developed to simulate a wide variety of energy sys-
tems in buildings. Accurate and computationally effi-
cient borefield models have not been implemented in
Modelica so far, even though they play and will play
an important role in recent and future buildings.

The open-source Modelica Buildings library devel-
oped by the Lawrens Berkeley National Laboratory
(LBNL, US) is the only freely available library which
has a U-tube single borehole model [18]. The borehole

model is similar to the EWS model implemented in
TRNSYS (type 451, [17]). The model solves the tran-
sient heat flux in the ground by discretizing the sur-
rounding ground in several cylindrical layers up to a
radius of 2 meters from the borehole center. The layer
temperature at this outer radius is calculated using an
approximation of the line-source theory together with
superposition. This temperature is updated every week
in order to avoid too intensive calculations. The heat
carrier fluid (HCF) and the grout (i.e the filling ma-
terial of the borehole) are simulated dynamically but
their capacities are lumped. A triangle thermal resis-
tance network is used to describe the heat transfer into
the borehole heat exchanger (BHX) (i.e. from the HCF
to the borehole wall). In the vertical direction, the
borehole and the surrounding ground are divided into
adiabatic horizontal layers. The model is not suited for
multiple borehole simulation.

The E.ON Energy Research Center (Germany) also
developed a single borehole model for single U-tube
and coaxial type [11]. The pipe model is connected to
an axially and radially discretized cylindrical ground
model. A fixed temperature boundary condition is
used for the ground model. The model does not take
the dynamics of the grout into account and multiple
borehole simulation is not possible.

Several models are implemented in TRNSYS. The
Superposition Borehole Model (SBM), developed by
Hellström, gives a detailed three-dimensional model
for the transient thermal process in a borefield which
has been implemented into TRNSYS [16]. The model
can simulate single or multiple, vertical or inclined
boreholes. The dynamics of the BHX is not taken into
account and the computation time is very high. The
Duct Heat Storage model (DST), developed by Hell-
ström, calculates the transient thermal process for mul-
tiple borehole configurations, uniformly positioned in
a cylindrical volume. The model does not take the
dynamics of the BHX into account but it is fast and
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it calculates the interaction between the boreholes (it
uses pre-computed g-functions obtained by the SBM).
Its TRNSYS implementation (type 557) can be used
together with a separate program called BORE to cal-
culate the borehole thermal resistance depending on
the flow rate and the temperature [16].

To the author’s knowledge, no model has been im-
plemented in building simulation programs so far,
which (i) is able to simulate any arbitrary configuration
of boreholes, (ii) allows coaxial, U-tube type or dou-
ble U-tube type BHX, (iii) has short- and long-term
accuracy for minute-based year-long simulations, and
(iv), is numerically efficient. The aim of this paper
is to propose a new model, implemented in Modelica,
which meets the above mentioned requirements. No
ground water flow is taken into account.

Section 2 describes the model and Section 3 han-
dles the computation of the response function and an
aggregation method to speed up the computation. Fi-
nally Section 4 and 5 validate the model and give an
example including a CPU-time comparison with the
existing borehole model of the Buildings library. The
main conclusions are summarized in section 6.

2 Bore field model

The proposed model is a so-called hybrid step-
response-model (HSRM). This type of model uses the
borefield’s temperature response to a step load input.
An arbitrary load can always be approximated by a su-
perposition of step loads. The borefield’s response to
the load is then calculated by superposition of the step-
responses using the linearity property of the heat dif-
fusion equation. The most famous example of HSRM
for borefields is probably the g-function of Eskilson
[9]. The major challenge of this approach is to obtain a
HSRM which is valid for both minute-based and year-
based simulations. To tackle this problem, a HSRM
has been implemented. A long-term response model
(LTM) is implemented in order to take into account
the interaction between the boreholes and the ground
temperature evolution of the surrounding ground. A
short-term response model is implemented in order to
describe the transient heat flux in the BHX to the sur-
rounding ground. The two models are merged into one
HSRM in order to achieve both short- and long-term
accuracy.

In this section, the long-term and the short-term re-
sponse models are described.

2.1 Long-term response model

The long-term temperature response of the borefield
is calculated using the model of Javed and Claesson
[12]. This model is the current state-of-the-art and it
proposes a compact expression to calculate the mean
temperature of the borehole wall (average over the dif-
ferent boreholes of the borefield and over the length of
each borehole).

The model is based on the spatial superposition of
finite line-sources of equal length, each representing
one borehole of the borefield. The finite line-source
is calculated from the convolution of a point source of
constant power along the depth of the borefield. The
mirror of the solution at z=0 is subtracted to ensure
that no heat transfer occurs between the ground and
the ambient air. After several mathematical manipula-
tions to simplify the calculation, Javed and Claesson
obtain the following compact expression for the mean
borehole wall temperature:

T̄mbhw(t) =
q0

4πλ

∫ ∞

1/
√

4αt

(
N

∑
i=1

N

∑
j=1

e−r2
i, js

2

)
Ils(Hs)

Hs2 ds

(1)
where q0 is the heat flux per meter length, λ is the
ground heat conductivity, α is the ground heat diffu-
sivity (λ/(ρcp)), N is the number of boreholes and H
is the depth of the borefield. Ils is defined by Eq. 2-3
and ri, j by Eq. 4:

Ils(h) = 4 ierf(h)− ierf(2h) (2)

ierf(x) =
∫ x

0
erf(u)du = x erf(x)− 1√

π
(1− e−x2

)

(3)

where erf is the error function,

ri, j =

{
rb if i = i√

(xi− x j)2 +(yi− y j)2 if i 6= j
(4)

where rb is the BHX radius and (xi,yi) are the spatial
coordinates of the center of each borehole from an ar-
bitrary reference point.

Eq. 1 is valid for t > 5r2
b

α , i.e after the transient part
of the heat transfer through the BHX is completed [9].
The model also makes an important approximation by
assuming uniform heat flux for all boreholes. The
(long-term) accuracy of the model decreases for long
simulation times for configurations with non-uniform
heat fluxes, e.g. densely packed rectangular grid. For
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more information about this approximation, we refer
to Malayappan and Spitler [14]. Finally, the analytical
solution assumes a uniform initial ground temperature
equal to its average value.

Eq. 1 is implemented as a Modelica function.
The integral of Eq. 1 and Eq. 2 are evaluated
using the adaptive Lobatto rule implemented in the
Math.Nonlinear of the Modelica Standard Library.
The error function, however, is not implemented in
Modelica. The publicly available c-code of Okumura
[15] is compiled using the ability of Modelica to call
external code.

2.2 Short-term response model

The short-term response model (STM) should be able
to calculate the transient thermal response of the HCF,
the grout and the surrounding ground accurately for
time periods ranging from minutes to t =

5r2
b

α (typically
< 200 hours). The interaction between the boreholes
for these short times can be neglected, therefore a sin-
gle borehole model is used.

The implemented STM is able to simulate boreholes
with a co-axial, single-U-tube or double-U-tubes con-
figuration. The model can compute the step response
of a single borehole or that of a set of boreholes in se-
ries. Vertical discretization is also possible in case of
an initial ground temperature gradient but no vertical
heat transfer is computed except through the HCF. The
main STM elements are the HCF, the pipes, the grout,
the surrounding ground and the undisturbed ground
temperature. Fig. 1 illustrates the model structure for
a set of single-U-tube boreholes in series.

The dynamics of the HCF is calculated using
the Fluid base classes of the open-source Build-
ings library [18] ( PartialFourPortInterface,

PartialTwoPortInterface, TwoPortFlowRes-

istanceParameters, LumpedVolumeDeclarat-

ions) and the Media library from the Modelica Stan-
dard Library. The convection resistance between the
HCF and the pipe is calculated by the correlation for
smooth pipe in turbulent flow regime of Dittus-Boelter
in the case of single- and double-U-tubes. For the
circular-tube annulus, the correlation of Petuhkov
and Roizen is used. For more information about the
correlations we refer to Hellström [10].

The transient heat transfer from the internal wall of
the pipes to the borehole wall is calculated using the
thermal resistive-capacitive models (TRCM) derived
by Bauer et al. [3]. These authors propose to extend
the resistance model of Hellström for heat transfer in

the BHX (see [10]) to a dynamic model by adding ca-
pacities to it. For the case of a single U-tube, they
also propose an empirical formula to approximate the
multipole method of Bennet et al., using heat conduc-
tion shape coefficients and correction terms depending
on the shank spacing divided by the borehole diame-
ter. The correction terms are derived from an extensive
set of simulations. The method is developed for coax-
ial, single U-tube and double U-tube types of borehole.
The position of the capacities is calculated to be at the
area center of the borehole with an equivalent single
pipe.

Finally, the heat transfer from the borehole wall to
the surrounding ground is calculated by discretizing
the ground using a TRCM. The mesh is generated ac-
cording to Eskilson’s guidelines [9]:

∆r =
[
∆rmin,∆rmin,∆rmin,β∆rmin,β 2∆rmin, · · ·

]
,

∆rmin = min(
√

α∆tmin,H/5) ,

with α the diffusivity of the ground, H the depth of
the borehole, ∆tmin the minimum resolution time and
∆r the size of the cell. The discretization has been
tested with the analytical Cylindrical Source Model
developed by Carslaw and Jaeger [7] and it shows very
good agreement when the mesh is chosen fine enough.
The width of the ground layer is by default equal to
three meters but it can be adapted. The heat port at
the external side of the layer is connected to a constant
prescribed temperature equal to the initial undisturbed
ground temperature. The heat flux at the external side
of the ground layer is indeed very low from short sim-
ulation time.

3 Computation of the response func-
tion and aggregation method

The STM gives an accurate step response of the bore-
field as long as the diffusion length of the thermal pro-
cess is small compared to the radius of its ground layer
model or to the distance between the boreholes. The
LTM is able to correctly compute the step response
of the ground for a long time horizon as well as the
interaction between the boreholes. It does not calcu-
late, however, the borehole thermal resistance and its
transient behaviour, contrary to the STM. The full re-
sponse function is then obtained by lifting the LTM re-
sponse to the STM response in the time interval where
both models are still valid as shown in Fig. 2. As
Javed mentions in his work [12], this interval is quite
large (default value in model = 200 hours). Physically,
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Bore holes in series 

Single bore hole 

Bore hole segment 

Segment of the internal part of a single  
U-tube bore hole 

Ground layer 
Undisturbed ground 

temperature 

Figure 1: Implementation of the short-term model for boreholes in series in Modelica.

T

T
STM T

LTM

T
HSRM

t

Figure 2: Combination of the long-term temperature
step response (TLT M) with the short-term temperature
step response (TST M) to compose the global tempera-
ture step response (THSRM).

this interval begins when the transient behaviour of
the BHX is over and it lasts until the interactions of
the boreholes start to appear. The combination of both
STM and LTM gives an accurate response function for
both short- and long-term.

The response-function can be calculated at the start
of each simulation or it can be priorly saved with a
sample time equal to time resolution of the model.
Until now, only the response of the STM is priorly
saved in the implemented model in order to increase
the computational speed but to avoid large files con-
taining the full response function. The STM is con-
nected to a pump and a prescribed heater/cooler from
the Buildings library (see Fig. 3). A script-function
automates the simulation of the STM and it writes
the sampling values of its temperature response in the

Figure 3: Model for the short-term temperature step
response. The boreholes in series (borHolSer) are con-
nected to a pump (pum) and to an ideal heater (hea).
All the parameter values are stored in the records (bot-
tom of the figure).

Data package of the model as .txt file. The file is read
at the initialization of the model in order to build the
full response function of the HSRM.

As described above, g-functions and most of the an-
alytical models give only a step response solution for
the borefield. In order to model arbitrary input sig-
nals, the inputs need to be represented by a sum of
time-shifted step signals and their responses should be
superposed.

For minute-based multi-year simulations where the
individual step response of each input step should be
summed, this approach leads to enormous calcula-
tions. This problem is solved by using an aggregation
method. The following paragraphs describe the tech-
nique of Claessons and Javed [12]. The notation has
been adapted to gain clarity.
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Assume that the discrete load input to the borefield
is Q and the HCF temperature is Tf . Q and Tf can be
written as:

Q(n)
ν :=

{
Q [(n + 1−ν)h] , if ν ≤ n.
0, otherwise.

(5)

Tf (nh)−Tf (0) =

νmax

∑
ν=1

Q(n)
ν

Qstep

[
Tf ,step(νh)−Tf ,step(νh−h)

]
(6)

with νmax ≥ n, h the discrete time-step, Q the discrete
load and Tf ,step the response function from HSRM with
step load Qstep. Notice that the model assumes a uni-
form temperature at time 0.

The idea behind this aggregation is the following:
the HCF temperature difference of the borehole sys-
tem (from an initial steady state) at t = nh depends
on the nh load pulses which have been applied to the
borehole system from t = 0 to nh. However, the influ-
ence of the pulses on the HCF temperature decreases
the further they are from the observation time nh. If
the pulses happened long before the observation time,
the transient behaviour of the BHX has faded out, and
only the net energy injection of extraction of the pulse
is important. This net energy injection or extraction
will indeed increase or decrease the global tempera-
ture of the borefield. An accurate profile of the load,
far away from the observation time, is therefore not
necessary. On the contrary, the load profile at times
close to the observation time is important because they
still influence the transient behaviour of the borefield
and immediate surrounding ground.

Claesson and Javed proposed an aggregation algo-
rithm grouping (i.e. taking the average of) the load
pulses and their coefficients into cells of exponentially
increasing size. The cells are themselves grouped into
q levels. Each level has a given number of cells pmax
and each cell of a same level contains the same amount
of load pulses Rq. Javed and Claesson propose to dou-
ble the size of the cells at each level, in order to have
the same number of cells in each level and finally in or-
der to choose this number of cells per level according
to the desired accuracy (a higher number of cells per
level gives a more detailed load profile but penalizes
the computational efficiency).

Eq. 6 is now rewritten to implement the aggrega-
tion method. Notice that the temperature difference of
the HCF between two time steps in Eq. 6 divided by
the amplitude of the step load Qstep can be considered

as the transient thermal resistance of the borehole for
that particular time. Let us define the transient thermal
resistance Rν and the dimensionless factor κν as:

Rν =
Tf ,step(νh)−Tf ,step(νh−h)

Qstep
(7)

κν =
Tf ,step(νh)−Tf ,step(νh−h)

Tf ,step(∞)
=

Rν

Rss
. (8)

Eq. 6 can now be rewritten as:

Tf (nh)−Tf (0) = Rss

νmax

∑
ν=1

Q(n)
ν κν . (9)

with Rss the steady state thermal resistance.
As explained above, the aggregation is consisting of

qmax levels, each composed of pmax cells which have a
level-dependent width Rq defined as:

Rq := 2q−1 for q = 1, ...,qmax . (10)

The number of pulses covered by the aggregation is
then:

νmax :=
qmax

∑
q=1

Rq pmax ≥ nmax . (11)

Define νq,p as the number of pulses covered from
cell 1 at level 1 till (including) cell p at level q:

νq,p := p Rq +
q−1

∑
i=1

Ri pmax . (12)

Define the function ν(q, p,r) numbering each pulse,
starting from pulse 1 in cell 1 at level 1:

ν(q, p,r) := νq,p−Rq + r for q = 1, . . . ,qmax ,

p = 1, . . . , pmax ,

r = 1, . . . ,Rq .

These different definitions are illustrated in Fig.4.
Using these definitions, Eq. 9 can be rewritten as:

Tf (nh)−Tf (0) = Rss

qmax

∑
q=1

pmax

∑
p=1

Rq

∑
r=1

Q(n)
ν(q,p,r)κν(q,p,r)

(13)
Now we apply the aggregation technique by approx-

imating the last sum of Eq. 13 by

Rq

∑
r=1

Q(n)
ν(q,p,r)κν ≈
[

∑Rq
r=1 Q(n)

ν

Rq

]
Rq

∑
r=1

κν(q,p,r) := Q̄(n)
ν(q,p)κ̄ν(q,p) (14)
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Figure 4: Illustration of the aggregation method for a
load of 14 hours with time steps (pulses) of one hour.
The number of levels is three and each level has two
cells. The size of the cells is doubled at each level.

Finally the aggregation of Eq. 9 gives:

Tf (nh)−Tf (0)≈ Rss

qmax

∑
q=1

pmax

∑
p=1

Q̄(n)
ν(q,p)κ̄ν(q,p) . (15)

The term κ̄ν(q,p) is a matrix with the transient ther-
mal resistance of each cell of the aggregation and it
is independent of the load. This matrix is currently
calculated at the initialization of each simulation. For
repetitive simulations using the model and the same
simulation length, the matrix can be priorly calculated
and saved to gain significant calculation time. The
term Q̄(n)

ν(q,p) is a vector with a length equal to the
number of aggregation cells and which is composed
of the aggregated past load pulses. At each new dis-
crete simulation time, a new load pulse needs to be
added and the previous pulses need to be shifted in the
Q̄(n)

ν(q,p) vector. This means re-calculating the whole
vector. Claesson and Javed developed a method which
avoids this time consuming re-calculation by updating
instead the load vector from the previous time step.
The method is based on the shift of each cell to the
next one and it has been applied to our model. An er-
ror, however, is introduced due to mixing in the cells.
Claesson and Javed concluded after a detailed study
that the error can be neglected. For example, in case of
a simulation of 20 years using the aggregation method
with each level having 5 cells, the error compared to
the non-aggregated solution is lower then 0.1 K (for
more information about the method and accuracy, see
Claesson and Javed [8]).

Note that the left-hand term of Eq. 15 is only an

approximation of its right-hand term due to the ap-
proximation made in Eq. 14. The error, however, is
negligible if the number of cells is sufficiently high.
By default, the number of cells by level is five and the
size of the levels increase exponentially with base two.

4 Model validation

The STM and the LTM have been verified by their
respective developers. To avoid coding error and to
check and generalize the validity of the model, the
model verification has been extended.

The STM is compared to the widely used sandbox
experiment of Beier et al. [5]. These authors have
carefully performed a thermal response test using a U-
tube BHX. The U-tube is grouted into an aluminium
pipe of 18 meters long which is placed into a box filled
with homogeneous sand. An electrical heater injects a
constant heat rate to the HCF and a pump insures a
constant flow rate. All ground and grout properties are
presented in the paper, except the heat capacities. The
ground capacity has been estimated by Beier using a
best fit method (cv = 3.2MJ/m3K) [4]. For the grout
a heat capacity of 4MJ/m3K is used. The HCF tem-
perature is measured at the in- and outlet as well as the
BHX wall and sand temperatures at various depths. It
should be noted that the aluminium pipe around the
grout acts as a thermal fin which reduces the bore-
hole thermal resistance by evening out its wall tem-
perature. The HCF temperature should therefore be
lower for the experiment than for the models which
do not take this fin effect into account (see Lamarche
2010 [13]). Fig. 5 compares the average of the in and
outlet temperatures of the HCF for the case of the ex-
periment, the Buildings model, TRNSYS model (type
557a, DST) and the implemented HSRM. The Build-
ings model dynamics is clearly to slow. This is due
to the position of the lumped capacity of the grout, as
illustrated by Bauer et al [3]. In the Buildings model,
the grout capacities are positioned at the pipe wall in-
stead of the area center of each grout zone. Adapting
the capacity location (which requires also the adapta-
tion of the resistances), the problem is solved (Build-
ings adapted). TRNSYS DST model and HSRM give
similar results. DST, however, does not incorporate
the short-term thermal dynamics of the fluid, contrary
to the new model HSRM.

The LTM is verified using the well known g-
function developed by Eskilson and the infinite cylin-
drical heat source (CHS) solution for different config-
urations (the data are taken from the paper of Bertag-
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Figure 5: Comparison between the heat carrier fluid
temperature from the sandbox experiment ([5]), the
borehole model from the Buildings library and its
adapted version, type 557a of TRNSYS (DST) and the
new hybrid model (HSRM).

nolio [6]). Fig. 6 illustrates the case of a 110 me-
ter deep single borehole. The error of the imple-
mented model compared to the g-function never ex-
ceeds 0.11 K during the 25 year-long simulation. The
difference is caused by the so-called end effect of the
borehole because the analytical solution uses a finite
line-source approximation whereas the Eskilson finite
volume model is three-dimensional (boundary differ-
ence at the foot of each borehole). The CHS model is
clearly unable to model the end effect. Fig. 7 illus-
trates the case of a borefield with a square 8x8 con-
figuration, respectively. The length of the boreholes is
110 meters and the relative distance between the bore-
holes to length ratio equals 0.05. Due to the very com-
pact configuration, a large error appears, as Malayap-
pan and Spitler warned for [14]. The error comes from
the assumption that each borehole injects or extracts
the same amount of heat, regardless of its relative po-
sition in the borefield. In reality, the boreholes at the
edge of the borefield will inject/extract more than the
center ones and as a consequence, the average bore-
field temperature will be lower. The end effect error
is negligible compared to the large error ( > 7K af-
ter 25 years for this case) introduced by the homo-
geneous heat source approximation. However, if the
borefield is dissipative enough, the model shows very
good results (e.g. see Fig. 8 for a line configuration of
eight boreholes). For simulation with yearly thermal
ground balance (amount of injected heat = amount of
extracted heat), the configuration error is partly coun-
teracted and it will not cause significant accuracy is-
sues.
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Figure 6: Average temperature step response of the
borehole wall of a single borehole calculated by the g-
function (g-func), the infinite cylindrical source with
aggregation method (CHS-MLAA) and the new hybrid
model (HSRM).
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Figure 7: Average temperature step response of the
borehole walls of a borefield with 64 boreholes in
filled square configuration (B/H=0.05) calculated by
the g-function (g-func), the infinite cylindrical source
with aggregation method (CHS-MLAA) and the new
hybrid model (HSRM).

5 Example

This section describes an example of a borefield sub-
jected to a varying non-symmetric load with a time-
step of 4 hours proposed by Bernier et al [6]. The CPU
and the fluid temperature of the Buildings model and
those of the HSRM model are compared for a simula-
tion of one year in the case of a single borehole and the
case of three boreholes in series (Fig. 11). The Build-
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Figure 8: Average temperature step response of the
borehole walls of a borefield with 8 boreholes in line
configuration (B/H=0.05) calculated by the g-function
(g-func), the infinite cylindrical source with aggrega-
tion method (CHS-MLAA) and the new hybrid model
(HSRM).

ings model is composed of the Buildings component
Boreholes.UTube, an ideal heater and a pump (see
Fig. 9 for the case of three boreholes in series). The
HSRM model uses the same setup but the Building
boreholes are replaced by the HSRM (Fig. 10). A step
response of 200 hours is calculated with the STM prior
to the simulation, in order to calculate the short term
part of the response function. The interaction between
the boreholes is taken into account by the HSRM but
not by the Buildings model.

As seen above, the Buildings model underestimates
the borehole resistance which is also visible in Fig.
11 where the fluctuations of HCF temperature of the
Buildings model have a smaller amplitude than those
of the HSRM model.

The analysis of the CPU times illustrates very
clearly the difference between the models. In the case
of a single borehole, the HSRM model is about twelve
times faster than the Buildings model. The HSRM has
a longer initialization time due to the calculation of
the aggregation matrix, but it calculates the tempera-
ture response very fast. In the case of three boreholes
in series, the HSRM is about 60 times faster. The ini-
tialization time is longer than for a single borehole be-
cause the superposition of the temperature field of the
boreholes needs to be calculated. However, once the
aggregation matrix is calculated, the calculation time
is the same for any configuration. This is not the case
for the Buildings model.

Figure 9: Model of three boreholes in series with a
variable heat load (described by Bernier et al. [6])
and a constant mass flow rate, using components of
the Buildings library.

Figure 10: Model of three boreholes in series with a
variable heat load (described by Bernier et al. [6])
and a constant mass flow rate, using the new borefield
(multBor) model and components of the Buildings li-
brary.

6 Conclusion

A new hybrid model for borefields with arbitrary con-
figuration having both short-term (minutes) and long-
term accuracy (decades) has been successfully devel-
oped and implemented in Modelica. The model has
been validated for both short- and long-term. Thanks
to its aggregation method, the implemented model is
about twelve times faster than the borehole model of
the Buildings library for the case of a single borehole
and about 60 times faster for the case of three bore-
holes in series. The long-term accuracy of the model
decreases for compact borefield configuration. This
can be solved by plugging a g-function in the model
instead of calculating the temperature step response.
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Figure 11: Left: CPU comparison between the new model (HSRM) and the model form the Buildings library
(Buildings) for a single borehole (1SB) and for three boreholes in serie (3BH). Right: heat carrier temperature
for HSRM-3BH and Buildings-3BH.

SMART GEOTHERM focusing on integration of ther-
mal energy storage and thermal inertia in geothermal
concepts for smart heating and cooling of (medium)
large buildings. Moreover this study is part of the de-
velopment work performed within IEA-ECB-Annex
60 on new generation computational tools for build-
ings and community energy systems based on the
Modelica and Functional Mockup Interface standards.
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Abstract

Superheat control has influence on the coefficient of
performance (COP), the stability and the compressor
endurance of a vapor compression cycle. In an in-
creasing number of applications electronic expansion
valves are used. This leads to more complex control
tasks. It raises the question if simulation models can
be used for feedforward control to fulfill this function.
For building a feedforward control structure a simula-
tion model needs to be inverted. In this paper a con-
tinuous submodel of a refrigeration cycle, consisting
of models for expansion valve and evaporator, is in-
verted. The resulting controller is tested in a model-
in-the-loop environment and applied on an automotive
refrigeration cycle. The advantage of a dynamic in-
verse model in contrast to a static one is pointed out.
Also the results are compared to a standard PI con-
troller.

Keywords: inverse models; superheat control; va-
por compression cycles; feedforward control

1 Introduction

Superheat has several effects on refrigeration and heat
pump cycles. The coefficient of performance (COP),
the stability and the compressor endurance are depen-
dent from a reasonable degree of superheat. Superheat
control is a challenging task since the system dynam-
ics of a refrigeration cycle are highly nonlinear and
the control targets can be contrary. A higher degree
of superheat leads to a smaller COP but is more se-
cure against damage from liquid drops inside the com-
pressor. Moreover due to the inherent characteristics
of vapor compression cycles there exists an instabil-
ity region at small degrees of superheat that expresses
in a fluctuating temperature. This region can be de-
scribed by the minimum stable superheat line (MSS)
[1, 2]. Hence, the target of control structures is to set a
small degree of superheat with considering the robust-
ness against crossing the MSS line.

In the last years electronic expansion valves (EXV)
are used in an increasing number of applications, e.g.
electronic vehicles. With EXVs superheat and thus
stability and COP can be controlled directly in con-
trast to thermostatic expansion valves (TXV) or orifice
valves. New control approaches can benefit from this
additional degree of freedom.

In the last decade a lot of effort has been made to
build models for describing the behavior of vapor com-
pression cycles. Model libraries like TIL or Air Condi-
tioning have been developed to simulate various sys-
tems. It seems consequential to use this knowledge
not only for simulation but also for control. One ap-
proach for model based control is inverting the simu-
lation models.

Using inverse models for feedforward control is
common in control theory [3]. Inverting a model
means to swap inputs and outputs and reform the
model equations so that the inputs can be calculated
when having knowledge of the outputs. In this way
the actuating variables can be calculated depending
of the desired system output. Modelica is convenient
for inverting models since it is an equation-based lan-
guage instead of signal-oriented. One of the main pur-
poses of every modelica tool is to transform ODE- and
DAE-systems. This is exactly the challenge of invert-
ing models. For a convenient introduction in inverting
models in Modelica see [4].

Often static models are used for feedforward con-
trol. In this paper a dynamic model is proposed for
controlling the superheat. This has advantages if the
desired system output is not a constant or if measur-
able dynamic disturbances act on the system.

Structure of the Paper

In section 2 a continuous system model of the refrig-
eration cycle is introduced. One part of the model, a
submodel consisting of expansion valve and evapora-
tor, is needed for feedforward control. The complete
system model is used for model-in-the-loop tests and
as an observer during measurement. In section 3 the
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Tliq

Subcooler Condenser

Evaporator

A n

Tsh

Figure 1: Modelled Refrigeration Cycle

inversion of the submodel is shown. The developed
inverse model is tested in a model-in-the-loop envi-
ronment in section 4. The potential of the transient
inverse model in relation to a static one is also pre-
sented. Section 5 describes the test bench setup and
shows how the complete system model is used as an
observer. Measurement results of the inverse feedfor-
ward control are shown in section 6 as well as closed
loop control where the inverse model is coupled with a
PI controller. The measurement results are compared
with regular PI control results.

2 System Model of the Refrigeration
Cycle

The modelled system is a basic refrigeration cycle con-
sisting of a compressor, an EXV, three plate heat ex-
changers and a receiver (see figure 1). R134a is used as
refrigerant. The compressor is a variable speed scroll
compressor. On the high pressure level there are two
heat exchangers: condenser and subcooler. In between
lies the receiver to ensure that subcooling exists in all
operating points. In the outlet of the evaporator the
degree of superheat is measured. A 50/50 mixture of
water and glycol flows in the secondary paths of all
heat exchangers. In terms of control the valve opening
A and the compressor speed n can be defined as inputs
and the actual degree superheat Tsh and the tempera-
ture of the cooled liquid Tliq as outputs.

Most of the model approaches are based on the
model library TIL (see [5]). For the inversion new
models with functions and interfaces were developed.
All physical properties are calculated with TILMedia
by use of refrigerant and liquid objects or explicit
function calls (see [6]).

The dynamic compressor model is loss-based and
has a suction and a discharge volume where the phys-

Evaporator

ṁ,T

p,T

p

A

Tsh

Figure 2: Inverse Model

ical properties of the refrigerant are calculated. The
model parameters are fitted to the compressor in the
test bench described in section 5. The EXV model
originates from Bernoulli’s principle and is therefore
a static model. Delays that may come from the actu-
ator of the valve are not considered even if they can
not be neglected. Section 3 deals with this problem.
All heat exchangers are modelled with a variable num-
ber of finite volumes. Per volume exist three cells,
one for the refrigerant, one for the liquid and one for
the wall dividing the fluid paths. The refrigerant cell
includes transient mass, energy and momentum bal-
ances. The time derivative of pressure is constant over
all refrigerant cells of a pressure level [7]. The liquid
cell includes transient balances for mass and energy.
Pressure drop is neglected in both liquid and refrig-
erant cells. The wall cell includes a transient energy
balance. The receiver between the two high pressure
heat exchangers is modelled as a volume with transient
mass and energy balances and a varying filling level.

3 Inverting the Submodel

For representing the complete system dynamics for
feedforward control it is desirable to invert the whole
system model described in the previous section. With
linear analysis of the refrigeration cycle it can be
shown that an inversion of the complete model is not
reasonable due to possible non-minimum phase char-
acteristics. This would lead to an unstable system
model. Hence, in this paper only a submodel is used
for feedforward control. The inverted model consists
of the evaporator and valve models.

The resulting inverse model is shown in figure 2.
The easiest way creating it is using the MSL Block
InverseBlockConstraints that changes in- and outputs.
The desired superheat Tsh is now an input and the re-
sulting valve opening A an output. The outlet liq-
uid temperature of the evaporator, that is equivalent to
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the cooling capacity, shall be controlled by the com-
pressor speed and is therefore not needed for super-
heat control. Since the inverse model does not include
the whole system dynamics boundary conditions are
needed. One combination of possible boundaries is
shown in figure 2. High and low pressure as well as
the refrigerant inlet enthalpy of the valve are needed to
simulate the model. Moreover the mass flow rate and
temperature of the evaporator inlet need to be known.
This information can be provided by simulation data
when using the inverse model in a model-in-the-loop
environment. For use as a hardware controller mea-
surement data and/or data from an observer can be
used (see section 5).

The valve opening is dependent from the opening
actuator time delay. This delay can be approximated
as a first-order time delay. Reforming the ODE sys-
tem gets more complicated because of an additional
continuous state that makes it necessary to derive more
equations and to give access to second derivatives with
respect to time of physical properties. For these rea-
sons including the valve actuator delay was not possi-
ble at the time of writing this paper.

The inverse model forms an ODE with 15 continu-
ous states. For calculating the saturation temperature
dependent from pressure, that is needed for calculating
the superheat, a function from TILMedia is used. Also
the time derivative of this function is provided. For
comparison also a (nearly) stationary inverse model is
build. When eliminating the continuous states several
systems of nonlinear of equations result. To prevent
these hardly solvable systems the capacities of the con-
tinuous states are chosen very small so that a nearly
stationary model is generated.

4 Simulation Results

This section starts with results regarding the sole in-
verse model and continues with model-in-the-loop
(MiL) tests. In figure 3 the response of the inverse
model to a change of the superheat setpoint is shown.
The superheat follows the reference trajectory besides
a small difference. This comes from a filter that
smoothes the reference trajectory to make it differen-
tiable. Otherwise the model would not be invertible
(see also [4]). The actuating variable, the valve open-
ing area, fluctuates mainly at the changes of the refer-
ence trajectory derivative at 0s and 5s. A real-world
EXV may not be able to follow the actuator trajectory.
The high peaks, especially at 5s and 6s, are mostly im-
portant to follow the gradient of the set point change.

In most applications it is not necessary to follow this
gradient exactly.
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Figure 3: Behavior of Inverse Model to Setpoint
Change of Superheating Degree

Figure 4 shows a set point change in a MiL environ-
ment. A transient and a static inverse model work as
feedforward controllers in this example. It is obvious
that the transient model can make the system model
follow the reference trajectory a lot better. The static
model is not able to represent the dynamics of the sys-
tem and can not follow the reference trajectory. In both
simulations the set point is not reached exactly. This
arises from model uncertainties between inverse and
system models. The valve opening fluctuates more
than in the previous simulation of the sole transient
model. Because of the two pressures and the valve in-
let enthalpy there exists a coupling between the whole
system model and the inverse model in MiL simula-
tions. This leads to a more dynamic system. Sum-
marizing the transient feedforward control offers a big
potential for the response to setpoint changes.

Besides the response to setpoint changes the behav-
ior towards disturbances is a main attribute for reliable
and robust control. One of the advantages of feedfor-
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Figure 4: Comparison between Static and Transient
Inverse Model Control (Model-in-the-Loop)

ward control combined with feedback control is that
these behaviors can be divided. Mostly the feedfor-
ward part is mainly responsible for responses to set-
point changes so that the feedback part can be de-
signed for reacting on disturbances and model uncer-
tainties. If the disturbances are measurable also feed-
forward control can handle them and even improve the
control scheme. In the described process model distur-
bances can be imagined as changes in input tempera-
tures of the secondary loop cycles or as changes in the
compressor speed. The compressor speed can be con-
trolled as well and is therefore known. A change in
compressor speed has influence on pressures and mass
flow rate of the refrigerant cycle. This information is
provided to the inverse model that can react on this dis-
turbance. An example is shown in figure 5 where the
compressor speed is raised from 2000 rpm to 3000 rpm
at time 0. Results are shown for feedforward control
including a model uncertainty and a PI controller. The
PI controller reacts as recently as the measurement sig-
nal deviates from the set point. The superheat rises
from 10 K to approximately 15 K. The feedforward

controller reacts at time 0 when the compressor speed
rises. The superheat stays under 11 K. Even if the PI
controller could be optimized further for reacting on
this disturbance it can never react as fast and precise
as the inverse model.

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
[m

2 ]

×10−7

inverse model
PI controller

−10 0 10 20 30 40
time [s]

8

9

10

11

12

13

14

15

16
T

sh
[K
]

inverse model
PI controller

Figure 5: Behavior of the System Model towards Dis-
turbance (Change of Compressor Speed): Comparison
between Inverse Model Control and PI Controller

5 Test Bench Setup

The developed controller is tested on a refrigeration
cycle that has the dimension of an automotive air con-
ditioning application (see figure 6). The compressor is
a direct current scroll compressor with variable speed
as it is used in electric vehicles. As heat source and
sink controllable secondary loop cycles filled with a
glycol water mixture are connected with the plate heat
exchangers. The EXV is driven by a stepper motor
with constant adjusting speed. The motor needs a
voltage signal for positioning the actuator. The volt-
age is calculated by a linear correlation with the valve
opening area as input. The degree of superheated is
measured with two thermocouples, one at the inlet and
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one at the outlet of the evaporator. The difference of
the measured temperatures will equal the superheat if
there exists two-phase refrigerant at the inlet which is
the case during all measurements. The measured inlet
temperature can be verificated by the measured inlet
pressure that is bound to the evaporation temperature.

Figure 6: Test Bench with compressor, evaporator,
condenser and expansion valve

A system model of the complete cycle (see section
2) is used as an observer. The current compressor
speed and measured liquid temperatures and mass flow
rates at evaporator, condenser and subcooler are made
available to the observer. With this information it cal-
culates high and low pressure and the valve inlet en-
thalpy that are needed by the inverse submodel.

The controller, consisting of the described inverse
model for feedforward control and an optional PI con-
troller for closing the control loop, and the observer
are modelled in Dymola. The control scheme is shown
in figure 7. Dymola is coupled with Labview in a co-
simulation environment. Labview reads the measure-
ment data and sends process inputs, e.g. valve opening
area. One time step has a length of 0.1 s.

uModel−1 Process

-

y

PI

+
ysp

Observer Ti, ṁi,npi,h

Figure 7: Inverse Model in Combination with PI Con-
troller for Closed Loop Control

6 Measurement Results

In this section the developed model-based controller is
applied to the test bench described previously. Results
with the lone inverse model and combined with an PI
controller are shown. For comparison also results gen-
erated with a lone PI controller are shown.
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Figure 8: Comparison of model-based controller to
setpoint change

In figure 8 the refrigeration cycle behavior to a set
point change is shown. The setpoint follows a five sec-
ond lasting ramp from 15 K superheat to 12 K. At 0 s
the degree of superheated lies at approximately 13 K.
The deviation arises from model uncertainties. In par-
ticular the uncertainties come mainly from a differing
mass flow and unexact calculation of the heat transfer
coefficients. Since no feedback loop is implemented
in this case there is a stationary deviation. The sensor
value drops nearly as fast as the setpoint and reaches
its stationary value after circa six seconds. The mea-
sured superheat change is smaller than the demanded
which also results from the described model uncertain-
ties. The shown valve opening area does not picture
the achieved opening area but the demand of the in-
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verse model. The high peaks arise from the harsh bend
in the set point ramp and the missing actuator delay in
the inverse model. These peaks are filtered before di-
recting the signal to the valve. Omitting the peaks the
valve opening area rises nearly linear, then drops to a
point beneath the new stationary value und rises again
to the new stationary value. Summarizing apart from
an error in stationary values the inverse model feed-
forward controller can change the degree of superheat
fast and as demanded.

In the following the feedforward controller is com-
bined with a PI controller to compensate the men-
tioned model uncertainties. There exist several rules
to design the parameters of a PI controller when com-
bined with feedforward control. In this case the feed-
forward controller gets information from the observer,
especially the actual pressures. This means that the
inverse model, even if called feedforward controller
in this paper, has a kind of feedback loop imple-
mented. High and low pressure react on a chang-
ing valve opening which for its part has influence on
pressures. Hence, designing the PI controller is more
challenging and standard design rules can not be used
without adaptation. In this paper the parameters of the
PI controller for combination with the inverse model
are therefore iteratively chosen and will not be opti-
mal.

For comparison with a standard PI controller typi-
cal design rules can be used for parametrization. In
this paper the from Åström and Hägglund as a Ziegler-
Nichols replacement introduced AMIGO method [8] is
applied. For using this approach a measured step re-
sponse is needed. The aim is to maximize the integral
gain by modeling the step response with a dead time
and a first-order block. Hence, three parameters have
to be tuned to represent the step response. With knowl-
edge of these parameters the PI control parameters can
be obtained by simple, explicit equations.

In figure 9 a comparison between the developed
model-based controller and a lone PI controller is
shown. Compared to the lone feedforward control (fig.
9) the measured superheat meets the set point since the
integral gain can compensate model uncertainties. The
developed controller is able to drop the superheat more
quickly but does undershoot the new setpoint a bit.
This probably comes from the non-optimal coopera-
tion of inverse model and PI controller. Improving this
could lead to a fast and sharp response as with the lone
model-based controller. The PI controller is slower but
does less undershooting. It is important to mention
that the PI controller is tuned for this exact operating

point. Providing this quality for other operating points
would mean to have an at least two-dimensional gain
scheduling to compensate different compressor speeds
and evaporator inlet liquid temperatures. The actuat-
ing variable in figure 9 is shown as voltage since the
lone PI controller does not give an opening area value.
It can be seen that the model-based controller can cal-
culate a more transient actuator signal.
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Figure 9: Comparison between reactions of model-
based controller (inluding PI controller) and PI con-
troller to setpoint change

7 Conclusion

In this paper a superheat controller based on an in-
verse model of valve and evaporator was developed
and tested in simulations and measurements. The
controller can react faster on set point changes than
an optimized PI controller. The biggest advantage is
the compensating reaction on measurable disturbances
like changing compressor speed / cooling capacity.
In contrast to PI control the model-based controller
works in several operating points without parameter
changes or gain scheduling. Further improvements
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can be accomplished by including the valve actuator
delay in the inverse model. Furthermore the interac-
tion with a PI controller for compensating on model
uncertainties and non-measurable disturbances can be
enhanced.
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Abstract

A library for dynamic modeling adsorption based ther-
mal systems like chillers, heat pumps, thermal storages
or desiccant units is presented. Adsorption devices can
serve a wide range of applications but usually consist
of the same basic components. By modeling these ba-
sic components, the presented model library allows to
investigate any interesting topology. Thereby this ad-
sorption library gives the user the opportunity to de-
sign and optimize adsorption systems quickly and effi-
ciently. To demonstrate the flexibility of the library
and the accuracy of the simulations, three validated
examples are presented: A desiccant unit; a thermal
storage; and an adsorption chiller.

Keywords: adsorption; simulation; validation;
modular; chiller; thermal storage; heat pump; des-
iccant

1 Introduction

Physical adsorption of a fluid on a solid surface is a
reversible exothermic process which can be efficiently
employed in energy systems. Adsorption phenomena
can be used to build a wide variety of thermal de-
vices: e.g. heat driven chillers and heat pumps; high
density storages; or desiccant units [1, 2]. Since all
these devices enable the use of waste heat or solar heat,
they can provide heating and cooling demand more ef-
ficiently than conventional devices, and thereby help
to reduce CO2 emissions. To exploit this CO2 reduc-
tion potential, adsorption based thermal devices have

to be well designed. The design of adsorption sys-
tems is challenging due to their intrinsic dynamic na-
ture: During operation, adsorption devices switch be-
tween ad- and desorption phases, meaning they work
discontinuously. In addition, they have a character-
istic energy output peak at the beginning. Besides,
adsorption devices consist of several components, all
being influencing the performance. In an optimal de-
sign, these components need to be balanced avoid-
ing oversized components on the one hand and bottle-
necks on the other. To meet this optimal design chal-
lenge, time-dependent models have been developed to
describe and improve adsorption based devices (see
e.g. [3, 4, 5]). These models have been developed
mainly to study the performance of one specific con-
figuration. To enable the library presented here to de-
scribe all kinds of adsorption based thermal devices,
a generic modular approach is taken to model the ad-
sorption process. To the best knowledge of the authors
only the model of Schicktanz and Núñez describes an
adsorption chiller by using a modular approach [6].
By dividing the chiller in its basic components, this
approach allows components to be exchanged. Joos
et al. presented a modular Modelica library for sepa-
ration processes including adsorption [7], that can be
used to model separation processes, but is not designed
for thermal applications, in contrast to the presented li-
brary in this paper.

In Section 2, the adsorption phenomenon is de-
scribed briefly. In Section 3, the library structure and
both its basic and enhanced models are described. To
illustrate the library, Section 4 contains three examples
of validated adsorption systems.
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2 Adsorption

Adsorption describes the process of attaching fluid
molecules to the surface of a (porous) solid, so called
sorbent. For a detailed introduction, the reader is re-
ferred to Kärger, Ruthven and Theodorou [8]. The
internal energy u of the adsorbed fluid is lower than
of the liquid phase and the vapor phase, leading to an
exothermic process:

uad < ul < uv . (1)

This difference between the energies of the liquid
and the adsorbed phase is called bond energy. The
amount of fluid (adsorbate) adsorbed by the sorbent
is described by the loading:

w =
mad

msor
, (2)

and depends on both the system temperature T and
pressure p. The relation between loading, tempera-
ture, and pressure is described by the thermodynamic
equilibrium, which is specific for every working pair.
Working pairs (solid / fluid) often used for thermal ap-
plications are for example zeolite / water, silica gel
/ water, and active carbon / methanol. Equilibrium
data is used to determine start and end points of ad-
sorption processes. The system dynamics are deter-
mined by heat and mass transfer which occur simul-
taneously: the fluid has to reach a free surface loca-
tion where it can be adsorbed, while heat has to be
transported within the porous solid at the same time.
Mass transfer takes place by convective and diffusive
processes. Heat transfer can usually be modeled by a
mixture of heat conduction in the materials and contact
resistances between them.

To control and use the adsorption process in thermal
devices, sorbent material and working fluid are heated
or cooled in a defined way. For this purpose, either sor-
bent or working fluid are connected to heat exchang-
ers, building key components of an adsorption device:
evaporator; condenser; or adsorber. By connecting the
different components in the right way, it is possible to
build chillers or heat pumps, thermal storages, as well
as air drying units. For more information regarding the
design of specific devices see also [9] and [10].

3 Library structure

The presented model library follows a modular ap-
proach. By coupling a reusable model (working pair

is exchangeable) of the adsorption process to heat ex-
changers, it enables the user to model a wide range of
adsorption based devices.

The presentation in this section follows the library
structure shown in Figure 1, by classifying the mod-
els as media, basic components, and enhanced compo-
nents.

Figure 1: Structure of adsorption library

3.1 Media

As described in Section 2, the core of every adsorption
based device is the working pair. The media model
describes the working pairs characteristic properties:
equilibrium data; internal energy of the adsorbed fluid
(uad); and specific heat capacity of both sorbent (csor)
and adsorbate (cad).

In literature, many approaches describing adsorp-
tion equilibria can be found, e.g. the model of Lang-
muir [11], assuming adsorption only in one layer, the
Brunauer, Emmet and Teller model (BET) [12], allow-
ing adsorption in more layers, or the Dubinin model
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[13], which is based on Polanyi’s potential theory [14].
Which approach is used is not important for the media
model as long as adsorbate pressure pad at equilibrium
state can be described as a function of temperature T
and loading w:

pad = f (T,w) . (3)

The specific energy in the adsorbed state (uad) is de-
rived from the used adsorption model.

The total heat capacity of sorbent and adsorbate ctot
is the sum of the individual heat capacities:

ctot = csor + wcad . (4)

In the present library, most equilibrium data are de-
scribed using the Dubinin model.

The properties of the fluid are based on TILMedia
[15], a library provided by TLK-Thermo GmbH.

3.2 Basic components

The following components are the smallest units the li-
brary consists of. All extended components and device
models are based on these basic components.

Adsorbent

In the adsorbent model, equilibrium data, provided by
a media model, and mass and energy balances for sor-
bent and working fluid are combined. The adsorbent
is described by a lumped model; i.e., with a homo-
geneous temperature, loading and pressure distribu-
tion. State variables of the model are temperature T
and loading w. Mass of fluid vapor within the adsor-
bent can be neglected, in other words, all working fluid
within the adsorber is assumed to be in adsorbed state.
The adsorbent model contains heat and fluid ports, al-
lowing for heat and mass transfer (see Figure 2).

Figure 2: Scheme of adsorbent including the state vari-
ables: loading w; and temperature T , as well as the
connection ports: fluid (blue); and heat (red)

The mass balance of the working fluid is given by:

dmad

d t
= msor

dw
d t

= ṁfluid,in− ṁfluid,out . (5)

The energy balance is given by:

ctot
∂T
∂ t

+ uad
∂w
∂ t

=

1
msor

(
ṁfluid,in hin− ṁfluid,out hout + Q̇

)
. (6)

The fluid is leaving the adsorber as vapor with ad-
sorber temperature T and equilibrium pressure of ad-
sorbent pad. The media model used can be changed
easily, allowing for a high flexibility. For example, it
is possible to investigate the influence on system per-
formance of a changed working pair.

Heat transfer

The heat transfer model connects the adsorbent to a
heat exchanger or to the environment. The heat flux is
described by:

Q̇ = α A ·∆T . (7)

The implemented heat transfer coefficient α can be
changed. For example, it can be chosen to be a con-
stant parameter or to be dependent on the flow velocity
as in the air drying unit described (Section 4).

Mass transfer

Mass transfer to or from the adsorbent is described
similarly to the heat flow as a linear function of a driv-
ing potential (LDF approach). As driving force, either
the pressure difference between the pressure on the
outside and adsorbate pressure (p and pad), or the dif-
ference between actual and equilibrium loading (wad
and weq) can be used:

ṁ = βp (p− pad) ; (8)

or

ṁ = βw
(
wad−weq

)
. (9)

In this library, both equations are implemented.
Since fluid entering the adsorbent is assumed to be ad-
sorbed instantaneously, the mass transfer coefficient β
includes not only convective flow resistances but also
diffusive resistances occurring within the adsorbent. It
is also modeled modular, allowing the user to choose
between different models to determine mass transfer
coefficient β , similar to the heat transfer coefficient
(see also Section 4).
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Tube (heat exchanger)

Heat exchangers for closed adsorption systems are
represented by a tube model based on TIL library [15].
The tube model is discretized in flow direction. Heat
transfer on the inside is described similarly to equation
(7) also using a changeable α . For liquids, e.g Dittus-
Boelter [16] or Sieder-Tate [17] correlations can be
used. Also heat conduction within the tube wall is
modeled.

Gas volume (heat exchanger)

An open adsorption system is a system which is not
sealed and therefore allows mass transfer between ad-
sorption system and ambient. The ambient, more
specifically the surrounding moist air, fulfills two tasks
simultaneously: it allows for heat and for mass trans-
fer. Therefore the ambient can be regarded as both, a
form of heat exchanger as well as a form of evaporator
or condenser. The surrounding air is modeled by a gas
volume (see Figure 3). The state variables of the gas
volume are gas temperature T , water mass fraction X ,
and air density ρ . To allow for a gas flow through the
volume, the model has two gas ports. It also contains
a heat port and a fluid port which are connected to the
adsorbent to exchange water (working fluid for open
systems) and heat.

Figure 3: Scheme of gas volume including the state
variables: temperature T ; water mass fraction X ; and
density ρ , as well as the connection ports: fluid (blue);
heat (red); and gas (yellow)

The mass balance of the inert gas component (dry
air) is:

dmdryair

d t
= ṁdryair,in− ṁdryair,out . (10)

The mass balance of water is correspondingly:

dmwater

d t
= ṁwater,in− ṁwater,out + ṁwater,ads , (11)

which can also be written as:

mair
dX
d t

= ṁair,inXin− ṁair,outX + ṁwater,ads , (12)

with the water mass fraction:

X =
mwater

mair
. (13)

The energy balance of the gas volume is given by:

dUair

d t
= Ḣair,in− Ḣair,out + Ḣwater,ads + Q̇ . (14)

Water is assumed to leave the gas volume as vapor
with gas temperature Tgas and partial pressure pwater.

3.3 Enhanced components

The main component of an adsorption system is the
adsorber. For closed adsorption systems, also the
evaporator and condenser are of major importance.
The library already includes prebuild enhanced com-
ponents, consisting of basic components. By parame-
ter choice these enhanced components can be adapted
for many applications.

Closed Adsorber

The closed adsorber model consists of an adsorbent
model, a heat exchanger model, as well as models for
heat and mass transfer (see Figure 4).

Figure 4: Scheme of closed adsorber model consist-
ing of adsorbent (see Figure 2), heat exchanger (right),
mass resistances (β1 and β2), and heat resistance (α)

Moist Air Adsorber

The moist air adsorber model consists of an adsorbent
volume, a gas volume and a wall volume. These vol-
umes are again connected by models for heat and mass
transfer (see Figure 5). The moist air adsorber model
can be discretized in flow direction.
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Figure 5: Scheme of moist air adsorber model consist-
ing of an adsorbent (see Figure 2), a gas volume (see
Figure 3), a mass resistance (β ), heat resistances (α1
and α2), and a wall model

Evaporator / Condenser

The evaporator / condenser model consists of a vapor-
liquid-equilibrium (VLE) fluid volume and a heat ex-
changer. The fluid volume is thermally connected to
the heat exchanger and is assumed to be in the two-
phase region. The model has a liquid and a vapor port.
At the vapor port, the fluid leaves as saturated vapor;
at the liquid port it leaves as saturated liquid.

4 Validated examples

The library presented in Section 3 is used to model
several adsorption based devices. To demonstrate
model accuracy, three validated examples are pre-
sented: an air drying unit; an adsorption thermal stor-
age; and an adsorption chiller.

4.1 Adsorption dryer

An adsorption dryer or desiccant unit is used to simul-
taneously reduce air humidity and preheat the air. Dur-
ing adsorption, cold humid air enters the dry adsorber.

Until equilibrium state is reached water is adsorbed
and the adsorption enthalpy is released. For regenera-
tion of the unit by desorption, hot dry air flows through
the adsorber. The air leaves the adsorber with a higher
water loading and decreased temperature.

The adsorber model is validated using experimental
data by Pesaran and Mills [18]. The used adsorber has
a cylindrical shape and is filled with silica gel (Equi-
librium data of silica gel is given in [19]).

The driving potential used for mass transfer is pres-
sure difference ∆p (equation (8)). Coefficients for
mass and heat transfer are modeled by correlations de-
pendent on the Reynolds number based on Hougen and
Marshall [20]. Since the model determines the outlet
temperature and mass fraction from the inlet values,
geometries and input parameters, the model is predic-
tive.

Figure 6 and 7 show temperature and water mass
fraction during an adsorption process at adsorber inlet
and outlet.
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Figure 6: Air temperature T at inlet and outlet during
adsorption
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Figure 7: Water mass fraction X at inlet and outlet dur-
ing adsorption

Validation shows good agreement in both, tempera-
ture T and mass fraction X . The input conditions are
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changed suddenly at t = 0s, resulting in a step func-
tion. The output is reacting by an increase in outlet
temperature due to adsorption heat emitted. Around
5 min after start, temperature peaks at 46.9 ◦C and af-
terwards declines only slightly. By reaching a temper-
ature of 45.4 ◦C, simulation corresponds well to the
measured peak after around 5 min. Water mass frac-
tion between inlet and outlet is reduced by about 0.01
kgwater/kgair with nearly dry air at the outlet. Mea-
sured and simulated water loading fit almost perfectly.
Pesaran and Mills [18] have experimentally varied in-
put parameters, adsorber length, and particle size of
adsorbent grains in their experiments. For all six tested
input variations simulation and the experiments agreed
well (not shown).

4.2 Thermal adsorption storage

Thermal energy, stored in an adsorption storage, can
be divided into a sensible and a latent part. Sensible
heat increases with system temperature, while at the
same time, latent heat is stored by desorption of water.
The desorbed water leaves the adsorber as vapor and
is condensed afterwards in the condenser. During con-
densation, low grade heat is emitted at medium or low
temperature level, that can be either used or emitted to
the ambient. When using the stored heat (discharging
the storage), water is evaporated using low grade heat.
The evaporated water flows to the adsorber where it is
adsorbed and heat at process temperature is released.

The storage model is validated using experimental
data from a storage prototype at our institute [21]. Fig-
ure 8 illustrates the thermal adsorption storage model.
Since temperature difference between adsorber and
evaporator is high and there is no insulation between
these components, they are thermally connected in the
model. For further details regarding the experimental
setup see Binkert [22].

The working pair used in the experiments is zeo-
lite 13X / water. Equilibrium data for this pair can be
found in Núñez [23]. Heat and mass transfer coeffi-
cients were fitting experimental and simulation data.
Optimization criterion used to determine fit accuracy
is the root mean square deviation (RMSD) of adsor-
ber heat. Figure 9 shows the adsorber heat flow dur-
ing desorption, Figure 10 during adsorption. Desorp-
tion temperature increases to almost 200 ◦C, with a
condensation temperature of 90 ◦C. After around 3
hours, the operation mode is switched from desorption
to adsorption (loading to unloading). Adsorption takes
about 30 min with adsorption temperature falling from
200 ◦C to 120 ◦C. Evaporation is kept at 60 ◦C during

Figure 8: Scheme of thermal adsorption storage con-
sisting of an adsorbent (see Figure 2), two heat ex-
changers (right), mass resistances, heat resistances,
and an evaporator / condenser model

adsorption. Although time varies by factor 6 and heat
flow even by factor 10, comparison between experi-
mental data and simulations shows good agreement
for both, desorption and adsorption. During desorp-
tion, the peak in heat flow at 15 min is slightly over-
estimated by the simulation, for adsorption it can be
observed that the trend fits well. At the end of adsorp-
tion phase, slight differences between experiment and
simulation occur, but they are still in a tolerable range.
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Figure 9: Heat flow Q̇ of adsorber during desorption

4.3 Adsorption Chiller

The investigated adsorption chiller consists of an ad-
sorber, an evaporator, and a condenser. These compo-
nents are separated by valves, allowing to disconnect
the adsorber from the evaporator and condenser sepa-
rately. Because adsorption and desorption phases take
place successively (Section 1), an adsorption chiller
with only one adsorber bed operates discontinuously.
During the adsorption phase, water is evaporated at
a low temperature level (cooling output). The water

Adsorption energy systems library - Modeling adsorption based chillers, heat pumps, thermal storages and
desiccant systems

880 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096875



165 170 175 180 185
−5

0

5

10

15

20

Time / min

H
ea

t 
fl

o
w

 /
 k

W

 

 
Experiment

Simulation

Figure 10: Heat flow Q̇ of adsorber during adsorption

flows to the adsorber where it is adsorbed and heat is
emitted. Thus, the adsorber has to be cooled, which
occurs at a medium temperature level. During the des-
orption phase, the adsorber bed is regenerated. By us-
ing the heat exchanger, heat is passed into the adsor-
ber at a high temperature level. The desorbed water
vapor flows to the condenser, where it is condensed at
a medium temperature level again. The high temper-
ature level is determined by the heat source available:
mostly waste or solar heat. The medium temperature
level is usually determined by the ambient tempera-
ture; and the low temperature level by the cooling ap-
plication. An experimental setup of the described ad-
sorption chiller at our institute is used for model val-
idation. Figure 11 shows a schematic picture of the
model, representing the experimental setup.

Figure 11: Scheme of adsorption chiller consisting
of an adsorbent (see Figure 2), evaporator, condenser,
mass resistances, heat resistances, and a water reser-
voir model

The model was investigated for both silica gel and
zeolite 13X. In this paper we show validation for sil-
ica gel. A more in-depth validation can be found in
Lanzerath [24], discussing the effects of varying input
parameters and changed adsorbent materials. Equilib-
rium data for silica gel are implemented using the Du-
binin approach from Schawe [25].

Coefficients for heat and mass transfer are used as
fitting parameters. They are determined by using the
experimental data of a complete cycle (adsorption and
desorption) and minimizing the RMSD of heat flows
between experimental and simulation data. The fitted
heat and mass transfer parameters were kept constant
for all variations of experimental settings and proved
to be robust [24]. Figure 12 shows the adsorber heat
flow, Figure 13 the heat flows of evaporator and con-
denser. Although only lumped models are used for ad-
sorber, evaporator and condenser, it can be observed,
that system dynamics, as well as steady state condi-
tions, are predicted well.
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Figure 12: Heat flow of adsorber
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Figure 13: Heat flows of evaporator and condenser
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5 Conclusion

An adsorption library, capable of modeling a wide va-
riety of adsorption devices is presented. The models
were validated using three examples: a desiccant sys-
tem; an adsorption thermal storage; and an adsorption
chiller. All examples show very good agreement of
simulation results with experimental data. Thereby,
the library is shown to be a valuable toolbox for re-
search purposes, allowing to describe, analyze and im-
prove the design and topology of adsorption based de-
vices.
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Abstract 

The HDF5Table library is an open-source solution 
for the efficient handling, exchange and interpolating 
access of typical data sets in system simulation. The 
library consists of C-functions, python scripts and 
examples and can be used with different applications 
like Modelica or Simulink. Furthermore a compre-
hensive set of tools that allows the user to create, 
migrate, edit, compare and manage the datasets is 
available. 

The application range covers data import from 
measurements or other simulations, integration of 
datasets in preprocessing routines, the usage of the 
datasets in the simulation and the post processing of 
simulation results. To eliminate a major source of 
errors after data exchange between simulation tools 
or different companies and to validate the datasets 
each dataset can have a physical unit and quantity 
attached to it. The table data can be easily accessed 
with different methods for inter- and extrapolation. 
To persist and exchange the data sets a subset of the 
HDF5 standard is used. With the HDF5 API the data 
access is fast for large files with many variables con-
taining millions of values and the datasets can be 
opened in many other tools. 
Keywords: HDF5; lookup tables; unit and quantity 
safety; interpolation; extrapolation 

1 Introduction 

Lookup tables traditionally play a major role in 
industrial simulations. They are used in a wide range 
of applications where physical models or parameters 
are not available or the evaluation of the existing 
models is computationally too expensive. Real-time 
simulations and hardware-in-the-loop setups are two 
prominent examples. In these systems lookup tables 
are used to re-play recorded stimulus from measure-
ments as well as pre- and post-processed data from 

test benches. Another application is pre-calculated 
lookup tables from long running system or finite el-
ement simulations. 

A number of solutions exist for Modelica and 
other simulation platforms some of which are dis-
cussed in detail in the following section. All of these 
solutions suffer from different limitations and prob-
lems the proposed implementation together with a 
set of supporting tools is trying to solve. 

2 Existing Solutions 

The Modelica Standard Library (MSL) provides a 
number of tables in its Blocks Package. A general 
separation is done based on the provided input func-
tionality. Here the prefix Combi shows the capability 
of the table to either take direct user input in the 
form of parameters from the Modelica environment 
or to read data from files. In industrial applications 
the second option is nearly solely used as it is more 
convenient even for tables of modest size. 

Table blocks for different needs are provided and 
therefore are split into the Blocks.Sources and the 
Blocks.Tables package. The separation into the 
packages is done as the tables in the Sources package 
implicitly define the single input of the table as the 
simulation time. These tables are mainly used for the 
playback of recorded continuous stimulus e.g. steer-
ing input or velocity signals over time. As these ta-
bles have a single input and are well suited for time 
series simulation they are not in the focus of this pa-
per. 

This leads to the Blocks.Tables package. These 
tables are often used to cover effects that cannot be 
modeled based on physics with reasonable effort or 
performance. Therefore tables are used to approxi-
mate the behavior depending on a varying number of 
inputs. Still for the tables in Blocks.Tables the num-
ber of inputs is limited to one or two which becomes 
a limiting factor in many applications. Therefore 
Dymola provides the DataFiles package that contains 
the TableND which extends the number of inputs to 
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a theoretically unlimited amount. As indicated by the 
missing prefix, data can only be read from .mat files. 
The DataFiles Package contains a number of func-
tions that support the user with the generation of the 
necessary .mat files. Additionally some Matlab 
scripts are provided to support the data storing pro-
cess. 

Now at first glance for Dymola users there is the 
possibility to have capable tables in their simulations 
using either the MSL’s Tables package or the Data-
Files package. Still there are a couple of limitations 
to that which we want to point out now. The Ta-
bleND’s data format is limited to version 4 .mat files 
which limits the names in the file to 19 characters 
and – much more of interest here – limits the number 
of possible dimensions stored in the files to two. 
Therefore the multi-dimensional tables cannot be 
stored in their natural format but have to be convert-
ed. This problem is overcome by generating three 
vectors by convention named dim, grid and table. 
The length of the vector dim equals the number of 
dimensions of the table each entry indicating the 
amount of scale values in that dimension. In the vari-
able “grid” the scales for all dimensions are stored 
implying that the length of grid has to be equal to the 
sum of the elements in dim. Finally in the table vari-
able finally all values of the multidimensional table 
are stored in one vector. All of this makes it very 
hard to interpret the values in the table without suita-
ble conversion scripts. 

Another disadvantage of this solution is the dif-
ferent behavior of CombiTables and TableND when 
it comes to extrapolation. Whereas the CombiTables 
extrapolate linearly the TableND keeps values con-
stant when exiting the defined area. For version 3.2.1 
of the MSL efforts have been completed to make the 
implementation of the MSL tables open source and 
to enhance their functionality. New features include 
that outputs of tables can now be differentiated once, 
and newer .mat File formats are supported [7]. Still 
that does not have any influence on the limiting fac-
tors mentioned before, as this is only valid for the 
tables contained in the MSL. 

3 Goals of the new Implementation 

The goal of the proposed implementation is to come 
up with a library that provides a superset of the fea-
tures of the existing solutions that is entirely open 
source and accompanied by comprehensive set of 
tools to leverage its functionality and ease the transi-
tion from existing solutions. The scope of possible 
applications for both tables and tooling goes beyond 
Modelica models since the tables can be easily port-

ed to other simulation platforms (e.g. Simulink, 
CarMaker) or integrated into custom C-based solu-
tions. This takes the concept of separation of model 
and data to a higher level as data can be used inde-
pendently from the simulation tool. 
Furthermore one of the basic concepts of Modelica, 
namely  unit and quantity safety is adapted for table-
based data. Every dataset regardless of its dimen-
sions can have a physical unit and quantity (and oth-
er attributes) attached to it which allows the table 
block to validate the data upon loading and elimi-
nates a major source of errors that arises from in-
compatible data being used in the simulations. 
Future versions of the library will also be able to 
record signals from a simulation and provide support 
for ‘compiled-in’ data which is especially useful for 
platforms that do not have a file system or to protect 
the intellectual property contained in the data. 

4 Features 

To provide a one-stop solution for all uses of table 
based data the table block features different methods 
to inter- and extrapolate the sampled data which are 
briefly presented in the following sections. 

4.1 Interpolation 

Generally two major uses of tables in models can be 
distinguished: the first is the playback of recorded 
continuous stimulus e.g. steering input or discrete 
data like bus events. Both types are usually one-
dimensional and have the time as abscissa. 

The second major use case for tables is found in 
models that cannot be physically modeled and thus 
use measured data to approximate their behavior or 
are too complex to be simulated e.g. in a real-time 
context. These table-based models usually depend on 
more than one parameter and thus require multi-
dimensional tables. A prominent example in which 
both types of tables can be found are hardware-in-
the-loop test benches. 

The HDF5Table block provides three interpola-
tion methods that can be configured on a per-
instance basis: ‘Hold’, ‘Linear’ and ‘Akima’. 

‘Hold’ will simply return the previous value in 
the respective dimension and can be used to play-
back time discrete data where interpolation does not 
make sense e.g. the selected gear in a vehicle. 

‘Linear’ interpolates linearly between the neigh-
boring sample points in each dimension. 

‘Akima’ uses a spline based interpolation method 
proposed by Akima [5] where the interpolated func-
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tion passes through the sample points and its first 
derivative is continuous. 

 
Figure 1 Interpolation Methods 

This has a positive impact on the stability of models 
that use the derivative in their calculations. Figure 1 
shows the three interpolation methods applied to a 
one-dimensional dataset with six equally spaced 
sample points of a sine function.  

4.2 Extrapolation 

Five methods are provided for extrapolation: 
 

• Hold 
• Linear 
• Loop 
• PingPong 
• None 

 
Similar to the interpolation ‘Hold’ simply repeats 

the last sample value in the respective dimension. 
‘Linear’ uses the last two samples to linearly extrap-
olate. For the playback of time series it is often de-
sired to infinitely repeat a given set of samples. 
‘Loop’ repeats the recorded signal using the selected 
interpolation method. 
The ‘PingPong’ method works similarly to the loop 
method but instead of starting over it goes back and 
forth along the respective axis. This method is espe-
cially useful for lookup tables used for devices that 

have a symmetric characteristic field like electric 
machines. To better understand this method consider 
the following example of the loss characteristics of a 
permanent magnet synchronous machine (PMSM) 
given as the power losses versus rotational speed as 
the abscissa and the torque as the ordinate. Three 
different types of lookup tables are common for 
PMSMs: first quadrant, first and second quadrant 
and all four quadrants corresponding to the motor, 
motor and generator and motor and generator for 
positive and negative rotation directions. With the 
‘PingPong’ method one table block can be used for 
all three types of tables without conditional instantia-
tion or additional logic inside the model. Figure 2 
shows the extrapolated curve of the five methods for 
a one-dimensional dataset with four equally spaced 
and linearly increasing samples. 
The extrapolation method “None” disables extrapo-
lation and raises an error when requested value is 
outside the range of the table. 
 

 
Figure 2 Extrapolation Methods 
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5 HDF5 File Structure 

In order to efficiently store and exchange the data for 
the tables a subset of the HDF5 standard is used. 
Every table is stored as n-dimensional dataset of type 
Float64. The scales for each dimension are stored as 
separate datasets. For every dimension one scale da-
taset is attached to the table dataset using the HDF5 
dimension scales API [3]. 

To store metadata like the physical units and 
quantities a set of attributes has been defined that is 
evaluated when reading the datasets. The following 
table lists the attribute names together with the re-
quired data type and an example value. 

 
Attribute Name Type Example 
QUANTITY String “AngularVelocity” 
UNIT String “rad/s” 
DISPLAY_UNIT String “1/min” 

 
QUANTITY and UNIT denote the physical quantity 
and unit of the stored data. DISPLAY_UNIT is the 
unit that is used to display the values to the user e.g. 
when editing them. The literals used to represent the 
units and quantities are the same as in Modelica and 
can be found in the Modelica.SIunits and Modeli-
ca.SIunits.Conversions.NonSIunits packages of the 
MSL. 

Scales must always be one-dimensional and 
strictly monotonic increasing and there must be at 
most one scale attached per dimension whose length 
matches the extent of the dataset in the respective 
dimension. For a three-dimensional dataset with ex-
tent 2×3×4 the scale for the second dimension must 
have exactly three values. 

Users may add custom attributes and datasets to 
store additional metadata, documentation or results 
and use groups [6] to structure the datasets. 

6 Modelica 

The HDF5Table Modelica library comes as a .mo 
file that contains the blocks, functions and examples 
together with the C header files and pre-compiled 
object libraries for the table and HDF5 as a ready-to-
use package. The Modelica functions and blocks are 
presented in detail in the following sections. 

6.1 Functions 

To directly read and write scalars, vectors and matri-
ces from and to HDF5 files the library includes the 
following functions that are similar to the readMAT* 

/ writeMAT* functions in the DataFiles package that 
ships with Dymola: 

 
• writeVector 
• writeMatrix 
• attachScale 
• readScalar 
• readScalarChecked 
• readVector 
• readVectorChecked 
• readMatrix 
• readMatrixChecked 
• attachScale 

 
The “checked” versions of the functions take the ex-
pected unit and quantity as an additional parameter 
and return an error code if the parameters do not 
match the unit or quantity stored in the loaded da-
taset. 
The attachScale function attaches a dataset as the 
scale for the dimension of another dataset. All func-
tions are realized as external C code that can be 
linked into the model or be called directly using the 
simulation tool as shown in the figure below. 
 

 
Figure 3 attachScale Function Dialog 

The library can also read / write higher dimensional 
arrays (up to 32 dimensions). Entering higher dimen-
sional arrays however can be cumbersome, as e.g. 
Dymola does not provide UI support for editing val-
ues with more than two dimensions. 

6.2 Blocks 

The core of the library is the NDTable block that 
loads and interpolates the data during the simulation. 
It takes the file name of the HDF5 file, the dataset 
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name and optionally the expected units and quanti-
ties of the dataset and scales as input and returns the 
inter- or extrapolated value for every time step. Fig-
ure 4 shows the parameters of the NDTable block 
with all quantities and units set for a dataset that 
holds the power losses of an electric machine as a 
function of rotational speed, torque and source volt-
age. 
 

 
Figure 4 Parameters of the NDTable block 

The DatasetRecorder block takes the scales as pa-
rameters and sweeps successively over the volume 
spanned by the scales by applying the actual scale 
values to the vector output. When a rising edge is 
detected on the trigger port it records the value on 
the in-port and applies the next set of scale values to 
the input until all samples in the volume have been 
recorded. Using this block tables with a large num-
ber of sample points can be generated without the 
overhead of restarting the simulation which can save 
a considerable amount of time. 

 

 
Figure 5 RecorderBlock Example Model 

Figure 5 shows the RecordTable example model 
where the DatasetRecorder block is connected to a 
dummy model that has three in-ports and whose out-
put is recorded upon every rising flank of the trigger. 

7 Matlab / Simulink 

Matlab and Simulink are two of the most commonly 
used simulation and scripting environments. There-
fore the HDF5Table library also includes a Simulink 

S-Function and Matlab scripts that allow users to re-
use their existing datasets without changes on this 
platform. The Simulink table block has the same in-
ter- and extrapolation methods as the Modelica li-
brary and the underlying S-Functions are based on 
the same C-sources which can be a major advantage 
when porting models to this platform that rely on the 
specific behavior of the implementation. Just like the 
Modelica library the Simulink library ships as a pre-
compiled shared library that can be instantly used in 
Simulink. 

8 Tooling 

To leverage the tables in the simulation they are ac-
companied by a comprehensive set of tools that al-
low the user to create, migrate, edit, compare and 
manage the datasets. All tools are included in an 
Eclipse distribution that is used as an integration 
platform but can also be obtained and used separate-
ly. 

The tools include a Python library based on mat-
plotlib [8] and NumPy [9] to read, write, manipulate 
and plot data that can be debugged and run directly 
from within Eclipse using the PyDev environment 
[10]. Python’s support for a large number of data 
formats allows the user to write import and export 
scripts for their existing data with minimal effort 
based on the provided examples. With the included 
Python scripts both the text based and binary data 
files used by the Blocks.Tables and Datafiles blocks 
can be converted to HDF5. 

 

 
Figure 6 Python script with graphical UI 

Figure 6 shows an example Python script with a 
graphical user interface that allows the user to create 
characteristic maps of electric machines for use with 
the NDTable block and that can serve as a basis for 
custom HDF5 generators or processors. 
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Furthermore an EMF [11] based editor is includ-
ed that allows the user to conveniently view, edit and 
validate the data files. Finally the datasets can be 
compared and merged with the included EMF com-
pare editor [12]. 

The figure below shows the HDF5 editor viewing 
the content of a three-dimensional characteristic map 
dataset with scales. 

 

 
Figure 7 HDF5 Editor 

In the editor values are displayed in “display units” 
and can be conveniently entered as expressions like 
“sin(pi/4)” to get the sine of a 45 degree angle or 
“ones(2, 3)” to get a 2×3 matrix of ones. All opera-
tions performed in the editor like copy & paste, 
move, delete etc. can be undone with the standard 
shortcuts or menu items. Drag & drop is supported to 
move datasets between groups and even between 
files. 

9 Future Work 

Currently the library is developed in Visual Studio 
2010 for Windows. It is planned to port the library to 
the hardware and software platforms listed below. 
  
Hardware Platforms: 
 

• Windows 32 and 64 bit 
• Linux 32 and 64 bit 
• dSPACE SCALEXIO 

• dSPACE DS1006 
  
Compilers: 

• Microsoft compilers (VC6 and ≥ VS2005 
(Win32 and x64)) 

• MinGW (GCC 4.4.0 and GCC 4.7.2) 
• Cygwin (GCC 4.3.0) 
• GCC 4.x on Linux 

 
We are also planning to further extend the tooling 

and to include a comprehensive documentation and 
examples that showcase common uses and best prac-
tices. A future version of the library will include ad-
ditional inter- and extrapolation methods (e.g. 
boundary slope extrapolation for the Akima method) 
and support for the Der() derivative of the interpolat-
ed values to reduce simulation time and improve ac-
curacy [1]. 

10 Conclusions 

The implemented library and its extensions show 
that most features of the existing tables in the MSL’s 
Blocks.Tables and the DataFiles package can be 
combined in a single table simplifying the applica-
tion for the user. Additionally the error-proneness of 
the overall simulation process can be reduced sub-
stantially based on unit and quantity checks. 
The use of open standards like HDF5 and Modelica 
guarantee that this open-source implementation is 
expandable and can be customized for different 
needs including wider tool support. To enable fast 
adaption of the presented library a set of tools is pro-
vided enabling the user to quickly generate new or 
migrate existing datasets. 
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Abstract

This article reveals some implementation details re-
garding the C code of the revised table interpolation
blocks released with the Modelica Standard Library
(MSL) 3.2.1. The emphasis is placed on the unique
features of the CombiTimeTable which are the dis-
continuities by time events and the periodic extrapola-
tion. Basic information on the interpolation by Akima
splines and the available table array memory optimiza-
tion options are mentioned.

Keywords: univariate interpolation, bivariate inter-
polation, periodic extrapolation, time events, Akima
splines

1 Introduction

For many years there has been no (open source) im-
plementation of the table interpolation blocks of the
MSL. Thus, Modelica simulation tools either did not
support the table blocks or needed to provide a custom
implementation that could lead to different simulation
results. One objective of releasing a backward compat-
ible MSL 3.2.1 was to provide an open source imple-
mentation of the table blocks based on the Modelica
external object interface. This table implementation
was named Modelica Standard Tables and comprises
the following four blocks for univariate and bivariate
interpolation

• Modelica.Blocks.Sources.CombiTimeTable,

• Modelica.Blocks.Tables.CombiTable1D,

• Modelica.Blocks.Tables.CombiTable1Ds and

• Modelica.Blocks.Tables.CombiTable2D.

The C header and source files of the Modelica
Standard Tables are publicly available from https:

//svn.modelica.org/projects/Modelica/
trunk/Modelica/Resources/C-Sources. The C
interface functions all start with prefix Modelica-
StandardTables_. The constructors and destructors
of the external table objects have suffix _init and
_close, respectively. If the table data is to be read
from an ASCII text file or a MATLAB MAT-File, an
interface function with suffix _read is used, i.e. file
I/O is not part of the construction of the external table
object. The actual interpolation functions are labeled
by trailing _getValue and _getDerValue for the
interpolation function and the interpolated derivatives,
respectively.

2 CombiTimeTable

The block Modelica.Blocks.Sources.CombiTimeTable
is different from standard univariate interpolation
since discontinuities (by time events) and periodic ex-
trapolation are considered. For instance, periodic and
discontinuous signals like saw-tooth or square-wave
w.r.t. simulation time can be modeled in a very conve-
nient and compact way.

2.1 Time events

Time events always occur at the table boundaries (tmin

and tmax) of the sample points, i.e. if interpolation
switches to extrapolation.

• In case of linear interpolation, additional time
events can be modeled by repetition of sample
points in the table array. It is guaranteed that there
are no time events at interval boundaries with a
simple sample point only. Thus the time coordi-
nates are not required to be strictly increasing but
monotonically increasing.

• In case of interpolation by constant segments,
every interval boundary (defined by the sample
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points) leads to a time event, whether or not
there is an actual discontinuity in the ordinate val-
ues. The time coordinates are not required to be
strictly increasing but monotonically increasing.
In fact, repeated sample points are not appropri-
ate for the interpolation result.

• Additional time events are not possible in case
of interpolation with Akima splines. The time
coordinates are required to be strictly increasing.
(Thus care must be taken when changing the in-
terpolation smoothness if there are repeated sam-
ple points.)

The static function isNearlyEqual from source file
ModelicaStandardTables is used to tell if two double-
precision floating-point numbers are (nearly) equal
with relative threshold _EPSILON (set to 10−10 by de-
fault).

The calculation of the next time event tE is per-
formed in the interface function ModelicaStandard-
Tables_CombiTimeTable_nextTimeEvent. For nu-
merical reasons related to the floating-point arithmetic
used, the current time t is incremented by a small frac-
tion of the time table length, that is _EPSILON ·(tmax−
tmin) > 0. It is guaranteed that tE is greater than the
current time t and that no time events are missed if
the distance between two consecutive time events is
greater than this numerical increment.

If no future time event is found _nextTimeEvent re-
turns DBL_MAX. Hence, care should be taken by a Mod-
elica simulation tool to avoid floating-point overruns
during the event handling.

For debugging purposes, time events can be traced
(by means of ModelicaFormatMessage) by defining
DEBUG_TIME_EVENTS where each message line corre-
sponds to one time event. For instance, linear inter-
polation and extrapolation of the 4×2 example time
table [0.25, 30; 0.5, 40; 0.5, 10; 0.75, 30] results in
three time events (Fig. 1).

0 0.25 0.5 0.75 1

20

40

Figure 1: Linear interpolation of time table [0.25, 30;
0.5, 40; 0.5, 10; 0.75, 30] results in three time events.

The four messages (including the initial event) are

At time 0.00000: 1. time event at 0.25000
At time 0.25000: 2. time event at 0.50000
At time 0.50000: 3. time event at 0.75000
No more time events for time > 0.75000

In order to return the correct function values at the time
events (i.e. during the event iterations), the interface
functions _getValue and _getDerValue require not
only the next event time but also its pre-value as input
arguments.

2.2 Periodic extrapolation

For tables with periodic extrapolation, the numerically
stable detection of periodic time events is rather tricky.

A first implementation was discarded as it turned out
that the periodic time events were not reliably detected
in all cases. The main reason is due to the IEEE 754
binary floating-point arithmetic where t and t − n ·T
cannot be used simultaneously to detect the exact loca-
tion of an event interval or periodic time event. Here,
t denotes the floating-point number (FPN) of the cur-
rent time and T = tmax − tmin the FPN of the period
of the table. Variable n is a signed integer and de-
notes the multiple of the period. Furthermore, let tE
be the FPN of the event time (to be detected) and ti
the FPN of the corresponding event interval bound-
ary time from the table. There are FPNs such that the
inequality t ≥ tE = ti + n ·T is true, i.e. indicates a
time event, but where a simple rearrangement of the
inequality to the form t−n ·T ≥ ti does not hold. This
illustrates the fact that floating-point operations cannot
be used to exactly evaluate floating-point comparisons,
and therefore cannot be used to reliably detect periodic
time events.

The final implementation is based on (nonnegative) in-
tegers

• nEventsPerPeriod, the number of time events
per period and

• eventInterval, the (discrete) event interval
marker.

During the very first call of function _nextTime-
Event, the number of time events per period is de-
termined from the time coordinates of the table ar-
ray. There is always a time event per period at the
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table boundary, thus nEventsPerPeriod ≥ 1. Fur-
thermore, the start and end indices of each of the so-
called event intervals are determined and stored in the
integer array intervals.

As an example, the 5×2 time table [0, 10; 0.25, 30;
0.5, 40; 0.5, 10; 0.75, 30] is considered.

• There are two time events per period in case of
linear interpolation. The indices of the event in-
tervals are [0, 2] and [3, 4], i.e. the first interval
ranges from time 0 to time 0.5 and the second in-
terval from 0.5 to 0.75 (Fig. 2).

0 0.25 0.5 0.75 1
10

20

30

40

Figure 2: Two time events per period

• There are three time events per period in case of
interpolation by constant segments. The indices
of the event intervals are [0, 1], [1, 2] and [3, 4].
Repeated sample points are ignored since their
ordinate values can never be taken by the inter-
polating function (Fig. 3)

0 0.25 0.5 0.75 1
10

20

30

40

Figure 3: Three time events per period

The event interval marker eventInterval uses one-
based indexing. It is properly initialized once in the
very first call of function _nextTimeEvent since in-
terpolation does not need to start in the first event in-
terval by default. Along with both integer variables
and the event intervals array, the initial offset time
tOffset = n ·T is determined and stored.

Each subsequent call of _nextTimeEvent now incre-
ments the event interval marker by one and resets it
to 1 once it overruns, i.e. gets greater than the num-
ber of time events per period. This can be derived
from the fact that the input variable (time) is usually
increasing (w.r.t. time). Then it is known that there
is exactly one time event per event interval. There is

an event interval correction implemented in functions
_getValue and _getDerValue that sets the time to
be interpolated to either the left or right event interval
value in case of floating-point inaccuracies. This im-
plementation guarantees that no time events are missed
and that the correct function values of the interpolating
function at the event interval boundaries are returned.

3 Interpolation by Akima splines

Hiroshi Akima’s original articles [1, 2] were used for
the implementation of the univariate and bivariate in-
terpolation by Akima splines. His reference imple-
mentation (in FORTRAN 77) was not used. Further-
more, the FORTRAN 90 code of SOSIE [3] from Lau-
rent Brodeau was studied for an efficient calculation of
the coefficients for bivariate splines.

3.1 Spline coefficients

There are different possibilities to calculate and store
the polynomial spline coefficients of the interpolating
function.

1. Pre-calculate all coefficients during the initializa-
tion and store them within the external table ob-
ject.

2. Calculate the coefficients whenever needed (and
possibly store only the last calculated set of co-
efficients if used for evaluating the partial deriva-
tives in the same simulation time step).

3. Allocate enough memory during initialization to
store all coefficients, calculate them whenever
needed and store them whenever calculated. The
advantage is that for very large tables where only
a few different data parts are accessed there will
be no superfluous calculation at all and initial-
ization time is short. The disadvantages are the
high memory usage and the unpredictable execu-
tion time of a simulation time step (as it is never
known if the calculated coefficients are already
available).

This implementation of the Modelica Standard Ta-
bles uses the first option where all required coeffi-
cients of the entire table array are calculated during
initialization in function spline1DInit (for univari-
ate Akima splines) and spline2DInit (for bivariate
Akima splines).
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3.2 Differentiability

The current univariate Akima spline interpolation al-
ways uses non-periodic table boundary conditions
which may lead to a discontinuous interpolating func-
tion or derivative at the table boundaries for periodic
extrapolation with the CombiTimeTable (Fig. 4).

0 0.25 0.5 0.75 1
0

5

10

Figure 4: Periodic extrapolation of time table [0.25,
10; 0.5, 0; 0.75, 10] by Akima splines results in a in-
terpolating function that is not (continuously) differ-
entiable.

In all other cases it is guaranteed that the univariate or
bivariate Akima spline interpolating function is con-
tinuously differentiable everywhere, especially at the
table boundaries (Fig. 5).

0 0.25 0.5 0.75 1
0

20

40

60

Figure 5: The boundary slopes of the Akima splines
are used to linearly extrapolate the one-dimensional
table [0.25, 20; 0.5, 0; 0.75, 10].

4 Array memory optimizations

Advanced array memory optimization features are im-
plemented and explained below.

4.1 Shared table arrays

If multiple table objects refer to the same table array
of the same file, this table array is read and stored in
memory multiple times since external objects are mu-
tually independent by default. In order to avoid su-
perfluous file input access and to decrease the utilized
memory there is a C++ implementation of a global ta-
ble array management on top of the C implementation,

guarded by predefined macro __cplusplus. The C or
C++ compilation can be toggled by compiler flag -x
c and -x c++ for GCC or flag /TC and /TP for Mi-
crosoft Visual C++. In the case of a C++ compilation
an additional static variable of type TableShareMap
(using the std::map container from the STL) with ref-
erence counting is introduced. Write access of this
global variable tableShare (e.g. insertion or era-
sure of tables) is thread-safe, i.e. guarded by a crit-
ical section (on Windows platforms) or pthread mu-
tex (on Linux platforms) and implemented by struct
CriticalSectionHandler.

A table array update is usually not required and there-
fore not implemented. Shared arrays of spline coef-
ficients are also not implemented, i.e. each external
table object always calculates and locally stores the
spline coefficients it requires.

4.2 Shallow copy of table arrays

This optimization is only relevant if the table array is
defined within the simulation model, i.e. if it is known
at compile-time and not read from the file at simula-
tion run-time. The complete table array memory that
is passed from the simulation model to the constructor
(the _init function) of the external table object is al-
located and copied (“deep copy”). This is the safe de-
fault case as nothing can be assumed about the lifetime
of the table array of the simulation model. Thus the ta-
ble memory is (temporarily) held twice: locally within
the external table object and at the outside model. If
the outside table array is known to be constant and
to have a longer simulation lifetime than the external
table object, the deep array copy can be avoided by
defining NO_TABLE_COPY. In this case, the outside ta-
ble array memory is used within the external table ob-
ject (“shallow copy” of the passed array pointer).

5 Conclusions

An open source implementation of the table blocks

• Modelica.Blocks.Sources.CombiTimeTable

• Modelica.Blocks.Tables.CombiTable1D

• Modelica.Blocks.Tables.CombiTable1Ds

• Modelica.Blocks.Tables.CombiTable2D

Remarks on the Implementation of the Modelica Standard Tables
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is available with the MSL 3.2.1 as of August 2013.
The Modelica code is provided under Modelica Li-
cense 2. The C/C++ code of files ModelicaStandard-
Tables and ModelicaMatIO [4] is provided under the
new BSD license. As a result, all parts of the MSL are
now available in a free implementation.

Additionally it should be mentioned that this imple-
mentation added new features to the table blocks.

• The new option ConstantSegments was added for
the Smoothness parameter.

• The new option NoExtrapolation was added for
the Extrapolation parameter.

• The table outputs can be differentiated once (with
exception of the potentially discontinuous Con-
stantSegments).

• All MATLAB MAT-File formats are supported
by an adapted library libmatio [4] (provided by
ModelicaMatIO header and source file). Whereas
MAT-File formats v4 and v6 are supported with-
out additional dependencies by libmatio, the v7
format requires the zlib [5] library and com-
pilation with preprocessor macro HAVE_ZLIB=1
and the v7.3 format requires the hdf5 [6] and
szip [7] libraries and compilation with preproces-
sor macro HAVE_HDF5=1.

• The support of tables provided as static C ar-
rays in the user header file usertab.h was revised.
This is relevant for real-time systems without a
file system and where the table data is known at
compile-time.

Last but not least, 120 test models in Modelica-
Test.Tables with reference results have been created.
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Recent development and applications
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Abstract

Modelica models are mathematical descriptions and
therefore their simulation output typically shows nu-
merical variable trajectories. While universal for all
kinds of simulations, this representation is oftentimes
difficult to understand. In the field of multi-body sim-
ulations, 3D visualizations present a way of display-
ing vast amounts of numerical data in an intuitive
way which is instantly understandable, even by peo-
ple without specialized knowledge. For integration
of visualization in Modelica multi-body simulations,
the "DLR Visualization Library" has been developed.
This paper presents the newest additions to the library
and shows their application in several DLR projects.

Keywords: Visualization, Simulation, DLR Visual-
ization Library, Modelica, interactive Simulation

1 Introduction

The visualization of simulation data is an important el-
ement of advanced simulations. With the increasing
complexity of modern multi-body simulations, con-
cerning for example flexible bodies, thermal dissipa-
tion, or contacts, the demands for a realistic, real-time
capable visualization of the simulation also rise. Us-
ing Modelica as modeling language allows the user
to pack model functionality in reusable sub-models,
e.g. as a replaceable block for a suspension, an engine,
etc. This also enables the integration of visualization
definitions into the single sub-models, eliminating the
need for an additional visualization definition in a sep-
arate program.

In 2009, the "DLR Visualization Library" for Mod-
elica has been introduced under the now deprecated
name "DLR External Devices Library" [1]. The li-
brary features a variety of visualization blocks to be
used directly as visualizers within Modelica. Visu-
alization elements like configurable rigid bodies (e.g.

sphere, box, gearwheel) or rigid and flexible bodies
generated from CAD files can be displayed by con-
necting their respective Visualizer block to the cor-
responding frame in the multi-body model. Figure 1
shows an example scene created in Modelica and its
visualization. Using the C-interface of Modelica, the
visualization information is transmitted to the external
visualization software which is started automatically

Figure 1: Top: Modelica model for a single cylinder,
showing the integration of model and visualization.
Bottom: The corresponding 3D visualization of a ra-
dial engine.
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with the simulation and allows the user to replay and
observe the simulation run in real-time and export it as
video. Furthermore, as a result of the latest develop-
ment, the library features a feedback channel, allow-
ing the visualization to influence the simulation. This
makes it possible to interact with the simulation us-
ing a graphical user interface (GUIs / HUDs), defined
in the Modelica model, and to evaluate collisions be-
tween visualization elements, this is for example re-
quired in contact force calculations.

The following sections shall introduce the newly
added features to the "DLR Visualization Library" and
present some application examples of its use in ongo-
ing research topics at DLR.

2 State of the art

The first attempts to create 3D Visualizations with
Modelica was in 2000, when Engelson [2] started a
discussion about techniques for the integration of vi-
sualization information with Modelica code. In his
paper he presents a set of annotations for 3D graphic
primitives and standardized simple geometries. Visu-
alization would then have to be implemented by IDE
tool vendors. Even though it brought up the idea of
creating visualizations from Modelica models, the pre-
sented techniques were never implemented on a larger
scale.

Yet, the idea of creating 3D visualizations from
Modelica simulations persisted and in 2003 Otter et
al. [3] revived the "MultiBody Library" of the Model-
ica standard library. This change introduced a new sub
library called "Visualizers", containing shape objects
for simple 3D forms as well as more complex objects
from files. These are Modelica blocks and as such may
easily be integrated in existing models or may be used
in the creation of submodels which contain both simu-
lation and visualization information. The visualization
itself is redirected to the ModelicaServices library, re-
sponsible for all vendor specific implementations. So
the Modelica standard library provides a standardized
visualization description, to be implemented by Mod-
elica IDE vendors. This technique is now part of all
major simulation environments.

In 2008 Hoeft et al. [4] revisited the ideas of Engel-
son, this time integrating the powerful X3D standard
in Modelica annotations. X3D, short for Extensible
3D Graphics, is an open international standard, devel-
oped for web applications. It is a representation of a
3D environment with XML. They present new annota-
tions with X3D code and show an implementation of

the technique in the MOSILAB simulator.
Furthermore the Modelica3D library was presented

by Höger et al. at the 2012 Modelica Conference [5].
It implements a scene graph in Modelica and uses the
C-interface to connect the simulation front-end with
the visualization back-end via interprocess communi-
cation. Besides their Modelica library, two different
back-ends are presented. One based on the Open-
SceneGraph 3D library and one based on the Blender
3D graphics software.

Unsatisfied with the existing visualizers, provided
by "MultiBody Library", we implemented the "DLR
Visualization Library". It is based on the ideas of En-
gelson and Otter, but tries to take those to the next level
with more complex 3D environments, visualizations of
mass and power flow, flexible deformation of objects
and many other features in a high fidelity rendering.

3 New Functions

3.1 3D-Elements

3.1.1 Dynamic textures

Given a 2D Matrix of 3D points, the flexible surface
element may be used to display arbitrary shapes, with
the ability to deform during the simulation. More de-
tails may be found in [1].

A new addition to flexible surfaces is the ability to
display videos as textures, both local files as well as
video streams from a network, as shown in figure 2.
For local files the video is synced with the simulation
time stamp. For network streams this is not possible
and the surface will always display the last received
image. The supported network protocols and the URL
definitions for opening streams are inherited from the
underlying FFmpeg library and are described in [18]
in detail. Most commonly used protocols are thereby
supported, such as: RTP, FTP, MMS, HTTP and HLS.

Figure 2: Full HD MPEG Video image from a pre-
sentation of the DLR Robotic Motion Simulator [9],
rendered onto a flexible surface.
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Figure 3: On the left a simple 3D scene; on the right
this part is rendered on a flexible surface using a virtual
camera, symbolized on the upper left side. All parts
are in the same scene.

Besides Videos, images from virtual cameras can
be rendered onto a flexible surface. For this purpose
a standard camera from the "DLR Visualization Li-
brary" is placed in the scene and its output mode is set
to "render to texture". The camera output can then be
selected as texture for the flexible surface. The result
is a camera image, drawn on the surface in the same
way it would otherwise be drawn on screen. An exam-
ple of this is illustrated in figure 3. The whole image
shows one scene. On the left side a few objects are
arranged and on the right side a flexible surface is de-
picted which shows the left part of the scene again, as
seen from the virtual camera above the arrangement,
rendered as a texture on a flexible surface.

3.1.2 Feedback - HUD

In [1] all communication was strictly from the sim-
ulation to the visualization. The following, new ele-
ments abandon this concept. They not only send data
from the simulation to the visualization but also re-
ceive data, which may then be used to influence the
simulation.

The first interactive objects presented here are inter-
active HUD elements. The base class for all of these
elements is the button class. This defines an invisi-
ble HUD object in the visualization and with outputs
in the simulation which are dependent on user input
on the visualization. By combining the button object
with HUD elements for the representation and Model-
ica logic for reactions, typical user interfaces, like but-
tons or sliders, can be created and used as interactive
input for simulations. The button base class is capa-
ble of reacting to mouse-over events while the mouse
cursor hovers over them, mouse clicks and dragging
of the element by moving the mouse while a button

Figure 4: At the top part simple HUD elements are
presented and below that their representation in the
Modelica graphical designer.

is clicked. The "DLR Visualization Library" contains
with a selection of predefined GUI elements, using the
described button base class. The following HUD ele-
ments are depicted in figure 4:

• Buttons are by default visualized as simple
squares with a label. They have a Boolean out-
put value which is "true" for as long as the user
presses it and "false" otherwise.

• Check boxes have a different look but actually
behave very similar to buttons, except the out-
put value behaves like a flip-flop. Permanently
changing its value with every click.

• Sliders for simple adjustment of continuous val-
ues

3.1.3 Feedback - Collision detection

The description of complex 3D geometries usually
uses geometric meshes. Reading the according data
from files, interpreting it and running collision detec-
tion algorithms from Modelica is complicated. Phys-
ical simulations, especially in the area of multi body
simulations often require to measure the distance be-
tween objects or contacts between objects. The re-
quired data, especially the interpretation and arrange-
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Figure 5: Collision detection with visualization of the
contact. The red line represents the collision detector,
the sphere shows the contact point and the arrow dis-
plays the surface normal.

ment of 3D mesh data, is already present in the visu-
alization. To make this data accessible for the simu-
lation the collision detector object is introduced. The
collision detector is a line in the 3D scene with a de-
fined start and end point. If the line intersects another
element in the visualization it produces an output for
the simulation. The output data includes a Boolean
value, indicating whether or not a collision occurred,
the distance of the first collision, measured from the
start point and the surface normal vector of the collid-
ing object at the position of the collision. The collision
detection may also be visualized as shown in figure
5. The simulation and the visualization are running
independently at different frequencies. In our exam-
ple (see section 4.3), the Modelica simulation of the
contact forces runs at a rate of 1kHz, but the visual-
ization calculating the collisions is bound to the frame
rate of the graphics card and is as such dependent on
the complexity of the scene and the hardware. By sub-
sampling the communication calls from the simulation
to the visualization, a minimum frame rate of about
30−100Hz for the visualization is defined. If the visu-
alization fails to achieve this frame rate, the simulation
is slowed down below real-time speed as it has to wait
for the answer of the visualization system providing
the collision data. Because the simulation requires the
collision data for each integrator step, a sample and
hold interpolation is performed on the collision data,
which saves the last received collision data until new
ones are available. A high-level overview of this prin-
ciple is depicted in figure 6.

3.1.4 Weather effects

To enhance the realistic impression of the simulation,
the "DLR Visualization Library" provides a selection

Figure 6: High level view of the collision detection
system

of the most common weather effects for the simula-
tion. These include: Rain, snow and fog. An example
of the rain effect is shown in figure 7. For precipita-
tion both the intensity of the effect as well as the wind
direction and speed can be set. Wind can be used to
simulate the effects of wind on the direction of pre-
cipitation. Fog is parameterized with three values: a
starting distance for the fog effect and an end distance,
where the view is completely blocked by the fog. Also
the color of the fog can be adjusted. The applicability
of those effects is not necessarily limited to the simula-
tion of weather but could for example be used in under
water simulation to show the effects of murky water.

Figure 7: An exemplary scene with rain effect

3.1.5 Paths

Visualizations often require complex motions of cam-
eras and objects through space. This is type of prede-
fined movement is seldom used in multi body simula-
tions and therefore it is complex to define using the
Modelica standard library. To simplify the creation
of visualizations, new path definitions are provided.
Paths are a multi-body connector frame with a time
dependent output. Four different kinds of paths are

The DLR Visualization Library - Recent development and applications
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Figure 8: Top to bottom: circular, linear, Bezier, cubic
spline; spheres: control points.

available as shown in figure 8: The first type shown
here is a circular movement. The circle is defined by
a center point with orientation and the radius. The
simplest paths are point to point connection. A list
of points is supplied and the resulting path is a lin-
ear interpolation between those. For smoother paths,
Bezier curves can be used. The path is only guaranteed
to pass through the first and the last point the remain-
ing points only "stretch" the path towards them. The
fourth kind of paths is based on cubic spline interpo-
lation. Like Bezier curves these provide very smooth
paths. In contrast those the line is always guaranteed
to pass through all points. This often simplifies the
definition of paths but might lead to overshooting in
certain constellations.

3.1.6 Trace shape

Following the 3D movement of multiple objects at
once can be hard. To display this motion, a trace-shape
can be attached to any object. The trace-shape object
then generates a line trail as the object it is attached to
moves through space, thereby intuitively representing
the objects trajectory. For the illustration of multiple
trails, the line thickness, color and length can be ad-
justed by the user as needed. An example can be seen
in figure 9.

3.1.7 Sky-Box

"Empty" space, areas on screen in which no object is
defined, are by default filled with a solid color. This is
suitable for small animations or abstract illustrations
but for many applications a more realistic represen-
tation is required. For example in outdoor scenarios
those areas should show the horizon and the sky. For
this purpose the sky box is introduced. The sky box

Figure 9: Movement of a robots tool tip visualized us-
ing the trace shape.

is always depicted as infinitely far away and is com-
posed of two layers. The front layer is used for dis-
playing some sort of horizon. An example would be
distant hills or a tree line. The user has to supply six
images (It is designed as a cube with the view point
in the middle. One image per side). Behind this layer,
visible through transparent areas in the images, the sky
is drawn. The user has to provide a date, the time and
a position on earth in form of longitude and latitude.
The OsgEphemeris library [13] then uses this infor-
mation to calculate the correct position of the sun and
the moon during the day and an astronomically correct
star field during the night time. The result is a realistic
background for the simulation.

3.1.8 Particle System

The particle system is used for displaying objects, con-
sisting of many sub-objects and cannot be modeled as
traditional meshes. Examples for these kinds of ob-
jects include streams of water, fire, smoke and dis-
persed dust. Those objects are visualized using a large
number of small objects, showing a simple image,
called particles. Those particles are send out randomly
from an emitter, follow a certain path while poten-
tially turning, changing color and transparency, until
the path reaches a certain length and the particle dis-
appears. Using the right image, a large number of ob-
jects, and a specific movement, this raises for example
the impression of water flowing from a pipe.

The Modelica blocks for modeling particles are di-
vided by emitter type. The emitter is the area, from
which the particles are shot. The three types available
in the "DLR Visualization Library" are: Point emitter,
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Figure 10: Top: Three types of particle emitters. From
left to right line emitter (along z-axis), point emitter,
and area emitter (circular shape in x− z-plane);
Bottom: Particle effects used to display exhaust from
a space rocket.

line emitter and area emitter. Examples for each type
are depicted in figure 10. The particles are created ran-
domly within certain bounds, such as mean number
of particles per second, configurable for each emitter.
Furthermore the particle may change its color, trans-
parency, size over its life time. The final set of param-
eters then determines the path particles will follow.

3.1.9 Virtual Planet Builder and large scale ter-
rain visualization

The visualization engine is based on the open source
library OpenSceneGraph [12], allowing its use in con-
junction with another OpenSceneGraph application,
which is itself not part of the library: Virtual Planet
Builder [14]. Using digital elevation data, like it
is commonly produced in aerial surveys with spe-
cial cameras, Virtual Planet Builder can produce 3D
sceneries at scale of whole planets. This is accom-
plished by auto generating different levels of detail
and by converting the scenery in a special file format.
The planet surface is tiled into junks. When viewed
from a faraway distance large areas are combined into

one large tile with very little detail. As the camera
moves closer to a certain area the corresponding tile is
split into smaller junks with more detail. This process
is reiterated while the camera closes in until a maxi-
mum degree of detail is reached. For the viewer the
switchover is not visible for the lower level detail at
which a tile is rendered from afar, is not visible. Of
special importance is the way the data is preprocessed
and stored in a special format, allowing the renderer to
load certain parts at different levels of detail as needed,
very efficiently. This technique makes it possible to
show extremely large areas while retaining a high level
of detail. Figure 11 shows an earth model, created with
Virtual Planet Builder from satellite images.

When rendering these planetary scale images in
conjunction with small, close up objects, in setups like
the satellite simulation in figure 11, graphical glitches
appear. During the rendering process, each pixel is as-
signed a depth value to determine how objects overlap
each other from the cameras perspective. The techni-
cal implementation of this uses a so called depth buffer
or z-Buffer which safes each pixel distance from the
camera (the depth or z-value). This is a, typically 24-
bit on modern machines, fixed point value in the range
[0,1], where 0 represents the near plane (minimum dis-
tance from camera) and 1 the far plane (maximum dis-
tance) of the view frustum. Therefore, with increas-
ing distance between the near and far plane, the depth
buffer resolution decreases. When the depth value of
two points is so small that the depth buffer is unable
to represent the difference graphical glitches become
visible [15]. The minimum depth difference repre-
sentable by the depth buffer ∆zmin can be calculated
with equation (1). z is the depth value, n is the near

Figure 11: A model of planet earth, generated us-
ing virtual planet builder, in a satellite simulation;
Logarithmic Z-Buffering allows for a detailed satel-
lite model in the foreground and an earth model at real
scale behind it.
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plane distance and b is the depth buffers resolution in
bit. The higher resolution at low distances is caused
by perspective effects.

∆zmin ≈
z2

2bn− z
(1)

Logarithmic depth buffers are a well known technique
which seeks to attenuate this problem by applying a
logarithm to the depth value before it is written to
the depth buffer, thereby increasing the resolution for
close objects, where small difference are more likely
to be important at the expense of the resolution for
distant objects where small differences are less likely
to become visible. Equation (2) show the conversion
from the original value z to the new value zlog. The ad-
dition parameter C is used to adjust whether close or
distant objects are preferred.

zlog =
2ln(Cz + 1)

C f + 1
−1 (2)

Using a logarithmic depth buffer alters the depth buffer
resolution. It can now be calculated with equation (3).
[16]

∆zlogmin ≈
ln(C f + 1)

(2b−1) C
Cz+1

(3)

For example, the satellite visualization requires a
render distance of 1m to 15000km. With a 24bit depth
buffer this results in a minimum depth separation of
less than 1mm at the satellites distance of 100m, but
between ≈ 550m and ≈ 1100km at the earths distance
of 300km− 13000km, causing visible problems with
its rendering. Using logarithmic depth buffers with a
C Value of 0.001 the minimum separation for the satel-
lite also lies below 1mm, yet for earth it is in the range
of about ≈ 20cm−7.5m which is well below the visi-
ble range at this distance.

3.1.10 Oculus Rift Integration

The Oculus Rift is head-mounted virtual reality dis-
play, currently under development by Oculus VR. At
the time of this paper, it is only available as a devel-
oper preview version with a finalized consumer prod-
uct in development. The head-mounted system de-
picted in figure 12 includes a display with a resolution
of 1280× 800, two fish eye lenses stretching the im-
age to a field of view of about 90 ◦−110 ◦ and a three
degree of freedom rotational acceleration sensor [17].
With this device it is possible to generate a fully im-
mersive experience in a 3D environment, nearly filling
the user’s entire field of view and following his mo-
tion as he moves his head. The "DLR Visualization

Figure 12: The Oculus Rift head-mounted virtual real-
ity device.

Library" supports the currently available Oculus Rift
Development Kit as alternative display device for any
kind of already integrated cameras. All setup steps and
the camera orientation change as reaction to the users
head movement are handled fully automatically.

3.1.11 HUDs

Head-Up-Displays are a two dimensional layer in front
of the three dimensional scene. The possible applica-
tions for this kind of display range from overlaying lo-
gos, over the display of model state variables to com-
plex interactive user interfaces. All user interfaces are
composed of five base elements: The first element is
text. Text can change dynamically and therefore be
used to display model states or variables. Also typ-
ical text formatting methods such as different fonts,
bold text and so on are supported. The second type
of elements is a line drawn along a list of user pro-

Figure 13: Various HUD elements used to recreate a
plane’s cockpit instrumentation with artificial horizon,
speed and altitude meters alongside a compass and en-
gine status displays.
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vided points. Next are free form faces, displaying a
filled form based on polygon points provided by the
user. Lastly, for more complex images, graphics files
can be included. Of course the HUD elements pre-
sented here can be combined in the creation of new
more complex elements. A small selection of such el-
ements is included with "DLR Visualization Library".
An example is a scope for the presentation of variable
trajectories, a combination of lines, images and text, or
the airplane cockpit instrumentation in figure 13. The
last type is an interactive button base class which will
be discussed in a later section.

Attention has to be paid to the arrangement of HUD
elements for the size of the window they are drawn is
variable even at runtime. Therefore it would be im-
practical to use absolute coordinates and instead rela-
tive coordinates are employed. For the adaptation to
a changed display size the user can choose of the fol-
lowing four techniques:

1. The horizontal coordinate value spans over the
horizontal display size and the vertical value is
adjusted to its size is such a way that aspect ratio
is preserved.

2. The same as 1 but for the vertical instead of the
horizontal coordinate value.

3. The program automatically changes between
technique 1 and 2, depending on the smaller side.

4. Relative coordinates range for both horizontal
and vertical coordinates range over the whole dis-

Figure 14: The "DLR Robotic Motion Simulator"

play size. The aspect ratio might be distorted de-
pending on the display window setup.

4 Applications

This section exemplifies the real world application of
the previously introduced visualization objects with
help of their implementation in the "DLR Robotic Mo-
tion Simulator". An experimental motion simulation
platform, currently under development at DLR. The
system is depicted in figure 14.

4.1 ROboMObil GUI

The ROboMObil is a robotic car, developed at the
DLR with four separately rotatable wheels, granting
a new level of maneuverability. To make use of it, the
specialized user interface in figure 15 was developed,
using the previously described HUD elements. It is
displayed on a touch screen device in the cockpit of
the real prototype car

Figure 15: The ROboMObil GUI, as shown on the
touch sensitive device of the ROboMObil cockpit, as
well as the graphical Modelica designer. Left bot-
tom: the user can choose between different operational
modes; right: Enter additional options for the selected
mode. In the rotational mode shown here, the user can
select an instantaneous center of rotation
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and in the simulators cockpit mockup. The concept
is explained at full detail in [8]. The upper left part
shows the current and the target speed. Below that
the driving mode can be selected and the right part is
selecting a rotation center point, required for certain
driving modes. The second part of this image shows
the full integration of the GUI with other parts of the
simulation directly in the model description with Mod-
elica.

4.2 Flexible trajectory planning

The design of a complex trajectory in 3D space, for a
predefined movement of objects or cameras, can be a
rather difficult and time consuming task, if it has to be
accomplished by the direct manipulation of numeric
parameters. Therefore the interactive Trajectory De-
signer has been developed to provide a convenient way
of creating control point parameters for a B-spline in-
terpolated movement of position and orientation. The
trajectories velocity is interpolated with a two times
derivable sinusoidal function.

In order to generate a smooth trajectory through ac-
curately defined bases containing a position and ori-
entation, we use quaternions for orientation and B-
Splines for interpolation between these bases. A B-
Spline curve T (x) consists of control points Pi, i ∈
1 . . .n − p and B-Spline base functions Ni,p,τ , i ∈
1 . . .n− p−2:

T (x) =
n−p

∑
i=1

PiNi,p,τ (x) . (4)

The control points Pi each contains seven elements;
three for position and four for the orientation repre-
sented as quaternion. A base function Ni,p,τ is defined
as a polynomial piece with order p and knot vector τ:

Ni,0,τ (x) :=
{

1, x ∈ [τi,τi+1 [
0, otherwise

(5)

Ni,p,τ (x) = x−τi
τi+p−τi Ni,p−1,τ (x)

+
τi+p+1−x

τi+p+1−τi+1 Ni+1,p−1,τ (x) p> 0
(6)

The knot vector τ = [τ0, . . . ,τn−1]T ,n ≥ 2p,τi ≤
τi+1 and τi ≤ τi+p has to be chosen. The algorithms
of our implementation set the first and last p knots
equal. There are different approaches setting the re-
maining values, see [11] [10, p161]. For the traje-
tory designer we use a base functions with degree 3
in order to get a smooth trajetory with a continuity of
the second derivative. The parameter x defines the po-
sition on the trajectory, T (x) returns the interpolated

value P(x) containing the three-dimensional position
and an interpolated quaternion. The quaternion inter-
polation corresponds to a linear quaternion interpola-
tion (LERP)[6]. Therefore the resulting L2-Norm of
the vector is less than 1 and has to be normalized re-
sulting in a unit quaternion which leads to an varying
but continuous rotational velocity. Furthermore the
trajectory designer provides the functionality to set a
velocity at each control point. The behavior of the ve-
locity between the points is computed through sinu-
soidal functions:

v(λ ) = (λ − 1
2

π sin(2πλ ))(vi+1− vi)+ vi; (7)

with vi the velocity of the left and vi+1 the veloc-
ity of the right control point within the interval be-
tween Pi and Pi+1. The second derivative of this si-
nusoidal function is continuous and zero at the left
and right end providing a smooth transition at the con-
trol points. The integration of the velocity v leads to
the current position on the trajectory x. Therefore,
vi ≥ 0, i ∈ 1 . . .n− p.

The tool is operated by a small selection of key-
board commands and offers three operating modes to
manipulate the position, the orientation and the asso-
ciated velocity of the control points. In all modes con-
trol points can be removed or inserted. For verification
of the resulting interpolated movement a live preview,
adjusting to the manipulation of control points in real-
time, is available. The preview shows a coordinate sys-
tem traveling along the spline in the main scene and

Figure 16: The trajectory designer tool showing a path
(green line) above Mt. Everest. In the upper right cor-
ner a window previews the camera’s trajectory while
working on it.
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a point of view rendering, adequate for the preview
of camera movements, in a separate picture-in-picture
preview area. The complete interface is depicted in
figure 16. The coordinates, orientations and velocities
are finally stored as vectors in a text file, which can be
used to reload the control points for further manipula-
tion or later playback.

4.3 Wheel ground contact

The simulation of cars requires the modeling of con-
tacts between wheels and the ground, realized using
the collision detector elements. An abstracted model
is shown in figure 17. This contact model is then the
basis for far more complex models, such as the car
shown in figure 18. In this simulation the load on the
wheels will shift when driving on uneven terrain and
the suspension reacts accordingly. The ground plane
in the simulation can be any 3D shape.

The wheel vertical force is calculated according to
the following equation. The contact force f is the sum
of a spring force s and a damping force d.

~f =~s + ~d (8)

The spring force is calculated using the penetration
depth of the collision object and an other object p, as
well as a spring constant provided by the user S, to
push the wheel away from the other object, along the

Figure 17: Wheel ground contact in the graphical
Modelica designer and as 3D visualization.

Figure 18: A car driving on a plane. White arrows
indicate surface normals for contact points.

objects surface normal at the point of contact.

~s = S · p ·~n (9)

Just using a spring force would result in a constantly
bouncing wheel. To model energy dissipation, a damp-
ing force d is introduced. It is calculated using the
collision objects speed ṙ in the direction of the surface
normal n, a user provided damping constant D and the
resulting force, just as the spring force, acts in the di-
rection of the normal. Lastly the damping force should
only be present during impact. Otherwise the wheel
would act as if it was glued to the surface.

~d = D ·min(0,~̇r ·~n) ·~n (10)

This way of simulating object collisions does come
with certain draw backs. First of all, it intrinsically
requires the two colliding objects to interpenetrate.
While problematic for rigid bodies, it is a reasonable
approximation for flexible objects like the car tires in
the presented example. When trying to minimize the
interpenetration a further problem arises. The larger
the spring constant s, the stiffer the simulation gets,
requiring ever smaller simulation time steps. Other-
wise the interpenetration from one step to the next
can be so large, the resulting force from equation (9)
gets unrealistically large, hurling the wheel away. The
same problem can occur when the wheel is moving
with high speed and the ground inclination changes.
The sample-and-hold technique used in the communi-
cation, delays the point in time when the simulation
is able to "see", the changed ground inclination. This
is depicted in figure 19. The wheel on the left moves
at high speed to the right but due to the slower visu-
alization time steps, the ground inclination change is
communicated to the simulation with delay, causing
the wheel to penetrate the ground.
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Figure 19: Wheel moving at high speed from left to
right. Due to the fact that the simulation does run faster
than the visualization, the inclination change is recog-
nized to late. Dotted line: ground level as detected by
the simulation; red line: error due to sample and hold
technique

For small and fast moving objects, it is even possi-
ble for object collisions to be missed completely. The
collision detection object only detects collisions with
object surfaces so if an object moves so fast towards
an other, that the position "jump" between time steps
is larger than the collision object length, the collision
might get missed. This case is described by equation
(11) where v1 and v2 the speed of the two objects and
i1 and i2 are start and end point of the collision object.

∣∣∣∣
∣∣∣∣

v1− v2

||v1− v2||
· i1− i2
||i1− i2||

∣∣∣∣
∣∣∣∣

1
f
> ||(i1− i2)|| (11)

4.4 Image warping

The capsule in figure 20 is part of a simulator project.
At the back, besides the head of the pilot, are two pro-
jectors. The projection screen is the open capsule shell
to the top right. The shell has a complex geometry,
deforming the images projected onto it. In order to
present a rectified image to the pilot a reverse defor-
mation has to be applied to the image prior to projec-
tion. This preprocessing utilizes the render image to
texture functionality on a flexible surface. Due to the
fact that a flexible surface is used, the image can be
warped as needed (see figure 20) and with the correct
configuration, the final image appears restituted to the
pilot.

4.5 Manned vehicle simulation

The "DLR Robotic Motion Simulator" uses the cap-
sule shown in figure 20 and an industrial robot to
which the capsule is attached as shown in figure 14.
The robot is then used to apply accelerations, in accor-
dance with the simulation, on the pilot, thereby creat-
ing an immersive motion simulation. A detailed de-
scription of the "DLR Robotic Motion Simulator" can

Figure 20: The piloting capsule of the "DLR Robotic
Motion Simulator"; On top the stereo images after
warping; The images are projected on the capsule and
appear restituted; In front of the pilot is a touch sensi-
tive display.

be found in [7]. In this application all of the previ-
ously shown applications are utilized. The pilots’ main
screen is restituted using the render to texture feature
on a flexible surface; the console in front of the pilot
shows an input GUI on touch screens, and the vehi-
cle simulation uses collision detection objects for the
wheel ground contact analysis.

5 Limitations

The presented library does have certain limitations in
its current state, of which the following three are cur-
rently under investigation for improvements. The first
one is the design of the collision detection system: it
only allows for collisions with a line object, limiting
its use to applications where the point of contact is pre-
dictable, such as the presented tire, where the contact
point can be assumed to be in the direction of grav-
ity, while arbitrary contact points, like the collision
of a car with a pole, can not be modeled in a similar
fashion. Also the underpinning architecture, as intro-
duced in [1], only permits retroactive collision detec-
tion. It only detects interpenetration of the collision
object with an other object after it happened and with-
out any possibility of detecting the exact time of con-
tact. Any contact model relying on the collision data
has to account for this. The second item for improve-
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ment is the graphical fidelity. While the current system
provides very high fidelity compared to other products
for scientific visualization, it does not hold up when
compared to state of the art graphics as seen in mod-
ern computer games. The visualization of simulation
data might not require such graphics, yet in virtual re-
ality applications the best graphics possible are desired
to maximize the users level of immersion. For com-
parison between our solution and a modern computer
games engine see figure 21. For better visibility a very
simple scene was selected here. On the top our so-
lution is shown, with shadows enabled. Below that,
the same scene is displayed using the Unity3D en-
gine [19], with deferred lighting, advanced soft shad-
ows, field of view and screen space ambient occlusion
among other effects. Even thought it is very simple,
the second scene looks more realistic. Finally, the vi-
sualization library is based on Modelicas multi-body
library. In virtual reality applications a large number
of visualization elements gets connected using frame
connectors. Even for static and fixed compositions
the number of resulting equations gets extraordinar-
ily high. An empty scene, with only the multi-body
world object and the visualization libraries update-
Visualization object, requires 1073 equations. Each

Figure 21: A simple scene for comparison between our
current visualization on the top and below a modern
computer games engine

additional ElementaryShape (e.g. a simple box) in-
troduces 217 equations and each fixedRotation object
used to arrange the objects in the scene further requires
102 equations. Clearly this modeling is too complicate
and for complex simulations it can lead to performance
problems. Since described problem is caused by Mod-
elica’s design of the multi-body library, we propose
a simplification of the connector for the case that no
masses are involved, when the multi-body library gets
reevaluated in the future.

6 Conclusion

Visualization is an important, if not necessary, aug-
mentation for a multitude of simulations. The "DLR
Visualization Library" provides a sophisticated visu-
alization framework for the Modelica modeling lan-
guage. The paper presented the new additions to the
library: videos and camera images rendered on flexi-
ble surfaces, advanced user interfaces, a collision de-
tection system, weather effects, paths, the trace shape,
a particle system, sky-boxes and integration with Vir-
tual Planet Builder and support for virtual reality hard-
ware. Furthermore, real-life applications for these new
elements were presented as they are used in the devel-
opment of the "DLR Robotic Motion Simulator".

In comparison with the other existing libraries, our
implementation is not based on annotations and there-
fore does not rely on vendor specific annotations. Also
it is not only possible to render all visualizers de-
scribed in the standard MultiBody library but it also
heavily augments its rather limited possibilities. In re-
lation to other solutions, the "DLR Visualization Li-
brary" provides the richest feature set along side high
fidelity results.

The visualization component is currently developed
for Windows XP, 7, 8 and a Linux version is in Beta
test with a installation package for Ubuntu 12.04 avail-
able. The library it self utilizes the Modelica C-
interface and should therefore be compatible with a
wide range of simulation environments but currently
only Dymola has been tested excessively and is offi-
cially supported.

In conclusion, the library proves useful for gaining
an intuitive understanding of multi-body simulations,
the creation of presentable results and the creation of
interactive virtual reality environments.
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Abstract 

In early stages of the product development process 
computer-aided design (CAD) and multibody simu-
lation (MBS) work concurrently to build a virtual 
mechanical system. While CAD handles the geomet-
ric design and space analysis, MBS leads to a deeper 
understanding of the dynamic behavior of the future 
system. The CAD system has to provide physical 
and geometrical data, such as mass, inertia and con-
necting frames in order to improve simulation re-
sults. Automation at this point helps to create con-
sistent simulation and design models and shortens 
the amount of time needed to produce realistic simu-
lation results. Based on Visual Basic for Applica-
tions (VBA) a method is implemented to automati-
cally generate an isolated Modelica model package 
or a single Modelica model from CATIA assemblies 
or parts. The introduction of design controlling pa-
rameter variables in addition to the multibody data 
enables optimization loops between multibody simu-
lation and the related CAD model. An example 
demonstrates the three main steps of the presented 
method, divided into model processing, package 
generation and parameterized package update. Fur-
thermore, the update process is integrated in a manu-
al parameter variation as well as an automated opti-
mization routine to enable parametric design studies 
coupled with multibody simulation. 
Keywords: CATIA, Modelica, Dymola, Multibody 
Simulation, Parameterized Models, Package Gen-
eration, Optimization  

1 Introduction 

Multibody simulation and computer-aided design are 
gaining significantly in importance during the virtual 
product development process. Typical tasks of 
multibody analysis include the computation of dy-
namic behavior, coupling forces or modal analysis. 
CAD systems on the contrary provide a three-

dimensional representation of virtual assemblies and 
subordinate parts. During the development process 
both engineering disciplines need to exchange data 
in the loop. Figure 1 clarifies the relations between 
the two domains. Physical and geometrical data is 
extracted from CAD and used as input for MBS. Dy-
namic simulation and optimization proposes changes 
in the design. Traditionally both domains have inde-
pendent experts for the applied software. The gener-
ated data is shared manually between them over 
agreed-upon fixed interfaces. Automating this time 
consuming and error-prone repetitive procedure is a 
step toward the improvement of the product devel-
opment process. The automation approach depends 
on the used design and simulation software. In the 
context of the presented work Modelica [1] is used 
as modeling language for multibody simulation and 
CATIA [2] as design software. 
Existing methods for automated translation from 
CATIA to Modelica take different boundary con-
straints into account. The approach in [3] is based on 
a kinematic skeleton in Modelica. This Modelica file 
is imported in CATIA and the user maps CATIA 
data to the kinematic skeleton through a graphical 
user interface. Finally the multibody data is exported 
to the Modelica file. In this approach the design and 
the simulation work is divided and executed by dif-
ferent persons. The design process is the master. [4] 
presents a method for kinematic coupling of CATIA 
models with Modelica. The basic requirement for 
this method is a working kinematic structure in 
CATIA. The kinematic structure from the CATIA 

 
Figure 1: Relation between MBS and CAD 
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kinematics workbench is translated to Modelica 
Code with attention to kinematic loops and special 
treatment of redundant joints. 
In some cases, however, this time-consuming setup 
of a kinematic structure in CATIA is not desired or 
not possible due to open kinematic chains. In terms 
of dynamic preinvestigation at early stages of the 
product development process, however, it can be 
helpful to focus on the simulation process as master 
in order to generate fast results. Therefore a work-
flow is presented here, which matches the aforemen-
tioned requirements. An isolated package or a model 
is generated from CATIA assemblies and parts to be 
used for simulation and optimization in a Modelica 
simulation environment, based on the Dymola 
framework. The mandatory model preparation work 
can be executed solitarily by a simulation expert with 
basic CATIA experience. 
The upcoming sections of this paper are organized as 
follows. Section 2 gives a detailed overview of the 
used software and presents the classic manual ap-
proach of virtual development. The following section 
presents an automated translation approach divided 
into model processing, package generation, parame-
ter handling and package updating. A bicycle rear 
suspension serves as example and demonstrates the 
usage of this method in Section 4. Section 5 summa-
rizes the main conclusions together with an outlook 
to future work. 

2 Multibody Simulation and Com-
puter-Aided Design 

This section presents the tools used in the context of 
the paper. Firstly, multibody simulation in Modelica 
with Dymola is described. The following subsection 
focusses on the design process in CATIA. Subsec-
tion 2.3 finally describes the classic workflow of 
product development between the presented do-
mains. 

2.1 Multibody Simulation in Modelica/Dymola 

In general, multibody models consist of rigid bodies 
and joints. The bodies are modeled as a skeleton of 
fixed translations 𝑟0𝑛0  and rotations 𝑇0𝑛  between con-
necting frames together with body mass and inertias 
representing the real products shape (Figure 2). 
Joints between the components allow certain degrees 
of freedom and determine the kinematic behavior of 
the mechanical system. The Modelica Standard Li-
brary provides algebraic and dynamic models for 
multibody systems [5]. These can be combined 

graphically in Dymola to create multibody systems 
for dynamic model simulations. Based on the equi-
librium of forces Differential Algebraic Equations 
(DAE) are formulated and solved. The outputs of the 
simulation experiments are motion, forces and modal 
behavior of the considered system. Model parame-
ters can be adapted in optimization loops to enhance 
the system dynamics to match the desired behaviors. 

2.2 Computer-Aided Design in CATIA 

The design process in CATIA is mainly carried out 
by using the Part Design and the Assembly Design 
Workbench. The Part Design Workbench is used for 
modeling of single parts made from basic geometric 
elements such as points, lines and planes. These ele-
ments are combined to create two-dimensional 
sketches. Elementary operations transform these 
sketches to surfaces and volumes. Parameterizing 
variables, in the following referred to as design pa-
rameters, can be defined on top-level to create dif-
ferent representations of a part. In order to determine 
the part’s mass and inertia, its density has to be de-
fined through the assignment of materials. 
The Assembly Design Workbench, on the contrary, 
is used to design mechanical systems from existing 
parts or sub products. Geometrical constraints, like 
coincidences and offsets, represent the locked de-
grees of freedom by the connecting joints between 

 
Figure 2: Geometric skeleton of a rigid body in a 

multibody simulation 
 

Data Type Parameters Workflow 

Physical Data Mass, Inertia, Center 
of Gravity (CoG) 

CAD to MBS 

Geometrical 
Data 

Connecting Frames, 
Points of Interest 

CAD to MBS 

Visualization Shape representation CAD to MBS 
Design 
Parameters 

Lengths, Angles MBS to CAD 
 

Table 1: Workflow between MBS and CAD 
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the components. These relations allow manipulation 
according to the system’s degrees of freedom for 
space and collision analysis. As previously men-
tioned multibody data is needed as input for the sim-
ulation work. There are different types of data: phys-
ical information, geometry, visualization and design 
parameters. Table 1 shows the workflow between 
MBS and CAD.  

CATIA is organized in a hierarchic model structure. 
Figure 3 shows the top-level products and the nested 
structure on connector level. Each component of an 
assembly can consist of further products and parts on 
various levels. In terms of kinematic investigations it 
is sufficient to focus on the top-level of the product 
structure where the moving parts of a mechanism are 
located. Therefore the physical and geometrical data 
of the sub products is transformed to the first level of 
the assembly structure. Mass, inertia and center of 
gravity is computed for all sub products individually 
and merged to a single representative data set.  

2.3 Classic Workflow 

Traditionally the workflow can be described as fol-
lows. After the conceptual phase of the product de-
sign the kinematic structure is defined and initial 
modeling work in MBS and CAD is triggered. Im-
portant interfaces between both domains are fixed in 
order to establish consistent data exchange. Based on 
the early design model multibody data is extracted 
by the CAD expert and passed to the simulation ex-
pert. This data is used by the MBS expert to update 
the related simulation models. Accordingly, the MBS 
expert analyzes the dynamic model behavior and 
suggests changes to the design to match predefined 
objectives. In the next step these changes are applied 
to the design model and the multibody data is updat-
ed. These elemental tasks are repeated in the loop 

until the dynamic behavior of the system meets the 
desired requirements.  
Automating the repetitive data extraction from CAD 
to MBS helps to create consistent data and shortens 
the amount of time needed to produce realistic simu-
lation results. As already mentioned, different ap-
proaches exist to improve the mutual work of design 
and simulation experts. At early stages of the product 
development process it can be more helpful to focus 
on the simulation process as master to rapidly gener-
ate simulation results. The presented approach in the 
next section handles the kinematic structure exclu-
sively on the simulation side.  

3 Automated Modelica Package Gen-
eration 

The main contribution of the presented work is a 
method for an automated Modelica package genera-
tion with specific characteristics. The introduction of 
design parameters in addition to the multibody data 
allows parameter variations with MBS and CAD in 
the loop. Furthermore, the simulation expert is able 
to create simulation experiments based on an early 
design version while CAD work is still in progress.  
The workflow of automated model generation is di-
vided in three main steps. First, existing CAD data 
has to be processed in CATIA according to a defined 
structure. Second, after the preparation work an ini-
tial package or a model in Modelica is generated and 
used to setup simulation experiments. Finally, due to 
variation of design parameter values or manual 
changes to the CAD part or product the simulation 
model or package is updated in the loop. In what fol-
lows of this section, we will briefly analyze each one 
of these steps. 

3.1 CATIA Model Preparation 

Starting point is either raw CAD data from other 
software or existing CATIA parts or products. In 
terms of package generation the top-level structure 
of the root product has to be reorganized to match 
the kinematic structure of the considered mechanism. 
The generation of connector frames in Modelica is 
based on CATIA axis systems. Therefore specific 
geometrical sets with axis systems are created in se-
lected parts of the product structure. These axis sys-
tems are either connecting points for joints or other 
points of interest such as measurement or load points 
used in simulation. These preparation steps are man-
datory for the export of the multibody data. In order 
to increase usability for the optimization-based de-

 
Figure 3: Top-level and connector level structure of 

an assembly in CATIA 
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sign process, additional design parameters can be 
defined on the part level. These parameters are either 
lengths or angles that are linked to certain geomet-
rical constraints of the part. The design parameters 
change the parts appearance and hence it’s mass, 
inertia and geometrical information. Design parame-
ters need special treatment during the update process 
as described in the next subsection. The output of the 
model preparation work can be summarized as fol-
lows: 

• Top-level product structure equal to kine-
matic structure, 

• Assignment of appropriate materials (densi-
ties) to every part of the product structure, 

• Connector frames as axis systems in geomet-
rical sets on part level, 

• Optional design parameters linked to con-
straints of the design model on part level. 

3.2 CATIA Model Conversion to Modelica 

Depending on the type of available CAD data differ-
ent Modelica model structures are produced. CATIA 
parts (*.CATPart) are converted to Modelica models 
and CATIA products (*.CATProduct) to Modelica 
packages. Figure 4 shows a CATIA model with two 
connector frames and the corresponding model struc-
ture in Modelica. The Modelica model consists of 
components from different Modelica libraries pa-
rameterized by CAD data. The Modelica MultiBody 

Library [5] provides connecting frames (frame_a, 
frame_b1 in Figure 4) that represent the axis sys-
tems in the CATIA model. These frames provide 
cut-forces and cut-torques that are transferred over 
joints between two components. The first axis sys-
tem in the connector set of a part or a sub product is 
set as initial frame_a for this model. The remaining 
axis systems are translated to connector frames 
frame_b1 to frame_bn and connected over fixed 
rotations (fixedRotation) with frame_a. These 
models need the relative direction vector and com-
ponents of the transformation matrix between the 
frames as input. 
Figure 5 illustrates an example of a nested product 
structure. Every product has its own body fixed axis 
system 𝑒𝑛 that can be rotated and moved in relation 
to the axis system on a higher level. CATIA provides 
the direction vector 𝑟𝑛𝑛+1𝑛  and the transformation 
matrix 𝑇𝑛𝑛+1 of every component in the related body 
fixed axis system 𝑒𝑛. In this case axis system 𝑒𝑐1 is 
chosen as frame_a. The inputs for the fixed rotation 
from frame_a to frame_b1 are 𝑟𝑐1𝑐2𝑐1  and 𝑇𝑐1𝑐2. 
Equations (1) and (2) allow a recursive transfor-
mation of every axis system to  𝑒1: 
 

  𝑟1𝑐11 =  𝑟121 + 𝑟231 + 𝑟3𝑐11                        
         =  𝑟121 + 𝑇12−1𝑟232 + 𝑇12−1𝑇23−1𝑟3𝑐13 ,  

(1) 

 
 𝑇1𝑐1 =   𝑇12𝑇23𝑇3𝑐1 . (2) 
 
The relative direction vectors and rotations between 
 𝑒𝑐1 and  𝑒𝑐𝑖   in axis system  𝑒𝑐1 are calculated with 
the help of equations (3) and (4): 
 
 𝑟𝑐1𝑐21 =  𝑟𝑐21 −  𝑟𝑐11 , (3) 
 
 𝑟𝑐1𝑐2𝑐1 =   𝑇1𝑐1𝑟𝑐1𝑐21 . (4) 

 
Figure 5: Nested product structure of an assembly in 

CATIA 
 

 
Figure 4: CATIA model (above) and corresponding 

Modelica model (below) 

Automated Modelica Package Generation of Parameterized Multibody Systems in CATIA

916 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096913



In addition to the geometric skeleton a body model is 
introduced containing the mass, a vector to the center 
of gravity and the body’s inertia in respect to the ini-
tial frame. If assemblies are translated a model like 
previously described is generated for every product 
on top-level that contains connector sets. They are 
grouped together in a Modelica package. 
The visualization is either run internally as Dymola 
animation with display of the multibody skeleton or 
externally animated by DLR’s SimVis software [6]. 
SimVis integrates *.STL (Surface Tessellation Lan-
guage) files generated from the CAD package as 
three-dimensional shaded shape representations 
(Figure 6). Every frame has a visualizer in form of a 
coordinate system corresponding to the CAD pack-
age to simplify simulation work.  
Design parameters are integrated as user input pa-
rameters on model level. The multibody parameters 
are either written in the Modelica model as fixed 
values or stored in a separate textual data file. In the 
second case the parameters are read into the model 
over the function readRealParameter() to enable 
parameterized simulation work based on the textual 
data file. 

The model generation routine is triggered by a Mod-
elica scripting function in Dymola that executes 
CATIA and runs macros from a VBA Library. Fig-
ure 7 shows the Graphical User Interface of the func-
tion for model generation with input parameters. The 
multibody parameters are either stored directly in the 
model as fixed values or optionally separated from 
the model in a data file. Furthermore the user can 
choose to export a three-dimensional shape represen-
tation for visualization and activate batch processing. 
The generated models are manually integrated in 
simulation experiments by the user in order to inves-
tigate the kinematic behavior of the mechanic sys-
tem. Therefore a multibody structure with joints has 
to be set up and fitted into testing environments in 
Dymola. 

3.3 Updating the Modelica Model Parameters 

Throughout the development process changes to the 
design are applied due to consequences of simulation 
results or other new requirements. The design model 
data is either manually modified or changed by de-
sign parameters. Isolating the multibody parameters 
by a text file from the simulation model enables 
changes to physical and geometrical data without 
having to reload the model or package in Dymola. 
Figure 8 leads through the update process and shows 
the interaction between the different domains. In a 
first step the design parameter values of the Modeli-
ca model are changed in Dymola and written to a 
textual data file. Then an update routine in the CAD 
system is triggered by Dymola. The design model is 
opened in CATIA and the design parameters are read 
from the data file. After that they are changed in the 
CATIA design model. The part or assembly is up-
dated in the CAD system and the modified multi-
body data is exported to the data file analogous to the 
model generation process in Subsection 3.2.  

 
Figure 6: Visualization of a CAD assembly exported 

from CATIA in DLR SimVis 
 

 
Figure 8: Update process in Dymola (green) and 

CATIA (red) 
 

  
Figure 7: Graphical User Interface for model genera-

tion in Dymola 
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Finally, the corresponding Modelica simulation 
model is updated with the multibody parameters 
through the readRealParameter() function reading 
the parameter values from the text file into the mod-
el. 

3.4 Optimization Loop 

The commercial Optimization Library [7] provides 
several numerical optimization algorithms for solv-
ing different kinds of optimization tasks. Multiple 
tuner parameters with complex optimization criteria 
allow automated investigations to support the engi-
neering design process. The goal of the optimization 
task is to minimize user defined criteria with optional 
equality and inequality constraints. A detailed view 
on the used optimization and evaluation algorithms 
can be found in [7]. In order to use the algorithms of 
the Function Optimization toolbox, the aforemen-
tioned update process is implemented in a Modelica 
function and fitted to the following defined structure: 

 
partial function PartialCriteriaVariables 

  input Real tuners[:]; 

  output Real criteria[:]; 

end PartialCriteriaVariables; 

 
In this criteria function, the optimization tuner pa-
rameters are mapped to the design parameters de-
fined in CATIA. Based on the tuner values an update 
routine in CATIA is triggered, followed by a simula-
tion run in Dymola using the changed multibody data 
as described in chapter 3.3. Then, the simulation re-
sults stored in the corresponding *.mat file are 
loaded into workspace through the readTrajecto-
ry() function. Finally, the values from the loaded 

trajectories can be used to formulate the optimization 
criteria. 

4 Examples 

The following section shows the previously de-
scribed workflow of model preparation and package 
generation for an existing bicycle rear suspension 
from a 2012/13 Fatmodul Ant [8]. After that, the up-
date process is demonstrated in a manual parameter 
variation followed by an automated optimization 
utilizing the Optimization Library.  
Starting point of the model preparation work is CAD 
data in *.STEP (Standard for the Exchange of Prod-
uct model data) format. At first the model has to be 
reorganized with respect to the kinematic structure. 
The rear suspension is designed as linkage driven 
single pivot. The shock and the swingarm are con-
nected over additional linkages to generate a pro-
gressive leverage ratio between wheel travel and 
shock absorber travel. The shock, the swingarm 
(Chain stays) and the upper linkage (Rocker) are 
mounted in the fixed main frame. The seat stays 
complete the planar kinematic loop. Figure 9 shows 
the reorganized model structure on top-level in CAT-
IA. In the next step connector frames are attached to 
the different parts of the assembly representing the 
connecting joints between the moving parts. Addi-
tionally important load points are defined such as the 
inertial axis system located in the bottom bracket and 
the rear dropout. For demonstration purposes a de-
sign parameter is defined which refers to the wall 
thickness of the seat stays. At this point the prepara-
tion work in CATIA is finished and the remaining 
steps are executed in Dymola.  

 
Figure 9: Bicycle rear suspension in CATIA 

 

 

Figure 10: Automatically generated Modelica pack-
age of the rear suspension in Dymola 
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A function call in Dymola triggers the package gen-
eration in the working directory of the CATIA as-
sembly product. Figure 10 shows the automatically 
generated Modelica package structure in Dymola. A 
Modelica counterpart is created for every top-level 
product from the CATIA design model. 
The Modelica package and the associated multibody 
data file are stored in subfolders of the working di-
rectory together with *.STL visualization data. Based 
on the kinematic structure a new Modelica model is 
manually set up by the user to include the generated 
models. Figure 11 shows the assembled kinematic 
model of the rear bicycle suspension. The different 
components of the package are connected via rota-
tional joints with each other. Additional Modelica 
models complete the overall model. The shock is 
modeled as springDamper and an input force at the 
rear dropout is implemented. 

Figure 12 shows the step response of the cut force in 
shock for a force step along the vertical axis of the 
rear dropout. An overshooting behavior due to prede-
fined spring and damper parameters can be seen. The 
CAD model consists of 88 parts in 6 top-level prod-
ucts. The Modelica model for this experiment con-
tains 989 components with 963 time-varying varia-
bles formulating 18381 equations. The overall pro-
cess is executed on a X5650 @ 2.67 GHz Work-
station with 12 GB RAM. The execution time for the 
parameter update process in CATIA together with 
translation and simulation in Dymola based on an 
already generated Modelica package is 57 s, which 
contains 29 s for updating the CAD assembly. 
Figure 13 shows the inside of the seat stays with dif-
ferent design parameter values. With the help of the 
update process the wall thickness of the seat stays is 
changed between 1mm and 6mm in multiple steps. 
For every loop of the parameter variation the same 
routine is executed repetitively.  
At first, the current design parameter values are writ-
ten into the corresponding multibody data file. Then 
the CAD assembly is opened in CATIA and the de-
sign parameter values are read from the previously 
mentioned file. The parameter values are changed in 
the CAD product structure and the assembly is up-
dated. In the next step, the updated multibody data, 
such as mass inertias and geometry, is overwritten in 
the textual data file by CATIA. 
Finally, the model is translated in Dymola in order to 
reread the changed multibody data from the data file 
and the simulation experiment is run. The simulation 

 

Figure 11: Modelica model of the bicycle rear sus-
pension 

  

 
Figure 13: Cut through seat stays with wall thickness 

𝑡 = 1 mm and 𝑡 = 3 mm 
  

 

Figure 12: Shock force over time for vertical force 
step in rear dropout  
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p = 1 mm 
p = 3 mm 
p = 5 mm 

results are saved and the next design parameter value 
is investigated. In this example, no changes to spring 
stiffness and damping constant were applied during 
the variation. Figure 14 compares the step responses 
of the different configurations. Faster response and 
less overshoot are observed with decreasing wall 
thickness. 
Utilizing the Optimization Library [7], as mentioned 
in chapter 3.4, allows to investigate the system be-
havior under complex optimization criteria in com-
parison to the previously described manual parame-
ter variation. In this example the wall thickness of 
the seat stays serves as tuner parameter 𝑝 and a com-
bined optimization criterion is formulated. The main 
optimization task is to minimize the overshoot in the 
shock force, referred to in Figure 15 as ∆𝑓. Due to 
mechanical restrictions in the design of the spring 
damper system the shock travel 𝑑 should not exceed 

48 mm. The following formulation summarizes the 
optimization problem: 
 
 min

1≤𝑝≤6
∆𝑓(𝑝)      s.t.       𝑑(𝑝) ≤ 48. (5) 

 
Table 2 summarizes the results of the optimization 
run. A solution 𝑝∗ is found by a Pattern Search algo-
rithm in less than half of an hour execution time. The 
solution activates the inequality constraint, i.e. 
𝑑∗ ≈ 48 mm and minimizes the overshoot of the 
shock force. 
The shown examples serve mainly for demonstration 
purpose of the working toolchain and shall illustrate 
the potential of parameterized design and combined  

5  Conclusions 

An automated model conversion from CATIA to 
Modelica has been described in this paper. In con-
trast to existing conversion approaches the paper fo-
cuses on the simulation process with Modelica in 
Dymola. The quick and easy CAD model preparation 
task can be executed solitary by a simulation expert 
with basic CATIA experience. The model generation 
and update toolchain after the model preparation in 
CATIA is completely controlled out of Dymola. The 
multibody and design parameters are stored in the 
model as fixed values or in a separate textual data 
file. In this way the Modelica models that are derived 
from CAD are separated from the simulation exper-
iments. Design parameters together with the Optimi-
zation Library enable automated parametric design 
studies. The algorithms and methods in this Library 
enable the optimization of a part or an assembly in 
CATIA considering the dynamic behavior of the un-
derlying multibody system. 

 

Figure 14: Different shock forces due to variation of 
wall thickness 

  

Parameter Value 
Number of criteria evaluations 29 
Initial wall thickness 𝑝0 3 mm 
Range of wall thickness 𝑝 1 mm – 6 mm 
Optimization method Pattern search 
Computation time 1766 s 
Best tuner parameter 𝑝∗ 5.43 mm 
Overshoot of shock force ∆𝑓∗ 23.14726 N 
Shock travel 𝑑∗ 47.99986 mm 

 

Table 2: Optimization preferences and results 
 

 
Figure 15: Shock travel 𝑑 and overshoot in shock 

force ∆𝑓 as optimization criteria  
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In the future the focus will be on code enhancement 
to decrease processing time. Direct communication 
between Dymola and CATIA via the Active-X-Com 
interface could improve the model generation pro-
cess. Further application examples will validate the 
process quality.  

6 References 

[1] Modelica Association: "Modelica - A Unified 
Object-Oriented Language for Systems Mod-
eling", www.modelica.org. 

[2] Dassault Systemes AB: CATIA, 
www.3ds.com/products-services. 

[3] P. Bhattacharya, N. Suyam Welakwe, R. Ma-
kanaboyina, A. Chimalakonda, “Integration of 
CATIA with Modelica,” in The 5th Interna-
tional Modelica Conference, Vienna, Austria, 
2006, pp. 671–675. 

[4] H. Elmqvist, S. E. Mattsson, C. Chapuis, “Re-
dundancies in Multibody Systems and Auto-
matic Coupling of CATIA and Modelica,” in 
The 7th International Modelica Conference, 
Como, Italy, 2009, pp. 551–560. 

[5] M. Otter, H. Elmqvist, “The New Modelica 
MultiBody Library,” in The 3rd International 
Modelica Conference, Linköping, Sweden, 
2003, pp. 311–330. 

[6] T. Bellmann, “Interactive Simulations and ad-
vanced Visualization with Modelica,” in The 
7th International Modelica Conference, Co-
mo, Italy, 2009, pp. 541–550. 

[7] A. Pfeiffer, “Optimization Library for Interac-
tive Multi-Criteria Optimization Tasks,” in 
The 9th International Modelica Conference, 
Munich, Germany, 2012, pp. 669–679. 

[8] Fatmodul Bicycles: www.fatmodul.de. 

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096913

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

921



922 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096



Modelling elastomer bu�ers with DyMoRail

Elisabeth Dumont Werner Maurer

Institut für Angewandte Mathematik und Physik

Zürcher Hochschule für Angewandte Wissenschaften

Technikumstrasse 9, Winterthur, 8401 Switzerland

Abstract

In this paper a model for elastomer bu�ers for
longitudinal railway vehicle dynamics is presented.
This model is part of the more extended DyMoRail
library which allows to simulate longitudinal dy-
namics of entire railway trains. With this library
an e�cient simulation of complete train compo-
sitions in various combinations is possible. The
elastomer bu�er can be used in combination with
other bu�er models and couplers in di�erent test
scenarios. We present details of our rubber spring
model based on the one-dimensional, non-linear
rubber spring model proposed by M. Berg [1][2][3].
To illustrate the behavior of the friction force mod-
elled in the latter, it is compared to a diode model
for Coulomb friction similar to the one in the Mod-
elica Standard Library. Simulations for 40 J-bu�er
known as �Miner40� used for freight waggons dur-
ing shunting at speeds up to 12 km/h are shown.
Also shown are simulations of an entire S-Bahn
combination with sixteen cars and �fteen elas-
tomer bu�ers.

Keywords: mechanics, railway

1 Introduction

The tough competition in the railway industry is
forcing operators to continuously set higher quality
and comfort standards. Bu�ers on railway vehi-
cles, as fabricated by Schwab Verkehrstechnik, are
no more simple devices but have to be considered
Hi-Tech components. They have to be be abso-
lutely reliable and present optimal properties to
absorb run-up energy from trailing wagons safely.
They have to absorb minor impacts, take up slack
between locomotive and wagons and bear the load
of preceding wagons when pushing. Years ago it
was good enough for couplers and bu�ers to ful-
�ll UIC (International Union of Railways) stan-

dards. But nowadays manufacturers only survive
in this competitive market if they are able to of-
fer optimized solutions regarding force, energy ab-
sorption, and driving comfort. The manufacturer
has to be able to react quickly and �exibly to the
challenges of rail operators and rolling stock man-
ufacturers and o�er �nal products and customized
solutions with high customer value landlord. Since
hardware tests are extremely costly, modeling and
simulation step into the optimization process. Dy-
MoRail allows to optimize bu�ers and couplers in
di�erent con�gurations for safety, energy absorp-
tion and costs. Train composition can be chosen
by the user.

Figure 1: Drawing of a bu�er (Seitenpu�er Kate-
gorie A by Schwab Verkehrstechnik).

Schwab Verkehrstechnik AG and ZHAW carried
out a project funded by CTI (Swiss Federal Com-
mission for Technology and Innovation) to develop
a tool which allows to simulate longitudinal dy-
namics of entire railway trains. During the fol-
lowing years a Modelica library has been devel-
oped, which is called DyMoRail. The DyMoRail
library allows an e�cient simulation of complete
train compositions in various con�gurations. The
library has been presented at Modelica 2012 [4]
and a description of the coupler models can be
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found in references [5][6]. In this paper we focus
on our elastomer bu�er library and we will present
details of our rubber spring model.

The elastomer bu�ers consists of a series of ring
rubber pads put in series separated by metallic
shims, as shown in Figure 1. When compressed
energy is stored within the material of the rubber
pads as strain energy. The energy is dissipated
within the material during both the compression
and extension of the material due to the internal
friction rising from the long cross linked polymers
within the material. Elastomer bu�ers present a
non linear force�stroke�diagram.

2 Library

Figure 2: Structure of the bu�er sublibrary
�Pu�er�.

The bu�er library, shown in Figure 2 has been
completely redesigned. All bu�er models are based
on the partial model �Pu�erhuelse� (bu�er bush)
where the di�erent modes and overall bu�er force
are modeled. A detailed description of the connec-
tors and the partial model used to build the bu�er
model is shown in Figure 3. Force and stroke are
calculated and, in addition, the energy absorbed
by the bu�er. The modes are divided into two cat-
egories: four operation modes and three motion
modes. For the operation modes, we distinguish

Figure 3: Models for connectors and partial mod-
els.

free, pretension, deformation and arrested. In free
mode, the bu�er plates do not touch and the force
is zero. In the pretension mode the force increases
slowly. In the deformation mode the bu�er spring
is loaded. In the arrested mode the force increases
steeply. The motion modes include forward, back-
ward and halt. They describe the current motion
of the bush. We will come back to these modes,
when discussing the friction model. In the basic
bu�er model, the Coulomb friction force in the
bu�er bush is also modeled. A maximum of two
bu�ers can be placed both in series and parallel.
European standard con�guration consists of two
bu�ers in parallel. A crash between two cars is
modelled as two bu�ers in series on each side, one
bu�er per car.

Based on this partial model, the actual bu�er
model is built, including the elastomer spring.
Data sheets provided by the manufacturer are in-
cluded with the help of records in �Miner Daten�.

For their acceptance test, railway companies de-
�ne several crash scenarios with di�erent crash
partners at di�erent speeds. Those test scenarios
are implemented by means of a test library �Miner
Tests�. It allows for comparability, consistency and
easy reproduction of the total set of test cases.
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3 Model

Figure 4: Model for a rubber spring proposed by
M. Berg.

For model implementation of the DyMoRail li-
brary, the Modelica based simulation software Dy-
mola is used. The elastomer model is taken
from the non-linear rubber spring model by M.
Berg [1][2][3]. The model proposed in these pa-
pers is one-dimensional and based on the superpo-
sition of three forces (elastic, friction and viscous
force) and contains �ve parameters. For better
understanding, a schematic drawing is shown in
Figure 4.

In the model by M. Berg, the elastic force is
linearly modelled with a sti�ness constant D:

Fe = D · x (1)

The viscous force is modelled by a linear spring
(spring constant Dv) in series with a linear viscous
damper (damping constant k):

Fv = Dv · x− kv (2)

The friction force FCoul depends both on the
displacement x and on a reference state (xs, FRs)
in the friction force versus displacement charac-
teristic. Depending on the position relative to this
reference state, the friction force is expressed with
two parameters maximum force FRmax and con-
stant x2. A small value of x2 gives a steep increase
in the friction force and thereby high frictional
sti�ness. The friction force FCoul in the model
is, depending on how x is related to the reference
displacement xs, de�ned by the equations below.

The reference state is set to xs = 0 and FRs = 0.

FCoul = FRmax
srel

srel + x2

For backward movement xs = x1 and FRs =
FR1:

FCoul = FR1 + (FRmax + FR1)

× srel − x1
x2

(
1 + FR1

FRmax

)
− (srel − x1)

For backward movement xs = x1 and FRs =
FR1 = FRmax:

FCoul = FRmax

(
1− 2

srel − x1
2x2 − (srel − x1)

)

For forward movement xs = x3 and FRs =
FR3:

FCoul = FR3 + (FRmax − FR3)

× srel − x3
x2

(
1− FR3

FRmax

)
+ (srel − x3)

For forward movement xs = x3 and FRs =
FR3 = −FRmax:

FCoul = FRmax

(
s

srel − x3
2x2 + (srel − x3)

− 1

)

When the bu�er is at rest xs = x5 and FRs =
FR5:

FCoul = FR5 + FRmax
srel − x5

x2 + (srel − x5)
When the bu�er is at rest mode xs = x5 and

FRs = FR5 = ±FRmax:

FCoul = FRmax

(
±1 +

srel − x5
x2 + (srel − x5)

)

The implementation of these equa-
tions in Modelica is as follows
dx = dx1 + dx2

dv2 = der(dx2)

k ∗ dv2 = Dv ∗ dx1
Vorzeichen = if dv > 0

then1
else if dv < 0
then− 1
else0

FCoul = FCouls+
(dx− dxs) ∗ (FCoulmax− Vorzeichen ∗ FCouls)
/(x2 ∗ (1− Vorzeichen∗
FCouls/FCoulmax)
+Vorzeichen ∗ (dx− dxs))
when change(Vorzeichen)then
dxs = pre(dx)
FCouls = pre(FCoul)
end when

F = D ∗ dx + Dv ∗ dx1 + FCoul

der(W) = P
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where dx1 is the displacement of spring Dv and
dx2 is the displacement of the damper k.
To illustrate the behavior of the M. Berg fric-

tion model, it (Figure 5) is compared to a diode
model for Coulomb friction, similar to the one of
the Modelica Standard Library (Figure 6), as de-
scribed for example in reference [7]. As can be seen
from these graphs, the hysteresis loop of the Mod-
elica Standard Library model has a rectangular
form, whereas the M. Berg friction model shows
sharp corners at the maximum and minimum dis-
placements with a smooth transition between the
upper and lower branch of the hysteresis.

Figure 5: Friction force versus displacement. Sim-
ulation of the friction model for a rubber spring
proposed by M.Berg. Fmax = 2 and x2 = 0.002.

Figure 6: Friction force versus displacement. Sim-
ulation of the friction model for the basic model
for Coulomb friction in the Modelica Standard Li-
brary. Fmax = 2 and x2 = 0.002.

In the �nal model for the Miner bu�er in the
DyMoRail library, the total force:

F = Fe + Fv + FCoul (3)

is taken to the exponent of an exponential func-
tion. This corresponds more to reality, shown by
a thorough parameter study.

4 Simulation

For their acceptance test, railway companies de�ne
several crash scenarios with di�erent crash part-
ners at di�erent speeds.

Figure 7 shows simulations for 40 J-bu�er known
as �Miner40� at di�erent initial speeds. This type
of bu�ers is exclusively used for freight wagons.
The acceptance tests demand reversible shunting
at speeds up to 12 km/h. During collisions at
low speeds, the energy has to be absorbed by the
bu�ers. Absolutely no damage should occur to the
rolling stock. The acceleration must remain below
4.0 g.

Figure 7: Simulation of the bu�er model with dif-
ferent initial speeds. Force vs stroke diagram.

The elastomer model works also in combination
with other coupler or bu�er models in complete
train con�guration. Figure 8 shows a simulation of
three S-Bahn combinations colliding with a single
combination at rest during shunting. Each S-Bahn
contains four cars and three Miner models, so in
total the model contains sixteen cars and �fteen
bu�er models. In this graph, one can distinguish
the di�erent cars colliding one after the other.

5 Conclusion

In this paper a model for elastomer bu�ers for rail-
way vehicle dynamics is presented. This model is
part of the more extended DyMoRail library which
allows to simulate longitudinal dynamics of entire
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Figure 8: Simulation of three S-Bahn combina-
tions colliding with a single combination at rest
during shunting.

railway trains. With this library an e�cient sim-
ulation of complete train compositions in various
combinations is possible. The elastomer bu�er can
be used in combination with other bu�er and cou-
plers models. The acceptance test scenarios can
be simulated with the help of this model.
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Abstract 

Modeling of multibody mechanics plays a central 

role in the design of mechatronic systems. In 

technical use-cases, they often contain loose 

couplings, where contact is possible. We present a 

ready-to-use contact library in Modelica. It 

comprises surface definitions for simple contact 

surfaces, which can be connected with multibodies 

of the Modelica Standard Library. It implements a 

force-based approach between single contact points. 

The contact forces are calculated in configurable 

non-central contact blocks. Exemplarily, the results 

of three experiments are shown and compared to 

benchmark simulations. 

Keywords: contact library; simple contact 

surfaces; non-central contact block; contact forces 

1 Introduction and Motivation 

In the design process of mechatronic systems, the 

designers are facing the challenge of developing and 

controlling the more and more complex dynamics of 

the system. Therefore, multi-domain simulation 

models come to use from the outset of the conceptual 

design stage. As this also denotes a significant 

modeling effort, object-oriented modeling languages 

like Modelica offer the possibility to utilize and/or 

build up model libraries. The concept of ports makes 

it possible to combine and simulate components of 

different domains and origins in one model of the 

system. We intend to extend the available libraries 

by providing an idealized contact library that makes 

it possible to model contact phenomena. In 

particular, it should be possible to define each 

component separately in order to be able to reuse and 

combine approved patterns in new applications (c.f. 

[1]). 

Considering technical use-cases one often finds 

multibody mechanics that typically comprise mainly 

fixed (e.g. kinematic chains) and few loose 

couplings, where dynamic contact phenomena take 

place. Nevertheless, modeling contacts is “a key 

factor and a challenging problem in simulation of 

multibody systems (MBS), where a balance between 

performance and accuracy has to be found” [2]. 

However, to the best of our knowledge, there is 

currently no ready-to-use Modelica library available 

to handle contact problems in any level of detail. 

Otter et al. [3] suggest a force-based extension to the 

Modelica MultiBody Library to enable central 

collision handling. Herein, three variants to define 

contact surfaces are described (parametric surfaces, 

algebraic constraint surfaces, surfaces of polytopes). 

In [4] the surfaces of arbitrary bodies in the MBS are 

discretized by means of polygons. The approach 

presented in this paper differs from that, as it 

implements contact modeling by means of non-

central contact blocks. It provides combinable, 

simple contact surfaces, which are described by 

single contact points. 

We observed that in many industrial applications, 

even if the complete bodies are of complex shape, 

only a certain part of them contacts with others. The 

actual contact surfaces are often designed to be 

simple. Thus, the aim is to enable the designer to 

perform simulations of such systems including 

idealized representation of the contacts. Thereby, the 

analysis of the principle functional capability of the 

system in the course of the conceptual design is 

focused. This entails specialized modeling principles 

concerning the usability and the interpretation of the 

simulation results, which both should be relatively 

easy.  

2 Concept of the Contact Library 

Multibody mechanics is usually modeled using rigid 

bodies, which are described by their mass, located in 

the center of mass (CM), and their moment of 

inertia. In order to be able to model elastic, non-stiff 

collisions one has to weaken the rigid body 

assumption a little. Furthermore, one has to consider 
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the shape of the bodies. We address these two issues 

in the following subsections. 

2.1 Idealization of the Elastic Foundation Model 

References in literature introduce a so called 

“foundation model” to approximate the complex 

contact theory of Hertz and others in the context of 

multibody simulation [4,5,6,7,8]. It is assumed that 

the contact area is small compared to the dimensions 

of the contacting bodies (nonconforming contacts). 

The foundation model comprises a thin elastic or 

viscoelastic layer between the rigid bodies and 

neglects shear stress. With these assumptions, which 

are valid for isotropic and homogenous materials, 

one is able to describe dynamic as well as static 

contact incidents. The force-based approach 

contrasts with idealized impulse-based calculations, 

which are only applicable for stiff contacts [3]. 

We use a further idealization (c.f. Figure 1) that is 

based on single force elements. Assuming that the 

contact area is not only relatively small but also of an 

idealized shape, we describe it by means of single 

contact points. A nonlinear spring-damper element is 

inserted to calculate the normal force    between 

these points of the colliding surfaces. This requires 

the previous identification of possible contact points 

on the rigid body surfaces and the continuous 

determination of the normal direction. For these 

purposes, we provide analytic solutions for simple 

geometries in our library. The normal force is then 

used to determine the friction force     between the 

two bodies in the tangential direction. 

 
Figure 1: Idealization of the elastic layer  

2.2 Classification of Contacts 

As a starting point, we focused on spherical, 

cylindrical and plane surfaces, either in rectangular 

or circular shape. Depending on the shape of the 

contact area, we use 1 (punctiform), 2 (linear) or 4-5 

(planar) points to describe it. The position of the 

respective number of potential contact points is 

calculated on both of the contact bodies and the 

collision detection is performed for each pair of 

potential contact points. Figure 2 shows the shape of 

the contact area for all possible combinations, as 

well as the number of contact points. As the contact 

region may alter with the moving bodies, the contact 

points will also move on the defined surface. 

 
Figure 2: Shapes of the contact area and number of 

contact points for the different contact pairs1. 

2.3 Definition of Contact Surfaces 

To describe the aforementioned, elementary contact 

surfaces (Figure 2), we provide ready-to-use blocks. 

The surface blocks represent a thin and massless 

layer, which can be connected to any kind of rigid 

body by a frame connector (c.f. Figure 3). The 

dimensions of the surface can be parameterized. In 

order to be able to use the dimensions in the contact 

block we introduce a new interface to connect the 

surface definition with a contact block. This adds a 

vector to the MultiBody frame of the Modelica 

Standard Library that comprises maximum three 

terms to describe the surface geometry (e.g. width, 

length) and the respective direction vectors to get the 

orientation in the connected frame. The latter 

constitutes the body coordinate system (BCS) of the 

contact surface. 

 
Figure 3: Example of a multibody model including 

contact 

                                                      
1
 Spherical, cylindrical and plane surfaces are displayed 

by the respective icon, which also indicates the maximum 

number of contact points. 

punctiform

(1 point)

punctiform

(1 point)

punctiform

(1 point)

punctiform

(1 point)

punctiform/

linear 

(1/2 points)

linear 

(2 points)

punctiform

(1 point)

linear 

(2 points)

planar

(4-5 points)
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Figure 3 displays an example of the intended use of 

the contact library. While the shape of the rigid 

bodies may be arbitrary, the shapes of the surfaces 

that possibly can collide are defined to be a circular 

and a rectangular plane. For example, body 1 may 

represent a bottle with a round and plane base. As 

this stands on a rectangular desk only these two 

simple contact surfaces have to be defined. More 

complex contact surfaces may be assembled from 

elementary ones, where every pair of surfaces is 

connected via a contact block. The contact block is 

adjusted to the respective surface combination by 

using the replaceable method for class 

parameterization in Modelica. 

3 Modeling of the Contact Block 

The calculation of the appropriate force in the 

contact block clearly depends on the combination of 

surfaces. Nevertheless, a comprehensive sequence 

(c.f. Figure 4) can be established that is implemented 

in the contact block and performed in each time step. 

As mentioned before, the sphere-to-sphere, sphere-

to-cylinder and sphere-to-plane contact areas are 

described via a punctiform contact. In these cases, 

three steps have to be passed to determine the 

contact force. First, a potential contact point is 

determined on each of the two contact surfaces. The 

contact condition for these two points is checked in 

the next step. If the condition is fulfilled, the two 

bodies collide and the contact force between the two 

contact points is calculated. Otherwise, no contact 

force is applied. 

 
Figure 4: Calculation of the contact force 

In the case of linear or plane contact, the contact area 

may become smaller if only parts of the surfaces 

collide, whereas the shape stays the same. Thus, 

additional contact point movement may be 

necessary. Here, the detection of contact points and 

the contact condition checking are performed 

analogously in the first two steps. If the contact 

condition 1 is not fulfilled, the contact points are 

displaced to a new position on the contact surfaces in 

a way that contact between the new potential contact 

points might be possible. The latter is checked by 

evaluating the second contact condition. If a collision 

occurs, the respective contact force is calculated and 

applied. 

3.1 Contact Detection 

The main principle of the implemented contact 

detection is shown with the help of two examples. 

The first example comprises a contact between a 

sphere and a cylinder (c.f. Figure 5). Initially, the 

bodies are represented by their centroids    and    

in the MBS model. Two body-fixed frames BCS1 

and BCS2 describe these two points. Furthermore, 

we assume that the lateral surface of the cylinder and 

the spherical surface of the ball are defined 

according to Section 2.3. Consequently, the two 

frames, the radius   of the ball and the length    and 

the diameter    of the cylinder, as well as the 

direction vectors of   and   resolved in BCS1, are 

available in the contact block. 

In order to determine the potential contact points, the 

sphere-centroid    is projected on the longitudinal 

direction of the cylinder. The latter is represented by 

the  -direction of BCS1 by default. The result of the 

projection is the point   
  given in BCS1. However, 

the absolute position of the point   
  is limited to 

   ⁄ . This ensures that the point is always located 

between the two end faces of the cylinder. The local 

coordinate system LCS1 is defined in   
  and has the 

same orientation as BCS1. 

 
Figure 5: Contact point detection of the sphere-to-

cylinder contact model 

Based on vector   
   

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ the direction vector     is 

computed. Then, the orthogonal projection        of 

the vector     is determined in the  - -plane of LCS1. 

We obtain the first potential contact point    by 

displacing   
  along the vector      . As    lies on the 

cylinder surface, the distance is given by    . In the 

potential contact point   , the local coordinate 

system LCS2 is defined. Again, the orientation of it 

is equivalent to BCS1. With the help of LCS2 the 

position of the potential contact point    on the ball-

evaluate contact condition 1 contact force
true

false

move contact points

punctiform contact 

no contact force

true

false

contact forceevaluate contact condition 2
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surface can be calculated. Therefore, the vector     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ 

and the direction vector     are determined. By 

moving    along      we calculate the position of the 

second potential contact point    on the spherical 

surface. The vector     also constitutes the normal 

direction for the force calculation (c.f. Section 3.3) in 

this case. 

After the determination of the potential contact 

points    and   , the contact condition is evaluated 

(c.f. Equation (1)). It consists of two terms. On the 

one hand, it is verified that the distance between the 

points    and   
  is less than radius of the cylinder 

end face (   ) and greater than the difference 

between the radius and the maximum penetration  . 
The latter results from the assumption of a thin 

contact layer. This evaluation is performed in LCS1. 

On the other hand, the interval |   
| between    and 

   in the longitudinal direction of the cylinder has to 

be less than or equal to     . This is evaluated in 

BCS1. If both conditions are fulfilled at the same 

time, the two bodies intrude and the contact force is 

applied to the contact points (c.f. Section 3.3). 

        (
 

 
   |  

   
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|  

 

 
)

 (|            
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|  |   

|  
 

 
)   (1) 

The second example is the collision between a 

cylinder and a circular plane (see Figure 6), which 

denotes a linear shape of the contact area. As regards 

the circular plane, the geometry is sufficiently 

described by the radius  . Again, body-fixed 

coordinate systems (BCS1 and BCS2) are defined in 

the centroids    of the cylinder and    of the plane. 

The  -direction of BCS2 represents the vertical 

direction of the plane and the normal direction for 

force calculation. According to Figure 2 the contact 

area has a linear shape. Thus, two potential contact 

points have to be determined on the surface of the 

cylinder. These do not necessarily touch the plane at 

the same time. 

To detect the contact points on the surface of the 

cylinder, the centers     and     of the two end faces 

are observed. The local coordinate systems LCS1 

and LCS2 in these points are oriented like BCS2. In 

preparation for the potential contact point    , the 

unit vector     of the  -direction in BCS1 and the 

orthogonal projection      on the  -  -plane of BCS2 

are determined. Then, we implemented the following 

rotation sequence to get local coordinate systems that 

are orientated as needed. As regards    , the local 

coordinate system LCS1 is rotated about the  -axis 

(LCS'1) and the  -axis (LCS''1) thereafter. The 

rotation angle   is determined by the scalar product 

of      and the unit vector of the  -direction of the 

BCS2. Whereas   is specified by the angle between 

the vectors     and     . The contact point     is then 

given by ( ,    , ) in the obtained system LCS''1. 

With the same principle, one can also determine the 

point    . In addition, the contact points     and     

on the surface of the circular plane can be located by 

projecting     and     onto the plate (BCS2). 

 
Figure 6: Contact point detection of the circle-to-

cylinder contact model 

Based on these preliminary, potential contact points 

the contact condition 1 is evaluated. It consists of 

three parts. As an example, the condition related to 

    is given in Equation (2). The variables     
,     

 

and     
 are the components of     in the 

corresponding direction given in BCS2. To detect a 

collision, the absolute position in the  - and  -

direction must not be greater than the radius of the 

plane, and the penetration depth must not exceed the 

maximum value of   in the negative  -direction. 

         (|    
|   )⏟        
 

 (       
  )⏟          

  

 (|    
|   )⏟        
   

     (2) 

3.2 Contact Point Movement 

However, contact between the cylinder and the 

circular plane might be possible, even if the contact 

condition 1 is not fulfilled. Figure 7 shows a 

configuration where the term i in Equation (2) is 

false. In this case, the preliminary contact point     

should be displaced along the contact surface. We 

use the law of cosines to calculate the position of this 

new point     . Considering the displayed triangle 

(Figure 7), we get the displacement   by the 

following equations. 

                  

  |     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|    (3) 

          ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑         
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑  
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Figure 7: Contact point movement in the circle-to-

cylinder contact model 

The vector       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ can be replaced by the length 

direction of the cylinder, which is available from the 

contact interface (c.f. Section 2.3). Thus, the new 

contact point    
  is determined and the analogous 

contact condition 2 is checked. 

         (|    
 |    )  (       

   )

 (|    
 |   )     (4) 

Since every linear contact region denotes a possible 

one-directional displacement of preliminary contact 

points, the contact detection in these cases is very 

similar. In contrast, planar contact regions lead to 

two directions of motion. Exemplarily, the contact 

point movement in the case of two rectangular planes 

is described in the following. 

The initial situation of the example is shown in 

Figure 8. Again, the body-fixed coordinate systems 

BCS1 and BCS2 are defined in the two centers    

and   . The geometry information of each plane 

contains the length   and the width  . The potential 

contact points are placed in the four corners of the 

planes. The contact condition in Equation (5) is used 

for the potential contact point    . 

         (|    
|  

  

 
)

⏟        
 

 (       
  )⏟          

  

 (|    
|  

  

 
)

⏟        
   

    (5) 

 
Figure 8: Initial contact points and coordinate 

systems of the rectangle-to-rectangle contact model 

If the contact condition in Equation (5) cannot be 

fully met, the corresponding point is displaced along 

the two adjacent edges of the rectangular plane and 

two new points are obtained. However, it must be 

ensured that the displacement cannot exceed the 

length of the respective edge. Figure 9 exemplarily 

shows a configuration, where one of the initial 

contact points of plane 1 is outside plane 2. The 

condition   in Equation (5) is violated, which means 

that the contact point exceeds plane 2 in  -direction 

of BCS2. The height     of the displayed triangle 

constitutes the distance between      and the nearest 

edge on plane 2. It is calculated by the following 

equation. 

    |    
|  

  

 
    (6) 

The relationship between the displacement of      

and the distance     can then be expressed with the 

help of the angle  . 

       (
   

|    |
   )  

         
   

|    |
        (7) 

From these equations the two new potential contact 

points       and       are obtained by circumventing 

singularity problems in case of     or       . 
Again, the second collision detection is evaluated to 

check whether contact forces have to be applied or 

not. As a result, it is possible that a maximum of five 

points can represent planar contact areas. 

When implementing the contact point movement in 

Modelica, we tried to minimize the number of DAEs 

and events. Therefore, for example the prismatic 

block of the Modelica Standard Library has been 

modified in order to be adaptable to the respective 

direction. It is furthermore possible to disable the 

inserted filtering of the contact point displacement. 

Because it is usually continuously differentiable, this 

denotes an effective possibility to reduce the 

simulation time very often (see Section 4). 

 
Figure 9: Contact point movement of the rectangle-

to-rectangle contact model 

3.3 Contact Forces 

The three-dimensional contact force is applied, if the 

contact condition holds for one contact point. It 
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consists of both the normal force and the tangential 

friction force. The respective directions can be 

obtained by means of the local coordinate systems in 

the contact points. As aforementioned, the 

continuous surface layer is replaced by a nonlinear 

spring-damper element. Consequently, the normal 

force    is determined by means of the penetration   

in normal direction, and the penetration velocity  ̇. A 

continuous contact force model with hysteresis 

damping according to [9] is implemented (Equation  

(8)). Nevertheless, selecting    ,     one can 

get the linear Kelvin-Voigt model, where the 

coefficients   and   are the spring and damping 

constants. Choosing     a formulation according 

to [10] is obtained. 

           ̇     (8) 

In order to calculate the friction forces without 

further discontinuous events, which would decrease 

the simulation speed and impede controller design, 

we use the continuously differentiable friction model 

of Makkar et al. [11]. They introduced the following 

function of the relative velocity      to approximate 

the friction coefficient   of the characteristic 

Stribeck curve. 

                                     
                                (9) 

Thus, no ideal static friction can be obtained, 

because the actual force to be applied in the ideal 

static state is independent of the relative velocity      

of the two contact points. Static friction is rather 

represented by sliding with very small relative 

velocities. However, this in fact matches the actual 

characteristics of many tribological systems [12]. To 

set the unknown, non-physical constants    (  
   ) we use five parameters, which are shown in 

Figure 10. The parameters    and    denote the 

coefficients of static and kinetic friction. The limit 

velocities     and     define the beginning of mixed 

and viscous friction. The latter is described by the 

proportionality factor   . 

 
Figure 10: Approximation of the Stribeck friction 

curve 

As an example, the following force vector (resolved 

in the LCS) is applied to the contact points of plane 1 

of the rectangle-to-rectangle contact, if the contact 

condition is fulfilled.  

         (
     

  
     

)             (10) 

4 Simulation Results 

In this section, we will show some of the obtained 

results. We present three experiments, which were 

performed in Dymola using the DASSL solver. The 

results are compared to a benchmark simulation in 

the commercial MBS software RecurDyn. Herein, a 

powerful recursive algorithm to model contact 

problems is implemented, which is based on contact 

forces as well [13]. Despite the comprehensive and 

complex solid-to-solid contact that can be used for 

arbitrary CAD-geometries, RecurDyn offers the 

possibility to utilize idealized contact definitions for 

simple surfaces. In each of the three experiments, all 

parameters
2
, including the contact force calculation 

as well as the solver settings, are attuned to fit each 

other exactly. The direction of gravity is the negative 

 -direction of the ICS. When selecting the presented 

experiments, we refer to the aforementioned surface 

configurations (c.f. Section 3). 

Experiment 1 comprises a sphere (       , 

      ) falling onto a cylindrical contact surface. 

The initial position of the sphere centroid is 

(0, 0.05, 0.002). It is not coupled, whereas the 

position of the cylinder is fixed in the ICS. The latter 

has a diameter of         and a length of 

      . In this configuration two collisions occur. 

After the second contact with the cylinder surface, 

the sphere falls down beside the cylinder. Figure 11 

shows the  -position of the centroid of the sphere. 

One can see that the calculated trajectories of the 

different tools are comparable. In this case, the effect 

of the nonlinear damping seems to be slightly higher 

in Dymola than in RecurDyn. Nevertheless, the 

peaks in the normal forces nearly coincide at 

approximately 21 N and 9 N (not shown).  

In Experiment 2, a cylindrical body (       , 

      ,       ) falls on a circular plane 

(      ) and then rolls down. The plane is fixed in 

the ICS, but rotated by 5° around the  -axis. The 

initial position of the cylinder is (0, 0.02, 0). As the 

cylinder reaches the end of the plane, the preliminary 

contact points are displaced along the length 

                                                      
2
 All units are specified according to the International 

System of Units (SI) 
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direction. In Figure 12 some results are displayed 

exemplarily. We again observe that the positions of 

the centroid largely comply. The initial angular 

velocity (around the length direction) of the cylinder 

after the hit is slightly smaller in RecurDyn than in 

Dymola, while the acceleration is equivalent. The 

RecurDyn model (solid-to-solid contact) shows some 

implausible behavior right before the end of the 

plane is reached. Unless no external force is applied, 

deceleration can be monitored here. For these two 

reasons, the cylinder stays about 10ms longer on top 

of the plane. 

 
Figure 11: Sphere falling on a fixed cylinder;  

parameters:      ,     ,      ,      , 

      ,           ,         ,          , 

        ,       

 
Figure 12: Cylinder on a circular plane; parameters: 

     ,      ,    ,    ,        , 

         ,           ,       

Experiment 3 contains a cuboid body (      , 

     ,       ,        ) falling and 

afterwards sliding on a rectangular plane. The plane 

(     ,        ) is again fixed in the ICS and 

rotated by 15° around the  -axis. What can be seen 

in the plots (Figure 13) is that we get very similar 

movement of the box, despite an observed higher 

velocity in RecurDyn. In our opinion, the small 

divergence we obtain may be due to three reasons. 

(1) Again, the effect of the damping is slightly higher 

in Dymola, which leads to more sliding and therefore 

more decelerating friction forces. (2) The 

approximation of the Stribeck curve varies, which 

may lead to differences. (3) The handling of forces at 

the edge of the plane may be different (compare to 

Experiment 2). 

In the case of our contact model the contact points 

are moved as displayed in Figure 14 (see Figure 8 

also). As     constitutes the first edge of the cube to 

reach the end of the plane, it is the first contact point 

to be split up and moved in the length and width 

direction. The movement is limited to the respective 

dimensions of the cube. 

 
Figure 13: Box falling and sliding on a plane; 

parameters:      ,      ,      ,    , 

       ,        ,         ,            

         ,      

To evaluate the efficiency of the contact library in 

the context that was outlined in the beginning, we 

also investigated the “CPU-time for integration“. 

Table 1 compares this characteristic property of the 

aforementioned models (simulated time     ). The 

results depict the experiences we made in various 

tests and further experiments. While in general, the 

integration times are comparable, they strongly 

depend on the number of contact points in Dymola. 

One can observe a strong increase, especially when 

movement of contact points occurs and the 

calculated displacement is filtered. On the other 

hand, modeling a rolling body sometimes leads to 

problems in RecurDyn, which is reflected in the 

CPU-time (see also Figure 12). 
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Figure 14: Contact point movement resolved in the 

local coordinate systems 

Table 1: CPU-time for integration
3
 

 Dymola RecurDyn 

Experiment 1 0.37s  0.20s (sphere-to-cylinder) 

0.50s (solid-to-solid) 

Experiment 2 3.52s (filter 10kHz) 

0.61s (filter disabled) 

4.98s (solid-to-solid) 

Experiment 3 5.86s (filter 10kHz) 

5.63s (filter disabled) 

0.59s (surface-to-surface) 

1.90s (solid-to-solid) 

5 Conclusion and Future Work 

In conclusion, we state that our idealized contact 

library provides a powerful and easy to use 

opportunity to model contact phenomena of simple 

contact geometries. Results of various experiments 

where compared and verified by means of analogous 

simulations in RecurDyn. The chosen architecture 

with the implemented contact interface and the 

configurable contact block matches the idea of 

reusing composable models. It is therefore especially 

useful in the conceptual design of mechatronic 

systems. 

In the future, we want to provide more contact 

surfaces. In addition, we will investigate a possibility 

to save simulation time by disabling the contact 

calculation when they are not needed. Despite the 

validation with RecurDyn, comprehensive 

measurements are necessary. The major drawback of 

the force-based approaches is that the spring/damper 

parameters cannot be obtained directly from the 

given material properties. These parameters also 

depend on the surface combination and are usually 

determined experimentally. To tackle this, we plan to 

                                                      
3
 The simulations were performed on an Intel Core2Duo 

CPU with 2.53GHz and 4GB RAM 

provide ready-to-use parameter sets for often-used 

combinations. After making our library publicly 

available, we also hope to identify further 

opportunities for improvement with the help of the 

Modelica community. 
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The OneWind R© Modelica Library for Wind Turbine Simulation
with Flexible Structure — Modal Reduction Method in Modelica

Philipp Thomas Xin Gu Roland Samlaus Claudio Hillmann Urs Wihlfahrt
Fraunhofer Institute for Wind Energy and Energy System Technology IWES

Am Seedeich 45, 27572 Bremerhaven, Germany

Abstract

The OneWind R© Modelica Library1 [15] for coupled
wind turbine loads calculation developed at Fraun-
hofer IWES uses a structural element based on a modal
reduction method to model the motion and deforma-
tion of flexible wind turbine rotor blades and tower.
The degrees of freedom (DOF) are rigid body motions
and modal DOF. The ModalElement model allows the
simulation of coupling effects like bend-twist coupling
in wind turbine rotor blades and the structural behav-
ior is dependent on the selected eigenmodes. This
paper gives an overview about the Modelica imple-
mentation of the theory of modal elements, the ad-
vantages over other methods (finite-elements), how the
ModalElement model is included into the OneWind R©

Modelica Library, and how it is used for load calcula-
tion.

Keywords: modal, blade, OneWind, OneModelica,
load calculation, wind turbine loads, coupled wind
turbine simulation

1 Introduction and Motivation

In wind turbine simulations, flexible multibody dy-
namics is widely used to describe the large motion and
flexible deformation of blades. A flexible multibody
system is based on the floating Frame of reference for-
mulation. In a standard flexible multibody method, a
finite element discretization is often combined with the
multibody formulation to describe the beam flexibil-
ity. In the finite element method, the flexible beam is
discretized into several beam elements. Each element
is described with local shape functions weighted with
nodal displacements. The numerical accuracy of the
finite element method is dependent on the number of
elements. A large number of elements demand quite a

1Version 1.0 for onshore wind turbine load calculation was re-
leased and is now available under dual license model. For further
information contact: info@onewind.de

lot computational costs, which are usually not suitable
for wind turbine simulation.

A modal reduction approach can dramatically re-
duce the number of DOF of the beam by transform-
ing nodal coordinates to modal coordinates. This ap-
proach is based on the assumption that the displace-
ment of the beam can be expressed as the superposi-
tion of a series of eigenmodes weighted with modal
coordinates.

The objective is to achieve the same accuracy as the
finite element method with less computational time.
This is a requirement for a wind turbine load calcula-
tion with a large number of load cases which are nec-
essary for fatigue analysis. Therefore, the modal re-
duction method is used to create a structural element
in the Modelica programming language which can rep-
resent the motion and deformation of flexible compo-
nents of a wind turbine. With the OneWind R© Mod-
elica Library, a package of necessary Modelica mod-
els for aero-servo-elastic wind turbine simulations is
finally available.

The paper is structured as follows: Section 2 de-
scribes the theoretical approach of flexible multibody
and concludes with the equation of motion in modal
coordinates. Section 3 shows the implementation of
the flexible multibody with modal reduction in Mod-
elica. In Section 4, an overview of the OneWind R©

Modelica Library with ModalElement model for ro-
tor blades and tower is given. Moreover, the in-
ternal layout of wind turbine components is shown
with a focus on interaction between models. Sec-
tion 5 shows results of wind turbine deflection with
the ModalElement model for flexible tower. Lastly,
Section 6 concludes the presented work and gives an
outlook for further applications of the ModalElement
model.
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2 Flexible multibody with modal re-
duction

The ModalElement model is developed based on
multibody dynamics and a modal reduction approach.
The multibody system is based on the floating refer-
ence Frame. The floating reference Frame indicates
that the deformation of the body can be formulated
with respect to the corresponding body coordinate sys-
tem, which moves together with the body. The abso-
lute motion of an arbitrary point P on the body is de-
fined by

rP = R + A(ū0 + ū f ), (1)

where R represents the location of the origin of the
body reference, A is a transformation matrix, ū0 is the
local position vector in undeformed state, and ū f is the
deformation vector.

The representation of a deformable body in the
world Frame requires 6 + N DOF, which includes 6
rigid translational and rotational DOF and N flexible
DOF

q = [qr q f ]
T = [R θ q f ]

T , (2)

where θ are the orientation angles of the reference
Frame and q f is the N-dimensional vector of flexible
DOF. In the Modelica model, q f is formulated based
on the finite element method and thus, q f represents
the nodal displacements in the reference Frame.

Using the principle of virtual work [14], the equa-
tions of motion for a flexible body in a multibody sys-
tem can be described as



mRR mRθ mR f

mθR mθθ mθ f
m f R m f θ m f f






R̈
θ̈
q̈ f


+




0 0 0
0 0 0
0 0 K f f






R
θ
q f




+




CT
R

CT
θ

CT
f


λ =




QeR

Qeθ
Qe f


+




QvR

Qvθ
Qv f


 .

(3)

A modal approach is implemented in the Modelica
model to reduce the size of the system. In the modal
approach, the specified displacement fields are formu-
lated with the eigenvectors of a series of eigenmodes.
The generalized displacement expression can be writ-
ten as

q f =
n

∑
k=1

φkYk, (4)

where φk is the eigenvector in the kth mode and Yk is
the generalized modal coordinate in the kth mode. The
modal coordinate is time dependent, which is solved
together with the multibody system. The eigenvector

is calculated in the preprocessing with OneModelica
(see Section 4.6).

Equation (4) can be rewritten in the matrix form as

q f = φY, (5)

where Y are the modal coordinates and φ is the eigen-
vector matrix given by

φ = [φ1 φ2 . . . φn]. (6)

This procedure is the modal displacement superposi-
tion method. The number n represents the number of
DOF in modal analysis. According to the characteris-
tics of modal analysis, the first several modes dominate
the contribution to the displacement field. A proper
selection of these modes leads to a good approxima-
tion of displacements with a small number of DOF.
For example, if m eigenmodes are selected, q f can be
described approximately by

q f ≈ φmYm. (7)

Using the eigenvector matrix as the modal transforma-
tion matrix, Equation (3) can be written in terms of
modal coordinates as




mRR mRθ mR f φm

mθR mθθ mθ f φm

φ T
m m f R φ T

m m f θ φ T
m m f f φm






R̈
θ̈
Ÿm




+
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0 0 0
0 0 φ T

m K f f φm






R
θ
Ym
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CT
R
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θ

CT
f φm
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QeR

Qeθ
φ T

m Qe f


+




QvR

Qvθ
φ T

m Qv f


 ,

(8)

where all matrices related to flexible DOF are modal
reduced if the number of modal coordinates Ym is less
than the number of nodal coordinates q f .

3 Implementation in Modelica

A flexible multibody model with modal reduction has
been implemented by using the Modelica language.
This model is named ModalElement (see Figure 1)
in the OneWind R© Modelica Library. Frame_a and
Frame_b are the interfaces which are used to connect
to other structural components. Frame_c is the inter-
face which is used to connect external loads.

The modal shape matrix, the modal reduced stiff-
ness matrix, and the modal reduced mass matrix are

The OneWind Modelica Library for Wind Turbine Simulation with Flexible Structure - Modal Reduction
Method in Modelica
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Figure 1: ModalElement icon

calculated in Java in a preprocessing step due to prob-
lems with calculating large matrices in Modelica (the
details are described in Section 4.6).

The input modal reduced representations of the
model are as follows:

parameter Real phi[divisions*6,nModes]
=modalElementData.phiMatrix;
parameter Real modalReducedStiffnessM
atrix[nModes ,nModes ]= modalElementData.
modalReducedStiffnessMatrix;
parameter Real modalReducedMassMatrix
[nModes ,nModes ]= modalElementData.modal
ReducedMassMatrix;

Listing 1: Modal reduced representations

Dynamic equations (see Equation (8)) of
ModalElement with damping are implemented
in Modelica language as follows:

M*ddQ + D*dQ [7:6+ nModes] + K*Q[7:6+ nModes]
+ CqT [1:6+ nModes ,:]* lambda = Qe + Qv;

Listing 2: Dynamics equations

3.1 Boundary conditions

To solve a finite element problem, suitable boundary
conditions are defined in the finite element system.
In a pure finite element system, boundary conditions
are usually enforced externally. However, in our flex-
ible multibody formulation, boundary conditions are
enforced internally in the model. This is because the
floating Frame only exchanges the location of the ori-
gin of the body reference, the orientation of the body

reference, and the forces with other components. The
deformation displacements of the flexible multibody
model are not accessible externally.

The boundary condition for ModalElement is the
“clamped-free” boundary condition. In this model all
six flexible DOF are fixed at the root of the beam. Both
displacements and rotations are equal to zero as

q f 1 = q f 2 = q f 3 = q f 4 = q f 5 = q f 6 = 0. (9)

3.2 Animation

Animation is an important feature in wind turbine sim-
ulation. The immediate visual feedback about the dy-
namic behavior of the wind turbine helps the user with
troubleshoot during a simulation. The 3D animation
of ModalElement is realized by using the Surface
function in Dymola with the following code:

model ModalElementSurface
extends Modelica.Mechanics.MultiBody.Visua
lizers.Advanced.Surface(redeclare function
surfaceCharacteristic=OneWind.BeamElement.
FlexibleMultibody.BeamVisualizer.BeamVisua
lizer (

radius=radius ,
extra=1,
r=r_i ,
qf=qf ,
angle=angle ,
der_angle=der_angle ,
scalingFactor=scalingFactor ));

parameter Integer nl "number of visualiza -
tion points along length";
parameter Real scalingFactor "scaling fac -
tor to visualize deformation";
input Modelica.SIunits.Position r_i[nl ,3]
"initial Position of visualization points";
input Modelica.SIunits.Distance qff[nl ,3]
"displacements of visualization points";
input Modelica.SIunits.Angle angle[nl ,3]
"angle at visualization points";
input Modelica.SIunits.AngularVelocity
der_angle[nl ,3] "angular velocity at visu -
alization points";
end ModalElementSurface;

Listing 3: 3D ModalElement animation

4 OneWind R© Modelica Library for
coupled flexible wind turbine sim-
ulation

The OneWind R© Modelica Library is based on the
MultiBody Library from the Modelica Standard Li-
brary and contains all models for aero-servo-elastic
load simulation. The models are grouped according
to wind turbine components as seen in Figure 2 for an
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Figure 2: Onshore wind turbine with corresponding
component instances and interaction

onshore wind turbine. This Figure shows the model
instances and corresponding interaction for the main
wind turbine components: the rotor (with the subcom-
ponents of blade and hub), the tower, the nacelle (with
the subcomponents of drivetrain and generator), oper-
ating control, and the wind. The corresponding Mod-
elica model for the main wind turbine components is
written as:

model WindTurbine
extends OneWind.OnshoreWindTurbine
(
//=== rotor ===
redeclare OneWind.RotorModal rotor
//=== tower ===
,redeclare OneWind.TowerModal tower
//=== nacelle ===
,redeclare OneWind.NacelleRigid nacelle
//=== operating control ===
,redeclare OneWind.Control operatingControl
//=== wind ===
,redeclare OneWind.WindTurbulent wind
);
end WindTurbine;

Listing 4: Modelica representation of Figure 2

To simulate at different levels of detail, several
models for almost every wind turbine component
are available. To exchange component models, the
Modelica concept of replacing classes in the modi-
fier with redeclare (with corresponding replaceable),
as seen in Listing 3 and Listing 4, is used. The
model OnshoreWindTurbine contains the declara-
tion of instances of necessary wind turbine compo-
nent models with all connections. These models are

exchanged in WindTurbine while extending from the
OnshoreWindTurbine model. To ensure subtype
compatibility, models that represent one turbine com-
ponent extend the same partial model, which contain a
replaceable, basic parameter record definition, and the
external interface (Figure 3).

Figure 3: Inheritance concept for subtype compatibil-
ity

4.1 Rotor model

The rotor model is the most important component
of the wind turbine since it transforms wind velocity
through aerodynamic lift to torque, which drives the
electrical generator.

Figure 4: Different layout between the modal and fi-
nite element model and interaction between the struc-
ture model and the aerodynamic model in the rotor
blade model

The rotor blade model consists of two main compo-
nents which are connected via the Frame connector:
the aerodynamic load element and the structure ele-
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ment. In Figure 4, the connector scheme and the in-
teraction between the structure model and the aerody-
namic model is shown. The rotor blade models differ
in regards to their structural part. The ModalBlade
model consists of only one structure element, the
ModalElement model, whereas the FEMBlade modal
consists of n structure elements (in case of the NREL
5-MW reference wind turbine [7], n is 17 per blade
and 11 for the tower). The structure elements are in-
ternally connected to the blade root, the blade tip, and
to the aerodynamic load element through the use of
the Frame connector. All rotor blade models extend
a PartialBlade model, where the aerodynamic load
element model is defined as well as the external inter-
face root Frame, tip Frame, and the specific connector
StructureWind, which is used to connect the wind
velocity and position to the aerodynamic load element.

4.1.1 Wind models

Deterministic and stochastic wind models are avail-
able. Deterministic wind uses several gust models.
The stochastic wind data is read from binary or ASCII
file in TurbSim [8] format.

All wind models consider the effect of the tower on
wind velocity: in case of upwind, the potential flow
method is applied and in case of downwind, an empir-
ical model is used. Furthermore, exponential or loga-
rithmic wind shear and vertical and horizontal inclina-
tion angle are accounted. The wind velocity is given
as an input to the StructureWind connector.

All available wind models fulfill requirements de-
fined in IEC 61400-3 [5].

4.1.2 Aerodynamic models

Inside the aerodynamic load element, the
StructureWind connector delivers the wind ve-
locity which is used to calculate aerodynamic forces
and moments. The aerodynamic load calculation
uses either the blade element momentum theory
(BEM, described in [11], [2], and extended in [1],
[3]) or the general dynamic wake (GDW, described
in [4], [16]) method. The BEM is implemented as
an iterative algorithm while the GDW is a set of
differential equations. For the BEM, corrections for
the dynamic wake and the dynamic stall can be used.
Dynamic stall correction is also available for GDW.
The aerodynamic forces and moments are given as an
input to aero load Frame connector.

4.1.3 Blade models

Blade models differ in regards to their representation
of flexible body motion. The ModalBlade model uses
modal degrees of freedom, the FEMBlade model based
on the Bernoulli beam element formulation uses 6 de-
grees of freedom at each node, and the RigidBlade
model has no flexibility at all (only rigid body motion).
The flexible blades consider centrifugal stiffening and
pre-twist. All formulations are linear which are the
standard in wind turbine load calculations. Non-linear
formulations for large deflections but small deforma-
tions are under development.

Aerodynamic loads from the aero load Frame con-
nector act as external forces and moments and lead to
the rotation of the blades. The resulting forces and mo-
ments are transferred to the blade root Frame connec-
tor. Aero-Structure-Coupling enables the simulation
of the coupling between the rotor blade deflection and
the aerodynamic load calculation.

4.2 Tower models

As for blade models, rigid and flexible models are
available for the tower. The structure is basically the
same: on the outside, the tower consists of a bottom
Frame, a tip Frame, and load Frame connectors along
its vertical length. Internally, the tower consists of the
structure elements for load and deflection calculation
and load elements for the calculation of the aerody-
namic drag force from the wind. The connections are
realized via Frame connectors (except for wind which
uses a specific connector similar to the rotor model).

4.3 Control system

The operating control system is implemented as dis-
crete algorithms based on [7] and consists of a PI-
pitch algorithm to control the power production above
rated rotor rotation speed and a generator-torque con-
troller which requests the counter torque from the elec-
trical generator due to rotor torque. A single pole,
low pass speed filter with cut-off frequency of 0.25
Hz transfers the continuous generator rotation speed
signal to a discrete signal for control logic. For com-
munication of control signals between sensors inside
the wind turbine components and operating control,
the SignalBus and the SignalSubBus connectors are
used to build a hierarchic network of expandable con-
nectors (as described in [9]).
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4.4 Offshore wind turbine components

Several physical models in the Modelica language for
the dynamics of offshore wind turbines and the model-
ing of water and waves are under development. Fraun-
hofer IWES is a participant of IEA Wind and the Co-
operative Agreement2 with OC3 [17] and OC4 [10]
projects to compare offshore wind turbine simulation
codes, where the developed models for offshore wind
turbine simulation are verified (see [18]).

4.5 Interfaces between component models

The OneWind R© Modelica Library basically uses three
types of interfaces:
• Modelica Frame connector,
• Modelica Flange connector,
• Component specific connector.

The Frame connector is utilized whenever loads are
exchanged between different models and so does the
aerodynamic load element calculate forces and mo-
ments from wind velocity using an aerodynamic the-
ory. The transfer between aerodynamic load element
and rotor blade is done via a Frame connector.

The Flange connector is used for a limited degree
of freedom representation of the drivetrain dynamics
and transfers the torque and angle from the rotor to the
electrical generator.

Additionally, user-defined connectors are used to
transfer specific information between models that are
not covered by the Frame or Flange connector. Fig-
ure 4 exemplarily shows a user defined connector
that transfers the wind velocity and position along
the structure components to the corresponding aero-
dynamic load element.

4.6 OneWind R© Modelica Library with
OneModelica

The Modelica IDE OneModelica [12], which is based
on the Eclipse RCP framework, is being developed at
Fraunhofer IWES. Figure 5 illustrates the workflow of
the Modelica model development with OneModelica.

Modelica models can be developed by reusing mod-
els from libraries like the Modelica Standard Library
and the OneWind R© Modelica Library. Both libraries
are integrated into OneModelica by default. Addi-
tionally, OneModelica also provides functionality for
the generation of turbulent wind (according to Kaimal
[6]). Input files for Modelica models are generated in

2http://www.ieawind.org/about_co-operative_agree.html

OW Modelica Lib
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X-Compile
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MyModel.csv/.mat

OneModelica

Dymola

OpenModelica

text block

model MyModel 

equation 

  c + a*der(b)=0;

end MyModel;

Figure 5: Modelica workflow with OneModelica

binary or ASCII format. The transformation of struc-
ture components into model reduced representations
has been implemented in Java. This was necessary due
to problems with large matrices when calculating the
eigenfrequencies directly in Modelica.

In OneModelica, input models for the transforma-
tion are automatically recognized and a marker is
added to the model files. Input models need to be of
type record and must extend the record ModalInput
which is included in the OneWind R© Modelica Library.
By right-clicking on the model file, the user can open
the transformation dialog and provide a path and file
name for the generated modal representation.

The record ModalInput defines distributed struc-
tural properties. At the user defined record level, pa-
rameters have to be redefined and the needed informa-
tion for the FEM structure model have to be provided.
In this way, the usage of the same data for modal and
finite element model is ensured. The parameters are
then extracted from the Modelica file and used by the
transformation code developed with Java. The gen-
erated Modelica record with modal data contains the
modal reduced mass and the stiffness matrix as well
as the eigenforms and can be used with modal com-
ponents. Changes in the structure model can easily be
transferred to the modal component by the regenera-
tion of the modal record.

The same workflow is used for the generation of tur-
bulent wind data. A template record must be extended
and parameterized. The generated wind file can then
be used by a Modelica wind field generator that is in-
cluded in the OneWind R© Modelica Library. The user
can re-use the generator and provide a path to the gen-
erated wind file.

Besides the described functionality, OneModelica
supports several Modelica simulation tools for doing
the flattening, compiling, and simulation and several
simulations can be run in parallel. After a simula-
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Figure 6: Transforming structure models to modal format

tion, the results are transferred back to OneModelica
for post processing. Simulation settings and results
are stored. The latest enhancement in OneModelica
is an integrated framework for the automatic Modelica
model testing [13].

5 Simulation Results

In the following section, simulation results with flexi-
ble wind turbine components are presented. All men-
tioned results were computed in Dymola3.

Figure 7 compares the deflection obtained with
the ModalTower model and the finite element based
TubularTowerModel model at the tower top Frame
connector in the x- (downwind) and y-direction (side-
to-side). The tower model is parametrized accord-
ing to the NREL 5-MW reference wind turbine with
the addition of a constant three dimensional force at
the tower top. Both flexible models oscillate at the
same frequency at each respective direction. The
ModalTower model results strongly depend on the
number of modes. The selected modes from the modal
reduction must be able to represent the motion, which
are enforced to the structure by external loading. Ta-
ble 1 shows the error for a selection of eigenmodes
(for a detailed view on convergence of error up to 30
Modes, see Figure 8). The reference is always the fi-
nite element model. Since the first eigenmode is only
a 1-directional bending mode, it can only represent
the bending in x-direction. Using more than 6 modes
causes the error to drop below 1% in both directions.
This means that 6 flexible (modal) DOF are enough

3Dymola 2014 FD01, http://www.dymola.com

to represent the deflection of the ModalTower with al-
most the same accuracy as with TubularTowerModel.
A reduced number of DOF will result in less computa-
tional time, especially with coupled wind turbine sim-
ulation.

To compare CPU-time, the load simulation of a
aero-servo-elastic wind turbine is utilized. The model
is parametrized according to the NREL 5-MW refer-
ence wind turbine. For the tower, the ModalTower
model with six eigenmodes or the finite element
based TubularTowerModel model is used. Integra-
tion algorithms are DASSL and Euler mixed4. For
ModalElement based models, it is possible to choose
Rkfix45, which is not possible for the finite element
model where no solution is found. Table 2 contains
the results. As mentioned before, a reduced number
in flexible DOF result in a reduction of computational
time. The increase in simulation performance depends
on the integration algorithm and lies between 300%
and 550% for Euler mixed and DASSL. With Rkfix4,
the simulation reaches real-time abilities.

6 Conclusion

This paper describes the approach and the implemen-
tation of a flexible structure element based on a modal
reduction method in the Modelica programming lan-
guage and its integration into the OneWind R© Model-
ica Library for aero-servo-elastic load simulations of
wind turbines.

The ModalElement model delivers comparable
structural behavior as the finite element model. The

4Mixed explicit/implicit Euler algorithm
5Runge-Kutta 4th order integration algorithm
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Figure 7: Tower top deflection: upper plot shows downwind displacement, lower plot shows side-to-side dis-
placement

Figure 8: Simulation error for different numbers of Eigenmodes
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Table 1: Simulation error for different number of
eigenmodes; range: 1 mode (1-10) and 5 modes (10-
30)

No. of Modes x-Deflection [m] Error [%]
1 1.9292E-03 5.989
...

...
...

5 2.0445E-03 0.371
...

...
...

10 2.0488E-03 0.161
15 2.0504E-03 0.083
20 2.0516E-03 0.028
25 2.0518E-03 0.018
30 2.0519E-03 0.012

FEM 2.0521E-03 -
No. of Modes y-Deflection [m] Error [%]

1 8.1974E-14 100.0
2 1.2862E-03 5.9901
3 1.3526E-03 1.1315
...

...
...

6 1.3630E-03 0.3713
...

...
...

9 1.3659E-03 0.1615
10 1.3659E-03 0.1615
15 1.3670E-03 0.0833
20 1.3675E-03 0.0468
25 1.3679E-03 0.0183
30 1.3679E-03 0.0124

FEM 2.0521E-03 -

Table 2: CPU-time for 10 s simulations of a wind tur-
bine with a flexible tower

Algorithm FEM Modal Speed-up
Euler mixed 187 s 61 s 307%

DASSL 2230 s 400 s 557.5%
Rkfix4 - 8.6 s -

models oscillate with the same frequency. The error in
deflection calculation drops below 1% beginning from
the use of 6 eigenmodes. At this configuration, the
simulation results are almost the same as with the fi-
nite element model and are available at a fraction of the
finite element model computational time (see Table 2).
Therefore, the ModalElement model is applicable for
the load simulations of a flexible wind turbine.

The next step will be the application of the
ModalElement model on substructure components for
offshore wind turbine simulations and the integra-
tion to the OneWind R© Modelica Library together with
models for water and waves. Further development of
the OneWind R© Modelica Library aims to add:
• A structure element model for large deflections

and large rotations,
• A state-machine based supervisory control,
• An interface for Bladed-style DLL for the con-

troller,
• Real-time capability for a coupled flexible wind

turbine simulation.
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Abstract

In this paper an approach for handling collision within
the Modelica MultiBody library is presented. There-
fore, a short overview about collision consideration
for multibody simulation is given. Different methods
for calculating the contact reactions are discussed and
their potentials for implementation in a free Modelica
library are deliberated. Furthermore the implemen-
tation of this collision library, using a penalty-based
collision approach and theBullet Physics Library for
collision detection is described. The application is
demonstrated in examples and limitations are brought
up. Although some drawbacks restrict usability, the
library can be used to increase the level of detail for
multibody simulation models.

Keywords: contact; collision detection; collision li-
brary

1 Introduction

1.1 Motivation

Many physical systems cannot be simulated in a fea-
sible manner without the description of collision inter-
action. Not only the typical applications, like wheel-
road-contact, newton’s cradle or a bouncing ball need
collision consideration, but especially real-life mod-
els require contact handling. For example, simula-
tion of typical working processes for construction ma-
chines, with lifting rocks can benefit from this. But
also machine elements like mechanical springs require
collision handling for simulations including dynamic
loads.

For the Modelica Library Model-
ica.Mechanics.MultiBody (M.MB) several collision
handling considerations have been made, with two to
be shortly mentioned. In [1] Otter et al. introduced
an extension to theM.MB library with capabilities
of handling collisions. Collision detection using
different approaches of surface representation were

shown. Engelson [2] described a way of contact im-
plementation using impulse-based and penalty-based
methods. However, those approaches have never been
available in public.

To offer collision handling to general public,Col-
lisionLib – the library presented here – will be freely
available. Although the functionality of this very first
version has only been tested in Dymola, support for
OpenModelica and other Modelica environments are
planned for the future.

1.2 Outline

In the following section general information about col-
lision handling is given. The main steps for treat-
ing contacts are considered and several methods for
handling collisions are described. These methods are
compared with respect to their capabilities of straight-
forward implementation in Modelica.

The next chapter addressesCollisionLib - a library
for collision handling within Modelica. A summary
about requirements and intentions is given and, more-
over, the implementation of collision detection and
collision response is described.

Examples and limitations of applications are shown
in section 4 and the paper is closed with an outlook
about further development.

2 Collision handling approaches

2.1 Main aspects of collision handling

When handling collision interaction in multibody sim-
ulations two main steps have to be considered.

(1) Collision detection needs to be performed for
every possible contact pair of bodies. By testing each
combination the efforteT is O(n2), see (1), where n is
the total number of bodies.

eT =
n · (n−1)

2
=

n2 −n
2

(1)
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It follows from the foregoing that collision detection
might have an impact on simulation time.

In order to accelerate this process different two step
methods have been developed. Firstly, in the so called
broadphase, a rough estimation which bodies might
collide is made. Hence, all body combinations that
cannot interact for obvious reasons are rejected. Those
couples, that might collide, are tested with a proper
distance algorithm, e.g. GJK [11], in the second step,
called narrowphase.

By doing so, the overall effort can be reduced con-
siderably. In [3] Baraff describes a broadphase method
with O(n). The total resultant efforteT then isO(n +
k), with k being the number of body pairs requiring
proper examination.

In addition to finding colliding body pairs, the cor-
responding contact normal and tangent vectors have to
be determined for each of these pairs. For some ap-
proaches even more data has to be provided.

(2) Collision reactions have to be computed accord-
ing to the chosen collision approach. Since colli-
sion handling has a long history, going back to New-
ton, Poisson, Coulomb and their laws and hypotheses,
many different approaches for calculating collision re-
sponses are available. However, regarding to Mirtich
[4] the state-of-the-art methods can be classified into
three categories.

(a) The Penalty-based approach is the only one
of these three allowing intersection among the bod-
ies. The basic idea is that between the colliding bod-
ies a spring, spring-damper or some other force el-
ement is present, which generates separating forces.
The forces are related to the penetration of the bodies.
This rather simple approach has some disadvantages.
Finding right contact parameters is an open problem.
Moreover, this parameters cannot be adopted from one
simulation to others. Also collision forces have to be
big in order to avoid deep intersection between the
bodies. This leads to stiff DAE systems which are hard
to solve, require small time steps and thus may lead to
long simulation times.

(b) Analytical solutions prohibit intersection
among the colliding partners. The constraints between
the involved bodies are conveyed into a linear com-
plementary problem (LCP), see [5] or [6]. Without
consideration of friction the LCP formulation will al-
ways lead to contact forces, creating realistic move-
ments of the bodies. However, these contact forces do

physically not need to present the right solution since
the LCP might find unlimited numbers of solutions.
In Figure 1 three possible solutions for the symmet-
ric table under weight forcew are presented with only
(c) showing correct behavior. If friction is included

Figure 1: Possible solutions for the a standing table
simulation using the LCP approach [4]

into the collision consideration the analytical approach
might lead to no or no unique solution. In addition,
solving an LCP can become difficult and system in-
formation is required, e.g. mass matrix and Jacobian
matrix.

(c) Impulse-based methods are the third group
of approaches for handling collision reactions. All
kinds of constraints are neglected and no constraint
forces are calculated. Instead all movements are han-
dled using impulses and correcting impulses. Basics
of this rather young idea of simulating movements
are described in [7], [4]. The impulse-based meth-
ods, like the analytical approaches, prohibit intersec-
tion between the bodies. But, in contrast to the solu-
tions of the analytical approach, the contact reactions
are always calculated physically correct. Of course,
also the impulse-based methods have some drawbacks.
Stationary contact, like resting bodies on the ground,
need to be solved by a high frequent number of small
impulses. Interaction between multiple bodies, like
a stack of boxes, can cause problems and corrupt re-
sults, cf. [4]. The biggest problem, when working
with impulse based methods is, that a special form for
the equations of motion is needed and special routines
for solving those are required.

2.2 Implementation in Modelica

Because impulse based methods do not use constraint
forces, an implementation in Modelica appears expen-
sive – especially since correction impulses need to be
calculated in one simulation step and have to be ap-
plied in the previous one. Also the interaction with
other physical domains seems difficult.
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The analytical approach is more applicable since
constraint forces are calculated. However, solving the
LCP can be difficult and requires knowledge of the
mechanical system, like mass matrix of the mechan-
ical system, etc.. Since Modelica is a multi-domain
modeling language collecting the equations from all
domains, a straightforward implementation in Model-
ica is, regarding to the author, not possible.

Hence, for this implementation a penalty method is
chosen. For the first part of the collision handling, col-
lisions have to be identified, as described above. Dif-
ferent free collision detection software packages, e.g.
Bullet or ODE, are available, calculating the needed
data for a penalty approach. Therefore, integration can
be done directly without rewriting any contact routine,
etc.. However, drawbacks of the penalty based meth-
ods may not be ignored and limitations must be ac-
cepted.

3 CollisionLib - a contact library
for the multibody environment in
Modelica

3.1 General aspects

CollisionLib is a library that extends theMechan-
ics.MultiBody-library (M.MB) by collision considera-
tion. This expansion implies that existing models do
not need to be rebuild. Instead, the mechanical com-
ponents are connected to special collision objects, as
seen in figure 2.

Figure 2: Setup of a mechanical System including col-
lision handling

3.2 Collision detection within Modelica

For solving the issue of collision detectionBullet
Physics Library (Bullet) [8], an external C++-library,
is used. It is a free package for simulating mechanical

systems, originating from entertainment industry with
focus on video games and movies. SinceBullet uses
a modular conception, see Figure 3, it is possible to
take its collision detection only and drop the simula-
tion routines.

Soft Body
Dynamics

Bullet
Multi Threaded

Extras:
Maya Plugin

hkx2dae
.bsp, .obj,
other toolsRigid Body Dynamics

Collision Detection

Linear Math, Memory, Containers

Figure 3: The modular concept of theBullet Physics
Library [9]

In order to calculate distance between two bodies,
their geometry and their position as well as their ori-
entation must be defined. Within theM.MB bodies
are represented by their mass and inertia and there-
fore no additional information is present. However,
Bullet contains a database with the basic geometries –
sphere, box, cone, cylinder and capsule –, able to cre-
ate a representation, if the right information is passed
to it. For complex structures surface data, using a poly-
gon mesh, need to be passed. In collaboration ofBullet
and Modelica this implies that for basic bodies only
some identifier and dimensions have to be supplied.
The use of complex, mesh based geometries are cur-
rently not included, but planned for future versions.

Due to the fact, that all bodies of theM.MB are rigid,
meaning that their inertia respectively shape will not
change by cause of loads, the geometry information is
only passed at initialization of the simulation.

In contrast to shape, the pose of each body needs
to be updated every simulation step. This is done by
transferring position and rotation matrix toBullet each
step.

With all the information described above Bullet
can perform the check for collisions. From the
several available broadphase algorithms within the
C++- library an approach using axis aligned bound-
ary box trees (AABB-trees) is used. Detailed infor-
mation about AABB-trees can be found for example
in [12]. For narrowphase intersection tests Bullet pro-
vides different algorithms for primitive shapes, trian-
gle meshes, etc..

The coupling between Modelica andBullet is done
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by expanding the Modelica classexternalObject into
a class calledCollisionWorld and developing aBul-
let simulation runtime. Attentive readers might have
noticed thatBullet is a C++-library and therefore can-
not directly be connected to Modelica. To attach the
Bullet Physics Library to Modelica an additional C-
interface is needed. At instantiation of classCollision-
World within a Modelica model, geometry information
is passed to the interface. This interface itself, creates
a instance of theBullet simulation runtime, passing the
position and rotation matrix, and returning a reference
to Modelica. This procedure is visualized in Figure 4.

Modelica
class

Collision
World

C-
inter
face

Bullet
simulation

runtime

data

void*

instance

Figure 4: Coupling between Modelica andBullet at
system initialization

During each simulation step, the pose of the bod-
ies needs to be updated and collision detection must
be performed within theBullet runtime. In Modelica,
the functionupdatePosition, of typeexternalC, passes
the reference to thebullet environment and the pose of
the bodies back to the C-interface. This results in an
updatedBullet simulation, giving back the number of
contact body pairs (NoC). Using a secondexternalC-
function, namedgetCollisionData, the collision data
(coll. data) is given back to Modelica. The complete
data flow between Modelica, C-interface andBullet is
shown in Figure 5.

update
Position

C-
inter
face

Bullet
simulation

runtime

pose

NoC

coll. data
get

Collision
Data

Figure 5: Data flow during simulation

3.3 Collision normal force

As specified before, a penalty based approach for cal-
culation collision reactions is used. The approach in-
cluded in theCollisionLib calculates reaction forces
using deepest point penetration. This means the two
deepest points between the intersection bodies are cal-
culated and the normal vector based on this two is

given byBullet. Another possible penalty method for
calculating response, could use consideration of inter-
secting volume. However, this is not possible using
Bullet.

There are many different approaches calculating
contact normal forces taking geometry, material prop-
erties, velocities, mass, etc. into account. A survey
about some ideas is given by Machado et al. in [10].
In order to embrace the dimension of methods user-
defined collision response laws can easily be imple-
mented.

The basic normal force calculation, available in this
library, uses a parallel set of non-linear spring and lin-
ear damper. The non-linear spring has its origin in the
Hertzian contact theory but is here extended using en-
ergy dissipation.

FN = Fc +Fd (2)

The partFc represents contact force due to the spring
andFd is the force due to the damper.

Fc = K ·δ n (3)

The parameterK delineates the contact stiffness while
the exponentn describes the non-linear force behavior
due to penetrationδ .

For the damping force some limitations apply. Its
magnitude can never exceed the spring part, prevent-
ing sticking between the two bodies. Therefore a
dummy itemFd2 is introduced

Fd2 = D · δ̇ (4)

Fd =





Fc if Fd2 > Fc

−Fc if Fd2 < −Fc

Fd2 else

(5)

The factorD describes the contact damping andδ̇
denotes the relative velocity of the contact points.

All parameters (K, n, D) depend on geometry and
material of the colliding bodies. For special combina-
tions of bodies different analytical and empirical ap-
proaches have been published. The parameters can
also be derived by Finite-Element-Analysis or practi-
cal test execution. However there are no generalities
available.

As mentioned before the contact parameters are in-
dividual for each contact. Nevertheless the parameters
are globally set for all contacts in the first place. But
of course the contact parameters can be individually
assigned for each pair of bodies.
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3.4 Friction force calculation

In order to calculate friction forces it is necessary to
determine two tangent vectors (tv1, tv2) from the con-
tact normal vectornv. Since the two tangent vectors
and the normal vector have to be orthogonal to each
other two components of one tangent vector can be
chosen freely. inCollisionLib this is done by the fol-
lowing scheme:

• Determination of the biggest component of the
normal vectornv

• Assignment of value 1 to the two components of
the first tangent vectortv1, respectively to the two
smaller components ofnv

• Calculation of the last component oftv1 using dot
product (nv · tv1 = 0)

• tv2 is calculated via cross product (nv× tv1)

• Normalization of both tangent vectors

With this tangent vectors the tangential plane of the
contact is determined, in which the friction force vec-
tor is located. In order to identify its direction the pro-
jection of the relative velocity vectorvrel into the tan-
gential plane is required. The vectorvrel is calculated
from the contact pair of deepest penetrating points be-
tween the two bodiesKa andKb as described from (6)
to (8). All calculations are performed with respect to
the initial frame {OI,eI} and refer to Figure 6. To keep
calculations as short as possible only the quantities of
bodyB are derived. The values ofbodyA are calculated
analogical.

First of all, the vector from the body fixed frame
{ OB,eB} to the contact pointKb is calculated.

rb = rKb − rb0 (6)

Using this vector the velocity of the contact point
can be obtained.

vKb =
drKb

dt
= ṙb0 +ωb × rb (7)

After determination ofvKa the relative velocity is
computed:

vrel = vKb −vKa. (8)

rb0

Kb

Ka

rb

rKb

{OI ,eI}

{OB,eB}

body A

body B

Figure 6: Calculation of the relative velocity during
contact

By projection this vector into the tangent plane
(vrelP) the opposite direction of the friction force vec-
tor is derived.

vrelP = (tvT
1 ·vrel) · tv1 +(tvT

2 ·vrel) · tv2 (9)

The magnitude ofvrelP is compared to a limiting
velocity vG at which the coefficient of static friction
µH is no longer used and sliding frictionµG is applied.

µ =

{
µH if |vrelP| < vG

µG if |vrelP| ≥ vG
(10)

Along with the magnitude of the contact normal
force FN the magnitude of the Friction forceFFmag is
calculated.

FFmag = µ ·FN (11)

However, since the contact normal forces can be
enormous a user-defined quantityFFmax is introduced,
allowing to reduce the maximum assignable friction
force if wanted, see (12).

FFmag = min(FFmax, µ ·FN) (12)

Using the negative normalized vector of the pro-
jected relative velocity the friction force vector can be
computed.
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FF = −FFmag · vrelP

|vrelP| (13)

By default the coefficients of friction are equal for
all bodies. However, since different body pairs might
interact the user can specify frictional coefficient for
each contact pair individually.

4 Application of the Contact Library

4.1 General information about application

In order to enable collision handling in theM.MB li-
brary the componentsCollisionWorld and Collison-
Body are needed.CollisionBody has a multibody con-
nector frame that needs to be connected to a body re-
spectively another multibody frame, see Figure 7.

Figure 7: The modelBouncingBall with and without
collision consideration

Within the parameters of this component the user
can specify the type of the collision shape and its geo-
metrical parameters, see Figure 8.

Figure 8: Parameters of the componentcontactBody

Each instance ofCollisionBody needs a unique ID
in ascending order starting at 1 (1,2,3,. . . ). For the

CollisionWorld the highest ID has to bet set as pa-
rameter in order to achieve "automatic" connections to
the instances ofCollisionBody. These connections are
build using ainner-outer-coupling, meaning that an ar-
ray of frame connectors is created forCollisionWorld
with size of the passed parameter (maximum ID) and
the CollisionBody is connected to the corresponding
frame, based on the ID. Information about the shape is
send from each instance ofCollisionBody to theCol-
lisionWorld via a user-defined connector. This is also
done usinginner-outer-coupling.

The problem concerning unique IDs has been dis-
cussed by Otter et al. in [1] before. However, planned
changes in the Modelica language have not been im-
plemented since then.

One of the bigger problems when handling contacts
is the so called ghosting. This means, that one object
moves through another object during one time step.
This problem can only be solved by reducing the max-
imum solver step size. Alternatively within theColli-
sionWorld sampling can be activated, i.e. a collision
check has to be performed during each sample. How-
ever, collision forces are also only calculated during
each sample. This can result in wrong behavior, since
the forces are constant between the samples.

The last big drawback when using the libraryCol-
lisionLib are problems with collision detection for not
strictly convex bodies. The GJK algorithm used by
Bullet for many distance calculations, derives exactly
one pair of deepest penetrating points, from the infi-
nite number of pairs. This results in more or less un-
real behavior, as pointed out in Figure 9. This issue

(a) configuration between cylin-
der (red with body-frame) and
grounded box (blue) during con-
tact with contact point pair
(black)

(b) configuration after separa-
tion due to contact forces in the
contact point pair

Figure 9: Wrong contact reactions due to an incongru-
ous collision point pair
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can be fixed by changing from deepest point penetra-
tion to intersection volume. However, a solution using
theBullet Physics Library is not known.

For some reason a user might want to ignore colli-
sion between a specific set of bodies. This feature is
implemented by adding contact pairs (IDs) into a table
within the componentCollisionWorld.

4.2 Application 1: The pool table

Figure 10: Setup of the model "billiard balls"

In Figure 10 a setup containing some "billiard balls"
and other obstacles can be seen. While the obstacles
are attached to the ground, the individual balls are free.
Gravity of the system is set to zero. The white ball
crashes into the group of balls, causing multiple col-
lisions within the group of balls and the obstacles. In
Figure 11 the system at timet = 0 s, t = 0.25 s and
t = 1 s is shown.

Note that the conservation of momentum is not ful-
filled in the system. This Error occurs due to the cho-
sen penalty approach.

The computation time for this rather simple model is
lower than the time simulated, which means for small
models real-time simulation is possible.

4.3 Application 2: dynamically loaded com-
pressing spring

Apart from made-up models, theCollisionLib library
has been used for the simulation of compressing
springs. If simulating springs in high dynamic sys-
tems, like hydraulic valves, they can no longer be
treated by the relationF = c ·∆x. Effects like coils hit-
ting other coils or coils lifting of the spring cups need

(a) The system at timet = 0 s

(b) The system after multiple collisions at timet = 0.25 s

(c) The system after multiple collisions at timet = 1 s

Figure 11: The model "billiard ball" with multiple col-
lision partners

to be considered. Using collisions this consequences
can be handled.

In picture 12 the multibody representation of the
spring is shown. It consists of multiple rigid bodies
that are connected by spring-damper-elements. There
are no joints connecting the rigid spring elements or
the single elements to the spring cap.

Due to a force of 200N acting for 0.01 s on the up-
per spring cap, the spring is compressed and the coils
interact among one another. At time stept = 0.03s the
spring has almost reached its block length and starts to
expand shortly after. Att = 0.07s the elements moved
beyond their starting position during expansion of the
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spring, see Figure 13.

Figure 12: setup of a compressing spring model using
theCollisionLib (t = 0 s)

(a) The spring att = 0.03 s (b) The spring att = 0.07 s

Figure 13: States of the spring during simulation

Highly detailed modeling of systems, like the spring
with a lot of self-interactions, can benefit from colli-
sion handling. However, simulation times can become
very large. The spring model shown here takes seven
hours for the complete simulation. Simulation time
will be a subject of further investigation.

5 Outlook

In this paper the development of an add-on library to
theM.MB for consideration of collision handling was
given. The present version can be used to improve

simulation, as shown in 4.3. However, there are some
greater drawbacks that hinder the full potential of con-
tacts in this early version ofCollisionLib. Develop-
ment in order to provide a fully functional collision
library continues:

• Support for OpenModelica

• Enable calculation of more than one contact point
pair within a contact.

• Finding a suitable solution for the ghosting effect
(dynamically change of solver step size)

• Support of mesh representation as geometry in-
formation

6 Annotation

Help and cooperation to promote this project are very
welcome. Feel free to send your ideas and offers to
Andreas.Hofmann7@boschrexroth.de
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Abstract 

The short term thermal production planning problem 

is solved in two steps by integrating physical plant 

models into the standard approach. The first step 

aims at solving the discrete variables from the unit 

commitment sub-problem (UCP) using standard 

mixed integer linear models and optimization tech-

niques. The second step focuses on the economic 

dispatch sub-problem (EDP) described by high-

fidelity, continuous time, physics-based Modelica 

models together with nonlinear optimization tech-

niques from the JModelica.org platform. The output 

of the second step includes optimized power flows 

but also highly relevant variables such as supply 

temperature, supply flow rate, turbine by-pass valve 

in the cogeneration plant. The optimization is formu-

lated as a maximization of the benefit from heat and 

electricity sell over a finite time-horizon.  

 

The proposed method is validated in several test cas-

es using experimental data from a plant in Nyköping. 

The optimizations demonstrate the feasibility and the 

high economic potential of the proposed approach 

when comparing with measurement data and the 

standard optimization techniques. The optimized 

planning schedules result in a balance between pro-

duced and consumed heat, priority to low-cost boil-

ers and maximization plant revenue. Compared to 

measurement data, the optimizations result in a sig-

nificantly lower supply temperature, a more exten-

sive usage of the external cooler for higher efficiency 

and higher electricity production, fewer starts of 

units as well as an appropriate use of the accumula-

tor tank. 

 

The high-level description of optimization problems 

using JModelica.org provides useful means to speci-

fy flexible optimization problems including con-

straints on arbitrary process variables such as heat 

load of the production units, supply temperature and 

flow rate, pressures. 

Keywords: production planning; nonlinear optimiza-

tion; district heating; physical modeling; unit com-

mitment 

1 Introduction 

1.1 Background 

1.1.1 Production planning 

Production planning in district heating systems aims 

at finding a cost optimal scheduling of the heat and 

power production plants, which satisfies both the 

network load demand and operational constraints. 

Scheduling refers to the status of the production unit 

(on-off, a discrete variable), and the produced power 

(a continuous variable). The resulting optimization 

problem that involves both discrete and continuous 

variables is referred to as mixed integer non-linear 

problem (MINLP), for which no robust algorithm is 

available. It is therefore necessary to make reasona-

ble assumptions on both the modeling and the com-

putation approaches to get a tractable optimization 

problem. The problem can be described as being 

composed of two sub-problems:  

 The Unit Commitment Problem (UCP), in 

which decisions are taken on whether a plant 

should be running or not. The main difficulty 

lies in the combinatorial nature of the prob-

lem. 

 The Economic Dispatch Problem (EDP) in 

which the load decisions for all active plants 

are taken. The main difficulty lies in the 

nonlinearity of the plant.  
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A good survey of the available approaches for short-

term production planning is given in [15]. 

 

As an input to the production planning problem, a 

predicted heat load over the entire optimization hori-

zon should be provided. This is often generated by a 

load prediction model that typically includes a de-

scription of the district heating network and the ef-

fect of outdoor temperature. Here it is assumed that a 

perfect load prediction is available over the entire 

optimization horizon. 

 

1.1.2 Common approach 

The standard formulation of the thermal production 

planning problems relies on a simplified representa-

tion of the model equations. The plant models are 

typically linearized and the resulting problem be-

comes a Mixed Integer Linear Program (MILP). The 

continuous decision variables of the optimization 

problem are the energy flows whereas the influence 

of the supply temperature and mass flow are usually 

not modeled. This represents a limitation since e.g., 

supply temperature affects many critical parameters 

such as the amount of energy that can be stored in 

the network or the accumulator, the heat loss in the 

network and the electric efficiency of the co-

generation plants. To maintain a low model com-

plexity, it is also common to describe all processes 

by static relationships except for the storage dynam-

ics (heat and fuels) and eventually the transport de-

lays in the distribution network. The linearization 

process, which is a necessary and critical part of the 

MILP approach, is consequently a trade-off between 

model accuracy and tractable model complexity. 

1.2 Proposed approach 

The proposed approach is based on the natural sepa-

ration of the discrete problem (UCP) from the con-

tinuous one (EDP). 

 UCP. The entire optimization problem is 

formulated using simple piecewise linear 

models and solved using a MILP solver. The 

main result of this stage is the status of every 

plant (on/off) over the optimization horizon. 

 EDP. The desired load is dispatched between 

the running production plants to meet all 

plant operational and safety constraints. The 

status (on/off) of the plants and the start val-

ues of continuous control signals are given 

by the solution of the UCP. 

The aim of the second step is to optimize the non-

linear plant model based on physical laws without 

any major simplification. The plants are described by 

mass and energy balances, in terms of enthalpy, mass 

flow rate and pressure. Dynamics can be included 

without restrictions to match the real dynamic behav-

ior of the plants. The output of this second step in-

cludes optimized power flows, but also highly rele-

vant variables that affect the production economy 

such as supply temperature, supply flow rate or tur-

bine by-pass valve in the co-generation plant. This 

model complexity yields however a non-linear dy-

namic optimization problem and requires another 

type of solver than MILP solvers, see [1] for an 

overview of the available strategies. One reliable and 

efficient method to solve dynamic optimization prob-

lems that is based on non-linear programming solv-

ers is the so-called collocation method. Control sig-

nals to be optimized and model equations are param-

eterized by a smaller number of variables, reducing 

considerably the complexity of the non-linear opti-

mization problem. The original continuous-time op-

timization problem is transformed into a (discrete-

time) Non-linear Programming (NLP) problem that 

can be efficiently solved using commercial or open-

source solvers. The authors have applied the colloca-

tion method for dynamic optimization of a Carbon 

Capture plant, see [2]. Other successful applications 

of this optimization technique have been reported in 

the literature, see [3] for a list of applications where 

IPOPT (Interior Point Optimizer), an open-source 

NLP solver, was used. To the authors’ knowledge, 

limited work on applying large-scale NLP methods 

for solving the economic dispatch problem has been 

performed. 

 

2 Optimization tools and languages 

Two environments were used to define and solve the 

production planning problem: 

 Dymola [9] was the chosen platform to 

derive, calibrate and simulate the physical 

Modelica [10] models defining the eco-

nomic dispatch sub-problem 

 Python was the chosen platform to solve 

both optimization problems and to do the 

post-processing 

The unit commitment problem (UCP) was formulat-

ed in Python using the package PuLP [4] that is a 

light weight package that allows modelers to easily 

express mathematical programming problems, in-

cluding mixed integer linear programs. It uses a high 

level modeling language and has been built to inter-

face with commercial and open-source solvers. In the 

present work the solver CBC has been used, see [5].  
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The economic dispatch problem was solved from 

Python using the JModelica.org platform [16] as fol-

lows: 

 The optimization problem was formulated 

in the Modelica and Optimica languages 

 An FMU-simulation was carried out to gen-

erate a guess trajectory for the initialization 

of the nonlinear optimization 

 The nonlinear optimization problem was 

solved using a collocation method available 

in JModelica.org 

Applying nonlinear dynamic optimization techniques 

to solve the economic dispatch problem requires 

some considerations on initial trajectories, smooth 

media model functions, smoothing of mathematical 

functions such as absolute value, square root, min 

and max as well as scaling of optimization variables 

yielding a numerically sound behavior.  

3 Plant models 

3.1 Idbäcken plant 

The Vattenfall AB owned district heating plant Id-

bäcken, providing heat to customers in Nyköping, 

Sweden, served as reference plant. It contains in total 

seven different heat production units, one accumula-

tor and one co-generation plant, see Figure 1. The 

Idbäcken plant has been the topic of interest in other 

research projects, see for instance [6] [7] and [8].  

 

Figure 1. Schematic diagram of the Idbäcken plant 
with 7 heat production units, the accumulator and the 
co-generation plant 

The main unit of Nyköping is the Combined Heat 

and Power plant (CHP) with a total heat capacity of 

105 MW. The plant turbines can at most produce 35 

MW of electricity, and the condensers can approxi-

mately transfer 75 MW of heat to the district heat 

water. The flue gas of P3 is used in a flue gas con-

denser of maximum 12 MW to pre-heat district heat 

return water before entering the CHP plant.  

 

Two circulating fluidized bed units, P1 and P2, of 

each 35 MW used only for heat production may be 

used when heat demand is high. Additionally, there 

is an electric boiler of 14 MW and two oil based heat 

production units at the hospital and the residential 

area Brandkärr with 2×12 and 3×12 MW production 

capacity, respectively.  

There is also an accumulator tank of hot water and 

an external cooler Beriden (not shown in figure) that 

can be used to decrease the return temperature and 

therefore increase both the load and the efficiency of 

the co-generation plant for a higher electricity pro-

duction. 

 

3.2 Models for UCP 

The unit commitment problem is formulated in Py-

thon using the PuLP modeling language. 

3.2.1 Heat production units 

The discrete time plant model, i.e., the UCP model, 

is very coarse compared to the EDP model. All heat 

producing units i, except for the CHP plant, are 

modeled only by the produced heat    and its mini-

mum and maximum capacity. The influence of plant 

actuators such as pumps, valves or the influence of 

physical variables such as temperature, pressure and 

mass flows are not captured. The fuel consumption 

   of a pure heat unit is calculated using the efficien-

cy parameters    as 

   
  

  

  

and for the CHP plant it is calculated as 

   
       

  

   

For the CHP plant also the ratio between produced 

electricity and heat is interesting, defining the   val-

ue as, 

  
   

   
 

The accumulator energy      is given by a simple 

integrator equation and is not temperature dependent: 

                             

where         is the energy flow from the accumula-

tor,   is the sample time and   is the time index. 

 

CHP plant 

Distribution 

pump 

Circulation 

pump 
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3.2.2 Co-generation plant P3 

The produced heat     and electric power     are 

influenced by the boiler load, the position of the tur-

bine by-pass valve as well as the flow and tempera-

ture of the district water. It is by far too complex to 

describe this relationship by simple (piecewise) line-

ar functions. By using a physics based Modelica 

plant model and varying the four main variables, a 

feasible region in the    -   -plane has been created 

to describe the behavior of the cogeneration plant. 

The resulting feasible region was described by four 

inequalities of the form 

                 

where the points   ,    and    are scalar coefficients. 

 

The UCP optimization should optimize     and     

with the constraint that they should be in the feasible 

region described by the inequalities. 

3.3 Models for EDP 

The models used to formulate the economic dispatch 

problem are implemented in Modelica. 

3.3.1 Medium model 

Two different types of media models are used in the 

model package: 

1. Simple water media – a water media with 

constant specific heat capacity and density, 

used to describe the water in the district 

heating network.  

2. Advanced water media – a water media with 

polynomial functions approximating IF97 

reference functions, used to describe liquid 

and vapor water in the cogeneration plant, 

see [17] for more details.  

3.3.2 Cogeneration plant 

The co-generation (heat and electricity production) 

unit P3, shown in Figure 2, is described by the fol-

lowing models 

- One high pressure turbine and two low pres-

sure turbines, all with bleed streams 

- Two condensers 

- By-pass valve for by-passing steam directly 

to the condensers 

- A lumped bleed streams to describe the flow 

to the de-aerator and the high-pressure pre-

heater 

- Control volumes 

The characteristics that are important to capture with 

respect to the optimization is the influence of the 

turbine by-pass valve, the district heat network flow 

and temperature and the boiler load on the produced 

heat and electricity. It is not necessary to describe 

e.g., the furnace, instead, focus has been directed 

towards the vapor cycle. The main modeling simpli-

fications on the vapor cycle is that it is not closed, 

which results in the following assumptions: 

- The vapor characteristics (pressure and en-

thalpy) at the boiler outlet are constant and 

the boiler load linearly affects the boiler 

mass flow rate. 

- The feed water heaters that are downstream 

of the condensers are not modeled. All the 

bleed streams that normally go to the non-

modeled pre-heaters are represented by a 

single stream connected to a constant pres-

sure source. 

- The condensate leaving the condenser is as-

sumed to be at saturation pressure. 

 

 

Figure 2. Dymola model of the cogeneration plant P3 
with connections to the district water. 

 

3.3.3 Fluid component models 

3.3.3.1 Turbine 

Physics-based model defined by an 

isentropic efficiency to calculate 

the outlet enthalpy and turbine 

work. The mechanical power gen-

erated from the steam is calculated 

using a mechanical efficiency and the pressure drop 

is related to the flow rate using Stodola’s law. The 

electric power is calculated from the mechanical 

power using an efficiency parameter (generator loss-

es). 
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3.3.3.2 Condenser 

The heat flow rate transferred to the dis-

trict water is driven by the temperature 

difference between the incoming water 

and the saturation temperature in the 

condenser. This heat flow rate is further 

used to compute the condensation rate that drives the 

bleeding flow from the turbine. 

 

3.3.3.3 Control Volume 

The control volume is a straightforward 

implementation of dynamic mass and 

energy balances expressed using pres-

sure and enthalpy as states. Tempera-

ture is computed using pressure and 

enthalpy. The model requires partial derivatives of 

density with respect to enthalpy and pressure. 

3.3.3.4 Valve and pressure loss 

The mass flow through the valve is 

computed using the pressure differ-

ence, the valve opening and data 

from a nominal point. A standard 

quadratic equation relates mass flow and pressure 

drop. 

3.3.3.5 Circulating Fluidized Beds, P1 and P2 

The model is not physics-based and heat 

transferred to the water is calculated by first-

order filtering of the load and using parame-

ters for efficiency and maximum heat trans-

fer. 

3.3.3.6 Electric Boiler and Oil Driven Boilers 

The model is not physics-based and heat 

transferred to the water is calculated by the 

load and using parameters for efficiency and 

maximum heat transfer. 

 

3.3.3.7 Accumulator 

The accumulator is modeled using a finite-

volume approximation that neglects buoy-

ancy effects, i.e. no mixing is assumed 

when the accumulator is not charging or 

discharging. The accumulator is charged 

and discharged from the top and bottom. Return wa-

ter enters from the bottom. Heat loss has been ne-

glected.  

3.3.3.8 External cooler  

The cooler is modeled as a lumped epsilon-NTU heat 

exchanger where heat transfer is driven by 

the difference between the inlet tempera-

tures. It is assumed that the minimal heat 

capacity flow is always on the district side 

flow. 

 

3.3.3.9 Transport Pipe 

It is a finite volume implementation of a 

pipe with control volumes in series. The 

nominal number of discretization seg-

ments is 4 and the pipe diameter and 

length are parameters. 

 

3.3.3.10 Flue Gas Condenser 

The model is not physics-based and is an 

ideal heat source which produces constant 

heat as long as P3 is running.  

 

3.3.3.11 Pump 

 The pumps are ideally modeled, deliver-

ing a specific mass flow rate depending 

linearly on the control input, i.e., pump 

speed.  

 

3.3.3.12 Splitter/Valve 

The splitter/valve is ideally modeled and 

splits the incoming flow into two flows 

which sizes depend on the control signal 

to the splitter. 

3.3.3.13 Customer 

The customer is modelled with a fixed 

outlet temperature and the heat absorbed 

is calculated by the temperature differ-

ence between in- and outlet and the flow 

that is merely propagated through from in- to outlet. 

4 Problem formulation 

4.1 Degrees of Freedom 

The discrete time optimization (UCP) includes the 

power heat flows, the electricity production rate as 

well as the status (on/off) of every unit as optimiza-
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tion variables. The status of each unit is fixed in the 

continuous optimization. 

 
The continuous time optimization problem contains 

11 degrees of freedom, namely: 

       fuel load of production unit i,      

  

       , turbine by-pass valve position 

       , Speed of circulation pump 

       , Speed of distribution pump 

          , ratio between flows going to cus-

tomer and by-passing customer respectively 

           , ratio between flows going to ex-

ternal cooler (Beriden) and by-passing it 

In the optimizations however, the decision variables 

used by the optimization routine will be the deriva-

tives of the above inputs. Thus, an equation on the 

form 

      ∫   ̇     
 

 

is introduced for each input. This extension makes it 

easy to set minimum and maximum constraints on 

the input signal derivatives in the optimizations. In 

Modelica code, for a general input   with minimum 

and maximum values      and      and minimum 

and maximum derivative values  ̇    and  ̇   , an 

example is the following: 

 
model inputExample 

   parameter Real u_min = -1; 

   parameter Real u_max = 1; 

   parameter Real u_der_min = -1; 

   parameter Real u_der_max = 1; 

   input Real u_der(min = u_der_min, 

max = u_der_max); 

   Real u(min = u_min, max = u_max); 

equation 

   der(u) = u_der; 

end inputExample. 

 

Another possibility is to utilize the constraint-section 

in the optimization model. 

4.2 Cost function  

The goal of the optimization, both in the UCP and 

EDP, is to produce enough heat to follow the cus-

tomer heat load over time and at the same time do it 

as economically beneficial as possible. The EDP 

problem considers fuel costs         and incomes 

from selling heat           and electricity        to 

describe the plant economy. Note that operational 

costs for e.g., pumps are not considered. The cost for 

starting a production unit             is only includ-

ed in the objective function of the UCP sub-problem. 

Hence, the revenue at a time instant can thus be for-

mulated as 

                     

 ∑                     

 

 

A minor cost on the input derivatives must be used 

for regularity reasons. This cost at a certain time in-

stant is formulated as 

 ̇    ∑   ̇ 
 ̇     

           
      

 

 

where   ̇ 
 is the weight for derivative  ̇ .  

 

The cost function to be minimized, considering the 

cumulative revenue over the optimization horizon, 

can thus be formulated as 

  ∫  ̇         

  

  

   

where the optimization interval is [     ] and 24 h 

long. This is as long as the optimization horizon in 

the UCP and also as the prediction time series pro-

vided by the heat load prediction model. Without the 

extra term of the input derivatives, this cost function 

is the continuous time counter part of the cost func-

tion in the UCP except for the start-up costs. 

 

4.3 Constraints 

4.3.1 Common constraints for EDP/UCP 

For fulfillment of the heat demand from the custom-

ers, the following constraint is used in both EDP and 

UCP:  

                              
 

where   is the heat delivered to the customers,     

the desired heat load from the prediction model. The 

maximum deviation          is set to 1 MW. The 

supply temperature is not a direct function of the 

outdoor temperature, which is common practice. In-

stead, the supply temperature depends on the supply 

flow and heat demand, where the latter is a predic-

tion depending on predicted outdoor temperature. A 

lower bound on the supply temperature has also been 

introduced and this could be replaced by a lower 

bound on the temperature at the customer substation 

if the district heating network is modelled.  
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An accumulator energy end-point constraint is intro-

duced in both EDP and UCP to avoid that the accu-

mulator gets empty at the end of the optimization 

interval:  

    (  )           

 

The input derivatives, i.e., the decision variables for 

the optimizer, are given minimum and maximum 

values. A maximum change of ±2%/min. has been 

set for all input derivatives relative to the maximum 

value of the input to the model. These limits can be 

set both from a physical perspective but also from a 

numerical perspective such that highly changing con-

trol signals are avoided. In the optimization results 

presented in this report, the derivative constraints are 

far from being active. 

 

4.3.2 UCP specific constraints 

The start and stop of large solid fuel boilers is time-

consuming and it is therefore critical to model the 

delay between the start/stop decision and the time the 

boiler is running at minimum/zero load. All units 

that are starting or stopping are required to follow a 

pre-defined trajectory             or           , re-

spectively. The constraints are formulated as 

                           

                                         

                     

                                   

where             and            are the lengths of 

start and stop sequences in time. The details on how 

the timing variables          ,          , 
             and              relate to the starting 

and stopping sequence equations above can be found 

in [11]. 

 
The accumulator storage capacity and heat flow are 

constrained with minimum and maximum values as 

                          

                            
 

4.3.3 EDP specific constraint 

Normally, the supply temperature is chosen as a 

function of the outdoor temperature. In the continu-

ous optimization, the supply temperature is opti-

mized and allowed to vary between 74.5
o
C and 

110
o
C. Also the flow to the customers, essentially 

the distribution pump flow, is given minimum and 

maximum values. These are 0 kg/s and 550 kg/s.  

 

5 Optimization example 

Different test cases based on measurement data from 

Idbäcken plant were considered to evaluate the pro-

duction planning strategy. All optimizations, both 

UCP and EDP, are performed using an optimization 

horizon of 24 h. The UCP sampling time is 0.5 h 

while the number of elements in the collocation 

scheme is 72, i.e., the length of each element is 20 

minutes. One test case with two load peaks is pre-

sented in the paper. 

 

5.1 Initialization 

All dynamic models were initialized using experi-

mental data of the real plant. The variables of the 

UCP model that require initialization are the status of 

each unit, the heat and electricity production of the 

co-generation plant as well as the accumulator ener-

gy. The physical model of the plant used to formu-

late the EDP sub-problem contains much more states 

to be initialized. The start values were either directly 

taken from the measurement data or computed using 

an FMU simulation of the plant. 

5.2 Computational statistics 

In all optimization cases, the UCP optimization for-

mulation results in a MILP of approximately 4000 

decision variables and 7000 constraints. The sam-

pling time considered is 30 minutes and the optimi-

zation horizon is 24 h. With the CBC MILP solver, 

see [5], the solution time is less than 25 s for all op-

timization cases.  

 

The resulting NLP, after discretization of the EDP 

optimization problem using 72 elements each of a 

length 20 minutes, is solved using IPOPT v3.10.0 

running with the linear solver MA27, see [12] and 

[13]. The NLP contains approximately 130 000 vari-

ables for each of the considered optimization cases, 

which can be considered a small to medium sized 

problem for IPOPT. Much larger problems have 

been solved using the JModelica.org framework and 

IPOPT, see [14] and references therein.  The solution 

time is approximately 2-5 minutes and depends on 

e.g., initial guesses number of decision variables and 

number of active constraints. 

5.3 Specific test case 

5.3.1 Experimental data 

In this test case, the co-generation plant P3 is the 

only running unit at the beginning of the considered 
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time interval. The heat load profile showed in the 

figure below displays two peaks that require the start 

of additional units. To meet that increasing customer 

demand, the heat production in the cogeneration 

plant was first prioritized by fully opening the by-

pass valve before both P1 and P2 were started, see 

dotted curves in Figures 4 and 5.  

 

Figure 3. Profile of the customer heat load: meas-
urement, polynomial approximation, MILP and NLP 
solutions. 

 

5.3.2 Optimization results 

The solution of the unit commitment problem is 

characterized by the start of P2 at the first sample to 

meet the increasing customer demand. The start of 

P1 does not seem to be necessary. As the first peak 

of the customer heat demand comes before P2 is ful-

ly available, the accumulator is used and its energy 

level is significantly decreased during the first half of 

the optimization interval. P2 stays at its minimum 

capacity during the first 12h, a stop and re-start 

would be a more expensive alternative. During the 

second half of the optimization, P2 is used to load 

the accumulator and provide heat to the network. 

The optimization leads to a constant and maximum 

heat electricity production as it is economically ben-

eficial. The turbine by-pass valve is therefore kept 

closed during the entire optimization interval. The 

variation in the customer load is met by changing the 

load in P2 and by using the accumulator. Figure 6 

shows one typical advantage of applying nonlinear 

optimization for the economic dispatch: the supply 

temperature and flow are optimized to maximize the 

benefits. Note that none of these variables are in the 

UCP formulation as the UCP only contains heat and 

energy variables. For minimal fuel consumption, the 

supply temperature is kept low, about 5 degrees low-

er than in measurement data, the flow rate to the 

network is instead increased to meet the heat power 

demand. Note that the distribution pump operates 

close to its maximal capacity except when the accu-

mulator needs to be charged. Accumulator loading 

requires indeed a difference in the flows delivered by 

the circulation and the distribution pumps. At t=70h, 

the circulation pump operates at its maximum and 

the distribution pump is therefore forced to be de-

creased for accumulator loading. 

 

5.4  Conclusion from other test cases 

The production planning strategy has been success-

fully tested and compared with experimental data in 

6 different cases, see [18] for more details. The fol-

lowing conclusions can be drawn: 

 

 It is fully possible to integrate nonlinear op-

timization techniques from JModelica.org 

into the standard production planning ap-

proach for more accurate and more informa-

tive production plans. 

 One of the main advantage of combining 

physical modeling and nonlinear optimiza-

tion techniques is the optimized supply tem-

perature and mass flow rate as well as a 

more accurate description of the accumula-

tor.  

 In the considered network, the optimization 

showed a high potential income related to 

the use of the external cooler that reduces the 

return temperature for a higher electric effi-

ciency and a higher electricity production. 

This only occurs at low customer loads, i.e., 

when P3 is not required to run on full load. 

If customer load is high, then P3 should al-

ready be running at full load and the electric-

ity production maximized.  

 Handling of constraints on physical variables 

such as temperature, pump capacity and also 

constraints related to the way the accumula-

tor is connected, improves substantially the 

quality of the optimization results.  

 Supply temperature can be decreased by ap-

proximately 4
º
C compared to experimental 

data. With a perfect load prediction, the sav-

ings compared to measurement data is about 

8%, which is related to the extensive use of 

the external cooler.  
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Figure 4. Heat production of the main units: 
measurement (dotted), MILP (solid) and NLP 
(dashed).  

 

Figure 5. Heat, electricity production rates and alpha-
value of the cogeneration plant P3. 

 

Figure 6. Circulation flow, flow to network and supply 
temperature. Measurement (dotted) and NLP 
(dashed). 

 

Figure 7. Accumulator energy and tempera-
tures. 

6 Conclusions 

A method that substantially improves the standard 

approach for short-term production planning has 

been proposed in the paper. It is based on the use of 

physical plant models and nonlinear optimization 

techniques from JModelica.org to solve the econom-

ic dispatch sub-problem. The strategy has been vali-

dated using experimental data from a plant in Nykö-
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ping Sweden. Compared to measurement data, the 

method results in a significantly lower supply tem-

perature, a more extensive usage of the external 

cooler for higher efficiency and higher electricity 

production. The flexible optimization platform 

JModelica.org makes it possible to optimize the plant 

economy and introduce constraints on critical varia-

bles such as temperature, pressure or flow. 
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Abstract

Asynchronous generators are often used for small
hydro power stations with an installed power capa-
city of under 1MW . The reason for this is their ro-
bustness and low cost. In order do be able to pro-
duce active electrical power with an asynchronous
generator once needs to provide enough excitation
by means of reactive power provided by either the
electrical grid or additional capacitors.

But in asynchronous generators we can also find
the phenomenon of self-excitation which allows the
asynchronous generator to operate as a standalone
unit. Investigation of the self-excitation process
shows that significant over-voltages can occur if a
generator with sufficient capacitors is suddenly dis-
connected from the utility grid. The precondition
for a successive voltage build-up is that the gener-
ator is left with enough capacitive power and a low
load after the disconnection.

The Lønnestad radial in Seljord, Norway, is a
distribution radial with both asynchronous and syn-
chronous generators connected. In order to investig-
ate the system dynamics in the radial after it is dis-
connected from the rest of the 22kV distribution grid,
the radial was modelled and simulated using Model-
ica as modelling language.

Keywords: modelica, asynchronous generators,
self-excitation, islanding, electric power library

1 Introduction

The main share of the electricity produced in Nor-
way is based on utilisation of the nation’s large po-
tential of hydro power. Today are nearly all the
large waterfalls profitable for hydro power produc-
tion already utilised, or protected against encroach-
ment on nature. Due to this, there has for the last dec-
ades been an expansion in the number of small hydro
power stations below 10MW . This is often minor

projects where the power station is located near a
small waterfall owned by a local landowner.

These small hydro power stations are often con-
nected to already existing distribution grids, due to
the geographical location and installed capacity of
these stations. This is often grids constructed for
low capacities with purpose to distribute the electri-
city out to the local consumers. Connection of power
stations in these types of grids will therefore often
change the situation of power flow in the grid, and
lead to challenges regarding voltage stability and re-
quirements for faults detection.

2 Theory

The system that will be described in this paper
consists of a electrical distribution radial to which
one synchronous generator and several asynchronous
generators are connected. This theory section will
only cover the most important aspects of the complex
power systems.

2.1 Asynchronous generators

In the industry the asynchronous machine, or in-
duction machine, is used in a wide variety of applic-
ations with purpose of converting electrical power to
mechanical work. The asynchronous machine is very
economical, reliable, and easy to control, which are
some of the reasons for its popularity. There are two
main types of asynchronous machines based on the
rotor construction; squirrel cage type, and wound ro-
tor type. The simplicity and low cost, and the fact
that they can be driven as a generator as well as a mo-
tor, makes these machines very beneficial for wind
power generation and small hydro power stations up
to 1MW .

Unlike in wind power applications, the wound gen-
erator is seldom used in small hydro power stations.
The reason for this is that generators used in small
hydro power stations generally is operated on the
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principle of self-excitation without any rotor excita-
tion. For such applications, generators with the squir-
rel cage rotors can with advantage be used instead of
generators with wound rotor, since the squirrel cage
machine has lower cost.

2.1.1 The phenomena of self-excitation

Unlike the synchronous generator which gets its
magnetisation from an internal magnetising source,
and can be controlled to operate at a given fre-
quency, the induction generator has no independent
control over the air-gap field. The induction gen-
erator needs lagging reactive power to produce the
main air-gap and winding leakage flux [1]. This phe-
nomenon is referred to as self-excitation since the
generator achieves its magnetising from a grid, or
capacitors which are connected to the stator termin-
als. The phenomena permit utilisation of an induc-
tion generator as a standalone unit without a voltage
source connected. Due to this the induction generator
is often referred to as a SEIG (Self-Excited Induction
Generator).

The phenomenon of self-excitation has been
known for a long time, and a great deal of research
has been done in the field of describing the phe-
nomena and its transient behaviour. Various types
of models have been proposed, but the main part of
them is rather complicated models expressed by the
Park’s transform[2].

Initiation of the self-excitation process Self-
excitation of a standalone generator may take place if
a sufficient amount of capacitors is connected to the
generator. In order to initiate the self-excitation pro-
cess, the residual flux in the rotor iron has to be high
enough. The residual flux will induce a voltage in the
stator when the generator is accelerated to a certain
speed. By connecting capacitors to the terminals of
the generator, the induced stator voltage will cause a
flow of current from the stator [3].

For a given capacitor, an SEIG running at no load
requires only a minimum speed for the self-excitation
to initiate [4].

Voltage build-up in the generator Once the pro-
cess of self-excitation is initiated, the generator
voltage builds up. The voltage build up can more eas-
ily be understood by looking at the phasor diagram in
Figure 1.

Figure 1: Phasor diagram before and after the self-
excitation is initiated [3]

In this figure it can be observed that a current,
Ic, starts to flow from the capacitors once the self-
excitation is initiated. This current generates a flux,
Ψgen, into the generator, with the same direction
as the residual flux, Ψres. Therefore, the current,
Igen, circulating in the stator reinforces the total flux,
Ψtotal . This reinforced total flux causes an even
higher stator voltage leading to successive increase
in current and flux [3].

Figure 2 shows the generator magnetising charac-
teristic and capacitance for three different frequen-
cies, where the machine magnetising characteristic
is simplified by linear segments with a knee point.

For a given capacitance and generator saturation
characteristic, the intersection of the capacitance line
and the V-I-curve of the generator moves as the fre-
quency increases. The voltage build-up comes to halt
when the non-linear magnetisation curve for the gen-
erator intersects the capacitor voltage curve [1]. This
point is the steady state operating point for an in-
duction generator running at no-load with capacitors
connected. The no-load steady state operating point
is determined by the non-linear magnetisation curve
of the generator, the value of the capacitors, and the
speed of the generator.

Figure 2 shows that by increasing the frequency,
the generator curve is moved upwards, while the
slope of the capacitor curve decreases, which res-
ults in an increase of steady state operation voltage.
This states that connection of capacitors supplying
a no-loaded induction generator with a larger react-
ive power than needed may cause over-voltage at the
generator terminals [3].

The intersection point between the saturation char-
acteristic and the capacitor line can be defined in
terms of the electrical frequency [1]:

Modelling the system dynamics of islanding asynchronous generators

970 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096969



Figure 2: V-I curves for induction generator and ca-
pacitor at different frequencies [11]

V (ω) =
ωA

1−ω2LdC
(1)

I(ω) =
ω2AC

1−ω2LdC
(2)

Where Ld is the non-linear magnetisation induct-
ance defined as dΨ/dl on the saturated portion of the
no-load Ψ− I curve for the generator, and A is the
interception of the dynamic inductance line with the
ordinate, defined as Ψ(I) = A + LdI.

In order to achieve a steady state operation point at
any frequency, the capacitance must satisfy the fol-
lowing expression:

La

ω2Ld
>C >

1
ω2La

Where La is the inductance defined by the air-gap
line of the generator. [1]

2.2 Synchronous generators

Three phase synchronous generators are the
primary source for all the electric energy produced in
a power system. One of the reasons is that the syn-
chronous generator gives the opportunity to decide
whether it is desirable to produce or consume react-
ive power, which gives us the ability to regulate the
voltage and power flow in an interconnected grid [5].

The rotor contains a field winding which is sup-
plied by a DC source. This voltage results in a field
current, Ix , which produce the rotor field in the air-
gap between the rotor and stator. Controlling the ro-
tor current and hence the rotor produced field, makes

it possible to regulate the induced emf and the react-
ive power of the generator.

2.3 Transmission lines

Small hydro power stations are often connected to
a local distribution grid. This grid is usually owned
by the local utility company, and is normally oper-
ated at a voltage level between 11kV and 22kV .

A distribution grid is normally composed of a com-
bination of overhead lines and underground cables.
The overhead lines are used for long distances and
rural areas, while underground cables are used in
urban areas and for underwater crossings. An under-
ground cable is 10 to 15 times more expensive than
an overhead line, and it is therefore only used in situ-
ations where overhead lines are unsuitable.

From a mathematical point of view, an under-
ground cable can be modelled in exactly the same
way as an overhead line. Here, the values of the
electrical parameters are the only difference between
them. In a cable, the shunt capacitance is strongly
dependent on whether the three-phase conductors are
screened or not, and on whether the three conductors
constitute separate three-phase cables or one com-
mon cable [6].

The typical per unit length series inductance, L,
of a cable is about half the inductance of a similar
rated overhead line. On the other hand, the per unit
length charging current is about 30 times more than
for a similar rated overhead line. For a critically long
cable, the charging current can be equal to the max-
imum current of the cable, there will then be no ca-
pacity left for transmission of power.

3 Over-voltage phenomena in
Grunnåi

On the 27th July in 2011, several unwanted events
took place in Grunnåi power station. By looking at
the damages it could be seen that significant over-
voltages had occurred in the 22kV busbars of the
power station.

3.1 Damages from the events

On the end termination of one of the incoming sup-
ply cables, a phase to ground fault had occurred. Two
pictures of the end termination and its damage are
shown in Figure 3. From the figure it can be seen
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that there has been heat generation in the end termin-
ation.

Figure 3: Phase to ground fault on end termination
of supply cable

A breakdown of a surge arrester had also occurred
under the events. Figure 4 shows the surge arresters
with the broken one to the left. By looking at the
broken surge arrester and the signs of heat, it is nat-
ural to assume that the amount of energy dissipated
in the surge arrester was higher than its energy hand-
ling capability.

Figure 4: Broken surge arrester to the far-left

Signs of high temperatures and arcs were also seen
other places in the rack of the 22kV busbar, which
could be signs of a possible short-circuit due to a high
voltage.

Damages did also occur in other places of the ra-
dial this day, which indicates that the phenomenon
did not only take place locally in Grunnåi.

3.2 The sequence of events

By looking into the logs of the protection relays in
Grunnåi and Seljord sub-station, it was discovered
that several functionalities in each of the protection
relays had started to account for triggering. Unfor-
tunately the clocks in the protection relays were not
synchronised, so it is impossible to determine which
protection relay triggered first.

It is most likely to think that the whole sequence
started with a breakdown in the end termination of
the incoming cable in Grunnåi. The breakdown was
most likely caused by a weakness in the end termin-
ation due an installation failure. This error may have
caused a bad connection or a weakness in the insula-
tion which led to heat generation and degradation of
the insulation over longer period of time.

The presumed sequence of events was:

1. Earth circuit fault in Grunnåi due to a breakdown in
the end termination of a incoming supply cables.

2. The protection relay in the Seljord sub-station detec-
ted the phase to ground fault and disconnected the
Lønnestad radial from the rest of the grid in Seljord
momentarily after the fault was detected.

3. The disconnection resulted in heavy imbalance of
active power and reactive power in the now islanded
radial.

4. The frequency in the grid increased rapidly since
Grunnåi did not correct for the overproduction in the
island.

5. The generator circuit breaker disconnected Grun-
nåi from the grid, due to triggering of the over-
frequency relay (51Hz and 0.1 seconds). This left
the asynchronous generators in Sagbekken 1 and
Sagbekken 2 and 3 alone in the island.

6. Sufficient amount of reactive power in the grid to
initiate self-excitation. The self-excitation led to a
successive voltage build-up, which resulted in signi-
ficant over-voltages in the grid.

7. The high voltage led to a large voltage drop across
the surge arresters in Grunnåi. The amount of en-
ergy dissipated in the surge arrester was higher than
its energy handling capability. This caused one of
the surge arresters to breakdown.

8. The high voltage exceeded the dielectric strength of
air inside the rack of the busbars. The air became
ionised and arcing occurred inside the rack. This
arcing led to low impedance in the grid, and the pro-
cess of self-excitation came to halt.

This is the presumed sequence of events, based
on the damages and grid configuration. Following
chapter presents simulations from the Lønnestad ra-
dial where different scenarios are carried out.
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Figure 5: Overview of the Lønnestad radial

4 Description of the grid

For investigation of the over-voltage phenomena in
Grunnåi power station, only the Lønnestad radial is
of interest. This is the 22kV radial where the Grun-
nåi power station and Sagbekken power stations are
connected. The radial is mainly built up with cables,
where the total length of 22kV cables is 17.9km. An
overview of the Lønnestad radial is shown in Fig-
ure 5. The total power consumption in the radial will
vary throughout the day, but is assumed to be 250kW
with a power factor equal to 0.96 during the working
hours.

4.1 Grunnåi power station

Grunnåi hydro power station is the largest power
station in the Lønnestad radial with a synchronous
generator of 15.06MW . The turbine is governed with
an infinite droop control, which means that the power
station runs at a constant power set-point independ-
ently of the electrical frequency in the grid. Figure 6
shows a picture of the synchronous generator inside
the power station.

4.2 Sagbekken power stations

Sagbekken 1 and Sagbekken 2 and 3 are two mi-
cro power stations that utilise the water from the
same river. Both of the power stations are equipped

Figure 6: Grunnåi power station with its generator

with asynchronous generators with squirrel cage ro-
tor, where Sagbekken 1 has three units with a total
installed capacity of 400kW , and Sagbekken 2 and 3
has four units with a total installed capacity of
475kW .

Each of the powers stations is equipped with pro-
tection relays that operate a common generator cir-
cuit breaker in each station. Figure 7 shows the four
generator units in Sagbekken 2 and 3.
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Figure 7: The four generator units in Sagbekken 2
and 3

5 Power system simulations

The power system of the Lønnestad radial was
modelled and simulated using Modelica [7] as mod-
elling language and Dymola[8] as simulation tool.
Several models of the power system were created to
simulate different scenarios. A small project library
was build for the power system, containing the dif-
ferent power system models, main components, and
subsystems developed for the models.

The power systems model developed for the Løn-
nestad radial are based on the Electric Power
Library[9] which is a commercial library developed
by the Swedish company Modelon[10]. The library
gives the opportunity to model, simulate, and analyse
electric power systems, including AC three phase
systems, AC one phase systems, and DC systems.
The models can be used for both steady state and
transient mode for simulation and initialisation.

Some components like the protection relays and
RMS voltage sensors were not available in the
Electric Power Library and were therefore cre-
ated using the Modelica Standard Library [11].

The following sections will give you a brief intro-
duction to the models used and the investigated ef-
fects. A more complete and thorough documentation
is also available in [12].

5.1 Simulation models

Each of the power-station models consist of model
for the generator-turbine unit and a protection relay
unit. Figure 8 shows an example how the different
power stations are build up in principle.

Figure 8: Sub-model Sagbekken 1

5.2 Investigation of the self-excitation pro-
cess

To be able to investigate the process of self-
excitation with different grid configurations, the
model in Figure 9 was created.

Figure 9: Model used for investigation of the self-
excitation process

The model consists of a 100kW asynchronous pro-
duction unit and an equivalent distribution line which
is connected to an infinite grid. The investigation
was carried out as sensitivity analysis where different
loads and capacitors where compared in order to de-
termine their impact on the system. At t = 1second
the circuit breaker was opened, which brought the
power plant into islanded grid operation with a given
capacitive power and resistive load connected.
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5.2.1 Self-excited induction generator without
capacitors

Figure 10 shows how the SEIG behaves when it is
suddenly brought into islanded operation without ca-
pacitors connected to the generator terminals. Before
disconnection it can be observed that the generator
operates in steady state where it produces 98.4kW
with active power, and consumes 67.1kvar with re-
active power. As the induction machine no longer is
able to produce the main air-gap and winding leakage
flux after the disconnection, it can be seen how the
voltage reaches zero when the machine de-excites.
Due to the constant mechanical torque, Tm, on the
rotor, it can be seen in Figure 10 how the angular ve-
locity, ωr, increases when the electrical torque, Te,
disappears:

dωr

dt
=

Tm−Te

J

Figure 10: SEIG with no capacitor, disconnection at
t = 1s

5.2.2 Self-excited induction generator with ca-
pacitors

The unloaded SEIG’s behaviour with different ca-
pacitors after a disconnection is shown in Figure 11.
From the figure it can be seen that the SEIG needs
at least 10kvar of capacitive power in shunt with
the generator to initiate a successful voltage build-
up after a disconnection. The figure also shows that

a further increase of the capacitive power results in
shorter time from the disconnection to the voltage
build-up and a lower peak voltage. This is because
larger capacitors provide the minimum amount of re-
active power required for self-excitation at a lower
angular velocity than smaller ones.

Figure 11: SEIG voltage with different capacitors,
disconnection at t = 1s

5.2.3 Self-excited induction generator with ca-
pacitors and load

To simulate a resistive load’s impact on the SEIG, a
sensitivity analysis was performed with different res-
istive loads. For all the different loading scenarios, a
30kvar capacitor bank was connected in shunt with
the generator terminals.

By comparing the 10kW simulation in Figure 12
with the similar no-load simulation in Figure 11, it
can be observed that the load has a considerable in-
fluence on the new operating point. The 10kW load
reduces the maximum over-voltage of the 100kW
generator from 10kV to 1.4kV .

For the simulation with the 90kW load, it can be
observed that the load is too large to initiate the
voltage build-up immediately after the disconnec-
tion. As the rotor accelerates, it can be seen that the
self-excitation is initiated after t = 2.5seconds when
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the angular velocity is large enough for the capacit-
ors.

Figure 12: SEIG with 30kvar capacitors and differ-
ent loads, disconnection at t = 1s

5.3 Simulation with phase to ground fault at
Grunnåi

In order to investigate the over-voltage that oc-
curred at the 22kV busbar in Grunnåi on the 27th July
2011, the simulation model in Figure 13 was cre-
ated. At t = 1second a phase to ground fault occurs
at phase A. Simultaneously as the phase to ground
fault occurs, the circuit breaker in Seljord substation
disconnects the Lønnestad radial from the rest of the
grid due to momentary triggering settings in the pro-
tection relay.

Figure 14 shows how the voltages changes when
the phase to ground fault occurs at phase A, caus-
ing the system to go from a balanced system to an
unbalanced system. By looking at the figure it can
be clearly seen that the radial has enough capacitive
power and low enough load to initiate self-excitation
process in the Sagbekken power stations once the
Grunnåi power station is disconnected.

Figure 15 shows that it took 1.5 seconds from the
phase to ground fault occurring at the Grunnåi power
station before all the generators in the radial were dis-

Figure 14: Voltage at Grunnåi busbar, phase to
ground fault at T = 1s

Figure 15: Disconnection times, phase to ground
fault at T = 1s

connected. During this time the over-voltage reached
its maximum value of 53.36kV and was continuously
over 30kV for 0.7seconds at phase C.

6 Discussion

The investigation of the self-excitation process
shows how the dynamics of the generator changes
when different capacitors and loads are connected
to the generator terminals. For a generator running
at no load with capacitors connected to the termin-
als, there exists a minimum speed for self-excitation
to occur. If the capacitors do not provide sufficient
excitation to initiate the self-excitation at the given
speed, the loss of the utility grid causes a sudden in-
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Figure 13: Model of Lønnestad radial with phase to ground fault

crease in the slope of the equivalent capacitor line
seen by the generator [1]. This change may cause a
complete or partial loss of the generator excitation.
Due to this, the generator fails to produce an electro-
magnetic torque large enough to overcome the mech-
anical torque, which results in acceleration of the ro-
tor.

Unless the residual flux is lost, the self-excitation
can be initiated when the angular velocity has in-
creased such that the reactive power from the capacit-
ors is sufficient. Once the process of self-excitation
is initiated, the terminal voltage starts to build up.
The generator reaches its new stable operating point
when the dynamic magnetisation line of the gener-
ator intersects the linear capacitor line.

For asynchronous generators connected to a utility
grid with much reactive power in form of capacitors
or cables, it is crucial with quick detection and low
trigger time for over-frequencies to avoid unwanted
over-voltages.

The simulations shows that the reactive power in
the grid is great enough initiate self-excitation that
results in harmful over-voltages, independently of
whether the load is connected or not. It is seen that
the voltage build-up happens quickly. It takes below
0.4 seconds from the radial is brought into islanded
operation to the voltage reaches its peak value.

Significant over-voltages can also occur when a

phase to ground fault arise at Grunnåi busbar. Re-
gardless of whether Grunnåi power station is con-
nected or a phase to ground fault arise, the self-
excitation of the Sagbekken stations will result in
harmful over-voltages. For all the simulations, the
magnitude and length of the over-voltages are greater
than the thermal stability limit of the surge arresters
in Grunnåi power station.

Correct parameters for the protection relays are es-
sential for providing sufficient protection of the grid.
This is also the easiest way to protect the Lønnestad
radial against harmful over-voltages. Simulations
show that the peak value of the angular velocity can
vary dependent on the load scenario. Correct para-
meters for detection of over-voltages are therefore
most important for the protection relays.

7 Conclusion

This paper investigates the system dynamics in the
Lønnestad radial when it is brought into islanded op-
eration. Modelling and simulation of the transient
behaviour of an asynchronous generator is a fairly
complex task that requires good knowledge of elec-
tric machinery and dynamic systems. Due to this,
there is often a lack of knowledge in small utility
companies when it comes to the asynchronous gen-
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erator.
The asynchronous generator has the opportunity to

operate as a standalone unit if the amount of reactive
power in the cables or capacitors is sufficient. For the
Lønnestad radial, it was proven that the amount of
reactive power in the grid is large enough to initiate
self-excitation of all the seven asynchronous gener-
ators in the radial.

The self-excitation leads to fast voltage build-ups
that results in a harmful over-voltage in the distribu-
tion grid. For the simulations with load connected,
it was observed that the over-voltage in the distribu-
tion grid reached its maximum voltage of circa 50kV ,
only 0.4 seconds after the radial was brought into is-
landed operation.

This is a type of over-voltage that requires a great
deal of knowledge regarding self-excitation to en-
sure good protection of the grid. Normal protection
methods as surge arresters will not be adequate, since
these are designed to protect against surge voltages,
and not transient over-voltages with several seconds
duration. Simulations performed in this paper show
that it is crucial with correct protection parameters
in the Sagbekken stations to protect equipment in
the Lønnestad radial against over-voltages caused by
the generators. To avoid unwanted voltage build-
ups, correct parameters for over-voltage detection is
the most important protection. It is recommended
to have momentarily disconnection when the voltage
exceeds a given value.
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Abstract 

In this paper, a Hybrid Energy System (HES) con-
figuration is modeled in Modelica. Hybrid Energy 
Systems (HES) have as their defining characteristic 
the use of one or more energy inputs, combined with 
the potential for multiple energy outputs. Compared 
to traditional energy systems, HES provide addition-
al operational flexibility so that high variability in 
both energy production and consumption levels can 
be absorbed more effectively. This is particularly 
important when including renewable energy sources, 
whose output levels are inherently variable, deter-
mined by nature. 

The specific HES configuration modeled in this 
paper include two energy inputs: a nuclear plant, and 
a series of wind turbines. In addition, the system 
produces two energy outputs: electricity and synthet-
ic fuel. The models are verified through simulations 
of the individual components, and the system as a 
whole. The simulations are performed for a range of 
component sizes, operating conditions, and control 
schemes. 

Keywords: hybrid energy system; Modelica; multi-
ple-input; multiple-output; renewable power; optimi-
zation 

1 Introduction 

Over the many years during which the current energy 
ecosystem was designed and has evolved, technolog-
ical and social growth occurred slowly and environ-
mental impact was not a primary concern.  However 
in the current context of global climate change and 
economic volatility, the old energy system is far 
from optimal.  Renewable energy sources promise an 
alternative that is both low cost and environmentally 
friendly. However, renewables also pose a challenge: 
they introduce significant variability in their output.  

The output variability and uncontrollability of 
renewables require grid operators to maintain a larg-
er spinning reserve. If a large plant is asked to reduce 
generation as the result of using lower-cost solar or 
wind, the plant has to ramp down and eventually 
ramp up again. This is harmful, as the cyclical load-
ing reduces the life of the plant, or requires costly 
maintenance. 

In addition to output variability, another concern 
when designing a power plant is the potential change 
in the cost of inputs as well as the price of outputs. In 
a conventional plant, there is only one input and one 
output. A consequence of this one-to-one energy 
mapping is that the plant has little control over its 
profitability when a price change occurs. An increase 
in the cost of the input, or decrease in the price of the 
output will most likely cause a decrease in profit. 
There is a clear tradeoff between using the low cost 
renewables and the higher level of control that con-
ventional plants offer. 

One approach for managing such tradeoffs is the 
development of Hybrid Energy Systems (HES). HES 
consider multiple energy inputs and outputs in one 
system. A Multiple Input Single Output (MISO) 
HES uses two or more energy inputs, such as nuclear 
and wind, and produces a single output, most often 
electricity. A Multiple Input Multiple Output 
(MIMO) system includes multiple inputs and pro-
duces multiple outputs, such as producing both elec-
tricity and synthetic fuel. Since they are capable of 
dynamically utilizing diverse inputs and outputs with 
different costs, MIMO HES provide a flexible and 
robust alternative for the energy ecosystem. 

There are distinct advantages to having multiple 
energy inputs and outputs. Consider the HES archi-
tecture shown in Figure 1. This MIMO HES uses a 
renewable energy source (e.g., wind or solar), a non-
renewable energy source (e.g., nuclear), and a carbon 
source to provide both electricity and chemical prod-
ucts. The HES whose models are presented in this 
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paper use the architecture illustrated in Figure 1. One 
proposed mode of operation when generation from 
renewables is high is to direct steam from the non-
renewable source to the chemical plant, which re-
quires high-temperature steam to produce synthetic 
fuel. The amount of steam diverted to the chemical 
plant can be dynamically varied so that the HES can 
load-follow, i.e., it can quickly react to changes in 
the availability of renewables or the demand from 
the grid. The price of electricity may change dramat-
ically, not only during different seasons, but also 
during the course of a day. It is even possible that the 
price of electricity becomes negative, and plants 
must pay to dispose of the electricity they produce. 
Producing for a short period at negative prices may 
sometimes be acceptable because the cost of ramping 
down and ramping back up is greater than the ex-
pected loss from paying to push the electricity onto 
the grid [5]. Plants or MISO systems that only pro-
duce one output have little flexibility as they cannot 
produce another product. MIMO systems however, 
are more flexible.  If the price for one of its outputs 
drops significantly, the system can produce other 
outputs that are still highly priced. This increased 
diversity allows for plant owners to generate greater 
and more consistent profits. Since the MIMO system 
does not need to cycle the non-renewable source as 
frequently, its performance, reliability, and capacity 
factor are expected to be larger than for other sys-
tems. This in turn results in an opportunity for in-
creased renewable penetration as well as profitability 
for plant owners. 

Although MIMO systems provide many benefits, 
there are also some disadvantages. Due to the in-
creased complexity of these plants, their design, 

analysis, and control becomes more challenging. A 
second disadvantage concerns the lifespan of key 
components, such as heat exchangers, which may 
suffer from additional wear due to thermal cycling. 
Another concern for HES is that they have to deal 
with dynamic conditions that cannot be well repre-
sented in a static model. In addition, dynamic simu-
lation is critical to controller design and optimiza-
tion. To support dynamic modeling, models are im-
plemented using the Modelica language, and simu-
lated using Dymola [9].  

In the remainder of this paper, other HES models 
from the literature are first reviewed. Then, models 
are presented for the thermo-fluid systems, electrical 
system, and chemical system of the HES architecture 
shown in Figure 1. Simulations of these models are 
then reported and interpreted. In addition, lessons 
learned throughout the model creation process are 
presented. Finally, concepts for future work are de-
scribed. 

2 Related Work 

Modeling and optimization of HES is not entire-
ly new. There are multiple examples of research be-
ing made in this area [13-15]. [15] is an example of a 
hybrid wind-solar energy system for small scale ap-
plications. The hybrid system does not connect with 
the electrical grid and therefore avoids any complica-
tions associated with having to do so, such as main-
taining the same phase angle and voltage. This is 
another area where HES can be applied; however the 
systems designed for off-grid use do not help allevi-
ate the non-renewable production of electricity that 

Figure 1: The architecture for an Advanced Hybrid Energy System (MIMO) [6, 7] 
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dominates the electrical grid. There are examples of 
on-grid applications, such as [13].  

In [13], the task of handling renewable genera-
tion for the purpose of connecting to the electrical 
grid is addressed. This system however, focuses on 
the control and optimization of a wind power gener-
ation plant, as compared to HES. In this case, the 
plant is optimized to account for dynamic changes 
that can occur in wind. Even so, this does not elimi-
nate the plants dependency on there being a suffi-
cient amount of wind to power the electrical grid. 
The issue of connecting a HES to the grid is dis-
cussed in [14]. 

In the case of [14], the HES consists of a photo-
voltaic, diesel, battery combination. This is used for 
the purpose of supplying electricity to rural Saudi 
Arabia. In this application, software called the Hy-
brid Optimization Model for Electric Renewables 
(HOMER) was used to evaluate and optimize the 
HES [12]. HOMER allows for the design of HES 
architectures, in a high level view. It can be used to 
evaluate the basic structure of HES, but does not deal 
with the dynamic events occurring within a system. 
In addition, HOMER handles loads such as electrici-
ty and thermal, abstracting the smaller components 
that would actually be involved in the design of a 
large scale plant.  

 
There appears to be a gap in terms of designing a 

full scale HES plant for the purpose of connecting to 
the electrical grid. The previous examples show that 
there is potential for economic and environmental 
improvements from creating HES configurations, 
either new or from converting old plants. 

3 Models 

The modeling of the HES described above was di-
vided into five main sections. The five sections are: 
the nuclear reactor, two steam cycles, a chemical 
plant, and the electrical component. These subsys-
tems are shown in Figure 2, which shows the indi-
vidual models connected to illustrate the final struc-
ture of the HES model. The nuclear reactor supplies 
the primary heat generation that is utilized in the first 
steam cycle. The steam cycles consist of one seg-
ment that extracts work from the heated steam for 
the purpose of generating electricity, and the other 
superheats steam for the chemical plant. The chemi-
cal plant takes hot steam and natural gas to produce 
synthetic fuel. The electrical section contains the 
renewable source, in this case wind turbines, with a 
battery and connects with the electricity generated 
elsewhere to power the electrical grid. The models 

used are from the Modelica basic library as well as 
the ThermoPower library, which is used for model-
ing of the thermo-fluid components [1]. 

3.1 Nuclear Reactor 

The nuclear reactor’s purpose is to supply heat to the 
steam cycle. This is the largest energy input to the 
HES. The model for the reactor is shown in Figure 3. 
The model is simplified as the primary concerns are 
with the dynamics of the interconnected system in-
volving the electrical and chemical components. The 
reactor uses a heat source that ramps from a nominal 
starting power to its full load. This represents a plant 
powering up from reduced load. This allows for a 
system that uses the reactor to warm up to steady 
state operating conditions, as compared to trying to 
start all of the equipment at full load. This heat trans-
fer is applied to a pipe with water flowing through it 
to represent a main heat exchanger. 

3.2 Steam Cycle 

The steam cycle models are responsible for capturing 
the transfer and distribution of energy of the thermo-

 

Figure 2: Top-level model for the HES 

 
Figure 3: The model for the reactor. 
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fluid portion of the HES. This is broken into two 
segments: one whose primary purpose is the produc-
tion of electricity, and the second being the super-
heating of steam to the chemical plant. The distinc-
tion of primary purpose is necessary due to the fact 
that both segments produce electricity and heat wa-
ter. 

The portion of the steam cycle primarily respon-
sible for generating electricity is shown in Figure 4. 
There are some critical observations to note about 
this model. Since the HES can vary the amount of 
steam being utilized to produce electricity, if just one 
turbine were to be used there would be times where 
it would not be fully utilized. For this reason, multi-
ple turbines are present for use in a cascading fash-
ion, as in, at low power requirements, only the “60% 
Turbine” may be used. As the electrical demand in-

creases, the “30% Turbine” and eventually the “15% 
Turbine” will also be added. Other than this, the 
model represents a Rankine cycle with safety com-
ponents as well as a boiler to distribute steam to the 
chemical plant. When the power demanded from the 
turbines is lowered by the addition of renewable 
power, the flow rates through the turbines will de-
crease. This will cause a corresponding increase in 
pressure as the same amount of heat is being added 
to the cycle, regardless of the turbine output. To reg-
ulate this pressure, a pressure relief valve is present, 
but instead of venting this excess energy, the excess 
steam is used to heat condensate water coming from 
the chemical plant, thus providing it with steam. A 
temperature control valve is also included to more 
precisely control the temperature of the colder water 
entering the nuclear reactor. 

 

Figure 4: The model for the steam cycle whose primary function is to produce electricity. 
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The model for the heat exchanger is a simplified 
one that is capable of simulating phase changes in 
the system. Other heat exchangers had been tested, 
such as those from the ThermoPower library and the 
Modelica standard library, however they did not fit 
the needs of this application [1, 9]. The complication 
in using these models is that they were not designed 
to allow the fluid to undergo a complete phase 
change. The cooling of steam to water results in sig-
nificant changes in the fluid properties, such as den-
sity. This causes simulation stiffness. Often, at least 
one of the heat exchangers is not always in use, it is 
possible for the contents of that heat exchanger to 
cool to the saturated liquid vapor temperature, and 
causes corresponding stiffness. 

To resolve this, a model was created that utilizes 
pipes with no volume. Since there is no volume, the 
large changes in fluid properties that occur through-
out the heat exchanger are largely ignored, and only 
the inlet/outlet conditions of the fluid determine the 

heat transfer. 

To capture as much detail as reasonable, the heat 
transfer, Q, and efficiency of the heat exchanger, η, 
are calculated in equations (1), (2), (3), and (4) [2, 
10]: 
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where Δh is the change in enthalpy, ṁ is the mass 
flow rate, and Cp is the specific heat of the fluid. k is 
the assumed heat transfer coefficient. This ignores 
some of the effects that are present during a phase 
change in a heat exchanger, however, this occurs 

 

Figure 5: The model for the steam cycle that is primarily responsible for superheating steam to the chemical 
plant. 
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under conditions where capturing that change is con-
sidered insignificant. A phase change can occur 
when the flow rate of the hot side is small relative to 
the cold side. This can occur in the second heat ex-
changer in Figure 4, labeled preHeat2. It is expected 
that this condition will not change the results drasti-
cally, and the dynamics of the heat exchanger when 
it is not transferring large amounts of heat are not a 
concern currently.  

Figure 5 presents the other side of the steam cy-
cle, the one responsible for superheating steam to the 
chemical plant. The purpose of this model is to take 
steam generated from the model in Figure 4, super-
heat it, and then transport it to the chemical plant. 
There are locations where the condensate water addi-
tion and removal are represented by sources and 
sinks of water. This is done for simplicity instead of 
closing the loop of flowing water. The dynamics of 
the condensate water used in this system are not con-
sidered a significant concern. In addition, the justifi-
cation for this is that the condensate water is merely 
being pumped around the system, and the power re-
quired to pump liquid water is small relative to the 
power produced by most Rankine cycles [10]. 

In the event that there is an insufficient amount 
of steam being transferred to the model in Figure 5, 
this system also has auxiliary heat production gener-
ate the necessary additional steam.  Furthermore, the 
steam that returns from the chemical plant, in addi-
tion to excess steam produced, if any, is put through 
a turbine to capture energy that would have been 

wasted otherwise. 

3.3 Chemical Plant 

The model of the chemical plant is shown in Figure 
6. The chemical plant model utilizes a methanol me-
dium, and most of the sub-models perform their 
functions mathematically, via transfer functions, in-
stead of using the energy based components of the 
water system. This is done to simplify the overall 
analysis, as the intricacies of transforming natural 
gas to gasoline and liquefied petroleum gas (LPG) 
are not of interest. 

3.4 Electrical  

The electrical model is the location where the renew-
able source and the electrical grid, which receives 
power from the HES, are included. The renewable 
generation for the HES under consideration is a se-
ries of wind turbines. The model uses representative  
data for wind speed for a location in Idaho from the 
Western Wind dataset, which was made available 
from NREL (National Renewable Energy Laborato-
ry) [6, 11]. This data assumes a height of one-
hundred meters and has wind data for every ten mi-
nute period. The year period of 2006 is used for sim-
ulations. This wind speed, v, is then mapped to rota-
tional power, P, by equation (5) [13]: 

& �	
�

'
()*+,- (5) 

where ρ is the air density, A is the cross sectional 

 

Figure 6: The model for the chemical plant. 
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area of the blades, and Cp is the power coefficient. 
This rotational power is applied to an electrical gen-
erator, which outputs three-phase AC. It is worth 
noting that the models that utilize three-phase AC are 
done so in dq0-reference frame to improve simula-
tion time.  

In addition to the wind turbines, another notable 
component is the electrical battery. The model for 

the batteries is shown in Figure 7. The AC signal 
interacts with an inverter, which converts AC to DC 
and DC to AC depending on whether the battery is 
charging or discharging. The battery itself is a resis-
tor-capacitor unit arranged in series and parallel until 
the necessary voltage and capacity is reached, also 
known as the Thevenin Battery Model [3, 8]. The 
overall electrical model is shown in Figure 8. The 
plug represents input electrical power generated 
elsewhere. The two batteries in Figure 8 are con-
trolled by a grid supervisor, which dictates the real 
and reactive power demanded. 

The electrical grid is the location where all of the 
electrical signals come together to power a model of 
the U.S. electrical grid. The outputs of the turbines 
from the steam cycle, as well as output from the 
wind turbines, each with their own battery to handle 
transients, are connected to the U.S. grid via a circuit 
breaker. This circuit breaker connects the HES to the 
electrical grid when it is closed. In addition, lines 
and substations are included to represent how the 
electricity would travel to the grid and include rele-
vant losses from transmission. The lines contain in-
ductor-resistor circuits. Thus, the losses in the resis-
tors, as well as the dynamics from the inductors are 
taken into account. 

 

Figure 7: The model for a battery. 

 

 

Figure 8: The electrical model, which includes the wind turbines, batteries, and the grid. 
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4 Simulation Results 

To verify that the models created represent the sys-
tem of interest, simulations are conducted. The re-
sults of these simulations are analyzed to ensure that 
the models behave as expected. Before combining 
the models and simulating the full system, individual 
components were tested first. 

One of the first lessons learned came from the 
simulations of the first steam cycle. By closing the 
fluid loop, the simulations immediately became sen-
sitive to various parameter values. Changes in the 
sizes of components in the loop cause the system to 
react in the form of large transients that dominate the 
startup period. These transients cause the simulation 
to be stiff and result in the simulation time increas-
ing significantly. Attention to initial parameter val-
ues is paramount to meaningful results for this situa-
tion. This is one reason why the reactor is ramped up 
to load, as compared to starting at max load.  

As mentioned previously, the other heat ex-
changer’s that are considered initially resulted in 
simulation problems for the first steam cycle. The 
low flow rate of steam causes the steam to condense 
to liquid water, which results in a large increase of 
density, drastically increasing the simulation time. 
The change in density causes the simulation to both 
progress slowly, and result in the model not behav-
ing as intended. One result of the large increase in 
density is that objects with a finite volume began 
decreasing their pressure rapidly. In some cases, this 
low pressure causes some components to operate in 
backflow. For the separator in Figure 4, this result 
does not make sense. A mixture of liquid water flow-
ing from the top port into a heat exchanger is not 
realistic or indicative of what would normally be 
expected for a separator. The phase change also 
causes problems with the medium model used for 
water. The changing phase results in the properties, 
in addition to the density of the water, to change 
drastically. Since a phase change occurs, the medium 
model needs to be capable of varying properties, but 
should do so in a smooth manner so as to avoid stiff-
ness issues. 

To explore the interactions between the thermo-
fluid systems, a simulation is conducted consisting of 
only the nuclear reactor, the steam cycles, and the 
chemical plant, represented in Figure 9. In order to 
capture the effect of the wind power, the load re-
quired from the turbines is reduced as if the wind 
turbines were connected. Assuming that the overall 
power that would go to the grid is set to be constant, 
as the wind turbines produce more power, the tur-
bines accordingly reduce their electrical production. 

Conversely, as the wind turbines produce less power, 
more electricity is requested from the turbines. 

The simulation is conducted using nominal pa-
rameter values that will cause all of the turbines to be 
used for at least a short period of time. Of particular 
interest are the flow rates of the steam through the 
turbines, preheater, and the secondary boiler. The 
results for this are shown in Figure 10. This simula-
tion in Dymola takes approximately 45 seconds to 
simulate almost 14 hours of HES operation. 

Figure 10 shows the result of the simulation. 
These results are reasonable for the conditions being 
simulated. Initially the system is allowed to ramp up 
and so no power is requested, hence causing large 
amounts of steam to divert toward the secondary 
boiler, denoted in pink. As power is requested, the 
flow rate of steam going to the secondary boiler de-
creases with a corresponding increase in flow rate 
through the 60% turbine, denoted in blue on the left. 
It quickly reaches its operating flow rate and the 
30% turbine begins turning on, denoted in red. 
Around four hours, even the 15% turbine is at its 
operating flow rate. The wind turbines, based on the 
wind speed, begin producing significant power at 
four and a half hours, reducing the load requested 
from the turbines, and causing the 15% and 30% tur-
bines to turn off as more steam goes toward the sec-
ondary boiler, as expected. 

The simulation also catches a significant transi-
ent move close to twelve hours into the simulation. 
This is likely related to the low power being de-
manded from the turbines, with significant quantities 
of steam being sent to the secondary boiler. The 
temperature of the condensate water that would inlet 
to the reactor drops, causing the preheater to turn on. 

Figure 9: The model containing the reactor, the 
steam cycles, and chemical plant. 
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The cause of the temperature drop may be related to 
the temperatures in the second heat exchanger that 
connects to the secondary boiler.  

 

5 Summary and Future Work 

In summary, models for a HES that utilizes a non-
renewable source (nuclear), a renewable source 
(wind), and a chemical plant are presented. This 
work shows that Modelica can be effectively used to 
model large complex systems, and still allow simula-
tions of dynamic conditions. In addition to modeling 

the system, Modelica offers a significant advantage 
for evaluating control algorithms, which will likely 
influence the success of HES. The application of this 
model to determining the optimal design and control 
schemes will be the target of future work. 

Ultimately, the economic and environmental 
benefits of the proposed MIMO HES described 
above are to be estimated in order to be optimized. 
The controllers and other variables, such as the 
quantity of wind turbines, will be optimized to max-
imize the profit of the HES to a plant owner. To 
quantify the environmental benefits of the HES so 
that the HES can be optimized using profit, a price 
per ton of CO2 is to be used. This quantity can be a 
function of time or constant. This allows the decision 
maker to only be concerned with one thing, profit, 
while still having an environmental concern. 

Estimating the profitability of the HES with ap-
propriate detail is complex. It is conjectured that the 
profitability of a HES like the one described above is 
heavily reliant upon how the system is controlled. 
One of the HES’s key features is being able to take 
advantage of varying conditions, including the mar-
ket prices for the inputs and outputs. How the system 
reacts to these changes is in the control scheme. The 
performance of the HES may increase for a different 
control scheme, and still yield a negative overall 
profit for various reasons. For example, due to the 
thermal cycling of multiple components, such as the 
turbines and heat exchangers, the overall life of these 
components can be drastically reduced in practice. 
This will be taken into account with additional 
maintenance and replacement costs. These costs may 
cause the plant to shut down or operate at reduced 
capacity factors more often than a stand-alone sys-
tem. This is why it is important to optimize with re-
spect to profitability as compared to only system 
performance. The control scheme is not the only al-
ternative for designing optimized HES. 

In addition to optimizing the current HES, addi-
tional avenues to increase profit will be explored. 
One area for exploration is that of varying the archi-
tecture of the HES for potential increases in profita-
bility. For example, it may be the case that a system 
that uses a core and a non-core non-renewable load 
will result in a superior overall profitability for the 
system. Testing cases such as this may also be con-
sidered, however these other architectures will also 
need to be optimized, making the process difficult. 
Other methods that can further increase the profita-
bility of the HES will also be explored. 

Another alternative is, instead of assuming con-
stant conditions and simulating the current system 
under those conditions, allowing for the system to 

 
Figure 10: The results of simulation for the flow rates 

of the turbines, secondary boiler, and preheater1 
above. Below shows the power demanded from the 

turbines. 

0 4 8 12
-50

0

50

100

150

200

250

300

Steam Utilization in Steam Cycle 1

M
as

s 
F

lo
w

 R
at

e 
[k

g/
s]

Time [hr]

'60%Turbine'.w
'30%Turbine'.w
'15%Turbine'.w
secondaryBoiler.w
preheat1.w

0 4 8 12
-2.0E7

0.0E0

2.0E7

4.0E7

6.0E7

8.0E7

1.0E8

1.2E8

1.4E8

Pow er Demanded from the Turbines

P
ow

er
 D

em
an

de
d 

(W
)

Time [hr]

pow erDemanded.y

Session 6B: Power, Energy & Process Applications 2

DOI
10.3384/ECP14096979

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

987



change or expand. This can also increase profit. One 
method that does this is Real Options Theory. Real 
Options Theory operates under the premise that 
evaluating the profitability of a design based on the 
average operating conditions is flawed [4]. In addi-
tion, a system will normally not stay the same 
throughout its life cycle, as conditions surrounding 
the system change, the system can be augmented in 
order to expand or vary how the system acts. This 
occurs in real life. For example, managers may elect 
to increase the size of a plant after it has already 
been built and is in operation. By taking this into 
account when first building a design, overall costs 
can be reduced with overall profitability and flexibil-
ity being increased. 
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Abstract 

As part of the advanced small modular nuclear reac-
tor (AdvSMR) R&D program, Oak Ridge National 
Laboratory (ORNL) is developing a Dynamic Sys-
tem Modeling Tool (MoDSim) to facilitate research 
and development related primarily to instrumentation 
and controls (I&C) studies of small modular reactors 
(SMRs).  
 

The primary objective is to produce a demonstration 
product of a dynamic system modeling tool for 
SMRs.  Functional Mockup Interface (FMI) has been 
used to allow the development of scoping models for 
non-Modelica users.  This tool includes a web-based 
interface using Xogeny’s FMQ platform for model 
configuration with local application deployment for 
simulation using FMI Add-in for Excel from 
Modelon; this toolchain is designed to allow plug 
and play access for users of various skill levels.  The  
web-based interface allows true web-based access 
and solutions without requiring local applications. 
The initial installation of this tool has been tested on 
a liquid-metal small modular reactor (ALMR) con-
cept modeled using Dymola and exported via FMI. 
This tool allows simulation to be performed within 
Excel without expertise in the native simulation lan-
guage (Modelica) or model development and simula-
tion environment (Dymola). This toolchain fulfills 
the Department of energy (DOE) project scope goal 
of developing a tool “in a common and familiar en-
vironment to support a range of research activities 
requiring dynamic behavior simulation, modeling 
tools with easily re-configurable modules that reduce 
data input to typically available system level plant 
data”.   

 

Keywords: nuclear reactors; thermofluid systems; 
Dymola; Excel; web-based simulations; Advanced 
Liquid Metal Reactor. 

1 Introduction 

Small modular nuclear reactors (SMRs) are modular 
nuclear power plants that are smaller (300 MWe or 
less) than current-generation base load plants (nomi-
nally 1,000 MWe or larger). SMR designs may in-
clude factory-fabricated reactors that can be trans-
ported by truck or rail to a nuclear power plant site. 
Small modular reactors offer the advantages of lower 
initial capital investment, intrinsic safety, scalability, 
and siting flexibility at locations unable to accom-
modate larger reactors. In addition, SMRs offer the 
potential to construct and operate a first reactor and 
later add more reactor modules at the same site 
(phased construction). This approach offers econom-
ic advantages but could generate numerous configu-
rations of reactor modules, power conversion, and 
heat sink that will require unique capabilities from 
control and support systems.  

 
The objectives of this project are to establish a con-
figurable framework for the development of a dy-
namic simulation environment for SMRs using pre-
developed simulation modules, initiate the develop-
ment of selected modules, and demonstrate their use 
within an initial integration framework. 
 
The DOE Work Scope includes the development of 
an interface and workflows (or guided processes) 
that allow the creation of self-consistent reactor 
power system designs without in-depth knowledge of 
the native modeling language or simulation envi-
ronment. This interface must allow the user to pro-
vide input information, process input information 
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derived from the ruleset (i.e., preconfigured inputs 
based upon the user’s choices) and create executable 
files to calculate a time-dependent response for the 
system. Currently the workflows established in the 
interface for novice users are limited to configured 
architectures that have been precompiled in Dymola. 
Novice users can select the subsystems and modify 
parameters for the generation of results without re-
quiring knowledge of Dymola or Modelica. Addi-
tionally, the current interface tool also allows ad-
vanced users to create new systems, new models, 
even new architectures via access to source code in 
GitHub and use with Dymola. GitHub 
(https://github.com/) is a web-based platform that 
allows users to share, modify, and comment on code 
for project collaboration. The use of GitHub integra-
tion provides a framework for advanced users to 
push changes back to the ORNL project team and 
collaborate as part of the Open SMR community.  
 
The ability to configure models easily (plug-and-
play) with software tools requires a formal model 
architecture. This configurable model architecture is 
required to enable configuration via web applica-
tions. The configurable architecture also enables po-
tential scripting of executable system configurations 
and FMU generation. The web-based application 
makes use of this hierarchical architecture structure 
to simplify the creation of new models from assem-
bled components.  

 
While it is difficult within the page length constraints 
to include all aspects of the project, it is very im-
portant that both unique aspects of this project be 
described within this paper.  Thus, this paper in-
cludes the application of this approach to a novel 
space-advanced nuclear reactors as well as the gen-
eration of FMU simulations and application of web-
based solutions.  Unfortunately, a detailed discussion 
of both aspects is not possible within the publication 
constraints.  Additional detail will be provided in 
further publications. 

2 SMR Dynamic Modeling 

2.1 LANGUAGE (Modelica) 

Traditionally, modeling of complex reactor systems 
has been based on extensive, complex Fortran-based 
subroutines. Considerable time and effort were nec-
essary to understand and manipulate these models. In 
contrast, the Modelica language has built-in features 
and open-source-toolsets for modeling fluid power 
systems. Physical systems are modeled by connect-

ing classes of components in series or parallel, and 
by specifying the important parameters of the ob-
jects. Fluids are defined as special classes that model 
the medium behavior using semi-empirical correla-
tions or first-principles equation-of-state models that 
yield the full state of the medium as a function of 
two known states (e.g., pressure and enthalpy). 
These models can be sophisticated enough to support 
a wide range of operating regimes for fluids at the 
cost of computation time—and sometimes numerical 
stability. These property functions are frequently 
called during execution of simulations to calculate 
various engineering variables such as heat transfer 
coefficients and friction factors. The properties of 
water are already built into the standard Modelica 
Media library for use with the Modelica Fluid li-
brary. In addition to the Modelica Fluid Library, this 
project has made extensive use of the ThermoPower 
Library developed by the University of Milan [1].  
The built-in water class has a complex set of routines 
that support working with water from sub-cooled to 
supercritical regions. As part of the project, ORNL 
implemented a number of heat transfer media, in-
cluding liquid salts (flibe, flinak, KFZrF4) and liquid 
metals (sodium, NaK, PbBi eutectic) for use in Mod-
elica. The Modelica models were based on the com-
ponents and systems presented in [3] for the Power 
Reactor Innovative Small Module (PRISM) design 
concept. For validation and verification purposes, the 
results from running these models were compared 
with the results documented for the PRISM concept.   

2.2 SOLVER (Dymola) 

The simulation development and execution platform 
chosen for this SMR modeling effort is Dymola [4].  
Dymola is a commercial modeling simulation envi-
ronment developed by Dassault Systemes.  Dymola 
has been used extensively within the automotive, 
aerospace, robotics and process system disciplines in 
part due to the extensive set of libraries developed 
and available within Dymola. The libraries include 
thermal and fluid dynamics.  As a full simulation 
environment, a graphical interface to the model ob-
jects, as well as tools for the compilation and debug-
ging of the models and analysis of the results are also 
included. To meet the project objective to provide 
access to dynamic simulation capability without spe-
cial tools, export of Functional Mockup Units 
(FMUs) from Dymola is used in conjunction with 
FMI Add-in for Excel (FMIE) [5] from Modelon to 
allow simulation in Microsoft Excel.  Co-simulation 
FMUs are generated for dynamic modeling in FMIE. 
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2.3 Architecture 

Modelica and Dymola provide a highly convenient 
means to create reconfigurable model architectures 
which include high-level rules for systems, interfac-
es, and connections. As shown in Fig. 1, the ALMR 
Power Reactor Inherently Safe Module (PRISM) 
end-to-end plant systems architecture includes the 
following systems:  
1. Direct Reactor Auxiliary Cooling System 
(DRACS),  
2. Primary Heat Transport System (PHTS),  
3. Intermediate Heat Exchanger (IHX),  
4. Intermediate Heat Transport System (IHTS),  
5. Steam Generator (SG),  
6. Power Conversion System (PCS), and  
7. Electrical Grid.  
 
These systems will be defined later in the report in 
more detail. In addition to the plant systems, the fol-
lowing modules are included in the architecture:   
 
1. Event Driver (ED),  
2. Control System (CS), and  
3. Communication bus.  
 
The ED module generates signals for exciting the 
system. It performs two basic functions:  
1. operational transients and  
2. injection of faults.  
 
Operational transients include power changes, load 
following commands, and intentional reconfigura-
tion. A fault injection function introduces failures or 
performance degradation in identified plant compo-
nents. Anticipated operational occurrences (AOOs) 
are handled through the fault injection function. The 
CS module performs continuous-time control func-
tions for all actuation interfaces in plant systems 
based on sensory feedback. 
 

 
Fig. 1  SMR modeling architecture 

2.4 Models  

A small modular reactor consists of several typical 
components and subsystems.  These include the reac-

tor core, piping and primary pumps that make up the 
reactor and primary systems. Additional piping, heat 
exchangers, pumps and steam generator are also in-
cluded that make up the intermediate loop subsys-
tem.  Finally, turbines, and process system compo-
nents are included in the power conversion system as 
well as generators and other grid related components 
in the grid subsystem.  A discussion of the specifics 
of these systems is included in the sections below. 
 
The dynamic models are implemented by equations 
in Modelica using a hierarchical modeling approach. 
The component models are often based upon various 
model libraries that are available as open source or 
as commercial products. Additionally, a user can 
create component models from their own Modelica 
code to supplement the existing libraries. Some of 
the reactor modeling includes component models 
created by the ORNL team. 
 
The ALMR reactor design that has been modeled is 
based on the variation proposed by GE in the mid-
1990s and documented in GEFR-00793 [3].The end-
to-end system models developed are based on the 
systems, components, and equations included in this 
reference.   For validation and verification purposes, 
the results from running these models were com-
pared with the results documented for the PRISM 
concept. System behavior was confirmed compared 
to previous model studies. 

2.4.1 Reactor Core 
Most of the component models for SMR’s are specif-
ic implementations of traditional thermal power 
components.   However, the reactor core is unique 
and requires special consideration.  As a result, the 
equations for modeling the core will be considered.   

 

 
Fig. 2  Reactor core component 

 

The prompt portion of normalized heat generation is 
implemented with the point kinetics equations. 
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where ���� is normalized reactor power, ����� is the 
normalized concentration of the i-th group delayed 
neutron precursor, 	� is the fraction of the i-th group 
precursor, �� is the decay constant for the i-th group 
precursor, ����� is the total reactivity, and 
 is mean 
neutron generation time. The rate equations are 
subject to steady state intitial conditions, i.e., 
�� = 	 ��� = 0. 

 

The delayed portion of normalized heat generation is 
implemented with the following: 
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+ 				0.87�� + %&
+ 2 × 10+���$ 			
− 				0.87�� + 2
× 10+���$, 

(2) 

where � is time after shutdown and %& is the 
operation time prior to shutdown—both in seconds. 

The reactivity feedbacks are modeled as follows: 

 �- 			= 				 .-	/%-� 	− 		%-01 (2.a) 

 �� 		= 			 .� 		�%�� −	%�0� (2.b) 

 
�� 			= 			2ℎ456 		+ 			�- 			

+ 			2ℎ4� (2.c) 

where �- is the fuel Doppler reactivity feedback, �� 
is the coolant density reactivity feedback, and �� is 
the total reactivity feedback. 

The axial neutron flux shape is implemented as 
follows: 

 7�8� 	= 		79 : cos >? 8@A (3) 

 

where 8 is the axial spatial variable that varies 
between – @ 2C  and @ 2C , and @ is the active length of 

the fuel element. This particular representation is 
good for a wide range of reactor classes, but not 
quite so for Boiling Water Reactors, where flux 
shape is significantly skewed due to the boiling 
process. 

For a given number of axial nodes, the integrated 
nodal flux is calculated with the following 
expression: 

 

D� 			

= 				 E 79 : 	cos >? 8@A 		�8
�FG	H	�I

�FG	H	�����I
 

(4) 

2.4.2 Primary Heat Transport System 
The PHTS includes a reactor core model, a fuel pin 
thermal model, a discretized one-dimensional core 
flow model, a cover gas model, and a mechanical 
pump model. The Dymola/Modelica model diagram 
layer is shown in Fig. 3. The performance parameters 
of the mechanical pump are taken from the ALMR 
PRISM primary EM pump performance characteris-
tics curve at 650 V, which is the operating point of 
all EM pumps under normal conditions. The me-
chanical pump will later be replaced with an EM 
pump model in the subsequent phases of the project.  
The model also includes four 90-degree turn ele-
ments to incorporate irrecoverable pressure losses 
due to turns and sudden expansion and contractions 
in the flow path. These loss elements are intended to 
match the total pressure drop during normal operat-
ing conditions across the core to the ALMR PRISM 
specifications. 

 

 
Fig. 3  SMR Primary Heat Transport System 
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2.4.3 Intermediate Heat Transport System 
The ALMR PRISM baseline design includes two 
IHXs connected to a single IHTS. The IHTS flow 
loop (Figure 4) also includes a mechanical sodium 
pump, a sodium expansion tank, a sodium-to-water 
steam generator, and a sodium dump tank. The sodi-
um dump tank is not modeled in the IHTS imple-
mentations. However, this tank should not have an 
impact on simulation results as this safety system is 
activated only under accident conditions where the 
sodium in the IHTS reacts with steam or air. 

 

The ALMR PRISM intermediate sodium pump is a 
vertically oriented, single-stage, double-suction, 
free-surface, centrifugal pump driven by a constant-
speed, 4000-hp (approximately 3000 kW), air-cooled 
induction motor. An auxiliary pony motor drive pro-
vides low flow (10%) capability for decay heat re-
moval and other low-power or standby conditions. 
Its baseline design is to provide a flow of approxi-
mately 1900 kg/s at 96-m static head and 282ºC. The 
main drive motor generates 3000-kW power at 1750 
rpm. 

 

 
Fig. 4 SMR Intermediate Heat Transport System 

2.4.4 Intermediate Heat Exchanger 
The ALMR PRISM Intermediate Heat Exchanger 
(IHX) is modeled using two one-dimensional flow 
elements connected through a radial metal tube ele-
ment, as shown in Fig. 5. The metal tube element is 
radially and axially discretized; the number of nodes 
can be changed by the user. The material properties, 
that is, density, thermal conductivity, and specific 

heat capacity, can also be defined and changed using 
the Dymola dialog interface.  
 
The default medium on both sides of the IHX is so-
dium. However, both fluid media can be selected via 
the system dialog interface.  A number of fluid mod-
els are provided in the drop-down menu for both 
shell-side fluid and tube-side fluid, such as incom-
pressible sodium (default), compressible sodium, 
incompressible NaK, and compressible NaK. Addi-
tionally, the menu selection includes a number of 
incompressible salt models; however, selecting in-
compatible media may result in numerically unstable 
configurations as the default initial and boundary 
conditions are specified for the ALMR PRISM de-
sign in the implementations. In the later phases of the 
project, the menu selections will be bound to a cer-
tain reactor class logic, which will limit the number 
of fluid media options for a certain implementation. 
The fluid flow and the heat transfer models in the 
shell side and the tube side can also be selected via 
the system dialog interface. 
 

 
Fig. 5 SMR Intermediate Heat Exchanger 

2.4.5 Steam Generator 
The ALMR PRISM steam generator is a vertically 
oriented, shell-and-tube counter-flow heat exchanger 
with water/steam on the tube side and sodium on the 
shell side. The tubes are straight and of double-wall 
construction. The double-wall tubes provide im-
proved reliability by significantly reducing the prob-
ability of water or steam leaking into the sodium. 

The Modelica implementation of the ALMR PRISM 
steam generator is shown in Fig. 6. The ALMR 
PRISM steam generator is not a helical coil construc-
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tion; therefore, it uses different analytical formula-
tions for representation of fluid heat transfer and 
pressure drops. Furthermore, in contrast to the IHX 
model as shown in Fig. 5, the steam generator model 
employs two cylindrical tubes, one inner tube one 
outer tube, to account for the double-walled con-
struction of the tube bundle.  The other tube model 
of the steam generator implementation introduces a 
small thermal resistance to account for small inter-
face separation. 

 

 
Fig. 6 SMR Steam Generator 

2.4.6 Power Conversion System 
The power conversion system model (Fig. 7) is com-
prised of several components, including the turbines, 
generator, flow control valve, and pump. Standard-
ized modules that include representative equa-
tions/curves are used for these modules. No special-
ized modules for the ALMR were developed.  Cur-
rent implementation is a simplified version of the 
actual power conversion system where the feedwater 
heater trains, blowdown coolers, and the deaerator 
are eliminated. The implementation also uses a con-
stant rotor input (on the left side of the rotor shaft as 
a boundary condition represented by the 
“shaftSpeed” element) to eliminate additional control 
requirements to maintain shaft angular speed. The 
rotor mass and rotational mechanics are represented 
by the rotor element. 

 

The “steamInlet” and “condensateReturn” 
ports are implemented as vector objects whose num-
ber of elements must match the number of steam 

generators, which in turn matches the number of re-
actor modules in a power block. In the current im-
plementation, up to three steam lines can be allocat-
ed; however, this limitation will be removed later. 
Each steam line contains a “stopValve” element 
(shown as “stopVx” ) to control steam flow from 
each stream. It should be noted that the 
“stopValve” elements are not modulating ele-
ments; they have binary states of OPEN or 
CLOSED. The valves’ opening and closing dynam-
ics are represented by a linear ramp with a user-
specified time constant to switch from one state to 
another. The streams from three steam generators are 
mixed via two “flowJoin” elements. 
 

 
Fig. 7 SMR Power Conversion System 

2.4.7 Grid 
A simplified grid model has been developed.  The 
Modelica implementation of the generator and the 
electrical grid is shown in Fig. 8. In the current im-
plementation, the electrical generator is modeled as 
an ideal synchronous generator where the frequency 
in the electrical connector is the electromotive force 
(emf) of the generator. The frequency of generated 
electrical current is by default 60 Hz but can also be 
adjusted by the user. It should be noted that the gen-
erator frequency should match the grid frequency; 
otherwise, it will cause a generator trip and discon-
nection from the grid, which will in turn initiate a 
turbine trip. 

The electrical grid is modeled with the swing equa-
tion, which calculates the load angle as a function of 
differences between the mechanical torque (provided 
by the turbine shaft) and the electrical torque (re-
sistant torque generated by the electrical load). The 
load angle dictates the amount of power that can be 
transferred to the grid.  The power sensor and the 
frequency sensor are used to monitor the load 
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angle of the network. If the frequency gets out of 
range, an anticipatory automatic trip is initiated 
for the turbine and the generator. 
  

 
Fig. 8 SMR Grid System model 

2.4.8 I&C 
The purpose of this project is to design a system of 
modeling tools that allows rapid assessment of con-
trol system strategies overlaid upon reactor system 
models. For demonstration purposes, two different 
control strategies were chosen to allow multiple se-
lection options to exist in the modeling tool: Strategy 
#1 – temperature regulation and Strategy #2 – tem-
perature difference regulation.  
    The purpose of developing these systems models 
is to investigate potential control strategies for ad-
vanced SMR concepts. The I&C studies and concept 
development include identification of the model 
global outputs, determination of measurements, con-
trol actuation, and control methods and algorithms 
for a given system. The dynamic model of the pro-
cess and plant physics provides model results and 
outputs for candidate measurements (system observ-
ability) and model inputs for candidate actuation 
(system controllability). The dynamic model also 
provides insights into the system time constants, de-
gree of inherit stability, degree of coupled behavior, 
and input-output sensitivity.  Figures 9-11 show the 
sensing instruments, model architecture and control 
logic associated with this simplified I&C control 
module that is overlain on the reactor systems model. 
   Figure 12 illustrates an example simulation in 
Dymola of a control system during energy demand 
changes.  The PHTS primary pump and IHTS inter-
mediate pump and record control rod reactivity are 
all actuated to regulate the reactor system tempera-
tures as the heat sink changes.  The generation of 
these outputs using the systems modeling approach 
with Modelica is relatively straightforward for the 
practiced simulations engineer.  The goal of this pro-
ject is to extend this capability to those engineers 

who are not as familiar with these modeling and 
simulation environments.   
 

 
Fig. 9 SMR I&C sensing instruments 

 

 
Fig. 10 SMR I&C 

 

 
Fig. 11 SMR I&C architecture 
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Fig. 12 Initial control system testing results 

2.5 FMI Add-in for Excel 

Although simulation is a valuable tool for science 
and engineering, few scientists and engineers have 
the proper skill set or day to day need for modeling 
and simulation.  As a result, the investment of time 
and resources to establish and maintain a modeling 
and simulation capability is often not justified. An 
open framework would provide an alternative ap-
proach which will open modeling and simulation 
capabilities to activities that cannot justify the in-
vestment in traditional modeling tools. 

The development of these models initially requires 
some knowledge of Modelica and Dymola. Although 
most engineers may not be familiar with Modelica or 
Dymola, many engineers are familiar with and fairly 
skilled in Excel. Therefore, the project has built the 
initial interface tool around an Excel platform that 
allows the simple and intuitive generation, manipula-
tion, plotting, and reporting of results using the 
FMIE [5] tool developed by Modelon. This tool (Fig. 
13) allows the integration of Excel with compiled co-
simulation FMUs for simulation. Many simulation 
environments (not just Modelica based) now allow 
the export of these FMUs. The use of the open 
standard FMI provides an opportunity for a flexible 
toolchain in terms of tools used for core model de-
velopment, simulation, and engineering analysis 
along with associated licensing.   

 
FMIE can process a model that has been compiled 
into an FMU by simulation platform like Dymola in 
a manner that facilitates performing dynamic simula-
tions in Excel. The tool also supports changing mod-
el parameters, adjustment of the simulation start and 
stop times, for single or   multiple simulations which 
can be run in parallel. The resultant input and output 
data variables can be selected for display in graphical 
or tabular form in a worksheet.  FMIE also provides 
a scripting API which can be used for automation of 
analysis set-up, simulation, plotting, and post-
processing. 

 
Fig. 13 Modelon FMIE interface 

2.6 Collaboration 

The initial user interface for MoDSim has been writ-
ten in Excel (Fig. 14).   This makes for easy integra-
tion with FMIE used to simulate the Modelica mod-
els outside of Dymola. Excel macro options that al-
low for the modification of inputs, the display of 
outputs, and the generation and plotting of results 
(Fig. 15) are provided along with the ability to dis-
play the metadata about the simulation.  This inter-
face tool, however, only serves as the prototype in 
terms of features and layout for the web application 
interface that is being developed. The principal limi-
tation associated with the prototype Excel interface 
is its use as a local application on a machine. The 
widespread collaboration that is the intended goal is 
only truly achievable from a web-based platform. 
 

 
Fig. 14  SMR Excel interface 

 

 
Fig. 15  SMR Excel interface - results 
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The heart of the collaborative effort is based on us-
ing an online open-source version control, issue 
tracking, and file sharing application. The applica-
tion chosen is GitHub. Users can obtain a GitHub 
account and request access to the ORNL SMR folder 
(ORNL-WebSMR) displayed in Fig. 16.   Access to 
this folder allows the user to work directly in the 
text-based Modelica models and make modifications, 
comments, etc. on the models.  Additionally, issues 
can be raised and tracked as well as versions of the 
models created, archived, and documented. This al-
lows collaboration within the user community.  

 

 
Fig. 16  SMR GitHub model repository 

 
The start page of the SMR web application built by 
Xogeny, Inc. is shown in Fig. 17.  The web platform 
utilizes the architecture described in Section 2.3 
along with configuration files that provide architec-
ture, subsystem choice, parameters, and output in-
formation for use in generating the actual web appli-
cation.  These files are generated in the YAML (Yet 
Another Markup Language) language. The user can 
browse the available reactor architectures and then 
selects the one with which to work.  Following the 
selection of the reactor architecture, the user can then 
configure the subsystems in the architecture as 
shown in Fig. 18.  After subsystem selection, the 
user then has the option to modify the parameters in 
each subsystem (web app is populated with the de-
fault parameters from the FMU) as shown in Fig. 19.   
 
The current workflow is then to generate a simula-
tion with FMIE as shown in Fig. 20.  The web appli-
cation provides a download of a customized Excel 
sheet developed by Modelon that utilizes the script-
ing API in FMIE to automatically download the 
FMU populated with parameters entered by the user, 
execute the simulation, and plot the results.  The re-
sulting experiment sheet in FMIE can then be used to 
conduct batch simulations, modify additional param-
eter values, and automatically compare results be-
tween simulations. Figure 21 shows a sample exper-
iment sheet with batch simulation compare.  This 
automation with FMIE provides a one-click work-

flow that couples the web-based configuration and 
parameter setting with a local simulation running in 
Microsoft Excel.   
 

 
Fig. 17  SMR web app start page 

 

 
Fig. 18  SMR model configuration 

 

 
Fig. 19 Parameter specification 

 

 
Fig. 20 Simulation generation with FMIE 
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Fig. 21 Sample experiment sheet in FMIE  

with batch simulation compare 
 
Currently the web platform is an alpha product 
which still requires local installation of tools, and the 
alpha version is being used to define the require-
ments for the beta product.  The beta version will be 
a completely web-based application that can be run 
from any user's desktop without the need to install 
any software. ORNL is working with Modelon and 
Xogeny to facilitate a web-based Modelica simula-
tion application towards this end. The beta product is 
expected to be out in FY 2015. The goal of the web 
platform is to support both local and cloud-based 
simulations within licensing constraints of the devel-
opment environments.  As with any compiled simu-
lation environment, the practical challenges of pre-
configured models, initialization, and simulation per-
formance must be handled in a robust way to ensure 
successful deployment and effective use of the simu-
lation platform. 

3 Conclusions 

A growing number of programs within the DOE 
portfolio will benefit from the streamlined approach 
to collaborative modeling that this tool affords. Other 
actively funded activities in the DOE Advanced Re-
actors Program are planning to incorporate this tool 

into their activities. This tool is well suited for work 
in the study of hybrid energy systems. ORNL is ac-
tively engaged in developing collaborations in the 
hybrid energy system space that utilized this ap-
proach.  In particular, ORNL is working with the 
Idaho National Laboratory to create these hybrid en-
ergy system models that can be used to provide high 
level evaluations of potential energy concepts that 
make use of multiple energy generation paths.   In 
the next phase of development, we will actively en-
gage these projects and seek additional projects that 
will also benefit from this tool. 
 
As a final note, the long-term success of this activity 
will be judged by three items: quality of the models 
developed, the number of users, and the ease of use. 
To this end, further development in the web-based 
platform is an important next step. The web-based 
platform provides opportunities for cloud-based 
modeling for both nonsensitive material as well as 
controlled access for sensitive, proprietary material. 
Additionally, the ability to create scripts that will 
allow for rapid assessment of parametric sweeps will 
simplify the input and output necessary for the user.  
However, it is critical that multiple projects and pro-
grams begin using this tool to generate a library of 
models that will form the backbone of this collabora-
tive network for SMR dynamic modeling. By gener-
ating this simplified modeling platform it is hoped 
that a new paradigm for systems modeling will be 
created that will help facilitate the development of 
the next generation Small Modular Nuclear Reactor, 
but other complex engineering systems as well. 
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Abstract

This paper presents an efficient and a novel implemen-
tation of a combined multiple shooting and collocation
(CMSC) algorithm for the solution of nonlinear opti-
mal control problems. The implemented algorithm is a
modification of the approach proposed in [17, 18]. The
new implementation is done under the JModelica.org
framework along with CasADi and Ipopt. The frame-
work uses a symbolic pre-calculation of functions and
derivatives. Besides the integration of various com-
ponents of JModelica.org, Ipopt, and CasADi, the im-
plementation facilitates simpler modeling of optimal
control problems along with a choice of options for
various linear algebra algorithms. The paper gives a
description of the algorithm and elaborates the compo-
nents of the framework. Numerical experimentations
show that the new implementation is efficient in com-
parison with the published results of other authors.

Keywords: Nonlinear Optimal Control; Symbolic
Automatic Differentiation; Nonlinear Programming;
Multiple Shooting; Collocation

1 Introduction

Optimization methods nowadays play pivotal roles in
engineering and industrial applications. Most engi-
neering applications are dynamic by nature. Fre-
quently, such dynamic processes have model equa-
tions involving large-scale nonlinear differential equa-
tions. Hence, the solution of large-scale optimal con-
trol problems is difficult to achieve by solving the
equations of the optimality conditions. Therefore, the
modern approach follows the "first discretize, then op-
timize" strategy. In this way, the optimal control prob-
lem will be transformed into a nonlinear programming
problem (NLP). This facilitates the implementation of
efficient and state-of-the-art NLP solvers to determine
highly accurate approximate optimal solutions to the

continuous optimal control problem.
The direct discretization of optimal control prob-

lems through the multiple shooting method was first
proposed in [9]. On the other hand, the direct dis-
cretization of optimal control problems through col-
location methods has been widely used for state con-
strained optimal control problems (e.g., [7, 10, 13]).
The multiple shooting discretization results in block-
structured matrices and facilitates easy parallelization
of computations. However, the accuracy of the mul-
tiple shooting method can be highly augmented if it
is combined with the collocation method. Therefore,
recently, discretization of optimal control problems
through a CMSC method is found to have enormous
potentials for the solution of complex large-scale opti-
mal control problems [17, 18].

In order to facilitate the industrial application of
complex optimization algorithms, model-based op-
timization of dynamic systems is recently gaining
greater momentum [1, 12]. The aim of this work is to
implement the CMSC algorithm in the JModelica.org
framework. We first divide the time horizon [t0, t f ]
into subintervals (finite elements). Subsequently, we
use multiple shooting and collocation methods to dis-
cretize the optimal control problem and to transform
it into an NLP. In our implementation, we use pre-
calculated derivatives, i.e., Jacobian matrix in sym-
bolic form by means of CasADi [3, 4]. The non-
linear optimization problem is solved by using Ipopt
(Interior point optimization solver, [19]). The to-
tal optimization tool-chain is provided in the JMod-
elica.org framework [2].

The rest of the paper is organized as follows. Sec-
tion 2 provides a general form of the considered opti-
mal control problem. Section 3 presents the combined
multiple shooting and collocation algorithm. Section
4 describes the implementation of the algorithm under
the JModelica.org framework coupled with CasADi
and Ipopt and section 5 presents case studies. The
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comparative analysis in section 6 shows the high ef-
ficiency and viability of our implementation as com-
pared to other implementations. The paper concludes
in section 7 with a summary and future research work.

2 Problem definition

We consider the following general form of a nonlinear
optimal control problem (NOCP):

min
u(t)

{
J = E (x(t f ))+

∫ t f

t0
L(x(t),u(t), t)dt

}
(1)

subject to: ẋ(t) = f (x(t),u(t), t), x(t0) = x0, (2)

g(x(t),u(t), t) = 0, (3)

xmin ≤ x(t)≤ xmax, (4)

umin ≤ u(t)≤ umax, (5)

t0 ≤ t ≤ t f , (6)

where x(t)> = (x1(t), . . . ,xn(t)) and u(t)> =
(u1(t), . . . ,um(t)) are the state and control vec-
tors, respectively. The functions f , h, and g are
conveniently defined in appropriate function spaces.
The dynamics of the process is described by (2)
and we have algebraic equality constraints (3). In
practical engineering or industrial application, state
and control variables are usually bounded. Hence, (4)
imposes lower and upper bounds on the states, while
(5) defines bounds on the controls. The optimization
variables (typically the controls) and state variables
must satisfy the model equations, the state and control
constraints and the boundary conditions. Furthermore,
the optimization task is limited to a time horizon with
an initial time t0 and a fixed final time t f . In this paper,
time-optimal control problems will not be considered.

The optimal control problem (1) - (6) is an infinite-
dimensional problem. Since real-world applications
have very complicated structure including nonlinearity
and high dimensionality, indirect methods, like meth-
ods based on the Pontryagin’s principle, are not suit-
able. Therefore, here the NOCP will be directly dis-
cretized by using a combined multiple shooting and
collocation (CMSC) method and thereby it will be
transformed to a finite-dimensional optimization prob-
lem.

3 An improved multiple shooting
with collocation framework

For the multiple shooting and collocation discretiza-
tion scheme, first the time interval [t0, t f ] is di-
vided into appropriate shooting intervals [ti, ti+1], i =

0, . . . ,N− 1. Then, on each shooting interval [ti, ti+1],
collocation nodes ti = ti0 < ti1 < .. . , tiNc = ti+1 are de-
fined, so that each state variable xk(t) is approximated
by the polynomial

x̂k(t) =
Nc

∑
j=0

x(k)
i j li j(t), (7)

where li j(t) are the Lagrange polynomials

li j(t) =
Nc

∏
s = 0
s 6= j

[
t− tis

ti j− tis

]
, j = 1, . . . ,Nc, i = 1, . . . ,N,

(8)
and the variables x(k)

i j , j = 1, . . . ,Nc, represent the state
values corresponding to the state variable xk(t),k =
1, . . . ,n, at the collocation points on [ti, ti+1] with the
property that xk(ti j) = x̂k(ti j) = x(k)

i j . Hence, the com-
bined multiple shooting and collocation scheme trans-
forms the NOCP into an NLP with the additional con-
straints

hk
i+1 = x̂k(t(i+1)0), i = 0, . . . ,N−1;k = 1, . . . ,n (9)

to be imposed along with the discretized constraints
(2)-(5). The equations (9) guarantees the continuity of
the state trajectories at the end point of each shooting
interval. In the following hx

i+1 =
(
h1

i+1, . . . ,h
n
i+1

)>

and x̂i+1 (hx
i ,vi, ti+1) =

(
x̂1(t(i+1)0), . . . , x̂n(t(i+1)0)

)>
are used for the sake of brevity. The expression
x̂i+1 (hx

i ,vi, ti+1) indicates that the state variables are
dependent on the initial state hx

i , the controls vi and
the end time point t(i+1)0 = ti+1 on the interval [ti, ti+1].
The resulting nonlinear optimization problem can be
written as

min
hx

0,...,h
x
N ,v0,...,vN−1

{
E (hx

N)+
N−1

∑
i=0

L(hx
i ,xi,vi)

}
(10)

subject to: hx
i+1− x̂i+1 (hx

i ,vi, ti+1) = 0,

i = 0, . . . ,N−1, (11)

G(hx
i ,xi,vi) = 0, i = 0, . . . ,N−1, (12)

hx
0− x0 = 0, (13)

xmin ≤ hx
i ≤ xmax, (14)

umin ≤ vi ≤ umax, (15)

In problem (10) - (15) on the i-th shooting subinterval,
hx

i represents parameterized initial conditions for the
vector of state variables, x̂i is the state on the colloca-
tion point at the end of interval i, the vector xi consists
of all coefficients of the collocation polynomials cor-
responding to the states on the i-th interval and vi are
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parameterized control variables. The discretization of
the states uses the Radau collocation method. Using
the function G, equation (12) represents the discretized
form of the equations (2, 3). The control variables are
usually parameterized as piecewise constant functions.
E.g., in each subinterval [ti, ti+1], i = 0, . . . ,N− 1, the
control variables are assumed to take constant values
and the state trajectories will be approximated by the
collocation method. The unique feature of CMSC lies
in the fact that it utilizes the advantages of both mul-
tiple shooting and collocation methods. Detailed dis-
cussions on multiple shooting and collocation methods
are found in [8, 9, 16].

In the objective (10) the variable x does not appear
exclusively as an optimization variable. Hence, af-
ter appropriate aggregation of variables, at each step
of the optimization algorithm, we can solve for x in
terms of (h,v), so that we have x(h,v). In this way the
equality constraints (12) can be eliminated by reducing
the number of optimization variables. However, in this
work, constraints on the coefficients of the collocation
polynomials are not considered inside the collocation
intervals, but only at the end-points of the intervals.

Therefore, the problem (10) - (15) can be equiva-
lently written as

min
h,v

F(h,x(h,v),v) (16)

subject to : H(h,v) = 0 (17)

xmin ≤ h≤ xmax (18)

umin ≤ v≤ umax, (19)

where H in equation (17) provides a compact repre-
sentation of the equations (11) - (13). Consequently,
to solve the nonlinear optimization problem (16) - (19)
we use the state-of-the-art optimization solver Ipopt
[19]. At each iteration of Ipopt, the nonlinear model
equations are solved by using a local Newton algo-
rithm along with a linear algebra solver for the deter-
mination of the Newton-steps to determine state vari-
ables for given values of h and v. Future investigations
will consider the implementation of a globalized New-
ton method with appropriate linear algebra solvers.

All function values and gradients, required in the
optimization framework, are pre-calculated and made
available in symbolic form. Symbolic derivatives are
calculated by using CasADi and stored in matrices or
vectors to facilitate faster accessability. For this, it is
needed to compute the sensitivities ∂F

∂v ,
∂F
∂h ,

∂H
∂v , and

∂H
∂h in symbolic representations. Further details are
found in [17, 18].

The computational framework is summarized

graphically in Fig. 1 and Algorithm 1 provides a de-
scription in general terms. More detailed discussions
on the CMSC method are found in [17, 18].

Algorithm 1 : A general CMSC
1: Input: Time horizon, number of subintervals,

number of state and control variables, lower
and upper bounds for the control and state vari-
ables, model equations, objective function, initial
guesses, optimizer options.

2: Initialization of the NOCP
3: Define continuity and path constraints
4: Initialize the n-point collocation for each subinter-

val
5: Compute states at collocation points and sensitiv-

ities
6: Compute objective function and gradient
7: Compute constraint function values and Jacobian
8: Solve the equations of the Karush-Kuhn-Tucker

(KKT) optimality conditions
9: if KKT condition not satisfied then

10: GOTO 3
11: else
12: STOP.
13: end if
14: Output: optimal state and control trajectories, op-

timal objective function value, number of itera-
tions and CPU time.

Figure 1: : Combined multiple shooting and colloca-
tion (CMSC) framework

Algorithm 1 is general for CMSC from the work of
[17, 18]. This work implements a modified and im-
proved version of Algorithm 1. Hence, Algorithm 2
provides a modified CMSC.
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Algorithm 2 : A modified CMSC
1: Input: Time horizon, number of subintervals,

number of state and control variables, lower
and upper bounds for the control and state vari-
ables, model equations, objective function, initial
guesses, optimizer options, number of collocation
points in subintervals, user-defined options, e.g.,
choice of a linear algebra algorithms, etc.

2: Calculate in symbolic form the Jacobian of the
system and all directional derivatives.

3: Corresponding to the number of subintervals,
states/controls, and collocation points, construct
derivative matrices

4: Initialize and construct symbolic representations
of the objective function and corresponding gradi-
ent.

5: Initialize and construct symbolic representation of
the constraint functions and corresponding Jaco-
bian.

6: Give an initial guess for the optimization variables
7: Set options for Ipopt to provide Hessian approx-

imation, tolerance of the solution, and other user
specified options.

8: Call the Ipopt solver
9: Call plotting routine and save the results.

The improvements provided in Algorithm 2 are:

• the symbolic pre-calculation to obtain represen-
tations for the values of the objective function,
constraints, and corresponding sensitivities (Ja-
cobians and derivatives),

• facilitate the use of several linear algebra algo-
rithms to give the user a choice of options and
improve the efficiency of computations,

• implementation on JModelica.org platform for a
wider public accessibility.

Section 4 discusses the software implementation of
Algorithm 2.

4 Framework and software compo-
nents

In the framework shown in Fig. 2, the NOCP is mod-
eled under JModelica.org using a Python script. Then
the problem is discretized using our CMSC with
the help of CasADi to obtain an NLP. Subsequently,
CasADi is again invoked to generate symbolic ex-
pressions for the derivatives. Finally, JModelica.org

invokes Ipopt to solve the NLP by using the pre-
calculations. All problem definitions and our custom
implementations are done using the Python program-
ming language.

Figure 2: : Software framework

In the next subsections, we give a brief review on
the software components.

4.1 JModelica.org

JModelica.org [2] is a Modelica-based open source
software platform for modeling and solving opti-
mal control problems and implementation of user-
developed algorithms. JModelica.org was first devel-
oped at the Department of Automatic Control, Lund
University. Currently, it enjoys active support from the
industry (Modelon AB) as well as academic and re-
search institutions. Since JModelica.org is extensible
through user-designed algorithms, we have decided to
implement our algorithm under this framework.
Among the salient features of JModelica.org are:

• support for mixed-language programming mode,

• easy and smoother integrability of custom numer-
ical libraries,

• support for object-oriented modeling based on
Modelica,

• wider public access owing to simpler user inter-
faces.

4.2 CasADi

CasADi is an open source software library for
symbolic automatic differentiation of functions [5].
CasADi uses computer algebra techniques to imple-
ment the forward and adjoint automatic differentiation
techniques and facilitate the pre-computation of gra-
dients and Jacobian of objective functions and con-
straints, respectively.
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One of the major features of CasADi is its high in-
tegrability to widely available open source numerical
libraries and optimization solvers. CasADi is written
using C++ programming language. However, it can
be interfaced to numerical solvers based on various
programming language implementations, e.g., C,
C++, Python, FORTRAN, etc. The recent integration
of CasADi to the JModelica.org platform [4] is one
proof for its high integrability and applicability for
the solution of complex optimal control problems.
Therefore, in our implementation, we have exploited
the potential of CasADi for symbolic pre-computation
of derivatives in order to improve the efficiency of
computations.

4.3 Ipopt

Ipopt is a software implementation of an interior point
algorithm coupled with a filter line-search algorithm
[19]. Ipopt is a state-of-the-art solver for large-scale
NLP problems. Consequently, it facilitates the effi-
cient solution of large-scale optimal control problems
using the "first discretize, then optimize" approach.

In general, Ipopt can be used to solve NLP problems
of the form

min
x∈Rn

f (x) (20)

subject to :

gmin ≤ g(x)≤ gmax, (21)

xmin ≤ x≤ xmax, (22)

where f (x) : Rn → R is the objective function, and
g(x) : Rn → Rm is the constraint function. The vec-
tors xmin and xmax are the bounds on the variables x,
and the vectors gmin and gmax denote the lower and
upper bounds on the constrained function g(x). Fur-
thermore, equality constraints can also be stated in the
above formulation by setting the corresponding com-
ponents of gmin and gmax to the same value. The func-
tions f (x) and g(x) can be nonlinear and non-convex.
Theoretically, f (x) and g(x) are required to be twice
continuously differentiable. However, Ipopt is capable
of working with first order information, so that Hes-
sian matrices can be approximated numerically.

5 Case studies

To investigate the performance of the modified
method, the following two case studies are considered.

5.1 A nonlinear batch-reactor

The system has two state variables x1(t) and x2(t) (cor-
responding to concentrations of two species) and one
control variable u(t) (reaction temperature). The ob-
jective of this benchmark problem is to achieve a max-
imum product output of x2(t f ). The NOCP is formu-
lated as follows:

max
u(t)

x2(t f ) (23)

subject to :

ẋ1(t) =−
(

u(t)+
u2(t)

2

)
· x1(t), (24)

ẋ2(t) = u(t) · x1(t), (25)

x1(t0) = 1, (26)

x2(t0) = 0, (27)

0≤
(

x1(t)
x2(t)

)
≤ 1, (28)

0≤ u(t)≤ 5, (29)

0≤ t ≤ 1. (30)

The objective function in equation (23) describes the
amount of output of the second species at the fi-
nal time. This example has been also studied in
[6, 14, 17, 18].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
x1

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

x2

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

1

2

3

4

5
u

Figure 3: : Optimal solution of the NOCP (23) - (30)

The results shown in the Fig. 3 is obtained by using
Algorithm 2 with 160 subintervals. In the next sec-
tion we will present a comparative analysis of results
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obtained from our Algorithm 2 and similar solution
methods of other authors.

5.2 A satellite control problem

A nonlinear optimal control problem of a rigid satellite
initially undergoing a tumbling motion is considered.
The problem data are given as follows [17]:

• I1 = 106, I2 = 833333, I3 = 916677 represent
principal moments of inertia, respectively

• T1s = 550,T2s = 50,T3s = 550 are time constants

• Initial states: x1(0) = 0, x2(0) = 0, x3(0) = 0,
x4(0) = 1, x5(0) = 0.01, x6(0) = 0.005,
x7(0) = 0.001

• Time horizon: [t0, t f ] = [0,100]

• Fixed terminal state:
x>t f

= (0.70106,0.0923,0.56098,0.43047,0,0,0)

The aim of the optimal control is to determine the
torques that bring the satellite to rest in the specified
time t f = 100, while minimizing the performance in-
dex. The NOCP is defined as follows [17]:

min
u(t)

{
‖x(t f )− x f ‖2 +

1
2

∫ t f

t0
‖u‖2dt

}
(31)

subject to: ẋ1 =
1
2

(x5x4− x6x3 + x7x2) (32)

ẋ2 =
1
2

(x5x3 + x6x4− x7x1) (33)

ẋ3 =
1
2

(−x5x2 + x6x1− x7x4) (34)

ẋ4 =−1
2

(x5x1 + x6x2 + x7x3) (35)

ẋ5 =
(I2− I3)x6x7 + T1su1

I1
(36)

ẋ6 =
(I3− I1)x7x5 + T2su2

I2
(37)

ẋ7 =
(I1− I2)x5x6 + T3su3

I3
. (38)

Here x>(t) = (x1(t), . . . ,x7(t)) is the state vector and
u>(t) = (u1(t),u2(t),u3(t)) is the control vector of the
torques acting for the respective body-principle axes.
The model equations (32) - (35) are the kinematic
equations associated to the orientation and (36) - (38)
are the dynamic equations associated to the motion of
the satellite. The state variables x1(t) - x4(t) are the
Euler parameters and x5(t) - x7(t) are the angular rates.

To solve this problem using Algorithm 2, we divide
the time horizon into 50 subintervals and use a 3-point

collocation on each subinterval. This leads to an NLP
with 507 variables and 357 constraints. The results of
our implementation are depicted in Figs. 4 - 6.
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Figure 4: : Optimal states x1 - x4
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Figure 5: : Optimal states x5 - x7

It takes 291 milliseconds of CPU time for the com-
putation and the obtained optimal value of the objec-
tive function is 0.463968. In contrast, the optimal
value of the objective function in [17] is 0.468287 ob-
tained in 531 milliseconds of CPU time.

6 Comparative analysis

In this section we use the problem (23) - (30) for the
purpose of comparison. Tables 1 - 4 present results
obtained from similar, but different optimization meth-
ods. Note, that these results have been obtained using
different computational platforms. Nevertheless, some
ideas can be gained by observing the results obtained.
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Figure 6: : Optimal controls u1(t),u2(t),u3(t)

However, our modified CMSC algorithm is compa-
rable to the collocation algorithm suggested in [15],
since the implementation in [15] and of our modified
CMSC are both done on the same type of computer
with 3.2 GHz CPU frequency.

Table 1: CPU time (in milliseconds)
Number of Modified CMSC Collocation Multiple Shooting [14]
subintervals CMSC [17] [15] Unc., Sp. Con., Co.

5 4 188 4 4 3
10 6 290 8 6 5
20 8 350 12 9 9
40 12 480 20 12 17
80 24 547 48 24 57
160 40 735 102 58 341
320 81 NaN 268 159 2717

In Tables 1 and 2
• Unc.: uncondensed SQP,
• Con.: condensed SQP,
• Sp.: Block structured QP solver using MA57,
• Co.: Matrix condensing and dense QP solver qpOASES [11].

Table 2: Number of iterations
Number of Modified CMSC Collocation Multiple Shooting [14]
subintervals CMSC [17] [15] Unc., Sp. Con., Co.

5 14 16 17 7 7
10 16 21 24 9 9
20 19 21 21 9 9
40 22 25 20 10 10
80 27 23 23 10 11
160 18 23 23 12 12
320 14 27 27 12 14

As shown in Tables 1 and 2, the modified CMSC
method performs more efficient, both in terms of CPU
time and number of iterations, as compared to pure si-
multaneous (collocation) method. This facilitates the
future use of Algorithm 2 for the model predictive con-
trol scheme on longer prediction horizons.

Considering Table 3, for the discretization using 5
subintervals, the collocation scheme of [15] provides
lower function values as compared to Algorithm 2, but
the CPU time of the modified CMSC method is better
than the one reported in [17].

Table 3: Comparative results from discretization
(5 subintervals)

Objective Number of Number of
function optimization constraints

variables
Modified CMSC 0.56817 17 12
CMSC by [17] 0.56817 18 12

Collocation algorithm 0.57302 101 86
by [15]

Multiple 0.56838 18 10
shooting by [14]

Table 4: Comparative results from discretization
(160 subintervals)

Objective Number of Number of
function optimization constraints

variables
Modified CMSC 0.57354 482 322
CMSC by [17] 0.57354 483 322

Collocation algorithm 0.57354 3046 2566
by [15]

Multiple 0.57354 483 320
shooting by [14]

As shown in Table 4, our Algorithm 2 shows a
higher performance in terms of CPU time as compared
to all presented algorithms, still obtaining the the same
objective function value as reported by other authors.

7 Conclusion and future work

This paper presents the first prototype of a modified
combined multiple shooting and collocation method.
The major difference from the original version of the
CMSC approach in [17, 18] consists in using pre-
calculated derivatives and their symbolic representa-
tion. That is, in every iteration of the optimization al-
gorithm, sensitivities are automatically available with-
out further calculations. The optimizer is provided
with symbolic derivatives which are to be evaluated
at the given iterate. This leads to accurate results with
speedup of the overall computation time.

This preliminary investigation shows that the im-
plemented algorithm has a competitive performance
compared to other similar investigations. There is also
a potential for parallel implementation of the proposed
algorithm, whereby constraints to be considered on
the coefficients of the collocation polynomials inside
the shooting intervals. Furthermore, the modified
CMSC method will be implemented to work directly
with Modelica models along with a choice of local
and global nonlinear equation solvers. Hence, the
proposed framework will be refined to make it highly
transparent, so that end-users can solve various types
of applied optimal control problems. In addition, the
algorithm will be extended to handle nonlinear model
predictive control (NMPC) problems.
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DOML - a Compiler Environment for Dynamic
Optimization Supporting Multiple Solvers∗

Tomasz Tarnawski Radosław Pytlak
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ul. św Andrzeja Boboli 8, 02-525 Warsaw

Abstract
The Modelica language may serve well as a base
for defining optimal control problems, given a few
relatively minor syntax extensions. One exam-
ple proving that point is Optimica and another
one is DOML (Dynamic Optimization Modeling
Language) – installed on IDOS (Interactive Dy-
namic Optimization Language) and described in
this paper. The DOML implementation is, actu-
ally, heavily based on the (open source) compiler
of Optimica but it provides a number of important
features absent in its precursor. One main exten-
sion of the compiler lies in its built-in mechanism
supporting the use of many different optimization
solvers (selected on the fly, depending on the con-
tent of the problem definition) and to seamlessly
add new, external, solvers. In result, the range of
problems that may be specified with DOML and
solved in the IDOS environment is quite wide and
keeps growing. The scope of problems ranges from
some static optimization problems through regu-
lar ODE, parametric optimization, minimum time
problems, up to DAE with higher index. DOML
language extensions also provide preliminary sup-
port for multi-objective optimization and PDE
problems.
Keywords: dynamic optimization; optimal con-

trol; Optimica

1 Introduction
Dynamic Optimization Modeling Language
(DOML) was initially proposed ([23]) as a
programming-language-independent communi-
cation format for newly developed Interactive
Dynamic Optimization Server (IDOS, described
e.g. in [22]). The IDOS server, envisioned by its

∗The work presented in the paper has been partially sup-
ported by NCBiR grants: R02-0009-06, PBS1/A7/6/2012

proponents as "the NEOS for optimal control",
provides an on-line environment for dynamic
optimization. It receives inputs — definitions
of dynamic optimization problems specified in
DOML — from its users and responds with
solutions (if) found. Although still under devel-
opment, IDOS is already operational, on-line at
[32]. The main mode of working with the server
is through a web browser, where the (logged-in)
user may type problem definitions in DOML,
submit tasks, view results etc. The elements and
functions of the IDOS server, including exem-
plary computational results, have already been
described in a few publications (e.g. in [22], [23]
and [24]) and, in particular, in a parallel paper
to be presented on the very same 10th Modelica
Conference ([25]). Hence, here the functioning
of IDOS itself will not be discussed any further,
the core focus goes to the DOML format and its
implemented compiler (as installed on IDOS).
The DOML format provides a mean for defin-

ing optimal control problems in a slightly extended
Modelica syntax. In that respect it is very simi-
lar to Optimica (initially proposed in [2]) and in
fact implementation of its compiler1 is based on
the (open source) Optimica compiler, available at
[31]. Since Optimica itself has been presented in
numerous papers, in particular on the Modelica
Condeference (e.g. [3]), it is not discussed here in
much detail. Instead, the focus lies on the main
features of DOML that set it apart from Optimica.
As stated above, DOML compiler is installed

on a on-line–accessible server ([32]) and is used
to interpret the input form (remote) users enter-
ing problems they want solved. In contrast, Op-
timica compiler comes as a part of a download-
able and locally installed JModelica.org environ-
ment, where the user is mainly exposed to Python

1DOML compiler is developed as open source. Contact
the authors for setting up access to code repository
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programming console as a mode of working with
compiled problems, numerical packages and opti-
mization solvers (see e.g. [4]). That architectural
contrast dictates the main difference between the
two compilers: DOML compiler provides inherent,
built-in support for generating code for a multi-
tude of different solvers and numerical packages
(and new solvers may still be added to the envi-
ronment) while in JModelica.org environment im-
plementing any extensions or different optimiza-
tion algorithms is (only) possible though Python
scripts (see [26] for an example) – executed on top
of the Optimica compiler.

One design principle for the IDOS server was
its ease of use, particularly for users with limited
programming skills. Hence, it seemed highly de-
sirable to avoid any meanders on the road form a
problem to its solution, such as the need of using
other (programming) languages, learning environ-
ment’s internal API or studying interfaces to nu-
merical libraries. In effect, all that an IDOS user
must provide is the problem definition in DOML
and DOML is then the only language that one
really needs to comprehend in order to use the
server. (However, as discussed later, an advanced
user with good acquaintance with the compiler’s
and server’s internals has also the ability to ex-
tend the server’s functionality and to implement
own solving algorithms).

We find the need for implementing support
for multiple solvers to be justified and intuitive.
For once, dynamic optimization problems come
in many different kinds (e.g. parametric, mini-
mum time, DAE with higher index, etc) and so
one solver would not be general enough to solve
all of them efficiently and accurately; solvers ded-
icated to particular problem kinds simply do the
job better. The second reason is to open the possi-
bility for applying "solver chaining" i.e. a strategy
of using two (or more) solvers consecutively on one
problem. The first one yields a crude approxima-
tion while the next guarantees a more accurate so-
lution but requires a reasonably good initial guess
(and possibly other warm-starting information) –
that may be taken form the first solver. Automa-
tion of such procedure seems very tempting, yet
it poses a number of challanges and in same cases
may plainly be impossible (e.g. due to the nature
of information needed by some second-line solvers,
such as [17]). Currently, a user must recode the
problem manually through editing in the results

obtained form the first solver and resubmit the
file. For more details on chaining solvers in IDOS
see e.g. [24].
The paper is organized as follows. The follow-

ing section 2 provides a general introduction to
the DOML compiler. Section 3 proceeds towards
the technical aspects dealing with the paper’s key
issue — implementation of multi-solver support.
Additional attention is devoted to the more ad-
vanced topic of supplementing the compiler with
external code generators (section 3.1). Next, in
section 4, the set of currently deployed solvers is
briefly presented, together with (selected) code
generators within the compiler implemented to
couple with these solvers. Finally, section 5 pro-
vides supplementary information on other impor-
tant features proposed in DOML (and setting it
apart from Optimica) yet less tightly related to
multi-solver support.

2 Compiler Overview

On the most general level, the working of DOML
compiler is identical to that of Optimica. It reads
in an input .mo file into memory, where it creates
own representation of all elements of the problem’s
definition. Based on that, it generates output
file(s) written in a regular programming language
(mostly C/C++) — therefore the compiler, for-
mally, is actually more of a translator (from Mod-
elica to C/C++). The produced files may then
be placed as input to the standard (gcc) compiler
and linker (bringing in required external libraries)
to produce an executable file that will carry out
the actual solving algorithm.
The generation of C (C++) code is template-

driven: in order to produce any output, the com-
piler reads in an external template file – resem-
bling closely a regular C++ file where only certain
spots are specially marked (with so called tags).
These tags represent places in the code where ex-
ternal snippets of code are to be pasted, e.g. the
$n_real_x$ tag will be replaced with the number
of state variables defined in the model. The code
generating method reads in the template file(s)
and reproduces it to the output. Every time it
comes across a tag, however, it replaces it in the
output with an appropriately elaborated fragment
of code — depending on the tag it may be a single
number literal or several lines of C/C++ code. A
special mechanism dispatches the calls to the right
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code (or: snippet) generating methods based on
the textual content of the tag.
The compiler is fully implemented in Java.

Its executable, together with all required tem-
plate files, is packed into a single Java jar
file: DOMLCompiler.jar — which is where the
differences against Optimica start. Typical
execution of the compiler, on an exemplary input
file theInput.mo , would take the form of:
> java -jar DOMLCompiler.jar theInput.mo
-o outDir
and all produced output would end up in outDir
directory. It proved very convenient to supple-
ment the set of templates with a Makefile so that
in the output folder, next to C/C++ source code
(and possibly other auxiliary) files, a Makefile
would also be present. Then, simply running
> make
in that directory produces the executable to run
and solve the problem.
The set of generated files constitutes, essen-

tially, a problem-specific implementation of a dy-
namic optimization algorithm and most usually
it makes an extensive use of (external) numeri-
cal libraries — through their APIs. Naturally,
the generated files (and, in particular, the build
commands in Makefile) must closely correspond
with the libraries installed on the computer. As
the compiler provides the problem-specific infor-
mation, its back-end— the code generating engine
— becomes responsible for "mating" the compiler
with the solver(s). The two pistons of that engine
are: the collection of template files (mentioned
above) and the Java class implementing the logic
for producing code snippets for each tag. Then
their common crankshaft, to keep with the com-
parison, would be the set of tags present in the
templates and rendered by the Java class (tech-
nically, it is in fact a fair number of small inter-
nal classes defined within the main code generator
class; each of them is responsible for interpreting
its separate tag).
The design of the DOML compiler provides for

an easy way for adding and/or replacing back-
ends. Such back-end block, composed of a code
generating class together with its related tem-
plates, can therefore be viewed as a plug-in to the
compiler (especially, since it can be packaged into
a completely separate jar file, as described in de-
tail in section 3.1). The concrete code generator is
selected and loaded on the fly, based on the con-

tent of the input .mo file. Irrespective of the code
generator eventually employed, the mode of exe-
cuting problems under DOML is always the same:
first run jar, then make.
In that respect, DOML is very different form

Optimica which contains only built-in (and "hard-
coded") code generators – to C and to XML. The
C generator targets a single, specific optimal con-
trol solver environment (contained within JModel-
ica.org environment). Admittelly, the XML code
generator grants the user more flexibility, as the
produced files may be imported by other tools (as
discussed in [1]). The flipside of that approach is
that it burdens the user with handling yet another
file format (XML, this time) that he or she has to
transport from one environment to another – ei-
ther manually or through Python scripting (not
mentioning, that such additional tools would then
also need to be installed). This may be perfectly
fine for users proficient with programming, script-
ing and managing multiple tools installed on their
computers, but not all of them are. As already in-
dicated, IDOS targets different users – ones, that
would prefer not to (learn and) do all that, and
instead to have one simple tool (a web browser)
and one language (DOML) for solving all their
(optimal control) problems.

3 Implementation of Multiple-
solver support

In the context of DOML compiler, the term solver
refers to a set of templates together with numer-
ical libraries used by them and needed to build
the executable. In other words, each solver is an
implementation of a particular dynamic optimiza-
tion algorithm; as soon as it is filled with problem
specific data it may be compiled and executed.
The actual collection of solver packages deployed
on IDOS server (and required libraries installed
alongside) is discussed in [25] and here touched
upon in section 4. For the purpose of the current
discussion, it is sufficient to recognize that there
may be present quite a few different packages im-
plementing algorithms for solving distinct kinds
of optimization problems and with time still new
packages may be implemented and plugged-in to
the environment.
In DOML compiler environment each solver’s

code generating class — i.e. the class contain-
ing the logic to fill up all templates for particular
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package pl.pw.DOML. codegen ;

public abstract class BaseDOMLCGen
extends OptimicaCGenerator {

public static BaseDOMLCGen
loadGenerator ( String solverName ,

FDOMLClass fc ,
Properties props) {

...
}

public abstract ArrayList <String >
getTemplateFNames ();

public void
generate ( String templateF ,

String outF) { ... }

...

}

Listing 1: BaseDOMLCGen class excerpt

solver — must be a subclass of BaseDOMLCGen. Ex-
cerpts of this class, shown on listing 1, present its
most important features. It:

• implements static method loadGenerator()
for searching, loading and instantiating the
appropriate, concrete code generating class.
It utilizes Java reflection mechanism to look
for proper compiled Java classes.

• declares getTemplateFNames() abstract
method thet every generator must override
to communicate (through call-back) its set
of template file names to the compiler. This
way, each code generator may be tied to its
own, completely separate set of templates.

• implements generate() method that carries
out the process for each template file (whose
name is provided as the first parameter) by
reading it and dispatching calls to individual
tag-generating methods.

Any code generator class derived from
BaseDOMLCGen needs to implement only the
getTemplateFNames() method and the logic of
generating code snippets for its specific tags (i.e.:
tags present in templates associated specifically
with that generator).
The class searching and loading mechanism re-

lies on the use of Java annotation @Solver defined

specifically for that purpose. Each code generator
implemented according to the description above
must be appropriately annotated, where at least
the solver’s unique name must be given — as on
the example below with "olado" :

@Solver ("olado")
public class DOMLCGen4Olado

extends BaseDOMLCGen { ...

All template files used by that solver must then
reside in the jar file, inside its /templates/olado
subdirectory.
The annotation @Solver also provides means

for specifying the kinds of problems that a given
solver package can handle, through a set of at-
tributes defining whether the package requires
(TRUE), accepts (DONT_CARE) or disallows (FALSE)
certain qualities and elements of a problem. The
default value for all @Solver’s attributes is FALSE,
hence the ones not applicable may be omitted. Ex-
ample below illustrates the point:

@Solver (value = "rkcon",
freeFinalTime

= ApplicableTo .TRUE ,
minFinalTime

= ApplicableTo .DONT_CARE ,
residualEquations

= ApplicableTo .DONT_CARE ,
finalStateConstraints

= ApplicableTo . DONT_CARE )
public class DOMLCGen4RKcon

extends BaseDOMLCGen {

As of now, this annotation’s attributes describe,
whether the given solver is applicable to:

• with respect to the problem’s structure —
static optimization, ODE or DAE systems,
parametric optimization (in particular: opti-
mization of the system’s initial state), PDE
problems;

• with respect to the elements present in the
definition — problems with: free final time
(in particular, where final time is the ob-
jective), equations specified in residual form,
integer-valued decision variables, multiple ob-
jectives;

• with respect to the kinds of constraints de-
fined — box constraints, constraints on the
final state, general functional constraints or
non-stationary constraints.
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This setup should not yet be considered final but
it is well past the proof-of-concept stage. Hav-
ing the above list as a rough guidance, the goal of
development efforts of the IDOS server is to fur-
nish a host of solvers covering typical cases of dy-
namic optimization problems. The current state
of efforts, as far as code generators implemented
and the set of corresponding libraries installed, is
briefly discussed in section 4.
When executing a problem specified in DOML,

one may force the use of a particular package
through (Modelica-like) annotation solver han-
dled by the DOML compiler, as so:

annotation ( solver ="olado");

If such annotation is omitted in the DOML in-
put (or solver is specified as "auto"), the com-
piler makes its best effort to load the generator
class that fits the current problem. Upon enter-
ing the code generation stage (i.e. after pars-
ing input file, doing semantic analysis and prob-
lem transformations e.g flattening or alias elimi-
nation) the compiler queries the object containing
the AST representation of the input — to clas-
sify the problem along the lines sketched above.
Then, it browses available code generator classes
(subclasses of BaseDOMLCGen) and tries to match
their @Solver description to that classification. If
an exact counterpart cannot be found, a simple
(preliminary) heuristic is used to choose the clos-
est match. An object of the selected class is in-
stantiated and used thereupon.

3.1 External code generators

In the mechanism described above, the logic re-
sponsible for browsing for available code generator
classes implements one additional, powerful fea-
ture. The searching is not limited to the content
of the DOMLCompiler.jar file, but in fact incorpo-
rates all jar files found in the current folder. This
way any external solver, packaged (together with
its templates) into a jar file, may equally well
be used by the compiler task. An advanced user
may therefore implement own solver jar package
(which is the harder part) and add it seamlessly
and non-intrusively to the compiler (which then is
as easy as uploading the jar file on the server).
When implementing own solver package, say

under the name mySolverPack, one must produce
a Java jar file that fulfills the following minimum
requirements:

• it must contain the code generator class —
subclass of BaseDOMLCGen — annotated as
@Solver("mySolverPack") and implementing
getTemplateNames() that returns a collection
of names of solver’s template files (including
a makefile);

• it must contain all template files placed in
/templates/mySolverPack subfolder;

• templates may use only numeric libraries in-
stalled on the server (installing extra libraries
on user accounts is not yet supported), the
makefile should be written accordingly;

• the code generating class must handle appro-
priately solver-specific tags appearing in the
templates.

Preferably, the annotation @Solver should also
specify applicability of that package (as discussed
earlier); otherwise, one will be able to use the
solver only by specifically requesting its name
through annotation in the DOML input file.
The above requirements clearly imply, that

this functionality is meant for advanced users–
developers of optimization algorithms. Preparing
the set of templates calls for a good knowledge
(and at least some practice of use) of libraries in-
stalled on the server while implementing own code
generator class is possible only with good familiar-
ity of the compiler’s internal API (in particular:
the data structure representing the compiled in-
put problem).

4 Implemented solvers and code
generators

At the moment the IDOS server can handle con-
trol problems described with ordinary equations
and differential–algebraic equations but the incor-
poration into the IDOS solvers for problems with
partial differential equations is also under way.
The IDOS server enables solving optimal con-

trol problems by using essentially different meth-
ods ranging from ones based on a’priori discretiza-
tion through utilizing variable stepsize integration
and adjoint equations to shooting methods ap-
plied to differential equations derived from nec-
essary optimality conditions. These methods and
solvers are discussed in some detail in [25].
Obviously, not all solvers can be used on every

problem. The compiler is fit to cooperate with
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the installed solvers, through the following code
generator classes implemented in DOML compiler:

• DOMLCGen4Olado — ODEs are discretized
a’priori and then the large–scale NLP prob-
lem solved by a static optimization solver
(Ipopt [29], KNITRO, etc)–the library OLADO
is described in [5] and uses several interior
point methods ([16],[11]) for QP problems to
which solvers refer;

• DOMLCGen4cvodes — ODEs treated as contin-
uous time (adaptive stepsize integration us-
ing SUNDIALS, [15]), the optimization problem
solved with the help of adjoint equations (in
the reduced space) and the Ipopt package–
the solver is based on cvodes procedure ([28])
from SUNDIALS;

• DOMLCGen4bndsco — indirect shooting method
using the BNDSCO package developed by
Oberle ([17]) ;

• DOMLCGen4Pantelides — higher index DAEs,
implementing the Pantelides’ graph based ini-
tialization algorithm ([19]), also Maxima pack-
age for symbolic differentation is used ([30]);

• DOMLCGen4OladoBonmin — ODEs with integer
valued controls, solved through a’priori dis-
cretization of ODEs as applied in the OLADO
package and with the help of MIP solvers
from BONMIN package ([6],[7]);

• DOMLCGen4cvodesBonmin — ODEs with inte-
ger valued controls, the optimization prob-
lem solved with the help of adjoint equa-
tions (evaluated by SUNDIALS programs) and
BONMIN package;

• DOMLCGen4OladoHqpOmuses — various dynamic
optimization solvers based on HQP and OMUSES
packages ([9],[10]);

• DOMLCGen4RKon — index one DAEs treated
by implicit Runge–Kutta scheme, optimiza-
tion problem solved in reduced space by
RKCON solver (special treatment of state
constraints)–the justification for the solver
RKCON is presented in [20];

• DOMLCGen4Radau — up to index three DAEs
treated by RADAU5 (implicit R-K) solver
([14],[12],[13]), optimization problem solved

in reduced space by RKCON solver, the pack-
age is based on adjoint equations for higher
index DAEs derived in [21].

The above list is not exhaustive as, for instance,
a few of other back-ends undergo testing and/or
are under construction — e.g. DOMLCGen4PDE or
DOMLCGen4staticIpopt (where names imply their
purpose).

5 Other enhancements in
DOML

The main direction of extending DOML syntax
revolved around the idea of "chaining" of solvers,
i.e. using a number of solvers in a sequence so that
a succeeding solver would (use as an initial guess
and) improve on the solution arrived at by its pre-
decessor. Usually an approximate solver would be
used first, followed by one that is more accurate
yet also more sensitive (susceptible) to the choice
of starting point.
One of DOML language proposed features is an

external package added into the Modelica Stan-
dard Library — Modelica.DOML — with its prede-
fined (/built-in) data types and functions. Cur-
rently Modelica.DOML contains two subpackages:
internal and Inputs. Importantly, the definitions
in Modelica.DOML.internal are automatically vis-
ible in any DOML file i.e. it is always implic-
itly imported by the compiler (therefore, specify-
ing explicitly import Modelica.DOML.internal.*;
would be redundant and will have no additional
effect). The package internal contains, among
others, the definition of Formula class needed for
certain aspects of solver chaining (but also e.g.
Domain class used in defining PDE problems). In
turn, the purpose of DOML.Inputs was to allow for
easy definition of known (predefined) signals, most
notably with Spline – using tabular values to pro-
duce piece-wise constant (degree = 0) or continu-
ous (degree ≥ 1) signal, based on polynomial in-
terpolation.
A simple and intuitive language extension (or

perhaps just a bug fix to Optimica) was to al-
low, in certain cases, continuous variability in the
right-hand-side expression defining the value of
the initialGuess attribute. If a variable’s value
can change over time, then it seams reasonable to
allow the user to provide an initial guess for it that
also is not constant over time. After that enhance-
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Modelica.DOML.Inputs.Spline
u_init ( startTime =0, finalTime =1,

table =[0,0; 0.2 ,.096;
0.4 ,.1; 0.6 ,.1;
0.8 ,.096; 1,0],
degree = 1);

Real u( initialGuess = u_init.y );

Listing 2: Specifying on initial guess signal for a
continuous variable

class Formula
parameter Boolean linear ;
Real lagrange (dual = true);
parameter Integer order;

end Formula ;

Listing 3: Definition of the predefined class
Formula.

ment, the above-mentioned Spline may be used
to feed an arbitrary signal as an initial guess of
a variable, as illustrated on listing 2. This way, a
user can run optimization with a fairly good start-
ing point, for instance obtained by pre-solving the
problem with a different (simpler) solver or with
coarser discretization — a typical implementation
of the strategy of "chaining of solvers".
Next to the (near optimal) trajectories found

for variables and controls, other (by)products of
(pre)solving an optimal control problem may be
available and beneficial when warm-starting a
high-precision solver. Among such, are the val-
ues of adjoint variables and Lagrange multipliers
arrived at near the solution. (Adjoint variables
and Lagrange multipliers are, arguably, two names
representing the same fundamental concept hence,
for the sake of simplicity, for both cases the syntax
provides the same name: lagrange). Assigning the
lagrange values to equations (/constraints) needs
a mechanism for identifying particular formulas.
In DOML it is devised by means of labeling them,
as so

eq_x1: der(x1) = p1*x1 - p2*x2*x3;

with simultaneously declaring the "label variable"
as Formula eq_x1;. The compiler checks if all vari-
ables of type Formula are referenced as labels and,
conversely, that all labels used next to equations
are appropriately declared variables. The Formula
class is declared in DOML.internal, as shown on
listing 3.
The objects of the new predefined type Formula

are meant to be used to specify attributes describ-
ing the particular equation or constraint – most
notably the above mentioned adjoint variable/La-
grange multiplier, but for prospective use other at-
tributes were defined as well. Similarly to the ear-
lier example, one can now specify an initialGuess
for the lagrange attribute associated with a par-
ticular equation or constraint. Such additional in-
formation may be benefitial, or plainly required,
in certain solvers (e.g. BNDSCO).
The last to discuss modification of DOML vs.

Optimica lies in a slightly different way of defin-
ing the objective within an optimization class.
DOML breaks up with Optimica’s objective at-
tribute and introduces two keywords, minimize
and maximize, in its stead. Each has an almost
identical meaning to Modelica’s parameter key-
word, but in addition signals that the given pa-
rameter holds the objective value.
The modification was motivated by its following

advantages:

• it clearly indicates the direction of optimiza-
tion; in some domains the default of mini-
mization may not be as natural.

• objective variables can now have meaningful
names;

• it becomes possible (and strikingly simple) to
define multi-objectives problems in a natural
way e.g. with:

maximize Real profit =... ;
minimize Real deliveryTime =... ;

(implementing a multi-objective solver is,
naturally, quite another issue)

• it makes it possible to define problems with
integer valued (or even Boolean valued, for
that matter) objective functions (again, we
are not touching on the implementation as-
pect here).

A number of other important language exten-
sions is related to using DOML to specify and
(prospectively) solve PDE problems. This aspect
also deserves attention but is clearly beyond the
scope (and page allowance) of this paper. This
aspect of implementation is described in [23] and
was partially inspired by [27].
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6 Summary and future work
IDOS (Interactive Dynamic Optimization Server)
provides an environment for defining and solving
optimal control problems in DOML (Dynamic Op-
timization Modeling Language) — a modeling lan-
guage derived from Modelica (/Optimica). The
main focus of the paper was put on these features
of the server’s environment — in particular, of the
DOML compiler — that provide support for ap-
plying different solvers to different problems. Ad-
ditional information about the current range of
implemented solvers was also provided.
A number of features proposed in DOML set it

apart from Optimica. The authors believe, that
these modifications deserve to be called "improve-
ments" and/or "extensions" as they seem to en-
hance both expresiveness and applicability of the
language. Their presentation and discussion is
scattered throughout the paper and therefore, for
clarity and readibility, here we (re)state them all
together in a conscise manner. The new features
of DOML are:

• implementation of multiple solvers with a
mechanism for adding (plugging-in) new code
generators (vs. hard-coded, closed set of code
generators in Optimica);

• annotation(solver ) allowing the user to
choose a particular solver package to be used;

• support for continuous variablity of the
initialGuess attribute (vs. parameter vari-
ability in Optimica) adds flexibility in defin-
ing initial (warm-starting) point of computa-
tions, e.g. with using provided Spline signal
generator;

• mechanism for labaling equations and con-
straints (missing in Modelica/Optimica);

• mechanism for referencing (and warm-
starting) adjoint variables / Lagrange multi-
pliers of (labelled) formulas;

• keywords maximize and minimize defining the
objective function with indicating the direc-
tion of optimization (vs. objective attribute
in Optimica)
note: makes it possible to define multiple-
objective problems, now the objective does
not have to be real-valued.

Apart form the above list, the lion’s share of
the DOML compiler functionality is inherited di-
rectly form the (JModelica.org) Optimica com-
piler whose authors, naturally, deserve due recog-
nition and honor.
Currently, significant parts of the server’s func-

tionality are still under development and testing.
There is still much room for improvement, for in-
stance as far as robustness (e.g. in cases of some
less usual formulations that are acceptable from
the language point of view but not recognized
by code generating rules) or graceful error han-
dling are concerned. A further reaching to-do list
also contains: polishing the mechanism for prob-
lem classification and choosing solvers/generators
(more advanced rules for matching most appropri-
ate solver to a given problem) and better support
for chaining of solvers (possibly, through produc-
ing solver’s output in the form of "enriched" in-
put, with solution pasted in as, e.g. the value
of control’s initialGuess attribute; such output
could then be directly used to warm-start another
solver).
One central goal in the design of the environ-

ment was to provide mechanisms for easily extend-
ing the compiler’s code generating functionality in
order to support a growing number of solver pack-
ages. As discussed in some detail above, the goal
has already been reached successfully. In result,
the compiler offers a remarkable feature: exten-
sions of its code generating functionality is pos-
sible virtually on the fly — by simply adding an
external jar file and without any interference with
the compiler’s executable. With this mechanism,
remote users of IDOS may be enabled to imple-
ment own solver packages and deploy them on the
server. If the proposed solution catches on and
stands the test of time, IDOS could become an
important, extensible, multi-user environment for
solving wider and wider range of optimal control
problems — "the NEOS of optimal control".
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Abstract

Efficient calculation of the solutions of nonlinear op-
timal control problems (NOCPs) is becoming more
and more important for today’s control engineers. The
systems to be controlled are typically described using
differential-algebraic equations (DAEs), which can be
conveniently formulated in Modelica. In addition, the
corresponding optimization problem can be expressed
using Optimica.
Solution algorithms based on collocation methods are
highly suitable for discretizing the underlying dy-
namic model formulation. Thereafter, the correspond-
ing discretized optimization problem can be solved,
e.g. by the interior-point optimizer Ipopt. The perfor-
mance of the optimizer heavily depends on the avail-
ability of derivative information for the underlying op-
timization problem. Typically, the gradient of the ob-
jective function, the Jacobian of the DAEs as well as
the Hessian matrix of the corresponding Lagrangian
formulation need to be determined. If only some or
none of these derivatives are provided, usually numer-
ical approximations are used by the optimizer inter-
nally.
OpenModelica supports the Optimica language and is
capable of automatically generating the discretized op-
timization problem using collocation methods as well
as the whole symbolic machinery available. In ad-
dition, all necessary derivative information is deter-
mined using the automatic differentiation capabilities
of ADOL-C, which has now been integrated into the
OpenModelica environment.
Keywords: Modelica; optimization; automatic differ-
entiation; collocation; OpenModelica; ADOL-C

1 Introduction

The aim of this paper is to describe an efficient new
solution process implemented in OpenModelica [11]
for nonlinear optimal control problems. This effort
continues the development of the collocation approach
already discussed in [3], which has been success-
fully tested using the algorithmic differentiation tool
CasADi [18]. Several enhancements, e.g. special
treatment of the first collocation interval, integration
of the automatic differentiation tool ADOL-C, as well
as efficient and stable calculation of all derivative in-
formation, have been realized in OpenModelica and
are demonstrated within this paper.
Efficient calculation of first order derivatives is possi-
ble with OpenModelica based on symbolic differentia-
tion and has been successfully demonstrated using real
world problems in [5]. This calculation of the deriva-
tives benefits on the one hand from the simplification
of expressions and on the other hand from the code,
which is efficiently generated by OpenModelica. For
optimization purposes the second order derivatives are
important as well, since most of the optimization algo-
rithms rely on them, e.g. Ipopt [19], which is used in
this work. Second order derivatives are currently not
symbolically available in OpenModelica, but could be
provided numerically based on the already mentioned
first order derivatives.
Another possibility is using the automatic differenti-
ation tool ADOL-C, which is capable of working di-
rectly with the generated code of OpenModelica and
has already been used successfully with Ipopt. More-
over, ADOL-C comes with a lot of additional features,
e.g. efficient calculation of derivatives of different or-
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ders. Last but not least, the implementation leads to a
very fast solution with little memory costs for the un-
derlying NOCP. The modeling and problem descrip-
tion is done in Modelica [8] extended with the opti-
mization objective functions specified in Optimica [1].
This paper is organized as follows. In section 2, the
mathematical representation of the nonlinear optimal
control problem is discussed. The main idea of dis-
cretizing the NOCP based on orthogonal collocation
principles is described in section 3. The efficient re-
alization of the derivative calculation using ADOL-C
is demonstrated in section 4. Section 5 presents the
implementation details with respect to scaling, initial-
ization and derivative calculation. Finally, the perfor-
mance of the newly developed tool chain is discussed
in section 6. The paper concludes the work with final
remarks and suggestions for future work.

2 Nonlinear Optimal Control Prob-
lem (NOCP)

In many applications the NOCP is described by the
following mathematical representation [10]:

min
u(t)

J(x(t),u(t), t) = E(x(t f ),u(t f ), t f )+

∫ t f

t0
L(x(t),u(t), t) dt (2.1)

s.t.

x(t0) = x0 (2.2)

ẋ(t) = f (x(t),u(t), t) (2.3)

ĝ(x(t),u(t), t) ≤ 0 (2.4)

r(x(t f )) = 0 (2.5)

where x(t) =
[
x(1)(t), . . . ,x(nx)(t)

]⊤
and u(t) =[

u(1)(t), . . . ,u(nu)(t)
]⊤

are the state vector and control
variable vector for t ∈ [t0, t f ], respectively. The con-
straints (2.2), (2.3), (2.4) and (2.5) represent the initial
conditions, the nonlinear dynamic model description
based on differential algebraic equations (DAEs), the
path constraints ĝ(x(t),u(t), t) ∈ Rnĝ and the terminal
constraints [3]. With respect to the implementation in
Ipopt and the Modelica language, it is appropriate to
split the box constraints from ĝ(x(t),u(t), t) ≤ 0, i.e.

xmin ≤ x(t) ≤ xmax

umin ≤ u(t) ≤ umax

and to introduce so-called slack variables for the rest

g(x(t),u(t), t)+ s(t) = 0

with s(t) ≥ 0 ∈Rng . Therefore, it is possible to use the
attributes min and max already available in Modelica
for the description[9].

Modelica model description

The mathematical representation of a Modelica model
is typically given by DAEs

F(x(t),u(t),y(t), t) = 0.

However, most Modelica tools, especially OpenMod-
elica, are capable of converting this formulation (by
means of the so-called BLT transformation [2]) into a
semi-explicit ODE form as formulated also in (2.3)

ẋ(t) = f (x(t),u(t), t),

y(t) = h(x(t),u(t), t).

In general, there is no closed expression for the func-
tions f and g, but rather, iterative techniques, e.g.,
Newton’s method, are employed to solve the so-called
occurrent linear or nonlinear algebraic loops [2].
At this point it is possible to choose between two
strategies for the discretization of (2.3). On the one
hand, it is feasible to transform these algebraic loops
into residual form and to add them subsequently to the
discretized NOCP formulation. This approach has the
advantage that the costs for solving the algebraic loop
in each evaluation of the function f are saved. How-
ever, the solver space as well as the workload of the
optimizer increases. On the other hand, the algebraic
loop can be solved during each optimizer step by a lin-
ear or nonlinear solver, depending on the type of prob-
lem. This procedure might have the drawback, that the
solution of these algebraic loops might be also quite
time consuming, especially in the case of a highly non-
linear equation system.
This paper focuses on the second strategy. The semi-
explicit ODE form is generated using OpenModelica
and solved for each optimizer step. In addition, a more
general NOCP formulation can be converted by means
of the BLT transformation to a semi-explicit NOCP as
stated in (2.1), (2.2), (2.3), (2.4) and (2.5).

3 Collocation

Previous work [3] has shown that solving the NOCP
with a collocation approach is efficient. Therefore,
the choice of collocation nodes is important, since
that influences the stability and order of the integra-
tion method [7, 16]. The RADAU IIA method [4] is
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one possible method to choose the collocation nodes.
RADAU IIA is an implicit Runge-Kutta method and is
typically described in the form [16]:



xi,1 − xi
...

xi,m − xi


= ∆ti · (A⊗ I) ·




f (xi,1,ui,1, ti,1)
...

f (xi,m,ui,m, ti,m)


 (3.1)

with xi, j = x(ti, j), xi := x(ti), ui, j = u(ti, j), ti, j := ti +
τ j ·∆ti and ti := t0 +∑i

l=1 ·∆tl where ∆ti, i = 0, . . . ,n is
the length of a subinterval and τ j ∈ [0,1], j = 1, . . . ,m
are the collocation nodes. A and I are the Butcher and
identity matrix, respectively. If det(A) 6= 0, equation
(3.1) can be transformed [7] to the following form

Fi(.) :=
(
A−1 ⊗ I

)
·




xi,1 − xi
...

xi,m − xi


−∆ti ·




f (xi,1,ui,1, ti,1)
...

f (xi,m,ui,m, ti,m)




This form leads to a sparse structure for the Jacobian
matrix, since in equation (3.1) the sparse structure is
destroyed by multiplication of the dense matrix A.
The RADAU IIA can be interpreted as a Lagrange in-
terpolation of the state x(l)(t) [3, 4]

x(l)(ti + τ ·∆ti) ≈
m

∑
j=1

p j(τ) · x(l)
i, j for τ ∈ [0,1].

The corresponding Lagrangian polynomials are p j. In
order to handle constraints for der(u) the control vari-
able u(l)(t) needs to be interpreted as a Lagrange inter-
polation as well:

u(l)(ti + τ ·∆ti) ≈
m

∑
j=1

p j(τ) ·u(l)
i, j .

Therefore, it is possible to calculate der(u) as

du(l)(t)
dt

=
∂u(l)(ti + τ ·∆ti)

∂τ
·∆ti ≈ ∆ti ·

m

∑
j=1

∂ p j

∂τ
(τ) ·u(l)

i, j .

Moreover, the constraints based on RADAU IIA re-
sult in an unbounded expression f (x0,u0, t0), since the
node τ j = 0 is not part of the RADAU IIA integration
scheme, especially the expression u(t0) is unbounded.
The principle is visualized in figure 1. This issue can
be addressed by using the LOBATTO IIIA method,
which includes the nodes τ1 = 0 and τm = 1. Thus, the
LOBATTO IIIA method yields an influence of u(t0) on
the NOCP. Therefore, the principles of the collocation
discretization will be applied not only to states, but
also to the control variables. This approach is referred
to as total collocation [3, 18].

Figure 1: RADAU IIA schema

3.1 Lobatto IIIA

In comparison to RADAU IIA the LOBATTO IIIA
method has a singular matrix A [16]. The number of
nonzero elements of the Jacobian matrix can be re-
duced by multiplying the matrix A with B−1 so that

[
0
∣∣ B−1] ·A =

[
0
∣∣ B−1] ·




0 0 · · · 0
a2,1 a2,2 · · · a2,m

...
...

. . .
...

am,1 am,2 · · · am,m




=
[
0
∣∣ B−1] ·

[
0 0

A1 B

]
=
[
Â1
∣∣ I
]
.

Furthermore, the equation (3.1) can be transform for
the special case LOBATTO IIIA as follows

F̂0(.) :=
(
B−1 ⊗ I

)
·




x0,2 − x0
...

x0,m − x0


−

(A1 ⊗ I) ·∆t0 ·




f (x0,1,u0,1, t0,1)
...

f (x0,1,u0,1, t0,1)


+

∆t0 ·




f (x0,2,u0,2, t0,2)
...

f (x0,m,u0,m, t0,m)




(3.2)

Note that x0 is bounded and solved with equation (2.2),
so x0 is known for the optimization process. Thus,
there is no need to differentiate equation (3.2) with re-
spect to x0, this results only in nonzero elements for
u0.
Besides, for RADAU IIA and LOBATTO IIIA applies

x0 = x 0,1 and x i+1 = x i,m,

which is solved symbolically without the optimization
loop.

Session 6C: Optimization Applications and Methods

DOI
10.3384/ECP140961017

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1019



3.2 Discretized Lagrange term

Now, it is possible to use the property of the colloca-
tion method that

x(ti, j) ≈ xi, j

for the approximation of the Lagrange term (2.1) based
on quadrature formulas. Obviously, it makes sense to
apply methods of Lobatto and Radau quadrature.

Φ(x, u, t) := ∆t0 ·
m

∑
j=1

ŵ j ·L0, j +
n−1

∑
i=1

∆ti ·
m

∑
j=1

w j ·Li, j

≈
∫ t f

t0
L(x(t),u(t), t) dt

(3.3)

where Li, j := L(xi, j,ui, j, ti, j), ŵ represents the Lo-
batto weights, w the Radau weights, and the abbre-
viations x := [x0,1, . . . ,xn,m], u := [u0,1, . . . ,un,m], and
t := [t0,1, . . . , tn,m].

3.3 Discretized NOCP

Finally, the NOCP can be discretized:

min J(x,u,s, t) = E(xm,n−1,um,n−1, tm,n−1)+Φ(x,u, t)

s.t.

c(x,u,s, t) !
= 0

umax ≤ u ≤ umin
xmax ≤ x ≤ xmin

0 ≤ s

where

c(x,u,s, t) :=




F̂0(.)
g(x0,1,u0,1, t0,1)+ s0,1

...
g(x0,m,u0,m, t0,m)+ s0,m

F1(.)
g(x1,1,u1,1, t1,1)+ s1,1

...
g(x1,m,u1,m, t1,m)+ s1,1

Fn(.)
g(xn,1,un,1, tn,1)+ sn,1

...
g(xn,m,un,m, tn,m)+ sn,m

r(xn,m,un,m, tn,m)




and x0,1 = x0 with s = [s0,1, . . . ,sm,n], si, j = s(ti, j).

3.4 Nonlinear optimization

Now, the original NOCP is transformed to a nonlin-
ear optimization problem, where the optimizer needs
to find the optimal discretized control vector u and to
adapt x,s so that the constraints are fulfilled. For this
operation the optimizer requires the first order deriva-
tives from E(.), Φ(.) and c(.) as well as the second
order derivatives from the Lagrangian function

L(z,λ , t) = E(.)+Φ(.)+λ⊤ · c(.) (3.4)

to find the solution. The sorting of c(.) and z = [x,u,s]
is substantial for a good Jacobian- and Hessian-
structure. The block

Gi(.) :=




Fi(.)
g(xi,1,ui,1, ti,1)+ si,1

...
g(xi,m,ui,m, ti,m)+ si,m




can be sorted more efficiently, if this is investigated in
more detail. Furthermore, it applies

∂x(l)
i, j

∂x(c)
a,b

=
∂x(l)

i, j

∂u(d)
a,b

=
∂u(e)

i, j

∂u(d)
a,b

=
∂u(e)

i, j

∂x(c)
a,b

= 0

for i,a = 0, . . . ,n, j,b = 1 . . . ,m, l,c = 1 . . .nx,
e,d = 1, . . . ,nu and l 6= c, e 6= d as well as

∂x(l)
i, j

∂x(l)
i, j

= 1 =
∂u(e)

i, j

∂u(e)
i, j

Therefore, the Jacobian and Hessian matrices become
very sparse. Furthermore, it should be taken advantage
of the cyclic structure in c(.), which results from the
same structure in G1(.), . . . ,Gn(.).

4 Derivatives

There are at least three different ways to compute the
derivative information required by a calculus-based
optimization approach: Finite Differences, Symbolic
Differentiation and Algorithmic Differentiation. The
first technique, i.e., finite differences (FD), is based on
the Taylor expansion and yields to relatively impre-
cise derivative information. Furthermore, the result-
ing computational cost is high in comparison to the
two other approaches. For example, the gradient of
a scalar-valued function with N input variables is ap-
proximated using FD with N +1 function evaluations.
For these reasons, FD approximations of derivatives
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will not be considered in this section. Alternatively,
one may analytically derive expressions to evaluate the
exact derivative based on the obtained formula. This
can be done by hand, which results in an error-prone
process, or automatically as provided, e.g., by Maple.
Natural a Modelica compiler like OpenModelica has
also capabilities to differentiate symbolically a Mod-
elica model (see [5], [2]).
This purely symbolic method usually yields a very
efficient way to compute first-order derivatives for
closed-form expressions. However, the computation
of higher-order derivatives or the handling of itera-
tive solution procedures still form major challenges
for this approach. The usage of algorithmic dif-
ferentiation (AD), also called automatic differentia-
tion, offers a third alternative to compute gradients,
Jacobians and/or Hessians required for optimization.
Based on the exploitation of the chain rule, AD pro-
vides derivative information of arbitrary order within
working accuracy for a function F : RN → RM eval-
uated in a code segment on a computer [14]. The
complexity estimates for the two basic approaches of
AD, namely the forward mode and the reverse mode,
are based on the operation count OF , i.e., the num-
ber of floating point operations required to evaluate
y = F(z). Using the forward mode, one computes the
required derivatives together with the function evalua-
tion in one sweep. This approach yields one Jacobian-
vector product ∇Fv,v ∈RN for no more than 2.5 times
OF . One vector-Jacobian product, or equivalently
∇F⊤w,w ∈ RM , is obtained using the reverse mode in
its basic form also for no more than four times OF . If
M = 1, i.e. ∇F corresponds to the gradient of a scalar-
valued function, this complexity bound for the reverse
mode is completely independent of the number n of in-
put variables. Therefore, it is also known as the cheap
gradient result. More details about AD can be found
in the books [15] and [17] as well as on the web-page
www.autodiff.org.

4.1 Efficient Jacobian evaluation

For the examples considered here, the Jacobian
of the equality constraints c : RN → RN is an
almost square matrix of dimension N, where
N = (n+1) ·m · (nx +ng). Hence, as a first approach
to evaluate the full Jacobian, one may compute the
Jacobian-vector products

∂c
∂ zi

(z) = ∇c(z)ei, i = 1 . . . ,N,

where ei denotes the ith unit vector, yielding the N
rows of the Jacobian using either the symbolic ap-
proach or the forward mode of AD N times. For the
forward mode of AD, the following theoretical bound
of the computational cost to evaluate the full Jacobian
can be shown [15]

OPS(∇c(z)) ≤ 2.5NOF ,

where OPS( f ) denotes the number of floating point
operations required to evaluate f . To reduce this op-
eration count, one may use the so-called vector for-
ward mode, where not only one derivative information
is propagated with the function evaluation but a bun-
dle of p directional derivatives. Hence, for a so-called
seed matrix Σ ∈ RN×p this variant of AD yields the
Jacobian-matrix product ∇c(z)Σ ∈ RN×p at a compu-
tational cost that can be bounded above by

OPS(∇c(z)Σ) ≤ (1+1.5p)OF ,

see [15]. Using Σ = IN as the identity matrix in RN×N ,
one obtains the full Jacobian with the vector forward
mode of AD at a computational cost bounded above
by (1 + 1.5N)OF instead of 2.5NOF when using the
standard forward mode of AD. This makes a signifi-
cant difference if N is large or the function evaluation
is costly.

4.2 Exploiting the structure of the Jacobian

The derivative computation described so far com-
pletely ignores any structure within the Jacobian ma-
trix. However, for the target applications of this re-
search project, the Jacobian of the equality constraints
has a block structure as shown in Fig. 2 for the Van der
Pol oscillator. When computing the full Jacobian using

Figure 2: Van der Pol oscillator: Jacobian structure
with 50 subintervals
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the approach as explained in the last subsection, a lot
of zero entries are computed, despite the fact that one
knows that these entries are zero. To exploit the inher-
ent structure of a sparse Jacobian, so-called compres-
sion techniques were developed. In the general case
all compression techniques rely on the following four-
step procedure: First determine the sparsity structure
of the Jacobian ∇c(z). Second, obtain a suitable seed
matrix Σ that defines a column partition of the Jaco-
bian using, for example, a specialized coloring on the
adjacency graph of the Jacobian. Then compute the
compressed Jacobian matrix B = ∇c(z)Σ. Finally, re-
cover the numerical values of the entries of ∇c(z) from
B. The sparsity structure may be known from the ap-
plication, as can be seen from the block structure in the
example of the Van der Pol oscillator, or determined
by a suitable variant of AD as explained in [15]. In
our applications the structure is known apriori so the
first two steps may be skipped and a seed matrix is
available directly from the block structure. Appropri-
ate coloring methods with the corresponding recovery
strategies for the general case are discussed for exam-
ple in [12]. The compressed Jacobian B is evaluated
using the vector forward mode of AD. For our appli-
cations, one may consider also the sparsity structure
within the blocks of the Jacobian to reduce the com-
putational cost even further. This will be the subject of
future work.

4.3 Exploiting the structure of the Hessian

Using a combination of the forward mode and the re-
verse mode of AD, one can compute Hessian-vector
products for a function F(z) for a computational cost
not larger than ten times OF [15]. To exploit this facil-
ity to the full extend, for the target applications of this
research project once more the sparsity of the Hessian
can be taken into account. This is due to the fact that
these derivative matrices have also a block structure as
illustrated again for the Van der Pol oscillator in Fig. 3.
The four step procedure explained above has to be
adapted appropriately for the computation of second-
order information in the general case. The sparsity
structure of the Hessian may be known from the ap-
plication, as is the case for the application discussed
here, or it may be determined by a suitable variant of
AD as described for example in [20]. For the general
case corresponding coloring approaches together with
suitable recovery strategies are presented in [13]. In
our applications the seed matrix is obtained directly
from the block structure known apriori.

Figure 3: Van der Pol oscillator: Hessian structure
with 50 subintervals

5 Implementation Details

The rough principle of the implementation is visual-
ized in figure 4. At the first step the optimizer re-

Figure 4: Implementation details
quires a sufficiently good starting point. In order to
keep the constraint error for equation (2.3) small the
method in OpenModelica creates a starting solution
based on a simulation run. The initial guess of the
control variable is set constant with the value of the
start attribute. Obviously, a good setting of the ini-
tial values of the control variables can accelerate the
NOCP solution process. Furthermore, this implemen-
tation supports the attribute nominal in Modelica for
scaling variables and constraints. The effects will be
presented in section 6.1.

Coupling of OpenModelica and ADOL-C

The AD tool ADOL-C [21] uses the technique of op-
erator overloading provided by the C++ standard to
implement a wide variety of AD-based techniques.
Within the research project described in this paper, the
C code generation of OpenModelica was adapted such
that ADOL-C can be used to evaluate the blocks in the
Jacobian of the equality constraints and the blocks of
the Hessian of the Lagrangian for a class of generic
test problems. That is, the block structure was ex-
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ploited manually. To compute the required derivative
information the standard drivers jaobian(...) and hes-

sian(...) of ADOL-C were used. For the applications
considered here, the jaobian(...) routine uses the vec-
tor forward mode as described above. The current cou-
pling of OpenModelica and ADOL-C allows a flexible
choice between the symbolic derivative computation
already implemented in OpenModelica and the AD-
based derivative computation provided by ADOL-C.
The structure of the coupling is illustrated in Fig. 5.

Figure 5: Structure of the coupling

6 Modelica Application and Perfor-
mance Measurements

6.1 Model formulation
Currently, the user can influence the solution con-
vergence by using native Modelica attributes like
nominal and start. It should be emphasized that
it is not the natural way to use start, since this at-
tribute is usually reserved for initial values at start time
for the simulation. Nevertheless, the initial trajectory
of all problem variables is provided by a simulation,
where all control variables are kept constant equal to
the value of the start attribute. The described for-
mulation of scaling and start trajectory will be shown
on a simple model, based on the Batch Reactor found
in [4]. The model was modified so that the states have
the nominal values 1010 and 10−10. The mathematical
formulation is given by

min
u(t)

x2(t f )

s.t.

x2(t) = 1010 · y2(t)
x1(t) = 10−10 · y1(t)

10−10 · ẏ1(t) = −
(

u(t)+
u(t)2

2

)
· x1(t)

1010 · ẏ2(t) = u(t) · x1(t)

u(t) ∈ [0, 5], y1(0) = 1, y2(0) = 0, t f = 1

which can easily be formulated in a Modelica/Optim-
ica representation:

optimization BathReator(

objetive = ost(finalTime),

finalTime = 1)

Real ost = -x2;

/*DAE Modelia */

/* states */

Real y1(start =1e10 ,

fixed=true , nominal =1e10);

Real y2(start=0,

fixed=true , nominal =1e-10);

/* tuner */

input Real u(min=0, max=5, start =1.0);

proteted

Real x1;

Real x2;

equation

x1 = 1e-10*y1;

x2 = 1e10*y2;

1e-10* der(y1) = -(u+u^2/2)* x1;

1e10*der(y2) = u*x1;

end BathReator;

When setting the correct values for the nominal at-
tribute the solution is calculated as expected. Setting
the nominal attribute to 1 yields the wrong result, nev-
ertheless the optimizer finishes without any error de-
tection.

6.2 Combined Cycle Power Plant

A more industry-relevant benchmark is a model of a
combined cycle power plant model, see figure 6. The
model contains equation-based implementations of the
thermodynamic functions for water and steam, which
in turn are used in the components corresponding to
pipes and the boiler. The model also contains compo-
nents for the economizer, the super heater, as well as
the gas and steam turbines. The model has one input,
10 states, and 131 equations. For additional details on
the model, see [6].

Figure 6: CombinedCycle display with OMEdit
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Figure 7: Optimal start-up trajectories. The upper
curve shows the pressure in the evaporator, the mid-
dle curve shows the thermal stress in the steam turbine
shaft and the lower curve shows the control input rep-
resented by the load.

The optimization problem is set up to use 50 col-
location points that results in 1651 variables for the
NOCP and was solved on a PC with a 3.2GHz Intel(R)
Core(TM) i7. The algorithm requires an initial trajec-
tory of all problem variables, which is provided by a
simulation where the rate of change of the gas turbine
load is set to a constant value. The optimization re-
sults are shown in figure 7 and 8 and correspond with
the results that are discussed in detail in [6]. Here,
the trajectories are smoother, and the performance has
been improved substantially.

options
iteration time [s]

Jacobian Hessian
ADOL-C ADOL-C 39 2.29472
ADOL-C BFGS 48 0.86425
OMC BFGS 48 0.88558

Table 1: Time measurements of the solving process.

In table 1 the time measurements of the solving pro-
cess are summarized for different options of deriva-
tives calculation. One can see that the solution with
ADOL-C needs less iterations, which is a strong in-
dication that the solution is more accurate and more
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Figure 8: Optimal start-up trajectories. The upper
curve shows the live steam temperature, the middle
and low curves show the turbine rotor surface and
mean temperatures.

stable. This is even more important for stiff models.
However, the calculation of the Hessian with ADOL-
C need currently a factor of three more computational
time. Alternative approaches for a further improve-
ment of the runtime needed for the Hessian calculation
are the subject of current research.

7 Conclusions

This paper presents a newly developed tool chain
for solving nonlinear optimization control problems.
The underlying dynamic model formulation is done in
Modelica and Optimica. The demonstrated solution
method is based on orthogonal collocation methods,
whereby the first interval is specially treated in order to
consider control variables and their derivatives also at
the initial time point. The derivative information is de-
rived using the automatic differentiation tool ADOL-
C, which efficiently calculates the corresponding Jaco-
bian and Hessian matrices for the discretized optimiza-
tion problem. Special treatments of the matrices with
the focus on yielding optimal sparsity patterns with re-
spect to block and cyclic structure are performed. The
resulting optimization process proves to be stable and
efficient.
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Abstract

Dynamic optimization problems involving differen-
tial-algebraic equation (DAE) systems are tradition-
ally solved while retaining the semi-explicit or implicit
form of the DAE. We instead consider symbolically
transforming the DAE into an ordinary differential
equation (ODE) before solving the optimization prob-
lem using a collocation method. We present a method
for achieving this, which handles DAE-constrained
optimization problems. The method is based on tech-
niques commonly used in Modelica tools for simula-
tion of DAE systems.

The method is evaluated on two industrially rele-
vant benchmark problems. The first is about vehicle-
trajectory generation and the second involves startup
of power plants. The problems are solved using both
the DAE formulation and the ODE formulation and
the performance of the two approaches is compared.
The ODE formulation is shown to have roughly three
times shorter execution time. We also discuss benefits
and drawbacks of the two approaches.

Keywords: dynamic optimization, symbolic trans-
formations, causalization, collocation

1 Introduction

Industrial usage of optimization of large-scale dy-
namic systems has increased during the last decades.
Dynamic optimization problems occur in many dif-
ferent fields and applications, and include parameter
estimation and optimal control. Applications of opti-
mal control include minimization of material and en-
ergy consumption during set-point transitions in power
plants [1] and chemical processes [2], minimizing du-
ration of vehicle maneuvers [3], and trajectory opti-
mization in robotics [4].

The applications of optimal control are diverse and

∗Corresponding author: fredrik.magnusson@control.lth.se
The authors are members of the LCCC Linnaeus Center and the ELLIIT
Excellence Center at Lund University.

occur in both online and offline settings. Online opti-
mal control is usually done in the form of Model Pre-
dictive Control (MPC). Offline applications include
finding optimal trajectories, which can be used ei-
ther as a reference during manual control or as nom-
inal trajectories combined with online feedback han-
dling deviations due to model uncertainty and distur-
bances. Another offline application is the identifica-
tion of system bottlenecks, for example by analyzing
adjoint variables.

This paper considers models described by differen-
tial-algebraic equation (DAE) systems, and investi-
gates the benefits of applying symbolic transforma-
tions to the DAE before applying numerical optimiza-
tion methods. The DAE is transformed into an ordi-
nary differential equation (ODE). This will often lead
to a drastically reduced number of system variables, as
the algebraic variables are eliminated from the equa-
tion system. On the other hand, the transformed equa-
tions will also be denser and consist of more expres-
sions of higher complexity. This transformation is
common practice in simulation of DAEs in Modelica
tools [5], but is traditionally not done in the context
of DAE-constrained optimization, where the DAE is
instead usually retained in its natural semi-explicit or
implicit form.

The technique is evaluated in two case studies. The
first case concerns generation of time-optimal trajec-
tories for road vehicles. The second case concerns op-
timal startup of combined-cycle power plants.

The main contributions of this paper are the demon-
stration of how a method commonly used in Model-
ica tools can be applied to dynamic optimization prob-
lems and experiments indicating the potential of the
method. While similar methods have been used before
[6, 7], this paper studies the properties of the approach
when compared to the more traditional approach that
discretizes the full DAE.

The paper outline is as follows. Section 2 presents
the background of transforming low-index DAEs into
ODEs by causalization, the formulation of dynamic
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optimization problems and their solution, and the tools
used in the implemented framework. Section 3 dis-
cusses how the DAE causalization technique is used
to transform DAE-constrained optimization problems
into ODE-constrained problems. Section 4 explains
the case studies used to evaluate the method and Sec-
tion 5 presents the corresponding results. Finally, Sec-
tion 6 concludes the paper and discusses future work.

2 Background

We present the standard approach of transforming a
DAE into an ODE by causalization. We then discuss
the formulation of general optimization problems in-
volving dynamic systems and commons methods for
solving these. We finally present the tools used to im-
plement the methods presented in this paper.

2.1 Causalization of DAEs

In the first step of the compilation process in a Model-
ica tool chain, a compiler front-end transforms Model-
ica source code into a flat representation, consisting es-
sentially of lists of variables, functions, equations, and
algorithms. Based on this model representation, sym-
bolic operations such as alias elimination and index
reduction are applied to reduce the size of the model
and to ensure that the resulting DAE is of most index
1. In this section, we outline the steps needed to trans-
form an implict DAE into an ODE, which is one of the
key elements of the method investigated in this paper.
We introduce the following notation:

t time
t f final time
x state (differentiated variables)
ẋ time derivative of state
y algebraic variables
u inputs
p parameters without predetermined values

The initial time is assumed to be 0 and the final time
t f may or may not be predetermined, but is always
finite. The variables x, ẋ,y, and u depend on time. This
dependence will be implicit in certain expressions
throughout the paper.

We consider nonlinear nonhybrid index-1 DAE sys-
tems of the form

F(t, ẋ(t),x(t),y(t),u(t), p) = 0, t ∈ [0, t f ]. (1)

From an integrator perspective, we introduce

z := (ẋ,y), v := (t,x,u, p)

to denote the unknown and known variables of the
equation system, respectively. By reordering the ar-
guments of F , the DAE can be written

F(z,v) = 0. (2)

The conceptual idea of DAE causalization commonly
used in Modelica tools is to compute the inverse rela-
tionship of F:

z = g(v). (3)

The DAE can then be written as the ODE

ẋ =F(t,x,u, p), (4)

where the algebraic variables are internal in the right-
hand side function. In general, there is no closed ex-
pression for the function F̄ . Rather, iterative tech-
niques, such as Newton’s method, are employed to
solve algebraic loops required for computation of z.

Modelica models are typically of large scale but
sparse in the sense that each model equation contains
references only to a small number of equations. Graph
algorithms can be employed to exploit this structure.
Two commonly used algorithms that are used for this
purpose are matching algorithms, such as the Hopcroft
Karp algorithm, and Tarjan’s algorithm [8] for com-
puting strong components. The result of Tarjan’s algo-
rithm is used to permute the variables and equations of
the DAE into Block Lower Triangular (BLT) form.

To demonstrate this procedure, let us consider an
exemplary DAE system with five equations and five
unknowns, where the DAE system is given by

F1(z1,z5,v) = 0,

F2(z3,v) = 0,

F3(z1,z2,z3,z4,v) = 0,

F4(z1,z3,z5,v) = 0,

F5(z2,z5,v) = 0.

(5)

Note that the variable v = (t,x,u, p) is known and
needs not be considered in the following analysis. The
dependence on the z variables can be shown in the fol-
lowing incidence matrix:

z1 z2 z3 z4 z5
F1 ∗ 0 0 0 ∗
F2 0 0 ∗ 0 0
F3 ∗ ∗ ∗ ∗ 0
F4 ∗ 0 ∗ 0 ∗
F5 0 ∗ 0 0 ∗

(6)
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An asterisk in (6) in row i and column j denotes that
the residual function Fi contains a reference to the vari-
able z j. Application of the BLT procedure yields the
following permuted incidence matrix:

z3 z1 z5 z2 z4
F2 ∗ 0 0 0 0
F4 ∗ ∗ ∗ 0 0
F1 0 ∗ ∗ 0 0
F5 0 0 ∗ ∗ 0
F3 ∗ ∗ 0 ∗ ∗

(7)

By reordering and grouping the variables according to

z̄1 := z3,

z̄2 := (z1,z5),

z̄3 := z2,

z̄4 := z4,

the DAE (5) can be written

G1(z̄1,v) = 0, (8a)

G2(z̄1, z̄2,v) = 0, (8b)

G3(z̄2, z̄3,v) = 0, (8c)

G4(z̄1, z̄2, z̄3, z̄4,v) = 0, (8d)

where the functions Gi are constructed from the func-
tions Fj. For demonstrative purposes, we assume that
(8a) and (8d) can be solved explicitly for z̄1 and z̄2 re-
spectively, and that (8b) and (8c) can not be solved
analogously. The DAE can then be represented by the
following sequence of assignment statements and im-
plicit equation systems:

z̄1← g1(v), (9a)

G2(z̄1, z̄2,v) = 0, (9b)

G3(z̄2, z̄3,v) = 0, (9c)

z̄4← g4(z̄1, z̄2, z̄3,v). (9d)

where (9b) and (9c) require iterative methods to be
solved. It is typical for Modelica models to contain
only a small number of implicit equation systems that
require iteration and a large number of trivial, for ex-
ample linear, equations that can be solved symboli-
cally.

For a general DAE, the BLT procedure results in a
sequence of equation systems of the form

G1(z̄1,v) = 0,

...

Gi(z̄1, ..., z̄i,v) = 0,

...

Gb(z̄1, ..., z̄b,v) = 0,

(10)

where b is the number of blocks in the BLT form and
the unknown of each equation is z̄i. Some equations
can be solved explicitly by symbolic manipulation,
while the rest needs to be solved iteratively.

Given values of the known variables in v, the se-
quence of solved and unsolved blocks (10) allows for
the computation of the corresponding state derivative
and algebraic vectors contained in z. Accordingly, the
DAE has been causalized into an ODE of the form (4).

We consider the class of DAEs that can be trans-
formed into an ODE where no implicit systems of
equations need to be solved. This lets us redefine each
unknown z̄i to be a single scalar variable and compute
it explicitly as

z̄i = gi(z̄1, ..., z̄i−1,v), i = 1, . . . ,nz, (11)

where nz is the total number of states and algebraic
variables. While this class of systems is limited, the
proposed method is trivially extendible to systems
containing implicit systems by simply exposing the
implicit systems to the numerical optimization method
used in the end, in which case some algebraic equa-
tions will remain in the transformed DAE.

2.2 Dynamic optimization

Consider the DAE-constrained optimization problem:

minimize φ(t f , ẋ(t f ),x(t f ),y(t f ),u(t f ), p)

+

∫ t f

0
L(t, ẋ(t),x(t),y(t),u(t), p)dt, (12a)

w.r.t. t f , ẋ,x,y,u, p,

subject to F(t, ẋ,x,y,u, p) = 0, (12b)

F0(ẋ(0),x(0),y(0), p) = 0, (12c)

ẋL ≤ ẋ(t)≤ ẋU , (12d)

xL ≤ x(t) ≤ xU , (12e)

yL ≤ y(t) ≤ yU , (12f)

uL ≤ u(t)≤ uU , (12g)

pL ≤ p≤ pU , (12h)

he(t, ẋ,x,y,u, p) = 0, (12i)

hi(t, ẋ,x,y,u, p) ≤ 0, (12j)

He(ẋ(t f ),x(t f ),y(t f ),u(t f ), p) = 0, (12k)

Hi(ẋ(t f ),x(t f ),y(t f ),u(t f ), p)≤ 0, (12l)

∀t ∈ [0, t f ].

The objective (12a) consists of the terminal cost φ and
the integral of L, which is the accumulated cost. Con-
straint (12b) is the DAE describing the system dynam-
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ics. Constraint (12c) enforces the DAE initial condi-
tions, which are often given on the form x(0) = x0.
Constraints (12d)–(12h) are variable bounds. Con-
straints (12i) and (12j) are path constraints on equal-
ity and inequality form, which can be seen as gen-
eralizations of the variable bounds, where the func-
tions he and hi define the boundary. The variable
bounds are separated from the path constraints because
some solvers allow for more efficient treatment of the
bounds. Constraints (12k) and (12l) are terminal con-
straints on equality and inequality form. These are
similar to the path constraints, but instead of being en-
forced at all points in time they are only enforced at
t f .

There are many approaches to solving dynamic op-
timization problems of the form (12). Until the 1970s,
problems were solved using dynamic programming or
Pontryagin’s maximum principle. These approaches
are ill-suited for large-scale problems and problems
with inequality constraints. Modern techniques often
involve finding an approximate solution to the infinite-
dimensional optimization problem by transcribing it
into a finite-dimensional nonlinear program (NLP).
These are called direct methods. The main difference
among direct methods is how to handle the dynamic
equations of the system. This paper employs direct lo-
cal collocation. Another common approach is direct
multiple shooting. See [9, 10] for overviews on direct
local collocation and other direct methods.

The main idea of direct local collocation is to first
divide the time horizon into a certain number of el-
ements. Then within each element, the constraints
(12b) and (12d)–(12j) are enforced at only a finite
number of points, called collocation points, instead
of at every point in the element. There are different
schemes for choosing the placement of the collocation
points with different numerical properties. The results
in Section 5 have been generated using Radau points.

The constraints resulting from the collocation pro-
cedure are considered as interpolation conditions on
the time-dependent variables x, y, and u. Thus the
sought approximate optimal trajectories to (12) be-
come piecewise-polynomial, where the degrees of the
polynomials are determined by the number of collo-
cation points. The state derivative ẋ is obtained by
differentiating the corresponding polynomials for the
state x. The integral term in the objective (12a) is ap-
proximated as a sum using quadrature. See [11] for a
complete description of the used collocation method,
and also possible generalizations of (12). Once the
discretization procedure is completed, the infinite-

dimensional dynamic optimization problem (12) has
been transformed into an NLP of the following gen-
eral form:

minimize f̃ (x̃), (13a)

with respect to x̃ ∈ Rnx̃ ,

subject to x̃L ≤ x̃≤ x̃U , (13b)

g̃(x̃) = 0, (13c)

h̃(x̃)≤ 0. (13d)

The number of discretization points is affected both by
the number of elements and the number of collocation
points within each element. An increase in either of
these directly corresponds to an increase in the number
of variables and constraints in the NLP (13).

In this work, (13) is solved using a gradient-based
method. This requires the NLP functions f , g, and h
to be twice continuously differentiable with respect to
all of the NLP variables x̃. In particular, this require-
ment implies differentiability of the DAE-residual F ,
which excludes the possibility of solving optimization
problems involving hybrid systems.

When using direct methods for dynamic optimiza-
tion problems involving DAEs, the time discretization
method is typically applied to the DAE in its natural
semi-explicit or implicit form [9, 10]. In this paper,
we instead consider causalizing the DAE as described
in Section 2.1 and then eliminating the algebraic vari-
ables in the optimization problem as described in Sec-
tion 3. The result is an ODE-constrained optimization
problem of the following form:

minimize φ(t f , ẋ(t f ),x(t f ),u(t f ), p)

+

∫ t f

0
L(t, ẋ(t),x(t),u(t), p)dt, (14a)

with respect to t f , ẋ,x,u, p,

subject to ẋ =F(t,x,u, p) = 0, (14b)

F0(ẋ(0),x(0), p) = 0, (14c)

ẋL ≤ ẋ(t)≤ ẋU , (14d)

xL ≤ x(t)≤ xU , (14e)

uL ≤ u(t)≤ uU , (14f)

pL ≤ p≤ pU , (14g)

h̄e(t, ẋ,x,u, p) = 0, (14h)

h̄i(t, ẋ,x,u, p) ≤ 0, (14i)

He(ẋ(t f ),x(t f ),u(t f ), p) = 0, (14j)

Hi(ẋ(t f ),x(t f ),u(t f ), p) ≤ 0, (14k)

∀t ∈ [0, t f ].

The objective and constraint functions occurring in
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problem (14) are defined analogously to those occur-
ring in problem (12).

This paper investigates the possibilities of trans-
forming problems on the form of (12) to the form of
(14) and the impact this has on the solution of the
NLPs resulting from collocation methods.

2.3 Tools

The proposed method has been implemented using the
open-source platform JModelica.org [12]. JModel-
ica.org is a tool targeting simulation and optimization
of large-scale dynamic systems. The systems are de-
scribed using Modelica, and the optimization is for-
mulated with the Modelica extension Optimica [13].

The framework uses IPOPT [14] to solve the NLP
(13). IPOPT uses a sparse primal-dual interior point
method to find local optima to large-scale NLPs. To
this end, it uses first- and second-order derivatives of
the NLP functions f , g, and h in problem (13). The
implemented framework uses CasADi [15] (Computer
algebra system with Automatic Differentaion) to ob-
tain these derivatives, and also to perform the transfor-
mation from (12) to (14). CasADi is a low-level tool
for efficiently computing derivatives using algorithmic
differentiation (AD) while preserving sparsity, and is
tailored for dynamic optimization.

3 Proposed method

This section presents the proposed method for trans-
forming the DAE-constrained optimization problem
(12) into an ODE-constrained optimization problem
of the form (14). We then compare the properties of
the untransformed problem to those of the transformed
problem.

3.1 Problem transformation

The first step is the causalization of the DAE in (12b),
as described in Section 2.1. Under the assumption that
all equations in (10) can be solved explicitly by sym-
bolic manipulations, this yields the system of equa-
tions (compare with (11) )

z̄i = gi(z̄1, z̄2, . . . , z̄i−1,v), i = 1, . . . ,nz, (15)

where z̄i is a state derivative or an algebraic variable.
The explicit solution for z̄1, z̄2, . . . , z̄i−1 is then inlined
into (15). The resulting equations are described by the

following recursive relations:

ḡ1(v) := g1(v), (16a)

ḡi(v) := gi(ḡ1(v), ḡ2(v), . . . , ḡi−1(v),v), (16b)

z̄i = ḡi(v), i = 1, . . . ,nz. (16c)

By expanding the variables v and z and separating the
state derivatives from the algebraic variables in (16c),
the equations can be written in the form

ẋ =F(t,x,u, p), (17a)

y = k(t,x,u, p), (17b)

where each scalar component of F and k is equal to ḡi
for some i. Thus (17a) gives rise to the constraint in
(14b). Equation (17b) is used to eliminate the alge-
braic variables in the objective function and remaining
constraints of (12). To demonstrate, the function hi in
(12j) is transformed according to

hi(t, ẋ(t),x(t),y(t),u(t), p)

= hi(t, ẋ(t),x(t),k(t,x(t),u(t), p),u(t), p)

=: h̄i(t, ẋ(t),x(t),u(t), p).

Constraint (12f) is not possible to transform in this
manner, since the algebraic variables have been elim-
inated. This is handled by transforming (12f) into
its more general form (12j), which has consequences
discussed in Section 3.2, and then transforming it as
demonstrated above. By eliminating the algebraic
variables in the objective and remaining constraints in
the same manner, the optimization problem (12) has
been transformed into the equivalent problem (14).

3.2 Method properties

A significant benefit of transforming the original DAE-
constrained problem into an ODE-constrained prob-
lem is the reduction of system variables and equations,
which directly leads to a smaller NLP after applying a
collocation method. However, while the constraints
will be fewer in number their expressions will be more
complex, which may lead to expression graphs that in
the end require more memory to store and more time
to evaluate than the expression graphs in the original
problem. On the other hand, component-based physi-
cal modeling will often lead to a great amount of trivial
algebraic equations that can be solved explicitly with-
out increasing expression complexity. It thus stands to
reason that the proposed method is well suited to be
used in a Modelica framework.

The elimination of algebraic variables will make
the incidence matrix for the dynamic equation system
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denser. However, the sparsity in the NLP does not
mainly stem from the structure of the dynamic equa-
tions, but rather from the largely decoupled depen-
dency of NLP variables representing system variable
values in different elements. Hence in many cases, the
loss of sparsity in the DAE will not have a significant
impact on the solution of the NLP constructed by col-
location methods.

When employing interior-point methods to solve
NLPs originating from dynamic optimization prob-
lems, it is often beneficial to introduce artificial bounds
on system variables to prevent the solver from leaving
the domains of the involved functions. When the al-
gebraic variables are eliminated from the problem, it
is no longer possible to use these artificial bounds on
algebraic variables. This can lead to difficulties in ob-
taining convergence in the numerical solver.

Experience has shown that seemingly trivial modifi-
cations in the original problem formulation can lead to
drastically different convergence behavior in the NLP
solver. By explicitly solving these trivial equations by
performing the proposed transformation, increased ro-
bustness to small model modifications is attained.

The inlining step performed to obtain (16c) gives
rise to a great amount of expression duplication in the
expression graph for the right-hand side of (16b) be-
cause of the recursive nature of the equations. This can
be avoided by storing the expressions used to evaluate
ḡi in a function and calling these functions when eval-
uating gi. This paper does, however, not consider this
proposition any further.

4 Benchmark problems

Two different optimal-control cases are presented for
evaluation of the proposed transformation method: ve-
hicle trajectory generation and startup of a combined-
cycle power plant. The vehicle models are imple-
mented in a flat manner, with condensed and complex
equations, whereas the power plant model is imple-
mented in an object-oriented fashion with a large num-
ber of simple equations.

4.1 Vehicle trajectory generation

The first considered case is a minimum-time problem,
where we seek the time-optimal maneuver for an au-
tomobile in a hairpin turn, see Figure 1. A methodol-
ogy for solving this kind of problems has previously
been investigated in [3, 16, 17]. We use two different
chassis models in the evaluation. The first is a single-
track model [18], where the two wheels on each axle

are lumped together. The model has three degrees of
freedom: two translational and one rotational.

Figure 1: An example of a hairpin turn. Photo courtesy
of RallySportLive.

The second model is a double-track model [19] with
five degrees of freedom: two translational and three
rotational. The suspension dynamics model is a rota-
tional spring-damper system, and longitudinal and lat-
eral load transfer is included.

The lateral slip α and the longitudinal slip λ are
defined as in [20]:

α̇i
σ

vx,i
+ αi :=−arctan

(
vy,i

vx,i

)
, (18)

λi :=
rωi− vx,i

vx,i
, (19)

where σ is the relaxation length, r is the wheel radius,
ωi is the wheel angular velocity for wheel i, and vy,i
and vx,i are the lateral and longitudinal wheel veloci-
ties for wheel i with respect to an inertial system, ex-
pressed in the coordinate system of the wheel.

The tire forces Fx0 and Fy0 for the longitudinal and
lateral directions under pure slip conditions are com-
puted with the Magic formula [20], given by

Fx0,i = µxFz,i sin
(

Cx,i arctan
(
Bx,iλi

−Ex,i(Bx,iλi− arctan Bx,iλi)
))

, (20)

Fy0,i = µyFz,i sin
(

Cy,i arctan
(
By,iαi

−Ey,i(By,iαi− arctan By,iαi)
))

, (21)

for each wheel i = 1, . . . ,4. In (20)–(21), µx and µy are
friction coefficients and B, C, and E are parameters.

We have chosen two different approaches for mod-
eling the tire forces under combined slip constraint,
both of which are described next. A straightforward
model of combined slip is based on the friction ellipse,
and is described by the elliptical relation

Fy,i = Fy0,i

√
1−

(
Fx0,i

µx,iFz,i

)2

, (22)
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where Fx0 is used as an input variable [21]. However,
here the driving/braking torques are used as input. The
main limitation with this model is that the longitudinal
force does not explicitly depend on the lateral slip.

Another approach to tire modeling, which is in-
spired by the Magic Formula, is to scale the nomi-
nal forces (20)–(21) with weighting functions Gα ,i and
Gλ ,i, which depend on α and λ [20]. The relations in
the longitudinal direction are

Hα ,i = B1,i cos(arctan(B2,iλi)), (23)

Gα ,i = cos(Cα ,i arctan(Hα ,iαi)), (24)

Fx,i = Fx0,iGα ,i, (25)

and the corresponding relations in the lateral direction
are given by

Hλ ,i = B1,i cos(arctan(B2,iαi)), (26)

Gλ ,i = cos(Cλ ,i arctan(Hλ ,iλi)), (27)

Fy,i = Fy0,iGλ ,i. (28)

To summarize, four different model configurations
were investigated for the vehicle trajectory generation,
all having three control inputs. The combination of
single-track chassis model and friction ellipse for tire
modeling (ST-FE) has 13 states and 13 algebraic vari-
ables. The corresponding numbers for the combina-
tion of single-track chassis model and weighting func-
tions (ST-WF) are 13 states and 23 algebraic variables.
Considering the double-track model with friction el-
lipse model (DT-FE), it has 21 states and 36 algebraic
variables. For the combination of double-track model
and weighting functions (DT-WF), the corresponding
numbers are 21 states and 56 algebraic variables.

For each model configuration, the time-optimal tra-
jectories in the hairpin turn are to be determined. An
initialization procedure based on a driver model pre-
sented in [18] is used. The optimization problem is
formulated over the time horizon t ∈ [0, t f ] and the ob-
jective of the optimization is to minimize the final time
t f of the maneuver. Accordingly, the dynamic opti-
mization problem to be solved can be written as:

minimize t f ,

subject to Ti,min ≤ Ti ≤ Ti,max, i ∈ {1,2,3,4},
|Ṫi| ≤ Ṫi,max, i ∈ { f ,r},
|δ | ≤ δmax, |δ̇ | ≤ δ̇max

x(0) = x0,

x(t f ) = xt f , y(t f ) = yt f ,

Γ(Xp,Yp)≤ 0,

F(ẋ,x,y,u) = 0,

(29)

where x0 are the initial conditions for the state vari-
ables, xt f and yt f are the desired values at the final time
t = t f , and (Xp,Yp) is the position of the center-of-
gravity of the vehicle. The wheel driving and brak-
ing torques T =

(
Tf Tr

)
of the front and rear wheel

axles, as well as the steer angle δ of the front wheels
are considered as inputs. The inputs are equally dis-
tributed between the wheels at the respective axle, that
is, T1 = T2 = Tf /2 and T3 = T4 = Tr/2 for the double-
track chassis model. In practice, the terminal con-
straints are only applied to a subset of the model vari-
ables. Further, Γ(Xp,Yp) is a mathematical description
of the road constraint for the center-of-gravity of the
vehicle for the maneuver. These constraints in the ge-
ometric two-dimensional XY -plane are formulated as
super-ellipses.

Figure 2 shows the geometric path and the time-
optimal control inputs obtained for ST-WF. For more
details about the solution method and the model pa-
rameters used, see [3, 17].
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Figure 2: The geometric path and control inputs are
shown for the time-optimal hairpin maneuver when us-
ing a single-track model with the weighting functions.
The black bars in the left plot indicate the direction of
the car every second.

4.2 Combined-cycle power plant startup

The second considered case concerns optimal startup
of combined-cycle power plants (CCPP). The model
used is described in [1]. The model has 9 states, 128
algebraic variables, and 1 control variable. The task
is to minimize the time required to perform a warm
startup of the power plant. This problem has become
highly industrially relevant during the last years, due to
an increasing need to improve power-generation flexi-
bility. The startup process is considered finished when
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the normalized load input signal u to the steam turbine,
starting at 15 %, has reached 100 % and the evapora-
tor pressure p, which is a state with an initial value of
approximately 3.47 MPa, has reached 8.35 MPa.

In order to reduce the wear and tear on the steam tur-
bine, which is one of the most expensive parts of the
power plant, the thermal stress in the turbine σ , which
is an algebraic variable, may not exceed 260 MPa.
This is the main limiting factor in the startup process.
Another imposed constraint is that the derivative of the
load input signal u may not be negative and may not
exceed 0.1/60 s−1. Since these bounds are applied
to the derivative of the control variable, which is not
supported by the current framework, we introduce the
control variable u̇ and add the equation

du
dt

= u̇.

This converts the control variable u into a state, giv-
ing us a total of 10 states, and the control variable is
now instead u̇, on which we can impose the discussed
bounds. The model diagram is displayed in Figure 3.

Figure 3: Power plant model diagram

The objective function is the weighted square devi-
ation of the load input signal and the evaporator pres-
sure from their respectively desired values, given by

f (z) =

∫ t f

0

(
10−12 ·

(
p(t)−8.35 ·106)2

+

0.5 · (u(t)−1)2
)

dt.

The final time is chosen to be t f = 4000 s. The ob-
tained solution is displayed in Figure 4.

Figure 4: Optimal power plant startup

5 Results

The problems in the respective cases described in
Section 4 were solved with the implementation de-
scribed in Section 2.3. The solutions were obtained us-
ing JModelica.org revision [5625] and IPOPT version
3.11.3 with the linear solver MA57 [22]. The colloca-
tion discretization was done using 150 elements with
3 collocation points for each vehicle maneuver prob-
lem and 40 elements with 4 collocation points for the
power plant startup problem. The solution procedure
consists of the following three steps:

1. Model compilation, where the compiler of JMod-
elica.org generates XML code that describes the
system equations and optimization formulation.
This code is then parsed by CasADi, which then
creates symbolic representations of all the prob-
lem expressions.

2. Offline NLP setup, where the symbolic expres-
sions created by CasADi in the previous step are
used to construct the corresponding NLP by col-
location. First- and second-order derivatives are
computed by algorithmic differentiation while
preserving sparsity.

3. Online NLP solution, where IPOPT solves the
NLP constructed in the previous step. This is
the only part of the solution procedure that would
need to be performed in an online setting, such as
MPC.

All problems were solved both with the model dy-
namics on DAE form and transformed to ODE form.

Symbolic Transformations of Dynamic Optimization Problems

1034 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961027



If the DAE is transformed into an ODE, the transfor-
mation takes place in the first step and is performed by
CasADi. The respectively obtained solutions for the
DAE and ODE formulations are the same up to toler-
ances.

For comparison of the two different strategies to
solving the optimization problems, the time spent in
step 2 and 3 of the solution procedure were measured
separately for each of the optimization runs. The num-
ber of iterations required by IPOPT and the number
of NLP variables have also been recorded. Table 1
displays the resulting numbers, where times are pre-
sented in seconds. The time spent in step 1 of the so-
lution procedure is between 1 and 2 seconds for all
of the problems and is largely unaffected by whether
the ODE transformation is performed. These times are
thus not presented.

Table 1: Solution times [s] for the considered model
configurations with DAE and ODE form in the optimal
control problem, respectively. In addition, the number
of iterations required to solve the NLP and the total
number of NLP variables are shown.

Problem Offline Online Iter NLP

ST-FE
DAE 3.6 10.6 112 20880
ODE 3.5 5.0 83 15017

ST–WF
DAE 4.2 17.6 102 25390
ODE 3.7 5.1 77 15017

DT–FE
DAE 9.0 152.2 303 39661
ODE 10.5 46.0 151 23425

DT–WF
DAE 9.1 229.6 364 48681
ODE 10.8 116.4 322 23425

CCPP
DAE 3.5 5.4 109 23574
ODE 1.8 1.4 79 3771

There is no clear trend for the offline execution time
in the four vehicle problems, whereas it is halved for
the power plant. Both the number of iterations and
the online execution times are shorter for the trans-
formed problem in all compared scenarios. For the
power plant, the difference in online execution time is
approximately a factor of 4, whereas the vehicle exam-
ples exhibit a factor of between 2 and 3. This indicates
that models containing a large amount of simple equa-
tions gain more from the proposed method, for reasons
discussed in Section 3.2, but also that models with
mainly complex algebraic equations gain speedups in
the online NLP solution from the transformation.

6 Conclusions

We have presented a method for symbolically trans-
forming a broad class of DAE-constrained optimiza-
tion problem into an ODE-constrained optimization
problem. The approach has been evaluated by measur-
ing execution times for benchmark problems involv-
ing time-optimal trajectory generation for vehicles and
startup of combined-cycle power plants.

The considered problems have been solved with
both a traditional approach where the DAE is left
intact in an implicit form, and with the presented
method where the DAE system is symbolically trans-
formed into an ODE before applying discretization
techniques. Significant speedups have been observed
in the solution of the NLPs resulting from a direct col-
location discretization method.

While the method has exhibited great performance
improvements, potential drawbacks have also been
discussed. The most significant drawback is that while
the dynamic equation system becomes smaller in size,
the resulting expressions are often of much higher
complexity.

Future work is the resolution of some of the dis-
cussed drawbacks of the approach, by only eliminat-
ing a suitable subset of the algebraic variables. A pos-
sible improvement in the opposite direction is to em-
ploy tearing techniques, which are often used for sim-
ulation of DAEs, to further reduce the number of vari-
ables exposed to the collocation method and the NLP
solver. The interaction between the proposed method
and other types of NLP solution methods, such as ac-
tive set methods, is also worth investigating.
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Abstract

O�ering services to stabilize the electrical grid is
nowadays one of the major tasks of fossil power
plants and also of signi�cant economical relevance.
However the e�ects on the power plants regarding
the additional wear of components is uncertain.
Usually the e�ects regarding control reserves, es-
pecially primary control occur with high frequen-
cies and small amplitudes, which makes investiga-
tions based on measurement data impossible since
the e�ects are masked by the noise of normal op-
eration. In order to investigate this issue, a de-
tailed model of a lignite power plant has been
used, which was developed in Modelica for sim-
ulating and comparing scenarios with and with-
out o�ering primary control reserves. The model
comprises the entire water-steam cycle including
turbines, preheaters and pumps, as well as a very
detailed boiler model including the air supply, coal
mills, a combustion chamber, heating surfaces and
piping. Furthermore the power plants control sys-
tem has been implemented in a very precise way.
In addition the study involves an investigation on
the input signals (grid frequency) and a calculation
of lifetime consumption for speci�c components to
evaluate the e�ects.

Keywords: Power Plant, Dynamic Modelling,

Control Reserves, Primary Control, Lifetime Con-

sumption

1 Introduction

In addition to the mere production of electrical
energy, many fossil power plants are needed to
provide control services, which are necessary to
operate the electrical grid. In order to stabilize
the frequency of the electrical grid, the consump-
tion has to be compensated by the production at
any moment. In order to guarantee this, it is re-
quired to activate or deactivate power production
within seconds. The control reserves can be cat-
egorized within three corresponding grid services
- primary control, secondary control and tertiary
control as described in [5]. Although the neces-
sity of granting grid services is undisputed, the
consequences for fossil power plants are still un-
certain. As the market for the mere production
of electrical energy is declining for conventional
plants, o�ering grid services (e.g. primary control
reserves) gets more and more relevant. In order to
investigate the dynamic e�ects on a lignite power
plant, a method is presented which uses the dy-
namic simulation of a complex lignite �red power
plant in Modelica. Similar models of a hard coal
�red power plant and a combined cycle gas tur-
bine power plant have been developed previously
for di�erent applications (e.g. [1], [2] and [3]). The
dynamic model enables the user to calculate pres-
sures and temperatures in various locations of the
power plant and therefore computing mechanical
and thermal stress in speci�c components. The re-
sults will be used to derive lifetime consumption
and evaluate the e�ects of o�ering grid services,
e.g. primary control reserves for this power plant.
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2 Primary Control Requirements

The setpoint of the frequency in the European
grid system is 50Hz. The allowed variation of
the mains frequency in normal mode is between
49.8Hz and 50.2Hz. If a failure occurs on the con-
sumer or producer side the frequency can change
within a few seconds. The primary control coun-
teracts this. In �gure 1, a typical trend for the
mains frequency of one day is shown.
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Figure 1: Trend of mains frequency of one day

Every power plant involved in the primary con-
trol has to provide at least 2% of its e�ective power
as primary control reserve, which has to be avail-
able within 30 s.
The dynamical behavior of a power plant is

dominated by the dynamics of the steam gener-
ator and turbine. In order to provide additional
electrical power in a short period of time, needed
for primary control, di�erent modes exist:

• Throttling of HP/ IP-valve: The power plant
operates in all operating points with throttled
high and intermediate pressure steam valves.
This grants that the power plant can increase
its output by opening the valves for a posi-
tive output demand and decrease its output
by increasing the throttling of the valves.

• Low pressure preheater bypass: In this mode
the power plant increases its electrical output
by throttling the valves to the low pressure
preheaters and the feedwater tank. In order
to avoid thermal stress in the low pressure
preheaters the speed of the condensate pump
is decreased. The whole process leads to more
steam in the turbine stages and thus to more
electrical output. The limits of this mode are

the �lling levels of the condenser and the feed-
water tank. For a negative power demand the
HP/IP steam valves are throttled as described
in the previous point.

• High pressure preheater bypass: This mode
is the same like the low pressure preheater
bypass but uses the high pressure preheaters
and the feedwater pump instead.

In order to investigate the in�uence of the pri-
mary control for a whole year, it is possible to sim-
ulate the whole year with the mains frequency as a
model input, but it takes a lot of time. The imple-
mented model has a ratio of real time to simulated
time of about 1:1 to 1:10. Thus the simulation of
one year would take at least one and a half month.
In order to reduce simulation time the data of the
mains frequency is analyzed and subdivided into
characteristic signals, distinguishing between:

• changes in mains frequency, which occur every
full hour, because of the changes of the power
plants schedules

• noise due to the �uctuating consumer load

• power plant outage due to technical issues

These di�erent signals will be extracted and
analysed from the mains frequency data of one
year. In the following, the changes in mains fre-
quency every full hour are explained in more de-
tail, because they have the highest amplitudes of
all the characteristic signals. The basic strategy is
to cut out the time data of the mains frequency
and to classify these signals. Afterwards all sig-
nals in one class are averaged in order to get one
signal for every class. For this purpose it must be
ensured that the extremum of all the signals in one
class are situated at the same time. This is real-
ized by extracting the signals ±5 minutes around
the extremum, which can be in an interval of +7.5
minutes after every full hour. Figure 2 shows all
signals belonging to class 1, which contains such
mains frequency changes of the year 2011 with am-
plitudes between -0.14Hz and -0.105Hz. Further-
more the averaged signal is shown. In order to
consider the di�erent intervals tn between the ex-
tremum and the full hour, this value is allocated
to every extracted and classi�ed signal. All signals
in one class of amplitude are di�erent in tn. An
average tn,mean is calculated in order to avoid a
multiplicative increase of simulation scenarios.
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Figure 2: All signals of one class with the averaged
signal in dark blue

The averaging of all mains frequency signals in
one class minimizes the noise. In order to consider
this noise a characteristic noise signal is added to
the averaged signals of changes in mains frequency
every full hour. The results of the classi�cation
are eight frequency signals for the changes of fre-
quency every hour which are shown in �gure 3.
The eight frequency signals are considered as rep-
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Figure 3: Scenarios of mains frequency changes
which occur after every full hour. The extremum
is situated tn seconds after the full hour.

resentative inputs for subsequent investigations for
all power plants participating in primary control in
the ENTSO-E grid.

3 Power Plant System Model

3.1 Reference Power Plant

The investigated power plant is a duo-block lig-
nite power plant as shown in �gure 4. Each of
the blocks has two boilers, which provide steam

Mono Duo
Gros el. Output 265 MW 530 MW
Load Gradient 4 MW/min 8 MW/min
Primary Control 12.5 MW 25 MW

Table 1: Reference data of the Duo-Block Plant

for a mutual turbine. The block can be operated
with both boilers (duo-operation) or using only
one (mono-operation). One turbine has an electric
output of about 530 MW. Coming from the tur-
bine, the steam is condensed in two parallel con-
densers. Afterwards there is one common line of
four low pressure preheaters. Then, the �ow splits
up for two feedwater tanks and parallel feedwater
pumps and three high pressure preheaters. From
there the �ow enters the boilers. The boilers are
using a forced circulation for the evaporation part
and are equipped with parallel lines in the super-
heater section.

Figure 4: Investigated reference power plant

The investigated plant currently operates in
base load, producing a signi�cant amount of elec-
trical energy. In addition to that, it o�ers con-
siderable amounts of control reserves, especially
primary control reserves, see Table 1 for reference
data.

3.2 Dynamic Process Model

The dynamic model has been built within Dymola
using the open programming language "Model-
ica". The components used to build the model
are mainly based on the "ThermalPower Library"
developed by Modelon AB.
As the block arrangement in the real plant,

the dynamic model consists of several compo-
nents involving a diversity of di�erent physics. An
overview is given in �gure 5. The general approach
for all models involves the balance equations for
mass and energy as well as a simpli�ed momentum
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Figure 5: Implemented components of reference power plant

equation to calculate pressure drops. Using these
equations as well as speci�c heat transfer assump-
tions for conduction, convection and radiation and
the �uid properties for the involved mediums (�ue
gas, water) a power plant process can be described
on a fundamental basis. A detailed explanation of
physical backgrounds for all the basic models used
here can be found in [6]. However the complex
power plant system required some more sophisti-
cated models which needed to be developed in or-
der to reproduce the plants behaviour in an accu-
rate way. One example for such a component is the
lignite coal mill as presented in �gure 6. The coal
mill is not only responsible for grinding the coal
to the desired size, but also for drying the lignite,
as the water content of the fuel is usually between
50-60 %. As those e�ects have a signi�cant impact
on the overall process dynamics, a model had to
be developed to describe the dynamic behaviour
of the coal mills.

The coal mill model consists of three main paths.
The gas path describes the hot �ue gas which is re-
circulated from the combustion chamber. Further-
more fresh air with lower temperature is added to
control the temperature in the classi�er of the mill.
The ventilation e�ect of the mill is represented by
a simple fan model based on the speci�c charac-
teristic of the mill. The water path represents the
water content of the coal which is evaporated in
the mill. The energy used for evaporation is taken
from the hot �ue gas. After evaporation, the water
is mixed with the �ue gas. The coal containing a
residual water content of 10-20% is represented by

the coal path.

Raw Coal

Combustion 
Chamber

Fresh Air

Water 

Gas 

Dried Coal 
(containing residual water)

Fan Model

Heat-Transfer 

Figure 6: Schematic of the lignite coal mill model

One essential part of the model is the changed
lower caloric heating value due to the evaporation
of the water. In order to describe this, a simple as-
sumption based on [7] leads to reasonable results:

CVx =
CV0

(1−XA,0)(1−XW,0)
(1−XA,x)(1−XW,x)

(1)

Wherein CV denotes the lower caloric heating
value and X the mass content of a speci�c compo-
nent (index A for ash, W for water). The indices
x and 0 are representing the state before and be-
hind the evaporation stage. The delay time for
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the grinding of the coal has been identi�ed by �t-
ting the heat release to the measurement data. [8]
gives some values for the delay time in each stage
of the mill, which gives a reasonable starting point
for this optimisation procedure. The water steam
cycle has been adapted to a single boiler. For
the model, components which are actually used by
both boilers are represented as a symmetric part
with the half size. This concerns the models for
the steam turbine, as well as the low pressure pre-
heater line.

3.3 Control System

For making simulation-based statements about the
in�uence of di�erent power plant operation modes
the thermodynamic model is coupled to a reduced
copy of the origninal power plant control system,
which is implemented using the Modelica Stan-
dard Library components. The implemented con-
trol system uses the currently calculated physical
values (i.e. live steam parameter, generated power
at a speci�c coal input) and in a consequence ad-
justs set values (e.g. life steam pressure) and ma-
nipulated variables (e.g. position of the feed wa-
ter valve) for the water-steam cycle. Because of
this feedback the accuracy and the level of details
of the modelled processes needs to be reasonably
high. Figure 7 is showing the hierarchical struc-
ture of the control system, which has been coupled
to the process model.

Fresh Air Control Coal Mill Control Feed Water
Pump

Control

Separator
Level

Control

Turbine
Control

Condenser
 Level

  Control

Preheater
    Level

          Control

Air & Fuel
System

Water Steam
Cycle

Steam
      Temp-

             rature
                    Control

Power
Unit Control

Figure 7: Overview on the control loops imple-
mented in the model

Of particular interest is the Power Unit control
which processes the incoming power and control
reserve requests to a corresponding desired �ring
power. In detail the power plant control system
sets the �ring power using a map based pilot con-
trol. The expected electric power output is pre-

dicted by a transfer function based model of the �r-
ing process and the heat transfer in the boiler. The
di�erence between this predictive value and the
corresponding measurement is adjusted via a cor-
rective control loop, as described in the VDI/VDE
guideline 3508 [9]. Due to the slow transient re-
sponse of the �ring process, fast changes in the
power output, as requested for primary control re-
serve, could only be conducted by using the steam
storage of the boiler by altering the pressure set
point until the �ring process could catch up. The
extracted energy needs to be �lled up with a tem-
porarily over steered �ring set point. In case of
negative primary control request the pressure set
point is increased until the steam production of
the boiler could be reduced. By undershooting the
�ring power the stored steam mass could be dis-
charged, while holding the desired electric power
set point. This functionality is shown in �gure 8.
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Figure 8: Schematic of the Power Unit Control

3.4 Validation of the Model

In order to validate the model, a scenario has been
simulated covering the entire load range of the
power plant from minimum load to nominal load.
As required by the primary control investigation,
the model has been operated in duo-operation, as-
suming both boilers in synchron operation.
In the model as well as in the power plant,

the electrical gross output is controlled. Figure 9
shows the input schedule (green) which is used in
both - the model and the real plant. The genera-
tor output (blue) is shown for the simulation (light
color) and for the measurement (dark color). As
in the real plant, one of the �ve mills in operation
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Figure 9: Schedule of the reference scenario
(green), validation of power output (measurement
dark blue, simulation light blue)

is shut down in very low load (at about 2.5 h),
this mill is returning into operation at about 7 h,
causing highly dynamic e�ects on the entire sys-
tem. As can be seen from the plot, the simulated
power generation �ts the measurement not only in
steady state points, but also for ramps and most
of the dynamic oscillations.
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Figure 10: Zoomed validation of power output
(schedule green, measurement dark blue, simula-
tion light blue)

In �gure 10 a zoomed validation plot from
the reference scenario is presented. In this de-
tailed view, setpoint-changes with amplitudes and
timescale of primary control activation is shown.
It can be concluded that the models really accu-
ratly represents the power plants behaviour at fast
setpoint-changes. However some e�ects like the
steady state o�set between 11.2 h and 11.8 h can-
not be reproduced. A reason for that might be a
changing caloric heating value of the coal in the
power plant which is assumed to be constant in
the model.
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Figure 11: Validation of boiler pressure (measure-
ment dark, simulation light)

In Figure 11 pressures from the water-steam cy-
cle are presented. The live steam pressure (red
line) is controlled by the turbine valve to a con-
stant value of 162 bar for the entire operation
range. The pressure at the evaporator and the en-
try of the boiler are calculated by the model based
on the pressure drop of the integrated components.
As can be seen from the �gure, this pressure drop
is highly dependent on the load, because the �ow
of the steam changes accordingly. Comparing mea-
sured and simulated pressures, the model shows a
high agreement regarding the pressure levels.
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Figure 12: Validation of the temperatures (mea-
surement dark, simulation light)

In Figure 12 some of the process temperatures
are compared to the measurement data. The tem-
perature in the deaerator is controlled to 174◦C for
the entire operation range. The temperature of the
boiler-inlet is manly dependent on the heat trans-
fer in the high pressure preheaters. The temper-
ature level in the evaporator is dependent on the
pressure level, as there are two-phase conditions.
The livesteam temperature is being controlled by
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the spray attemperators, however in very low load
(between 2.5 and 7 h) the steam temperatures drop
due to a shifting distribution of heat �ux in the
boiler and are out of their controlled range.
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Figure 13: Validation of the coal mill model (mea-
surement dark, simulation light)

A validation of the coal mill model based on
the classi�er temperatures is being presented in
Figure 13. This temperature is very sensible as
it represents the mixture of very hot recirculated
�ue gas from the combustion chamber, preheated
fresh air and coal entering from ambient condi-
tions. The simulated temperature is based on an
aggregated mill model, which represents all the
mills in operation, being able to switch on or o�
separate mills by changing the fan characteristics.
The model is therefore being compared to all the
mills which are permanently in operation for this
scenario. It can be observed, that the average
dynamic behaviour of the mill is represented quite
well.

After an extensive validation based on measure-
ment data, the dynamic model is used to calcu-
late temperatures and pressures in critical compo-
nents, thus enabling a calculation of thermal and
mechanical stress according to structural mechan-
ical approaches which are necessary derive lifetime
consumption for speci�c simulation scenarios.

4 Structural Mechanics

The primary and secondary control leads to an in-
creased number of load cycles of pressure and tem-
perature changes within the power plant. As a re-
sult the fatigue of a component becomes more im-
portant than the creep fatigue. Particularly thick-
walled pressurized components are a�ected by this

cyclic loading. For this reason, a routine in Matlab
was developed in accordance with DIN EN 12952
[4], to determine the component stress and the life-
time until the detectable cracklength is reached.
Figure 14 shows the schematic work�ow of the
lifetime determination until the detectable crack
inititiates.
Based on the pressure and temperature gradi-

ents the occurring stresses are determined in a �rst
step. The mechanical stress σtang p is calculated
with the boiler formula as follows.

σtang p =

{
αm · dms

2·ems
· p cylindrical shells

αsp · dms
4·ems

· p spherical shells

}
(2)

In addition to the pressure di�erence between in-
ternal and external pressures, the notch factors αm

and αsp are considered. The notch factor depends
on the geometry of the cylindrical shell and of the
pipe nozzle. The thermal stress σws is calculated
from the temperature di�erence ∆T between the
two extreme values of the temperature-time func-
tion, the material factor Φws and the notch factor
αT according to the following equation:

σws = −Φws ·∆T · αT (3)

The material factor contains the elastic modulus,
the Poisson's ratio and the coe�cient of thermal
expansion. The total stress is generated by super-
position of the mechanical and thermal stress and
subsequently counted with the rain�ow counting
[10].
In a next step, the damage ∆Si is calculated for

each cycle (red frame in �gure 14). For this, the cy-
cles is converted to an R-ratio of R = −1 using the
Gerber parabola and then multiplied with a rough-
ness coe�cient and a temperature coe�cient. By
adding up each part the amount of damage could
be obtained.

5 Results

In the following the results for the "class 1" sce-
nario described in section 2 are shown. In order
to investigate the in�uence of primary control on
the life time reduction, a minus 25 % load change
with and without primary control are compared
with each other.
The strongly stressed components are the thick-

walled outlet headers. Therefore, the headers at
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Figure 14: Schematic work�ow of the lifetime determination

the outlets of superheater 4 and reheater 2 are con-
sidered �rst. Figure 15 shows the simulated pres-
sure and temperature changes for the header of
reheater 2. The solid lines represent the reference,
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Figure 15: Simulation results for pressure and tem-
perature of the steam in the header of reheater 2.

which is the load change without primary control,
the dashed ones represent the scenario with the
primary control demand. In the �rst 10 minutes
after the load change at t = 1 h, in both pressure
and temperature, the in�uence of the primary con-

trol can be seen. In temperature the impact per-
sists longer. The entire temperature response is
a�ected and in fact the total minimum is higher
for the case without primary control.

For the speci�c geometry of the reheater header
the mechanical, thermal and total stresses are cal-
culated as described in section 4 and the results
are shown in �gure 16. While the mechanical
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Figure 16: Mechanical, thermal and total stresses
for the outlet header of reheater 2 (geometry of a
cylindrical shell with a pipe nozzle).
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stresses are nearly the same, the thermal stresses
show a small di�erence due to primary control and
therefore also the total stresses. In order to calcu-
late lifetime consumption, the continuous dynamic
processes have to be partitioned into discrete load
cycles. Therefore the method of rain�ow-counting
is used as described in the previous section. The
outcome is shown in �gure 17 for the header of re-
heater 2. The red line represents the limit for the
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Figure 17: Sorted stress amplitudes of the outlet
header of reheater 2 and the fatigue limit for this
component for the scenario without and with a
primary control demand.

fatigue. Obviously this fatigue limit is exceeded
for the header of reheater 2 in the case of the pri-
mary control scenario. The corresponding damage
∆S is 1.3 · 10−8, which is determined with the S-
N-curve (Wöhler curve) of the header material. In
the case of the reference scenario without primary
control the amplitudes are smaller and the fatigue
limit is not exceeded.
For the same scenarios the stress amplitudes of

the outlet header of superheater 4 are presented
in �gure 18. Here a damage occurs for both cases
without and with primary control and is about
1.4 · 10−6 and 6.8 · 10−7, respectively. In contrast
to reheater 2 the primary control scenario leads
to smaller stress amplitudes than the pure load
change.
In conclusion the results show that the impact

of primary control on the life time reduction is
not only determined by the pressure and temper-
ature conditions but also strongly depends on the
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Figure 18: Sorted stress amplitudes of the outlet
header of superheater 4 and the fatigue limit for
this component.

geometry of the component. Thus the structural
mechanics calculations need to be done for all com-
ponents of the power plant. Furthermore, several
scenarios have to be investigated and connected
with their annual occurrence to identify the overall
damage of the power plant due to primary control.

6 Summary

A very comprehensive dynamic model of a lignite
�red power plant has been developed as presented
in this paper. The model allows a diversity of
applications focussing on dynamic operation e.g.
control optimisation, calculation of lifetime con-
sumption or energetic optimisation. One example
application is the ongoing investigation on the im-
pact of primary control on this power plant. The
result of a �st scenario has been presented and
explained on the example of two highly stressed
components. In the next stages of this investi-
gation, all the scenarios presented in section 2 will
be simulated and multiplied with the share of their
appearance in order to assess the overall impact of
primary control.
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Abstract

This paper presents the development of a system
model for a pre-combustion CO2 capture process
as part of an integrated gasification combined cy-
cle power plant. This process entails the modelling
of highly non-ideal, two-phase multi-component mix-
tures which are currently not supported by available
Modelica media libraries or interfaces.

Therefore, an interface prototype was developed
and tested for the modelling and simulation of the
CO2 capture process. Limitations concerning the mod-
elling approach and improvements targeting the com-
putational efficiency are discussed. Recommendations
about the design of a library for the use of external
property estimation code in Modelica conclude the
treatment.

Keywords: pre-combustion CO2 capture; two-
phase, multi-component fluids; external fluid property
code

1 Introduction

Pre-combustion CO2 capture applied to integrated
gasification combined cycle (IGCC) power plants is
a promising technical solution to mitigate CO2 emis-
sions and therefore the effect of climate change [1].
The integration of the CO2 removal unit with the
very complex gasification process and combined cy-
cle power plant leads to challenges especially regard-
ing dynamic operation. Nowadays, dynamic perfor-
mance of fossil-fuelled power plants becomes increas-
ingly important as the share of electricity produced
by renewable energy sources, which is inherently un-
steady, is continuously growing. Therefore, the inte-

∗Email: C.Trapp@tudelft.nl, P.Colonna@tudelft.nl

grated capture process has to be able to follow frequent
and fast load changes to allow for flexible power pro-
duction. In order to study the transient performance of
the pre-combustion CO2 capture unit during load vari-
ations, dynamic models of the entire system and mod-
els of the individual components have thus been de-
veloped using the Modelica modelling language. The
models have been validated by comparison with ex-
perimental data obtained from a unique, fully instru-
mented CO2 capture pilot plant, which has been re-
alized at the Buggenum IGCC power station in the
Netherlands by the utility company Vattenfall [2].

The main challenge of the model development is re-
lated to the computation of fluid properties, in partic-
ular phase equilibria, due to the fact that highly non-
ideal, two-phase, multi-component fluids are involved
in the capture process. Currently, Modelica medium
models are not available for this type of fluids.

One possibility is to implement required medium
models, just as the process models, in the Modelica
language, with the advantage to be able to perform ef-
ficient simulations as the code can be optimized, pro-
vided the equation of state is written in a declarative
way, which might not always be possible. However,
the implementation of non-ideal fluid property models
is rather time-consuming and not trivial, as dedicated
solution algorithms might be required for efficiency
and numerical robustness.

The other possibility is to make use of available
thermophysical property packages and interface these
tools with Modelica. Employing external tools for
the computation of fluid properties provides some ad-
vantages: 1) typically the property software employs
dedicated algorithms for fast and robust calculations
of the fluid properties, 2) the property package can
be interfaced with a wide variety of engineering soft-
ware tools (e.g. steady-state and dynamic system mod-
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elling, component design, CFD, etc.) allowing for the
use of the same thermophysical properties, thus elim-
inating one common source of uncertainty, 3) a wide
range of pure fluids and fluid mixtures described with
suitable and accurate equation of states are available in
the property package.

This concept was successfully demonstrated with
the ExternalMedia library [3] which supports two-
phase, single-substance fluids all compatible to
the Modelica.Media interface. However, multi-
component fluids as required for the CO2 capture pro-
cess are not supported because the interface for multi-
phase fluid mixtures is limited to two-phase pure (or
pseudo-pure) components.

For this reason, a prototype for an interface support-
ing two-phase, multi-component fluids was developed
and tested for the modelling and simulation of the CO2
capture process.

The objective of the work documented here is to
demonstrate the feasibility of modelling such a chem-
ical process with Modelica by making use of exter-
nal fluid property code and to indicate limitations con-
cerning the modelling approach as well as to discuss
possibilities for the improvement of the computational
efficiency. Finally, recommendations shall be drawn
for the design of a generic interface to external fluid
property code.

2 Pre-combustion CO2 capture pro-
cess

The simplified process flow diagram of the CO2 cap-
ture pilot plant built at the site of the Buggenum IGCC
power station is depicted in Figure 1. The syngas
from the gasifier entering the CO2 removal unit is
mixed with process water in order to obtain a pre-set
H2O:CO ratio, and then it is fully evaporated and su-
perheated by means of electrical heaters. The carbon
monoxide present in the syngas is converted into hy-
drogen and carbon dioxide via a three-stage, sweet,
high-temperature water-gas shift (WGS) process. The
excess process water is recovered from the shifted syn-
gas through condensation and then recycled. Subse-
quently, the carbon dioxide is removed from the syn-
gas in the CO2 absorber by means of physical absorp-
tion utilizing the solvent dimethylether of polyethy-
lene glycol (DEPEG). The resulting H2-rich syngas
is fed to the gas turbine of the combined cycle power
plant and the CO2 is recovered by three-stage depres-
surization of the loaded solvent. The lean solvent is
recycled to the absorber, while the CO2-rich product
stream is compressed to a state suitable for storage.

Throughout the evaporation and condensation in

the shifting section, vapour-liquid equilibrium of the
syngas-water mixture is assumed, which requires rig-
orous fluid property computations. The water-gas shift
reaction occurs at conditions where the syngas-steam
mixture can be described as an ideal gas. Through-
out the absorption section, vapour-liquid equilibrium
of the syngas-solvent mixture is also a verified hypoth-
esis.

The main differences between the pilot plant and a
large-scale CO2 capture process concern the heat in-
tegration in the shifting section. In a large-scale de-
sign the electrical devices used for heating, cooling
and condensation are replaced by heat exchangers.

3 Model development

The thermophysical properties of the two-phase multi-
component syngas-water/syngas-solvent mixtures are
calculated with the Perturbed Chain - Statistical Asso-
ciating Fluid Theory (PC-SAFT) equation of state [4]
due to its success in predicting vapour/gas-liquid equi-
libria of complex fluids and mixtures for a broad range
of conditions. This EoS has been validated against ex-
perimental measurements and data from literature [5]
and implemented, together with fast and robust algo-
rithms, into an in-house property package [6] which
is interfaced with the dynamic modelling tool via the
ModelicaFluidProp Modelica library.

Library architecture

The ModelicaFluidProp library provides the func-
tional interface that allows to integrate external fluid
property codes into Modelica models. The library
contains two parts, the Modelica front-end which
makes various functions available for the calculation
of different property sets (for instance "AllProps" or
"TwoPhaseDeriv") and the C/C++ back-end, contain-
ing C++ objects that carry out the interfacing between
the Modelica level and the external software tool.

The Modelica library contains a generic package
FluidPropMedium. The actual external fluid property
code is specified by setting values to constants such
as ModelName, which defines the name of the exter-
nal library, nComp, which specifies the number of fluid
constituents and Comp, which defines the name of the
individual constituents. The external medium model
can be used in any component model and is not extend-
ing any medium package from the standard Modelica
library.

The implemented set of functions in the Fluid-
PropMedium package mirrors one-to-one property
functions available in the external property tool which
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Figure 1: Process flow diagram pilot plant.

are interfaced with corresponding C-functions defined
in the C interface layer.

In the following, the working principle of the library
is explained, based on the exemplary code below:

import SI = Modelica.SIunits;

package SyngasDEPEG
extends ModelicaFluidProp.FluidPropMedium(

ModelName="PC-SAFT",
nComp=6,
Comp={"carbon monoxide","hydrogen",
"carbon dioxide","water","nitrogen",
"DEPEG"})

end SyngasDEPEG;

model Example
SyngasDEPEG.AllPropsOut prop;
SI.Temperature T;
SI.Pressure P;
SI.SpecificEnthaly h;
SI.Density d;
SI.MoleFraction Y[SyngasDEPEG.nComp]=
SyngasDEPEG.reference_X;
SI.MoleFraction Yliq[nComp]
"Molar fractions of liquid phase";
SI.MoleFraction Yvap[nComp]
"Molar fractions of vapour phase";

equation
(prop ,Yliq ,Yvap) =
Medium.AllProps("PT",P,T,Y);
h = prop.h;
d = prop.d;

end Example;

The AllProps function of the FluidPropMedium
package calls the corresponding C function of the in-
terface and passes the specification of the thermody-
namic state ("PT"), the values of pressure, temper-
ature and composition as well as the constants for
medium identification. The interface function han-
dles the creation of an object for the external prop-
erty code and the execution of the solver to compute

the required properties. The calculated fluid properties
are passed via the prop record to the Modelica code.
The AllProps function returns all primary thermody-
namic properties such as P, T , v, d, h, s, u, etc. which
can be computed with hardly any additional compu-
tational cost when solving the equation of state. Sec-
ondary thermodynamic properties such as heat capac-
ity, speed of sound, various single-phase partial deriva-
tives and transport properties are computed with a sep-
arate function as these properties are less often needed
and require additional computations. The computa-
tionally expensive two-phase partial derivatives are
combined in another property function.

The arrangement of primary and secondary fluid
properties in meaningful functions allows for a flexible
use and avoids unnecessary repeated computations.

Process models

The objective is to develop physical-based compo-
nent models which allow the modelling and simula-
tion of the pre-combustion CO2 capture process. The
model structure shall facilitate the integration of ex-
ternal functions for thermophysical property calcula-
tions.

For the modelling of the CO2 capture process var-
ious component models are required. Whenever pos-
sible models were reused from available Modelica li-
braries. For example, basic component models such
as sinks, sources, valves, pressure drops, pumps, heat
exchange and flow models, are taken from the Ther-
moPower library [7, 8] and adapted in terms of their
media models which have been replaced with func-
tional calls to the external property tool.
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For the following components new models were im-
plemented:

• Flash vessel
The process of phase separation is modelled un-
der the assumption of thermodynamic equilib-
rium between the liquid and vapour phase at
all times. This is a justified assumption since
the process is typically designed to ensure suf-
ficient mixing. The model describes the holdup
of vapour and liquid with conservation equations
which account for both phases together. Satu-
rated conditions are assumed for the liquid and
vapour outlet streams and therefore entrainment
of liquid in the vapour flow is neglected. The
flash vessel model is implemented as a "pure stor-
age" component and hence frictional losses are
not considered. The static pressure head due to
the liquid level in the vessel is accounted for in
the algebraic momentum balance. Heat transfer
from the fluid (both vapour and liquid phase) to
the vessel wall and accumulation of thermal en-
ergy in the wall as well as heat losses to the en-
vironment are neglected. Thus, also superficial
condensation is assumed to be negligible.

• Water-gas shift reactor
The reaction of carbon monoxide with steam
to produce carbon dioxide and hydrogen is de-
scribed in a lumped-parameter model. The syn-
gas entering and leaving the reactor is an ideal-
gas mixture containing CO, CO2, H2, H2O, N2.
Other trace constituents are neglected. The model
accounts only for the WGS reaction. Intermedi-
ate reactions involving other chemical species are
neglected. The reactor model is subdivided into
five sub-models (Figure 2): reaction node, mix-
ing gas volume, convective heat transfer, thermal
storage and pressure drop.

CO
H2

reaction node mixing gas volume

pressure drop

thermal storage

convective 
heat transfer

Figure 2: Object diagram of reactor component.

The WGS reaction takes place in an infinites-
imally small volume (reaction node) represent-
ing one finite discretization of the catalyst and
reaches thermodynamic equilibrium. The accu-
mulation of mass and energy in the bulk phase of

the reactor are described in a perfectly mixed vol-
ume (mixing gas volume) which receives the re-
action products. This control volume exchanges
heat with the catalyst by means of convection.
The storage model describes the accumulation of
thermal energy in the catalyst. Heat transfer to
the environment is neglected.

The water-gas shift reactor is discretized in axial
direction by an array of reactor models in order
to correctly describe the gradual changes in re-
actor outlet conditions during transient operation.
Changes in the reactor inlet conditions reach the
reactor outlet with a delay due to thermal storage
in the catalyst, which cannot be represented with
a 0-dimensional model due to the high number
of transfer units between the gas and the catalyst
itself.

However, this one-dimensional discretization
does not represent the the actual axial reactor
profile as equilibrium conditions are assumed in
each reactor model element for simplicity. In
steady-state conditions the equilibrium tempera-
ture is reached at each discretization of the cat-
alyst, which also determines the temperature de-
pendent WGS reaction.

• Pilot plant specific heater and cooler compo-
nents
Various electrical components for evaporation,
superheating, cooling and condensation were in
particular developed for the pilot plant process
and will not be part of a large-scale plant in
this specific configuration. The models were de-
veloped following a modular approach such that
sub-models can be reused. The models were typ-
ically subdivided, if applicable, in flow models,
heat transfer models and thermal storage mod-
els. Whenever possible models from the Ther-
moPower library were used, typically in case the
medium was water or ideal gas, or adapted.

• Absorption column
The packed column model for physical absorp-
tion (no chemical reactions) is discretized in the-
oretical stages in axial direction and counter-
current flow of the vapour and liquid is assumed.
Each stage is modelled by an equivalent tray
module ("pure storage") and a resistive module.
By connecting a series of storage and resistive
modules (Figure 3) a low index of the equation
system can be maintained (detailed discussion
see Section 4).

In the equivalent tray module, pressure, temper-
ature and composition of the liquid and vapour
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Figure 3: Model structure of the absorption column.

phase are determined by solving the conservation
equations for mass and energy assuming thermo-
dynamic equilibrium between liquid and vapour
[9]. This module is based on the flash vessel
model with its assumptions stated above. In the
resistive module the momentum equation is sub-
stituted by empirical correlations to describe the
hydrodynamics of the stage predicting the liquid
and vapour flow rate as a function of the pressure
difference between the stages, the liquid holdup
and the packing characteristics. Empirical corre-
lations for the pressure drop and liquid holdup are
published by Stichlmair et al. [10] and Billet and
Schultes [11].

4 Modelling approach / Lessons
learned

The use of external fluid property functions in Model-
ica process models puts some restrictions on the model
development. Specific attention requires the formula-
tion of the differential model equations, the choice of
state variables and the causality of the system model.
These issues are addressed in the following.

4.1 Choice of state variables

For dynamic modelling of thermo-physical systems
not only the choice of the system state variables is
of importance but also the selection of the thermo-
dynamic states used to determine fluid properties. In
general, the system state variables should allow for an
easy computation of the thermodynamic properties re-
quired to determine the system performance and the
thermodynamic state variables should unambiguously
determine the fluid state. Further, the choice of sys-

tem state variables can have a significant influence on
ease of initialization, numerical robustness and com-
putational speed.

In the following, three different possibilities for the
choice of state variables and their influence on result-
ing differential and algebraic equation (DAE) system
as well as simulations speed are analysed. As an ex-
ample, dynamic mass and energy balances for describ-
ing storage of vapour and liquid in a volume under the
assumption of thermodynamic equilibrium are used.
These equations can be found in the flash vessel and
absorber tray models.

Explicit system state variables M, u, Xi

In the most simple way the dynamic mass and energy
balance can be formulated as

dM
dt

Xi +M
dXi

dt
= winXin,i−wliqXliq,i−wvapXvap,i, (1)

M
du
dt

+ u
dM
dt

= winhin−wliqhliq−wvaphvap, (2)

where M is the total mass, u is the internal energy, Xi is
the component mass fraction vector whereby the sub-
script i ranges from 1 to the number of species in the
mixture, w is the mass flow rate and h is the specific
enthalpy. A formulation purely based on moles is also
possible and might be the preferred choice as conver-
sions between mole and mass are avoided.

Assuming M, u and Xi are selected as state variables
and no other variables than the states appear under the
time derivative the system solution can be obtained
straightforward. This applies, for example, to a single
flash vessel model where the index of the DAE sys-
tem is 1. Section 4.2 covers the case of higher index
problems, e.g. when dealing with a model of two flash
vessels connected with a zero pressure drop.

The mass and energy equations represent a com-
pact and very declarative formulation of the conserva-
tion equations. The pressure P, the temperature T and
the mass composition Xi are chosen as thermodynamic
states, therefore

prop = prop(P,T,Xi). (3)

For this state selection property computations for
two-phase mixtures are most efficient and robust with
the used external media library (see Section 4.3). As
the system states and thermodynamic states differ, im-
plicit equations must be solved at each time step in
order to determine the thermodynamic state variables.
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Consequently, with the solution strategy used by Dy-
mola the computational speed is affected by the itera-
tions on the property function, which are anyway the
most expensive part of the entire simulation.

Implicit system state variables P, T , Xi

The Modelica language features the option to change
states by means of the StateSelect attribute, without
changing the declarative formulation of the dynamic
mass and energy balance. Hence, pressure, temper-
ature and composition can be selected as preferred
states in accordance to the thermodynamic states with
the aim to reduce iterations during the solution proce-
dure. However, as the total mass and internal energy
remain under the time derivative and not being states,
the tool attempts to symbolically differentiate M and
u with respect to the states P, T , Xi in order to estab-
lish a relationship between the old states, which have
been discarded, and the newly selected states. This
procedure fails as the external property call cannot be
differentiated.

Explicit system state variables P, T , Xi

In order to facilitate a feasible solution an explicit ex-
pression for dM

dt and du
dt needs to be provided as a func-

tion of the state variable derivatives dP
dt , dT

dt and dXi
dt .

The needed time derivatives therefore read

(4)

dM
dt

= −Md

[(
∂v
∂ p

)

T,X

d p
dt

+

(
∂v
∂T

)

p,X

dT
dt

+

(
∂v
∂Xi

)

p,T,Xj6=i

dXi

dt

]
,

(5)

du
dt

=

(
∂u
∂ p

)

T,X

d p
dt

+

(
∂u
∂T

)

p,X

dT
dt

+

(
∂u
∂Xi

)

p,T,Xj 6=i

dXi

dt
.

The partial derivatives of u and v with respect to
P, T , Xi need to be provided by the external me-
dia library. Two-phase partial derivatives of mixtures,
which are based on properties obtained from the phase
equilibrium calculations, are commonly not available
among the typical thermophysical fluid properties and
therefore have been specifically implemented in the
framework of this model development. These mixture
derivatives are currently computed numerically. Fu-
ture work might consider the analytical formulation as
implemented, for example, in Multiflash [12]. How-
ever, also the calculations based on analytical expres-
sions is expected to be computational expensive [13].

These mixture derivatives cannot be fully expressed
analytically and hence the numerical calculation af-
fects the computational speed of the dynamic model.

In Figure 4 the simulation performance of a flash
vessel with system states M, u, Xi and state variables P,
T , Xi is compared. The simulation of the latter model
requires 90 % less functional calls to the external prop-
erty library promoted by the same choice for system
and thermodynamic state variables. However, con-
sidering the computational time the latter model only
leads to an improvement of 40 %. This is explained
by the additional calculation of partial derivatives re-
quired when changing the states from M, u, Xi to P, T ,
Xi.
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Figure 4: Comparison of flash vessel models with state
variables M, u, Xi and P, T , Xi. a) Number of property
calls. b) Total simulation time.

The observed difference in computational speed be-
tween both choices of state variables might also be re-
lated to the solution strategy employed by the software
tool. Dymola was adopted for this project, and Dy-
mola obtains the solution of the DAE system by iter-
ating on a nested loop, and solving the ODE’s in the
outer and the algebraic equations in the inner loop. It
might be possible that using a DAE solver directly on
the original DAE system in this case might lead to a
much smaller difference in computational speed be-
tween both solutions. However, a direct solution strat-
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egy might entail more trouble during initialization and
shorter time steps to achieve convergence might be re-
quired. A hybrid strategy where both approaches are
applied, dynamically switched, might be interesting to
explore.

4.2 Developing index-1 models

Considering a model containing two flash vessels,
component mass and energy balance represented by
equation 1 and 2, with zero or constant pressure drop,
then the index of the DAE system is larger than 1, as-
suming M, u and Xi are chosen as state variables.

The solution of a DAE system with higher index
is commonly obtained by symbolic manipulation of
the equations system in order to reduce its index to
1. Current simulation tools implementing the Mod-
elica language employ state-of-the-art techniques for
index reduction. Difficulties during index reduction
might arise in case fluid property calculations must be
symbolically differentiated. If the fluid correlations or
equation of state are implemented as a Modelica me-
dia library, possibly accompanied with annotations to
compute its time derivatives, symbolic manipulation
can be performed by the tool resulting in a successful
index reduction. However, in case external media li-
braries are used, interfaced with the Modelica models,
index reduction fails as external functions cannot be
manipulated. This can be resolved by either supplying
any time derivatives required for index reduction or by
developing the Modelica models such that the DAE
system remains in the index-1 form. The latter ap-
proach has been followed for the dynamic modelling
of the CO2 capture pilot.

Causal versus acausal approach

Following the acausal modelling approach, which is
fully supported by Modelica, connections of sub-
models might not respect the causality leading to a
system of DAE’s of higher index (example of two flash
vessels described above). Therefore, a mixed approach
is applied during the model development. The sub-
models and interfaces are defined and developed in an
object-oriented manner such that the models can be
employed in an acausal context. However, the sys-
tem has been analysed and decomposed into subsys-
tems following the causal modelling paradigm in order
to avoid the occurrence of higher order DAE systems
[14]:

• Identification of bilaterally coupled variables of
the models.

• Discretisation of the model in resistive and stor-
age modules, namely solving the conservation

laws for flow and potential in different control
volumes.

• Connect the resistive to the storage modules and
vice versa such that potential variables are inputs
of the resistive and outputs of the storage mod-
ules. Flow variables are inputs to the storage and
outputs to the resistive modules.

By following a more causal development and ar-
rangement of the models the DAE system can be main-
tained in the index-1 form which allows for a straight-
forward use of external property functions. The disad-
vantage of this approach is that is poses restrictions on
the connection of modules. It might be necessary to
include dummy modules with no process functionality
in order to maintain the resistive-storage structure.

4.3 Improvement of computational time

Based on the current experience obtained from the
modelling of the CO2 capture process, the computa-
tion of thermodynamic fluid properties, in particular
phase equilibria, accounts for the main share of the
simulation time (in the order of 95 %). In addition,
much more complex and hence computational expen-
sive thermodynamic models are required when deal-
ing with highly non-ideal, multi-component mixtures
in comparison to fluid models for water or ideal gas.
Therefore, an appropriate and smart use of property
functions should be considered during the entire model
development process. In the following, suggestions
are presented, which might significantly contribute to
a successful convergence and more efficient simula-
tions.

Choice of thermodynamic states

For an efficient use of external property functions in
Modelica, it is necessary to have knowledge on the
property calculations performed in the external tool.
The thermodynamic state can be determined for dif-
ferent choices of independent variables, for example
"PT", "Pv", "Ph", "Pq", "Tv", "Tq", "uv", etc.,where P
is the pressure, T is the temperature, v the specific vol-
ume, h is the specific enthalpy, q is the vapour quality
and u is the specific internal energy. In case of mix-
tures the component fraction vector Xi is added to set
of independent variables.

The external tool employs an isothermal ("PT") or
an isenthalpic ("Ph") flash algorithm developed by
Michelsen [15] for the PC-SAFT and cubic EoS’s,
which are robust and reliable equilibrium calculations
based on the minimization of Gibbs free energy. If
other thermodynamic states are chosen as input, then
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Figure 5: Object diagram of a flash vessel with vapour
and liquid control valves.

the solution is obtained by iteration on either the PT-
or Ph-flash calculation. Any computations including
the vapour quality q as input use a bubble/dew point
calculation, which is much more difficult to perform
and is far less robust than the flash algorithms.

To conclude, "PT" or "Ph" are recommended as
thermodynamic states as these inputs allow for fast and
robust fluid property calculations.

Single and two-phase property calculations

The flash algorithm first determines the vapour and
liquid composition of the fluid (computation of phase
equilibrium), which indicates if the fluid state is in the
two-phase or the single phase region. Then the vapour
and liquid properties such as v, h, s, and u are com-
puted. If applicable two-phase properties are calcu-
lated based on the single phase properties using appro-
priate mixing rules. The initial determination of the
liquid and vapour composition is computational very
expensive and hence this step should be omitted if it
is known a-prior that the fluid is present in the single
phase. Therefore, the option of skipping the flash cal-
culation and just performing a single phase calculation
was implemented by using, for example, "PT-1ph" as
input specification.

The flash vessel component is one example where
this ability to explicitly indicate the fluid phase finds
application. For the conditions in the vessel two-phase
properties are required whereas in valves connected to
the vapour and liquid outlet single phase properties
are sufficient. Experience has shown, that by using
single phase property computations where applicable
throughout the process the simulation time can be re-
duced significantly (see Table 1).

Redundant property calls

The model of a simple phase separation as depicted in
Figure 5 provides another example on how the com-

putational efficiency can be improved by optimizing
the property calculations. The flash vessel model con-
tains a property call which determines required pri-
mary two-phase, liquid and vapour properties, such as
h2ph, d2ph, hliq, dliq, hvap and dvap,

prop2ph,liq,vap = prop(P,T,Xi,2ph). (6)

In the valve model connected to the vapour outlet of
the flash vessel, the vapour density dvap is required to
close the set of conservation equations by

propvap = prop(P,T,Xi,vap). (7)

It is obvious that, under the assumption of adiabatic
operation and no frictional losses, both property com-
putations provide the same result for the vapour den-
sity. However, the property calls are different due to
the fact that in the vessel the two-phase mixture com-
position and in the valve the vapour composition is
used as input. During the process of translating the
model into a set of solvable equations, the compiler
will not realize that the second property call is in prin-
ciple redundant.

One solution to overcome this issue is to transfer the
required density via additional output and input con-
nectors from the flash vessel to the valve. This solu-
tion has been implemented as optional choice, which
can be activated by the modeller. Another possibil-
ity would be the use of conditional connectors which
transfer next to the flow and potential variables possi-
bly an array of all fluid properties.

The improvement in computational time is summa-
rized in Table 1. In comparison to the use of single
phase property calls in the vapour valve the improve-
ment is rather small. However, the aim is not to ob-
tain the most efficient simulations but to demonstrate
a modelling approach which might contribute to effi-
ciency.

Approximation of two-phase partial derivatives

One of the most time-consuming part of the property
calculations is the computation of two-phase partial
derivatives, which are for example required in the flash
vessel component and absorber tray model (see equa-
tions 4 and 5)

The results of the partial derivatives are used in the
mass and energy balances. Various tests indicated that
if the change in the absolute value of the thermody-
namic states during the simulations is small the result-
ing change in the value of the partial derivatives has
hardly any impact on the simulation results. There-
fore, following procedure has been implemented for
the models of the CO2 capture process.
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Table 1: Simulation results of model with flash vessel and two control valves simulated for 2000 seconds.

Case Valves Vessel Vessel Total time [s]
AllProps [s] AllProps [s] TwoPhaseDeriv [s]

Reference (Valves normal "PT") 107.6 5.2 21.5 134.3
Valves "PT_1ph" 11.2 5.2 21.5 37.9
Vapour density transfer 7.2 5.2 21.5 33.9
Valves "PT_1ph", CallID 11.1 5.2 4.5 20.8

An additional variable (CallID) has been added
to each two-phase component assigning each partial
derivative function a unique identification. With this
identification it is possible to distinguishably store
simulation results in the Modelica-FluidProp interface
of the different two-phase derivative calls throughout
the modelled process (eg. LP Vessel CallID=1, MP
Vessel CallID=2,...). Assuming the derivative function
with the ID 1 is executed at a certain simulation time
instance, then a check is performed if the difference
between the current and the values from the previous
time instance (which have been stored in the inter-
face) are below a defined threshold. If that is the case,
no property computation for the partial derivatives
is performed but the stored results of the derivatives
from the previous time instance are returned straight
to Modelica. In case the threshold is exceeded, then
a normal property calculation is performed with the
external tool and the previous results stored in the in-
terface are overwritten. This procedure has the ben-
efit that computational time is saved if the change in
the absolute value of the partial derivatives is marginal
and thus has no impact on the solution. When mod-
elling complex processes involving two-phase multi-
component fluids a significant reduction in computa-
tional time can be obtained. Exemplary a comparison
is provided for the model of the flash vessel with two
control valves (see Table 1). The time spent for deriva-
tive computations reduces from 21.5 to 4.5 seconds for
such a simple model.

5 Recommendations for a future in-
terface

The presented model development approach leads to
solvable models by making a smart choice for the ther-
modynamic and system state variables and by manu-
ally applying measures in order to keep the system in
index-1 form. However, for reasons of numerical ro-
bustness, simulation speed and ease of initialization, a
different choice of state variables might be more con-
venient than the one where the differentiated variables

are used as states. In order to allow for flexible state
variable change and automatic index reduction partial
derivatives of the thermodynamic properties are essen-
tial when using external tools, as demonstrated in this
paper.

The goal is to design a Modelica library that inter-
faces to external property packages, whereby Mod-
elica tools can automatically compute the total time
derivatives of each variables in a set A (e.g. den-
sity, specific energy, specific enthalpy, ...) with re-
spect to any meaningful subset of variables in a set B
(e.g. pressure, temperature, specific enthalpy, ...) that
uniquely identifies the thermodynamic properties of
the fluid, including multi-component fluids and two-
phase mixtures. This is required to successfully carry
out the index reduction and/or state variable change
task automatically. A first attempt on how to perform
automated state variable change is presented by Well-
ner et al. [16].

At a higher level, this requires setting up a Modelica
infrastructure where annotations point to the appropri-
ate functions to compute all the required derivatives.
At a lower level, it has to be ensured that the exter-
nal property package can compute all required deriva-
tives efficiently, i.e., by avoiding unnecessary dupli-
cate computations.

6 Conclusions

This paper presents the development of a system
model for a pre-combustion CO2 capture process
as part of an integrated gasification combined cycle
power plant, which entails the modelling of highly
non-ideal, two-phase multi-component mixtures. As
this type of mixtures are currently not supported by
available Modelica media libraries, an interface proto-
type was developed and tested with the fluid property
package FluidProp for the modelling and simulation
of the CO2 capture process. Due to limitations regard-
ing index reduction if using external property func-
tions, an approach on how to develop index-1 models
and choose system state variables as well as thermo-
dynamic states appropriately is discussed.
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For this type of simulations it appears that the com-
putation of thermodynamic properties, in particular
phase equilibria, accounts for the main share of the
simulation time, therefore various ideas (single ver-
sus two-phase property calculations, decrease in re-
dundancy, approximation of partial derivatives) are
presented targeting computational efficiency. Further
developments might focus on facilitating automated
index reduction and making a wide range of partial
derivatives available in a flexible and efficient manner.
In an ideal setting, the tool allows for different choices
of state variables and different solution strategies for
the DAE system to find the best combination for the
specific case of study.
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Abstract 

Models for dynamic simulation of a parabolic trough 

concentrating solar power (CSP) plant were devel-

oped in Modelica for the simulation software tool 

Dymola. The parabolic trough power plant has a 

two-tank indirect thermal storage with solar salt for 

the ability to dispatch electric power during hours 

when little or no solar irradiation is present. The 

complete system consists of models for incoming 

solar irradiation, a parabolic trough collector field, 

thermal storage and a simplified Rankine cycle. In 

this work, a parabolic trough power plant named 

Andasol located in Aldeire y La Calahorra, Spain is 

chosen as a reference system. The system model is 

later compared against performance data from this 

reference system in order to verify model implemen-

tation. Test cases with variation in solar insolation 

reflecting different seasons is set up and simulated. 

The tests show that the system model works as ex-

pected but lack some of the dynamics present in a 

real thermal power plant. This is due to the use of a 

simplified Rankine cycle. The collector and solar 

models are also verified against literature regarding 

performance and show good agreement.  

Keywords: concentrating solar power; parabolic 

trough; solar salt thermal storage; dynamic model-

ing; Dymola; Modelica. 

1 Introduction 

Thermal solar power is a technology of which the 

solar irradiation on earth is harvested in order to pro-

duce power in the range of village type application 

of several kilowatts all the way up to grid connected 

power plants producing several hundred Megawatts. 

It is an environmentally friendly way of producing 

power not contributing to the rising amount of 

greenhouse gases and other hazardous particles that 

are let out in the atmosphere by traditional fossil 

fired power plants.  

The principle is to concentrate the solar irradiation 

using a configuration of mirrors to produce high 

temperature heat. The heat is then transported to a 

boiler where steam is produced for a steam turbine or 

the heat can be used to power a heat engine. A gen-

erator coupled with the turbine or heat engine is then 

producing electrical power. Some systems also have 

the capability to store heat for use during for instance 

cloudy days and at night. There is a range of differ-

ent configurations available both in the way solar 

irradiation is concentrated and how the produced 

heat is used to generate power. The most common, in 

regards of development and number of units built, 

thermal solar power plants will be presented.  

 

A thermal solar power plant can be divided into three 

subsystems consisting of the collector, the thermal 

storage and the power cycle. Another important as-

pect of the system is the medium that is used to 

transport heat from the collector field to the power 

cycle and the medium used for thermal storage. The 

different characteristics and the most common medi-

um used in a typical thermal concentrating solar 

power plant will be presented. 

1.1 Collector 

The concentrating device of a thermal solar power 

plant consists of mirrors, the collector, focusing the 

incoming solar irradiation on to a heat-absorbing 

device, the receiver. This is done because the solar 

irradiation per square meter on earth is too small to 

heat anything to a desired temperature used in power 

generating applications. By concentrating the irradia-

tion from a large area on to a small point high tem-

peratures can be reached [1]. The arrangement of the 

mirrors differs depending on which type of CSP 

plant configuration that is used. 
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Most mirror configurations use a tracking system to 

follow the movement of the sun in the sky in order to 

maximize the heat collection throughout the day. 

This can be done with either one (east-west direc-

tion) or two axes (additionally north-south direction). 

Systems using one axis require less investment and 

maintenance cost at somewhat lower performance 

compared to two-axis tracking system.  

1.2 Thermal storage 

Thermal storage capability is the key to cost efficient 

and flexible CSP plant operation. With thermal stor-

age the plant owner is able to dispatch power when 

it’s most valuable which often is in the evening when 

there is low or little incoming solar irradiation and 

the electricity price is high. There are a number of 

thermal storage solutions that are both in operation 

and under development. The type that has gained the 

most attention in recent years is a system where heat 

is stored in molten nitrate. Other types use rock, sand 

and oil as storage media [2]. 

1.3 Power cycle 

Most currently operating solar trough and power 

tower systems use a Rankine cycle for electricity 

production. Water is heated up in a boiler producing 

high-pressure steam that is fed into a steam turbine 

coupled to a generator. Temperature and pressure 

data depends on the turbine design and heat source. 

In CSP plant applications the thermal fluid medium 

reaches a temperature of 400 to 600  . This means 

that steam temperature of around 350 to 550   and a 

pressure of 100 bar is common. Some CSP plants use 

a heat engine (such as Stirling motor or Brayton cy-

cle) to produce power. Most solar plants are located 

in sunny and dry climate and use an air cooled con-

denser instead of the more common use of water as 

cooling medium [3]. 

1.4 Thermal media 

Different heat absorbing fluids are used in CSP 

plants operated today. The fluid is often mentioned 

the thermal heating fluid or just “THF” and is used to 

transport heat from the concentrating apparatus to 

the power cycle. Some systems that use a heat engine 

don’t use any thermal heating fluid. The most com-

mon type of THF is a thermal oil that can be heated 

up to around 400  . There are also systems that use 

molten salt mixture which can be heated to around 

500  , but need an advanced control system to pre-

vent the salt to crystallize at around 200  . [4] [5]. 

2 Parabolic trough and other concen-

trating solar power technologies 

In the parabolic trough type CSP plant the solar irra-

diation is concentrated by parabolic curved, trough-

shaped reflectors onto a receiver pipe running along 

the inside of the curved surface. The medium in the 

receiver pipes is heated by the concentrated solar 

energy and used to produce steam in a Rankine cy-

cle. The mirrors are typically placed in parallel rows 

along a north to south axis to be aligned towards the 

sun. A tracking system angles the mirrors to mini-

mize the incidence angle from the solar beams. 

Trough systems can incorporate thermal storage. 

Many currently operating systems are hybrids mean-

ing they can be supplementary fired with an alterna-

tive fuel (often natural gas) when the solar irradiation 

and heat storage is not enough to run the plant. A 

typical parabolic trough plant can produce 50 MW to 

100 MW of electrical power. One of the largest op-

erating CSP plants today, the Shams 1, is of parabol-

ic trough type. It has a power output of 100 MW and 

is located in the Abu Dhabi Emirate. [4] [5] 

 

The linear Fresnel system works in the same way as 

the parabolic trough with another collector and mir-

ror design. The absorber is elevated with several mir-

rors mounted under the absorber tube. A separate 

tracking device gives the mirrors high flexibility to 

track the movement of the sun. This system has a 

lower investment and operation cost than the para-

bolic trough system. The major disadvantage is the 

lower solar to electricity efficiency [8]. 

 

Power tower systems use one central receiver 

mounted on top of a tower. A large amount mirrors, 

so called heliostats, are placed around the tower and 

track the sun in two axes. The THF is heated to ra-

ther high temperature and is used to produce steam 

in a Rankine cycle. Recently molten nitrate has been 

introduced which is also the most common medium 

used in the thermal storage, eliminating the need for 

a heat exchanger between the thermal heating fluid 

and the thermal storage fluid [6]. 

 

The parabolic dish system utilizes a large two axis 

parabolic mirror concentrating the incoming irradia-

tion on to a receiver in the mirror focal point. The 

receiver is typically a heat powered motor meaning 

that the absorbed heat is used directly in the receiver 

to produce electricity. The setup has been realized in 

plants producing up to 5 MW of electricity.   
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3 Reference system 

The most common and mature technology for ther-

mal solar power is the parabolic trough design with 

indirect two-tank thermal storage capability [9], and 

chosen as the subject of this study. In order to model 

the system correctly regarding incoming solar irradi-

ation a specific location on earth is needed. The An-

dasol power plant in Aldeire y La Calahorra, Spain, 

was chosen as reference system because the availa-

bility of performance data and plant design parame-

ters. Technical specifications of the Andasol power 

plant are presented in Table 1 below [11]. 

 

Plant name Andasol-I and Andasol-II 

Plant location Aldeire y La Calahorra, Spain 

Plant type Parabolic trough 

Start date June 1, 2009 

Receiver type Schott PRT-70 

Sun tracking One axis in north-south direction 

Collector type Flabeg RP-3 

Thermal heating fluid type Dowtherm A 

Turbine type Siemens SST-700 50MW steam turbine 

Thermal heat storage type Two-tank indirect with molten solar salt

  

Table 1 Andasol power plant specification 

The thermal heating fluid used in Andasol-I and An-

dasol-II are of the type Dowtherm A. The system 

modeled will use another type of THF manufactured 

by Eastman Chemical Company with product name 

Therminol VP-1. Therminol is commonly used in 

concentrating solar power plants today [12]. Also, 

more technical data is available about the Therminol 

heat fluid than the Dowtherm type. 

4 Modeling the solar power plant 

The different system components described in sec-

tion one will be implemented in Dymola. There are 

no solar power specific components present in avail-

able Modelica libraries today. After model imple-

mentation of the components an evaluation will be 

made against available data. Furthermore, when the 

different components are working properly they will 

be connected to a system model that will be com-

pared against performance data given by the operator 

of the reference system. 

4.1 Media models 

Both the THF circulated through the receivers and 

the fluid used in the thermal heat storage need to be 

implemented in Modelica for use in Dymola. A sim-

plified temperature dependent medium model is de-

veloped where thermodynamic state is interpolated 

from a table. The THF called Therminol is a clear, 

transparent synthetic oil made of an eutectic mixture 

of 73.5 % diphenyl oxide and 26.5 % biphenyl. The 

oil has one of the highest thermal stabilities of all 

organic heat transfer fluids and is stable in liquid 

phase between 12   and 400  . This makes it ideal 

for use in CSP applications [13]. 

 

The fluid used in the thermal heating storage is a 

mixture of 60 %       and 40 %       by weight 

often referred to as solar salt. Solar salt is used be-

cause of its thermodynamic properties such as high 

heat capacity, high density, relatively low cost and 

low vapor pressure. The low vapor pressure makes 

the salt storage easy because no pressurized tanks are 

needed. Another favorable feature of solar salt is the 

high temperature stability and liquid phase up to 560 

  . The downside is that it has a rather high melting 

point starting to crystalize at 238   . This means that 

special care must be taken to prevent the salt from 

freezing causing major damage to pipes, pumps and 

heat exchangers [14]. The thermodynamic properties 

of solar salt are implemented in the same way as the 

THF (Therminol). 

4.2 Sun model 

A set of different equations is needed to calculate the 

direct solar irradiation onto a surface, in this case a 

solar collector assembly, for a specific date, time and 

location on earth.  

The term solar time is used when calculating the an-

gles that are needed to determine how much direct 

radiation will hit a collector, and differs from the 

local time on earth. The difference in minutes can be 

expressed as follows [15]: 

                        (        )    (1) 

Where     is the standard meridian for the local time 

zone,      is the longitude of the location in degrees 

west and E is the equation of time. 

Equation of time is expressed as: 
        (                                

                                 )  (2) 

Where  

  (   )  
   

   
    (3) 

And n = day of the year [15]. 

The angle of incidence of direct solar radiation onto 

a north to south axis tracking collector that is used at 

the Andasol plant can be calculated as follows [15]: 

     (     
             )     (4) 
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Where   is the declination, the angular position of 

the sun at solar noon [15]. 

           (   
     

   
)   (5) 

  is the hour angle, the angular displacement of the 

sun east or west of the local meridian due to rotation 

of the earth on its axis at 15  per hour [16]. 

  (       )        (6) 

   is the zenith angle, the angle of incidence of beam 

radiation on a horizontal surface [15]. 

                            (7) 

Where   is the latitude. 

The incidence angle is the angular difference θ be-

tween the normal to the aperture and the actual solar 

irradiation that can be seen in Figure 1. When the 

direct beam radiation is not normal to the plane of 

the collector aperture there is a loss of direct beam 

radiation that scale with the cosines of the angle  . 

 
Figure 1 A graphical interpretation of the angle between the 

aperture normal and the solar irradiation [16]. 

4.3 Collector model 

The collector is a mirror shaped as a half cylindrical 

parabolic reflector focusing the incoming solar irra-

diation onto the absorber pipe. There are numerous 

equations to describe the geometry of the mirror and 

the image, distribution of solar radiation flux across 

the focus, it produces. It is assumed that the collector 

design already is optimized which gives the parame-

ters that should be provided to the collector model in 

Dymola. The parameters of interest are the optical 

efficiency and collector aperture width and length. 

The aperture width is the trough width and the total 

aperture area is the length of the collector times the 

aperture width. The total aperture area gives the total 

amount of solar irradiation that can be concentrated 

onto the receiver.   

There are several models for the mirror loss that 

have to be taken into account. In this model a single 

parameter called optical efficiency,     , is intro-

duced to describe the total mirror efficiency. The 

different losses included in this parameter are listed 

in Table 2 below [16]. 

Tracking error Inability of the collec-

tor to perfectly orient 
along the tracking 

angle. Twisting of the 

collector about the 
lengthwise axis. 

       

Geometry defects Poor alignment of the 

mirror modules. 
     

Mirror soiling Dirt or soiling on the 
reflective surface that 

decreases the reflected 

amount of solar irradi-
ation onto the absorber 

pipe. 

      

General error Any other loss not 
covered by previous 

categories. 

     

Table 2 List of mirror losses. 

This gives the optical efficiency: 

                              (8) 

This efficiency term is multiplied with the total radi-

ation incidence on the collector calculated earlier in 

the sun model and the total aperture area which gives 

the amount of incoming, reflected solar irradiation 

onto the receiver.  

 ̇                                     [ ]  (9) 

4.4 Receiver model 

The amount of heat absorbed by the THF in the re-

ceiver model considers the amount lost due to radia-

tion and convection to the surroundings. The radia-

tion and convection losses, either natural in case in 

no wind or forced in case of wind, are heat trans-

ferred from the outer glass envelope of the receiver. 

Because of the long receiver length, in the Andasol 

case almost 90000 m, the temperature and heat loss-

es will vary along the absorber axis. In this case the 

model is discretized i.e. the absorber pipe is divided 

in n number of segments. The heat transfer equations 

are then solved in each segment summing up to the 

total heat transfer. By doing this a much more accu-

rate model is obtained as discussed in several studies 

on the subject [17]. The receiver can be represented 

as a thermal resistant network as shown in Figure 3. 

The temperatures denoted in the equations that fol-

low are marked in Figure 2 and Figure 3.  

The absorbed energy in the receiver pipe is modeled 

with a standard conduction heat transfer model for a 

metal wall already available in Modelon Base Li-

brary (MBL). It is assumed that the pipe is made out 

of standard carbon steel. The heat transferred 

through the metal wall is then absorbed by the THF 

by convection in a pipe model also already available 

in MBL. 
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Figure 2 Measurements and heat flow in receiver. 

 

 
Figure 3 Receiver model represented as a thermal resistance 

network. 

The outer surface in commercial absorbers is coated 

with special materials to decrease reflection from the 

surface. In the parameter settings for the receiver the 

surface emissivity of the pipe can be set to a value 

representing the current coating material. 

 

From the pipe surface both convection and radiation 

occurs in the vacuum gap between the outer glass 

envelope and the pipe. The convection is modeled 

with a standard convective heat transfer model de-

veloped by Modelon. When this gap is under vacu-

um the convective heat transfer mechanism is mo-

lecular conduction between molecules. If the vacuum 

is lost for example by a crack in the glass cover the 

heat transfer mechanism is free convection [18]. It is 

assumed that vacuum is always present in the gap for 

this model and that the heat transfer coefficient for 

the vacuum of air is                      ⁄  

[17]. The heat transfer coefficient is provided as a 

model parameter for the user which means that simu-

lations with different vacuum properties or vacuum 

with different gases other than air can be made. 

 ̇                          (     ) (10) 

There were no models for radiation present in any 

Modelica library which had to be developed and 

based on following expressions: 

 ̇                           (     ) (11) 

           (  
    

 )  
     

 

  
 
  
  
 (
 

  
  )
  (12) 

Several assumptions were made in deriving this 

equation but the errors caused are relatively small 

[17]. The glass envelope is implemented as a heat 

transfer model including wall material with constant 

parameters developed by Modelon. The user needs to 

provide data for the glass material such as density, 

specific heat capacity and thermal conductivity. 

Most receiver glass envelopes are made out of boro-

silicate glass that has a very low coefficient of ther-

mal expansion. This makes them resistant to thermal 

shock that is crucial in CSP applications [23]. 

 

Most of the solar irradiation concentrated onto the 

receiver is utilized by the THF but the receiver glass 

envelope also absorbs some heat. This raises the 

glass surface temperature and creates a temperature 

difference to the ambient. The amount of heat ab-

sorbed by the glass can be expressed as follows [19]: 

 ̇         ̇         
    

         
    (13) 

 

Some of the heat transferred through the glass enve-

lope is lost by radiation due to temperature differ-

ences between the glass and the sky. Convective heat 

transfer also occurs and is either natural or forced 

depending on if there is wind or not.  

The radiation loss can be expressed as follows when 

assuming the glass envelope to be a small convex 

gray body surrounded by a large black body that rep-

resents the sky [17]: 

 ̇                    (  
      

 ) (14) 

The sky temperature can be assumed to be 8 degrees 

lower than the ambient temperature [20]. 

The convection from the outer surface of the glass 

envelope can be expressed as follows: 

 ̇                        (       ) (15) 

Where      is the convective heat transfer coeffi-

cient to ambient. 

For natural convection (no wind) the heat transfer 

function can be expressed as follows [17]: 

              ̅̅ ̅̅  
   

  
     (16) 

Where the Nusselt number can be calculated using a 

correlation developed by Churchill and Chu for a 

long isothermal horizontal cylinder [17]. 

All thermodynamic properties are calculated at the 

mean temperature between the envelope surface and 

the ambient temperature     
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Forced convection heat transfer will occur at windy 

conditions and is calculated in the same way as for 

natural convection but the Nusselt number will in-

stead be estimated with Zhukauskas’ correlation for 

external forced convection flow normal to an iso-

thermal cylinder as follows from [17]. 

When the heat loss by radiation and convection from 

the envelope is known, and the same for the vacuum 

gap, the amount of heat absorbed by the thermal 

heating fluid is known: 

 ̇          ̇          ̇         ̇         (17) 

 ̇         ̇          ̇         ̇         

 ̇            (18) 

4.5 Thermal storage model 

The thermal storage task is to supply extra heat to the 

plant when the solar irradiation is below a certain 

value. In this case the outlet temperature of the THF 

from the collector field cannot reach the desired val-

ue of 393  , the design point temperature for the 

Andasol power plant. This is when the thermal stor-

age instead is used heating the thermal heating fluid 

to 373  . It is not possible to reach the design point 

temperature because of losses in the heat exchanger 

between the thermal oil and the solar salt. 

The collector field for the Andasol power plant is 

over-sized in order to be able to produce heat for 

both charging the thermal storage and the power cy-

cle during the whole day and not only when the inso-

lation is peaking in the middle of the day. With no 

thermal storage the collector field size could be re-

duced with approximately 40 %. After a couple of 

hours when the thermal storage is completely 

charged too much heat is absorbed just for the power 

cycle and a part of the collector field is intentionally 

defocused [20]. 

The heat from the THF is transferred to the solar salt 

via a heat exchanger with a 10   pinch point. When 

the solar salt is used to heat up the THF the system is 

reversed and the thermal fluid is heated up via the 

same heat exchanger. The THF will then reach an 

outlet temperature 10   below the solar salt inlet 

temperature. It is assumed that the thermal storage 

tanks are well insulated and no heat loss occurs. 

The charging of the solar salt is made by tapping off 

a part of the heated THF from the collector field and 

redirecting this to the heat exchanger between the 

thermal oil and the solar salt. The mass flow rate of 

the thermal fluid through the heat exchanger is given 

by a simple energy balance and the fact that the min-

imum mass flow rate to the power cycle is known. 

 

The discharging of heat from the thermal storage is a 

bit more complicated. The collector field is shut off 

via valves creating a new loop for the THF that runs 

through the thermal storage and then directly to the 

power cycle. This isolates the main THF pump creat-

ing the need for a secondary pump which is only 

used when discharging the thermal storage. The mass 

flow rate of this pump is calculated for the power 

cycle THF inlet temperature of 373  . The user can 

set the threshold value of incoming solar irradiation, 

the minimum amount of incoming solar irradiation 

where the system switches to run on the thermal 

storage. Under all simulations in this paper the value 

of 400    ⁄  is used which means that the system 

will switch over to run on the thermal storage when 

the DNI is less than this value. The value has been 

chosen after testing the model and is not calculated. 

4.6 Rankine cycle model 

The power cycle including boiler, steam turbine, 

generator and condenser is simply modeled. The 

Rankine power cycle model consists of a single heat 

exchanger where the THF flows on the primary side 

and the water boiled to steam on the secondary side. 

The water is supplied from a source and dumped in a 

sink meaning that there are no models for turbine, 

generator or condenser. By using this approach the 

thermal inertia of the otherwise big boiler is not ac-

counted for. This means that the system modeled in 

Dymola will react too fast to changes in incoming 

thermal fluid temperature. 

5 Modelica implementation 

The Modelica language for dynamic simulations is 

ideal for CSP applications. The solar irradiation 

equations are time dependent and easily calculated 

after implementation in Modelica. There are differ-

ent plant operating modes depending on solar insola-

tion, amount of heat stored in the thermal storage and 

other events that has to been taken into account when 

the plant is simulated. There are also several modes 

the plant has to switch between in order to produce 

optimal amount of electricity to the grid. This kind of 

dynamics combined with automatic control, which 

Modelica is well suited for, makes it possible to test 

and simulate plant performance and behavior in a 

fine resolution. The downside with Modelica is a 

rather high threshold for new users.  

The system model consists of Modelica implementa-

tion of the main components described and connect-

ing them using system controller, see Figure 4.   
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 Sun model based on 15-minutes time series 

weather data on a file from a location close 

to Andasol plant in Spain  

 Collector model consisting of own imple-

mentations of heat resistance and mirror 

models, and base classes (pipe and wall 

models) from Liquid Cooling Library (LCL) 

and Thermal Power Library (TPL) 

 Thermal heat storage model implemented 

with own models combined with efficiency 

based heat exchanger model from MBL 

 Simplified Rankine cycle solely consisting 

of source and sink terms and the same base 

class heat exchanger model from MBL  

 Additionally a pump like component from 

LCL (setFlowRate) and an expansion vol-

ume component from MBL used for the 

themal oil circuit.  

 Thermal heating fluid (Therminol) imple-

mented as table based media template class 

from LCL 

 System controller for controlling mainly 

thermal heat storage as well as flow rate in 

the thermal oil and Rankine cycle circuits  

 A summary record for key parameters and 

results     

 

 

 
Figure 4 System model as in the Dymola Modeling view 

6 Verification of system model 

To verify the system performance a comparison with 

the Andasol I parabolic trough power plant is carried 

out with the same design parameters provided by the 

plant operator [22]. The goal is to match efficiencies 

from different parts of the system with them from the 

Andasol power plant. The thermal storage will not be 

used in this test, neither for heating up the salt nor to 

heat up the thermal fluid. They are left out from the 

simulation due to efficiency calculations that will 

turn out wrong if heat is added or subtracted from the 

system. The performance numbers given by Andasol 

are based on an average typical weather year. To 

match the incoming solar irradiation a median value 

of the yearly incoming solar irradiation for a typical 

meteorological year were used as input to the system 

model and the specific simulation day was set to day 

no. 92 and the time to 10 AM. This represents a me-

dian value of the solar position. 

 

Efficiency Andasol System model 

Solar field – solar irradiance to steam 43 % 42.6 % 

Rankine – steam to electricity 38.8 % 38.8 % 

System – solar irradiance to electricity 16 % 16.5 % 

Table 3 Results from system model validation. 

As shown in Table 3 the values from the system 

model align well with plant data indicating a correct 

implementation of the system model. However, the 

Rankine efficiency is the whole cycle efficiency but 

in the system model only a simplified Rankine cycle 

is used. Therefore the same efficiency provided by 

Andasol was used to calculate the amount of electric-

ity produced by the system model. 

7 Results from test cases 

In this section two different simulations from a clear 

and a partly clouded summer day respectively will be 

shown. By studying the behavior of the system mod-

el under these conditions, understanding of how the 

system handles solar irradiation variations can be 

gained. Information about system performance dur-

ing a single day and how the system handles low 

values of solar insolation can also be obtained. 

7.1 Simulation of a typical clear summer day 

Flabeg, the manufacturer of the solar collector as-

semblies for the Andasol power plant is demonstrat-

ing the performance of the plant for a typical clear 

summer day in Figure 5. This figure serves as a 

benchmark and gives a hint of how the system model 

in Dymola should behave under similar conditions. 

The system model is set up to run on day 189 i.e. 8th 

of July, with the simulation starting at 4 AM and 

running for 24 hours. The results are presented in 

Figure 6 below.  

As can be seen the simulation in Dymola is a bit 

more irregular than the presented graph from Flabeg, 

for instance some very sharp curves. The most obvi-

ous reason for this is that the graph of Figure 5 is a 

computer rendering and not based on actual calcula-

tions, which is the case for the other graphs.   
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Figure 5 Insolation and heat flow to and from different system 
parts of the Andasol power plant [21]. 

 
Figure 6 Heat flow to and from different system parts in the 

system model in Dymola. 

There is a problem with the automatic control circuit 

causing the fluctuations in the beginning of the simu-

lation in Figure 6. This could be avoided if the con-

trol parameters were to be optimized. 

7.2 Partly clouded typical summer day 

How the system behaves during a day which is partly 

clouded is investigated next with a custom set of so-

lar data parsed to the system based on the data from 

the typical clear summer day, day no. 189. The in-

coming solar irradiation during the simulation is 

shown in Figure 7. The sudden drop in incoming 

solar irradiation is supposed to mimic a big cloud 

moving over the solar power plant. After three hours 

the cloud has passed and the solar irradiation goes 

back up again until the end of the day. The system 

results are shown in Figure 8.  

At first the system behaves as in the clear summer 

day case shown in Figure 6 but when the sun is 

blocked by the cloud the thermal storage starts to 

discharge heat and the power plant can continue de-

liver power to the grid. 

 
Figure 7 Direct normal insolation for the partly clouded day 

simulation. 

 

 
Figure 8 Heat flow from and to different system parts for the 

partly clouded day simulation in Dymola. 

When the cloud passes three hours later the system 

switches back to run on heated thermal oil from the 

collector field until the sun sets. Because of the 

blocking of the sun the thermal storage is not fully 

charged when the irradiation disappears and the sys-

tem can only run on the thermal storage for just little 

under four hours. Another control strategy may be 

desirable in this case depending on the price fluctua-

tion of electricity. If the price is higher in the even-

ing, which it usually is, the system should not start to 

discharge heat from the thermal storage during the 

day. Instead the power cycle could be shut off or put 

at low load during these hours. The power cycle 

could then go back up and deliver maximum electri-

cal power in the evening while utilizing the energy 

contained in the thermal storage. 

8 Discussion 

The goal with this paper was to successfully model 

and simulate a concentrating solar power plant of a 

parabolic trough type and compare results with data 

found in literature. Parabolic trough is the most 

common technology with a huge potential to deliver 

large amount of environmental friendly electricity.  
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In order to model other types of CSP plants the cur-

rent models may be redesigned rather easily for a 

linear Fresnel system. However, this is not the case 

for the central receiver solar tower design and the 

parabolic dish type.  

The simulation results (numbers) presented may not 

be very useful in its current form but the models de-

veloped can be used for research and future plant 

analysis and development. There is some old code 

already existing for dynamic simulations of parabolic 

trough plants in other simulation tools. These tools 

do not offer as high degree of flexibility as the mod-

els developed for Dymola. The Modelica models can 

easily be altered and customized for a specific plant 

design and shortens the project lead time in the de-

sign and verification project phases where simulation 

is important. If systems can be modeled with a high 

degree of accuracy the time from project start to 

plant startup can be shortened and the plant perfor-

mance predicted on an early stage. New system de-

sign can be tested and evaluated in an early stage in 

Dymola and less physical prototype tests have to be 

done which is much more cost effective and leads to 

cheaper plant development cost. 

The verification done on the solar and collector 

models and on the system model as a whole, shows 

good results, which is an indicator that a correct im-

plementation of the loss models has been made. The 

collector and sun models are considered to be im-

plemented adequately but the thermal storage model 

needs more work because of the simplifications. 

No complete Rankine cycle was implemented which 

is a drawback but the overall results presented show 

strong similarities with manufacturer data. 

The fast switching between modes, charging and 

discharging of the thermal storage, and certain irreg-

ular behavior could be avoided with better automatic 

control with parameters optimized for each simula-

tion depending on how much solar irradiation hits 

the collector during the day. The effects of this dy-

namics have to be studied more carefully to gain 

knowledge of which control parameters to modify.   
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Abstract 

This paper describes the status and findings of the 
development of a Modelica based test system for 
power plant controls. The development is part of the 
ITEA2 project MODRIO which has the main goal to 
improve the operation of plants by utilizing model-
ing, simulation and optimization techniques. 

The control test application shown in this paper 
demonstrates the usability of Modelica to run com-
prehensive tests for plant controllers involving large 
parts of the physical plant and the control system. 
However it highlights the need for further develop-
ment, in areas such as: the test system, the discrete 
part of the models, the Modelica language, Modelica 
Association standards such as FMI and Model-
icaXML and the tool support for these.  

Keywords: SCADA; DCS; ModelicaXML; MODRIO; 
Controller Test  

1 Introduction 

Flexibility in operation of power plants becomes 
more and more important. This trend started in the 
nineties of the last century due to the opening of the 
energy markets world wide. The growing part of re-
newable energy production and their positive dis-
crimination to be dispatched accelerated the evolu-
tion of the remaining fossil power plants. Therefore 
demand for control quality of these plants increased.  

Power plants are controlled by distributed control 
systems (DCS) [6]. This article focuses on the Sie-
mens DCS SPPA-T3000, see [3] for more details. 
However, most of the results are transferable to all 
up to date DCSs.  

The goal of the development presented here is to al-
low the easy testing of controllers for power plants 
developed in a DCS such as SPPA-T3000 at every 

control engineer’s desk. Therefore the effort to run 
these tests needs to be acceptable and iterative im-
provement of the controls needs to be supported. 
Having such a tool available offers some great bene-
fits: 

• Tests on the real plant shall be avoided, since 
these are: 
o Expensive, due to cost of fuel and loss of 

profit.  
o Dangerous, since they might cause dam-

ages.  
o Limited with respect to the number of 

tests and the allowed operating range. 
• Speeds up the development of improved  

controllers.  
• Will improve the quality and enable systematic 

quality assurance (QA). 

During the requirements engineering phase it became 
apparent that users, i.e. the control engineers, con-
sider using a test system for very different tasks and 
in all different phases of a project. This means that 
the system under development needs to cover differ-
ent aspects such as early test of concepts on the one 
hand and regression testing for maintenance of exist-
ing control standards on the other. Apparently, this 
needs high flexibility on the modeling and simula-
tion for the plant model in order to cover all different 
kinds of physical effects of the plant in an appropri-
ate level of detail.  

An agile software development approach was chosen 
for this project, because the control engineers, mod-
eling experts and software developers had the chance 
to team up for this development. Having a working 
prototype early on, turned out to be very useful. 

Everything afore mentioned, lead in the direction of 
a fully Modelica based approach, at least for the fast 
development of a prototype. Due to the urgent need 
for control testing in a running project this fully 
Modelica based prototype has than be applied to a 
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real life example which highlighted some important 
advantages of the Modelica solution: 

1. No special support of the DCS (besides already 
existing export features, see section 3). 

2. Comprehensive insight in the control and plant 
model.  

3. No real-time requirement. 
4. No need to develop interfaces, e.g. to a virtual-

ized control system such as SPPA-S3000 [2]. 
5. Only a Modelica tool needed for deployment.  

The major disadvantage is that this approach intro-
duces a new source for bugs: The Modelica model of 
the control system (see section 3). Compared to the 
advantages mentioned above this seems to be ac-
ceptable.    

2 Background 

2.1 SPPA-T3000  

SPPA-T3000 is a Siemens DCS system of the latest 
generation. Like most of its competitors the commu-
nication back bone is the IEC Fieldbus standard. It 
offers integrated functionality for plant operation 
(including HMI), Alarming, Data Archives, Engi-
neering of the controls, Diagnostics for optimized 
plant maintenance and interfaces for field device 
communication [3]. It is notable that the online 
runtime system of SPPA-T3000 still consists of pro-
grammable logic controllers (PLCs), i.e. the SIMAT-
IC S7. But even so the power plant control needs to 
be run on a few of these PLCs for performance rea-
sons, the DCS system still provides a global name-
space for all signals.  

The global namespace for all signals introduces a 
motivation for systematic naming. In power plants 
the KKS (Power Plant Classification System) system 
is still commonly used, although newer standards 
like RDP-PP based on EN 81346 are available. Typ-
ically the plant model is more general and therefore 
less strictly named. Disregarding which of the men-
tioned naming standards are used for the control sys-
tem, the interface to the plant model needs to be tak-
en into consideration for the design of a control test 
system for power plants.  

2.2 SiemensPower 

The Modelica library SiemensPower is used for dy-
namic simulations throughout the entire lifetime of a 
power plant: from conception to decommissioning.  

The primary target is to provide information on dy-
namic behavior of a plant to verify the feasibility of 
process concepts and control strategies.  

Validation of operating and safety procedures as well 
as tests of control concepts before implementation on 
real plants is performed, using SiemensPower mod-
els.  

Key features of SiemensPower are: 

• Wide range of component models especially 
for combined cycle power plants.  

• Control package to implement real plant con-
trol in simulation models that allows parsing of 
controls from SPPA-T3000. 

• High performance TTSE (Tabular Taylor Se-
ries Expansion) water/steam function. 

In the context of this paper, all equations describing 
the dynamics of the plant and of controls are imple-
mented in SiemensPower.  

3 Bringing the Control System into 
Modelica 

This section describes how functional block dia-
grams are automatically transferred from SPPA-
T3000 to a controller model in Modelica which can 
be simulated together with the plant model. Figure 1 
shows the two steps of exporting and converting 
functional block diagrams. 

First, the control engineer has to define a set of func-
tional block diagrams which are to be tested. This 
subset of the full-plant control system is then export-
ed from SPPA-T3000 into an XML file describing 
the diagram layout, connections and parameter set-
tings.  

Second, the XML output is translated into a Modeli-
ca package containing one model for each functional 
block diagram and a top-level class containing all 
open controller inputs. Therefore a customized 
T3000-Modelica parser has been developed. During 
the conversion, the graphical layout of block dia-
grams is preserved as much as possible in order to 
allow analyzing and changing the control layout in 
the same style as in SPPA-T3000. But there are limi-
tations for blocks with conditional inputs. For exam-
ple, T3000 icons are automatically adapted in height, 
according to the number of activated input connect-
ors. Unfortunately in current Modelica, the means of 
adapting icons and connectors according to parame-
ter settings are very limited. 
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Figure 1: Process from SPPA-T3000 XML to Modelica 

The parsed controller package contains the layout, 
hierarchy and parameterization of control blocks as 
Modelica instances, but lacks the actual equations. 
All relevant blocks have been re-implemented in 
Modelica, similar to the approach of [1]. There is an 
option to use purely discrete equations or continuous 
equations as much as possible. Re-implementing all 
controller equations and integrating them into the 
component library SiemensPower was a considerable 
effort. This work has already been initiated for earli-
er projects, as there was a need for real-world control 
blocks in dynamic simulation studies. The validation 
work of all control blocks is still ongoing. 

The global name space of SPPA-T3000 (see section 
2.1) is replicated by the connection to an outer ex-
pandable connector (bus). Therefore, the parsed 
functional block diagrams do not have input/output 
connectors on the top level, instead they are connect-
ed via bus signals in KKS naming scheme.  

Due to extensive bus usage, the T3000-Modelica 
parser can avoid generating a lot of connect equa-
tions through the model hierarchy. Furthermore 
changes in the control layout are facilitated as all 
signals can be retrieved from bus at any level, just as 
in the authoring tool SPPA-T3000. Due to the high 
number of bus instances in the model, compiling was 
not possible. The reasons were memory and perfor-
mance limitations during translation. This has been 
solved by using the inner/outer concept of Modelica. 

4 Plant Model 
The overall combined cycle power plant and its dis-
trict heating system has been modeled based on the 
in-house Modelica library SiemensPower. 

4.1 Description of Plant Model 

For this prototype the control of a district heating 
system of a combined cycle plant (CCPP) was inves-
tigated. The district heating system uses steam from 
steam turbine extractions in order to heat the water 
that will be supplied for district heating. The main 
function of the controller is to control the supply 
temperature of the water by means of several valves 
in the plant. Figure 2 shows a simplified schema of 
the model.  

The model of the CCPP serves as dynamic and con-
sistent boundary conditions for the district heating 
system. It was therefore reduced to a minimal level 
of detail. The gas turbine is a steady state model 
based on tables, the steam turbine sections are mod-
elled using Stodola’s equation and a constant isen-
tropic efficiency and the heat recovery steam genera-
tor is a lumped time delay model as proposed by 
VDI 3508.  

 
Figure 2: Simplified schema of the overall plant model 
with its controller 

4.2 Components of District Heating System 

A district heating system has long piping connec-
tions which can be longer than 100 meters, thus lead-
ing to large delays in the transport of enthalpy. To 
model this accurately while avoiding a huge number 
of elements in the discretized pipes, transmission line 
pipe models with spatial distribution for the enthalpy 
are used.  
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In the transmission line the enthalpy is delayed with 
a time 𝜏, solution of the following equation: 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑖𝑝𝑒 = � 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡) 𝑑𝑡
𝑡

𝑡−𝜏
 

The controlled butterfly valves are modelled accord-
ing to valve pressure loss correlation using a zeta 
(pressure loss coefficient) characteristic curve as 
function of opening angle: 
 
𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 =
𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 ×

 �2 × 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑧𝑒𝑡𝑎(𝑎𝑛𝑔𝑙𝑒)

massflow =
crosssectionalarea ×
�2×pressuredifference×density

zeta(angle) massflow =

crosssectionalarea ×�2×pressuredifference×density
zeta(angle)  

 

To have realistic temperature transients, the heat ex-
change surfaces and especially the condensing heater 
need also to be correctly modeled. Hence, specific 
heat correlations for one and two phase flows are 
used [7].  

Other important parts of the plant for a reliable con-
troller test are the sensors. Due to the delay of en-
thalpy transport in the connection pipe, the exact po-
sition of the sensors is crucial. Further time delay 
within the sensors themselves must be also consid-
ered. 

4.3 Size of Model 

To improve the performance of the plant model an 
effort has been made to reduce the size of the non 
linear systems of equations at its maximum. This has 
been principally achieved by increasing the amount 
of continuous states, where appropriate. No system 
with higher amount of unknowns than 1 are left after 
manipulation of the non linear systems by the Mod-
elica simulation tool (Dymola). 

The plant model has around 464 continuous states 
and 4739 time-varying variables.  

After adding the controller, the model keeps the 
same amount of continuous states as all controller 
variables are discrete and has in total 17095 time-
varying variables. 

5 Connecting Plant Model and Con-
trol System 

A Test Unit is a Modelica model which instantiates 
one version of the plant model as well as the control-
ler model (System under Test).  

Figure 3 shows the current approach for signal han-
dling. Besides connecting controller and plant model, 
the Test Unit is used for adding boundary conditions. 
Test Cases are then created by extending the Test 
Unit and adding disturbances and changing parame-
ters. A benefit of storing all Test Cases in the Model-
ica package hierarchy is having one single source of 
information during simulation and testing. 

 
Figure 3: Test Unit with plant model and controller 

The tested functional block diagrams usually depend 
on hundreds of Boolean and Real signals from the 
power plant control system. Therefore, setting ap-
propriate boundary conditions is only possible in 
cooperation between control developers and dynamic 
simulation engineers. When connecting the models, 
additional unit conversions are necessary. The con-
trollers work with non-SI units, which are adapted to 
different customer requests around the world. In or-
der to avoid errors from manually converting units, 
an automated conversion of units is planned. The 
support through tools and the Modelica language for 
handling of non-SI units and factors could be im-
proved (e.g. %).  

Due to the chosen package structure, the controller 
can be updated (re-parsed) without requiring changes 
to the Test Unit, as long as no new boundary condi-
tions are required. This enables efficient testing of 
various controller revisions. 

Testing Power Plant Control Systems in Modelica

1070 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961067



6 Simulation 

6.1 Performance Issues 

The performance of plant model in open loop is very 
acceptable with a computation time considerably 
shorter than real time. Also, the computation of the 
discrete control signals at each one of its cycle time 
needs only an insignificant amount of computing 
resources. However, for the complete Test Unit, the 
time events generated at each cycle time of the con-
trol as well as the way how these time events are 
handled by the DAE solver dramatically deteriorate 
the performance of the plant model. 
If it is not possible to avoid the generation of events 
at each control cycle time, one solution to improve 
the performance is by simply increasing the cycle 
time in order to reduce the amount of events. The 
cycle time in the DCS can typically go down to 100 
ms. A cycle time of 400 ms can be chosen for the 
models, which greatly improves the performance. 
However, small instabilities in control actions can be 
noticed with this higher cycle time. 

Another way to improve simulation performance is 
to change the DAE solver settings and the way it 
handles events. The Dassl solver starts for example 
its iteration after an event with the minimal step size, 
thus worsening the performance. While this can be 
modified for the Dassl solver in Dymola by manipu-
lating the dsin.txt file, there is unfortunately a gen-
eral lack of possibilities to influence solver settings 
in a user-friendly way. 

An alternative attempt was to use FMI for Co-
Simulation by packaging the controller in a FMU. 
This would offer the possibility to use two different 
solvers, a fixed step size solver (e.g. Euler) for the 
controller and a variable step size solver (e.g. Dassl) 
for the plant model. Due to the large size of the con-
trol model in terms of block instances (23000 in to-
tal) and amount of parameters, the simulation of the 
FMU in Dymola was unfortunately unsuccessful.   

6.2 Results and Validation 

A first validation test has been performed comparing 
the model behavior with measurement data from a 
real plant.  

Boundaries of the model are set according to the 
measurements. As the model is covering the overall 
plant only few boundaries are needed. The necessary 
boundaries are the gas turbine load, the district heat-
ing load, and the set point for the district heating 
supply temperature.   

The validation shows that the behavior of the model 
fits very well to the plant behavior. For instance, this 
can be observed for the valve openings on Figure 4. 

 
Figure 4: Comparison of real plant and model for the 
valve openings 

7 Conclusion 
This paper shows that the simulation based test of 
control systems in Modelica is possible for industrial 
use cases.  

The self-contained simulation setup revealed inter-
esting benefits. First of all, absolutely no changes to 
the authoring tool (SPPA-T3000) were necessary. 
Secondly, the tested output file of SPPA-T3000 
could be the same as used on the real plant. 

Even if the Functional Mock-Up Interface (FMI) is 
“en vogue” in industrial applications, the tool de-
pendencies are much lower with our self-contained 
simulation model in Modelica. We can avoid a com-
plex co-simulation setup for testing and are open to 
fast changes on the plant model and controller as 
well as Test Cases. All parts of the model retain their 
hierarchical structure and can be investigated deeply 
during testing. This helps control engineers not only 
to work with but also to trust in the simulation based 
testing procedure. 

On the downside, we are reaching the limits of what 
current Modelica tools can handle in terms of num-
ber of signals and simulation performance. And of 
course there is substantial maintenance effort in re-
gards to SiemensPower library and the T3000-
Modelica parser in order to provide a stable control 
test system for in-house users. 
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8 Outlook 
Encouraged by the success of the existing prototype 
the development of the control test system will be 
continued. Naturally the prototype needs to be im-
proved with respect to many aspects and the most 
severe shall be mentioned here.  

First of all, the controller part is a fully time discrete 
model which is modeled using existing Modelica 
elements such as “when” clauses and “pre()”. Be-
sides the sampling rate or cycle time being defined 
for the global scope, i.e. contrary to the real DCS all 
controllers run on the same cycle time. This simplifi-
cation did not limit the capabilities of the prototype 
for the particular case. However, it is a strong limita-
tion in general. Note, the limitation is not on the ex-
port of SPPA-T3000 or the parsing to Modelica, but 
on the modeling of the functional controller blocks.  
It is evident that Modelica’s new synchronous fea-
tures [4] will help to improve the situation. Both, on 
the modeling part utilizing clocks and sampled sys-
tems as well as on the simulation part guaranteeing 
deterministic behavior.  

Another missing part to allow model based control 
development is the backwards parsing to SPPA-
T3000. This step is needed to close the cycle in case 
modifications to the controller have been implement-
ed during testing in Modelica. Again, the develop-
ment of this feature might be backed up by a recent 
Modelica Association development, namely Model-
icaXML. If this is standardized and supported by 
Modelica tools it might be a big step in the right di-
rection. Then, the remaining task to transform one 
standardized XML format into another standardized 
XML format will be of very limited effort.  
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Abstract

Modelica has proven to be a compelling technol-
ogy for creating sophisticated multi-domain mod-
els. It provides modern language features to pro-
mote model reuse and maximize developer produc-
tivity. These capabilities are backed up by proven
simulation performance. More recently, the Func-
tional Mockup Interface standard (FMI) has created
an avenue for these models to be exported outside
the model development environment as Functional
Mockup Units (FMUs).

In this paper, we explore one possible way to
utilize models that have been exported as FMUs.
Specifically, we discuss how to incorporate these
models into a web-based engineering analysis appli-
cation that is designed to be accessible to non-expert
users. Our goal is to show the important role that
web and cloud based approaches can have in mag-
nifying the impact of modeling activities across the
enterprise.

We consider a specific engineering model and dis-
cuss exactly how we have transformed the model to
make it accessible as a web-based application. This
includes a discussion of the input and output data as-
sociated with the model as well as how a web based
deployment (backed by cloud based services) can
provide unique features compared to more conven-
tional methods of model deployment.

Keywords: FMI, cloud, web, HTML5, JavaScript

1 Background

1.1 “Start the Revolution Without Me”

At the dawn of the world wide web, web servers
served up static content (ordinary files) and web
browsers rendered that content. What was remark-
able about the web at this point was the ability to mix
graphics and text using HTML and to hyperlink be-
tween pages. As the web matured, servers started to
switch from serving static files to assembling content
on a per request basis.

Up until 1998, the role of the web browser was
simply to render this content produced by web
servers. But in 1998, the “Web 2.0” revolution be-
gan. A big part of this revolution was the idea that
the browser should become an application platform.
Although at this point it wasn’t clear what technolo-
gies would ultimate win out for “executing” content
through the web (Flash, Javascript or a variety of pro-
prietary plugins), it was clear that a browser was no
longer just for rendering hypertext.

Since 1998, the changes in the web browser plat-
form have been nothing short of astounding. In
fact, most users of these web browsers are probably
not even aware of all the capabilities that have not
only been added to web browsers but also standard-
ized across browsers. Modern web browsers don’t
just render hypertext, they can render vector graph-
ics through SVG, detailed three dimensional scenes
through WebGL, a wide variety of open ended ren-
dering capabilities through canvas widgets and fea-
ture ever improving styling options through CSS.
Along the way, the HTML specification has im-
proved as well.

Behind the scenes, cloud based technologies are
advancing by leaps and bounds. Every day new tools
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and technologies emerge for supporting web-based
applications. For example, there are now so many
high-quality free options for databases that it is al-
most impossible to keep track of them. But this is
true in nearly every area of web and cloud based
technologies from Javascript frameworks to virtual-
ization technologies.

The ubiquity of distributed computing resources is
fundamentally changing the way we think about pro-
gramming these large scale systems to make them
more scalable and fault tolerant. This, in turn,
has changed the way we think about programming.
New languages and programming metaphors (e.g.,
channels in Go[1][2], the core.async library in
Clojure[3], actors in Akka[4] and promises[5]) are
emerging to help us abstract away the behind the
scenes complexity associated with these new dis-
tributed computing paradigms.

1.2 Engineering 2.0

But what does this mean for engineering? Almost
nothing. While most engineers personal lives have
been impacted somewhat by web based applications
like Facebook, Twitter, Evernote, etc. their profes-
sional lives are still largely centered around applica-
tions, computing resources and storage tied to their
local desktop. Simply put, the tools and capabili-
ties in engineering are far from keeping pace with the
proven technologies in other areas that have emerged
over the last two decades.

Part of this effect is driven by the fact that engi-
neering tools tend to be large and monolithic. This
has resulted, in part, from industrial customers who
approach adoption of engineering tools with a long
list of requirements. This tends to foster a monolithic
approach which, in an ironic twist, probably ends up
hurting these customers in the long run.

One of the reasons that the technology industry
seems to be better served by recent advances is that
they are a more aggregated market. Engineering
companies often attempt to differentiate themselves
through what they feel are unique or innovative pro-
cesses. The result is that their requirements are all
slightly different from each other. This, in turn,
means that vendors can rarely make a product that
has broad market appeal in engineering. This leads
to the situation that vendors often cannot justify sig-

nificant development resources or reinvestment be-
cause they are, ultimately, addressing a niche market.
Moving forward, engineering and industrial compa-
nies need to collaborate more to drive standards and
common best practices. In this way, more resources
can be brought to bear on the problems that they all
share.

While the web has evolved well beyond “web 2.0”,
engineering is still waiting for the impact of those
technologies to create an “engineering 2.0” revolu-
tion. Until then, engineering applications will re-
main largely centered around the desktop and sub-
ject to the same computing and storage limitations
they always have and collaboration will be limited to
“SharePoint” sites or network shared drives.

1.3 Xogeny

Xogeny was started to attack this problem head on.
Xogeny is a new company with no legacy software
to support. Everything we do starts with modern,
proven technologies. There are countless technolo-
gies out there developed by technology giants like
Google and Amazon that are simply there for the tak-
ing. Xogeny’s mission is to help build the bridges
necessary to make these technologies accessible for
engineering applications.

The first step in this process was to develop a plat-
form to easily distribute simulation of FMUs to the
cloud. We call this platform FMQ.

2 Representative Model

2.1 Vehicle Thermal Management

For the remainder of this paper, we will be dis-
cussing a Modelica model used to study vehicle
thermal management. This model was developed
by Modelon[6]1 without any prior consideration
given to using it with the FMQ platform.

The model itself is very sophisticated and includes
detailed models of several different aspects of the ve-
hicle. This model is used to simulate the thermal

1The author wish to thank Modelon for their participation
in this case study and express his sincere appreciation for their
support.
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response of many individual components and sub-
system during a prescribed drive cycle. Such anal-
yses are important when optimizing system level ef-
ficiency to ensure that components are not oversized
for their purpose and that control strategies are ef-
fective in managing thermal loads without reaching
unacceptably high temperatures in components.

2.2 Model Compilation

The model itself was written in Modelica. As
part of the normal modeling process (unrelated to
any specific application involving FMQ), a consid-
erable amount of engineering information was cap-
tured. For example, most parameters in this model
include a description, physical units as well as min-
imum and maximum parameter values. Modelica
makes associating such information with the model
quite easy.

This Modelica code is then compiled into an Func-
tional Mockup Unit (FMU) that conforms to the
Functional Mockup Interface (FMI) specification[7].
One important thing to understand about this process
of converting Modelica into an FMU is that much of
the engineering information discussed previously is
propagated into the FMU. So the descriptions, phys-
ical types and limits of parameters are available via
the modelDescription.xml file in the FMU.

The FMI specification translates Modelica param-
eter values and solution variables into “flattened”
names. This means that while the original Modelica
model was hierarchical, the parameters and variables
contained in the FMU are essentially just a simple list
(not a tree structure) with fully qualified names that
effectively indicate their location within the model
instance hierarchy. The consequence of this is that
organizational information from the Modelica model
is only partially preserved (via the names).

2.3 Input and Output Data

As mentioned previously, variable names convey
information about the relative positions of variables
within the model hierarchy, but their organization
within the FMU is flat. The parameters (input data)
we are interested in characterize several different
subsystems in the vehicle. These can be organized
roughly into parameters related to the heat exchang-

ers, the powertrain and the chassis. Each of these dif-
ferent categories contains information about both the
physical characteristics of components but also var-
ious control strategy calibration parameters as well.
Also, some of these categories may have so many pa-
rameters associated with them that they necessitate
further hierarchical organization. So, for example,
the data associated with the heat exchangers is fur-
ther broken down into information about stack ge-
ometry, fan control and scale factors.

Figure 1: Input data panel

In addition to input data, there is also the question
of what kinds of results can be generated from the
FMU. In the case of this model, there are an enor-
mous number of variables that are evaluated when
the FMU is simulated. We won’t attempt to list
them all here, but the set of output variables consists
of nearly any kind of information you might be in-
terested in when exploring vehicle thermal manage-
ment. As we will discuss shortly, we will only use a
handful of these results. But it is worth noting that
the FMQ platform itself is capable of computing and
extracting whatever signals we need.

Figure 2: Output Report

Session 6E: Web-related Modelica Tools

DOI
10.3384/ECP140961073

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1075



3 Supporting Non-Experts

Before jumping into a discussion about web-based
engineering analysis, it is worth taking some time
to discuss why a web-based analysis tool is useful.
The first thing to clarify is that this paper is not about
web-based development tools. In other words, these
tools are not designed for the creating Modelica mod-
els. The process of model development is a complex
process and requires a sophisticated user interface.
While creating a web-based development platform is
a very interesting topic, it is not the topic of this pa-
per. As such, for the purposes of this paper we as-
sume that models are developed in an existing model
development environment. The question we are fo-
cusing on is how to make these models accessible
to non-developers or non-experts in general. So let
us spend a little time considering a workflow that in-
volves non-expert users.

Consider the following scenario. You are a soft-
ware developer. You are writing software that you
want lots of people to use. You work very hard devel-
oping the software and now you are ready to let other
people use it. Imagine if circumstances required that
instead of simply installing a compiled version of
your code, users of your software had to buy all of
your development tools (e.g., Visual Studio), find a
way to get the source code to your application, and
then build your software for themselves.

If your “user” was an ordinary consumer (and not
an open source hacker), this approach would be a
complete disaster. Until recently if you were a Mod-
elica developer, this would have been the only way
to distribute your models and the compiler that your
users would require could potentially be rather ex-
pensive. Fortunately, with the emergence of the FMI
standard, we have an open and widely format for dis-
tributing models.

As a result, potential model “consumers” no longer
have to compile the models themselves using expen-
sive model development tools and their associated
traps and pitfalls. However, simply having an FMU
is not a complete solution for deploying models to
non-expert users. There is still the issue of adding
an appropriate graphical user interface. It is also im-
portant to recognize that non-expert users require an
interface that is relatively straight-forward to use and
warn users about potential mistakes. Such an appli-
cation will typically expose a limited set of input and

output data. This data should be organized in a way
that is intuitive to the user. Finally, an application de-
veloped for non-expert users must focus on address-
ing the specific questions of that user. If this means
masking some or even most of the underlying models
general capabilities, then so be it.

There is an (often uncaptured) return on invest-
ment for such efforts. Many model developers are
forced to spend at least some of their time justifying
the resources they consume for model development
(in the form of time, expensive tools, etc). This con-
cept of model deployment (i.e., having an easy path
for getting analyses leveraging your models into the
hands of non-experts) is one potential way to demon-
strate the need for model development resources. If
model developers have an easy means to deploy mod-
els to end users and, as a result, turn those non-expert
users into enthusiastic customers, then they have an
opportunity to create a “pull” effect for their models.
This can potentially lead to greater demand from the
organizations that use those models. In such cases,
this can lead to a virtuous cycle where the model
developers can more easily justify their resource de-
mands and, ideally, this increased demand will allow
them to focus more resource on model development.

It is worth noting that non-expert users are gen-
erally interested in performing some kind of anal-
ysis. A model may be central to this analysis, but
the analysis often involves more than just a single
simulation of a single model. In a sense, a model
is simply a complex function (i.e., you give it data
and it returns data). Creating and application and
an high quality user experience involves much more
than providing people with a function. We have de-
liberately used the term web-based engineering anal-
ysis applications because we think it is important to
explicitly recognize that these applications must be
prepared to support the complete analysis, not just
part of it. Leveraging one or more models, a typi-
cal analysis will involve an optimization, a sensitivity
study, a Monte-Carlo analysis or some other numeri-
cal procedure.

4 Web-Based Deployment

Given the requirements for non-expert users
and the representative vehicle thermal management
model previously discussed, the remaining question
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is what should be the medium for model deployment.

4.1 Desktop Limitations

Given the case previously made for deploying
models to non-expert users, one approach could be
to develop desktop based analysis tools that are dis-
tributed to end users with the necessary models em-
bedded in them. Indeed, one could argue that this is
the conventional choice. But this approach has sev-
eral important drawbacks.

The first issue to consider is data management. A
tool that runs on a desktop has many inherent lim-
itations. Typically, results files are simply written
to a user’s desktop and managing the results is left
up to them. In some cases, running an analysis sim-
ply overwrites any previous analyses (making it very
easy to lose data). A desktop environment makes it
hard to collaborate with others because sharing re-
sults means sharing results files which are not easily
shared when they are locked up in a desktop environ-
ment. Email and shared network drives are one way
to address these issues, but they still involve a lot of
manual work and discipline by users.

Another issue with the desktop is limited comput-
ing power. What if your analysis deals with uncer-
tainty and requires a Monte-Carlo approach to sim-
ulating models. Or, what if you want to perform a
large scale DOE or sensitivity study. There many
types of analyses that could require hundreds, thou-
sands or even more individual simulations. For even
a high-end desktop environment, this could mean
long wait times for analysts and this only aggravates
the data management problem previously discussed.

In most organizations, a desktop application also
means involvement with IT. The application has to
be installed on the user’s desktop and then updated
when new releases come out. Getting the necessary
IT resources to support installation across desktops is
logistical aspect that must be dealt with and another
drain on corporate resources.

4.2 Web-Based Client

To address many of these limitations, Xogeny has
developed a set of tools for building web-based en-
gineering analysis applications. These tools extract

information from FMUs and build a high-quality, in-
tuitive user interface using this information.

As mentioned before, these FMUs frequently
come from Modelica tools. As such, they include
lots of useful information that can be automatically
incorporated into the user interface. So, for example,
such a web application can automatically incorpo-
rate logic to warn users about parameter values that
are outside the excepted limits. The nice thing about
how these applications are built is that if the FMUs
are updated, the information captured in them (pa-
rameters descriptions, default values, physical units,
upper and lower limits) can be automatically incor-
porated into the application.

One might assume that a web browser is not an
appropriate context for engineering applications be-
cause engineering applications require rich user in-
terfaces with support for plotting, complex diagrams,
detailed human machine interfaces or 3D animation.
However, modern browsers have all this in the form
of HTML5 support. Widely used web browsers like
Firefox and Chrome can do all of these things seam-
lessly and without the need for any plugins.

A web-based application is easy to deploy and up-
date because all that work can be done centrally once
for all users. This reduces the impact on both the
end user and the IT infrastructure to support installa-
tion and maintenance at the desktop. In fact, “instal-
lation” is typically as simple as circulating a URL
to potential users. Furthermore, it is much easier to
track usage and restrict access using a web-based ap-
proach.

In the case of the vehicle thermal management ap-
plication, the web application can be found at the fol-
lowing URL2:

http://vtm.demos.xogeny.com

This user interface demonstrates that a high qual-
ity HTML5 user interface can be synthesized from
information contained in an FMU. Such an interface
can incorporate the necessary business logic to sup-
port non-expert users and operate in a way that is in-
tuitive for most users.

But in order for this application to function, it must

2The “simulation” capabilities of the public web application
have been removed. The results presented are actual simulate
results, but they are simply injected rather than simulated. As a
result, they are not affected by the parameter values in the UI.

Session 6E: Web-related Modelica Tools

DOI
10.3384/ECP140961073

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1077



be able to perform simulations. A web-browser gen-
erally has very limited access to the user’s desktop
(certainly not enough to execute a simulation). So
how does this interface perform the simulations re-
quired for the analysis? When the web application
is compiled, support for simulation is compiled in
through the fmq.js Javascript library. This library
provides a native Javascript interface to the FMQ
platforms cloud-based simulation capability. We’ll
return to the simulation side shortly.

One last thing to note about the web-based user
interface is the presence of a “History” view. This
functionality is enabled by the data management
features provided by FMQ. This view presents the
user with a graphical history of their interactions and
includes a tree structure of the different data sets that
the user has either saved, simulated or is currently
working with. It visualizes the relationships between
each data set (which ones were derived from which).
Hovering over a given version provides a summary
of differences between that dataset and its parent
dataset. All of this data is collected automatically
and passively (i.e., the user doesn’t have to do any-
thing explicit or manually). Because this information
is stored centrally, it would be easy to generate hyper-
links associated with each dataset visualized in the
“History” view to share with colleagues. This kind
of hyperlinking is the essence of the web but, unfor-
tunately, it is not widely supported in the context of
engineering tools.

Figure 3: Visualization of data history

4.3 Cloud-Based Services

The central component of the FMQ platform (cur-
rently) is the ability to simulate an FMU. In this pro-
cess, the FMU is registered in advance with the sys-
tem and a RESTful web services API is used to re-
quest simulations involving specific parameter sets.
This RESTful service can be accessed directly (to
support large scale batch processing of FMU simula-
tions) my making programmatic web requests or via
a web-browser. For the web-based use case discussed
in this paper, a special high-level Javascript library
was developed that leverages the low-level RESTful
API behind the scenes.

In addition to batch processing, the FMQ plat-
form is capable of supporting interactive simulations.
There are two sides to this interactivity. The first is
the ability to stream simulations results interactively
as the simulation is running. This means that clients
can be asynchronously updated when new simulation
results are generated. But it also means that the client
can interactively feed input signals to the simulation
while it is running as well. The result is the ability to
create web-applications where the user manipulates
the model and the model responds interactively.

Simulation results can be handled in several ways.
We already discussed the ability to stream simula-
tion results to the client as they are generated. In
many cases, it may be preferable to simply wait until
the simulation is complete and then provide the tra-
jectory for key variables to the application. There are
other cases where the web-based application may not
have an immediate need for simulation results but it
might wish to access them later. Finally, some types
of analyses may generate large binary files as a by-
product of the analysis (e.g., a “meld” file from a sim-
ulation[8]). In those cases, the application may wish
to access such artifacts. The FMQ platform supports
all of these different use cases.

The FMQ services provide complete accountabil-
ity for all data being processed. What this means is
that for every analysis request being made, there is a
record of the input data to the analysis and of all data
generated from the analysis. Furthermore, the rela-
tionships between the job requests, job data, results
and binary artifacts are all represented through FMQs
Hypermedia API[9]. This provides a comprehensive
approach to data management.

One final topic worth discussing is security. One of

Vehicle Thermal Management – A Case Study in Web-Based Engineering Analysis

1078 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961073



the main concerns with any cloud-based solution is
the security of the data. An important aspect of secu-
rity is understanding exactly what “threat” is at issue
and what techniques can be used to mitigate or elim-
inate those threats. A full discussion of such threats
is beyond the scope of this paper but we are happy
to discuss this topic. But it should be noted that the
FMQ software is not tied to any particular platform
or provider. As such, many of these security concerns
can be addressed by running the FMQ software on
a computing cluster within the customer’s own in-
ternal network.

5 Conclusion

This paper presents a representative engineering
model and shows how that model can be shaped into
an intuitive user interface with sufficient business
logic and guidance to be used by a non-expert user.
Such an application can directly leverage information
already available from the FMU. The application can
utilize an array of technologies already available in
HTML5 to provide plotting, 3D rendering, sophisti-
cated reports and human machine interfaces.

But more importantly, by leverage the capabili-
ties already being actively developed and supported
around web and cloud-based technologies, we can
improve the engineering process providing better
data management, greater opportunities for collabo-
ration and data sharing as well as richer views of the
engineering data and process by aggregating infor-
mation that be automatically and passively collected
through simple use of the application.

Ultimately, the goal of this work is to underscore
the importance of model development. By providing
an avenue for model developers to deploy their mod-
els to more users, we hope to create a positive feed-
back loop that will emphasize the value of model de-
velopment and model-based system engineering that
will, in turn, provide greater resources to model de-
velopers for creating high-quality, high-fidelity and
high-impact engineering models.

This effort is really just the beginning. The FMI
initiative helped to unify previously fragmented po-
tential markets. The adoption of FMI has just started
the process of building an eco-system around the
FMI standard. FMQ is simply one example of how
we can leverage the power of web and cloud based

resources and standardization to help drive improve-
ments in the engineering world.
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Abstract

There are many different commonly used file formats
for storing time series data. Most of these file for-
mats are designed with the assumption that the file
itself will be locally available to the software that
will be reading or writing the data stored in them.
While this assumption is an excellent one for desk-
top based tools with direct access to disk drives capa-
ble of moving virtually instantaneously around from
sector to sector, there are a growing number of ap-
plications for which local access is not necessarily
available. For these applications, we’ve initiated the
recon project to develop more suitable formats.

With the emergence of web and cloud based mod-
eling and simulation technologies, the time has come
to explore file formats specifically optimized for non-
desktop applications. In this paper, we present a new
set of file formats that are specifically designed for
web and cloud based approaches. This paper reviews
the key requirements for web and cloud enabled ap-
plications and then presents a specification for two
file formats that address those requirements.

When considering the various use cases that drove
our requirements, we recognized that two different
file formats were actually required. The first format,
the wall format, is optimized for writing. The other
format, the meld format, is optimized for reading
over a network (i.e., minimizing the number of reads
and bytes read). We will discuss the layout of each
of these formats and describe the use cases for which
they are most appropriate.

In the open tradition of the Modelica Association,
the authors have made specifications and implemen-
tations for these formats available as open source li-
braries with the hope that they will benefit the com-
munity as a whole.

Keywords: Modelica, FMI, simulation results,
cloud, web, open source

1 Introduction

Several groups have examined the issue of standard-
ized file formats[1, 2] in the context of Modelica.
In keeping with the principles of the Modelica As-
sociation, an ideal choice would be a production
ready format that is open source and cross-platform.
With these requirements in mind, most people con-
sider HDF5 a natural choice. There are already open
source implementations and the file format has been
widely used. In fact, it has even been adopted by The
MathWorks for use in MATLAB.

But HDF5 has some practical drawbacks. The first
is that it is not truly cross-platform. The reference
implementation of HDF5 is written in C. The imple-
mentation is primarily targeted for use within C, C++
or Fortran applications. While there are various li-
braries available for reading HDF5 on the Java plat-
form[3], they are incomplete and awkward to use.

Another issue with HDF5 is that for simple time-
series data it is over engineered. HDF5 is feature
rich, of that there is no question, but these features
come at the cost of complexity. This is why you
see very few implementations outside of the refer-
ence implementation. Furthermore, the file format
makes extensive use of “seek” operations and as-
sumes they are relatively inexpensive. This assump-
tion is reasonable if you are able to communicate di-
rectly with the hard drive that the files are stored on,
but it isn’t reasonable when these files are only avail-
able through the network.

There are, of course, many standards for encoding
data in web or cloud based environments. The most
popular formats, by far, are Javascript Object Nota-
tion (or JSON, for short) and XML. There are other
approaches as well like Google Protocol Buffers[4],
Avro[5] and Thrift[6]. Different approaches have dif-
ferent goals. Some define schemas to add a level
static checking. Others exist mainly to compress
the data being transmitted. Finally, others exist
to introduce a layer of interoperability with RPC
frameworks or “big data” tools like Hadoop[7] and
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Storm[8].
So where does that leave us? Should we adopt

the tried and true standards from the engineering
world and simply live with their lack of interoperabil-
ity with important platforms like Java or Javascript
and poor performance when accessed remotely? Or,
should we adapt tools from the “big data” world, that
were developed for quite different use cases, to work
in the engineering world.

In some sense we’ve chosen a compromise. As
we will see shortly, the wall and meld formats are
fundamentally derived from the msgpack[9] specifi-
cation. This gives us excellent cross platform com-
patibility. But msgpack is simply a serialization pro-
tocol. To address some of our more important con-
cerns, to be discussed shortly, we needed to design
a format the imposed additional structure on top of
msgpack. So in this sense, we’ve created a set of
original file formats that leverage open standards,
like msgpack, but re-purpose them for modeling and
simulation applications.

2 Goals

After independently reviewing various file formats,
the authors were not happy with the existing options
for web and cloud based modeling and simulation.
The recon project started as a discussion about re-
quirements. For our applications, the following re-
quirements were identified:

2.1 Requirement 1 - Adding Data

Simulations are constantly producing additional data.
For this reason, adding new data to an existing file is
an operation performed many times during a simula-
tion. For this reason, adding data to an existing file
should be fast and easy. The key thing is to avoid
having to rewrite previous data or, even worse, move
data around within the file. For this reason, the ideal
solution is to have the ability to simply append new
data at the end of the file.

2.2 Requirement 2 - Minimizing I/O

In web and cloud based applications, it is not always
practical to download the complete set of results for
a simulation into the browser environment. There are
many use cases where it would be best to be able to
access results “on demand”. In these environments,
such requests for data will be done via HTTP[10].

However, each of these requests will come with far
greater latency than a simple request to read from a
disk drive and far less bandwidth. As such, we would
want to minimize the number of such requests and
the amount of data necessary to transmit in each re-
quest. This means we need a way to “cluster” the
data we are interested in so as to minimize both the
number of requests required and the amount of data
in each response.

2.3 Requirement 3 - Cross Platform Sup-
port

The file formats developed as part of the recon
project are targeted at web and cloud based appli-
cations. Client side web programming is dominated
by Javascript. On the other hand, server side pro-
gramming is done in a wide variety of languages
(e.g., Java, Python, Javascript). Meanwhile, numeri-
cal analyses such as simulation are typically done in
languages like C, C++ and FORTRAN. For this rea-
son, it should be possible to implement libraries in
all of these languages for generating and extracting
simulation results.

2.4 Requirement 4 - Aliasing

One of the common patterns in component-oriented
modeling approaches like Modelica is that many
variables end up with exactly the same solution tra-
jectories. When storing simulation results from such
tools, it is useful to recognize that considerable disk
space can be saved by recognizing the fact that these
variables all share a common underlying solution tra-
jectory. Typically, the data for each unique solution
trajectory is stored once and each variable is simply a
reference to the underlying solution trajectory. Even
more storage can be saved by recognizing that some
trajectories are related to other trajectories by very
simple transformations (e.g., a simple sign change).
For this reason, it is very useful if these kinds of re-
lationships are directly represented in the file format
itself.

2.5 Requirement 5 - Data Types

When dealing with simulation results that come from
the solution of differential equations, the main type
of result is a solution trajectory. In these cases, both
the dependent and independent variables are typi-
cally represented as floating point numbers.
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But these are not the only types of data a simu-
lation or other numerical analysis might yield. From
the Modelica world, we might easily have results that
are either reals, integers, booleans or strings (since
these are all fundamental built-in types in Modelica).
But why not hierarchical data structures (as repre-
sented by records in Modelica) as well?

2.6 Requirement 6 - Metadata

One issue with data files is that if you don’t provide
a means for associating metadata with entities in the
file, the metadata will become entities in the file. For
this reason, we deemed it important that metadata
should be treated in a “first-class” way. Specifically,
it should be possible to associate metadata with the
file as a whole and with data structures in the file all
the way down to individual signals. This would allow
tools to persist other important information, beyond
the solution, in these data files. For example, infor-
mation about common plots or plotting options, de-
scriptions of the signals, units or display units could
all be managed in a structured way without being
confused with data and without needing to be a for-
mal part of the file format specification.

2.7 Requirement 7 - Hierarchy

Many tools create structures that are hierarchical. In
the Modelica world, we have deep hierarchies of in-
stances in simulated models. We also have hierar-
chies for packages and the definitions contained in
them. So it is important that a file format can repre-
sent these hierarchies in some way.

In our experience, trying to organize results ac-
cording to an instance hierarchy creates quite a bit
of complexity. While tools could exploit some of the
previous requirements (primarily 5 and 6) to achieve
a hierarchical representation, we’ve found that sim-
ply encoding hierarchy in the names of variables
(e.g., car.engine.crankshaft.tau) is typically
sufficient and can avoid considerable complexity.

2.8 Requirement 8 - Easy Translation

Even though our goal is to have a format that is well
suited to web and cloud based applications, it should
also be capable of representing the kinds of simu-
lation results we interact with in a desktop environ-
ment. For this reason, one of our requirements was
the ability to translate data in the “dsres” format into

the recon formats. Such a translation should pre-
serve all data and metadata normally associated with
the “dsres” format. Furthermore, the resulting recon
files should be approximately the same size as the
original “dsres” file.

3 Approach

3.1 Reading vs. Writing

In reviewing these requirements, the main design
challenge was trying to reconcile requirements 1 and
2. Implementing requirement 1 typically involves the
need to write data out one row at a time, where each
row represents the values of all the variables for suc-
cessive solution times. As such, the solution values
for any particular variable are widely spaced. How-
ever, requirement 2 requires us to be able to extract
a given variable with a minimum number of I/O op-
erations. In other words, requirement 1 typically re-
sults in data being fragmented while requirement 2
depends on that data being clustered together.

Our solution to this design problem was to design
two file formats. The first, the wall format, is de-
signed for writing. Not only does it make adding
data fast and efficient, it also supports, unlike the
dsres approach, adding data for multiple tables at
once. In practice, this means that if you have vari-
ables in your simulation that are partitioned such that
they have different independent variables (as with the
new clock semantics in Modelica 3.3), this format
supports writing out new data for any of these vari-
ables. In other words, you can add results that may
have completely different time bases. You can also
include results from multiple simulations and use the
metadata features to associate the specific parameter
sets with each table.

The other format, the meld format, is optimized
for reading. Specifically, it is optimized for require-
ment 2. For an ideal format, it should be possible to
extract a single result trajectory in a single read. This
would act to minimize the impact of latency. Further-
more, the bytes read should contain only data associ-
ated with the desired signal. This would minimize
the impact of limited bandwidth. As we will dis-
cuss shortly, the meld file manages to achieve these
performance characteristics for all but the first signal
read.

Our expectation is that tools will write data out
(during simulation) in the wall format. Tools may
choose to keep the data in this format. For platforms
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where network access is not a requirement, the write
optimized nature of the wall format will probably
be adequate for both reading and writing. However
for cases where data will be read over a network, we
expect that tools will, upon completing a simulation,
rewrite their data into the meld format.

3.2 Serialization

There are really two aspects to each recon format.
The first is the structure of the file (where different
pieces of information reside in the file, something
we’ll discuss in Section 4) and the other is how the
actual data is represented.

Obviously, the data is represented as individual
bytes. So we must define the process by which multi-
byte pieces of information (e.g., floating point num-
bers) are “serialized” into bytes. One of the implicit
goals of this project was to make a file format that
was easy to read and write. Since serializing and de-
serializing data was a big part of the implementation,
we could make the implementation much easier if we
leveraged existing standards for serialization and de-
serialization.

One of the interesting things about coming from
the web and cloud based application side is the ubiq-
uity of JSON notation. While the Javascript lan-
guage itself has many “unusual” semantics, the syn-
tax and semantics around serialization and deserial-
ization are surprisingly simple and intuitive. Unlike
XML, for example, writing a parser for JSON and
then mapping into a native language representation
is surprisingly easy and widely supported.

However, JSON is a textual representation. The
problem with a textual representation is the addi-
tional overhead of having to parse and interpret the
text and convert, without any loss of precision, into
a binary representation. For this reason, we didn’t
consider JSON by itself a practical approach to seri-
alization and deserialization.

While we wanted to avoid the parsing aspect of
JSON, the JSON data model[11] is well suited to
our purposes and many different groups have at-
tempted to create a binary representation that follows
the JSON data model. So our initial approach was to
consider BSON [12] which is a binary format that
is formally specified and widely implemented be-
cause it is one of the cornerstones of the MongoDB
database[13].

Unfortunately, the BSON serialization scheme has
a significant drawback. The way it serializes arrays
is very space inefficient. This is because JSON itself

supports sparse indexing of arrays. As a result, a seri-
alization must include, for each value in the array, the
index as well. This adds significant overhead. There
is no way to specify that all elements in the array are
sequential. As such, there is no way to avoid this
significant penalty.

Fortunately, our reference implementation in
Python[14] had a clean separation between the se-
rialization scheme and the structural aspects. This
made it very easy for us to experiment with other se-
rialization techniques. We investigated other simi-
lar serialization schemes like Smile[15], BJSON[16]
and UBJSON[17]. However, none of them seemed
to have a critical mass behind them. Indeed, there
doesn’t seem to be a consensus in the JSON commu-
nity on how to serialize JSON in a binary form.

As part of our investigation, we also looked at
msgpack. It turned out that, like BSON, msgpack
was formally specified and implemented for a wide
variety of platforms[9]. Furthermore, in testing
msgpack, we found that it had much better stor-
age efficiency compared to BSON. So, in the end,
we moved forward using the msgpack serialization
scheme.

The msgpack approach had a couple of unantici-
pated benefits. In msgpack, floating point numbers
can be encoded in either single or double precision
representations. Also, the specification identifies and
formally specifies several different optimizations to
minimize the number of bytes required to store short
integers or short strings. The underlying “types” per-
mitted in this format map very easily into the JSON
format which, in turn, means that it maps well into
the native data types common across all the lan-
guages we are interested in. Finally, the msgpack se-
rialization scheme includes an extension mechanism
for including additional data types beyond those in
the specification. While we don’t have any imme-
diate use for these extensions, it is nice to have that
feature if we ever find that msgpack’s serialization is
too constraining.

4 Specification

With the motivation behind us, let’s turn to the ac-
tual specification of these formats. In this section we
will describe the layout of both the wall format and
the meld format. As mentioned in the previous sec-
tion, the serialization is done using msgpack. So we
will focus mainly on the layout of data within the file.
When describing the actual data being stored we will
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use JSON notation to document the data with the im-
plicit understanding that this data will be serialized
and deserialized using msgpack.

Before we get into the specifications for each of
these formats, it will be useful to discuss a few top-
ics that are relevant to both formats. For example,
what exactly are we storing in these file formats?
Both formats support the storing of tables and ob-
jects. Tables are, as the name implies, a structure
for storing tabular data. It is worth noting that there
are no restrictions on what kind of data can be stored
in a table except those imposed by the underlying
msgpack format (which are very few). This means
tables can mix integers, floats, doubles, longs, short
ints, strings, booleans and even objects across differ-
ent columns in the same table.

In addition to tables, we can register objects to be
stored in our results file. These are essentially free-
format pieces of data. The objects can be used to cre-
ate arbitrarily deeply nested data structures that mix
all varieties of data. Once again, the only limitations
are those imposed by msgpack and/or the source lan-
guage.

When storing tables and objects in a file, they must
be referred to by names. The same namespace is used
for both objects and tables (in other words, you can-
not have a table with the same name as an object).
It also means that no two tables and no two objects
can share the same name either. The columns of each
table are also named and no two columns within the
same table can share the same name. But there is no
such restriction between columns in different tables
(or fields in different objects, for that matter).

Finally, it is worth noting that certain pieces of data
are optional. In those cases, we have consistently fol-
lowed a policy of leaving out both the key and the
value. In other words, it is not sufficient to simply
associate a null value with a key. Both the key
and the value must be removed if there is no value
provided. The guiding principle here is that parsers
should not have to do excessive amounts of null value
checking.

With that background out of the way, let’s proceed
with our explanation of the two file formats.

4.1 Wall Format

Recall that the wall format is optimized for writing
and that this, in turn, means being able to easily add
data. You can think of the wall format as being sim-
ilar to a brick wall where each brick (new piece of
data) is staggered with respect to others. As you will

see, we are not storing information in homogenous
arrays and this means that we cannot predict the in-
dex of data simply based on information about which
row or column it is in. Also note that it is possible to
have data from two different tables interleaved be-
tween each other. This allows us to add data with
two distinct time bases. But it makes the location of
data even more difficult to predict. However, remem-
ber that the wall format is optimized for writing, not
reading and that if network access is required then
tools will typically rewrite their data into the meld
format.

4.1.1 Leading Bytes

Each wall file starts with the following sequence of
bytes:

0x72 0x65 0x63 0x6f 0x6e 0x3a 0x77
0x61 0x6c 0x6c 0x3a 0x76 0x30 0x31

This is a hex encoding of the ASCII string
recon:wall:v01. This allows us to identify
whether this is a recon wall file and, if so, what
version of the specification should be applied.

The next four bytes are a binary encoding of the
length of the header. This encoding is done in so-
called “network byte order” (big-endian). The byte
encoding of the length is not considered part of the
header (i.e., the length indicated doesn’t include the
4 bytes that encode the length).

4.1.2 Header

Once the length of the header is known, the bytes
for the header are read in. These bytes are assumed
to have been serialized in msgpack format so we
must next unpack (deserialize) these bytes. Once un-
packed, the header should contain the following in-
formation:

{
"fmeta": {<file-level metadata>},
"tabs": {

"<table name>": {<table data>}
},
"objs": {

"<object name>": {<object metadata>}
}

}

The "fmeta" key is associated with the value for
any file level metadata. This metadata is, itself, rep-
resented in our notation here as an object in JSON but
will be encoded as a map in msgpack. The "tabs"
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key is associated with a value that maps the names of
tables to table data. The format of this table data is
as follows:

{
"tmeta": {<table-level metadata>},
"sigs": [<list of signals>],
"als": {

"<aliasname>": {
"s": <base signal name>,
"t": <transform string> // OPTIONAL

}
},
"vmeta": {

"<varname>": {
<variable-level metadata

} // OPTIONAL
}

}

The "tmeta" key is associated with metadata
(again, represented as a msgpack map) but this time
it is metadata associated with the table. In addition,
we have the "sigs" key which represents an ordered
list of signals. A signal represents an actual solution
trajectory and the order is important because the or-
der in this list indicates the order in which the data
will be stored in successive rows (to be discussed
shortly).

The "als" key represents any aliases present in
the table. Again, this is a msgpack map where the
name of the alias is the key. There are two essen-
tial pieces of information associated with each of the
aliases. The first, stored under the "s" key (which
stands for “signal”) is the name of the base signal that
this alias is based on. The "t" key is used to repre-
sent the transformation that should be applied to the
base signal to compute the value of the alias signal.
Note that this transformation is optional. The possi-
ble values will be described shortly in 4.3.

Finally we have the "vmeta" key, which is a map
where the keys are the names of variables (i.e., both
signals and aliases) and the values are any metadata
(again, stored as a msgpack map) associated with the
named variable. Note that keys are only present in
the "vmeta" map if there is metadata associated with
that variable.

Returning to the header level entries, the "objs"
key is associated with a value which is, in turn, a
msgpack map. Each key in that map represents an
object name and the value associated with those ob-
ject name keys represents the metadata associated
with the named object.

4.1.3 Entries

Following the header, the remainder of the file con-
sists of “entries”. Each entry is preceded by 4 bytes
in network byte order indicating the length of the en-
try (again, the length indicated does not include the 4
bytes used to represent the length). All entries are en-
coded maps in msgpack format. There are two types
of possible entries and there are no rules about which
can be present (i.e., they can appear in any order and
be interleaved).

The first type is a “row entry” which details a new
row for a specified table. The format of a row entry
is as follows:

{
"<table name>": [list of signal values]

}

where the table name must be a key in the "tabs"
map found in the header and the order of values in
the list of signal values must correspond to the order
defined by the list associated with the "sigs" key
value within that table.

The other entry type is a “field entry”. These rep-
resent updates to the values of fields in objects and
have the following format:

{
"<object name>": {

"<field name>": <field value>,
"<field name>": <field value>

}
}

Note that the header does not specify which fields
are present in the object. This can only be deter-
mined by processing all the field entries and incor-
porating fields as they are given values. The com-
plete value for a given object is determined by pro-
cessing all field entries associated with that object in
the order they appear in the wall file. The complete
value is then simply the final value after all process-
ing is completed. One consequence of this is that it
is therefore possible to have the values of individual
fields change while writing the file.

4.1.4 Wall Format Summary

The following outline attempts to summarize all the
details presented so far:

// ID
0x72 0x65 0x63 0x6f 0x6e 0x3a 0x77
0x61 0x6c 0x6c 0x3a 0x76 0x30 0x31
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// Header length, network order
0x?? 0x?? 0x?? 0x??
{

"fmeta": {<file-level metadata>},
"tabs": {

<table name>: {
"tmeta": {<table-level metadata>},
"sigs": [<list of signals>],
"als": {

<aliasname>: {
"s": <base signal name>,
"t": <transform string> // OPTIONAL

}
},
"vmeta": {

<varname>: {
<variable-level metadata>

} // OPTIONAL
}

},
},
"objs": {

<objname>: {<object metadata>}
}

}

// Followed by zero or more entries
// which can be either...

// ...field entries...
0x?? 0x?? 0x?? 0x?? // entry length
{

<object name>: {
<field name>: <field value>,
<field name>: <field value>

},
}

// ...or row entries
0x?? 0x?? 0x?? 0x?? // entry length
{

<table name>: [list of signal values]
}

where all maps are encoded in msgpack.

4.2 Meld Format

4.2.1 Leading Bytes

Each meld file starts with the following sequence of
bytes:

0x72 0x65 0x63 0x6f 0x6e 0x3a 0x6d
0x65 0x6c 0x64 0x3a 0x76 0x30 0x31

This is a hex encoding of the ASCII string
recon:meld:v01. This allows us to identify
whether this is a recon meld file and, if so, what
version of the specification should be applied.

The next four bytes are a binary encoding of the
length of the header. This encoding is done in so-
called “network byte order” (big-endian).

4.2.2 Header

Once the length of the header is known, the bytes for
the header are read in. These bytes are assumed to
have been serialized in msgpack format so we must
next unpack these bytes. Once unpacked, the header
should contain the following information:

{
"fmeta": {<file-level metadata>},
"tabs": {

"<table name>": <table data>
},
"objs": {

"<object name>": <object data>
},
"comp": true|false // Compression flag

}

This is very similar to the wall format presented in
Section 4.1. Again, we see file level metadata exactly
as it is used in the wall format. We also have the
"tabs" and "objs" keys, also present in the wall
format but with an important distinction which is that
the values that follows them have a different format,
as we shall see shortly.

But we also have a new key, the "comp" key, which
isn’t present at all in the wall format. The value as-
sociated with the "comp" key indicates whether the
remainder of the file (after the header) is not just en-
coded (using msgpack) but also compressed. If the
value associated with the "comp" key is true, then
all remaining msgpack encodings present in the file
after the header are compressed using bz2[18] com-
pression.

For reasons that will become obvious, the data for
tables and objects is different in the meld header than
in the wall header. In a meld file, the table data has
the following format:

{
"tmeta": {<table level metadata>},
"vars": <list of variable names>,
"toff": {

"<varname>": {
"i": <index of variable data>,
"l": <length of variable data>,
"t": <transform string> // OPTIONAL

}
},
"vmeta": {

"<varname">: {
<variable level metadata
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} // OPTIONAL
}

}

The "tmeta" is, again, the table level metadata.
Similarly, the "vmeta" key is associated with vari-
able level metadata which is a map where the vari-
able name is the key (again, only present if there is
metadata associated with the specified variable) and
the associated value is the variable level metadata.

The "vars" key is associated with an ordered list
of the variables present in the file. The "toff" key
is associated with a map that specifies important in-
formation about the location of the variables within
the file. It is the "toff" data that makes it easy for
us to extract individual signals. The "i" key is asso-
ciated with the starting byte, within the file (starting
from 0), of the data associated with the variable and
the "l" key is associated with the length of that data.
The optional "t" key defines the transformation, if
any, to be applied to the variable data (see Section
4.3 for more details).

Returning to the header data, the object data asso-
ciated with the "objs" key has the following format
in a meld file:

{
"ometa": {<object level metadata>},
"i": <index of object data>,
"l": <length of object data>

}

The "ometa" key is associated with the metadata
of the associated object. The "i" and "l" keys are
used just as they are within tables, to define the index
and length, respectively, of the object data within the
file.

4.2.3 Variable Data

As discussed in Section 4.2.2, both variables (con-
ceptually, columns in tables) and objects have an off-
set and a length provided in the header. In the case
of a variable, the data that is extracted from that lo-
cation in the file will be a list of values in msgpack
format. The values in that list represent the values
for the specified solution variables (first row first,
last row last). In the case of an object, the data that
is extracted from that location in the file will be a
map where the keys in the map represent the fields
present in the object and the values associated with
those keys are the field values.

4.2.4 Header Size

It is worth pointing out that when writing the file,
the exact length of the header (when encoded in
msgpack format) cannot be known a priori (we shall
explain why, shortly). For this reason, a collection
of bytes representing the largest possible size must
be reserved for the header. The size of the header
depends on the number of tables and objects as well
as the number of signals in each table so it impor-
tant that all of this information is known before de-
termining the maximum number of bytes required to
represent the header.

However, when the final version of the header is
written out (once the location of all the data can be
determined), its size may be less than originally an-
ticipated. This is a result of the msgpack format’s
aggressive compression of small integers. For this
reason, there may be a few unused bytes present be-
tween the end of the header and the first variable or
object data in the file. While it is true that a few bytes
will be wasted as a result, it really only means that
msgpack’s aggresive optimizations will be wasted in
this case (and this case only).

4.2.5 Meld Format Summary

The following outline attempts to summarize all the
details presented so far:

// ID
0x72 0x65 0x63 0x6f 0x6e 0x3a 0x6d
0x65 0x6c 0x64 0x3a 0x76 0x30 0x31
// Header length, network order
0x?? 0x?? 0x?? 0x??
{

"fmeta": {<file-level metadata>},
"tabs": {

"<table name>": {
"tmeta": {<table level metadata>},
"vars": <list of variable names>,
"toff": {

"<varname>": {
"i": <index of variable data>,
"l": <length of variable data>,
"t": <transform string> // OPTIONAL

}
},
"vmeta": {

"<varname">: {
<variable level metadata

} // OPTIONAL
}

}
},
"objs": {

"<object name>": {
"ometa": {<object level metadata>},
"i": <index of object data>,
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"l": <length of object data>
}

},
"comp": true|false // Compression flag

}

// Followed by any padding
// resulting from header shrinkage

// Followed by zero or more blocks
// of msgpacked data representing
// either vectors or objects whose
// offsets and lengths are specified
// in the header)

4.3 Transformations

In the previous sections, there were several mentions
of a so-called “transform string”. This is an optional
piece of information associated with an alias (in the
case of the wall format) or a variable (in the case
of the meld format). It defines the transformation, if
any, that must be performed over some base data in
order to retrieve the true value of the referenced data.
There are presently only two allowed transformation
types that are supported by the recon formats.

The first transformation type is the “inverse” trans-
formation. This transformation is indicated when the
transform string has a value of "inv". The impact
of the inverse transformation depends on the data
type. For numeric data types, the inverse transfor-
mation causes the data to have its sign inverted. For
boolean data, the inverse transformation applies a
logical not operation to the data. With this simple
transform alone, it is possible to avoid storing a sig-
nificant amount of data.

The other transform type is the “affine” transform.
This transformation is indicated when the transform
string has a value of "aff(s,o)", where s repre-
sents a scale factor and o represents an offset value.
In the presence of this transformation, all numeric
values in the base data should be multiplied by the
scale factor, s, and then added to the offset value, o.
As one reviewer of this paper noted, unit transforms
are almost always affine in nature. This means that
the affine transformation permits results to be stored
in many different physical units without taking up
any appreciable additional storage.

No transform should be applied to the data if:

• No transform string is present

• The transform string is unrecognized/cannot be
parsed

• The transform does not apply to the underlying
data type (e.g., applying the affine transfor-
mation to a Boolean value)

• There was an kind of error or exception when
attempting to apply the transformation

In all but the first case, the tool or environment is
strongly encourage to provide an error message alert-
ing the user. Tools are also free to treat all but the first
of these conditions as an error and suppress access to
the alias data.

5 Discussion

5.1 Use Case

Although it is implicit in the requirements listed in
Section 2, it is worth elaborating a bit more on the
specific use case that drove these requirements.

For web and cloud based simulation, the bulk
of the computational work is done remotely. In
cloud services, there is an effect sometimes called
“data gravity” which dictates that to improve overall
throughput, the computing platforms tends to gravi-
tate to where the data is stored (i.e., the same service
provider or at least ones that are connected with low
latency, high bandwidth connections).

So if one seeks an optimal configuration where the
computing and storage are well connected, it is easy
to store the complete simulation results without any
significant concerns for latency or bandwidth.

The complication comes from having to access
that data via a “normal” network connection. A typi-
cal use case (and the one that we imagined while for-
mulating our requirements) is one where a web ap-
plication, running in a web browser, needs to display
simulation results. The question then is how could
such an application make effective use of simulations
results generated “in the cloud”?

One approach to this could be for the web browser
to download the complete simulation results. With-
out consideration for web and cloud based applica-
tions, such results might very likely be stored in for-
mats like HDF5 or MATLAB version 4 format. The
first problem is that these formats are not well sup-
ported in a Javascript environment. In fact, the au-
thors are not aware of a single Javascript implemen-
tation that can read either format.

Even if you had Javascript implementations for
these formats, this approach would necessitate hav-
ing to download the entire file into some kind of “in
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memory” representation to be parsed. This is be-
cause these formats do not provide a simple way to
extract the required data via a few simple reads.

The other approach, the one we’ve taken for the
recon project, is to use a format (of our own design,
the meld format) that is designed for remote access.
Given access to header information (more on this in
a moment), we can extract a single table column or
single object with a single read. Furthermore, we
can use the HTTP Range header to specify exactly
which range of bytes we require. In this way, we only
have to endure the latency of a single network request
and we avoid transmitting any extraneous data which
minimizes the impact of bandwidth limitations.

Note the previous paragraph presumes we already
have the header information from the files. The
worst case scenario for getting header information
is to make two additional (one time only) network
requests. The first request would be for the first 18
bytes (again, utilizing the Range header) to establish
the size of the header. The next request would be to
read the binary header data which includes informa-
tion about the locations of all table columns and ob-
jects. Once these two requests have been made, the
client would be able to access any object or column
with only one additional request.

One of the things we’ve tried to do in this project
is avoid solving problems that have already been
solved. This was the motivation behind the use of
msgpack, but we are also assuming that most net-
work requests for data will be made using HTTP.
This is a safe assumption given the ubiquitous nature
of HTTP (or HTTPS, for that matter). But if we as-
sume that requests are made via HTTP we also gain
the additional benefits of caching.

Most networks are already equipped to efficiently
handle caching transparently. Of course, within a
given application, we might maintain a cache of
headers for different results files that we may be in-
terested in. But what about multiple users access-
ing these results across the same network? As it
turns out, once one user accesses the file, it is quite
likely that the header information will be stored in
a caching proxy between the users network and the
storage provider. This is a caching scenario that we
cannot address within an application, but neverthe-
less, it is very likely that in such a multi-user envi-
ronment the existing network proxies would trans-
parently act to improve overall performance and en-
hance the user experience.

5.2 Metadata

As discussed throughout Section 4, the wall and
meld formats have extensive support for metadata.
This provides a clean mechanisms for including
metadata in files without the need to mix it in or con-
flate it with actual data. Furthermore, metadata is
supported for a wide range of entities represented in
the file.

There are many potential applications for such
metadata. For example, file level metadata can be
used to store useful information such as who ran
a simulation, what particular model they ran, what
modifications (if any) were applied to the model or
even a complete listing of all the parameter values
that were used to simulate the model. In addition,
general experimental data could also be stored in the
results file.

Metadata at the signal level could be used to spec-
ify not just descriptions of those variables along with
their physical units but, could also be used to include
other attributes like start values, nominal values, etc.,

In summary, the recon formats make metadata
a first class citizen within the file formats and this
opens the door to many very useful applications in-
volving metadata.

5.3 Performance

It is worth taking a moment to discuss the actual per-
formance of this approach vs. existing approaches.
As a baseline, we have generated a “representative
results file” by simulating the R3 robot example from
the Modelica Standard Library. This results file, pro-
duced by Dymola and written in the “dsres” format,
will serve as our baseline.

The first issue we will examine is space efficiency.
The baseline results take up 3,069,623 bytes of stor-
age (for the storage options we selected). When
stored in the meld format without compression
those same results take up 3,169,994 bytes. Note that
this translation process from the dsres format to the
meld format preserves variable names and descrip-
tion strings as well as numerical trajectories. This
means the meld format is only 3.3% larger than the
corresponding dsres file. If we enable compression,
the meld file is only 2,787,467 bytes which means it
is almost 10% smaller than the dsres file.

So, in terms of storage, the meld format is quite
comparable to the dsres format. At first, this may
seem counter-intuitive since we know, from our ear-
lier discussion of msgpack, that arrays of floating
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point numbers incur an extra byte for storage. How-
ever, the dsres format cannot store strings very effi-
ciently and that long descriptions will result in enor-
mous amounts of padding. So it would appear that,
on net, these two effects cancel each other out. How-
ever, one advantage that the meld format has that the
dsres format doesn’t (and an advantage that is not
capitalized on in these benchmarks at all) is the wider
range of alias transformations. In particular, it is pos-
sible to relate two signals via an affine transformation
with the meld format. Unfortunately, we do yet have
any data on the potential savings this might offer.

Another benchmark worth considering is the time
it takes to extract one particular trajectory from a re-
sults file. For extracting results from a dsres file,
we used the scipy.io.loadmat function to load
the data_2 matrix and then extracted the 0th column
(Time). In other words,

mat = loadmat("tests/fullRobot.mat")
T2 = mat["data_2"]
time = T2[0,:]

Running this script 5 times gave the following
times (in milliseconds): 18.111, 18.143, 20.076,
19.309, 21.773 for an average time of 19.482 mil-
liseconds.

In the case of the meld file, we opened the re-
sults file, created a MeldReader object to read it, ex-
tracted the data_2 table (called T2 in the translated
file) and then extracted the data associated with the
Time signal. That code looks as follows,

with open("dsres_robot.mld", "rb") as fp:
meld = MeldReader(fp)
dt = meld.read_table("T2")
time = dt.data("Time")

Running this script 5 times gave the following
times (again, in milliseconds): 17.260, 18.074,
16.882, 14.608, 14.572 for an average time of 16.280
milliseconds.

It is worth noting the SciPy implementation is very
mature and utilizes numpy internally. So one would
expect excellent performance from that implementa-
tion. Nevertheless, extracting data based in the meld
format was over 15% faster on average.

The last benchmark will be reading multiple sig-
nals. In fact, our benchmark in this case will be to
extract all transient signals into a Python dictionary.
We will do this again for both formats. We used the
following script to extract the same signals from the
dsres file format:

ret = {}
mf = dymat.DyMatFile("tests/fullRobot.mat")
for signal in mf.names(2):

ret[signal] = mf.data(signal)
ret["Time"] = mf.abscissa(2)

This code uses the dymat library which, in turn,
leverages SciPy and numpy. Running this code 5
times gave the following execution times (in mil-
liseconds): 519.50, 495.38, 483.60, 476.69 and
481.15 for an average execution time of 491.26 mil-
liseconds.

The script for performing this benchmark using the
meld format looks as follows:

ret = {}
with open("dsres_robot.mld", "rb") as fp:

meld = MeldReader(fp)
dt = meld.read_table("T2")
for signal in dt.signals():

ret[signal] = dt.data(signal)

Running this script 5 times, we record execution
times (in milliseconds) of: 246.34, 240.66, 225.58,
224.22, 222.65 for an average of 231.89 milliseconds
(over 50% faster compared to the dsres version of the
benchmark).

In fairness, it is worth pointing out that we gener-
ally expect simulation tools to write output results in
the wall format first and then convert them into the
meld format. As such, they will incur some penalty
as a one-time cost when regenerating their results in
the meld format and this penalty is not taken into ac-
count here. Furthermore, this benchmark doesn’t in-
clude any writing performance benchmarks (primar-
ily because we have not connected any of these codes
to actual simulation tools to measure write perfor-
mance).

In summary, we do not have any benchmarks that
compare write performance. But in terms of storage
efficiency, the meld file format was only 3% larger
when compared to our baseline results in dsres for-
mat. On the other hand, in terms of read perfor-
mance, the meld format was between 15 and 50%
faster depending on the amount of data to be read.

5.4 Implementations

As already mentioned, there is a reference implemen-
tation of both the wall and meld formats already
available in Python[14]. There are also implemen-
tations available for both C[19] and Java[20].

In addition, the wall format is also now sup-
ported by OpenModelica as of r18784. The im-
plementation of the wall format required 408 lines
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of code to implement in OpenModelica (this in-
cludes implementation of all necessary msgpack op-
erations, i.e., no external libraries are used to imple-
ment msgpack functionality) while the implementa-
tion of the “dsres” format uses 656 lines of code.

6 Conclusion

In conclusion, the recon file formats support many
important features:

1. easy to implement on a wide range of plat-
forms - An open source reference implementa-
tion is available in Python with implementations
in C and Java already planned.

2. efficient disk and network access - These for-
mats have been optimized for efficient network
performance. But as the benchmarks show,
these formats also perform very well for when
results are stored locally on hard disks.

3. first-class metadata - With metadata available
at all structural levels, results files can embed
metadata in a clean and practical way. This has
the potential to open up many new and interest-
ing applications.

4. tables containing mixed data types - All
data types are given equal treatment within the
recon formats. As a result, it is possible to em-
bed a wide variety of data and still maintain all
the other benefits associated with these formats.

5. richer alias transformations - The recon for-
mats support not only the common “inverse”
transform, but a richer set of affine transforma-
tions. This could lead to further space efficien-
cies.

6. efficient treatment of strings - MATLAB ver-
sion 4 files are very inefficient for storing col-
lections of strings. By using msgpack for serial-
ization, we get very efficient handling of string
data.

7. ability to store objects/structures - Not all
data is tabular. For example, parameter data
used as input to simulations is more naturally
represented as an object. There are many other
examples of potential applications that need to
represent data as objects. The recon formats
even allow these objects to be embedded within
tables.

The recon formats provide all these benefits with-
out any significant compromise in storage efficiency.
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IDOS - (also) a Web Based Tool for Calibrating
Modelica Models∗

Radoslaw Pytlak Tomasz Tarnawski
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ul. Sw Andrzeja Boboli 8, 02-525 Warsaw

Abstract
This paper presents a newly deployed server, IDOS,
an online-accessible environment providing the
service of solving optimal control problems. De-
velopment and deployment of the Interactive Dy-
namic Optimization Server is a result of projects
funded by NCBiR (National Center for Research
and Development). One of the outcomes of the
project was a modeling language (Dynamic Opti-
mization Modeling Language, DOML) providing a
uniform format for defining dynamic optimization
problems. DOML is an extension of Modelica lan-
guage and hence, not only a user can specify his
problem in the way he does in Modelica but also
(more importantly, for the purpose of this paper)
models created in Modelica for simulation pur-
poses can be easily transferred to DOML for solving
their related optimization problems. In particu-
lar, Modelica models can be calibrated with the
help of our server. The paper tries to illustrate
the point in depth. It presents the workings of
the server and reviews the scope of solvers im-
plemented, focusing especially on those that can
be used for calibrating Modelica models. Spe-
cial attention is devoted to an algorithm using
adjoint equations for evaluating sensitivities of
model equations with respect to parameters and
to calibrating models described by higher index
DAEs.

Keywords: dynamic optimization; optimal con-
trol; model calibration

1 Introduction
The paper describes computing environment IDOS
accessed by Internet and created for solving opti-

∗The work presented in the paper has been partially sup-
ported by NCBiR grants: R02-0009-06, PBS1/A7/6/2012

mal control problems. The IDOS server is equipped
with its Dynamic Optimization Modeling Lan-
guage (DOML) for defining optimal control prob-
lems. The DOML format provides a mean for de-
scribing an optimal control problem in slightly
extended Modelica syntax. It is very similar to
Optimica ([1],[2]) and in fact its implementation is
based on the JModelica.org Optimica compiler,
although a number of features proposed in DOML
set it apart from Optimica (these are described in
detail in the accompanying paper [24]).
The IDOS server was created to provide means

for solving optimal control problems by essen-
tially different solvers such as: multiple shooting
methods; methods based on a’priori discretization
of systems equations and then transforming the
problem to a large–scale nonlinear programming
problems; methods which use adjoint equations in
order to evaluated reduced gradients of functionals
defining the problem. From the beginning we have
followed the idea that the server should enable a
strategy of chaining of solvers–starting with some
solver to get a rough approximation to the opti-
mal control solution and then proceeding further
with another solver which completes the solution
process by giving an accurate solution to the prob-
lem. Having this in mind we knew from the begin-
ning that the server should have as many different
solvers as possible. Since all these solvers were to
be invoked from the DOML script this approach en-
abled us to provide quite precise requirements for
the dynamic optimization language. In the paper
[24] we describe how that approach has been ma-
terialized in the form of new constructs put into
the Modelica framework.
In the following sections the paper briefly de-

scribes the IDOS server by paying much attention
to the types of optimal control problems which
are supported by the server. Then we describe in
some details numerical procedures which are avail-
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able at the IDOS server and which can be used to
calibrate various Modelica type problems. These
solvers constitute a subset of all solvers available
at IDOS which are also mentioned in the paper.

2 The IDOS server

The main task of the IDOS platform
([20],[19],[21],[26]) is to manage the processes
of solving the dynamic optimization problems.
Number of tasks that can be solved over a period
of time depends on the server CPU. When its
computing power is insufficient, optimization
task are queued to be executed when the server
resources are released. The solving process on
IDOS is build of the general steps: 1) define the
optimization problem using dedicated language
(DOML, Dynamic Optimization Modeling Lan-
guage); 2) submit the problem to IDOS platform;
3) interpret obtained results.
During the design process of the IDOS platform

the following assumptions were made: 1) the pri-
mary goal of the system is to allow users to define,
calculate and view results of optimization tasks;
2) all functions of the system will be available re-
motely via the Internet, without the need to install
dedicated software on the user’s machine. Differ-
ent tools used to developed web applications will
be used to fulfill this task; 3) the system is de-
signed to manage several types of optimization li-
braries; 4) the system design is modular so it can
be expanded and launched in stages (for example
we can extend the system by adding computation
servers or implementing support for newly devel-
oped numeric libraries); 5) the system should in-
clude user management module (registration, lo-
gin). Each user should be able to define, calculate
their own optimization tasks (within own account
on the IDOS platform); 6) the results of optimiza-
tion calculations shall be presented in a universal,
unified form.
Each submitted optimization problem is pro-

cessed in a pipeline fashion, beginning with a task
data collection from a database and ending with
storing the results. After a task is stored in a
database and its status set as ready problem is
located by a Data Base Adapter daemon (a pro-
cess contunously running on the server). Next pre-
pared task is analyzed by the DOML Compiler and
in result C++ source code is generated (or compila-
tion errors are reported if the submitted definition

was faulty). In the following step a C++ code is
compiled. The final binary file is built on the base
of optimization libraries stored on the IDOS server.
The last step is the execution of the build binaries.
When the job is finished, results are stored in the
Central Archive database. If some error appeared
its description is stored in the Central Configu-
ration Database and the status of a task is set
as failed. The optimization results are stored in
uniquely named XML files. The name and location
of each such file is stored in a central database.

3 Solvers implemented and li-
braries used

The IDOS server has been built to solve primarily
the following optimal control problem

min
u
φ(x(tf )) (1)

subject to the constraints:

F (ẋ,x,u, t) = 0 a.e. t ∈ T = [0, tf ] (2)
q(x(t), t) ≤ 0, t ∈ T (3)
h1

i (x(tk)) = 0, i ∈ E (4)
h2

j (x(tk)) ≤ 0, j ∈ I (5)
u(t) ∈ Ω a.e. t ∈ T. (6)

In general we assume that the structural index
of equations (2) does not exceed three ([16]). If
differential–algebraic equations in the above prob-
lem reduce to ODEs then more general problems
(with respect to constraints) can be handled by
the server.
At the moment the IDOS server can handle con-

trol problems described with ordinary equations
and differential–algebraic equations but the incor-
poration into the IDOS solvers for problems with
partial differential equations is also under way.
The IDOS server enables solving optimal con-

trol problems by using essentially different meth-
ods:

a) based on an a’priori discretization of sys-
tems equations–optimal control problem is
then transformed to a large scale nonlinear
programming problem;

b) based on numerical methods for integrat-
ing system equations with variable stepsizes–
reduced gradients are then evaluated with the
help of the corresponding adjoint equations;
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c) based on shooting methods applied to differ-
ential equations derived from necessary op-
timality conditions for optimal control prob-
lems;

d) based on adjoint equations for problems de-
scribed by higher index differential–algebraic
equations;

e) based on Mixed Integer Programming algo-
rithms for optimal control problems with or-
dinary differential equations in which some
control variables take only integer values.

Obviously, not all solvers can be used on the
every problem. Their applicability is briefly dis-
cussed below.

3.1 Optimal control problems de-
scribed by ODEs

As far as optimal control problems described by
ODEs are concerned essentially three different ap-
proaches to solving them are applied.
In the first approach system equations are

discretized a’priori (with respect to time) and in
effect replaced by nonlinear algebraic equations.
As a result, a large scale nonlinear programming
problem (NLP) is solved. The main library used
in this case is the OLADO package ([3]) which
contains a wide range of optimization solvers,
mostly based on some version of the SQP algo-
rithm. Furthermore, in the OLADO package three
different interior point QP solvers are available:
procedure which implements Mehrotra’s primal-
dual predictor-corrector method [13]; procedure
based on the Mehrotra’s algorithm modified by
R. Franke [6]; and the procedure which applies
the Gondzio’s multiple centrality correctors vari-
ant of the primal-dual interior-point method for
convex QP [8].
The IDOS server is also equipped with sparse

nonlinear optimization HQP solver and its OMUSES
interfaces to ODEs integrators ([7]). In particular,
the HQP solver is linked with: procedures employ-
ing Euler, or simple Runge–Kutta fourth order
rules (RK4); GRK4 procedure of Rosenbrock’s type
([11]); DOPRI5 procedure based on explicit Runge–
Kutta scheme due to Dormand and Prince ([10]);
IMP procedure which uses the implicit midpoint
rule ([11]); SDIRK procedure based on singly di-
agonally implicit Runge–Kutta formula ([11]) and

with ODETS procedure which uses Taylor’s expan-
sion of ODEs derived from ADOL-C driver routine
forodec.
The second approach ’preserves’ the contin-

uous time of the optimal control problem to be
solved. It means that during numerical treatment
the system’s equations are integrated by a proce-
dure with variable stepsizes. Since state variables
are not decision variables the problem is consid-
ered in the, so called, reduced space, i.e. all func-
tionals defining the problem are functionals of con-
trol variables only —gradients of these functionals,
required by an optimization procedure, are evalu-
ated with the help of the adjoint equations which
are consistent with the system equations.
Essentially, there are two procedures on the

IDOS server which follow this approach. In the first
one, system equations are integrated by proce-
dures from the cvodes part of the SUNDIALS pack-
age ([22]), also adjoint equations are integrated by
procedures from the cvodes. Iteration of the opti-
mization procedure is performed by IPOPT ([25]).
In the second procedure, implicit Runge–Kutta
method is employed for system equations integra-
tion and adjoint equations are evaluated in accor-
dance with the discretization of ODEs by the in-
tegration procedure. In this case optimization is
performed by the SQP method which applies an
active set strategy ([17]). The procedure described
in [17] was designed to cope efficiently with control
problems with state constraints.
The third approach to optimal control prob-

lems with ODEs deals with multiple shooting
methods. At the moment within the IDOS server
an indirect shooting method based on Oberle’s
code ([14]) is implemented.

3.2 Optimal control problems de-
scribed by DAEs

The server currently offers two procedures for solv-
ing optimal control problems with DAEs. The
first one is aimed at problems whose differential–
algebraic equations have index one. It is based
on the implicit Runge–Kutta integration proce-
dure but adopted to index one DAEs in the semi–
explicit form ([17]). The optimization engine used
here is the SQP procedure which uses an active
set strategy in corresponding QP subproblems (a
range–space variant of it).
The second procedure carries out the unique ap-

proach to optimal control problems with higher
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index DAEs described in [18]. The approach does
not require the system to be transformed from
DAEs to ODEs (through differentiation, with re-
spect to time, of selected algebraic equations). In-
stead, the constructed procedure employs an im-
plicit Runge–Kutta method for system equations
integration. We use Radau IIA method as imple-
mented in [11] (see also [9]). Reduced gradients
are evaluated on the basis of adjoint equations
defined for discretized (by the integration proce-
dure) system equations. The procedure uses the
algorithm for consistent initialization of system
equations and for that purpose the method based
the Pantelides’ algorithm ([15]) and the kinsol
procedure from the SUNDIALS package was imple-
mented. To our knowledge, it is the first success-
fully implemented procedure for solving optimal
control problems described by higher index DAEs
which does not need transformation of the DAEs
to the underlying ODEs.

3.3 Optimal control problems with in-
teger valued controls

For the moment, optimal control problems with
integer valued controls solved at the IDOS server
can only have ordinary differential equations. For
these problems we used BONMIN package (see e.g.
[4], [5]). It has been integrated with the OLADO
library and with the procedures based on the
cvodes procedures from SUNDIALS package.
Table 1 summarizes to some extent the solvers

structure of the IDOS server — in fact it is much
more complex since, for instance, procedures such
as cvodes, or BONMIN contain themselves a number
of essentially different methods which can be ac-
cessed by setting their parameters. Furthermore,
the server employs ADOL-C package for performing
automatic differentiation and OpenBLAS package
for linear algebra operations.
The code developed for the server is meant as

open source1 (most of the libraries used by the
server are open-source, as well, see Table 1), hence
one could deploy own instances of IDOS server, at
least in principle. The experience teaches, how-
ever, that installation, configuration and mainte-
nance of all required packages is in itself far from
trivial. For that reason, at this point there is no
dedicated distribution package for automated in-

1contact the authors for setting up access to code repos-
itory

Method and problem type Solvers
a’priori discretization, OLADO:
ODEs SQP (Powell’s type) + Euler

IPOPT + Euler
HQP + Euler
HQP + OMUSES:
HQP + Euler
HQP + DOPRI5
HQP + GRK4
HQP + IMP
HQP + ODETS
HQP + SDIRK
HQP + RK4

adjoint equations, RKCON + Radau IIA
ODEs IPOPT +

SUNDIALS (cvodes)
shooting method, ODE BNDSCO + RK4
a’priori discretization, BONMIN + Euler
ODEs (integer controls) SQP (Powell’s type) + Euler
adjoint equations, BONMIN +
ODE (integer controls) SUNDIALS (cvodes)
adjoint equations, RKCON + Radau IIA
DAEs (index = 1) IPOPT +

SUNDIALS (idas) - u. dev.
adjoint equations, RKCON + RADAU5 +
DAEs (index ≤ 3) SUNDIALS (kinsol) +

MAXIMA

Table 1: Listing of IDOS main solvers

stallation of the server suite on user machines, al-
though development of such is planned.

4 Estimation of models parame-
ters

Suppose that we have the dynamic model with
parameters p:

ẋ(t) = f(x(t), t,p), t ∈ [0, tf ], x(0) = x0. (7)

which solution xp is dependent on parameters p.
It is often the case that such model describes a
real life, observable phenomenon but the exact val-
ues of its parameters are unknown. Then, they
could be approximated by solving nonlinear least
squares problem:

min
p

N∑

k=1

[
(xl(tk)−xe

l (tk))2
]

(8)

subject to the constraints (7), where xe
l is an em-

pirical (measured) trajectory.
Since x is a function of parameters p, the prob-

lem can be stated as

min
p

[
F (p) =

N∑

k=1

(
xp

l (tk)−xe
l (tk)

)2
]

(9)
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That problem can be solved by nonlinear program-
ming techniques provided that we can evaluate
gradients of F (p). In particular, we can apply
the Gauss–Newton algorithm (see section 5) to
problem (9) taking advantage of the least–squares
structure of ith objective function.
The gradient of the functional F (p) may be eval-

uated with the help of adjoint equations if we ob-
serve that F (P ) is composed ofN functions F k(p):

F k(p) =
(
xp

l (tk)−xe
l (tk)

)2

where xp is the solution to the equations (7).
The gradient of F k(p) is given by the formula:

∇F k(p) =
∫ tk

0
fp(x(t), t,p)T qk(t)dt (10)

where qk is the solution to the adjoint equations

qk(tk) = Qk

q̇k(t) = −fx(x(t), t,p)T qk(t), t ∈ [0, tk).

Here,

Qk =




0
0
...

2(xl(tk)−xe
l (tk))

0
...
0




Then ∇F (p) =∑N
k=1∇F k(p).

Having objective function values and its gradi-
ents we can build an optimization procedure for
model calibration. A general scheme for these pro-
cedure may look like stated below:

General Calibration Procedure

1. Set initial values of parameters: p1 and set
k = 1.

2. For parameters pk calculate system trajec-
tories xpk by numerically integrating sys-
tem equations using, for example, procedure
cvodes from SUNDIALS package. On that ba-
sis determine objective function value F (pk)
through values F l(pk), l = 1, . . . ,N .

3. Having trajectories xpk and values F l(pk),
l= 1, . . . ,N solve adjoint equations (using, for
example procedure cvodes), and determine
∇F l(pk), l = 1, . . . ,Ns and ∇F (pk).

4. Determine the direction of descent using some
optimization procedure (for example, Ipopt).

5. Perform directional minimization with the
help of optimization procedure to evaluate
step size αk. Substitute pk+1 = pk +αkdk. in-
crease k by one and go to Step 2).

5 Gauss–Newton method for the
least squares problem

One approach to implementating the just-outlined
general calibration procedure makes use of the
Gauss–Newton method for solving nonlinear least
squares problems. For the purpose of discussing
it, consider the following optimization problem:

min
x∈Rn

[
f(x) = 1

2‖g(x)‖2 = 1
2

m∑

i=1
‖gi(x)‖2

]
(11)

where

g(x) =




g1(x)
g2(x)
...

gm(x)



. (12)

In this case, the gradient and the Hessian ma-
trix of the objective function (11) are defined as
follows:

∇f(x) =
m∑

i=1
gi(x)∇gi(x) = J(x)T g(x)

∇2f(x) =
m∑

i=1
∇gi(x)∇gi(x) +

m∑

i=1
gi(x)∇2gi(x)

= J(x)TJ(x) +
m∑

i=1
gi(x)∇2gi(x).

Here, J(x) is the Jacobian matrix of the
transformation matrix (12). Assuming that
gi(x)∇2gi(x)≈ 0 we can write

∇2f(x)≈ J(x)TJ(x).

The Gauss–Newton method minimizes, at every
iteration, linearization of g at the point xk:

g̃(xk;x) = g(xk) +J(xk)(x−xk).

Session 6E: Web-related Modelica Tools

DOI
10.3384/ECP140961095

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1099



The next point xk+1 is obtained by solving the
problem

min
x∈Rn

1
2‖g̃(xk;x)‖2.

Then

xk+1 = xk−
(
J(xk)TJ(xk)

)−1
J(xk)T g(xk).(13)

It is a descent method since

−J(xk)T g(xk)

is a descent direction for the function 1
2‖g(xk)‖2,

because

∇
(1

2‖g(xk)‖2
)

= J(xk)T g(xk)

and provided that
(
J(xk)TJ(xk)

)
> 0

(it means matrix positiveness).
The outlined algorithm is most often applied

with the modifications

xk+1 = xk−αk

(
J(xk)TJ(xk) + ∆k

)T
×

×J(xk)T g(xk), (14)

where αk > 0 is the result of the directional mini-
mization, and ∆k is such diagonal matrix that

(
J(xk)TJ(xk) + ∆k

)
> 0.

If the least squares problem is used to calibrate
a model then on the basis of experimental data
{yi,zi}m1 we evaluate models parameters x

z = h(y,x).

In this case models parameters are calculated
by solving the optimization problem

min
x

[
f(x) = 1

2

m∑

i=1
‖zi−h(yi,x)‖2

]
.

The Gauss–Newton approach was implemented
along the lines of the General Calibration Proce-
dure presented in Section 4. In Step 4) of the pro-
cedure, the direction of descent dk is determined

on the basis of vectors ∇F l(pk), l = 1, . . . ,N and
∇F (pk). By referring to relations (13)–(14) we set

J(pk) =




∇F 1(pk)
∇F 2(pk)

...
∇FN (pk)




H(pk) = J(pk)TJ(pk)
pk+1 = pk−αk [H(pk)]−1∇F (pk). (15)

The formula (15) uses the stepsize αk which usu-
ally is evaluated with the help of sophisticated pro-
cedures. We decided not to build new optimiza-
tion packages but to adopt existing ones there-
fore αk is determined according to Ipopt or RKCON
procedures. Similarly, scaling matrices H(pk) are
made nonsingular by procedures built-in Ipopt
or RKCON. For example, it can be done in Ipopt
by ’cheating’ the method eval-h with matrices
H(pk) instead of true Hessian matrices evaluated
at pk.

6 Estimation of parameters of
higher index DAEs

The estimation procedure stated in Section 4 can
also be adopted to higher index DAEs provided
that numerical procedure presented in [18] is used.
Suppose that our system equations are as follows:

F (ẋ(t),x(t), t,p), t ∈ [0, tf ] (16)
and, as before, p ∈ Rm is the vector of unknown
parameters.
When the integration scheme from [11] is ex-

tended to implicit equations then we will arrive at
equations

F (x′
i(k+ 1),x(k)+

h(k)
s∑

j=1
aijx

′
j(k+ 1), tk + cih(k),p) = 0, (17)

x(k+ 1)−x(k) +h(k)
s∑

i=1
bix

′
i(k+ 1) = 0, (18)

i = 1, . . . ,s and they represent the dynamics of a
discrete time control system.
In order to define state equations we introduce

the state vector X(k):

X(k) =




x
′
1(k)
...

x
′
s(k)
x(k)



, (19)
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then equations (17)–(18) become

F̃ (X(k+ 1),X(k),k,p) = 0. (20)

Here, X(k) ∈ R(s+1)n, F̃ : R(s+1)n ×R(s+1)n ×
{0, . . . ,N −1}×Rm→R(s+1)n.
System (20) is fully implicit discrete time and,

under some nonsingularity assumption, can be ex-
pressed as explicit. If the Jacobian of F̂ with re-
spect to X(k+ 1), denoted by F̃X+ , exists and
is nonsingular for all k = 0, . . . ,N − 1, then from
the Implicit Function Theorem there exists unique
function ϕ such that

X(k+ 1) = ϕ(X(k),k,p) (21)

and

F̃ (ϕ(X(k),k,p),X(k),k,p) = 0, (22)

for k = 0, . . . ,N − 1. Under differentiability as-
sumptions imposed on F the function ϕ is differ-
entiable with respect to X(k) and p which means
that we can write

F̃X+(k)ϕX(k) + F̃X(k) = 0⇒
ϕX(k) =−

[
F̃X+(k)

]−1
F̃X(k) (23)

F̃X+(k)ϕp(k) + F̃p(k) = 0⇒
ϕp(k) =−

[
F̃X+(k)

]−1
F̃p(k). (24)

F̃X+(k), F̃X(k), F̃p(k) are evaluated at (X(k+
1),X(k),k,p) and ϕX(k), ϕp at (X(k),k,p).
If we consider optimal control problem with the

objective function

F̂ 0(p) = (xp
l (t)−xe

l (t))2 (25)

then the gradient of it can be calculated by refer-
ring to adjoint equations for the functional (25)
and the system (21).
The adjoint equations for the functional (25)

and the system (21) are considered, for example,
in [17]:

p(t) = Qt (26)
p(k) = ϕX(k)T p(k+ 1), (27)

k = 0, . . . , t−1 and

Qt =




0
0
...

2(xp
l (t)−xe

l (t))
0
...
0




.

Notice that vector Qt has dimension (n+ 1)×s.
Then adjoint variables p are the means for the

gradient evaluation according to the formula

F̂ 0
p (p) =

t−1∑

k=1
ϕp(k)T p(k+ 1). (28)

Using (23)–(24) the adjoint equations (27) and
the formula (28) can be expressed without the
knowledge of ϕ:

p(k) = −F̃X(k)T
[
F̃X+(k)

]−T
p(k+ 1)

F̂ 0
p (p) = −

s−1∑

k=1
F̃p(k)T

[
F̃X+(k)

]−T
p(k+ 1).

Fortunately, the calculation of [F̃X+(k)]−1 can be
avoided with the help of additional variable r
which is the solution to the linear equations

F̃X+(k)T r(k+ 1) = p(k+ 1). (29)

Then the adjoint equations become

p(k) = −F̃X(k)T r(k+ 1) (30)

F̂ 0
p (p) = −

s−1∑

k=1
F̃p(k)T r(k+ 1). (31)

Eventually we have the viable formula for the
gradient of F̂ (p) provided that matrices F̃X+(k)
are nonsingular and equations (29) can be solved
efficiently.
Important observation is that matrices F̃X+(k)

are nonsingular even for index three problems
provided that h(k) are sufficiently small–see [18]
for details. Therefore, for many higher index
DAEs we have a valid technique for computing
gradients of F̂ 0(p). The evaluation of adjoint
equations requires solving linear equations with
matrices which have to be evaluated (and factor-
ized) anyway while numerically integrating system
equations.
The estimation procedure discussed in this sec-

tion requires the program for consistent initializa-
tion at initial time. That program consists of two
steps.
Consistent Initialization Procedure

1. In the first step new equations have to be
determined by differentiating some equations
with respect to time.

2. In the second step the extended set of equa-
tions is solved, at initial time, to get initial
values of original equations.
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In our approach Step 1) of Consistent Initial-
ization Procedure is carried out on the basis of
a graph based algorithm proposed by Pantelides
([15]). The algorithm finds the minimal subset of
equations which need to be differentiated.
Next symbolic differentiation is performed. A

good enough tool with symbolic differentiation
module is an open source computer algebra sys-
tem Maxima ([23]) which is descendant of Macsyma,
the computer algebra system developed in the late
1960s at MIT. In the next section we show that we
start solving optimal control problems by stating
them in the DOML environment. In that case the
first step in the symbolic differentiation is a con-
version of the equations defined in the DOML format
to the Maxima form. Then, the Maxima library is
invoked and as a result differentiated equations are
returned to the system console.
Eventually, in Step 2) of Consistent Initializa-

tion Procedure, the set of nonlinear (in general)
algebraic equations is solved by using the KINSOL
solver from the SUNDIALS package ([12]) (alterna-
tively the Ipopt solver can be applied–[25]).
Summing up, the IDOS server is equipped, for

the moment, with optimization procedures which
either use quasi–Netwon approximations of Hes-
sian matrices (if Ipopt or RKCON are used without
modifications), or their Gauss–Newton approxi-
mations. They are based on adjoint equation eval-
uations and can be applied to models described by
ODEs or higher index DAEs. Procedures for mod-
els calibration based on a’priori discretization of
systems equations are under development.

7 Examples
Example 1 The first example is the chemical ki-
netics model available as SUNDIALS example. The
equations of the reaction rates are as follows:

ẋ1 = −p1x1 +p2x2x3

ẋ2 = p1x1−p2x2x3−p3x
2
2

ẋ3 = p3x
2
3

The models transcription in Modelica is shown
on Listing 1. The corresponding DOML file for
the model calibration is presented on Listing 2. It
defines the reference trajectory through the spline
function of degree 1. All three parameters there
are decision variables.
When p1 = 0.04, p2 = 1.e7 and p3 = 3e7 we have

the SUNDIALS example and we call the model with

package Roberts
model Roberts_model ( startTime =0.0 ,

finalTime =1.0 )
parameter Real p1 = 0.04;
parameter Real p2 = 1e4;
parameter Real p3 = 3e7;
Real x1(start = 1.0);
Real x2(start = 0.0);
Real x3(start = 0.0);

equation
der(x1) + p1*x1 - p2*x2*x3 = 0;
der(x2) - p1*x1 + p2*x2*x3 + p3*x2*x2 = 0;
der(x3) - p3*x2*x2 = 0;

end Roberts_model ;
end Roberts ;

Listing 1: Roberts model in Modelica
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Figure 1: The calibration of Roberts model.

package Roberts
import I = Modelica.DOML.Inputs ;
optimization Roberts_opt ( startTime =0.0 ,

finalTime =1.0 )
minimize AccErr = err( finalTime );
I.Spline x1r( startTime = startTime ,

finalTime =finalTime , degree =1,
table =[0.0 , 0.6;8e6 , 0.3; 16e6 , 0.2;
24e6 ,0.1 ;32e6 ,0 .01 ;40e6 ,0.0;4.0e7 ,0.0]);

parameter Real p1(free=true ,
initialGuess =0.04 , min=0.0 , max=10.0);

parameter Real p2(free=true ,
initialGuess =1e4 , min=0.0 , max=10.0);

parameter Real p3(free=true ,
initialGuess =3e7 , min=0.0 , max=10.0);

input Real x1e(free=false) = x1r.y;
Real x1(start = 1.0);
Real x2(start = 0.0);
Real x3(start = 0.0);
Real err(start = 0.0);

annotation ( solver =" nlsq_cvodes ", Steps ="5",
RTOL_tolerance ="1.0e -6");

equation
der(x1) + p1*x1 - p2*x2*x3 = 0;
der(x2) - p1*x1 + p2*x2*x3 + p3*x2*x2 = 0;
der(x3) - p3*x2*x2 = 0;
der(err) = (x1 -x1e)^2;

end Roberts_opt ;
end Roberts ;

Listing 2: Calibrating Roberts model
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Figure 2: The calibration of the extended SIR
model.

these parameters as the nominal model (its tra-
jectories are denoted as xN in Figure 1). How-
ever, when the model was adjusted to the reference
trajectory for x1: (0.0,0.6), (8e6,0.3), (16e6,0.2),
(24e6,0.1), (32e6,0.01), (40e6,0.0), (4.0e7,0.0)
models parameters were changed to p1 = 1e− 3
(we assumed that lower bound for the parameter
p1 is 1e−3), p2 = 2.1986e4 and p3 to 3.0e7. Also
trajectories of the model changed–they are shown
on Fig. 1.
Example 2 The second example is related to

the model of food borne diseases. The equations of
the evolution of three populations: S (Susceptible
population), I (Infected population), R (Recov-
ered population) and the equation of the pathogen
concentration evolution are given below.

Ṡ = −p3(B/(B+p2))S− ((p4p5)/p8)SI−
p1S+p1p8

İ = p3(B/(B+p2))S+ ((p4p5)/p8)SI−p1I

Ṙ = p1I−p6R

Ḃ = p7I−p5B.

The model has eight parameters, all of them are
decision variables in our calibration problem. In
addition we assume that initial pathogen concen-
tration, B(0), must be determined. The trajec-
tories of the calibrated model are shown on Fig.
2.

8 Conclusions
The IDOS server is still a prototype. Although
it is operational its widespread use can be ham-
pered by the limited computing resources which
are currently allocated to the server. Furthermore,
adding a new solver to the server is not as simple
as it should be. We plan to alleviate these prob-
lems in the near future.
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Client-side Modelica powered by Python or JavaScript
Rüdiger Franke, ABB, Germany – Ruediger.Franke@de.abb.com

Abstract

Modelica is primarily supported by simulation envi-
ronments for the treatment of equation based models
and model libraries. As of today Modelica is rarely
used for the exchange of engineering data, visualiza-
tion or interactive computing, even though the Mod-
elica language offers a lot of interesting features for
such applications.

This paper investigates the potential of lightweight
Modelica tools that run directly in scripting or web
clients. Two Modelica parsers have been implement-
ed in the popular client-side languages Python and
JavaScript.

The Modelica parser in Python is extended with a
backend translating algorithmic Modelica definitions
to Python. This gives access to existing Python
packages from scripted Modelica. It also enables the
interactive debugging of algorithmic Modelica code.

The Modelica parser in JavaScript offers a generic
backend interface. The paper demonstrates two ap-
plications. First a simple analysis tool for Modelica
packages running from the command line is demon-
strated. The true potential of JavaScript is the em-
bedding of engineering data as Modelica code with
HTML5 documents and their processing on the cli-
ent  side,  e.g.  in  Web  browsers.  The  paper  shows  a
Modelica text editor and parameter GUI generator
running in a web browser.
Keywords: Modelica, scripting, interactive compu-
ting, data exchange, Lex, Yacc, Python, JavaScript,
jQuery, HTML5.

1 Introduction

Today’s Modelica simulation environments act as
servers that offer proprietary client interfaces, basing
on Modelica Script, COM, or CORBA, for instance.
There has been no success in standardizing Modelica
client interfaces so far. XML has been selected for
tool coupling in the FMI standard.
Major advantages of XML are that it is both: human
and machine readable. XML parsers are readily
available. The major drawbacks of XML are its very

basic syntax, making it bulky and hard to read for
humans. The semantics still needs to be defined.
This paper investigates the use of Modelica itself as
interface language. Modelica is human and machine
readable as well. The major advantages of Modelica
are its more compact, richer syntax. The semantics is
already standardized, tailored for modeling and sim-
ulation, including:

· rich syntax for high-level definitions, like
packages, classes, records, enumerations,
doc strings, and physical units;

· modification syntax for predefined classes
that  is  comparable  to  XML  documents  for
XML schemata;

· convenient formulation of matrix expres-
sions, statements and functions;

· embedded graphical representation;

· embedded HTML documentation;

· embedded version management;

· enable automatic generation of graphical us-
er interfaces out of Modelica definitions.

The features are unique in their combination and
could directly be exploited without the need to define
some new XML schema first.
The drawback is that parsing Modelica by machines
is  not  as  simple  as  parsing  XML.   But  a  Modelica
parser neither is a miracle since the concrete syntax
is specified and tools like Lex and Yacc exist.

2 MoiPy – Modelica in Python

MoiPy is intended to bridge the gap between the
powerful Modelica language and convenient script-
ing. This is done by adding a thin syntactic layer on
top of the existing scripting language Python, trans-
lating between Modelica and Python, and by using
the NumPy package for scientific computing.

MoiPy is not an alternative to other Modelica tools;
it is an optional addition. MoiPy allows staying in
the Modelica world even if the simulation environ-
ment at hand has only limited support for model-
based applications or scripting.
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2.1 Implementation overview

MoiPy implements the Modelica syntax (Modelica
3.3 specification, Appendix B; see [1]) using Python
Lex-Yacc. PLY provides Lex and Yacc entirely in
Python, including extensive error checking and log-
ging. The syntax specification can directly be exe-
cuted. A parser table is generated on demand and
cached in the background.

Of course the execution speed is slower, compared to
a parser explicitly generated and readily compiled.
This  is  why  MoiPy  only  reads  Modelica  files  as
needed.

The  parser  produces  an  abstract  syntax  tree  (AST).
Each node of the tree is a Python object. The AST
reduces the concrete syntax for simpler further pro-
cessing. For instance, a class_definition is represent-
ed as object of ClassDefinition. The attributes of
class_prefixes, class_specifier and composition ap-
pear directly in the ClassDefinition. The elements
and sections of the composition are further reduced
into one elementList, one initialEquationList / ini-
tialStatementList and one equationList  / statement-
List.

An exemplary rule reads:
def p_annotation(p):
  ''' annotation : ANNOTATION \
        class_modification '''
    p[0] = Annotation(
      classModification = p[2],
      track = Track(p, 1))

The syntax rule is specified in the documentation
string of a Python function that implements the re-
spective production. A new object of the class Anno-
tation is created in the example. The second argu-
ment tracks the location in the Modelica code.

The class definition objects have the common meth-
od toPython that generates Python code from the
Modelica definitions. The toPython method of Pri-
maryUnsignedNumber, for instance, constructs a
predefined Real or Integer object that adds attributes
like min, max and unit to the value itself. Note that
the Python code generation only covers the algo-
rithmic part of the Modelica language, i.e. a subset of
all possible class definitions:

· Modelica packages are treated as Python
modules

· Modelica functions are translated to Python
functions

· Modelica records are translated to Python
classes

· Modelica enumerations are translated to Py-
thon objects

Moreover expressions and statements are covered:

· Modelica expressions are evaluated as Py-
thon expressions

· Modelica arrays are treated as NumPy arrays

· Modelica builtin functions are forwarded to
Python functions

· Modelica statements are executed as Python
statements

2.2 Extended Modelica syntax for scripting

MoiPy attempts to stay as close as possible to Mod-
elica, using the same rules as specified in the Model-
ica concrete syntax and without introducing any new
keywords. Two extensions are needed for scripting
though: support for commands and use of variables
without declaration on the top-level scope.

The Modelica concrete syntax covers stored defini-
tions in the form of class definitions. MoiPy addi-
tionally accepts commands on the top-level scope
that are Modelica expressions, statements or import
clauses.

In Modelica each variable must be declared before
use. MoiPy follows this rule inside class definitions.
Also on the top-level scope assignments like:
v := {1,2,3}

are declaration errors if v has not been declared be-
fore. On the top-level scope, outside class defini-
tions, it is allowed though to implicitly declare a var-
iable by defining it equal to an existing object. For
instance:
v = {1,2,3}

defines v to be the vector {1,2,3}. Afterwards
v := {4,5,6}

assigns a new value to the existing vector v,
v := "a string"

is an error, whereas
v = "a string"

(re)defines v to be a string.

MoiPy uses the file extension .moi to distinguish
interpreted script files from regular Modelica defini-
tions.
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2.3 Basic uses

Start MoiPy with
python moi.py

A parser table for Modelica is generated when called
the first time. Afterwards the moi>> command
prompt appears.

Do some matrix calculations, e.g.:
moi>> A = [1,2;3,4]
moi>> b = {1,1}
moi>> A*b

or matrix concatenations:
moi>> [A,b]
moi>> [A; transpose([b])]

Call a Modelica function from Python:
moi>> t = 0:0.01:1
moi>> y = Modelica.Math.sin(
...   2*Modelica.Constants.pi*t)

This will look for the Modelica definitions under
MOIPYPATH, load the files Modeli-
ca/Math/package.mo and Modeli-
ca/Constants.mo, translate the function sin
and the constant pi to Python, call the function, and
assign the result  to  the vector  y.  Note that  the func-
tion call is vectorized automatically.

2.4 Enhance Modelica with Python

Python offers many interesting modules, such as
NymPy, SciPy and matplotlib. MoiPy enables to ac-
cess them from Modelica. Type:
moi>> import Plt = matplotlib.pyplot

MoiPy attempts to find a Modelica definition first.
As matplotlib is not found in Modelica, the im-
port gets forwarded to Python and found there, pro-
vided you have matplotlib installed. Type:
moi>> Plt.plot(t, y, "ro");
moi>> Plt.title(
...   "pyplot for Modelica");
moi>> Plt.show();

A plot window pops up; see Figure 1.

Figure 1: pyplot generated from Modelica

2.5 Access Modelica from Python

MoiPy translates Modelica definitions to Python.
This means that the translated definitions may also
be called from Python directly. When started in in-
teractive mode:
python –i moi.py

and done some Modelica scripting, e.g.:
moi>> import
...   Modelica.SIunits.Conversions.*
moi>> from_degF(70)

one may leave MoiPy with Ctrl-D (Ctrl-C under
Windows). A Python command prompt appears.
Type:
>>> from_degF(70)

to directly call the translated Python function. One
may switch back to Modelica with:
>>> moipy()

2.6 Advanced Modelica functions

Modelica.Media defines more advanced functions.
They serve as example for 3D plotting and for de-
bugging in the subsequent section. Take the exam-
ple:
moi>> Modelica.Media.Water.
...   IF97_Utilities.h_pT(1e5, 300);

In order to evaluate the function for the specific en-
thalpy, MoiPy needs to load 7 Modelica files and
translate 19 functions as well as 7 data records out of
13 packages in MSL 3.2.1. The parsing of the files
takes a few seconds. Once loaded and translated,
subsequent calls go fluently.
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moi>>  p = linspace(1, 300, 30)
moi>>  T = linspace(0, 600, 30);
moi>>  (pp, TT) =
...    numpy.meshgrid(p, T);
moi>>  hh = Modelica.Media.Water.
...    IF97_Utilities.h_pT(
...      pp * 1e5,
...      TT .+ 273.15);

This evaluates the function h_pT at 30x30=900 grid
points. See also examples/mplot3dDemo.moi
resp. call it:
moi>>  import examples.mplot3dDemo

A wireframe plot should pop up; see Figure 2.

Figure 2: Wireframe plot for IF97_Utilities.h_pT

2.7 Debugging of Modelica functions

Python offers the extensible debugger pdb. This is
exploited by MoiPy to transform the debugger out-
puts to the originating Modelica code. It uses the
prompt (modb). This gives features like entering the
debugger in case of errors, treating break points,
stepping through Modelica code, walking up and
down on the call stack and inspecting variables.

See also  below for an example – the debugger
shows an error in the IF97_Utilities.h_pT function
that was present prior to r6066 around 290 bar and
350 °C – it has been fixed in MSL 3.2.1.

2.8 Integration with an IDE

An Integrated Development Environment (IDE) typ-
ically integrates several command line tools and can
be extended to support new ones.  shows Emacs run-
ning modb as example.

Several Emacs extensions have been loaded, such as
Emacs  Code  Browser  for  the  directory  tree,  SVN
status and revision, besides Modelica mode for syn-
tax highlighting and annotation folding. The Emacs
debugger framework parses the output of modb and
add a graphical user interface. Moreover it opens and
shows the respective source file at the right position.
Figure 3: MoiPy in the GNU Emacs IDE
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3 MoiJS – Modelica in JavaScript

Besides its convenient syntax for scientific compu-
ting, Modelica is strong in supporting graphical user
interfaces. A Modelica model may contain annota-
tions with flowsheet graphics and parameter dialogs,
besides documentation – this is important for the
specification and exchange of engineering data.

Graphical user interfaces are currently undergoing
fundamental changes. Powerful, standardized GUI
clients are running on virtually any device, exploit-
ing HTML5 (HTML, CSS and JavaScript). What
does this mean for a Modelica client?

Instead of dealing with proprietary server interfaces,
events and callbacks, the client could receive a Mod-
elica definition, parse it, build the user dialog, man-
age user interactions autonomously, and post back
user inputs as Modelica definition or modification.

A Modelica parser in JavaScript is needed.  Initially
developed at Netscape almost 20 years ago, JavaS-
cript grew to a multi-paradigm language covering
functional, imperative and object-oriented program-
ming. It gained a lot of momentum since the stand-
ardization of HTML5; see [3], the appearance of fast
just-in-time compilers, development tools, powerful
libraries,  such  as  jQuery  [4],  and  the  adoption  for
server side programming as well, e.g. by Node.js [5].

3.1 Implementation overview

MoiJS implements the Modelica syntax (Modelica
3.3 specification, Appendix B; see [1]) using Jison.
Jison provides Flex and Bison (Lex and Yacc) in
JavaScript; see [6]. The exemplary rule given in sec-
tion 2.1 reads:
annotation:
  ANNOTATION class_modification
  {
    $$ = new Annotation(track(@$));
    $$.classModification = $2;
  }
  ;

MoiJS  generates  a  reduced  AST  as  well.  A  signifi-
cant difference to MoiPy is that JavaScript objects
forming the nodes of the AST are based on proto-
types. The prototypes can be extended later on. This
means that arbitrary backends can be added without
having to touch the original parser code (or requiring
the parser to offer a specific plug-in architecture).

3.2 Adding a backend

Assume all executable models of a Modelica library
shall be identified, in order to automate testing. Fig-
ure 4 shows a MoiJS backend for this.
Figure 4: Exemplary MoiJS backend

// load Modelica parser as CommonJS module
var moparser = require("./moparser").parser;

// add method forModifier to each modification and annotation
moparser.Modification.prototype.forModifier =
moparser.Annotation.prototype.forModifier = function (name, callback) {
    (this.classModification || []).forEach(function(argument) {

if (argument.name == name)
            callback(argument.modification);
    });
}

// add method logStopTime to each class_definition, calling forModifier
moparser.ClassDefinition.prototype.logStopTime = function(within) {
var definition = this;

  // check for experiment StopTime annotation
if (definition.annotation) {

    definition.annotation.forModifier("experiment", function(experiment) {
      experiment.forModifier("StopTime", function(modification) {
        console.log(within + ".\n   " + definition.ident
                    + "(StopTime=" + modification.expression.value + ");");
      });
    });
  }
  // treat subclasses recursively
  (definition.classDefinitionList || []).forEach(function(classDefinition) {
      classDefinition.logStopTime(within + "." + definition.ident);
  });
}
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It may appear confusing how to dive into the syntax
tree. MoiJS closely follows the rules and names of
the Modelica concrete syntax specification, in order
to simplify the understanding. The capitalization is
changed to camel style. If for instance the concrete
syntax defines a class_modification, then a class-
Modification instance of ClassModification appears
in  the  AST.  The  suffix  List  is  used  if  curly  braces
find in the Modelica concrete syntax.

The syntax tree may also be explored in the JavaS-
cript Object Notation (JSON) – see below.

The backend (and the parser) can be executed in
Node.js that provides, besides a JavaScript runtime, a
portable operating system interface through POSIX
wrappers. An exemplary Modelica file is processed
with:
var fs = require("fs");

fs.readFile("Modelica/StateGraph.mo",
function(err, data) {

  if (err) throw err;
  // parse the file
var ast =

    moparser.parse(data.toString());
  // call the new backend
for (i in ast.classDefinitionList)

    ast.classDefinitionList[i]
      .logStopTime(ast.name || "");
});

This produces the output:
Modelica.StateGraph.Examples.
   FirstExample(StopTime=5);
Modelica.StateGraph.Examples.
   FirstExample_Variant2(StopTime=5);
Modelica.StateGraph.Examples.
   FirstExample_Variant3(StopTime=5);
Modelica.StateGraph.Examples.
   ExecutionPaths(StopTime=15);
Modelica.StateGraph.Examples.
   ShowCompositeStep(StopTime=15);
Modelica.StateGraph.Examples.
   ShowExceptions(StopTime=20);
Modelica.StateGraph.Examples.
   ControlledTanks(StopTime=100);

3.3 Modelica in a Web browser

Having a Modelica parser in JavaScript, it is a small
step to run it in a Web browser, using solely HTML5
standards. Figure 5 shows first results. The MoiJS
lexer provides information for code coloring and an-
notation folding in an HTML textarea. The button
“Show Syntax” invokes the MoiJS parser and shows
the JSON representation of the resulting syntax tree
in a popup window. The button “Show Dialog” in-
vokes a backend to generate a parameter dialog out
of the syntax tree. The GUI has been implemented
using the jQuery UI library [4].

Figure 5: Modelica in the Google Chrome browser
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4 Caveats on the Modelica syntax

It is a pleasure to experience that the Modelica con-
crete syntax can be passed to a general-purpose par-
ser  generator,  such  as  PLY or  Jison,  and  something
useful comes out. Nevertheless there find some
things that might be improved.

4.1 Syntax of primary numbers

The Modelica syntax does generally not rely on the
use of whitespaces. With one exception: a primary
unsigned number may end with a dot and an arithme-
tic operator might begin with a dot; see also [1], sec-
tion 10.6.6.  The expression
2.+[1,2;3,4]

is wrong, because the dimensions of the scalar “2.”
and the array [1,2;3,4] do not match. The expression
2 .+[1,2;3,4]

is fine. The additional space makes clear that the dot
shall belong to the element-wise addition operator.

The Modelica syntax should be changed to not allow
primary numbers ending with a dot. Generally a “2”
without dot is fine, in particular because the Modeli-
ca division operator “/” is non-truncating, e.g. “1/2”
gives 0.5 and not 0. If nevertheless a primary number
shall  be  forced  to  be  a  Real,  then  one  can  add  a  0
behind the dot, e.g. write “2.0”.

4.2 Expression syntax

The Modelica expression syntax defines operator
precedence and associativity with grammar rules.
This leads to very long productions. When a primary
number is passed as function argument, for instance,
then this primary goes through factor, term, arithme-
tic_expression, relation, logical_factor, logical_term,
logical_expression, and simple_expression, to finally
become an expression.

This is not only hard to read, but also slows down
parsers. The expression syntax can alternatively be
specified with all operators in one rule, i.e.
expr :   primary
     |   expr or expr
     |   expr and expr
     | not expr
     |   expr rel_op expr
     |   expr add_op expr
     |   add_op expr
     |   expr mul_op expr
     |   expr ("^" | ".^") expr

The operator precedence and associativity can be
defined in a separate table.

Prec Operators Associativity

7 or left

6 and left

5 not right

4 <  <=  ==  <>  >=  > left

3 +  -  .+  .- left

2 *  /  .*  ./ left

1 ^  .^ right

MoiJS, for instance, parses the Modelica Standard
Library, version 3.2.1, more than 20% faster with
this handy expression syntax.

4.3 Syntax of embedded HTML documentation

Working with HTML5 one gets used to documents
that contain multiple special-purpose syntaxes, like
HTML for content, CSS for styling and JavaScript
for behavior – and maybe Modelica for engineering
physics. Looking ugly initially, the richer syntax fi-
nally helps to faster grasp the different facets of the
document. Modern text editors support such docu-
ments with mixed modes.

Modelica models may contain embedded HTML
documentation. Unfortunately the HTML code needs
to be encoded into Modelica strings, meaning that all
double quotes used inside the HTML documentation
need to be escaped. A general purpose text editor
cannot detect and highlight the HTML code.

It should be considered to switch the syntax of em-
bedded HTML documentation from Modelica strings
to regular HTML, i.e. allow double quotes up to the
ending </html> tag. In the simplest case a new Mod-
elica string delimiter could be introduced, like """ for
multi-line strings in Python. This way the readability
improves and the mixed mode support of modern
text editors could be exploited.

5 Conclusions and Outlook

Today’s Modelica simulation environments offer
proprietary client interfaces, basing on Modelica
Script,  COM or CORBA, besides more.  Only XML
has been considered as standardized interface format
for tool coupling so far. The major drawbacks of
XML  are  its  clumsy  syntax  and  that  the  semantics
still needs to be defined.
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This paper investigates the use of the Modelica lan-
guage  itself  as  interface  format  for  client/server  ar-
chitectures and for model exchange, instead of XML.
This offers the advantage of having the semantics
already standardized. The price to pay is a Modelica
parser  on  the  client  side.  This  price  turns  out  to  be
affordable in modern scripting or Web environments.

Two Modelica parsers have been implemented:
MoiPy in Python and MoiJS in JavaScript. Both use
the same grammar rules, exploiting parser generators
with Lex and Yacc functionality.

It is not the aim of client-side Modelica to compete
with simulation environments. The focus is on addi-
tional tasks in model-based applications, like script-
ing, testing, documentation, visualization and graph-
ical user interfaces.

Python is strong in scientific computing. Due to its
rich syntax, including e.g. operator overloading, and
available packages, such as NumPy, it was straight-
forward to add a Python backend to the MoiPy par-
ser, resulting in a Modelica interpreter and debugger
for algorithmic models.

JavaScript is strong in dynamic user interfaces and in
connecting them to servers. This is the main motiva-
tion for MoiJS. This paper shows how Modelica
code is processed either in a console application or in
an HTML5 user interface running the same parser.

The availability of compatible JavaScript implemen-
tations by multiple vendors and fast just-in-time
compilers being preinstalled on virtually any device
make JavaScript attractive for more applications.
Examples are HTML5 pages containing verbatim
Modelica code that is evaluated on the client side,
e.g. in a Web browser or in a modern mobile device.

MoiJS is extensible with new backends, exploiting
the prototype based inheritance of JavaScript. MoiJS
is  available  under  the  MIT  license  at
http://omuses.github.io/moijs.
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Abstract 

 

The condenser is an important device for the opera-

tion of power plants in particular for pressurized wa-

ter reactors. Undesirable transients may lead to the 

automatic shutdown of the power plant.  

To simulate the complex dynamic physical beha-

viour of the condenser, a dynamic model has been 

developed using Modelica. The component model is 

meant to be used for power plant modeling and si-

mulation with the ThermoSysPro library developed 

by EDF and released under open source license. 

The transient most unfavorable to keeping the integr-

ity of the condenser vacuum is the loss of the cold 

source pumps followed by a turbine trip and a 

missed islanding (house load operation). 

The objective is to study the evolution of the pres-

sure of the condenser for this kind of transients. Dur-

ing the transiernt, the condenser pressure should be 

always less than 5e4 Pa. 

The present paper describes in detail the condenser 

model: hypothesis, governing equations, correlations 

and the test-case (structure of the test model, the pa-

rameterization data and the results of simulation). 

 

Keywords: Modelica; thermal-hydraulics; heat ex-

change; condenser; dynamic modeling; inverse 

problems; ThermoSysPro 

 

1. Introduction  

 

Modeling and simulation activities play a key role in 

the design phase and performance optimization of 

complex energy processes. It is also expected that 

they will play a significant role in the future for 

power plant maintenance and operation.  

The potential of Modelica as a mean to efficiently 

describe thermodynamic models has been recognized 

for quite a while [1, 2], and has led to the initiative of 

developing an EDF library for power plant modeling 

within the ITEA 2 EUROSYSLIB project. 

This library, called ThermoSysPro, aims at providing 

the most frequently used models of components for 

the 0D-1D static and dynamic modeling of thermo-

dynamic systems, mainly for power plants, but also 

for other types of energy systems such as industrial 

processes, energy conversion systems, buildings etc. 

It involves disciplines such as thermal-hydraulics, 

combustion, neutronics and solar radiation (see in-

stance [1 to 8].  

The ambition of the library is to cover all the phases 

of the plant lifecycle, from basic design to plant op-

eration. This includes for instance system design, 

verification and validation of the instrumentation and 

control system, system diagnostics and plant moni-

toring. To that end, the library will be linked in the 

future to systems engineering via the modeling of 

systems properties (or requirements), and to the mea-

surements made on the real process via state estima-

tion techniques. 

The present paper focuses on the dynamic modeling 

of the condenser: hypothesis, governing equations, 

correlations and the test-case (structure of the model, 

the parameterization data and the results of simula-

tion). 

2. Model of the condenser 

2.1. General presentation of the condenser 

The condenser is a two-phase shell-and-tube heat 

exchanger. The feedwater flows inside the tube bun-

dle, while the steam and condensate flows outside of 

those tubes located inside the cavity. In the condens-

er, there are two zones: the desuperheating zone and 

the condensation zone.  

The condensate of water heaters located upstream is 

injected into the condenser. During the injection, part 

of the condensate may vaporize due to the pressure 

drop. This phenomenon is known as flash.  
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Figure 1:  fluid flow inside an condenser 

2.2. Description of the condenser model 

The DynamicCondenser model represents the dy-

namics of the thermo-hydraulic phenomena of the 

hot fluid inside the cavity and of the cooling fluid 

which flows through the tube bundle. In particular, 

the model features the thermal exchanges between 

the fluid in the cavity and the cooling fluid flowing 

through the tube bundle. 

The condenser is considered as a vertical or horizon-

tal cylindrical cavity (as schematized in Figure 1), 

containing a tube bundle with the feedwater inlet and 

outlet located on the end. 

2.3. Components of the condenser 

The model is divided into sub-models of three differ-

ent types which are connected together to make the 

full model (see Figure 2):  

 One DynamicOnePhaseFlowPipe model, 

 One HeatExchangerWall model, 

 One TwoPhaseCavityOnePipe model. 

 

By reassembling the sub-models, any other configu-

ration of the condenser can be modelled. 
 

  

Figure 2:  icon representation of the component model 

The description of each sub-model is given in the 

following section. Each sub-model in the model can 

be recognized by looking at its icon (see Figures 3, 4 

and 6).  

3. Physics of the condenser 

3.1. DynamicOnePhaseFlowPipe model 

 

Figure 3: pipe model icon 

 

The model of the fluid flow in a cylindrical conduit 

is based on the dynamic mass, energy, and momen-

tum balance equations, which are originally given as 

1-D partial differential equations. The original dis-

tributed-parameter model is first discretised by using 

the finite-volume method. The model is formulated 

in order to correctly handle possible flow reversal 

conditions.  
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Assumptions 

 

 Homogeneous fluid in each mesh cell (same veloc-

ity for the liquid and steam phases); 

 1-D modelling (using the finite-volume method); 

 The accumulation is considered in each mesh cell; 

 The inertia of the fluid is taken into account; 

 The phenomenon of longitudinal heat conduction 

in the metal wall and in the fluid is neglected; 

 The thermo-physical properties are calculated on 

the basis of the average pressure and enthalpy in 

each mesh cell. 

 

Mass balance equation 

 

The mass balance equation in each cell is given by: 

1::1   iiii
i mmx

dt

d
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Taking the pressure and the specific enthalpy as state 

variables yields: 
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Energy balance equation 

 
The energy balance equation in each cell is given by: 
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with the specific internal energy given by: 
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Taking the pressure and the specific enthalpy as state 

variables yields: 
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1: iih is the specific enthalpy of the mass flow 

1: iim crossing the boundary between the cells i  and 

1i . 1: iih  is related to the state variables ih  and 

1ih by: 

11: )(ˆ)(ˆ   ieieii hPshPsh  

where eP  is the Peclet number and 
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 (see e.g. [10]). 

When neglecting diffusion, the Peclet number is in-

finite, and  

11:1:1: )()(   iiiiiiii hmshmsh   

Where s  is the step function: 
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This simplification is known as the upwind scheme. 

 

Momentum balance equation 
 

The momentum balance equation in each cell is 

given by:  
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with respectively the acceleration, friction and grav-

ity pressure losses given by: 
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By default, the flow is considered turbulent 

(Reynolds number Re > 2300). 

 

The Colebrook correlation is used to compute i . 

 

Convective heat transfer within the tubes   

 
The heat exchanged between the fluid and the wall 

is: 

 )()()()( 22 iTiTSihiW wc   

 

Convection heat transfer coefficient 
 

The convection heat transfer coefficient ch  between 

the fluid and the wall is computed using the Dittus-

Boelter correlation. 

 

Poster Session

DOI
10.3384/ECP140961113

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1115



3.2. HeatExchangerWall model 

 

Figure 4: wall model icon 

The wall model describes the conductive heat flow 

through the wall of the tube bundle. The flow is posi-

tive when entering the tubes (going from side 2 to 

side 1 of the wall). 
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3.3. TwoPhaseCavityOnePipe model 

 

Figure 5: two-phase cavity model icon 

 

The cavity is modelled as a non-adiabatic two-phase 

volume, with vertical or horizontal cylindrical ge-

ometry. The physical model is based on a non-

equilibrium, two-phase formulation of the fluid bal-

ance equations with a control volume approach. The 

two phases are supposed to be isobaric and will be 

referred to as liquid zone and steam zone, respec-

tively.  

The model features the condensation flow of the 

steam phase into the liquid phase. 

In most operating conditions, the liquid and steam 

phases in cavity are not necessarily in thermal equi-

librium. The reasons are:  

 The vapour may enter the cavity in a superheated 

state (the vapour temperature is then higher than 

the saturation temperature). 

 The liquid may be subcooled by the incoming 

drain. 

 

Assumptions 

 

 Accumulation of mass and energy is considered. 

Heat exchange between the liquid and steam 

phases is considered. 

 Heat exchange between the liquid or steam phases 

and the wall is considered. 

 Heat exchange between the condenser and the ex-

ternal medium (ambient) is considered. 

 Pressure losses are not taken into account in the 

cavity. 

 The liquid and steam phases are not necessarily in 

thermal equilibrium. 

 The liquid and steam phases are assumed to be 

permanently in pressure equilibrium. 

 

State variables 

 

The state variables of the system are: 

 the mean pressure in the cavity, 

 the specific enthalpy of the liquid phase, 

 the specific enthalpy of the steam phase, 

 the temperature of the wall, 

 the volume of the liquid phase. 

 

The volume of the steam phase is bound to the vol-

ume of the liquid phase by the following equation: 

VVV vl    

 

Mass balance equation in each phase  
 

cond

e

mv

oll mmxm
dt

Vd
drainl
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cond

e

mv

e

v
vv mmxm
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 )(

 

where 
e

vm  is the mass flow of incoming vapor, 

e

drainm  is the mass flow of the incoming condensate 

of the some water heaters, 
o

lm is the mass flow of 

outgoing condensate and condm is the condensation 

flow inside the cavity. 
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Condensation mass flow rate inside the cavity 

The evolution of the pressure in the condenser de-

pends strongly upon the mass flow rate of condensa-

tion. 

The classical equation used to calculate the conden-

sation mass flow rate given in [8] is not correct to 

simulate the scenario "loss of the cold source pumps 

followed by a turbine trip and a missed islanding". 

The following new equation gives correct results: 

 

sat
l

sat
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vpvltt

cond
hh

WWWW
m
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2_1_ condcondcond mmm  
 

where 1_condm  is the mass flow rate of the steam 

condensed in the cavity and 2_condm  is the mass flow 

rate of the water contained in the wet steam at the 

cavity inlet. 

 

Energy balance equation in each phase 

 
The general form of the energy balance equation is 

given by: 

 

 


Whmhm
dt

uVd

o

oo

e

ee .
)(




 

 

Taking the pressure and the specific enthalpy as state 

variables yields: 
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Energy accumulation at the wall  

wavwlw
w

pww WWW
dt

dT
cM   

Heat exchange between the liquid and steam phases  

)( lvvlvlvl TTAKW   

Heat exchange between the liquid or steam phases 

and the wall  

)( wllwlwlw TTAKW   

)( wvvwvwvw TTAKW   

Heat exchange between the condenser and the exter-

nal medium  

)( awwawawa TTAKW   

 

Heat exchange between the liquid and the tube bun-

dle „Pipes‟ 

NWiTTSihiW twvextconv /))(()()( 2111  

 

 )(11 iWW t  

Total power exchanged for deheating, for 
sat
v

e
v hh    

 )(2
sat
v

e
v

e
vt hhmW    

Heat transfer convection coefficients 

The Nusselt correlation is used to calculate the heat 

transfer coefficients convh  between the steam and the 

outside wall of the tube bundle, in the condensation 

zone. 

The heat transfer coefficient between the liquid and 

the wall ( lwK ), the heat transfer coefficient between 

the steam and the wall ( vwK ) and the heat transfer 

coefficient between the steam and the liquid ( vlK ) 

were calculated for flat wall. 
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4. Test-case of the condenser 

4.1. Modelica model of the condenser 

To simulate the complex dynamic physical behav-

iour in normal and dysfunctional conditions of the 

condenser model, a test model called “TestDy-

namicCondenser” has been developed by assembling 

the necessary components from the ThermoSysPro 

library (cf. Figure 6). The test model includes the 

level control system. 

 

 

 

Figure 6:  model of the condenser “TestDynamicCon-

denser ” 

4.2. Data implemented in the model 

All geometrical data were provided to the model: 

tubes and exchangers lengths, diameters, volumes, 

corrective terms for the heat exchange coefficients, 

corrective terms for the pressure losses, etc. The 

plant characteristics are given in Figure 9 (cf. Ap-

pendix). 

4.3. Calibration of the model 

The calibration step consists in setting (blocking) the 

maximum number of thermodynamic variables to 

known measurement values. This method ensures 

that all needed performance parameters, size charac-

teristics and output data can be computed.  

 

For this model:  

 setting (blocking) the cavity pressure to known 

measurement value and the value of corrective 

term of heat exchange coefficient between the cav-

ity and pipes can be computed by model inversion,  

 setting (blocking) the mass flow rate in the pump 

and the characteristics of the pump can be com-

puted by model inversion (a polynomial coeffi-

cient) 

4.4. Simulation scenario 

In order to challenge the dynamic simulation capa-

bilities of the model, a high amplitude transient "loss 

of the cold source pumps followed by a turbine trip 

and a missed islanding" is applied as a simulation 

scenario to the model. The purpose is to study the 

evolution of the pressure of the condenser for this 

type of transient. For this class of transients, the con-

denser pressure should always be less than 5e4 Pa 

(maximum pressure for the availability of the con-

denser). 

This transient is used to check and validate the phys-

ics taken into account in the model and the numerical 

robustness of the model as it runs the condenser 

model into very different operating regimes. This 

allows to assess the validity and applicability range 

of the model equations, and the numerical robustness 

of the Modelica implementation when using Dymo-

la.  

4.5. Boundary conditions of the model 

The boundary conditions of the model (scenario pro-

files) are presented in Figure 7. 

 

 

Figure 7a: input mass flow rate of the steam  

Others data of the model: 
Enthalpy of the LP steam   “1” 2416.6e3 J/kg 

Enthalpy of the HP steam   “2” 2759.6e3 J/kg 

1 

2 

3 

4 

1 2 3 
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Enthalpy of the drain          “3” 228.21e3 J/kg 

Enthalpy of the feed water  “4” 141.75e3 J/kg 

 

Figure 7b: input mass flow rate of the feedwater  

4.6. Results of dynamic simulations 

In order to cover the whole transient, the simulation 

time has been set at 75 seconds. 

 

Simulation runs were done using Dymola 6.1 and 

Dymola 2012, with Dassl solver and with a tolerance 

= 0.0001. The simulation of the scenarios were most-

ly successful, with only one iteration variable to be 

fed manually. 

 

The following phenomena are simulated: 

 local condensation, 

 swell and shrink effect in cavity,  

 cavity water levels. 

 

The model is able to compute:  

 the mass flow rate of the condensate, 

 the thermal power of  the condenser and tubes, 

 the distribution of pressure, temperature and spe-

cific enthalpy inside the tube bundle, 

 the cavity water level and cavity pressure. 

 

The results of the simulation runs are given in Fig-

ure 8. Figures 8a and 8b show the results obtained 

with Dymola. The simulation result demonstrates 

that the maximum pressure in the condenser is less 

than 5e4 Pa as required. 

 

Figure 8a: evolution of the pressure inside the con-

denser 

 

Figure 8b: evolution of the mass flow rate of the con-

densate (--- 1_condm , --- 2_condm ) 

5. Conclusion 

A new open source Modelica library called „Ther-

moSysPro‟ has been developed within the frame-

work of the ITEA 2 EUROSYSLIB project. This 

library has been mainly designed for the static and 

dynamic modeling of power plants, but can also be 

used for other energy systems such as industrial 

processes, buildings, etc. It is intended to be easily 

understood and extendable by the models developer. 

 

A new dynamic model of a condenser has been de-

veloped using existing elements of ThermoSysPro.  

 

4 
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To validate the model, the following difficult tran-

sient was simulated: loss of cold source pumps fol-

lowed by a turbine trip and a missed islanding.  

 

The simulation result shows that the maximum 

pressure in the condenser is less than 5e4 Pa 

(maximum pressure for the availability of the 

condenser) as required by the operation rules. The 

model enables to show that the evolution of the 

pressure inside the condenser strongly depends on 

the value of the condensation mass flow rate, the 

heat exchange between the vapor and the liquid at 

the bottom of the condenser and the thermal loss to 

the ambient.  

Nomenclature 

Symbols 

m  Mass flow 

N  Number of segments for cooling pipes 

  Fluid density 

h  Fluid specific enthalpy 

u  Fluid specific internal energy 

P  Fluid pressure 

T  Fluid temperature 

pc  Fluid specific heat capacity 

V  Volume  

t  Time 

W  Power  

vx  Vapor mass fraction in vapor phase 

lx  Vapor mass fraction in liquid phase 

mvx  Vapor mass fraction in input drain 

iz  Pipe inlet altitude 

  Friction coefficient 

  Friction corrective coefficient 

  Corrective term for heat exchange coef-

ficient 

x  Tube segment length 

S  Heat surface exchange of tube segment 

D  Tube diameter 

A  Tube cross section or heat exchange 

surface 

e  Wall thickness 

  Conduction coefficient 

K Heat exchange coefficient 

M  Mass 

ch  Convective coefficient 

convh  Convective coefficient of heat transfer 

by condensation between the vapor and 

the tube bundle 

ntubes  Number of tubes in the bundle 

 

Indices  

iX  or )(iX  Quantity in volume i 

1: iiX  Flow of quantity between volume i 

and volume i+1 

eX or 
eX  Quantity at inlet 

oX  or 
oX  Quantity at outlet 

lX  Quantity relative to liquid 

vX  Quantity relative to vapor 

wX  Quantity relative to cavity wall 

1wX  Quantity relative to pipes wall 

extX  Quantity relative to external side of 

wall 

aX  Quantity relative to ambient 

satX  Quantity relative to saturated phase 

condX  Quantity relative to condensation 

drainX  Quantity relative to drain  

ldrainX
_

 Quantity relative to drain, for liquid 

vdrainX
_

 Quantity relative to drain, for vapor 
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Appendix 

 

Figure 9:  data of the model 
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Abstract 

Wavelet analysis is being widely used in different 

fields for signal processing to increase efficiency and 

flexibility. A wavelet library has been a standard 

component in many simulation programs. However, 

wavelet analysis has not yet been included in Mode-

lica as a standard component. To fill this blank, a 

comprehensive wavelet library has been developed 

for Modelica. This library includes fifteen commonly 

used wavelet families. It can carry out continuous 

transform, forward and inverse discrete transforms, 

and multi-level decomposition and reconstruction in 

one-dimensional space. In addition, special applica-

tion tools for multi-resolution analysis and wavelet 

denoising are provided. Moreover, some examples 

are given to provide the users a quick start point to 

build up their own algorithms. This library was pro-

grammed and tested according to the Modelica lan-

guage specification 3.2 under the Dymola platform 

version 2013. The test results prove the functional-

ities of the library.  

Keywords: Modelica; Dymola; wavelet; Modelica 

library 

1 Introduction 

Although the wavelet transform has only been estab-

lished for several decades [1][2], it has already been 

applied in many fields because of its superior proper-

ties in signal processing. Besides practical applica-

tions, the wavelet transform is also a versatile tool 

for different simulation problems [3][4][5][6]. So far 

the wavelet transform has become a standard toolbox 

in many free and commercial simulation programs, 

such as Simulink™, Mathematica™, Maple™, Vis-

Sim™ and many others.  

Modelica, as a comprehensive multi-physical simula-

tion tool, has not yet included a library for carrying 

out wavelet transform. However, there exists demand 

for using wavelet transform within Modelica. In 

2005, Bünte and his colleagues analyzed the simula-

tion data of vehicle steering dynamics generated in 

Modelica with the wavelet transform [7]. Because of 

the lack of wavelet transform in Modelica, the analy-

sis had to be done with other software. In the paper 

of Ji [8] in 2010 about a Modelica signal analysis 

tool towards the design of more electric aircrafts the 

authors expressed the wish to do the analysis using 

wavelet transform directly within Modelica.  

The first application for the failure analysis in the 

power system using the prototype of the Modelica 

wavelet library was already introduced in 2012 [9]. 

After the successful development, the final Modelica 

wavelet library is introduced in this article. It in-

cludes the following features. 

• Fifteen wavelet families;  

• Continuous transform;  

• Discrete forward and inverse transforms; 

• Multi-level decomposition and reconstruction;  

• Multi-resolution analysis;  

• Denoising and data compression;  

• User friendly graphic user interface (GUI);  

• Importing simulation data from the hard disk;  

• Fully open source under Modelica License 2. 

 

In the first release version, the library has the follow-

ing limitations. 

• Only one-dimensional transformations are imple-

mented. 

• Only post-processing is possible. The algorithms 

cannot execute in real time applications. 

• The data to be analyzed must be have equidistant 

time grids. 

• The library is developed and tested under Dymola 

2013 demo version. 

2 Wavelet transform 

The basic knowledge about wavelet theory is re-

quired in order to use the wavelet library. In this sec-

tion, a very brief description about the wavelet the-
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ory will be given [1][2]. The theoretical part of [9] is 

roughly repeated here but with improvements for 

better understanding of common readers. 

2.1 Definition 

The wavelet transform can be considered as a further 

development of the Fourier transform, or more pre-

cisely, of the short time Fourier transform (STFT) 

[10]. Using the STFT, people try to localize the sig-

nal changing by selecting suitable time windows. 

This transformation, however, has its inherent draw-

backs. The most significant one is its limit in time-

frequency resolution due to the uncertainty principle.  

The wavelet transform overcomes this problem. This 

transformation is defined as [1]: 

           
 

    
   

   

 
 

          
      

 

  
. (1) 

This equation defines the wavelet transform of the 

function f(t) using wavelet function ψ at scale a and 

position b. The bar above function ψ stands for con-

jugation. For given a and b, the transformation result 

is a single real number, named wavelet coefficient. 

The wavelet function must satisfy some conditions to 

ensure that it is an orthonormal function: 

(1) Zero mean:        
 

  ; 

(2) Unit square norm:           
 

  ; 

(3) Compact support:                 , where 

C is a positive real number. 

(4) Dyadic orthogonality:                  , 

for      
 

         . Here       means in-

ner product of two functions. 

The wavelet function only represents the signal 

components that have zero mean, or high frequency 

components. For the zero and low frequency compo-

nents, a scaling function, which has unit mean value, 

is required. The wavelet and the scaling functions 

with the dyadic scaling and translation parameters 

build a complete orthogonal basis in the Hilbert 

space.  

The precise mathematical description of orthonor-

mality is easily found in almost every book about the 

wavelet transform, e.g. [1] and [2], and will not be 

repeated here. 

From this definition it is known that the wavelet 

transform is the integral of the multiplication of the 

signal to be studied, f, with a wavelet function, ψ. It 

has the same form as the STFT. However, not like 

the STFT, where only sine and cosine functions are 

used for the transformation, the wavelet transform 

uses different wavelet functions, which can be se-

lected according to the specific problems from a 

principally unlimited set.  

Parameter a defines the width and height of the 

wavelet function ψ keeping its unit square norm. If a 

makes ψ narrower, the wavelet represents fast 

changes and the transformation focuses on the high 

frequency components of the signal. Parameter, b, 

shifts the wavelet function along the time axis, so 

that the transform helps us to observe signals at dif-

ferent locations. Using different values a and b, it is 

possible to observe the signal at different positions in 

the time domain and in different frequency ranges 

with only one transformation. 

Two forms of wavelet transform are available: Con-

tinuous wavelet transform (CWT) and discrete wave-

let transform (DWT). In CWT both scale and posi-

tion parameters are continuous real values. The 

transformation result, i.e. the wavelet coefficient, is 

therefore also continuous. CWT expresses the signal 

changes in a continuous manner. It is more suitable 

for the visual examination. However, the transform 

result contains redundant information and the trans-

form requires large calculation efforts. The general 

CWT has no corresponding inverse transformation. 

2.2 Discrete wavelet transform (DWT) 

In the DWT only discrete values of the scale and 

location parameters are used. The values are deter-

mined according to point (4) of the wavelet proper-

ties. The transformation result, i.e. the wavelet coef-

ficient, is therefore discrete.  

As an example, the following figure shows the form 

of the third order Daubechies scaling and wavelet 

functions and their Fourier transforms [1]. 

 
Figure 1: The third order Daubechies scaling and wavelet func-

tions (a) with their Fourier transforms (b) 

 

From the Fourier transforms it can be seen that the 

scaling function mainly covers the lower frequency 

range while the wavelet function stretches in a higher 

frequency range. This coincides with the afore-

mentioned description. From this point of view, 

DWT is actually the division of the time signal into 

different frequency bands. Thus, it is straightforward 

to understand that the calculation of DWT is realized 

Wavelet Library for Modelica

1124 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961123



using filter banks. In inverse DWT the calculation is 

similar. This process can be illustrated with Figure 2. 

 

 
Figure 2: DWT and inverse DWT calculation using filter banks 

 

DWT transforms the original sequence in two new 

series:  

(1) the approximation coefficients, cA(k), represent-

ing the low frequency components, obtained us-

ing the low pass filter for decomposition, hd0, 

and  

(2) the detail coefficients, cD(k), representing the 

high frequency components, obtained using the 

high pass filter for decomposition, hd1.  

The symbol ↓2 means down-sampling. The operation 

is to delete one from every two adjacent coefficients, 

in order to remove the redundant information. The 

inverse DWT carries out the reversed operation. The 

operator, ↑2, expands a coefficient series by inserting 

a zero between every two adjacent elements. After 

that the two series are operated with two filters, re-

spectively, and added together to get the original 

signal. 

2.3 Multi-resolution analysis 

Considering the DWT process shown in Figure 2, 

sequence, cA(k), which represents the low frequency 

components, can be further divided into a lower fre-

quency part and a higher frequency part. This proc-

ess can be repeated and a series of coefficient se-

quences representing different frequency ranges will 

be obtained, as shown in the following figure: 

 

 
Figure 3: Wavelet multi-level decomposition  

This is process is named as wavelet multi-level de-

composition. The output of this operation, cD1, cD2, 

…, cDn and cAn, are different levels of DWT coeffi-

cients, representing the signal components from 

higher to lower frequencies. This analysis provides a 

convenient tool to observe different frequency com-

ponents of the signal depending on time. 

Similar to the calculation process of inverse DWT, if 

the algorithm goes in an inverse direction of Figure 

3, we will get the original signal using the wavelet 

coefficients of different levels. This process is called 

signal reconstruction.  

Applying multi-level decomposition, we can project 

a signal into a sequence of nested subspaces. We are 

then able to observe the original signal in different 

subspaces that contain different details of the signal. 

This realizes the multi-resolution analysis (MRA) of 

the signal using wavelet transform. 

3 Realization 

The wavelet library is developed according to the 

Modelica Language Specification 3.2 with the simu-

lation environment software, Dymola 2013 (32-bit) 

demo version. Although the Dymola demo version 

has limitations on the complexity of simulation mod-

els, it does not impose any limitations in program-

ming. 

3.1 Library structure 

The wavelet library structure is sketched in Figure 4.  

 

 
 

Figure 4: Wavelet library structure 

 

The whole library is composed of eight packages and 

64 single classes, plus an external C-file to support 

generating Meyer wavelets. All of these elements are 

summarized in four parts as shown in the figure. 

The central part of this library is the package “Trans-

form”, which includes the functions carrying out dif-

ferent wavelet transformations.  

The part “General classes” provides a fundament for 

realizing the wavelet transforms and other opera-

tions, as shown in the bottom part of the above fig-

ure. Four packages are included in this part. They are  
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 “Wavelet Families” for generating wavelet filter 

banks and functions,  

 “General Functions” for the basic data operation 

and processing,  

 “Records” for the definition of data structures and 

supporting GUI, and  

 “Types” to define enumeration parameters. 

Two wavelet applications – MRA and denoising –  

are provided. It should be noted that the wavelet de-

noising package can also be applied for the data 

compression since these two operations use the same 

concept and algorithm [2]. 

In addition, the package “Examples” consists of 

functions and models for six examples to provide the 

users a quick introduction to the wavelet library. 

3.2 Wavelet library release 

The functional part of this library consists of only 

two files: 

 “Wavelet.mo” as the main library package to in-

clude all Modelica codes, and 

 “fft_c.c” as an external C-function to calculate 

Fourier transform for generating Meyer wavelets. 

Two example data files, testSignal1.mat and testSig-

nal2.mat, are delivered, although they could be very 

easily generated by running the two example models 

in the library.  

In addition, a “Help” folder including all descriptions 

of this library is also a part of the delivery. 

3.3 Required components 

Besides the Modelica standard libraries, the full per-

formance of this library relies on two further librar-

ies, Modelica_LinearSystem2 and Plot3D. The 

former one is a free library available from Modelica 

Association. The latter one is delivered with Dy-

mola, and is only used for showing CWT results. In 

the free demo version of Dymola, Plot3D works but 

is limited to two-dimensional images. 

3.4 Wavelet families 

Fifteen wavelet families are available in this library. 

 Haar  

 Daubechies , up to the 20-th order 

 Symlets , up to the 20-th order 

 Coiflets , up to the 5-th order 

 Biorthogonal spline, 15 variations 

 Reverse biorthogonal spline, 15 variations 

 Discrete Meyer  

 Meyer  

 Gaussian , up to the 8-th order 

 Mexican hat  

 Morlet  

 Complex Gaussian , up to the 8-th order 

 Complex Morlet  

 Complex Shannon  

 Complex frequency B-Spline , unlimited order 

 

The package “Families” consists of fifteen functions 

for the wavelets listed above. Two more functions 

that are directly related to wavelet families are also 

included: “scalingWaveFunc” for generating the 

wavelet and scaling functions of a specific wavelet, 

and “wavFunc” providing a common entry to access 

all fifteen wavelets. 

3.5 Wavelet transform 

Five variations of one-dimensional wavelet trans-

form have been implemented in the library. The re-

lated functions are included in the package “Trans-

form”. 

CWT is provided with two variations for more flexi-

bility. One CWT variation accepts a wavelet name 

while the other one accepts a wavelet function as the 

input parameter. According to the wavelet theory, no 

inverse transform exists for general CWT. 

For the discrete version, both forward and inverse 

wavelet transforms are possible. They are realized 

with two Modelica functions, respectively. 

In the discrete domain, the multi-level data decom-

position and the reconstruction are carried out by 

actually applying the discrete wavelet transform and 

inverse transform in a cascaded manner. The algo-

rithms are implemented by two Modelica functions, 

“wavDec” and “wavRec”, respectively.  

In addition, two more functions are included in this 

package, too, since they are closely related to the 

transforms. Function “wavRec1” reconstructs the 

data using only the wavelet coefficients of one spe-

cific level. This is actually a subset of multi-level 

reconstruction. The other function “wavCoef1” is 

used to extract the wavelet coefficients of a certain 

decomposition level. These two operations are spe-

cially useful for wavelet applications, such as MRA 

and denoising. 

3.6 Applications 

The wavelet library provides two applications, the 

MRA and the denoising, which are supposed to be 

the mostly used functionalities for processing the 

simulation data. 
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The principle of the wavelet MRA has been de-

scribed in section 2.3. With this tool the user is able 

to divide the signal into different scales, or frequency 

regions, and observe the signal with different resolu-

tion. Using different Modelica functions, users can 

get the MRA results either in the numeric form or in 

the graphic form with curves. In addition, this tool 

provides the flexibility to tune the coefficients of 

every single level, so that the user can intentionally 

strengthen or suppress the information in some cer-

tain levels. An example of MRA is to be given later 

in this article. 

Like MRA, the wavelet denoising is carried out 

based on wavelet multi-level decomposition and re-

construction. The wavelet denoising is suitable only 

for data with high signal-to-noise ratio. Based on this 

condition, the wavelet coefficients representing the 

noise have smaller values compared with those rep-

resenting useful information. By removing these 

small coefficients, the noise can be eliminated from 

the data. The threshold to separate the noise and the 

information coefficients is the key to this algorithm. 

It can be selected by the user or automatically esti-

mated by the tool. It has to be noted that, if auto-

matic estimation is used, the noise in the data must 

have Gaussian distribution with zero mean and unit 

standard deviation. 

As an extra possibility, data compression can be real-

ized by the denoising application tool since these two 

operations are actually based on the same algorithm. 

For more information about this topic, relevant lit-

eratures, such as [1] and [2], can be referred to. 

3.7 Graphical user interface 

A graphical user interface (GUI) is important for a 

user-friendly environment in this library. The GUI is 

mainly realized by using Modelica “Types” combin-

ing the simulation environment software for inputs 

and diagrams for outputs.  

By combining the GUIs for input and output, a very 

simple but convenient interactive operation is possi-

ble. It is also possible to realize more complex and 

user-friendly interactive performance using specific 

scripts written by users. 

3.8 User’s guide 

A complete User’s Guide in PDF format with a de-

tailed description of every single class in this library 

is delivered in the release version. In addition, a 

“Help” folder is included in the delivery package. 

This folder contains HTML files with hyper-links.  

Within the library, no separate package serving as a 

User’s Guide is provided since all related descrip-

tions about the Modelica classes, including Pack-

ages, Models, Functions, Types and Records, have 

already been embedded in the library. These descrip-

tions can be easily accessed in the simulation envi-

ronment software. Hyper-links are included in the 

description texts for quick movement among the li-

brary to access the information from different 

classes. 

4 Testing the library 

The algorithms of this wavelet library were com-

pletely tested with the black-box method. Testing 

vectors have been defined for each algorithm. The 

function outputs were checked visually and numeri-

cally. The numeric check was carried out with the 

assistance of MATLAB because most algorithms 

written in the Modelica wavelet library are included 

in the MATLAB wavelet toolbox. For these algo-

rithms, the same input parameters were given to the 

functions of the Modelica wavelet library and the 

corresponding commands in MATLAB. The calcula-

tion results of both tools were compared. An algo-

rithm of the library is considered correct if the de-

crepancy is below a certain limit. 

All testing results were recorded and summarized. 

As an example, Table 1 shows the summary of the 

testing results of the function “Wave-

let.Families.wavCoiflets”, which is used to generate 

the wavelet filters associated with Coiflets wavelets.  

 

Table 1: Testing recording for Wavelet.Families.wavCoiflets 

order F lod hid lor hir Result 

1 - - - - - Error = 0 

2 - - - - - Error = 0 

3 - - - - - Max. error < 1e-16 

4 - - - - - Max. error < 1e-16 

5 - - - - - Error = 0 

 

The first six columns of the table records the input 

and output values of the function. Since the data 

amount of the output values is too large, the data are 

stored in a separate file. The last column “Result”, 

records the errors of the outputs obtained by the 

Modelica function under test compared with the data 

calculated by the same algorithm written in MAT-

LAB.  

All other functions in the library were tested with the 

same process and altogether 133 numeric testing re-

sults were recorded. The errors are illustrated in Fig-

ure 5. Since the values are shown in logarithm axis, 
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the first 58 points with zero value are not plotted. 

The testing showed that the more than half of the 

tests have the errors below 2e-16, which is around 

the digital error of a double precision floating num-

ber. Other errors with the values up to 5e-14 might 

be caused by the precision of the direct constant 

numbers and difference in details of the coding in the 

algorithms.  

 
Figure 5: Error distribution of the testing results 

 

In addition, visual checks were carried out for all 

functions that have graphical inputs and outputs. All 

results coincided with the specifications. For the 

functions outputting curves and images, the graphic 

data are actually numerical results and also tested 

numerically. 

5 Examples 

In this section, we take two examples to partially 

show the usage and functionalities of the new Mode-

lica Wavelet Library in the simulation environment, 

Dymola. 

5.1 The signal under study 

The signal under study is defined in equation (2).  

 

         

    
                

                    
   

    
                    
                

   

(2) 

 

It is a time-variant signal containing two frequencies, 

10 and 50 Hz. At time t = 0.5 s, the magnitudes of 

the two frequency components alternate. Signal y is 

generated with the Modelica model “testSignal2” in 

the package “Examples” of the wavelet library. It is 

shown in Figure 6. 

t (s)

y

y1

y2

 
Figure 6: The signal under study for the examples 

 

Since the wavelet transform can only be correctly 

performed with an equidistant time grid, the simula-

tion data should be stored with an equidistant time 

grid. Otherwise, the data have to be converted to 

equidistant time grid with the library function “in-

terpL” before applying wavelet transform. In the ex-

amples, this is ensured by setting the sampling fre-

quency “fs” to a none-zero positive value. 

5.2 Wavelet multi-resolution analysis 

Firstly we carry out an MRA using the wavelet li-

brary to observe the signal around the transient time, 

t = 0.5 s with different resolutions. This is done by 

executing the function “fileDataMRA” in the pack-

age “Examples”. Most of the input parameters can be 

left at default values except the following ones: 

 Time range for analysis is set as t0 = 0.25 and t1 

= 0.75 since we are only interested in the tran-

sient region; 

 Sampling frequency fs = 480, so that the highest 

frequency in the testing data is 240 Hz (fs/2); 

 Nd = 7 in the wavelet definition “wd” to select 

the 7-th order Daubechies wavelet; 

 decLevel = 3 in the MRA parameters 

“mraParameters” for carrying out a three level 

wavelet decomposition; and 

 rA = 0 in “mraParameters” to remove the lowest 

frequency components in the reconstructed sig-

nal. 

 

After execution, we get eight curves displayed in two 

diagrams in Dymola. In the first diagram, the origi-

nal signal and the data in the approximation level 

and three detail levels are displayed. They are shown 

here in Figure 7. 
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Figure 7: The original signal and decomposed data 

 

The x-axis of the diagram shown in Dymola is given 

in data point. There are 240 data points; and the 

symbol of the original data is shown as “u” instead 

of “y”. 

The wavelet decomposition in this MRA separates 

the original signal into four time series containing 

different frequency components. This is illustrated 

with Figure 8. 

fs
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fs
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fs
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16
0

Magnitude

f

D1D2D3A3

 
Figure 8: Separation of the frequency components with three-

level wavelet multi-resolution analysis 

 

Since the sampling frequency is fs = 480 Hz, we 

know that the 10 Hz component of the original signal 

is projected into level A3 and the 50 Hz component 

falls in D3. From Figure 7 we also see some oscilla-

tions in level D2. This is because the wavelet de-

composition does not realize perfect frequency sepa-

ration. Furthermore, some peaks in level D1 repre-

sent the frequency transient and edge effect, which 

imply fast changing events. 

The second half of the MRA in this example is data 

reconstruction after the tuning of the wavelet coeffi-

cients. This is shown with four curves in the second 

diagram, which is not repeated in this article. Since 

we have set rA = 0, meaning to remove the informa-

tion in the approximation level, which mainly con-

tains the 10 Hz component, the reconstructed data 

mainly contains the 50 Hz component, as shown 

Figure 9. We can see that this signal is almost identi-

cal to the middle part (0.25 – 0.75 s) of signal y2 in 

Figure 6. 

 

 
Figure 9: The reconstructed data after removing the approxima-

tion coefficients in wavelet MRA 

5.3 Continuous Wavelet Transform 

The second example demonstrates CWT for the 

same signal as shown in Figure 6. By executing the 

function “fileData_cwtn” without changing any de-

fault parameters we can get the CWT result illus-

trated with a 2-dimensional image or a 3-

dimensional surface, depending on the version of 

Dymola used. The image with pseudo-colour is 

shown in Figure 10. 

 
Figure 10: Continuous wavelet transform of the signal under 

study 

 

The coefficients are shown with warmer colours 

(yellow-orange-red) for larger magnitudes and colder 

colours (green-light blue-dark blue) for smaller mag-

nitudes. The horizontal axis represents the time from 

0 to 1 second. The vertical axis represents the wave-

let scales from 1 to 64. The relationship between 

scales and frequencies is determined by both the 

sampling frequency of the data and the wavelet used. 

By observing this CWT image we can draw several 

conclusions: 

 The frequency transient happens at t = 0.5 s. 

 Both low frequency components (here 10 Hz) and 

high frequency components (here 50 Hz) are pre-

sent throughout the time span of the signal. 
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 Before 0.5 s low frequency components are much 

stronger than the high frequency components. 

This reverses after 0.5 s. 

6 Conclusion 

This article describes a new wavelet library devel-

oped for Modelica. This library contains fifteen 

wavelet families commonly used in research and en-

gineering applications, continuous wavelet trans-

form, discrete wavelet transform both in forward and 

inverse directions, two application tools and several 

examples. In addition, the library provides graphic 

user interfaces for some functions to support a user-

friendly workflow. Moreover, it includes documenta-

tion embedded in the library, plus an external user’s 

manual.  

During and after the development work, black-box 

testing was carried out for all algorithms. The testing 

results have proved the correctness of the library.   

The first release of this Modelica wavelet library is 

limited to one-dimensional wavelet transforms for 

post-processing of the simulation data. Several 

wavelet calculations, such as wavelet packet and 

two-dimensional transform, are not yet included. 

This could be gradually added in the future. Never-

theless, the introduction of this wavelet library will 

definitely enrich the functionality of Modelica and 

contribute much to the Modelica society. 
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Abstract

This paper describes a new approach to sizing an
electric drivetrain, including its power supply. The 
advantages of a real battery testing system are com-
bined with the advantages of a Modelica model of a 
product. A testing system analyzes battery perfor-
mance under specific constraints such as differing
temperatures, vibrations and humidity. Since these
constraints are hard to replicate in a model, an exper-
imental rig is an optimal solution for battery tests [1]. 
Virtual engineering of a real system is advantageous
in terms of the speed of modifications, the measure-
ment of all relevant data and the low cost of devel-
opment. The coupled virtual model and experimental
testing rig for batteries constitute the basis for this 
new concept and improve the development of the 
electric powertrain.
Keywords: battery, hardware-in-the-loop, real-time

1 Introduction

Mobile applications are increasingly using electric 
power supplies, which have to be sized optimally. 
Electric vehicles are stimulating the development
and optimization of future drivetrains. Their physical 
and temporal range is very important.
This study focuses on one of the main components, 
the power supply. Batteries are normally tested in 
test rig environments. The advantages of an experi-
mental rig are its versatility, e.g. for climate tests, 
vibration tests and discharge tests. One of its most 
important features its safety for operators and the
environment. Tests of batteries installed in real vehi-
cles or equipment involve various safety issues and 
unforeseen conditions or defects can cause injuries 
or other safety-critical situations.

Figure 1: Hardware-in-the-loop with a real battery

Since current battery models are often incomplete or 
only describe properties in certain areas, the ad-
vantages and potentials of real test environments also 
ought to be factored into the modeling of mobile sys-
tems and, specifically into the modeling of electric 
drivetrains.

2 The Experimental Vehicle RAVON

Since detailed data from vehicle manufactures was 
unavailable for the development of the methodology
presented here, the AWD off-road vehicle RAVON 
(Robust Autonomous Vehicle for Off-road Naviga-
tion) developed by the Technical University of Kai-
serslautern, Germany was used as the test subject.

Figure 2: The autonomous vehicle RAVON
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This unmanned electric vehicle is normally used as a 
test object to study autonomous, behavior-based 
strategies for motion adaptation, localization and 
navigation in rough outdoor terrain. Equipped with 
four synchronous wheel hub motors and four batter-
ies, the vehicle can be used under a variety of tem-
perature, humidity and terrain conditions. The elec-
tric vehicle is powered by eight 12V batteries with a 
total voltage of 48V. This power supply must be ad-
equate for the entire task.
Since the data needed to create a mechatronic model
of RAVON (e.g. CAD data, drivetrain and control 
parameters and battery specifications) were available 
in advance, modeling with Modelica could start im-
mediately.

3 The Modeling Procedure

The RAVON’s CAD data are available in STEP
format. These data are the basis for the mechanical 
parts of the chassis with interfaces to other physical 
domains in Modelica. The Fraunhofer Institute for 
Factory Operation and Automation IFF in Magde-
burg has an automated CAD-to-simulation procedure 
that effectively converts CAD data into Modelica 
description [2].

Figure 3: Modelica model generated semi-
automatically from CAD data

The program’s database contains XML data on the 
mechanical model’s physical and kinematic proper-
ties (masses, moments of inertia, joint constraints, 
etc.) as well as triangulated VRML geometry export-
ed directly from the CAD system. Since it also sup-
ports closed kinematic loops, this new procedure also 
makes it possible to model any complex mechanical
system efficiently.

3.1 RAVON Subsystems

The virtual RAVON platform must communicate 
with a real battery test rig in real time. Apart from
incorporating the semi-automatically generated chas-
sis model, the most demanding task was modeling
the entire electric drivetrain so that it is real-time 
capable. The uppermost vehicle model was decom-
posed into two Modelica subsystems, Chassis and 
Drive (see Figure 4).

Figure 4: Modeled subsystems of RAVON

The virtual parts of the Drive model can be matched 
with their real counterparts. A Huebner HAC 71.11.6
permanent magnet synchronous induction machine 
and a CycloDrive 6000 planetary gear are mounted 
in each wheel-hub model. The electrical machines 
were parameterized in Modelica using real manufac-
turer data. A DC interface to a common external 
power supply was also included.
The drive subsystem of a single wheel with the 
DC/AC converter and the motor controller is pic-
tured in Figure 5.

Figure 5: Controlled wheel-hub motor model
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The motor controller model is based on a conven-
tional cascade structure with an outer speed control 
loop and an inner current control loop. PI controllers
with limited outputs are used in both cases. Since the
real-time capability had top priority, some simplifi-
cations were made in the model of the motors’ power 
electronics, among others. Since they would not in-
fluence the model’s accuracy significantly, fast 
PWM signals were not included. The torque control 
algorithm is based on field-oriented vector control
[3]. The controller parameters were selected to attain
maximum speed with minimal overshoot. 

4 Battery Testing System

This study aimed to utilize a real battery testing sys-
tem in order to integrate a real battery’s complex 
behavior in early stages of product development.
Rather than using a real product prototype to record 
battery charging profiles, a virtual prototype is in-
corporated in the workflow. A real testing rig can be 
used to swap energy bidirectionally between the vir-
tual model and the real battery, depending on the 
prevailing conditions.

Figure 6: FuelCon battery testing system

Since the Modelica model provides the load for a 
real battery, its performance can be analyzed dynam-
ically. The testing system from the company Fuel-
Con allows users to set different environmental pa-
rameters such as ambient pressure, temperature, at-
mospheric humidity and movement. Various types of 
batteries, e.g. lithium-ion, lithium-polymer, NiCd, 
NiMH or lead-acid, can be tested with this testing
system. The Evaluator-B series battery testing sys-
tem has an interface that is connected with external
current profiles [4]. The methodology developed 
here with the virtual vehicle model uses this function 
to repeatedly supply actual current and receive the 
battery voltage.

5 Integration of the Real Testing Sys-
tem in a Hybrid Simulation

The objective of this study was to integrate a real 
battery testing environment in a hardware-in-the-
loop simulation setting. Battery voltage and comput-
ed electric current signals must be exchanged bidi-
rectionally during a test run. The testing system is 
equipped with load and charger electronics. This 
makes it possible to charge or discharge the batteries
depending on prevailing electric currents. Dynamic 
processes such as current peaks can also be analyzed
with this approach. 

5.1 Software Interfaces

The FuelCon testing system’s operator interface uti-
lizes Visual Basic (VB) scripts running in an embed-
ded Windows environment. The Fraunhofer IFF de-
veloped the COMsigate interface to extend the oper-
ator interface’s range of functions. The COMsigate
software module employs the User Datagram Proto-
col (UDP) for communication between the testing 
system and the outside world.
The main VB script runs in a loop during battery-
coupled hardware-in-the-loop tests. It reads the actu-
al battery voltage (U) and can set a new electric load 
(I) every 10ms in keeping with the latest UDP packet 
received through the COMsigate.
Matlab/Simulink was incorporated in the tool chain
because of its excellent interoperability and ad-
vanced toolboxes [5]. Its UDP communication 
blocks were used to transmit the battery signals U
and I bidirectionally through the COMsigate inter-
face. In addition autonomous driving course profiles, 
the vehicle model can also be interactively controlled 
with a joystick module that enables users to define 
own test cycles in Matlab.

Figure 7: Tool chain of the hybrid simulation of 
RAVON with a real battery in a test rig
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The Fraunhofer IFF developed the Real Time Inter-
face (RTI) to support real-time communication be-
tween heterogeneous software applications [6].
RTI’s shared memory is used to exchange battery
charge states and reference speed signals between
Matlab/Simulink and the Dymola simulator [7] run-
ning the RAVON model.
The reference vehicle speed and the axles’ steering 
movement are supplied to Dymola. Each electric 
drive is controlled separately. The vehicle’s accelera-
tion is determined by the electric current in the re-
spective motors. The virtual supply voltage is the 
value of the real battery measured in the test rig. 
Thus, the real battery’s performance influences the
simulated vehicle’s electric power.

6 Results

The first tests revealed that the dynamic processes 
between the battery testing system and the vehicle
model reflect the theoretical considerations. The first 
example (Figure 8) presents a battery performance 
test using a static power consumption scenario. The 
model vehicle had to travel at a constant reference 
speed. Decreasing voltage increases the demand for
electric current as the battery discharge. Since the 
mechanical power demanded is constant this phe-
nomenon can be explained by the electric power bal-
ance equation: ܲ = ܷ ∙ .ܫ

Figure 8: Discharging at constant travel speed

The actual speed remains constant until the maxi-
mum current is reached, which is defined by the bat-
tery. From this point onward, the vehicle’s speed
cannot be kept constant and decreases. Afterward,

the electric current reaches a constant value and the 
battery voltage continues to fall.
The results presented in Figure 9 depict forward and 
backward acceleration and deceleration maneuvers
with sudden stops. The battery’s demand for current
increases during the acceleration phase and the bat-
tery’s voltage drops temporarily. The current peak 
when the electric motor switches from loading to
braking is evident. Such current peaks during charg-
ing and discharging can affect a battery’s life and 
also influence a battery’s state of charge. 

Figure 9: Analysis of dynamic behavior

A continuous and rapid change of direction was in-
vestigated in the next test scenario. Electric current 
and voltage propagation were analyzed. Fig-
ure shows the rate of speed as well as the related
current and voltage. 

Figure 10: Continuous and rapid changes of direction
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The current peaks in the case presented here are 
many times higher than those in the test scenario in
Figure 9. 

7 Conclusions

This paper describes a novel hardware-in-the-loop 
approach to connecting mobile mechatronic system
models with a real battery testing system. It can be 
used to test the entire system’s energy balance under 
realistic conditions. This makes it possible to per-
form stress and durability tests without having to 
build complex prototypes first. Battery size and the 
product’s electromechanical properties can be opti-
mized. As a result, product development is expedited
and validated by early testing. This approach is suit-
able for more than just electric vehicles. It can also
be applied to all types of battery-powered devices 
with higher power requirements.
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Abstract 

In this poster the Modelica Systems Physics library is 
presented. The Systems Physics library is a free 
open-source library with models for different areas 
of physics [1]. The primary use of the library is for 
educational purpose in Physics courses at medium 
level. 

The library contains models from five different 
domains (hydraulics, translational and rotational me-
chanics, electrodynamics and thermodynamics). In 
the future, we plan to add chemistry as a sixth do-
main. Each domain contains connectors containing a 
substance-like quantity and the corresponding poten-
tial; basic models (capacitance and resistance); sen-
sors and actuators as well as some domain specific 
elements, such as nonlinear accumulator, nonlinear 
resistors, valves, springs or inductances. In addition 
to the constitutive equations each model also com-
prises the energy balance. For example, dissipative 
elements calculate the loss energy and even the en-
tropy production with the help of an additional ther-
modynamic connector. 
Keywords: physics; education; system dynamics 

1 Introduction 

Systems Physics is a novel approach to physics with 
which beginners are able to grasp the fundamental 
concepts underlying processes in nature and technol-
ogy [2]. It is based on everyday concepts known 
from fluids which are familiar to everybody. The 
analogy between physical quantities and fluids offers 
a very intuitive approach to physics [3]. The power-
ful pictorial modeling offered by Modelica helps 
students to understand basic physical processes. 

Moreover, here is an immense number of prob-
lems that can be addressed by this approach which 
are usually not included in the standard physics text-
books at undergraduate level. With the help of this 
Modelica library, students are able to model rather 

complicated physical systems (e.g. friction) with lit-
tle mathematical knowledge. 

In the first two semesters at the ZHAW School of 
Engineering students learn the modeling concept of 
system dynamics with Stella or Berkeley Madonna. 
Thereby they learn the basic structures and formulas 
(balance equation, constitutive laws and the energy 
carrier concept) of physics. The Systems Physics li-
brary could then be used in subsequent semesters in 
order to deepen this knowledge. 

Systems Physics combines the modeling concept 
of System Dynamics with a unified description for 
all branches of classical physics known from Bond 
Graph theory [4]. Our concept of energy carrier is 
similar to that of the Bond Graph theory. But there is 
a crucial difference. In Bond Graph theory, force and 
torque are potential quantities (effort quantities) and 
the kinematic variables velocity and angular velocity 
are seen as flow quantities. In Systems Physics how-
ever, this approach is not possible because force and 
torque are part of the balance equation and velocity 
and angular velocity are the “driving force” for the 
appropriate currents. Therefore force and torque are 
flow variables and the two velocities are effort or 
potential quantities.  

In our model based approach students start by 
formulating the balance of a fundamental quantity 
(bathtub-thinking for volume, mass, electrical 
charge, momentum, angular momentum, entropy or 
amount of substance). Then they have to specify the 
currents and the rates of change (feedback-thinking). 
On a second layer they can add the balance of energy 
(bookkeeper-thinking). 

Our vision of a new physics course for engineers 
or natural and medical scientists covers system dy-
namics modeling in the first year and object-oriented 
modeling in the following years of studies [5]. 
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2 Structure 

The systems physics library includes the domains 
hydraulics, electrodynamics, translational mechanics, 
rotational mechanics, thermodynamics and chemis-
try. Each domain includes a substance like quantity 
and a corresponding potential. All connectors are 
constructed according to this basic structure (Table 
1) 

In all branches of physics there are many differ-
ent storage systems such as tanks, plastic bottles, 
capacitors, moving or rotating bodies, heat accumu-
lators. For each storage system we can write down  
two balance equations: one for the basic quantity M 
(volume, electric charge, momentum, angular mo-
mentum, entropy); and one for the Energy W. The 
balance equations for M and W are given by  

(1)

(2)

=

=

∑

∑

i

i

M
i

W
i

dMI
dt

dWI
dt

 

where IM are substance currents and IW are energy 
currents. For the entropy balance equation a produc-
tion rate ΠS is introduced in addition to entropy cur-
rents. 

The domain specific potential ϕM (pressure, volt-
age, velocity, angular velocity and absolute tempera-
ture) connects the current for the basic quantity with 
the energy flux 

(3)ϕ=W M MI I  
A Model with two ports and a conserved quantity 
(ideal volume, electric charge, momentum or angular 
momentum) contains at least one equation for con-
servation and one for the power 

1 2 0 (4)
(5)ϕ

+ =
= ∆

M M

M M

I I
P I

 

These equations are formulated in separate partial 
models. In thermodynamics we need two different 
partial models, one for heat conductance which con-
serves energy 

1 1 2 2 0 (6)+ =S ST I T I  
and one for ideal heat engines which conserve entro-
py 

1 2 0 (7)+ =S SI I  
An additional equation calculate the production of 
entropy in the partial model for heat conductance 

1 2 (8)+ = ΠS S SI I  
or the power in a partial model for ideal heat engines 

1 (9)= ∆ SP TI  

Ideal heat pumps are modeled similar to hydraulic 
pumps: in the same way as a hydraulic pump pumps 
water or oil heat pumps pump entropy. This is one of 
the main messages of Systems Physics. 
Table 1: flow and potential variables in the different 
domains of Systems Physics 
domain quantity potential 
hydraulics volume pressure 
electrodynamics charge voltage 
translational  
mechanics 

momentum velocity 

rotational  
mechanics 

angular  
momentum 

angular  
velocity 

thermodynamics entropy temperature 

2.1 Hydraulics 

The volume of an incompressible fluid is the basic 
quantity in hydraulics and pressure is the associated 
potential. Because pressure multiplied by volume 
flow equals the flux of energy, the conservation of 
energy is guaranteed. 

The hydraulics library includes different storage 
elements like open vessels, spring-loaded tanks and 
other accumulators, pipes with laminar and turbulent 
flow characteristics as well as various valves. The 
inertia of the fluid flowing through the pipe is re-
sponsible for the inductive effect. In all three system 
categories (capacitance, resistance and inductance) 
the stored or dissipated energy is calculated. In an 
additional resistor element, the entropy is recalculat-
ed and is connected by a thermal connector. The 
temperature of this connector determines the viscosi-
ty of the fluid. 

Two ideal pumps are modeled, one with a signal 
input for pressure difference and one with a signal 
input for the volume flow rate. In addition, the li-
brary contains sensors for pressure and volume flow. 

2.2 Electrodynamics 

The electrodynamics library based on the Modelica 
standard libraries with capacitor, resistor, diode and 
inductor. In addition, an isolated metal sphere is 
modeled for charge storage in experiments with high 
voltage. 
The energy balance is calculated in all elements. 
This calculation is made for didactic purpose 
and for energy check in complex systems. A re-
sistor with a thermal connector wherein the en-
tropy is calculated enables the modeling of elec-
tro-thermal elements such as resistance heating 
or light bulb. 

Systems Physics Library
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2.3 Mechanics 

The mechanics library includes two parts: one for 
motion along a straight line and one for rotation 
around a fixed axis. Therefore, the associated quanti-
ties momentum and angular momentum can be treat-
ed as scalars. The similar statement is true for the 
associated potentials (velocity and the angular veloc-
ity). The tight separation of the balance equation for 
momentum or angular momentum from kinematics 
has some implication: mass and moment of inertia 
have only one connector and distance or angle can 
only be calculated in elements that describe the flow 
of momentum or angular momentum. 

In addition to the linear systems some more ele-
ments, such as friction, air resistance or elastomer 
spring are modeled. An ordinary rope or string is a 
further element often used in physics instruction. It is 
modeled as a spring-damper-system with predeter-
mined breaking point. As in hydraulics and electro-
dynamics some elements for momentum or angular 
momentum flow are provided with a heat connector. 
The produced entropy is calculated and the tempera-
ture has an influence on the constitutive laws of the-
se elements. 

 
Figure 1: A model of an Atwood machine with two 
weights and bearing friction. The symbolic earth 
with five connectors for the flow of volume, momen-
tum, angular momentum, electric charge and entropy 
stands for the surrounding. 

The mass element has a momentum source which 
strength corresponds to the tangential component of 
the weight force. A further element contains the 
equation for the relativistic mass. In this element, 

energy and momentum are connected with the help 
of the famous Einstein equation. The model of a 
simple rocket engine completes the model zoo, alt-
hough this element belongs to the open systems, 
which are not included in this library. Figure 2 shows 
the velocity-time behavior of a rocket another system 
that can be easy modeled with our approach. 

 
Figure 2: Velocity-time-diagram of a rocket ascend-
ing in an isentropic atmosphere with constant gravi-
tational field 

Translational and rotational mechanics are con-
nected to each other by means of pulleys. The corre-
sponding model has four connectors, three for trans-
lation and one for rotation. With two bodies, two 
strings, a pulley and a bearing friction, we can model 
Atwood's machine (Figure 1). 

2.4 Thermodynamics 

If we take entropy as the basic quantity of thermody-
namics it’s easier to write down the correct equations 
than if we take the energy as a conserved quantity 
[6]. However, for the equations themselves, it does 
not matter whether we start from the energy or from 
entropy as we have shown in the introduction. There 
are two different models which specify the transport 
of heat, the heat conduction and the ideal heat en-
gine.  

We describe homogeneous systems, which are 
heated at a constant pressure, with the state variable 
enthalpy H. Enthalpy is a special form of energy and 
a thermodynamic potential. Although entropy flow 
and temperature are calculated in the connector, this 
is no problem with respect to the balance equation 
for energy 

 (10)=S
dHTI
dt

 

More generally, a homogeneous thermodynamic 
system can at least change entropy and volume. 
Therefore the system has temperature and pressure 
as two associated potentials. To discuss and model 
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such a system we have developed the Carnotor, a 
simple machine with a thermal and a hydraulic con-
nector (Figure 3). Carnotor is a portmanteau com-
posed of Carnot and Motor (German word for en-
gine). 

The Carnotor consists of a double-acting cylinder 
filled with the substance to be examined on one side 
of the piston and an ideal fluid on the other side. To 
each port we can add a pump, a closing-off or a big 
storage tank. With this equipment students can ana-
lyse all four basic processes of thermodynamics (Ta-
ble 2). 

The corresponding model calculates pressure and 
temperature from the change of volume and entropy. 
For the ideal Gas, the constitutive laws are as follows  

0
0 0

    ln   ln ; (11)
2

V f TS S nR nR
V T
   

= + +   
     

(12)pV nRT=
 

f stands for the degrees of freedom of gas molecules , 
n for the amount of substance and R for the gas con-
stant. Equation (12) is known as ideal gas low. 

Table 2: The four basic processes in thermodynamics 

process heat 
port 

hydraulic 
port 

unchanged 

isochoric heat 
pump 

closing-off volume 

isobar heat 
pump 

storage 
tank 

pressure 

isentropic closing-
off 

hydraulic 
pump 

entropy 

isotherm storage 
tank 

hydraulic 
pump 

temperature 

 
 

 
Figure 3: The Carnotor has two ports, one for heat 
and one for an ideal fluid. Both ports can be com-
bined with a closing-off, a storage tank or a pump 

 

 
Figure 4: This system contains four models for ideal 
gas, two ideal heat pumps, two ideal hydraulic 
pumps, a heat flow and a volume flow element. 

The Carnotor can be taken as the core element for 
a lot of thermodynamics engines. Figure 4 shows a 
model with which one can simulate all four basic 
processes simultaneously 

3 Conclusions 

Systems Physics provides a consistent, coherent and 
relevant structure of physics. A huge number of dy-
namical systems can be modeled with the same heu-
ristic approach. The equation of balance for sub-
stance-like quantities like volume, mass, electric 
charge, momentum, angular momentum and entropy 
yields the backbone for such models. By adding the 
constitutive laws for accumulators and conductors 
we get the basic equations. In a third step we can add 
energy as a second substance-like quantity. The en-
ergy balance analysis is often useful but not neces-
sary for simple systems. But energy conservation 
becomes an inevitable requirement in more complex 
systems like thermodynamic accumulators. 

Systems Physics has been developed on the basis 
of the Karlsruher Physikkurs [7] and taught in differ-
ent physics courses at Zurich University of Applied 
Sciences.  

With the help of the Systems Physics library we 
hope that we can convince more and more teachers 
of the usefulness of this method. A countless number 
of dynamic models are waiting to be modeled with a 
System Dynamics or a Modelica tool. 

On Youtube you can find some tutorials on spe-
cific topics of the Systems Physics library [8] 

Systems Physics Library
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Abstract

Omni wheel is defined as one having rollers along its
rim. Respectively omni vehicle is one equipped by
omni wheels. Several steps of development of dynam-
ical model of the omni vehicle multibody system are
implemented. Essential parameters of the model: (a)
number of rollers per the wheel, and (b) angle of the
roller axis inclination to the wheel plane, are intro-
duced. Initially, dynamics of the free roller moving in
a field of gravity and having a unilateral contact con-
straint with horizontal surface is modeled. The con-
tact tracking using simplified and efficient algorithm
turns out being possible. On the next stage the omni
wheel model is developed and debugged. After that
the whole vehicle model is assembled as a container
class having arrays of objects as instantiated classes /
models of omni wheels and joints. Dynamical proper-
ties of the resulting model are illustrated via numerical
experiments.

Keywords: omni wheel; contact tracking; unilateral
constraint; contact detection; model of friction

1 Introduction

Investigation of omni vehicle dynamical properties is
sufficiently popular topic in frame of the multibody
dynamics [1, 2, 3, 4]. The omni vehicle is one hav-
ing omni wheels, wheels equipped by rollers along
the rim. Simplified, idealized models having contact-
ing rollers as an infinitely small discrete elements are
known. Thus one has a resulting non-holonomic con-
straint being “uniformly distributed” over the wheel
rim. As a result, paradoxically, the physical objects,
omni wheels, describe approximately, in this situation,
an idealized object, “simplified” infinitesimal model.

Our goal in this paper is to develop a technique for

building up a dynamical prototype for the “real” model
of the omni vehicle explicitly involving dynamics of
physical rollers. Here we rely upon the “simple”3D
multibody dynamics library classes utilized previously
in several examples of the multibody systems dynam-
ics [5]. Simultaneously this library enables us to create
complex dynamical models including unilateral con-
straints of different nature.

Unlike to [2, 3] we emphasize here on the details
of the unilateral constraint implementation paying spe-
cial attention to contact switching when rollers chang-
ing.

2 Problem formulation

Upon describing the omni vehicle model construct
note that the number of rollers per each wheel and the
angle of inclination of the roller axis of symmetry to
the wheel plane are both fundamental parameters of
the vehicle dynamical model. For simplicity and pre-
sentation clarity we currently consider omni wheels
being equipped by four rollers. Also, for simplicity
rollers themselves have their axes of symmetry lying
in the wheel plane, see Figure 1. These fundamental
parameters are easily changed in a way simple enough.
We assume also that the rollers are located on the omni
wheel such that for wheel vertically aligned a projec-
tion of the curve of contact consists of segments in the
sequence, each segment corresponding to the contact
of individual roller. These segments are connected in
a way such that the normal relative velocity at con-
tact is equal to zero at the switching point of rollers.
This means that the normal impact is always absent.
Discontinuities of the tangent relative sliding veloc-
ity are absent for zero angle of inclination. But the
tangent force of friction may have discontinuity of the
first kind in the worst case of angle of inclination if the

DOI
10.3384/ECP140961143

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1143



roller symmetry axis to the wheel plane is non-zero.
Thus, the wheel linear and angular velocities will be
continuous at an instant when roller switching contact.
Similar statement takes place for rollers, as well. Then
tangent impacts are also absent.

Figure 1: The omni wheel vertically aligned.

Note, in addition, that the curve of contacting points
forms thexy-projection onto the wheel plane, having
a shape of the circle of radiusR, see Figure 1. Thus
for translational and rotational motion we have conti-
nuity as well. Resúming we are able to conclude that
the regularity of motion is conserved as roller switch-
ing at contact. At least on the level of integrity of
the omni wheel. Recall, that all the description above
takes place for vertical alignment of the omni wheel.

On the next level of assembling process, several
omni wheels are interconnected with the moving plat-
form of the vehicle, see Figure 2, using joint constraint
as a class from the previous stage. In our case, number
of wheels may be three or more. They can form differ-
ent configurations on the platform body. We analyse
an example with three wheels forming an equilateral
triangle in the plane of the platform, see Figure 2, par-
allel to the coordinate horizontal planezx. Axis y here
is assumed vertical.

3 The roller dynamics model

Firstly, we presume that the roller is axisymmetric
spindle-shaped rigid body having outer surface defined
in body frame of referenceOxyz, see Figure 3, by

Figure 2: The three wheeled vehicle. Top view.

equation

x2 +
(√

y2 +z2 +R1

)2
= R, (1)

where R is the omni wheel radius,R1 = Rcosα is
the distance from the roller center to the wheel cen-
ter, α = π/n is the half of the roller opening angle of
visibility from the wheel center,n is number of rollers
per wheel.

Figure 3: The roller over horizontal surface. Lateral
view.

Dynamics of the roller translatory–rotary motion is
implemented using equations of Newton – Euler as
was shown in [6]. And rotational motion was modeled
by the quaternion algebra [7].
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Algorithm for contact tracking plays an important
role for the correct and efficient work of the computer
model of the contacting process of the roller and the
horizontal surface. For modeling and simulation of the
rigid body dynamics with unilateral constraint we ap-
ply the technology described in [8]. So we could have
used in the object of contact a system of well known
algebraic or implicit differential–algebraic equations.
However, these equations degenerate at the roller tips
defined by equationsx = ±Rsinα in the roller coor-
dinates, see Figure 1. Usually, such a degeneration
causes an abnormal completion of the simulation pro-
cess.

In our case of the spindle-shaped roller over the hor-
izontal surface, arranging the contact tracking proce-
dure turns out being sufficiently simple. So one can
point out explicit procedure for computing the near-
est pointPB of the roller to the horizontal surface, see
Figure 4. This surface has its own nearest pointPA at
contact. Evidently the pointPA is a vertical projection
of the pointPB of the roller.

Figure 4: Contact tracking scheme.

Denote byi = (1,0,0)T the unit vector along the
axis OBxB of the roller connected coordinate system
from Figure 4. This vector is resolved with respect to
(w. r. t.) the systemOBxByBzB. Let TB be the rotational
matrix of the roller w. r. t. the inertial frame of refer-
ence. The latter frame, in our case, coincides with the
fixed horizontal surface coordinate systemOAxAyAzA.
Also, let rB be the roller current mass center radius
vector w. r. t. the inertial system, andnA = (0,1,0)T

be the ascending vertical unit vector. Simultaneously
nA is the normal vector to the horizontal plane.

Conventionally, we denote the plane as bodyA, and

roller as bodyB. Let d be the horizontal unit vector
defined by equation

d =
TBiB×nA

|TBiB×nA|
.

Therefore, the directed segment
−−→
OBO must have a

lengthR1 and be defined by formula

−−→
OBO = R1d×TBiB.

Here, O is the curvature center for the circle of the
roller vertical section, see Figure 4. This segment is
located simultaneously in the vertical plane and in the
wheel plane. Thus from Figure 4 we see that the low-
est pointPB of the roller outer surface is defined by
equation

rPB = rB +R1d×TBiB−RnA (2)

since thePB lies on the same vertical with the pointO
and on the circle mentioned above. To compute posi-
tion of the pointPA one has to put

rPA = (xPB,0,zPB)T . (3)

All the procedure above is valid only if the vector
TBiB is inclined to the horizontal plane within an angle
±α. Otherwise one has to putPB = B− whereB− is
the “left”, see Figure 4, tip of the roller for angle of the
vectorTBiB inclination greater than the valueα. If this
angle is less than−α then one has to guessPB = B+

whereB+ is the “right” tip of the roller.
Finally, one can write down a contacting condition

between roller and horizontal surface in the form

|TBiB ·nA| ≤ sinα. (4)

This condition, however, is satisfied simultaneously
for the lowest, being in contact, roller, and the highest
one. To reject the latter case one can add to condition
(4) yet another one

yB < R (5)

whereyB is the altitude of the roller mass center w. r. t.
inertial frame of reference.

So a conjunction of conditions (4) and (5) is equiv-
alent to the case of contacting. Otherwise condition
of normal reaction being zero should take place. In-
deed, according to Signorini’s law a following alterna-
tive is implemented for each individual roller: (a) con-
tact takes place – relative normal velocity at contact
should be zero; (b) contact is absent – normal reac-
tion (and tangent too) of unilateral constraint should
be zero.
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Condition (a) has several alternative possibilities of
implementation. Firstly, from the geometric viewpoint
a presence of contact is equivalent to the scalar condi-
tion

yPB = 0. (6)

Its absence is equivalent also to the scalar condition

Fn = 0

whereFn is the normal component of a reaction force
acting on the roller at the pointPB.

Computational experience show that equation of
contact in the form (6) usually causes an abnormal ter-
mination of the simulation process for the dynamical
model of the roller. One has similar result if we use
equation

vn = 0

as an implementation of condition (a). Herevn is the
normal component of the relative velocity at contact
point. And only equation of the form

v̇n = 0

leads to the required result: object of contact works
properly during the simulation process. One has to re-
call here that all the implementation of the contacting
process has the “rigid” point-contact model.

For each roller of the omni vehicle model when con-
tacting the friction model being used is “turned on”.
In our model being developed the “simple” law of the
Amontons – Coulomb dry friction is applied. Actu-
ally we use known piecewise approximation [8] to ex-
act dry friction instead. This approximation has high
accuracy over long time intervals [9]. In general, im-
plementation of unilateral constraint model is based on
the results outlined in [8].

If the angle of inclination for the roller axis of sym-
metry to the wheel plane has non-zero value then some
of the above relations ought to be slightly corrected.
In this case, rollers become distorted along the wheel
rim. Given the positionrO ∈ R3 of the wheel center,
point O, see Figure 4, firstly, we have to build up an
auxiliary base consisting of unit vectors:

i′ = TB




1
0
0


 , j ′ =

rO− rOB

|rO− rOB|
, k′ = i′× j ′.

After that a matrix of coordinates change has the
form T ′ = (i′j ′k′) wherei′, j ′,k′ are assumed as vec-
tor columns. This matrix defines transformation from
inertial frame of reference connected with the fixed

body A to the frame defined by the vector baseB′ =
{i′, j ′,k′} introduced above in the following way




xA

yA

zA


= T ′




x′

y′

z′


 .

To reduce an analysis to the case ofβ = 0 already
considered above we have to rotate the baseB′ aboutj ′

by the angle−β such that after the rotation a new base
B = {i, j ,k} should be aligned with the wheel plane
containing the unit vectorsi, j . The rotation mentioned
has the matrix

S=




cosβ 0 −sinβ
0 1 0

sinβ 0 cosβ




in the baseB′. Then in the base of the indicated body
A the rotation of the unit vectori′ can be represented as
follows i = T ′S(1,0,0)T . Suppose alsoj = j ′, k = i× j .
Evidentlyk = d whered is the unit vector given above.

Thus based on the formula (2) and taking into ac-
count Figure 4 we can conclude that for the case of
β 6= 0 the following result takes place

rPB = rB +R1j −RnA−
R1 tanβ sinγ√

1−sin2 γ
j × i, (7)

where the angleγ satisfies the equation

sinγ = i ·nA.

4 Assembling vehicle model

An assembling process of the omni vehicle prototype
is implemented in two steps: (a) assembling the omni
wheel consisting of the wheel itself and a set of rollers
attached to the wheel; (b) assembling the vehicle by in-
stantiating objects of the omni wheel class from stage
(a) into the container class of the vehicle prototype.

To connect rollers, rather objects of the roller class,
and the wheel we use model of the joint constraint pre-
viously developed and described in [5]. It is simply
revolute class with free relative rotation about its axis.
Codes of all the classes / models for the prototype are
implemented as Modelica classes library. See visual
model of the omni wheel in Figure 5. Here, in our ex-
ample we selected for simplicity and certaintyn = 4.

The model of main interest is one of the whole ve-
hicle which is “assembled” on the second stage of the
assembling process. Connecting devices were also im-
plemented as objects of the same joint class from stage
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Figure 5: The omni wheel visual model.

(a). These joints connect the vehicle body and each of
wheels. All joints above allow relative rotation with-
out any resistance and lock sliding along the joint axis.
See visual model of the vehicle in Figure 6. Here, for
presentability, objects are shown as scalar elements.
Actually, one has to instantiate corresponding arrays
of objects of classes “Roller” and “OmniWheel” for
arbitraryn and arbitrary number of wheels in the vehi-
cle.

Recall that before the DAE index reduction process
implemented in Dymola the whole vehicle model con-
sists of: (a) one rigid body of the vehicle platform;
plus (b) three rigid bodies of the vehicle wheels; plus
(c) twelve rigid bodies of rollers located on the wheels.
According, for instance, to [5] for each object of rigid
bodies we implement six Newton’s ODEs for the mass
center motion plus seven Euler’s ODEs for rotational
motion about the mass center. For the latter case we
have four Euler’s kinematical equations for the rigid

body quaternion plus three Euler’s dynamical equa-
tions for the rigid body angular velocity. Totally, the
whole vehicle model includes system of ODEs of or-
der16·13= 208. Besides, constraint objects are able
to generate additional differential equations.

Wheels being assembled into the vehicle will keep
the vertical alignment unavoidably. For this reason the
simplified contact tracking algorithm described above
works properly.

Computer experiments were performed for differ-
ent numbers of rollers per wheel and using several
friction models at contact between roller and the hori-
zontal surface. Corresponding results were compared.
For instance an evolution of the contact process for
one wheel of the three wheeled vehicle is shown in
Figure 7. Paying attention to the Figure legend we
are seeing variables with suffixes “.h” and respec-
tively curves of four colours. This variables represent
so called mutual approaches for contacting bodies.
Their values are simply distances between rollers of
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Figure 6: The omni vehicle visual model.

the wheel and the horizontal surface of rolling. These
curves correspond to rollers being in different phases
of wheel rotation: before contact, at contact, after the
contact. See an instance of the roller change being
zoomed in Figure 7. For implementing such a switch-
ing it is sufficiently simple to useif-clause thus alter-
nating states of the contact existence / non-existence.
Corresponding fragment of Modelica code may have
the following representation

· · ·
if noEvent(abs((T_B*i)*nA) < cos_of_max and

h < R) then
Drelvn = 0;
Forcet = -fric*relvt*(if

noEvent(relvtsqrt <= delta)
then 1/delta
else 1/relvtsqrt)*Forcen + mu*nA;

else
Forcen = 0;
Forcet = zeros(3);

end if;

Drelvn = der(relvn);
· · ·

The firstif-operator here is responsible for the uni-
lateral constraint detection. Its condition is equivalent
to conjunction of conditions (4) and (5).Drelvn is
the variable being equal to the derivative of the rela-
tive normal velocity at contact. So we have an alter-
native: (a)Drelvn = 0 means the contact existence
or (b) Forcen = 0 means contact absence or, equiv-
alently, zero-valued force of reaction. Vector variable
Forcet simulates tangent force of friction, being com-
puted here using piece-wise linear approximation of
dry friction.

Simultaneously, one can also observe the unilateral
constraint accuracy being kept by the model at contact-
ing, see Figure 8. In this Figure we can observe how
a numeric error of the unilateral constraint feasibil-
ity slowly diverges, mutual approach...h gradually
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Figure 7: Process of rollers contact replacement

Figure 8: Accuracy of the unilateral constraint.

grows, for each successive roller in contact. Mean-
while, an absolute value of error stays near negligible
value of10−7 meters. Change of the curve colour cor-
responds to change of the contacting roller.

5 Conclusions

As a summary of main results obtained in the course of
the omni vehicle model development we can highlight
the following issues:

• There exist a possibility for smooth impactless
switching between rollers at contact upon rolling
of omni wheel;

• Efficient and simplified contact tracking algo-
rithm was implemented;

• Dynamics of vehicle was investigated for differ-
ent number of rollers per wheel;

• Influence of friction model on dynamics of the
omni vehicle was analyzed.

This work was performed with partial support of
RFBR, projects 11-01-00354-a, 12-01-00536-a, 12-
08-00637-a.
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Abstract

Due to different requirements for simulation during
the design process of an electric drive system, inves-
tigations were carried out to supply models of differ-
ent stages with consistent sets of parameters. There-
fore physical models of the Modelica Standard Library
were equipped with state-of-the-art control strategies
to operate in realistic conditions. In the presented case
the losses computed by the physical model were stored
in characteristic tables to speed up simulation in cases
where dynamics are of minor interest. These models
can then be used for energetic, thermal and life-time
analysis with a consistent set of parameters generated
from their physical counterparts.

Keywords: PMSM, induction machine, characteris-
tic maps, field oriented control, MTPA

1 Introduction

The continuous progress in the electrification of the
powertrain in the automotive industry requires nu-
meric based computer simulations to handle the grow-
ing complexity. During development various types of
simulations are needed, some of which are summa-
rized in Table 1. Simulations of category 1 focus on
brief events and need very detailed models for reliable
predictions. In category 2 a tradeoff between accurate
and fast models must be found, whereas category 3
and 4 especially require models which are optimized
on computation time due to the long simulation runs.

The machine models of the Modelica Standard Li-
brary (MSL), which are described in detail in [3] and
[1], are based on physical equations using space pha-
sor theory. They consider leakages of the magnetic
field with stray inductances and include basic mod-
els for the copper, stray load, core and friction losses.

Category Objectives Simulated time

1 switching operations 0.01s−1s
nonlin. in the drivetrain

2 dynamic events 0.1s−100s
short-term performance
controller behavior

3 energy consumption 10s−1×104 s
thermal behavior
performance analysis

4 aging simulation 1×106 s−1×109 s
life-time of components

Table 1: Categories for simulation

Hence, they are well suited for simulations of category
2. However, for their application in the electric power-
train control is required, which is offered in the com-
mercial Smart Electric Drives Library (SED), but not
in the MSL. For long simulation runs the SED Library
also provides quasi stationary machine models [6], but
these models only consider ohmic losses. Therefore,
this paper describes the implementation of advanced
control for the MSL machine models of the permanent
magnet synchronous machine (PMSM) and the induc-
tion machine, to use them for the creation of character-
istic maps for lookup table based map models. These
map models include all losses which are modeled in
the MSL machines in tables and allow significant im-
provements of the required computation times com-
pared to the physical models. This advantage basi-
cally results from the negligence of dynamics caused
by control and machine physics.

2 Control of the PMSM

The principle for field oriented control of the PMSM
is to achieve a control concept known from the elec-
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Name Unit Description

id A Direct current of PMSM
iq A Quadrature current of PMSM
isx A Current for field generation in IM
isy A Current for torque generation in IM

ωnom rad/s Nominal angular velocity
Us V Norm of stator voltage

UsMax V Norm of max. allowed stator voltage
τelectrical Nm Electrical torque inside machine

Table 2: Variables used in the PMSMs control algo-
rithm

trically excited DC machine, where the magnetic flux
and the torque are controlled separately. The impor-
tant variables in this section are shown in Table 2.

2.1 The Control Scheme

As this paper focuses on the computation of losses we
will not discuss the control theory in detail. Still it is
important to notice that the control scheme has major
influence on the generated losses. Therefore a number
of effects extending the basic concept of field-oriented
control have been implemented in the machine control.
These are

• Voltage limitation

• Current limitation

• Field weakening1

• Maximum torque per ampere

Although these effects influence losses, it is not in the
scope of this paper to review how losses are changed
based on different implementation of the control algo-
rithm. An overview of the applied scheme is presented
in Figure 1.

2.2 Simulation Results

Figure 2 depicts the obtained simulation results where
a speed step of 2 ·ωnom was applied to a permanent
magnet synchronous machine. One can see in Fig-
ure 2 b) how Us increases proportional with the speed
until UsMax is reached. Then the field weakening con-
troller starts to decrease id and the speed continues
to rise at an expense of a decreasing the inner torque
tauElectrical. In Figure 2 c) iq is plotted over id ,
where the current vector moves along the maximum

1The algorithm used in this paper is based on a comparison of
Us and UsMax and is based on theory presented in [4]

torque per ampere (MTPA) trajectory and then follows
the current limit circle.

3 Induction machine

The control of the induction machine follows similar
principles as it was presented for the PMSM. The sta-
tor voltage equation is used to create a decoupling net-
work and to parameterize the current controllers. One
difference is, that in general the rotor flux oriented
reference frame is used to obtain separate control of
the flux and the torque, which requires an estimator
for the non-measurable rotor flux. The other differ-
ence is, that the flux must be generated, which is per-
formed with the current component isx, whereas the isy

is used for the torque generation. Differing from the
PMSM the coordinate system is based on the x-axis
that is aligned with the direction of the flux, whereas
the y-axis is orthogonal to that and therefore responsi-
ble for generating the torque. They are named differ-
ently from the PMSMs coordinate system as the flux
direction is moving at different speed from the rotors
angular velocity. For more detailed informations it is
referred to [5, Ch. 2 and 4.1.1] and [4].

In Figure 3 the control scheme of the induction ma-
chine is shown, which features voltage limitation, a
field weakening controller and a controller for max-
imum torque in the upper field weakening region,
which limits the output of the speed controller. For
both machines, the PMSSM and the induction ma-
chine a torque controller was implemented addition-
ally to the presented speed controller.

From the simulation results, illustrated in Figure 4,
one can see how the rotor flux is generated with id
in the first 0.5s. Then the speed increases until the
voltage limit is reached, which requires to reduce the
magnetizing current shown at the bottom right, which
is used to create the rotor flux. As shown in the sim-
ulation results in Figures 2 and 4, a reliable control
algorithm for both machine types was implemented.
Thanks to the field weakening controllers and the out-
put limitations it is ensured that the voltage and current
limitations are not exceeded. Hence, the controlled
machine models can be used in batch simulations in
order to compute the characteristic map for a given set
of machine parameters as well as stator current and
stator voltage limitations.
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Figure 1: Extended control scheme for the PMSM with MTPA and field weakening
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Figure 2: Simulation results when a speed step is applied to a speed controlled PMSM with field weakening
(pmsm_ScFw). (a) rotor speed reference and actual value; (b) voltage limit, mesured voltage and electric torque;
(c) iq over id

4 Characteristic Maps

If a driving cycle is simulated for a hybrid or an elec-
tric car the energy consumption of different parts and
the resulting attainable range are usually most impor-
tant, whereas quantities like the magnetic flux or the
voltage drops at the stray inductances are of minor in-
terest. Therefore it is not required to have detailed
physical models and the use of averaged models is
sufficient. For electric machines such models can be
composed of characteristic maps, in which the losses
at various operating points are stored.

Characteristic maps of machines can also be used
if the losses of a real machine are measured in differ-
ent operating points. Then a convenient way to have
an accurate model of this machine is to use the mea-
surement results in the simulation within lookup ta-
bles. However, in an early design stage the real ma-
chine might not be available. Therefore in this paper

a method is presented which allows to calculate char-
acteristic maps from simulations which are performed
with physical models of a machine. In the paper the
machine models from the Modelica Standard Library
are used, but they can be replaced with more or less
accurate models. This possibility is a major advantage
compared to other methods e.g. averaged models that
do simplifications to the models to make it compute
faster. This way the modeling detail can be increased
to a very high level only influencing the map genera-
tion time. As this has to be carried out once only for
every new machine it is of minor importance compared
to the many times the map-based model is simulated.

In the following sections it is shown how the maps
can be generated and lookup table based models are
presented which utilize those.
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Figure 3: Control scheme for the induction machine

4.1 Generation of Maps

To generate characteristic maps, models are used
which utilize the controlled machine models presented
in the preceding sections. In addition, a Modelica
function was created, which simulates the machines in
different operating point and stores the resulting losses
in a .mat file, which can later on be used in lookup ta-
bles.

4.1.1 Model for Map Generation

In Figure 5 the model for the characteristic map gener-
ation of the induction machine is shown. For PMSMs
a similar model was created. The green box “con-
trolled machine” contains a torque controlled induc-
tion machine and a data record for machine parame-
ters. With the block torque the desired torque is set.
In the box “fixed speed” the block speed is used to set
the angular velocity at the shaft of the machine model.
The machine is accelerated to the desired speed and
due to the torque controller in the machine model, the
requested torque is obtained at the shaft as long as the
current limit is not reached.

In the box “end Simulation” it is checked if the op-
erating point is reached and if the losses are settled.
When this is the case, the simulation is terminated
successfully with the terminateSimulation block.
For this purpose the block WithinLimit was created,
which outputs true only if the input is within the spec-
ified limit. This block is used for torqueReached,
torqueSettled and lossesSettled. It is verified

that the measured torque at the flange matches the de-
sired torque and that the total losses of the MSL are
settled.

In Figure 6 simulation results of this model are de-
picted. The simulation finishes successfully after 1.3 s,
since all required conditions are fulfilled. One can ob-
serve a slight drop of the losses after the final speed
is reached. Since the acceleration is finished, the sta-
tor current and in turn the torque is reduced. Hence,
one must take care that the simulation is not aborted to
early, since this would result in too high losses for this
operating point. With the block lossesSettled this
is prevented.

4.1.2 Function for Map Generation

For the map generation a function is provided, which
utilizes the model TorqueControlledPhys2Map_ASM
shown in Figure 5 to calculate a characteristic map
with a specific parameter set. The user has to specify
a curve, which defines the maximum torque the ma-
chine is capable to deliver for the speed range which
should be covered with the map. This curve is used
as the upper limit for the performed simulations. To
include generator and motor mode, the torque curve
can be defined for both negative and positive angular
velocities. For the generated maps it is intended that
the maximum torque and the losses are independent
of the direction of rotation. Thus, the same values are
used for both rotational directions of motor and gen-
erator mode. In addition to the torque curve, the user
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Figure 4: Simulation results of the induction machine: a) Reference and actual angular velocity; b) voltage
limit, unlimited and limited voltage; c) current component id ; d) estimated magnetizing current
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Figure 5: Model for loss calculation of a torque controlled induction machine

must specify the resolution of the map, which is used
to determine which operating points will be simulated.

The calculated losses P of the simulated operating
points are stored in matrices, with the first column con-
taining the torque and the first row the angular velocity,
resulting in




0 ωstart ω2 . . . ωstop

0 P1,1 P1,2 . . . P1,y
τ2 P2,1 P2,2 . . . P2,y
τ3 P3,1 P3,2 . . . P3,y
...

...
...

. . .
...

τstop Px,1 Px,2 . . . Px,y



. (1)

The ascending values in the first row and column are
required for the usage in the lookup tables Modelica.-
Blocks.Tables.CombiTable2D. The range for the angu-
lar velocity is given by the lowest and the highest entry

of the user. The torque is simulated from zero up to
the highest torque value which was entered. The area
in between is discretized according to the user chosen
resolution.

In Figure 7 an exemplary maximum torque curve
and the performed discretization are illustrated. Due to
arbitrary user inputs for the torque curve and the dis-
cretization, it is not possible to always simulate exactly
up to the maximum torque curve. Hence, to cover the
desired region it is required to perform one simulation
above the curve. This is also illustrated in Figure 7,
where simulated points are marked with ×, whereas
for non-simulated points circles are used.

Since the whole matrix presented in Equation 1 has
to be filled with values, the points marked with circles
in Figure 7 have to be guessed somehow. To do so, the
function Modelica.Math.Vectors.interpolate is used to
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Figure 6: Simulation results of TorqueControlledPhys2Map_ASM
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Figure 7: Exemplary maximum torque line and the
performed discretization for a map of 5×15

perform linear extrapolation from simulated values,
which it does although the name would not indicate
that. The extrapolated values for not simulated oper-
ating points in Equation 1 are calculated from the two
rows above. This and the linear extrapolation might
not be suited very well to calculate the correct values,
but since it is used for the area above the maximum
torque curve, the machine will hardly enter this region
and it is still a much better approximation compared to
leaving the losses on zero.

4.2 Model to utilize Characteristic Maps

To use the calculated maps in simulations, the model
TorqueControlledCharacteristicMap is used, which is
illustrated in Figure 8. It features two electrical DC
connectors to the left, a mechanical connector to the
right and a real input for the desired torque at the top.
Hence, it is meant to replace a controlled electric ma-
chine with inverter. Via a parameter the .mat file con-
taining the losses is specified.

The torque reference given with the real input
desiredTorque is limited by limitTorque accord-
ing to the maximum torque line, which the user has
defined during map generation. Thereafter the first or-

der element firstOrder introduces a delay between
desired and obtained torque2. The first order element
is connected to the torque source mechanicalTorque,
which accelerates rotorInertia. Parameters are
provided in the model, which allow the user to de-
activate limitTorque and firstOrder. Then the
gain blocks to noTorqueLimit and noFirstOrder

are used instead.
In the violet colored box “Losses” one lookup ta-

ble of the type CombiTable2D from the MSL is used
for each loss type. By knowing the actual speed and
torque, the operating point is identified and the losses
of this point can be determined with the tables. Af-
terwards the electrical power is calculated from the
sum of the losses and the measured mechanical power.
This allows the calculation of the electrical current that
must flow by measuring the voltage at the DC connec-
tors.

4.3 Comparison Results

The hardware, software and solver settings which were
used for the measurement of the computation time and
the required time for map generation are summarized
in Table 3.

4.3.1 Computation Time for Map Generation

The required computation time for the generation of
characteristic maps was tested for each machine type
for the two different map resolutions 15 × 30 and
30× 60. In Table 4 the results are shown. The col-
umn “unsim.” notes the number of skipped simula-

2The element is intended for the torque set machines to model
the electric time constant. For torque controlled machines it is
disabled per default, but it can be used to approximate the transfer
function of desired to obtained torque.
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Figure 8: Model and icon for the torque controlled characteristic map

Hardware Processor Intel Core i7-2670QM
RAM 8 GiB DDR3

Software OS Windows 7, 64 bit
Dymola 2013 FD01, 32 bit

Settings Solver Dassl
Tolerance 0.0001 (default)

Table 3: Used hardware, software and solver settings
for time measurements

tions, where the operating points lay above the maxi-
mum torque curve.

In the column “time/sim.” it is revealed that the re-
quired time for one simulation is constant for the dif-
ferent machine types. Hence, maps with 1000 calcu-
lated points are generated within 13 minutes for in-
duction machines and less than 6 minutes for PMSMs.
However, the map generation time is highly sensi-
tive to the specified limits in which the losses and the
torque have to settle. As it can be noticed in Figure 6
for the plot “torque settled” to low margins can result
in chattering depending on the operating point. Hence,
the high number of events slows down the map genera-
tion process significantly. So far no effort was spent to
further investigate on that effect, but it would be well
worth the effort if map generation time is of impor-

Type tau w unsim. req. time time/sim.

ASM 15 30 204 190 s 0.78 s
ASM 60 30 854 740 s 0.78 s
PMSM 15 30 120 95 s 0.29 s
PMSM 60 30 488 370 s 0.28 s

Table 4: Required computation time (req. time),
skipped simulations (unsim.) and required time for
one simulation (time per sim.) for the generation of
characteristic maps of different resolutions (tau×w)

tance.
From Table 4 one can tell that the solving of the

ASM’s models is about eight times as computation-
ally intensive than the PMSM’s. This is caused by ei-
ther the higher complexity of the ASM’s model due to
effects like slip that is not present in the PMSM or due
to the more complex controller structure. The exact
cause has to be further investigated in future efforts.

4.3.2 Accuracy of the Losses

To compare the losses of the map model with those
of the physical model, the setup depicted in Figure 9
is used. With desiredSpeed and desiredTorque

the operating point is set for the map based and the
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Figure 9: Used model for comparison of torque controlled map and physical machine

physical models and the input of the physical model is
limited to the maximum torque curve. Similar models
were used to compare the losses of the other machine
types.

In Figure 10 the losses of an efficiency map are
compared with the physical model. The desired torque
is set on 100 N m, whereas the speed is increased from
0 rad s−1 to 400 rad s−1 within 10 s.

The comparison results of the torque controlled
PMSM are shown in Figure 11. As one can see, the
losses match very well. The plot “Deviation of to-
tal losses” at the bottom right shows the difference of
the total losses calculated with the physical model and
with the map model. Except of the negative peak at
the beginning, the total deviation remains below 18 W.
With the total losses starting at 1000 W and reaching
about 1800 W when the highest deviation is observed
the maximum error is 1%. The peak is caused by the
stator core losses, since the current controllers set the
maximum possible voltages at the beginning to obtain
the desired torque. As the core losses are plotted over
speed, this peak is hidden behind the axis to the left at
0 rad s−1.

4.3.3 Simulation Time

To compare the computation time of physical and
map-based models, the model shown in Figure 12 is
used. A sinusoidal or a trapezoid torque is requested
from the machine and a speed dependent torque is used
as load. With the integrator the total loss energy is ob-
tained, which allows to check for the global error of
the most interesting quantity at the end of the simula-
tion. This error is computed between physical and ta-

ble based model, not the analytic solution as the word
"error" may indicate.

The results for the sinusoidal input are depicted
in Table 5. For every machine type the map model
and the physical machine were tested for a simulation
time of 1000 s and for 10000 s. Along with the re-
quired simulation times the speed improvement factor
is given. In addition, the loss energy at the end of the
simulation and the error of the map model are speci-
fied.

One can see that improvements of the simulation
time of more than a factor of 200 can be obtained,
while the error is kept below 1 %. The highest im-
provements are achieved for the induction machine,
while the torque set PMSM is only accelerated by a
factor of 7.

5 Conclusion

The presented method allows convenient use of con-
trolled physical electric machine models including ad-
vanced functionalities, to generate data for map-based
models in order to accelerate simulations with still ac-
curate results.

With the map models speed improvements with fac-
tors starting from 7, reaching up to 230. However the
computation times of the physical models are highly
sensitive to the performed simulation, the input signal
and to the tuning of the controllers. Hence, it is re-
quired to test the models within specific applications
to figure out which factors are obtained in practice.
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Figure 10: Losses of a physical induction machine model (blue) and characteristic map (red) with a resolution
of 15×15 for the motor mode

CPU times loss energy at simulation end

Type phys. map factor phys. map error

ASM, 1000 s 82 s 0.35 s 234 1753.60 kJ 1763.04 kJ 0.5 %
ASM, 10000 s 807 s 3.5 s 230.5 17537.90 kJ 17633.20 kJ 0.5 %
PMSM, 1000 s 9.5 s 1.3 s 7.3 4778.35 kJ 4784.76 kJ 0.13 %
PMSM, 10000 s 95.7 s 13 s 7.4 47782.80 kJ 47848.70 kJ 0.13 %

Table 5: Required computation times for map based and physical models with sinusoidal input
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Abstract 

This paper presents the BuildSysPro Modelica li-
brary developed by the department of Energy in 
Buildings and Territories (EnerBaT) of EDF R&D. 
After a description of the library’s structure and con-
tent, BESTEST validation results and a use case are 
presented. 

This library is designed to be used in several con-
texts including building physics research, global per-
formance evaluation, technology development and 
impact assessment. It is also a basis for urban and 
building stock simulation. BuildSysPro is intended 
for a relatively large audience ranging from R&D 
scientists to building services engineers. 
BuildSysPro contains classes to describe the whole 
building and its energy systems including envelope 
components, HVAC systems and other energy con-
version devices (DHW, thermal and photovoltaic 
panels…) and boundary conditions models. The 
models are designed for static and dynamic use, and 
for the representation of 0D/1D pure thermal and 
fluid dynamics. BuildSysPro in its current version 
contains around 380 models and 130 functions. 

Keywords: Modelica library; Building; Dynamic 
simulation; Numerical validations, Energy system 

1 Introduction 

Since the building sector is one of the main energy 
consumers nowadays, energy policies drive existent 
and new buildings towards better performances. 
These evolutions raise quantity of questions regard-
ing their ability to ensure the occupants’ health and 
comfort while decreasing energy consumption and 
increasing energy efficiency. These questions rely 
strongly on multi-domain representations including 
thermal, electrical, hydraulic or chemical processes. 
Modelica being an object-oriented, equation based 

language, is therefore well suited to represent this 
kind of coupled problems and complex systems. 

The EnerBaT department of EDF R&D developed its 
own Modelica library, BuildSysPro, in order to per-
form multi-scale and multi-domain modelling. The 
choice of a new library was dictated by research 
needs, very specific for an energy producer and re-
tailer, since they cover many domains. 
BuildSysPro provides a comprehensive set of ele-
mentary 0D/1D components to describe envelope 
components, energy equipments and devices, and 
control systems. It is principally based on two 
branches of physics: pure thermal and thermo-fluid 
dynamics modelling. These classes are compliant 
with the Thermal.HeatTransfer and Media packages 
of the Modelica standard library to ensure a good 
level of interoperability with other Modelica librar-
ies. These models are designed for static and dy-
namic modelling and can be used to create a whole 
building and its energy systems.  
The BuildSysPro library has already been success-
fully used in several studies including: 

• Technology performances and impact as-
sessment [1][2], 

• Sensitivity analysis regarding experimental 
validation [3], 

• Urban simulation [4]. 

As ThermoSysPro, the EDF Modelica library for 
modelling power plants, BuildSysPro is developed 
under Dymola environment but is intended to be tool 
neutral. The BuildSysPro library is currently only 
available within partnership projects, but an open 
version is under construction. 

This paper is an overall presentation of BuildSysPro, 
focusing on the structure and some key elements of 
the library such as building envelope components, 
boundary conditions and HVAC systems. The key 
components of BuildSysPro being based on models 
from the Modelica standard Library, they are not 
described in detail.  A focus is then made on valida-
tion through numerical comparisons with the IEA 
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BESTEST procedure. Finally the use of BuildSysPro 
is described on a basic use case aiming at analysing 
the matching between heat demand and supply in a 
residential building. For more complex applications 
and validations, the readers are welcome to read the 
papers [2], [3] and [4]. 

2 BuildSysPro Overview 

2.1 Structure 

The way of modelling building energy systems with 
BuildSysPro is similar to the approach commonly 
used by the building science community. On one 
side, the building envelope is mainly considered as 
an energy consumer and on the other side the energy 
systems and equipments are considered as producers. 
Figure 1 shows the top-level structure of BuildSys-
Pro. This structure is quite similar to the Modelica 
standard library. It contains the usual Examples, In-
terfaces, Components, and Utilities packages at dif-
ferent hierarchical levels. 

 

 
Figure 1: Structure of BuildSysPro 

At the top level, the Examples package contains 
some reference buildings, including the Mozart 
house, which is a medium size detached house from 
a typological study of the French housing stock. 
 
The BuildingEnvelope class is intended to describe 
the building envelope and provides components in a 
pure thermal or thermo-fluid approach. It also con-
tains generic models of zones which can represent an 
entire building or a single room.  
The Systems class is composed of five sub-packages. 
The Controls package provides control and regula-
tion components for HVAC systems or energy 
equipments. The Production, Distribution and Emis-
sion packages provide components to design energy 
systems including HVAC systems or other equip-
ments such as PV systems. This package also con-
tains a Utilities package which provides for instance 
pre-processors to estimate system parameters from 
manufacturer data. 

The BoundaryConditions package contains several 
models which offer the possibility of reading and 
pre-processing boundary conditions from files, such 
as weather data or normative indoor scenarios. 
The Utilities package includes special Modelica 
types, records, package icons, functions, blocks and 
models. The records are used to set the parameters of 
various models in a hierarchical way (wall layers, 
walls, zones...). A Math sub-package contains, inter 
alia, some non linear solvers. A Comfort package 
includes some basic classes to describe human com-
fort in a room. 
The BaseClasses package establishes the link with 
the Modelica standard library. It contains the same 
connectors as the Modelica.HeatTransfer and Mode-
lica.Media packages. It also includes some other 
elementary models which are not of interest for end-
users. 

2.2 Interfaces 

The interfaces of BuildSysPro are based on those 
from the Modelica standard library to ensure the 
compatibility of modelling. For instance, the connec-
tors of the HeatTransfer class are based on two vari-
ables, a temperature as a potential and a heat flow 
rate as a flow. The Fluid class is compliant with the 
Modelica.Media class, that is to say a media model is 
described with the Modelica.Media.Interfaces and a 
connector similar to the Media.Examples.Tests. 
Components.FluidPort, which does not use stream 
connectors. 
These interfaces were chosen to ensure modular and 
scalable approaches to model an entire building with 
its systems and equipments as well as single compo-
nents or small districts, in pure thermal or in a 
thermo-fluid approach. Indeed pure thermal model-
ling can be accurate enough to predict the annual 
energy consumption due to heating, but not to design 
an air ventilation system nor to model pollutant 
transport. 

2.3 Thermal zone description 

Figure 2 illustrates the structure of the BuildingEn-
velope package. 
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Figure 2: BuildingEnvelope package 

One of the key elements of this package is the ther-
mal wall model. It represents a 1D discrete multi-
layer wall with several connectors for boundary con-
ditions. A diagram view of this model can be seen on 
Figure 3. By convention, the right hand side corre-
sponds to the inside whereas the left hand side can be 
both, inside or outside boundary conditions. 
 

 
Figure 3: Diagram of the wall model 

The blue component in the middle describes the con-
ductive part of the wall. It is based on thermal con-
ductors and capacitors connected in order to repre-
sent layers of homogenous material. 
The causal connectors represented by yellow trian-
gles are used to convey short wave radiations such as 
solar irradiance or transmitted solar radiation coming 
from the windows or the environment. They include 
either the cosine of the incidence angle, diffuse and 
direct flux or global flux. 
The heat ports connect the model to the surrounding 
temperatures. Thanks to optional models and con-
nections, convective heat transfers are considered 
with an h coefficient either fixed or controlled by 
wind speed. In the same way, the long wave radia-
tive heat transfer is represented either with a fixed 
coefficient or with the Stefan–Boltzmann law using 
dry bulb and sky temperatures. The parameters of the 
wall model can be easily set thanks to various re-
cords. For instance, the parameters of the conductive 
part use a replaceable WallType record which con-
tains the information described in Figure 4. 
 

 
Figure 4: WallType record 

A typical one-zone thermal model would be essen-
tially composed of walls, one air node and air re-
newal. Figure 5 presents this simple thermal zone 
using combined convective and radiative heat trans-
fers (without taking into account the wind speed or 
the sky temperature). Thus, depending on the as-
sumptions considered, other types of thermal zones 
can be designed. For instance, instead of distributing 
the transmitted solar radiation onto the floor, other 
weighting methods can be used depending on the 
solar absorption coefficients and surface areas or 
view factors, as in the BESTEST calculations. 
 

 
Figure 5: Diagram of a simple thermal zone 

2.4 Systems and equipments 

 
Figure 6: Systems package 

As previously said, the Systems class is composed of 
five sub-packages mainly providing control strate-
gies, production, distribution and emission compo-

record WallType 
   "Generic record for the conductive part of a wall" 
 
parameter Integer n=3 "Number of layers"; 
parameter Integer[n] m=fill(1,n) 
   "Number of nodes per layer (outside toward inside)"; 
parameter Modelica.SIUnits.Length[n] e=0.2*fill(1,n) 
   "Layer thicknesses (outside toward inside)"; 
parameter BuildSysPro.Utilities.Records.MaterialProperties mat[n] 
   "Material properties (outside toward inside)" a; 
parameter Integer[n] insulationPosition=zeros(n) 
   "Insulation ? (outside toward inside)"; 
 
  a; 

end WallType; 
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nents. Some of these components are declined in dif-
ferent modelling levels adapted to different case 
studies: annual, daily, hourly or even sub-hourly 
time steps for prototyping and precise control. 
For example, a simple convector can be used for 
studies on the electrical grid considering the 220V-
50Hz power supply and the electronic regulation and 
components of the convector. Conversely, it can be 
modelled as an ideal heater or with chrono-
proportional controls closer to the real dynamic be-
haviour for hourly outputs and human comfort stud-
ies.  
Another example is thermodynamic systems, such as 
heat pumps, modelled in BuildSysPro either with an 
idealised coefficient of performance, or with empiri-
cal formulations depending on the boundary condi-
tions (as in the use case described in paragraph 4), or 
with detailed modelling of the vapour compression 
and refrigeration cycle. 

2.5 Boundary conditions 

The boundary conditions describe the conditions on 
both sides of the building envelope. Figure 7 illus-
trates the structure of the BoundaryConditions pack-
age.  
 

 
Figure 7: BoundaryConditions package 

On the outdoor side, the weather data are applied 
with special treatment for solar data, and on the in-
door side a temperature set point or other occupancy 
schedules are applied. 
The weather data reader model requires a file that 
mainly contains the outdoor dry air temperature, the 
sky temperature, the relative humidity of the air, the 
wind data (speed and direction) and two solar radia-
tions amongst diffuse horizontal, global horizontal, 
direct horizontal and direct normal. Inside the 
weather data reader model, the different missing 
fluxes are computed along with the position of the 
sun.  
These weather solar data are then treated by models 
in the Solar package to obtain the incident direct and 
diffuse solar flux on the different surfaces, allowing 
a gain in computation time, especially for multi-zone 
modelling. Furthermore and as previously shown, 
specific yellow interfaces are included in BuildSys-
Pro in order to graphically differentiate the solar 
boundary conditions in the model diagrams. 

Figure 8 shows an assembly of the weather data 
reader and a boundary conditions model for shaded 
windows. The model in the middle computes inci-
dent solar radiation on a window under a solar mask 
from weather data. 
 

 
Figure 8: Example of the use of boundary conditions 

models – Shaded window 

3 Validation cases 

3.1 Introduction to validation methods 

Software products can be validated with three com-
plementary methods: analytic solution, empirical 
validation and comparative tests [5]. The first 
method is well suited for elementary models such as 
conductive transfer in walls for which an analytical 
solution is known. Empirical methods and experi-
mental data are essential for the validation of com-
plex models, but are difficult to analyse since there is 
a lot of uncertainties. Comparative tests are more 
repeatable and standardized tests are still carried out 
by the scientific community for the validation of dif-
ferent types of software. Thus, we have the ASH-
RAE standards in the USA and ISO norms in 
Europe. 

Until 2010, the department of Energy in Buildings 
and Territories of EDF R&D mostly used CLIM2000 
software [6] for research purposes. Before integrat-
ing new models, BuildSysPro was a quickly rebuilt 
version of CLIM2000 in Modelica language, possi-
ble since both approaches are very close: 

• Variable time step solver, 

• Equation-based modelling, describing the 
physical laws, 

• Acausal connectors (heat ports), 

• Graphical interface where elementary mod-
els are disposed and connected together. 

CLIM2000 was validated with experimental meas-
urements and comparative tests such as the Interna-
tional Energy Agency Building Energy Simulation 
Test and Diagnostic Method (IEA BESTEST). The 
results obtained with these validations were accurate 
and BuildSysPro was first validated by comparing 
the results of elementary models (conduction through 
walls, transmission through windows ...) with those 
of CLIM2000.  
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As a first approach, we will focus on the comparative 
BESTEST validation of BuildSysPro. This procedure 
is adapted to validate simple building components 
and has been previously applied to other libraries 
(e.g. [10]). As such, it is a good starting point in the 
validation of a new library. 

3.2 Comparative tests: the BESTEST qualifica-
tion procedure 

The BESTEST method consists in a benchmark pro-
cedure for dynamic building energy simulation soft-
ware established by a set of reference programs [7] 
[8]. This procedure was applied to validate the build-
ing envelope model of BuildSysPro, as has been 
done with CLIM2000 or other software and more 
recently some Modelica libraries [9] [10]. The entire 
procedure is described in [8], so we will only give 
the key points here. 

The BESTEST procedure starts with a basic building 
envelope controlled in temperature with only one 
thermal zone. The envelope is derived into two iner-
tia classes: light and heavy weight. This building is 
located in Denver, with an extreme climate: cold 
clear winters and hot dry summers. The building en-
velope is very sensitive to the external boundary 
conditions. 

Small variations are made to this envelope, its con-
trol strategies and its internal gains, so that it might 
help in identifying deficient parts of the models 
thanks to diagnostic flow diagrams. A program suc-
cessfully passes the validation if the required outputs 
are positively compared with the reference pro-
grams’ outputs. Table 1 summarizes the base cases 
(600 to 650 and 900 to 950) and the free-floating 
cases (600FF to 950FF) since other cases defined in 
BESTEST are only used for diagnostics. 
 

Intern. gain Scenario Infiltration
Type αααα int/ext εεεε int/ex t [m²] Or. Shade [W] H, C, V ACH

600 -
610 1mH
620 -
630 1mHV
640 Setback
650  -, 27, V
900 -
910 1mH
920 -
930 1mHV
940 Setback
950  -, 27, V

600FF  -, -, -
650FF  -, -, V
900FF  -, -, -
950FF  -, -, V

CASES
Opaque surface Windows

B
as

e 
ca

s
es

S

6 / 6 E / W

BML 0.6 0.9

BML

BMH

BMH

0.6 0.9

-

0.41

0.6 0.9 0.41

12

0.41

200

20, 27, -

200

200

20, 27, -
12

6 / 6

12

S

E / W

S

-S12

12 S -

 
Table 1: Properties changed through the BESTEST 

cases 

3.3 Modelling hypotheses 

First of all, Figure 9 shows the graphical view of the 
BESTEST zone with a shaded south-oriented win-
dow. This diagram is more complex than the basic 
room shown in Figure 5 since more physical phe-
nomena were considered. The reading of such an 
assembly is not yet user-friendly since the models 
were constructed with many conditional interfaces 
depending on the physical complexity chosen for the 
modelling. In the future, the data connectors (wind, 
temperatures, solar information, ...) will be grouped 
together with a Modelica Bus and this information 
will be used or not by the models. 
 

 
Figure 9: Graphical view of the South-shaded base 

model for the BESTEST in Dymola 

We will not give an exhaustive list of the modelling 
hypotheses since there are many BESTEST specifi-
cations. We will only give the key points as to how 
the weather data were obtained and what were the 
hypotheses taken for modelling the envelope and the 
radiative heat transfers. Some models were improved 
from CLIM2000 to go through the BESTEST cases, 
since in the CLIM2000 version used for the 
BESTEST validation, a combined coefficient for 
convection and radiation was used and there were no 
shading devices. 

 
Weather data 

The weather data file TMY for Denver was read be-
fore the simulations to extract the necessary inputs: 
direct normal and diffuse horizontal radiations, dry 
bulb and sky temperatures and wind speed. The data 
were read in local time with a delay of 30 minutes 
according to BESTEST reports. The sky temperature 
was obtained by a pre-processing using the Black-
body model of the “Buildings” Modelica library [11] 
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which estimates it from total opaque sky cover, dry 
bulb temperature and dew point temperature. 

 
Envelope modelling 

For conductive heat transfers, the walls are modelled 
with discrete element schemes as described in para-
graph 2.3. The windows are modelled with a simple 
thermal conductor obtained from the U-value minus 
the convective and radiative parts of the heat trans-
fer. The optical properties of the windows were es-
timated from the g-value and heat gain coefficient at 
normal incidence [12] given in the BESTEST speci-
fications. The diffuse and direct properties are then 
very close to the ones recommended as seen in Fig-
ure 10 for direct beam transmittance. 

0.0
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Angle of incidence (°)

Direct-beam transmittance 

BESTEST

Fauconnier

 
Figure 10: Angular dependence of the direct-beam 

transmittance of the double-pane window 

Convective heat transfer is modelled with a constant 
coefficient for the interior surfaces and with a corre-
lation function of wind speed and surface texture for 
the outside. 

 
Radiation modelling 

The solar irradiation is estimated with a clear-sky 
model with a separation between direct and diffuse 
radiations. The quantities transmitted into the room 
are redistributed as described in the BESTEST speci-
fications using the view factors, surface areas and 
infrared emissivities. 
Longwave radiative heat transfers between wall sur-
faces and the outside environment are modelled us-
ing the corresponding temperatures (dry bulb and 
sky temperatures) and the sky and ground view fac-
tors for tilted surfaces. On the inside, a Two-Star 
model is used so that each surface exchanges with a 
virtual blackbody characterised by its radiative tem-
perature [13]. 

3.4 Results of the qualification test 

All the cases indicated in Table 1 were simulated 
with BuildSysPro. The figures below show only a 

few representative results since the BESTEST 
method gives many outputs. The required outputs 
were integrated over the past hour as asked, espe-
cially since we used a variable time-step solver 
(DASSL). There are two kinds of outputs – annual 
and daily – as indicated in the list below: 

• Annual heating and cooling loads (See Fig-
ure 11 for low-mass cases 600 to 650) and 
annual hourly-integrated peak loads. 

• Annual hourly-integrated maximum and 
minimum temperatures for free-floating 
cases and annual hourly 1°C temperature bin 
frequencies. 

• Annual unshaded incident solar radiation, 
annual transmitted solar radiation (shaded 
and unshaded). 

• Hourly heating and cooling loads (See Fig-
ure 12 for high-mass case 900). 

• Hourly free-float temperature (See Figure 13 
for high-mass case 950FF). 

• Hourly unshaded incident solar radiation 
(See Figure 14 for South and West radiation 
on a clear day). 
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Figure 11: Heating and cooling loads for lightweight 

cases 
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Figure 12: Hourly heating and cooling loads for high-
mass case 900 

 

20

22

24

26

28

30

32

34

36

1 3 5 7 9 11 13 15 17 19 21 23

Hour

Temperature (°C)
ESP

BLAST

DOE2

SRES/SUN

SERIRES

S3PAS

TRNSYS

TASE

BuildSysPro

 
Figure 13: Hourly free-float temperature for high-

mass case 950FF 
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Figure 14: Hourly incident solar radiation – South and 

West on a clear day (July 27) 

In conclusion to all these test-cases, BuildSysPro 
obtains comparable results with the reference pro-
grams of the BESTEST qualification procedure. This 
validates the modelling approach of the library and 
the implementation in Modelica. 

4 Use case 

The use case presented in this section illustrates 
building energy analysis which can be easily done 
thanks to BuildSysPro. It is based on previous work 
[14]. 

4.1 Introduction 

In low energy buildings and passive houses, the free 
available energy from the building’s surroundings 

should cover a significant share of the energy de-
mand unlike common buildings for which it is 
mainly covered by HVAC systems. As a conse-
quence, the heating and cooling demands are reduced 
and, most of the time, fluctuate around 0 W. Such a 
system should not be assessed based solely on en-
ergy consumption indicators; a dynamic analysis 
should also be conducted. This kind of study may 
allow the investigation of performance degradation 
due to part-load operation or energy storage poten-
tial. 

4.2 Building envelope 

For this use case, the “Mozart” house is selected. It is 
a detached home, one of the most representative of 
the French housing stock. The “Mozart” house is 
considered as medium size with 100 m² of living 
area and an air volume of 252.15 m3. The building is 
described in a low energy configuration. The U-
values of the different envelope components are rela-
tively low compared to the French housing stock. 
The house is represented as only one thermal zone 
however internal walls are modelled and therefore 
contribute to the thermal inertia. The short wave ra-
diations transmitted inside the building envelope 
through the windows are entirely absorbed by the 
floor. The long wave radiative heat transfers are 
taken into account through a combined heat transfer 
coefficient. 

4.3 Boundary conditions 

The building envelope is studied in a temperate cli-
mate, more precisely with the weather data from 
Trappes located near Paris in France. The weather 
reader model provides the outdoor dry air tempera-
ture, the direct and diffuse solar radiations and the 
sky temperature. The humid air and the wind data 
(speed and direction) are not used in this simple case. 
A fixed set point of 19°C for the indoor air tempera-
ture is used. For the sake of simplicity, no internal 
heat gains were taken into account. 
Considering these boundary conditions, the annual 
heat demand for the building envelope is around 20 
kWh.m-2.year-1. 

4.4 HVAC systems 

The HVAC systems are composed of a mechanical 
ventilation system and an intermittently controlled 
heat pump. This is an air to water heat pump which 
supplies hot water to a radiant heating floor. Under 
nominal conditions, the heat pump provides 2400 W 
of heat at a COP of 4.2. A dynamic empirical model 
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is used to represent the heat pump. It takes into ac-
count the operating conditions, the part load degrada-
tion and minimal operating time. The ventilation sys-
tem is represented by a static model with an air 
change rate of 0.35 vol.h-1. 

4.5 Results 

As previously mentioned this use case shows the 
advantage of using Modelica/Dymola and BuildSys-
Pro for a simple building energy analysis. 
First, the energy demands can be obtained through-
out the year. Figure 15 shows the relative frequen-
cies of the hourly heating and cooling demands, red 
and blue bars respectively. This figure provides sta-
tistical data about the structure of the energy demand 
for this specific building and these boundary condi-
tions. This information is widely used for sizing ap-
plications or investigating the potential of a thermal 
storage. 
 

 
Figure 15: Relative frequencies of the hourly heating 

and cooling demands [Wh] 

However, one important matter with building energy 
systems is the ability for the HVAC systems to 
match the energy demand. As previously mentioned, 
for low energy buildings, the heating and cooling 
demands may fluctuate around 0 W, far away from 
nominal conditions, and therefore decrease the sys-
tem’s performances. Figure 16 (a) and (b) illustrate 
the relative frequencies for the hourly heat supply 
and the COP and give information on the heat 
pump’s effective operating conditions. 

 
 

Figure 16: Relative frequencies of (a) heat supply [Wh] 
(b) COP [-] 

The discrepancies between Figure 15 for the hourly 
heating demand and Figure 16 (a) indicate that the 
intermittently controlled heat pump is not adapted 
for this building; a variable-speed controlled heat 
pump would be more suited. It induces a decrease in 
performances which can be observed on Figure 16 
(b) compared to the nominal COP of 4.2. 
All the figures presented in this section were ob-
tained thanks to a post-processing of the simulation 
result files. BuildSysPro provides some basic func-
tions for result export and analysis; however it is not 
intended to provide a comprehensive set of post- 
processing methods.  

5 Conclusions 

The BuildSysPro library has demonstrated its capa-
bilities to model complex buildings and energy sys-
tems. It is a solid solution to two initial problems of 
our work: 

• designing a library of models able to deal 
with advanced scientific problems related to 
low-energy buildings 

• and providing a global solution for the mod-
elling and simulation needs of the EnerBaT 
department 

The knowledge and experience derived from our 
previous research tools have been integrated in 
BuildSysPro. It is developed with a goal of simplic-
ity, yet is comprehensive enough to be used for 
building physics and technology development as 
well as global performance assessment or prospec-
tive simulation, making it the reference modelling 
and simulation tool for the entire EnerBaT depart-
ment as of today. 
BuildSysPro is also built with a multi-domain and 
multi-scale approach, as it is able to handle purely 
thermal problems as well as coupled multiphysics, 
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ranging from the basic envelope component to the 
entire building or building stock. In addition, some 
use cases have confirmed the strength of the modular 
approach for quick studies. 
 
Moreover, the envelope modelling of this library has 
been validated thanks to the IEA BESTEST qualifi-
cation method. Though this approach is basic and 
quite far from the complexity of a real building, it is 
a necessary step in the evaluation of building mod-
els. Indeed, a Modelica library for modelling build-
ings that does not pass the BESTEST validation 
cases would be considered as untrustworthy. 
 
Upcoming work will include specific validation 
campaigns that will be conducted with experimental 
data from European laboratories. 
Research in progress and future developments will 
also use other capabilities of Modelica such as FMI 
for co-simulation or hardware-in-the-loop applica-
tions in addition to the current work around low-
energy building envelope and systems. 
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Abstract

Differential-algebraic equations naturally arise in the
modeling of dynamical processes, in particular using
MODELICA as modeling language. In general, the
model equations can be of higher index, i.e., they
can contain hidden constraints which lead to insta-
bilities and order reductions in the numerical integra-
tion. Therefore, a regularization or remodeling of the
model equations is required. One way to obtain the re-
quired information on the hidden constraints is a struc-
tural analysis based on the sparsity pattern of the sys-
tem. For the determination of a regular index-reduced
system formulation then, usually, a crucial step is
the so-called state selection. In this paper, we will
present a new approach for the remodeling of dynami-
cal systems that uses the information obtained from the
structural analysis to construct a regularized overdeter-
mined system formulation. This overdetermined sys-
tem can then be solved using specially adapted numer-
ical integrators, in such a way that the state selection
can be performed within the numerical integrator dur-
ing runtime of the simulation.

Keywords: DAEs; regularization; structural analy-
sis; overdetermined system; state selection

1 Introduction

The MODELICA language is a common tool for
modeling of dynamical processes. In general, the
model equations that describe the dynamical process
consist of differential equations in combination with
algebraic constraints, i.e., we have to deal with
so-called differential-algebraic equations (DAEs).
The solutions of such systems have to satisfy the al-
gebraic constraints, but, in general, not all constraints
are stated in an explicit way. In particular, if the
resulting system of DAEs is of higher index there
exist so-called hidden constraints and the numerical
treatment leads to instabilities, inconsistencies and

possibly non-convergence of the numerical methods,
see [2, 4, 6, 8]. Thus, a regularization or remodeling
of the model equations is required to guarantee
stable and robust numerical computations, see also
[3, 6, 8, 15].

The current state of the art in many modeling and
simulation tools to deal with high index DAEs is to
use some kind of structural analysis based on the spar-
sity pattern of the system. Here, generic structural
information is used to identify the constraints, to de-
termine the index of the system, and to compute an
index-reduced system model. Hereby, a crucial step
is the so-called state selection that is required in or-
der to introduce new algebraic variables (the so-called
dummy derivatives) for the selected differential com-
ponents of the DAE system in order to obtain a regular
index-reduced formulation.

In this paper, we present a new regularization ap-
proach for the remodeling of dynamical systems that
uses the information provided by the structural anal-
ysis, in particular by the Signature Method [12], to
construct an overdetermined system regularization that
can be solved using a specially adapted numerical in-
tegrator. This approach has the great advantage that
the problem of state selection can be moved within the
numerical integrator and can therefore be performed
during the runtime of the simulation.

In the following, we consider quasi-linear DAEs of
the form

E(x, t)ẋ = k(x, t), (1)

on the domain I = [t0, t f ] with initial values
x(t0) = x0 ∈ Rn, where E ∈ C (Rn × I,Rn,n) is
called the leading matrix of the quasi-linear DAE and
k ∈ C (Rn×I,Rn) its right-hand side. Furthermore,
x : I → Rn represent the unknown variables. The
DAE system (1) is assumed to be uniquely solvable
and nonredundant. Furthermore, we assume that
the rank of the leading matrix E is constant for

DOI
10.3384/ECP140961171

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1171



all (x, t) ∈ Rn× I and that the rank of the partial
derivatives of the (hidden) constraints with respect to
x is constant for all consistent (x, t) ∈Rn×I. Note that
in general these assumptions are not necessary and
can be relaxed, see [16].

2 Structural Analysis of DAEs

In many simulation environments like DYMOLA,
OPENMODELICA or MAPLESIM a structural analy-
sis is used to reduce the index of the DAE system re-
lying on its sparsity structure, e.g., there are various
versions and extensions of Pantelides Algorithm [10]
in combination with the Dummy Derivative Approach
[9], or the Signature Method [12]. These structural
approaches have the great advantage that fast and ef-
ficient linear optimization algorithms based on graph
theoretical concepts can be used and further structural
information like a block lower triangular form of the
system can be extracted which is essential for efficient
and fast computations.

In this section, we will shortly review the basic
steps of the Signature Method (Σ-method) introduced
in [12]. For ease of representation we write the model
equations (1) as

F(t,x, ẋ) = 0 (2)

with F(t,x, ẋ) := E(x, t)ẋ− k(x, t), where F ∈ C (I×
Rn×Rn,Rn), and we denote by Fi the components of
the vector F and by x j the components of the vector x.
Then, the Σ-method consists of the following steps:

1. Built the signature matrix Σ = [σi j]i, j=1,...,n

σi j :=

{
highest order of derivative of x j in Fi,
−∞ if x j does not occur in Fi.

2. Find a highest value transversal (HVT) of Σ, i.e.,
a transversal T of Σ

T = {(1, j1),(2, j2), . . . ,(n, jn)},

where ( j1, . . . , jn) is a permutation of (1, . . . ,n),
with maximal value Val(T ) = ∑(i, j)∈T σi j.

3. Compute the offsets vectors c and d with ci ≥ 0
such that

d j− ci ≥ σi j for all i, j = 1, . . . ,n,

d j− ci = σi j for all (i, j) ∈ T.
(3)

4. Form the Σ-Jacobian J = [Ji j]i, j=1,...,n, with

Ji j :=





∂Fi

∂x
(σi j)

j

if d j− ci = σi j,

0 otherwise.

5. Built the reduced derivative array F (t,X ) = 0
consisting of

Fi(t,x, ẋ) = 0,
d
dt

Fi(t,x, ẋ) = 0,

...

d(ci)

dt(ci)
Fi(t,x, ẋ) = 0

for all i = 1, . . . ,n with

X = [x1, ẋ1, . . . ,x
(d1)
1
, . . . , xn, ẋn, . . . ,x(dn)

n ]T .

6. Success check: if the algebraic sys-
tem F (t∗,X ∗) = 0 has a solution
(t∗,X ∗) ∈ I × Rn+∑n

i=1 di and J is nonsingu-
lar at (t∗,X ∗), then the Σ-method succeeds.

If the Σ-method succeeds, it allows to determine the
structural index of the DAE as

νS := max
i

ci +

{
0 if all d j > 0,
1 if some d j = 0.

We call J the Σ-Jacobian since it is in general not the
analytical Jacobian, but defined by the offset vectors.
The HVT as well as the offset vectors can be computed
efficiently by solving a linear programming problem
(LPP) and the corresponding dual problem, see [12].
Note that usually there is not only one uniquely de-
termined HVT, and also the offset vectors c and d are
not uniquely defined by the conditions (3). However,
there exists a unique element-wise smallest solution of
the dual problem, the so-called canonical offsets, that
is independent of the chosen HVT.

If the Σ-method succeeds for a given system (2) at
a consistent point, the canonical offset vector c gives
the required information which equations have to be
differentiated and how many times in order to be able
to extract all hidden constraints. Thus, the reduced
derivative array F can be obtained by adding the
derivatives of Fi up to order ci to the original system
for all i = 1, . . . ,n.

Example 2.1 We illustrate the steps of the Σ-method
for the example of the simple pendulum of mass m = 1,
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length ` > 0 under gravity g, see also [12]. The system
equations are given by

F1(t,x, ẋ) = ṗ1−q1 = 0,
F2(t,x, ẋ) = ṗ2−q2 = 0,
F3(t,x, ẋ) = q̇1 + 2p1λ = 0,
F4(t,x, ẋ) = q̇2 + 2p2λ +g = 0,
F5(t,x, ẋ) = p2

1 + p2
2− `2 = 0,

(4)

with x =
[
p1 p2 q1 q2 λ

]T . The signature ma-
trix for this system is given by

Σ =




1 − 0 − −
− 1 − 0 −
0 − 1 − 0
− 0 − 1 0
0 0 − − −



,

where the two possible HVTs are marked by gray and
blue boxes. (Here, the entry − stands for −∞.) The
canonical offset vectors are given by c = [1,1,0,0,2]
and d = [2,2,1,1,0] (independently of the chosen
HVT). The corresponding Σ-Jacobian is given by

J =




1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 2p1
0 0 0 1 2p2

2p1 2p2 0 0 0




and the reduced derivative array takes the form

F (t,X ) =




ṗ1−q1
p̈1− q̇1
ṗ2−q2
p̈2− q̇2

q̇1 + 2p1λ
q̇2 + 2p2λ +g
p2

1 + p2
2− `2

2p1 ṗ1 + 2p2 ṗ2
2p1 p̈1 + 2 ṗ2

1 + 2p2 p̈2 + 2 ṗ2
2




= 0. (5)

Thus, the Σ-Jacobian J is nonsingular at every con-
sistent point and the Σ-method succeeds with νS =
maxi ci + 1 = 3.

The information provided by the HVT and the off-
set vectors can also be used to introduce new alge-
braic variables for selected differential variables yield-
ing an extended square regularized system, for details
see also [13]. However, it may happen that the suc-
cess check of the Σ-method fails as can be seen in the
following example.

Example 2.2 Consider the simple DAE system

ẋ1 = x3 + b1

ẋ2 = x4 + b2

0 = x2 + x3 + x4 + b3

0 =−x1 + x3 + x4 + b4

(6)

which is regular and of differentiation index (d-index)
3. If we apply the Σ-method to system (6), we get the
signature matrix

Σ =




1 − 0 −
− 1 − 0
− 0 0 0
0 − 0 0


 (7)

with marked HVT on the diagonal and canonical off-
set vectors c = [0,0,0,0] and d = [1,1,0,0]. The cor-
responding Σ-Jacobian is given by

J =




1 0 −1 0
0 1 0 −1
0 0 −1 −1
0 0 −1 −1


 (8)

and J is singular, i.e., the Σ-method fails.

Example 2.2 shows that for regular and therefore
uniquely solvable systems the structural analysis can
fail. In the following, systems for which the success
check fails since the Σ-Jacobian is singular will be
called structurally singular1. It has been shown in [13]
that this is the case for certain coupled systems that are
obtained by coupling semi-explicit d-index 1 subsys-
tems, when the coupling results in redundancies or in
an increase in the index. Nevertheless, the structural
approach works well in many cases and for many im-
portant structures as e.g. systems in Hessenberg form,
see [12].

Remark 2.3 It has been shown in [12] that Pantelides
Algorithm [10] and the Signature Method described
above are essentially equivalent in the sense that if
they can both be applied and they both succeed (or
converge) they result in the same structural index and
the offset vector c = [ci] corresponds to the number
of differentiations for each equation Fi as determined
by Pantelides Algorithm. The advantage of using the
Signature Method is the fast and efficient computation
of the offset vectors via LPPs and the direct success

1Note that the term structurally singular is also used with a
different meaning in other areas of research.
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check (i.e., checking the regularity of the Σ-Jacobian)
that allows us to use the results for further treatment.
Note that Pantelides Algorithm will not converge in
cases where the success check of the Signature Method
fails.

3 Regularization using Overdeter-
mined Formulations

Regularization approaches for high index DAEs like
the Dummy Derivatives Approach [9] or index re-
duction by Minimal Extension [7] consist of adding
the hidden constraints to the system equation and the
selection of certain differential components that can
then be replaced by new algebraic variables in order
to lower the index of the system and to obtain a new
regular index-reduced system formulation. Hereby, a
problem is that the choice of states that are selected
can change during the numerical integration (e.g., if
the pendulum moves from the vertical to the horizon-
tal position). Thus, if the state selection is performed
outside the numerical integrator this often is compu-
tational inefficient. In the following, we will present
a regularization of quasi-linear DAEs (1) that are of
higher index, i.e., that contain hidden constraints. This
regularization is based on an overdetermined system
formulation in order to overcome the difficulties in the
numerical simulation.

If the structural analysis presented in Section 2 suc-
ceeds, the offset vector c gives us the required infor-
mation about the hidden constraints in the system. If
the success check of the Σ-method fails, we can use
the procedure proposed in [14, 15] to determine the
hidden constraints of a quasi-linear DAE (1).

Remark 3.1 For structurally singular systems in
semi-explicit form arising in coupled systems of DAEs
a combined structural-algebraic approach has been
proposed in [13] that can be applied in cases where the
success check fails, but nevertheless allows us to use
certain information provided by the structural analysis.
In this way, the determination of the hidden constraints
can be improved.

Let us denote the hidden constraints by

0 = h(x, t), (9)

where h : Rn×I→RnC with rank
(

∂h
∂x (x, t)

)
= const.

for all consistent (x, t) ∈ Rn× I. Adding the hidden
constraints to the quasi-linear DAE (1) leads to the

overdetermined DAE

E(x, t)ẋ = k(x, t), (10a)

0 = h(x, t) (10b)

consisting of the original quasi-linear DAE (1) and all
hidden constraints (9). This overdetermined formula-
tion (10) is equivalent to the original DAE (1) in the
sense that both have the same solution set. Note that
the unknowns x are unchanged, i.e., a transformation
of the state variables is not necessary and the num-
ber of unknowns is not increased (in contrast to the
dummy derivative approach). The overdetermined for-
mulation (10) has the advantage that all constraints are
stated in explicit form, i.e., no hidden constraints exist
anymore. A further advantage of the overdetermined
formulation (10) is the fact that it is not necessary to
apply analytical manipulations for the determination
of a square and uniquely solvable system of DAEs
(provided that consistent initial values are given).

Example 3.2 For the simple pendulum the hidden
constraints can be derived from the reduced derivative
array (5) and consists of




p2
1 + p2

2− `2

2p1q1 + 2p2q2
−4p2

1λ + 2q2
1−4p2

2λ −2p2g+ 2q2
2


=




0
0
0


 . (11)

4 Numerical Approach

Unfortunately it is impossible to model and integrate
the overdetermined formulation (10) within the com-
mon MODELICA frameworks. Therefore, the above
described approach has been incorporated into a pro-
totype MODELICA framework named MPSSim (Multi-
Physics System Simulation). Here, a direct numeri-
cal integrator has been adapted for the overdetermined
regularization (10).

In the following, the used adapted numerical in-
tegration scheme is exemplary illustrated for the im-
plicit Euler method. In this case, the discretization of
the overdetermined system (10) leads to the overdeter-
mined nonlinear system

0 =

[
E(xk, tk)(xk− xk−1)− τkk(xk, tk)

−τkh(xk, tk)

]
(12)

to determine the next iterate xk. Here τk denotes the
stepsize in the integration step k =1, ...,N in the Euler
scheme, tk the discrete time point, and xk the approxi-
mation of the solution x(tk) at the point tk.
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The nonlinear system (12) is no longer exactly solv-
able because of discretization and rounding errors dur-
ing the numerical integration. Therefore, it is only pos-
sible to find an approximation x̃k which minimizes the
residual r 6= 0 ∈ Rn+nC with

r =

[
rD
rC

]
=

[
E(x̃k, tk)(x̃k− xk−1)− τkk(x̃k, tk)

−τkh(x̃k, tk)

]

in a certain sense. In general, such an approximation
results in a residual rC 6= 0, which in turn leads to un-
fulfilled constraints, i.e., 0 6= h(xk, tk), not even within
machine precision. This would lead to the typical dif-
ficulties in the numerical integration of higher index
DAEs, i.e., instabilities, convergence problems, incon-
sistencies, or the solution drifts away from the original
solution manifold.
In order to avoid these problems it is necessary to
make sure that the constraints are always satisfied dur-
ing numerical integration. This can be achieved if the
nonlinear system (12) is treated separately such that
the next iterate xk satisfies the lower part, i.e., the
constraints, exactly or within a prescribed precision,
while xk yields a minimal residual in the upper part,
i.e., in the differential part. The described numeri-
cal approach is implemented in the software package
QUALIDAES (QUAsi LInear DAE Solver). This software
package is suited for the direct numerical integration
of regularized overdetermined model equations and is
based on the 3-stage implicit Runge-Kutta method of
type Radau IIa of order 5, see [5, 6]. QUALIDAES is
integrated as numerical solver into the MPSSim frame-
work. In the current version the user has to provide the
model equations already given in overdetermined reg-
ularized form (10) formulated as MODELICA model.
Then, using the translator MO2FOR [1] a FORTRAN

source code is generated that can be used to solve
the model equations with the solver QUALIDAES. The
FORTRAN source code is automatically compiled and
linked to the solver QUALIDAES. In Figure 1 the ap-
proach for the numerical treatment of models defined
in MODELICA using MPSSim is illustrated. Note that
within this framework, it is not necessary to determine
a dynamic (state) selector, since this is achieved auto-
matically within the separated treatment of (12) by its
numerical solution, as described above. For a conve-
nient usage also a graphical user interface (GUI) has
been implemented in Matlab (see Figure 2) allowing
the graphical representation of the obtained numerical
results and can be used for further post-processing.

numerical results

translation with MO2FOR

Modelica source code

Fortran source code for QUALIDAES

numerical integration with QUALIDAES

Figure 1: Scheme of MPSSim

5 Numerical Example

To show the promising performance of integrating a
DAE system using MPSSim with an overdetermined
system formulation we have compared the simula-
tion of the simple pendulum equations given in Ex-
ample 2.1 using MPSSim, MapleSim, Dymola and
OpenModelica. In order to have a measurement for
the error we include another equation in the system
describing the total energy

E =
1
2

m(q2
1 + q2

2)+ mgp2

that should be preserved for all t ∈ I and every solution
of the system (4). We use a gravitational constant of
g = 13.7503716373294544 m

s2 to ensure a time period
of T = 2s for the motion of the pendulum and a mass
of m = 1kg as well as a length of ` = 1m. At first we
simulate the system for t ∈ [0s,100s] with given (fixed)
consistent initial conditions

p1(0) = 1, p2(0) = 0, q1(0) = 0,

q2(0) = 0, λ (0) = 0, E(0) = 0,

and a prescribed error tolerance of 10−7 (for both the
absolute and relative error). In the simulation with
MPSSim we solve the overdetermined formulation (4)
together with (11) containing all hidden constraints,
while the other simulation tools use the original d-
index 3 formulation (4) and the index reduction is per-
formed within the tool using different index reduction
strategies. The values E(t f ) of the total energy at the
final time point t f = 100s together with the required
CPU times needed for the integration are listed in Ta-
ble 1. In Dymola a modified version of the multi-step
solver Dassl is used. Here, quite a large number of
state selections are required (alternating selecting the
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Figure 2: Matlab-GUI of MPSSim

states p1 and q1, or p2 and q2). In MapleSim we use
once the provided solver CK45 suited for semi-stiff
problems, which is usually less accurate but faster,
and once the Rosenbrock method suited for stiff sys-
tems, which yields a higher accuracy at the expense
of more required CPU time. Furthermore, the cor-
responding results obtained for a long time simula-
tion for t ∈ [0s,1000s] are listed in Table 2. Note
that OpenModelica fails to integrate the system in this
case.

Comparing the obtained results one can see that the
projection strategy onto the constraint manifold used
within MapleSim yields an accurate numerical solu-
tion, while the numerical results obtained with Dymola

Simulation tool E(t f ) CPU time

MPSSim 1.13 ·10−6 0.148s

MapleSim (Rosenbrock) 0.00 ·10−0 4.484s

MapleSim (CK45) 1.50 ·10−5 1.604s

Dymola 2.14 ·10−3 0.890s

OpenModelica −1.60 ·10−3 2.938s

Table 1: Simulation result of the pendulum equation
with energy conservation for t ∈ [0s,100s]

Simulation tool E(t f ) CPU time

MPSSim 1.89 ·10−5 1.364s

MapleSim (Rosenbrock) 5.00 ·10−6 45.358s

MapleSim (CK45) 1.49 ·10−4 15.645s

Dymola 2.14 ·10−2 8.830s

OpenModelica — —

Table 2: Simulation result of the pendulum equation
with energy conservation for t ∈ [0s,1000s]

are less accurate. The numerical results obtained with
MPSSim are accurate within the range of the prescribed
error tolerance at low computational costs. However,
note that using MPSSim only the costs for the numeri-
cal integration of the overdetermined system are mea-
sured, while the CPU times of the other tools also con-
tains the costs for index reduction, state selection, pro-
jection, and further transformations.

6 Conclusions

In this article we have discussed the efficient and ro-
bust numerical simulation of dynamical systems that
are modeled with MODELICA. We have presented a
regularization method for quasi-linear DAEs that is
based on an overdetermined system formulation that
is obtained by adding all hidden constraints explicitly
to the original model equation. The information on
the hidden constraints can be obtained from a struc-
tural analysis of the system. If a structural analysis
cannot be applied these information can be obtained
in an analytical way. The overdetermined system for-
mulation can then directly be integrated using a spe-
cially adapted numerical integrator. The great advan-
tage of the direct discretization of the overdetermined

Efficient Numerical Integration of Dynamical Systems based on Structural-Algebraic Regularization avoiding
State Selection

1176 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961171



formulation is the fact that it is not necessary to de-
termine a selector analytically in advance and that the
number of unknowns in the DAE is not increased. A
further advantage of an overdetermined regularization
with respect to the numerical integration is the pos-
sibility to add solution invariants, e.g., mass, impulse
or energy conservation laws, to the constraints, which
often stabilizes numerical integration. Performing the
state selection within the numerical integrator also al-
lows us to switch between different state selections
and also opens the door to handle structure varying
system models [11]. Currently, no MODELICA sim-
ulation framework is able to handle overdetermined
system formulations. Therefore, a prototype MOD-
ELICA framework MPSSim is presented that includes
a translator MO2FOR that is used to translate an overde-
termined system model provided in MODELICA into
FORTRAN source code which can then be integrated
using the software package QUALIDAES. MPSSim is still
at an early state of development and will be continu-
ously improved.
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Abstract

The quantity of initial equations required in an object-
oriented model can only be determined at system
level. Since Modelica models are generally designed
by components, it is difficult to calculate the amount
of initial equations needed at system level, especially
when changes are applied to the model, e.g. by adding
or removing components. Therefore, it is more con-
venient to define initial equations at component level.
Due to component connections, algebraic dependen-
cies between states may be introduced, which eventu-
ally lead to the removal of states when symbolic index
reduction algorithms are applied. In this process, the
corresponding initial equations are not automatically
removed, which results in an over-determined initial
system.

This paper describes an algorithm that detects such
redundant equations and determines if they are con-
sistent or not. Consistent redundant initial equations
can thus be removed automatically, and inconsistent
ones can be reported to the modeler. A prototype of
the algorithm is implemented in OpenModelica, tested
on several representative cases, and compared to pre-
viously presented concepts.

Keywords: initialization; higher-index; simulation;
over-constrained

1 Introduction

1.1 Statement of the Problem

Initial equations in Modelica are usually defined at the
component level, and they are as many as the dynamic
variables of the component, i.e., the potential states.

When connections are made, connection equations
can induce algebraic constraints on dynamic variables.
The dummy derivatives algorithm is used by many
Modelica tools to dispose of some potential states and
obtain an index-1 problem. As a result, there will be
more initial equations than states, leading to an over-
constrained initialization problem.

It is agreed that index reduction is necessary in
object-oriented modeling to achieve full modularity
without compromises, and suitable means to handle it
have been developed over time, so it is obviously nec-
essary to extend the handling to initialization as well.
In the majority of cases the over-constrained initial-
ization problem turns out to be consistent, and should
therefore be handled automatically, without any in-
tervention by the end user; inconsistent initialization
problems should be reported in a user-friendly way.

1.2 Overview of Existing Solutions

OpenModelica has been using a numerical approach
to solve this problem for a long time, as discussed in
[1]. The initialization problem is turned into an op-
timization problem, where the sum of square of all
residuals is minimized; if the problem is consistent,
then the minimum is zero, otherwise the inconsistency
is spread among equations, which is generally not a
good idea. However, solving an optimization prob-
lem is much harder and time-consuming than solving
a system of equations, and it might easily be possi-
ble to get trapped in local minima. Also, convergence
problems quickly get worse when increasing the size
of the system, up to the point where a solution cannot
be reliably found unless guess values very close to the
solution are given to all the problem unknowns. This
gets even worse in the case of hybrid models, where
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some parts of the system contain discrete equations.
Even for determined initialization systems, the numer-
ical approach is only applicable in very special cases.
In practice, this limits the application of the method
to very simple models. So far, large-scale and hy-
brid models are reliably initialized using the symbolic
initialization method described in [2], which has been
further developed to also handle over-determined sys-
tems.

To our knowledge, there is no other Modelica tool
available that has a general approach to handle over-
determined initialization problems. The package Mod-
elicaTest, which is offered by the Modelica Asso-
ciation together with the Modelica standard library
(MSL), has been extended to provide a free-accessible
set of appropriate test models. This can be used to
compare the excellence of the initialization capabili-
ties of different tools.

1.3 Structure of the Paper

In Section 2, an simple introductory example is dis-
cussed in detail to demonstrate the problem being
tackled in this paper. In Section 3, an algorithm is
presented to locate redundant equations which arise
when symbolic index reduction is applied, and detect
whether they are consistent or not. In Section 4, it is
shown how the proposed algorithm works. A few sim-
ple test cases and the results of a more involved test
case are discussed. Section 5 concludes the work with
final remarks and suggestions for future work.

2 Introductory Example

This section describes how over-constrained initializa-
tion problems arise, by means of a simple electric cir-
cuit model, where two series-connected capacitors are
connected to a constant voltage source. A graphical
representation is shown in Figure 1 and an equation-
based model description where all alias variables have
been removed is shown in Listing 1.

Both of the capacitors introduce a potential state
ui. Due to component-based modeling, both capaci-
tors may also introduce initial equations, for example
ui = 5.

An algebraic constraint among potential states is in-
troduced by connecting the capacitors in parallel to
a voltage source, so this model has index-2. Hence,
symbolic index reduction is used (see [3], [4]) to trans-
form this system into an equivalent index-1 system of
lower order. During this process, one of the potential

Figure 1: Introductory example - object diagram

states becomes an ordinary algebraic variable and the
additional equation 0 = der(u1) + der(u2) gets intro-
duced to keep the dynamic system determined.

1 model example
2 Rea l u = 1 0 ;
3 Rea l u1 ;
4 Rea l u2 ;
5 Rea l i ;
6 p a r a m e t e r Rea l C = 1 ;
7 i n i t i a l e q u a t i o n
8 u1 = 5 ;
9 u2 = 5 ;

10 e q u a t i o n
11 i = C∗ d e r ( u1 ) ;
12 i = C∗ d e r ( u2 ) ;
13 u = u1 + u2 ;
14 end example ;

Listing 1: Introductory example - flat Modelica model

After the dynamic system is transformed to index-1,
the initial equations will be added. As a result, an over-
determined system arises that needs to get matched.
There will be at least one unmatched equation for each
redundant initial equation. Also note that there is no
unique matching (besides the matching within each
strong component) due to the over-determined sys-
tem structure; different matchings are possible, which
leave out different unmatched equations and possibly
lead to different sets of strong components. Figure 2
shows one possible matching that will be used for the
next steps; the gray equation is the unmatched one.

If all unmatched equations are consistent, then they
can be removed and the initial solution can be calcu-
lated using robust and efficient algorithms designed
for square problems. In order to check the consis-
tency, the matching digraph gets first transformed into
a directed graph by replacing each non-matching edge
with an arc going from the E-node to the V-node, then
by collapsing each V-node with its matching E-node.
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Figure 2: Introductory example - matching

Next, Tarjan’s algorithm [5] gets applied on the di-
rected graph, ignoring the unmatched equations, to
find out strong components. The result of this pro-
cedure is presented in Figure 3, with one strong com-
ponent at the top of the graph.

The symbolic consistency check will be performed
on this graph. The basic idea is to only consider the
sub-graph which involves the initial equations and the
unmatched equations, in this case the lower part of
Figure 3, and to recursively and symbolically solve the
equations starting from the sinks and going up to the
unmatched equations. In this case, once the three sink
node equations have been solved, the gray equation
becomes 10 = 5 + 5, which is equivalent to 0 = 0, and
thus redundant.

Figure 3: Introductory example - directed graph of the
unmatched equation

In general, however, it will not be possible to sym-
bolically solve all the chain of equations leading to the
unmatched equation. It is therefore essential to select

a particular matching that makes this possible. A con-
crete algorithm that does so is presented in the next
section.

3 Algorithm for Redundant Equa-
tion Detection

The goal of this algorithm is to find redundant equa-
tions and remove them if they are consistent, or is-
sue an error if they are not. A symbolic approach is
preferred, because it avoids the need of setting more
or less arbitrary numerical thresholds and using itera-
tive solvers. In general, solving the full initialization
problem symbolically is not feasible, because it often
contains large and nonlinear coupled systems of equa-
tions that cannot be solved in closed form. Therefore,
a symbolic approach should aim at finding a suitable
subset of the initialization problem that is easy to solve
symbolically, to check if there are redundant and con-
sistent equations, so as to remove them.

In a system with n equations and m variables, with
k = n−m too many equations, there are

(n
k

)
possible

sub-sets of equations that may be removed to make the
problem square. However, the resulting problem need
not only be square, but also have a solution, and many
of these sets cannot be removed, because they contain
essential (and not redundant) constraints. Hence, an
algorithm is needed that efficiently finds those sets that
can be removed without losing essential information.

In addition to that, each set of removed equations
corresponds to a unique matching (ignoring the dif-
ferent matchings within strong components) of the re-
maining system. Depending on this matching, a con-
sistence check can be performed by recursively evalu-
ating the sorted subsets. The effort for this evaluation
strongly depends on the selected equation dependen-
cies, i.e., on the selected matching.

In practice, such a subset can normally be found, be-
cause initial equations are usually linear, involving one
unknown, e.g. x = x0, or der(x) = 0. State derivatives
usually show up linearly in balance equations, because
they stem from the derivative of some basic quantity
(mass, energy, momentum, charge) via differentiation.
Connection equations, which usually provide the con-
straints that make the problem high index, are also lin-
ear. In most cases, it should then be possible to sym-
bolically prove that the problem is either consistent or
inconsistent, by means of symbolic computations, be-
cause the equations to be solved symbolically will be-
long to the above-mentioned categories.
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3.1 Proposed Algorithm

1. Apply index reduction and state variable change
to the dynamic problem, using the dummy deriva-
tives algorithm.

2. Add the initial equations to the set to form the
initialization problem.

3. Build the corresponding E-V graph.

4. Run the matching algorithm; some unmatched
equations will remain at the end of the process
(one for each redundant initial equation).

5. Transform the E-V digraph into a directed graph
by first replacing each non-matching edge with an
arc going from the E-node to the V-node, then by
collapsing each V-node with its matching E-node.

6. Run Tarjan’s algorithm on the directed graph,
ignoring the unmatched equations, to find the
strongly connected components, and collapse
each strong component in a single node.

7. Starting from the sink nodes and proceeding re-
cursively towards the source nodes (unmatched
equations), symbolically solve each equation (or
system of equations) for its unknown(s) and sub-
stitute the result in all the nodes that have arcs
pointing to the solved equation node and are
needed to validate the unmatched equations.

If the symbolic solution of one equation is not
possible (e.g., a sub-expression becomes 0/0),
then try to change the matching from step 4 for
the corresponding equation and go back to step 5.
If there is no other matching, then the algorithm
aborts, and it is neither possible to draw any con-
clusion on the consistency of the problem, nor to
reduce the problem to a square one.

8. If all the unmatched source nodes contain
equations equivalent to 0 = 0, then the over-
determined system is consistent, and it is possible
to turn it into a square equivalent system by just
removing all the unmatched equations. If there
are one or more source nodes containing equa-
tions equivalent to 0 = 1, then the system is in-
consistent. For diagnostic purposes, it is possible
to report for each node the set of connected equa-
tions which are inconsistent. This will help the
end user to identify the source of the inconsis-
tency and possibly remove it.

The calculation of the matching in step 4 is essential
for this approach. Due to the over-determined system
structure, in general various matchings are possible.
If a matching for all variables exists that contains no
algebraic loops, then it is preferred and should be tried
first. Therefore, Tarjan’s tearing algorithm described
in Cellier’s book [6] is applied to the over-determined
equation system.

A recursive evaluation of the equation system is
possible if and only if during sequential evaluation
each next equation depends on exactly one more un-
known variable. This means that within the equation
system at least one equation exists, which depends just
on one variable. Tarjan’s algorithm detects this fact,
matches the variable to the equation, and reduces the
corresponding bipartite graph by removing both nodes
and all corresponding edges. The same must hold for
the reduced set of equations and can be repeated until
all variables are matched.

If during the algorithm all remaining equations de-
pend on at least two unknown variables no matching
without algebraic loops exists.

The proposed algorithm extends the existing sym-
bolic initialization method of OpenModelica [2],
which is capable to initialize complex hybrid models.

3.2 Numeric Fall-back Case

Instead of step 7 and 8 another possible approach
would be to leave the unmatched equations out of the
problem, solve it, then numerically evaluate the resid-
uals and check if they are small enough. This might be
non-trivial in some cases when the involved quantities
are very large due to the choice of measurement units
and to the size of the system under consideration.

This kind of approach has also the disadvantage that
it is not possible to find a different matching if the sys-
tem ends up in a local singularity.

4 Discussion Based on Selected Ex-
amples

The proposed algorithm has been tested using the
package OverdeterminedInitialization from Modeli-
caTest, which has been first created for this purpose at
the 80th Modelica Design Meeting. This test package
contains a list of models from different domains (Elec-
trical, Mechanics, and Fluid) for test purpose, which
become over-constrained after index-reduction. The
different test cases can be used to cover all kinds of the
different issues, that may occur during this process.
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Figure 4: Directed graph of the unmatched equa-
tions of some simple examples from the package
OverdeterminedInitialization

Because of the low complexity of the most test
cases, they end up with a similar subsystem for the
consistence check as the introductory example. There-
fore, the consistence check can be performed by evalu-
ating the remaining subgraphs recursively towards the
unmatched equations (see Figure 4).

4.1 Fluid Model of Two Volumes

Figure 5: TwoVolumesEquationsFullSteadyState-
MassAndEnergy

One of the most complex examples of the package
is the fluid model TwoVolumesEquationsFullSteady-
StateMassAndEnergy, in which equations and initial
equations refer to stored mass and energy within each
volume as differentiated variables, but pressure and

temperature are forced to be states using the Modelica
stateSelect attribute. Figure 5 shows a graphical rep-
resentation using MSL components. Note that, due to
the way the Modelica.Fluid components are designed,
it is not possible to reproduce this situation, so a tex-
tual equation-based model is used for testing the al-
gorithm. This model and the respective dependence
graph are listed in the appendix. Using transforma-
tions like alias elimination, a reduced version can be
generated that contains just 10 variables and 11 equa-
tions. Figure 6 shows the reduced dependence graph
with one possible matching.

The example contains 11 equations, and is over-
constrained due to one equation. Therefore, there are
11 sets of equations (each of cardinality one) that may
be removed. Depending on the selected set of equa-
tions several cases can occur:

1. recursively evaluable systems

2. systems containing algebraic loops

3. systems with local singularities

4. system with structural singularities

Figure 6: A matching of the remaining equa-
tion system of TwoVolumesEquationsFullSteadyState-
MassAndEnergy

Four sets end up in case 1, which is the most desir-
able case. Here all equations can be solved recursively
towards the unmatched ones to check the consistency
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of the system. This happens often in simple cases as
described above. Unfortunately, there is no guarantee
that such a case will always show up in more complex
examples. But, if such a case exists, it will be always
captured.

Three sets end up in case 2, which is the most com-
mon case for real-world problems. In general, there is
no way to avoid algebraic loops. However, this case
will only need to be taken into consideration if there is
no recursively evaluable system available. In that case,
advanced symbolic solvers are needed to compute the
solution of these loops symbolically. If this is not pos-
sible a modified version of the algorithm could switch
to a numeric fall-back mode.

Two sets end up in case 3, which occurs, for in-
stance, if a subexpression is evaluated to 0/0. In this
case the selected set of unmatched equations can not
be used to determine whether the system is consistent
or not. The proposed algorithm detects this in step 7,
and, if possible, this case is avoided by rejecting the
corresponding set and trying another one, in the hope
of finding a recursively evaluable one.

Two sets end up in case 4, which gives a non-valid
matching for the system. It is not possible to use the
selected set of unmatched equations for any conclu-
sion. Because, the proposed algorithm only selects
matchable sets of equations, this case is never reached.
Furthermore, due to this fact the possible sub-sets of
equations that may be reduced is much less than

(n
k

)
.

4.2 Electrical 3-Phase System

This test model was already presented in [1]:
Consider the following electrical 3-phase power

system of Figure 7, where two generating units VS1

and VS2 are connected via a transmission line modeled
by components LR1 and LR2.

Figure 7: An electrical power system with two gener-
ating units VS1 and VS2 connected via a transmission
line

The connectors are written in dq0-coordinates im-
plementing the potential variable u_dq0 and the flow
variable i_dq0. These quantities are constant in case
of a non-distributed steady state, which is generally
assumed during the initialization process. Introducing
the Park-Transformation P the 3-phase rotating system

(voltages u_abc and currents i_abc) can be calculated
from the dq0-representation and vice versa.

The transmission line (LR1 and LR2) is modeled by
a purely inductive and resistive component, based on
the Modelica Electrical Library. Since LR1 and LR2

are connected in series, giving a higher index system,
index reduction has to be applied for simulation pur-
poses.

Figure 8: LR2 component with dq0-connectors

The voltage source is described similarly using the
Modelica Standard Library combined with the dq0-
connectors.

4.2.1 Results Using the Proposed Algorithm

This system covers some important pitfalls. After in-
dex reduction, the initial system contains three equa-
tions too many. The described approach is not able to
find a matching without algebraic loops. Therefore,
the resulting loop (with a size of 27) has to be solved
symbolically. This is currently not supported from the
OpenModelica back-end and might be in general im-
possible.

As fall-back case the system can be solved numeri-
cally during runtime as described in 3.2. For the con-
crete case of the 3-phase system, the resulting alge-
braic loop becomes singular if a wrong set of equations
is removed. A more advanced solution is described in
the following subsection.

4.2.2 Future Work

As stated above, a symbolic solution for the 3-phase
system is still needed. One possible idea is to change
the consistence check as follows:

Depending on the matching, the following three
equations might get selected as the set of removed
equations:

0.0 = 0.5773502691896258 * (der(LR2.I1.i) +

der(LR2.I2.i) + der(LR2.I3.i));
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0.0 = LR2.Park[2,1] * der(LR2.I1.i) +

LR2.Park[2,2] * der(LR2.I2.i) +

LR2.Park[2,3] * der(LR2.I3.i) +

der(LR2.Park[2,1]) * LR1.i_abc[1] +

der(LR2.Park[2,2]) * LR1.i_abc[2] +

der(LR2.Park[2,3]) * LR1.i_abc[3];

0.0 = LR2.Park[1,1] * der(LR2.I1.i) +

LR2.Park[1,2] * der(LR2.I2.i) +

LR2.Park[1,3] * der(LR2.I3.i) +

der(LR2.Park[1,1]) * LR1.i_abc[1] +

der(LR2.Park[1,2]) * LR1.i_abc[2] +

der(LR2.Park[1,3]) * LR1.i_abc[3];

They are quite similar to the next three equations,
that are part of the matched system and involved in the
algebraic loop:

0.0 = 0.5773502691896258 * (der(LR2.I1.i) +

der(LR2.I2.i) + der(LR2.I3.i));

0.0 = LR1.Park[2,1] * der(LR2.I1.i) +

LR1.Park[2,2] * der(LR2.I2.i) +

LR1.Park[2,3] * der(LR2.I3.i) +

der(LR1.Park[2,1]) * LR1.i_abc[1] +

der(LR1.Park[2,2]) * LR1.i_abc[2] +

der(LR1.Park[2,3]) * LR1.i_abc[3];

0.0 = LR1.Park[1,1] * der(LR2.I1.i) +

LR1.Park[1,2] * der(LR2.I2.i) +

LR1.Park[1,3] * der(LR2.I3.i) +

der(LR1.Park[1,1]) * LR1.i_abc[1] +

der(LR1.Park[1,2]) * LR1.i_abc[2] +

der(LR1.Park[1,3]) * LR1.i_abc[3];

Instead of solving the entire algebraic loop symbol-
ically, it might be possible to transform each of the re-
moved equations into an equation of the matched sys-
tem, and thus prove its redundancy.

The first equation of both sets are already equal,
so there is no further consistence check needed. By
applying common-sub-expression elimination tech-
niques and advanced alias elimination also the other
two equations can be transformed into the other two.
For that, it is just needed to figure out that LR1.Park
is alias of LR2.Park and der(LR1.Park) is alias of
der(LR2.Park).

5 Conclusions

This paper has discussed a symbolic algorithm that
handles the initialization problem of over-determined
systems. The presented approach has not to deal with
numerical thresholds and there is no risk of trapping
into local minima. Also hybrid models can be handled
efficiently. This is a major improvement with respect

to the existing numerical approach within OpenMod-
elica.

This paper focused on symbolic techniques to de-
termine potential redundant equations and ways to an-
alyze whether the system is consistent or not. These
work well for problems, which end up in an recur-
sively evaluable initial system. Furthermore, the de-
veloped algorithm takes care of singularities, if they
occur during the consistency check. More complex
problems end up with systems including algebraic
loops. If they are not solvable symbolically, a numer-
ical fall-back solution as well as advanced symbolic
techniques are proposed.
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A Test Model TwoVolumesEquationsFullSteadyStateMassAndEnergy

1 model TwoVolumesEqua t ionsFu l lS teadySta teMassAndEnergy
2 "Two volumes c o n t a i n i n g an i d e a l gas wi th a z e r o dp c o n n e c t i o n "
3 Rea l M1( s t a t e S e l e c t = S t a t e S e l e c t . avoid , s t a r t = 1 . 0 ) ,
4 M2( s t a t e S e l e c t = S t a t e S e l e c t . avoid , s t a r t = 1 . 0 ) ,
5 E1 ( s t a t e S e l e c t = S t a t e S e l e c t . avoid , s t a r t = 1 . 0 ) ,
6 E2 ( s t a t e S e l e c t = S t a t e S e l e c t . avoid , s t a r t = 1 . 0 ) ,
7 p1 ( s t a t e S e l e c t = S t a t e S e l e c t . p r e f e r , s t a r t = 1 . 0 ) ,
8 p2 ( s t a t e S e l e c t = S t a t e S e l e c t . p r e f e r , s t a r t = 1 . 0 ) ,
9 T1 ( s t a t e S e l e c t = S t a t e S e l e c t . p r e f e r , s t a r t = 1 . 0 ) ,

10 T2 ( s t a t e S e l e c t = S t a t e S e l e c t . p r e f e r , s t a r t = 1 . 0 ) ,
11 w0 , w1 , w2 , h1 , h2 ;
12 p a r a m e t e r Rea l V = 1 ;
13 p a r a m e t e r Rea l R = 400 ;
14 p a r a m e t e r Rea l cp = 1000 ;
15 p a r a m e t e r Rea l cv = cp−R ;
16 p a r a m e t e r Rea l h0 = cp ∗300 ;
17 p a r a m e t e r Rea l Kv = 1e−7;
18 i n i t i a l e q u a t i o n
19 d e r (M1) = 0 ;
20 d e r ( E1 ) = 0 ;
21 d e r (M2) = 0 ;
22 d e r ( E2 ) = 0 ;
23 e q u a t i o n
24 d e r (M1) = w0 − w1 ;
25 d e r ( E1 ) = w0∗h0 − w1∗h1 ;
26 d e r (M2) = w1 − w2 ;
27 d e r ( E2 ) = w1∗h1 − w2∗h2 ;
28 M1 = V∗p1 / ( R∗T1 ) ;
29 M2 = V∗p2 / ( R∗T2 ) ;
30 E1 = M1∗ cv∗T1 ;
31 E2 = M2∗ cv∗T2 ;
32 h1 = cp∗T1 ;
33 h2 = cp∗T2 ;
34 w0 = 0 . 0 1 ;
35 w2 = Kv∗p2 ;
36 p1 = p2 ;
37 end TwoVolumesEqua t ionsFu l lS teadySta teMassAndEnergy ;

Listing 2: Test model TwoVolumesEquationsFullSteadyStateMassAndEnergy
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Figure 9: TwoVolumesEquationsFullSteadyStateMassAndEnergy - dependence graph
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Abstract 

This article presents the NewThermal library that 
extends the capacities of Thermal library from the 
Modelica Standard Library (MSL) including a pro-
posal for standardizing the use of Material mod-
els. The new library is intended to decouple the 
models that collect the equations of heat transfer 
phenomena from the thermo-physical properties of 
the matters (fluids and solids).  

The NewThermal library, in the same way that the 
current Thermal library from MSL, is composed of 
thermal system components to model heat transfer 
and simple thermo-fluid pipe flow. Nevertheless, the 
models from the package proposed inherit the ther-
mal properties from Media and Material models 
of the fluids and solids involved (either temperature 
dependent or constant). In this way, the user has 
three aspects to define; the heat transfer phenomena 
to be modelled, the geometrical characteristics of the 
bodies, and the matters involved. 

Components inside HeatTransfer package are 
implemented such they can be used for any material 
model in Materials package, in the same way 
that components from Modelica.Fluid were 
carried out for their use with media models from 
Modelica.Media. 

The NewThermal library, in addition, provides 
some general base models for the modelling of 2D 
and 3D heat conduction in basic solid geometries. 

Two examples of use for different domains are pre-
sented to illustrate the features of the new libraries.  

 

Keywords: Modelica; heat transfer; thermal proper-
ties; thermal conduction, three dimensional heat 
flow 

1 Introduction 

In a general view, any heat transfer phenomena can 
be described with three different aspects: 
 

• Heat transfer mechanism: conduction, con-
vection or radiation or a combination of 
them. 

• Geometrical characteristics of the phenom-
ena: dimensions of the bodies, relative posi-
tion between bodies and/or fluids. 

• Properties of the substances involved, fluids 
and solids. 

 
On one hand, in the modelling of any detailed ther-
mal behaviour, the thermal properties of the solids 
and fluids involved (density, thermal conductivity, 
specific heat,…) acquire a relevant importance and 
in many cases it is essential to take into account their 
dependence on the temperature. 

On the other hand, the geometry of real bodies usu-
ally can be constructed by the addition of basic ge-
ometries, that is, from a macroscopic point of view 
almost all bodies can be discretized in parallelepi-
pedic, cylindrical and annular nodes (lumped ele-
ments) or a combination of them. 

Considering this ideas and following the philosophy 
of replaceable media models in fluid models from 
MSL[1][2], IK4-TEKNIKER has created the librar-
ies NewThermal and Materials. This first ver-
sion provides mainly models for the modelling of 
conductive heat transfer. But there are described also 
some guidelines to extend the library to other 
mechanisms such as convective and radiative heat 
transfer modelling. 

The goal of the NewThermal library is to provide 
standard components for heat transfer modelling de-
pendent on geometry but independent of material 
properties. 
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2 Materials Library 

It is defined as the library of solid material property 
models. The models from Materials Library are 
based on the partialMaterial partial model. 
This partial model has declared, as replaceable mod-
els, all models required in the modelling of any heat 
conduction phenomenon. In the figure 1 is shown the 
replaceable models mentioned above. On one hand, 
there is the inertia model, required if the heat capac-
ity of the material is taken into account, and on the 
other hand the models needed for the modelling of 
heat transport inside the material are available. The 
latter are chosen depending on the geometries in-
volved, illustrated in the figure 2.  

  
Figure 1: Components of partialMaterial class 

 
Figure 2: Box, cylindrical and cylindrical sector ge-
ometries 

 

Hence, material models extend from this partial 
model and add in each case the thermal properties of 
the substances to be modelled.  

That is, in the same way that models from Mode-
lica.Fluid library with models from Media 
library, any thermal model can include a replaceable 
instance of partialMaterial which allows se-
lecting models from Materials library choosing 
between a large list of materials to inherit their ther-
mal properties, as it is shown in the figure 3. 

 

 
Figure 3: Component for the modelling of the thermal 
behaviour of a body with cylindrical geometry. 

 

In this case, the external radius and the height of the 
cylinder are parameters and the specific heat capac-
ity, density as well as conductivity of the material 
extends from the replaceable material model. 
  

Current partialMaterial model includes only 
replaceable models for the modelling of conductive 
heat transfer but it is possible to extend it in the fu-
ture adding replaceable models relative to radiative 
heat transfer. 

3 NewThermal Library 

3.1 General Library Structure 

The NewThermal library has the same structure as 
Thermal library from MSL, as it is shown in the 
figure 4. All new models are built with connections 
on existing Interfaces package, so they are 
compatible with any model inside Mode-
lica.Thermal. 

 

 
Figure 4: NewThermal library structure 
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Most of new models are based on the use of replace-
able material models and for this reason it is essen-
tial to open it together with Materials library.  

Following sections are focused on HeatCapaci-
tors and Conduction packages that support 
simulation of heat conduction through any solid. 

 

3.2 HeatCapacitor Library 

As shown in the library structure, HeatCapaci-
tor subpackage is included in Components pack-
age. In this subpackage, a collection of generic mod-
els for the heat capacity of a material can be found. 
In these components, no specific geometry is as-
sumed beyond a total volume with uniform tempera-
ture for the entire volume. Furthermore, only one 
parameter it is required, precisely the volume of the 
body to be modelled, in such a way that the heat ca-
pacity value is inherited from the replaceable mate-
rial model. The figure 5 shows the information ex-
pected from the user when the heat capacitor model 
is used. 

 

 
Figure 5: heatCapacitor class 

3.3 Conduction Library 

The Conduction subpackage from NewHeat-
Transfer package is composed of two groups of 
models.  

In the first one, named ThermalConductors, a 
collection of thermal conductor models can be found, 
for 1D conductive heat transport. It contains a sort of 
models for different geometries with the option to 
choose the material of the body to be modelled.  

The second library, called Ba-
sicGenericGeometries, collects a large list 
of models for the simulation of conduction heat 
transfer in any 2D or 3D geometry (parallelepipeds, 
cylinders, rings or tubes) and again all of them have 
the option to choose the material to be modelled.  

3.3.1 Heat Conduction Base Classes 

The base classes of the ThermalConductors 
package are partial models that define the interface 
and the equation of the heat conduction phenomena. 
Models of ThermalConductors have only ge-
ometry values as parameters, inheriting the value of 
conductivity from the replaceable material model. 
The figure 6 shows the information to be defined by 
the user to model heat conduction in box type ge-
ometry. 

 

 
Figure 6: thermalConductorBox model for the 
transport of heat through box geometry in any mate-
rial 

 

partialThermalConductor provides the 
thermal conduction equation Q_flow = G*dT, 
where G is defined as thermal conduc-
tance of material and its calculation depends on the 
geometry through which the heat flows. The partial 
model extends from existing Element1D which 
provides two thermal ports port_a and port_b 
which are common in all components for modelling 
heat transfer, such as heat convection or heat radia-
tion. 

ThermalConductors package offers a set of 
models which extend from partialThermal-
Conductor partial model adding the equation 
characteristic of G depending on geometry: 

•   � = �∗�
�  for a box geometry under the as-

sumption that heat flows along the box 
length. 

•  � = �∗�∗�∗�
	
���������

 for a cylindrical geometry, 

under the assumption that heat flows from 
the inside to the outside radius of the cylin-
der. 
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•  � = ���	�∗�∗�
	
���������

 for a sector for any cyli

drical geometry, under the assumption that 
heat flows from the inside to the outside r
dius of the cylinder. 

In all the equations k is the thermal conductivity of 
the material.  

 

3.3.2 Nodes Base Classes for different 2D and 3D 
geometries 

BaseGenericGeometries package in 
nents.Conduction contains a set of comp
nents for the modelling of 2D and 3D heat condu
tion through bodies with different geometries. These 
models are built on arrays of components from 
Nodes package, a collection of models 
units (lumped elements) for the construction of g
ometries above mentioned. This approach has been 
suggested in previous works such as [3].

Thereby, in Nodes package, it can be found annular 
nodes, parallelepipeds nodes and cylindrical nodes. 
In the figure 7 the model and icon for
node in 3D are shown. 

 

Figure 7: Basic 3D node class 

 

for a sector for any cylin-

drical geometry, under the assumption that 
the inside to the outside ra-

 
is the thermal conductivity of 

Nodes Base Classes for different 2D and 3D 

package in Compo-
contains a set of compo-

nents for the modelling of 2D and 3D heat conduc-
tion through bodies with different geometries. These 
models are built on arrays of components from 

package, a collection of models of basic 
units (lumped elements) for the construction of ge-

ve mentioned. This approach has been 
suggested in previous works such as [3]. 

package, it can be found annular 
nodes, parallelepipeds nodes and cylindrical nodes. 

model and icon for parallelepiped 

 

All these components are composed of:

• A heatCapacitor
Capacitor library
capacity of the node and it is assumed a un
form temperature in it.

• Four/six thermalConductor
from ThermalConductors
modelling the transport of heat. Each couple 
of thermalConductor
the heat transport along the two/three dime
sions.  

 

3.4 Convection and Radiation

The models from Convectio
heat ports as it is common in all components for 
modelling heat transfer, are prepared for connecting 
one of the heat ports to the solid and the other heat 
port to the fluid, in such a way that the component 
itself, has as internal variables the temperature at 
solid and fluid and the heat flow rate from/to solid 
and fluid. Following the same philosophy used for 
the creation of HeatCapacitor
tion libraries and taking advance of the accessible 
fluid and solid temperatures involve
nents in Convection library have been provided 
by a replaceable medium model and correlations for 
natural and external forced convection [4][5] (forced 
convection problem inside conduits is already solved 
in Modelica.Fluid). Thereby, the user
to provide the geometry information of the body i
volved in the convective heat transfer and to select 
the media. 

 

Models in Radiation library respond to the 
Q_flow=Gr*sigma*port_a.T
radiation formula, where Gr
tance of material surfaces involved in the thermal 
radiation and its calculation depends o
and arrangement of surfaces. The emittance of su
faces tends to vary its value with the temperature and 
this effect is more relevant 
creases [6]. The emittance is considered to be i
cluded in material models because it is an intrinsic 
property of material surface. Therefore, the same as 
in Conduction library, the 
would offer models for the modelling of thermal r
diation depending on the geometry and the arrang
ment of objects involved but independent on mater
als. 

All these components are composed of: 

heatCapacitor model, from Heat-
library, for the thermal storage 

capacity of the node and it is assumed a uni-
form temperature in it. 

thermalConductor models, 
ThermalConductors library, for 

the transport of heat. Each couple 
thermalConductor models describes 

the heat transport along the two/three dimen-

Radiation Libraries 

Convection library, with two 
heat ports as it is common in all components for 
modelling heat transfer, are prepared for connecting 
one of the heat ports to the solid and the other heat 
port to the fluid, in such a way that the component 

ables the temperature at 
solid and fluid and the heat flow rate from/to solid 
and fluid. Following the same philosophy used for 

HeatCapacitor and Conduc-
libraries and taking advance of the accessible 

fluid and solid temperatures involved,  all  compo-
library have been provided 

by a replaceable medium model and correlations for 
natural and external forced convection [4][5] (forced 
convection problem inside conduits is already solved 

). Thereby, the user only has 
to provide the geometry information of the body in-
volved in the convective heat transfer and to select 

library respond to the 
Q_flow=Gr*sigma*port_a.T4-port_b.T4) 

Gr is function of the emit-
tance of material surfaces involved in the thermal 
radiation and its calculation depends on the geometry 
and arrangement of surfaces. The emittance of sur-
faces tends to vary its value with the temperature and 
this effect is more relevant as the temperature in-
creases [6]. The emittance is considered to be in-
cluded in material models because it is an intrinsic 
property of material surface. Therefore, the same as 

library, the Radiation package 
would offer models for the modelling of thermal ra-

tion depending on the geometry and the arrange-
ment of objects involved but independent on materi-
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4 Examples 

4.1 Insulated Pipe 

Based on the dynamicPipe class from Mode-
lica.Fluid and NewThermal features, a model 
of an insulated pipe has been created. Although the 
model has been named insulatedPipe, it de-
scribes the hydraulic and thermal behaviour of any 
pipe with one or more solid layer(s) assuming radial 
symmetry in all phenomena. Hence, with this model 
the user can model from a simple copper tube of any 
home heating system to a more sophisticated plastic 
tube with some insulation layers.  

The cover of the dynamic pipe is compounded at 
most of five layers of any material from Materi-
als library. The first layer is the closest to the fluid, 
that is, the layer with the smallest radius. 

The user has to indicate how many layers the pipe 
has and the thickness of each layer, as well as the 
layers materials and the internal radius of the first 
layer.  

If the number of layers is less than five, the user can 
disable the layers no required, switching to false the 
corresponding boolean useLayer. On the left side 
of the figure 8, it is shown the two systems of the 
insulated pipe: 

• the hydraulic system defined by the dy-
namicPipe model from MSL 

• the thermal system for the cover of the pipe, 
defined by the multipleCylinder 
model 

The right side of the same figure shows the five lay-
ers of the cover, each one can be disabled if it is not 
required for the modelling of the insulated pipe. 

 

 
Figure 8: insulatedPipe (left) and its multiple-
Cylinder2D base clase (right) 

 

The insulatedPipe model has been built easily 
with several instances of the 2D tube class from 
BaseGenericGeometries package in New-
Thermal.HeatTransfer.Conduction 

(right side of the figure 8). It is prepared to be di-
vided into nNodes equally spaced segments along 
the flow path, therefore, the same number of lumped 
elements are in all matter layers, as much to fluid 
line as to cover layers. 

The model, in addition, has the option of neglecting 
the axial conductive heat transfer (parallel to the 
fluid path) throughout the solid materials of the pipe. 
This assumption is quite reasonable in some cases, 
depending on the thermal properties of constituent 
materials, and it can significantly speed up simula-
tions. 

 

The insulatedPipe model has been used for the 
modelling of pre-insulated pipes in a small District 
Heating system [7] with good results, error of 
roughly 5%, in comparison with technical report of 
heat losses provided by the pipe manufacturer. 

 

 
Figure 9: Experimental data and simulation results for 
insulatedPipe model adapted for commercial pipe 
simulation. 
 

4.2 Heat transfer in 3D cylinder 

Based on models from 
Tubes3D library a discre-
tized cylinder was built. 
The model was used for 
simulating laser surface 
hardening process of a 
crankshaft. In this case, a 
3D model was absolutely 
indispensable because 
there was a relative move-
ment between the crank-
shaft and the punctual heat 
source (punctual laser). 

In this case, Modelica 
model was especially in-
teresting in order to define and also simulate the con-
trol strategy of the process. 

Figure 10: Simplified 
sketch of the interac-
tion between the punc-
tual heat source and 
the crankshaft 
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Before using it for this purpose, 3D tube model was 
validated with a FEM model (MSC NASTRAN®). 
Both models were discretized in the same way and 
exposed to the same external conditions to compare 
the evolution of the temperature in some nodes. 

 

The tube was discretized in: 

• Number of rings (radial direction): 20 

• Number of sectors: 16  

• Number of slices (axial direction): 5 

The following external conditions were assumed: 

• Convection in internal and external lateral 
surfaces: 

o hinternal wall: 10 W/m2K 

o hexternal wall: 100 W/m2K 

• Constant temperature in the upper and lower 
external surfaces: 

o Upper surface: 500 ºC 

o Lower surface: 100 ºC 

• Temperature of nodes at t=0s, 20ºC 

 

The good agreement between stationary simulation 
results of both models can be appreciated in the fig-
ure 11. 

The discrepancy on transient behaviour is due to dif-
ferent initial conditions in some nodes. All the nodes 
in the FEM model could not be initialized at 20°C 
due principally to the way of imposing external con-
ditions. In this case, the nodes from the upper slice 
and the lower slice were in contact with an imagi-
nary plate at 100°C and 500°C, so that, this nodes 
inherited directly the temperature of them at t=0. In 
Modelica model, nevertheless, all nodes started the 
simulation at 20°C. 

 

 
Figure 11. Temperatures of five nodes of the FEM and 
Modelica models 

5 Conclusions 

NewThermal together with Materials libraries 
have been created by IK4-TEKNIKER in order to 
extend MSL capabilities for heat transfer modelling. 
The new libraries decouple material properties from 
heat transfer phenomena modelling and allow taking 
into account the influence of temperature on material 
properties such as thermal conductivity, specific heat 
capacity, etc. 

 

NewThermal library provides also basic models to 
simulate 2D and 3D heat conduction problems in 
bodies with simple geometries.  

 

Two practical examples from different application 
domains have been shown to demonstrate the use of 
the libraries. 
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Abstract

This paper summarizes the work performed in one of
the work-package of the FP7 iTesla project. This work
consisted in the development of a power system com-
ponent library for phasor time domain simulation in
Modelica.

The models were used to build power system net-
work models, used in experiments for parameter iden-
tification. The experiments were carried out with
the RAPID toolbox, which has been developed at
SmarTS Lab within the same project. The toolbox was
written in MATLAB, making use of FMI Technologies
for interacting with Modelica models.

Keywords: Power Systems, Phasor Simulation,
Modelica, FMI, Parameter Identification, Model Vali-
dation.

1 Introduction

1.1 Conventional Power System Modeling
and Simulation

Modeling power system components and networks is
important for different studies in the planning and op-
eration of electricity networks [1], and the level of
complexity in the models depends on the type of stud-
ies carried out [2]. Traditional tools for power system
modeling are usually tied to a specific time scale, often
limiting the applicability and/or validity of the models
to a specific kind of studies [3].

The models can be of Electro-Magnetic Transient
(EMT) type [4, 5], which is the most detailed type of
power system models; of phasor time-domain (phasor)
type, which use a simplified representation commonly
used in positive sequence phasor time-domain simu-
lation for stability assessment [2]; or could even use a
Quasi Steady State (QSS) representation for simplified
long term dynamic simulation [6]. To assemble power

system models using different components of specific
type and perform simulations, domain-specific tools
are traditionally used; for example [7, 8] are used in
the case of phasor-time domain simulation.

Other modeling and simulation approaches which
are less utilized in the domain is the dynamic pha-
sors approach [9], and mixed EMT & phasor simu-
lation [10, 11].

The reminder of this article focuses on phasor time-
domain power system modeling using the Modelica
language and the application of Flexible Mockup In-
terface (FMI) Technologies for model validation and
parameter identification.

1.2 Motivation — Modelica, an unambigu-
ous modeling language for Power Sys-
tems

Several tools for phasor time domain simulation al-
ready exist, but only few of them let the user access
the models’ code (mainly those that are open source
software [12]), lack flexibility in regards to modeling
and simulation features provided [2], and have limi-
tations for unambiguous model exchange [13]. This
motivated the work presented in this paper which is
part of the FP7 iTesla project [14], where a power sys-
tem component library of phasor type models is being
developed.

Modelica was chosen as the modeling language for
this library as it allows to develop models using a for-
mal mathematical description and because it separates
the model from the solver [3]. The models devel-
oped in Modelica use an explicit mathematical repre-
sentation waving out any ambiguity about the model,
while enabling further seamless simulation with di-
verse tools [3].

Modelica is an object-oriented programming lan-
guage where the parameters of a model are the object’s
attribute. This facilitates the development of power
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system models composed by instances of components
previously developed.

To the knowledge of the authors, there have been
two previous efforts in the use of Modelica for power
system modeling and simulation: the ObjectStab [15]
library, and the SPOT [16] library which evolved into
the commercial “Electric Power Library” by Modelon
AB [17]. While these libraries could have been used
for the purposes of this article, there are social aspects
of resistance to change [18] that prompted the authors
to develop a new library. For example, users of a spe-
cific power systems tool are skeptical about other tools
different from the one that they use — this is a com-
plex behavior [19] that involves both the change in the
human interactions that accompany the use of a spe-
cific tool, as well as a concern about the technical as-
pects of a new technology.

To make a transition where the use of Modelica is
accepted by power system practitioners, the authors
and other colleagues have used different strategies to
overcome the resistance of domain experts. This ap-
proach is similar to that in [20]: a first strategy is
to promote the use of Modelica in power systems
as a medium for unambiguous model exchange [3]
which is an Alpha [20] strategy that supports the
common goal of model exchange; a second strategy
(type Omega [20]) was used to decrease avoidance
forces: made a software-to-software validation of each
power system component of trusted domain-specific
power system tools where simulation results between
the Modelica library in different tools are appraised
against a domain-specific tool [21].

Further details on power system modeling using
Modelica as approached in this article are available
in [21, 3].

1.3 Exploiting Modelica and FMI Technolo-
gies

Modelica models can also be exploited through Func-
tional Mockup Interface (FMI) [22]; a standard for
model exchange between different tools support-
ing and implementing the standard. As such, Dy-
mola [23], OpenModelica [24] and JModelica.org [25]
implement the standard for both import and export; as
well as co-simulation.

FMI Technologies offer wide possibilities for model
re-use within different software tools. Thus, the mod-
els developed and used in Modelica are not tied to
the development environment, contrarily to traditional
tools for power system modeling. This flexibility

was taken advantage of to develop a RApid Parame-
ter IDentification toolbox (RAPID).

1.4 Paper Organization

The remainder of this paper is organized as follows.
The power system component library is described in
Section 2. Details of two of the models developed by
SmarTS Lab and their validation are shown in Sec-
tion 3 and a model validation experiment using the
RAPID toolbox is presented in Section 4. Conclusions
are drawn in Section 5

2 Library Structure

The library was developed for power systems pha-
sor time-domain simulation in Modelica. It is com-
prised by different packages that build its main struc-
ture, which is described next.

2.1 Structure

A total of 120 models are categorized into the follow-
ing upper level packages (see Fig. 1):

• Connectors (2):
The package is comprised by two connectors,
one, PwPin, is adopted for treating voltage and
current as complex variables. The other, ImPin is
a simple connector for real variables.

• Electrical (56):
The main package of the library with all the
power system component models for phasor time
domain representation. It is divided into several
sub-packages.

• Examples (17):
A set of examples using the power system com-
ponent models.

• Interfaces (2):
Blocks for adding some inputs and outputs to the
models.

• NonElectrical (45):
A set of functions extended from the Modelica
standard library and adapted with the connectors
of this power system components library.
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Figure 1. Partial screenshot of the library

2.2 Electrical Components

As a joint effort from the different project participants,
the power system components models have mostly
been transcribed from the Eurostag [8] and PSAT [26]
software.

Different components such as transmission lines,
transformers, buses and some events (line opening and
faults) were developed as generic models. All load
models, were implemented following the representa-
tion used by PSAT and Eurostag. Generator models
have also been implemented, including detailed mod-
els as used in Eurostag as well as different models
from PSAT. Additionally some non traditional genera-
tors have been modeled including photo-voltaic mod-
els (3) and two wind turbines models. These models
enable the simulation of complete power system net-
works with any kind of perturbation.

The models developed at SmarTS Lab are the fol-
lowing:

• Load models from PSAT (Exponential recovery,
Frequency dependent, Constant PQ, Voltage de-
pendent, ZIP, ZIP Jimma and Mixed loads)

• An Automatic Voltage Regulator (AVR) from
PSAT (Type III)

• A Turbine Governor (Type II) from PSAT

• Synchronous generators (second and third order)
from PSAT

• Solar photo-voltaic panel (two simplified models
from PSAT and detailed model from KTH)

• Doubly Fed Induction Generator (DFIG) wind
turbine (PSAT model and GE model)

These models have been developed together with ex-
amples, which served for parameter identification ex-
periments such as the one presented in Section 4.

3 Implementation and Validation of
Power System Component Models

All models developed at SmarTS Lab have been cre-
ated from a reference model taken in another domain
specific simulation environment. They have been sub-
ject of a Software-to-Software validation against the
reference model by comparing simulation results.

In this Section, two of the models developed at
SmarTS Lab are presented in details together with
their validation results.

3.1 GE Wind Turbine Model

This first study case illustrates the development of
a wind turbine generator model taking as reference
a MATLAB/SIMULINK implementation of the wind
turbine-generator model for grid studies used by Gen-
eral Electric Energy (GE). The wind turbine-generator
is Type III, which commonly refers to an induction
generator with the rotor winding connected to the grid
through a back-to-back converter. The descriptive ref-
erence provided by GE Energy can be found in [27].

3.1.1 Modeling

The reference was implemented with function blocks
in MATLAB/SIMULINK, organized in three different
subsystems (Turbine, Electrical Control and Genera-
tor). The system was developed with the voltages (real
and imaginary parts) as inputs and currents (real and
imaginary parts) as outputs. The system also has an
input for the wind speed.

For the Modelica model, the model structure and the
block diagram were preserved. The main motivation
for this approach was to maintain the existing initial-
ization algorithm used in the reference model. This al-
gorithm is responsible for initialization of, among oth-
ers, all the integrators in the model.

The resulting model is shown in Fig. 2, where the
top-level layer of the model can be observed. The ma-
jor difference is the integration of the PwPin connec-
tor to interface the model to other components, such as
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transmission lines. This connector contains two stan-
dard variables used for the real and imaginary part of
the voltage, as well as two flow variables used for the
real and imaginary part of the current.

The Modelica model also implements the initializa-
tion algorithm aforementioned. This implementation
required to adapt the code to the Modelica syntax by
replacing all for-loops by while-loops, as in Model-
ica for-loops cannot be exited before completion of
all iterations.

Figure 2. Modelica implementation of the GE Wind
Turbine-Generator Model

The original wind turbine reference model was in-
tegrated within a test system comprised by a network
model, an infinite bus and and wind generator. The
network model was built using an admittance matrix,
which in the Modelica implementation was replaced
by several transmission lines in series. The remainder
of the model in Modelica was implemented with com-
ponents available in the library. A wind generator was
additionally developed in Modelica, to create different
wind profiles. The resulting test model is presented in
Fig. 3.

Figure 3. GE Wind Turbine Modelica Test Model

3.1.2 Validation results

Figure 3 presents the test model, which includes the
simulation scenario comprised by a gust of wind at t =
5 s and a fault at one transmission line at t = 10 s.

Both models have the same simulation scenario and
are simulated in their respective environment. How-
ever, the solver used is different in each environment,
a fixed time-step solver ode3 was selected for the ref-
erence model, whereas an adaptive time-step solver
DASSL was selected for the Modelica model.

A comparison between the simulation of the two
models is presented in Fig. 4, where it can be observed
that the simulations produce the same response. This
validates the implementation carried out in Modelica.

Figure 4. Comparison Modelica vs Simulink for the GE Wind
Turbine-Generator Model

However, some differences can be noticed when in-
specting the responses more closely. Figure 5 presents
an example of this observation. The differences are
of a very small order and can be explained by the ac-
curacy of the solvers used in each simulation environ-
ment.

Figure 5. Zoom on comparison Modelica vs Simulink for the
GE Wind Turbine-Generator Model

3.2 Hydro Turbine Governors

The second study case illustrates the development of
a hydro turbine and governor model. The reference
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is a PSAT implementation of type 5 hydro turbine and
governor (HTG Type 5) modeled at KTH and included
into PSAT. The HTG Type 5 models includes a PI con-
troller combined with servomotor (turbine governor
model) and a nonlinear turbine model, its Modelica
implementation is shown in Fig. 6.

The hydro turbine and its governor are widely used
for control of mechanical power delivered by the gen-
erator, and often show complex dynamic behavior.
Due to this fact, it is a perfect component to sow
the advantages of using the Modelica language in-
stead of conventional power system modeling tools
for simulation purposes. In this section two Software-
to-Software validation cases are presented. The first
shows the benefits of using Modelica with respect to
PSAT. The second presents an alternative validation
approach where the validation of the HTG Type 5
model is carried out in a hybrid SIMULINK-Modelica
model exploiting the FMI standard which allows to in-
clude an FMU as a part of the original MATLAB/
SIMULINK system.

3.2.1 Modeling

The reference model was implemented in MATLAB/
SIMULINK using the built-in Control library for the
HTG Type 5 and the SimPowerSystems (SPS) library
for the single-machine-infinite bus (SMIB) system.
A similar system (with a finite load) was modeled
in PSAT and taken as a reference for Software-to-
Software validation. Next, the Modelica model of the
HTG Type 5 and the same system as in PSAT were
built in Dymola (Fig. 7).

Figure 7. Modelica model of Single machine governed by HTG
Type 5 with perturbation

In this the first case, the same initial values are used
in Modelica and PSAT, this allows us to carry out the
Software-to-Software validation not only in terms of
the modeling approach, but also using the same initial
conditions.

The types of connectors used in the Modelica model
were described above. All the blocks which were

used for the HTG model can be found in the standard
Modelica library. For building the hybrid SIMULINK-
Modelica model, an FMU file was generated using Dy-
mola to allow simulation in MATLAB/SIMULINK-SPS
(Fig. 8). The model was encapsulated into one block,
with ability to set up input parameters for the block
(Fig. 9) using the FMI Toolbox [28].

Figure 8. FMU from the Modelica model imported into the FMI
Toolbox

Figure 9. Parameters of HTG Type 5 block

Thus, the HTG Modelica model was used to re-
place the turbine and governor SIMULINK block in the
power system model. This allowed simultaneous sim-
ulation and comparison of the response between the
SPS models and the Modelica models within the same
simulation tool (Fig. 10).

3.2.2 Validation results

For validation of the hydro turbine and its governor
the input (speed) and output (mechanical power) were
compared (Fig.11). The results show that the “shape”
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Figure 6. Modelica model of HTG Type 5

Figure 10. Validation of the HTG model encapsulated using the
FMI Toolbox for MATLAB

of the signals match well, but there are some differ-
ences. The solver used for simulation with Dymola
was DASSL. The differences are due to limitations
on the numerical accuracy of the solver in PSAT (a
trapezoidal integration with fixed time-step). Please
observe that PSAT has a limited number of solvers
(trapezoidal integration and forward Euler’s method)
and that the time-domain simulation methodology fol-
lows domain-specific practices not common to general
purpose tools.

In second validation method, which uses SIMULINK

models with the Modelica model embedded in an
FMU block and the MATLAB/SIMULINK-SPS ref-
erence model, the speed and the output mechanical
power were compared (Fig. 12). The results show a
very good match between the corresponding outputs.

4 Model Validation using Modelica
and FMI Technologies

This power system component library has been de-
veloped within the FP7 iTesla project with the goal
of using the models for power system model valida-
tion. The choice of Modelica as modeling language

(a) The input (speed) of the HTG Type 5

(b) The output (mechanical power) of the HTG Type 5

Figure 11. Comparison Modelica vs PSAT for the HTG Type
5’s responses with a perturbation at the speed reference wre f .

Figure 12. Validation of the HTG model encapsulated using the
FMI Toolbox for MATLAB

for this work was also motivated for its support of the
FMI standard, which enabled the development of the
RAPID toolbox.

4.1 FMI Technologies

The Functional Mock-up Interface (FMI) standard was
created as a tool independent format for model ex-
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change and co-simulation. The full specifications of
the standard, with a list of the supporting tools, are
available in [22]. By opening the possibility of using a
model in disparate simulation environments, the stan-
dard allows to benefit from functionalities offered by
different programs.

As another part of the FP7 iTesla project, a param-
eter identification MATLAB toolbox was also devel-
oped. This toolbox was built with FMI technologies
and uses the Modelica models presented above. The
power system models used are test models including
an device to be calibrated against some reference sig-
nals. An example of using the toolbox for calibrating
the parameters of a generator model is presented next.

4.2 Example

This parameter identification example computes seven
of the generator model parameters using reference
measurement from the simulation of an EMT model
(4 outputs: the voltage magnitude, the rotor speed,
and the active and reactive powers). The reference
model in this case was built in MATLAB/SIMULINK-
SPS. The authors attempted to substitute the complex
dynamics of the EMT generator model with a simpli-
fied third order generator model. The other compo-
nents of the system were assumed to be known and
modeled with the same components. For this exper-
iment the FMI Toolbox from Modelon AB [28] has
been exploited. The reasons for that are the follow-
ing. First, MATLAB was chosen for the development
of the RAPID toolbox. Second, the authors decided to
use the Modelica language for power system modeling
purposes [3]. The Modelica model with two different
test scenarios was constructed (Fig. 13). In both test
scenarios the reference signals are perturbed, the nom-
inal torque value in the first and the field voltage in the
second.

Figure 13. Modelica model used in the parameter identification
process (component to be identified bounded in red)

The algorithm of the identification process is the fol-

lowing:

1. Collect measurement data from the reference
SIMULINK model.

2. Create the power system model to be identified in
Modelica. The Modelica model requires a power
flow solution, in this case the results of the power
flow were obtained from PSAT.

3. Compile an FMU from the Modelica model in
Dymola.

4. Create a SIMULINK model using the FMU block
from the FMI Toolbox for MATLAB, see Fig. 14.
The only blocks required in order to carry out the
simulation are: FMUme and To Workspace. All
data inputs and the scopes are included only to
monitor the process interactively.

5. Start the RAPID Toolbox.

6. Provide RAPID with appropriate settings (algo-
rithm, parameters, variables, etc.).

Input
Data

Send simulated 
data to RAPID

FMU
Block

Scopes to 
monitor 

each 
iteration

Figure 14. SIMULINK model used by RAPID with the FMU of
the Modelica model

4.3 Results

The results of identification experience are presented
in Fig. 15 and Table 1. The values of the identified
parameters are shown in Table 1.

The numerical values for all the parameters were
constrained before running the optimization algorithm
to a valid range of real valued numbers, typical of
synchronous machines. Thus, the resulting parame-
ters are within practical and realistic values. Figure 15
shows the graphical comparison between the simula-
tions in MATLAB/SIMULINK-SPS and Modelica. It
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Table 1. Generator parameter estimation results

Parameter Value
Armature resistance (Ra) 0.0010156
Direct axis reactance (Xd) 4.2924
Direct axis transient reactance (X ′d) 1.37
Direct axis transient time const. (T ′d) 2.6156
Quadrature axis reactance (Xq) 5.3994
Inertia coefficient (M) 14.9005
Damping ratio (D) 0.0088415

shows that the responses match with an acceptable er-
ror. The key here is to remember that a reference sig-
nal (from a high order model (MATLAB/SIMULINK-
SPS)) is matched to a low-order model. The differ-
ences in reactive power (Fig. 15(a)) and in the voltage
magnitude (Fig. 15(b)) are acceptable if one takes into
account the difference in complexity of the mathemat-
ical presentation of high order dynamics by the sim-
plified model. In order to validate the identification
results, the simulations in both MATLAB/SIMULINK-
SPS and Modelica were repeated using perturbations
two-times larger than the original experiments used for
identification. Similar results as those reported above
were obtained.

5 Conclusion

This article introduced the work performed by SmarTS
Lab and other collaborators within the FP7 iTesla
project for developing a library in Modelica for power
system component models. This library is already
quite versatile as it enabled to carry out model cali-
bration experiments within work package three of the
FP7 iTesla project.

But the library is still not complete, additional mod-
els are being developed at KTH SmarTS Lab to con-
tinue populating it. To this aim, the method for de-
veloping and validating new models described in Sec-
tion 3 is used. As such, the newly developed mod-
els can be integrated in the library after a successful
Software-to-Software validation step.

The overall motivation for the development of such
library in the Modelica language was briefly presented
in Sections 1 and 4. The potential of model ex-
change across different tools is indeed of great impor-
tance. This is especially true for future power system
tools [13], which will require more advanced simula-
tion methods that the currently available in domain-
specific tools. For example, unambiguous model ex-
change will allow for the development of model-driven

(a) Torque perturbation

(b) Field voltage perturbation

Figure 15. Comparison between the reference (Simulink) and
the identified (Modelica) model responses with a perturbation at

t = 4sec.

design of wide-area controls, which will require the
use of a cyber-physical modeling language and appro-
priate solvers.
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Modelica Model for the youBot Manipulator
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Abstract

This paper presents the development of Modelica
model for the youBot manipulator. Whereas other
robotic simulations focus on the robot interaction with
its environment, Modelica allows the modeling of the
manipulator controllers and motors. The model was
developed with a Modelica library for the manipula-
tor’s components which provides modularity, reusabil-
ity and abstraction. A comparison test with the actual
system is performed to ensure the model accuracy. The
test result shows promising result and provides possi-
ble future work. The Modelica model of the youBot
manipulator is freely available.

Keywords: Control; Manipulator; Modelica;
youBot

1 Introduction

Models and simulation tools are crucial in robotic re-
search. Although there have been major improvements
in the electronic and mechanical field, robots are still
expensive equipments. The use of models and simu-
lation tools overcome this problem. Models and sim-
ulation tools allow researchers and university students
to experiment with different robots. Furthermore, ex-
perimentation with models is cost-efficient and time-
efficient due to its ability to be automated, conditioned
and accelerated.

The youBot is a mobile manipulator designed to
serve as the reference platform for industry, research
and education [1]. Due to its frequent use as a test
subject for educational purpose or investigation of new
methods in research institute, a model of the youBot is
highly advantageous. Robotic simulation tools which
has a model of the youBot are VREP [2], We-bots [3]
and Gazebo [4]. Like most robotic simulation soft-
ware, these software focus on simulating the robot
interaction with its surrounding environment (naviga-
tion, object manipulation) and have its limitation when
simulating the robot’s internal components (mechan-

ical, electrical, and control system). Modeling the
robot’s internal component requires multi-domain ca-
pability such as provided by the Modelica1 descrip-
tion language. Modelica is a non-proprietary, object-
oriented, description language for multi domain mod-
eling. Modelica is maintained by the non-profit Mod-
elica association. As such, Modelica is suitable for
use in education and research. The work in this paper
is influenced by the existing manipulator model in the
Modelica Standard Library or MSL [5].

The youBot standard configuration consists of an
omnidirectional mobile platform and a five DOFs ma-
nipulator with a two finger gripper. In this paper, the
manipulator model is developed by dividing the sys-
tem into several smaller components. The component
models are stored in a new Modelica library and cate-
gorized in different packages based on its functional-
ity. This approach enables the user to experiment with
the manipulator model on the component level.

A model is a representation of the actual system and
the benefit of having a model only holds true when
the model is accurate. Simulation can result in wrong
conclusion when the researcher forget the limitations
and condition under which the simulation is valid [6].
Therefore, the development of the manipulator model
is followed by a test with the actual system. The test
compares the behaviors of the actual system and the
model throughout a point-to-point motion. The model
accuracy along with the influence of estimated values
and approximation is analyzed in the comparison test.

This paper is organized as follows. After this intro-
ductory section, Modelica related robotic research is
presented in Section 2. Section 3 presents the speci-
fication of the youBot manipulator and Section 4 de-
scribes the Modelica Library for the youBot manipu-
lator. Afterward, section 5 presents the evaluation of
the developed model. Finally, section 6 summarizes
the work and provides possible future work.

1www.modelica.org
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2 State of The Art

Modelica has been used for modeling spider robotic
arm [7], 6-axis industrial robots [8, 9, 10], 3 DOFs
parallel Gantry-Tau robot [11], 5 DOFs manipulator
[12] and mobile platforms [13, 14]. In most cases, a
robot model in Modelica is used for investigating the
manipulator’s motion control especially in the domain
of optimization and system dynamics. Such research
requires the repetition of motions and adjustments to
the controller which can have damaging effect when
being executed on a real robot.

[9] performed optimization through iteration to find
a compromise between acceleration, velocity and en-
ergy consumption and [10] solved the minimum time
optimization problem for an industrial robot. [8]
derives the inverse dynamic model of a manipula-
tor using algorithms for differential-algebraic equa-
tion available in the Dymola1 software. Dymola was
also used in [12] to design a picking manipulator for
agriculture purposes. [11] develops method for kine-
matic calibration with the Modelica model of parallel
Gantry-Tau robot. Aside in the field of motion con-
trol, Modelica robot models have also been used for
tele-manipulation [7], robot communication [14] and
teaching tools [13].

As shown from the work presented in this section,
there is a wide range of research with robot models
in Modelica. The Modelica model of the youBot ma-
nipulator will enable such research to be performed.
Since the youBot is designed to be the reference plat-
form for academic institute, a Modelica model of the
youBot manipulator is of high importance.

3 The youBot Manipulator

The specification of the manipulator is acquired from
the following sources:

• official youBot website2,

• email communication with the official distributor
of the youBot3 and

• discussion with researchers from BRICS4 who
were involved in the development of the youBot’s
software.

1www.3ds.com/products-services/catia/portfolio/dymola
2http://youbot-store.com/
3info@locomotec.com
4http://www.best-of-robotics.org/

This section consist of two subsections, kinematic
chain and control system. Due to the nature of the
robot which is actively being developed, the descrip-
tion presented is subject to changes.

3.1 Kinematic chain

The youBot manipulator is a serial chain manipula-
tor with five revolute joints (shown in Figure 1). The
manipulator is equipped with a two-finger gripper as
its end-effector and each finger weights 0.01 kg. The
fingers’ body, position and motion has insignificant in-
fluence to the system dynamic when compared to the
overall manipulator system. Therefore, the gripper is
modeled only for the visualization purpose.

Figure 1: The youBot manipulator

The manipulator is 65.5 cm high when fully ex-
tended, weights 6.3 kg and has a payload of 0.5 kg.
Each joint is actuated by brushless DC motors and
gearboxes with different specifications. The kinematic
chain, joint ranges and dynamic properties of the ma-
nipulator are presented in appendix A.

3.2 Control System

The control system accommodates position, velocity
and current control in each joint. For each joint,
the control system consists of: 1. three cascaded
proportional-integral-derivative or PID controllers, 2.
a velocity ramp or v-ramp generator and 3. a space
vector pulse width modulation (SVPWM). Two modes
are available for joint position control, PID and v-ramp
mode. The PID mode calculates the joint velocity in
a PID controller whereas in the v-ramp mode, a trape-
zoidal velocity profile will be generated by the v-ramp
generator for the joint velocity. In this paper, the de-
veloped model is based on the joint position control in
PID mode. Figure 2 shows the overview of the manip-
ulator’s controller.
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Figure 2: Controller overview

Where θ is the joint angle, v is the joint velocity
and i is the motor current. The set variables (θset , vset ,
iset) are the input values for the PID, the actual vari-
ables are the values from the manipulator’s sensors and
the input variables are the user defined values. When
controlling the joint position, a user provides the θinput

for the controller and the Velocity PID receive the out-
put of the Position PID as its vset . When controlling
the joint velocity, a user provide the vinput for the con-
troller which is directly forwarded as vset to the Veloc-
ity PID (the output of the Position PID in such cases
will be ignored). The Position PID is replaced with
the v-ramp generator in v-ramp mode. The PID con-
trollers for position, velocity and current have simi-
lar architecture. As a representative of the PID con-
trollers, Figure 3 shows the overview of the PID con-
troller for velocity (Velocity PID).

Figure 3: Velocity PID overview

Where e is the difference between the set value and
the actual value. Kp, Ki, and Kd are the gain parameters
for the controllers. The output of the Velocity PID is
forwarded to the Current PID as iset . As observed in
Figure 3, the Velocity PID controller is similar to the
text book PID as follows:

C = Kpe(t)+ Ki

∫ t

t−∆t
e(t)dt + Kd

d
dt

e(t) (1)

Where C is the controller output and ∆t is the PID pe-
riod. However, the gain parameter in the velocity PID
adjusts itself based on the motor velocity as follows:

k =

{
k2 if |v| ≥ a
k1 +( |v|a ∗ (k2− k1)) if |v|< a

(2)

Where k is the gain parameters (Kp, Ki or Kd in Equa-
tion 1), k1 is the lower boundary of the gain parame-
ter, and k2 is the upper boundary of the gain parameter
value, v is the motor velocity and a is the threshold
value for the motor velocity. The Position PID has the
same characteristic as the Velocity PID. Therefore, the
Position PID and the Velocity PID are referred as the
non-linear PID. The non-linear PID enables the user
to set different control behaviors for low and high ve-
locity. Similar to the gain parameters, limiters in the
position and velocity controller have non-linear char-
acteristic where the limit value is defined by the motor
velocity.

4 The youBot Modelica Library

The Modelica library for the youBot manipulator in
this paper is developed with Dymola. The library is
developed using a “divide and conquer” principle with
emphasize on modularity, re-usability and abstrac-
tion. This approach enables components exchange and
component-based experiment. Additionally, a tem-
plate model is provided for components which are fre-
quently used in the manipulator model. In such cases,
the model has adjustable parameter sets to be config-
ured based on its implementation. Finally, the manip-
ulator model is developed in different abstraction lay-
ers (Figure 4). The lower layer provides a more de-
tailed information in each component and the upper
layer provides the general overview of the system.

Figure 4: Abstraction layer in a manipulator model

In every modeling process, using estimated values
and approximation is unavoidable mainly due to the
following reasons:

• Limited knowledge. Many parameter set of a dy-
namic system are estimated through system iden-
tification (friction, inertia tensor).

• Restricted information. Many manufactures do
not provide complete information about their
product.

The use of estimated values and approximation is pre-
sented in the description of each package. The youBot
Modelica library consists of four packages which are:
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• Controller package,

• Axis package,

• Body package and

• System package.

The library is developed with the use of several pack-
ages in MSL such as Modelica.Blocks.Math for stan-
dard mathematical functions and Modelica.Mechanics
for 3-dimensional mechanical systems. This pa-
per follows the Modelica convention in describ-
ing the models. Model’s name or package’s name
begins with capital letter. When necessary, the
model includes its package name. The model
Modelica.Blocks.Inter f aces.RealInput refers to the
model RealInput which is inside the package Inter-
faces. The Interfaces package is inside the Blocks
package and the Blocks package is inside the MSL. An
instance of a model is written in lower case aside from
a few exceptional cases (e.g. V is used for voltage to
differentiate from v for velocity).

4.1 Controller Package

The Controller package consists of the components
for the manipulator control system. The Controller
package is divided into three packages which are
the Components package, the PIDs package and the
Modes package. The Controller.Components package
consists of models which are in the lowest level of ab-
straction layer. Figure 5 show the models in the Con-
troller.Component package.

(a) Limiter2 (b) Gain2 (c) DisDer (d) P2V

Figure 5: The Controller.Component models

Following the Modelica convention, the instance’s
name of a model is placed on the upper part of the
symbols in blue color. The model Limiter2 and Gain2
(Figure 5b and 5a) perform the calculation for non-
linear PID controller (Equation 2). The model DisDer
(Figure 5c) produces the derivative value of a specific
time period from a discretized continuous input. The
model P2V (Figure 5d) converts PWM rate to volt-
age rate. The P2V model is an approximation of the
SVPWM component in the controller.

The Controller.PIDs package consists of three dif-
ferent PID models which are the Position, Velocity and
the Current model. As the name suggests, the models
are the PID controllers for position, velocity and cur-
rent in the youBot manipulator (Figure 2). As a rep-
resentative, Figure 6 shows the PIDs.Velocity model.

Figure 6: PIDs.Velocity

Where v_set, v_actual and i_set represent vset ,
vactual and iset in Figure 3 respectively. The additional
component N in the model produces the output in mA
to mimic the readings of the actual system.

Finally, the Controller.Modes package is for differ-
ent types of control mode. Currently, the available
model in the Modes package is the Position model.
Figure 7 shows the Modes.Position model.

Figure 7: Modes.Position

The Modes.Position model consist of all three PID
models from the Controller.PIDs package. V _set rep-
resent the voltage value which will be connected to the
motor’s power supply unit. Using the same approach,
the model for other control mode explained in Section
3.2 can also be developed.

4.2 Axis Package

The Axis package consists of the model for joint actua-
tor (motor and control system). The package is named
Axis because the model will be connected to the rotat-
ing axis of the manipulator’s joints. The Axis package
consists of the Position model shown in Figure 8.
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Figure 8: Axis.Position

Where DCPM represents the brushless DC motor
model, PSU represents the power supply unit model,
R represents the gearbox model, F represents the fric-
tion model, controller is the Modes.Position model
(Figure 7), sens_v represent the joint’s velocity sensor,
sens_theta represent the joint’s position sensor and
joint is the connector to the manipulator’s joint model.
The controller output (V _set in Figure 7) is connected
to PSU and its input is extended for the model input as
theta_set. The output of sens_v, sens_theta and the
value of DCPM’s current is connected to the control
system (theta_actual, v_actual and i_actual in Fig-
ure 7). Aside from the controller, the component in
Modes.Position are from MSL.

4.3 Body package

The Body package consists of models for the rigid
body model of the manipulator’s kinematic chain. The
Body package has three models which are Gripper,
Link and Manipulator. The Body.Gripper model is
the rigid body model of the youBot two finger gripper.
Figure 9 shows the Body.Gripper model.

Figure 9: Body.Gripper

Where RF_rot is the gripper’s reference frame ro-
tation, f rame_a is the connector to the previous link
model, and gripper, le f t_ f inger and right_ f inger are
the rigid body model of the gripper body, left finger
and right finger respectively. marker is a weightless
body model to visualize the path of the manipulator’s
end effector in simulation and RF_vis provides the vi-
sualization of its reference frame.

The Body.Link model is the rigid body model of
a manipulator link. Figure 10 shows the Body.Link
model.

Figure 10: Body.Link

Where joint represent the link’s joint which is con-
nected to the actuator model through the connector
motor, f rame_b is the connector to the next link
model and the body represent the rigid body of the
link. f rame_a, RF_rot and RF_vis represent the same
components as in Body.Gripper model.

The Body.Manipulator model represent the rigid
body model of the youBot manipulator’s kinematic
link. Figure 11 shows the Body.Manipulator model.

Figure 11: Body.Manipulator
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Where link1 represent the first link of the manipu-
lator (Body.Link, Figure 10), gripper is the manipu-
lator’s gripper model (Body.Gripper, Figure 9), base
represent the rigid body of the manipulator’s base.
The component base_pos is for defining the manip-
ulator position in the world reference frame. The
Body.Manipulator model has five connectors (axis1
to axis5) for each joint model and one connector
(world_r f ) for the world reference frame.

4.4 System package

The System package consists of the manipulator ready-
to-use models. The System package has two models
which are the Position model and the Dummy model.
The System.Position model is the rigid body model of
youBot manipulator’s kinematic chain and its actua-
tors. Figure 12 shows the System.Position model and
its visualization in Dymola whereas Figure 13 shows
the parameter set configuration for the velocity con-
troller in the manipulator’s fifth joint.

(a) System.Position

(b) Model visualization

Figure 12: The youBot manipulator model

Figure 13: Parameters configuration

In Figure 12a, KL represents the rigid body model
of the youBot manipulator’s kinematic chain, theta_5
represents the user defined joint angle and axis_5
represents the actuator (Figure 8) for joint 5. The pa-
rameter names in Figure 13 are consistent with the ex-
isting driver and firmware. The System.Dummy model
is the rigid body model of the youBot manipulator
(Body.Manipulator, Figure 11) connected to dummy
actuators (Modelica.Mechanics.Rotational.Speed).
The user can set the velocity of each joint directly
in the System.Dummy model. The System.Dummy
model is used for comparison test in Section 5.

5 Comparison Test

A comparison test with the actual system is performed
after the development of the manipulator model. The
test purpose is to evaluate the model accuracy and
identify the major components which require further
development. The test involves the comparison of the
joint position and the joint velocity throughout a point-
to-point motion. For the actual system, the joint ve-
locity is recorded while performing the motion. The
sensor measurement of the joint velocity is assumed
to be accurate. Afterward, the recorded joint velocity
is used as input for the System.Dummy model. In the
same setting, the manipulator model (System.Position,
Figure 12a) is also performing the same motion.

The manipulator’s joints in this test are set to be
frictionless. The motion involves all joints moving
90◦. Such motion was chosen so that the resulting
error will be the accumulation of the estimated value
and approximation in all joints. Figure 14a shows the
end-effector paths during the motion (the gray-colored
youBot manipulator is the starting pose of the mo-
tion.) whereas Figure 14b shows the error in joint po-
sition. As expected, the path generated by the model
is smoother than that of the actual system as a result
of the idealistic conditions in the simulation. The sum
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(a) Error Visualization

(b) Joint angle difference

Figure 14: Test result

of error from all joint peaked at the value of 0.55 ra-
dian. The error in each joint depends on the maximum
velocity parameter (vmax) in the controller. As shown
in Figure 14b, joint 3 (vmax = 4.19 rad · s−1) has a
considerably lower peak than joint 5 (vmax = 5.90 rad
· s−1). The error in joint angle peaked at two points.
Both peak points happened slightly after the velocity
change (from stop to move and slowing down from a
constant velocity). This is consistent with the error in
joint velocity as shown in Figure 15.

The joint velocity in the actual system is less sta-
ble than in the simulation (Figure 15a). This is the
result of the motor vibration which is excluded from
the manipulator model. The ideal motor model re-
sults in the deviation on higher velocity (Figure 15b)
which correspond to the higher error in joint position
for joints with higher vmax value in its controller. Sim-
ilar phenomena in joint velocity and joint position are
also found in other joints. Other possible contributing
aspects in the deviation between the model and the ac-
tual system are the inertia tensor estimation, gearbox
elasticity/damping, SVPWM approximation and fric-
tionless joints.

(a) Joint 3

(b) Joint 5

Figure 15: Joint velocity comparison

6 Conclusion

In this paper, the development of Modelica model for
the youBot manipulator is presented. The Modelica
library for the manipulator components provides the
user with modularity, reusability and abstraction. The
model accuracy has been evaluated through a com-
parison test with the actual system. The test result
shows that the model reflects the actual system within
a reasonable deviation. Possible improvements for the
developed Modelica library is the development of a
more accurate motor model and a more comprehen-
sive evaluation of the manipulator component (con-
troller components, power consumption and dynamic
properties of every rigid body model). The manipu-
lator model is planned to be tested with other Mod-
elica tools (OpenModelica, jModelica) and used for
hardware-in-the-loop experiments. The development
or design of other manipulator models is also possible
through the reusability of the components model in the
Modelica library. The library is publicly available1 to
be used for education or research involving manipu-
lator dynamics, load identification, fault analysis and
motion control.

1www.youbot-store.com
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A Manipulator Specification

Table 1: Kinematic chain

Parent
frame

Translation (cm) Rotation (degree)
x y z x y z

Joint 1 Base 2.4 0 11.5 180◦ 0◦ 0◦

Joint 2 Joint 1 3.3 0 0 90◦ 0◦ -90◦

Joint 3 Joint 2 15.5 0 0 0◦ 0◦ -90◦

Joint 4 Joint 3 0 13.5 0 0◦ 0◦ 0◦

Joint 5 Joint 4 0 11.36 0 -90◦ 0◦ 0◦

Gripper Joint 5 0 0 5.716 90◦ 0◦ 180◦

Table 2: Joint range

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

Joint range
-169◦ -65◦ -151◦ -102.5◦ -165◦

169◦ 90◦ 146◦ 102.5◦ 165◦

Table 3: Dynamic Properties

Mass (kg)
Intertia Tensor Elements (kg·cm2)

Ixx Iyy Izz

Link 1 1.39 29.525 60.091 58.821
Link 2 1.318 31.145 5.483 31.631
Link 3 0.821 17.2767 4.1967 18.468
Link 4 0.769 6.764 10.573 6.61
Link 5 0.678 1.934 1.602 0.689
Gripper 0.201 2.324 3.629 2.067
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Abstract

In order to enhance the performance of modern com-
puters, the current development is towards placing
multiple cores on one chip instead of inreasing the
clock rates. To gain a speed-up from this architecture,
software programs have to be partitioned into several
independent parts. A common representation of these
parts is called a task graph or data dependency graph.
The authors of this article have developed a module for
the OpenModelica Compiler (OMC), which creates,
simplifies and schedules such task graphs. The tasks
are created based on the BLT (block lower triangular)-
structure, which is derived from the right hand side of
the model equations. A noticeable speed-up for fluid
models on modern six-core CPUs can be achieved.

Keywords: modelica; openmodelica; paralleliza-
tion; BLT, task graph

1 Introduction

Modelica has become a widely used standard to de-
scribe physical simulation models. Compiling such
a model into binary code can be performed by appli-
cations like Dymola, SimulationX or OpenModelica.
However, all these tools only create a single thread
simulation code out of standardized Modelica mod-
els, which does not allow for a speed-up with mod-
ern multi-core CPUs. This is due to the dependencies
among the model equations which have to be consid-
ered in order to distribute the tasks amongst several
threads.
The approaches to parallelize Modelica models can
be divided into manual and automatic parallelization.
Manual approaches comprise the parModelica lan-
guage extension [1] or the TLM technique [2]. In
this paper, manual parallelization shall not be pur-
sued further as it is not suitable for parallelizing ex-
isting models. A lot of effort has been spent on au-
tomatic parallelization methods. Peter Aronsson [3]
presented a method based on fine grained task graphs

which were derived from the expressions of the model
equations. Later, this approach was adapted by other
authors (see for example [4], [2] and [5]), to perform
simulations on Cell- and GPU-Architectures. Han-
dling fine grained task graphs is a complicated and
time consuming topic. Therefore additional work was
required to reduce the graph complexity, for example
with the help of a graph rewriting system [3]. This
paper follows the ideas of Casella [6] who suggested
to build a task graph parallelization based on the BLT
representation of a model. He then also showed that,
in case of fluid applications, this approach will lead to
task graphs which can be well parallelized. Therefore,
this paper explores the implementation of the ideas
of [6] into the OpenModelica compiler. To evaluate
the efficiency of the implementation, the idea of the
Maximum Theoretical Speedup is introduced. After-
wards, different scheduling algorithms are presented
which are required to assign each task to a thread. It is
followed by a number of benchmarks which compare
the effectiveness of the different scheduling algorithms
and reveal further properties of different domains with
respect to parallelization.

2 Parallelization of model equations

The equations of a simulation model are typically de-
scribed as a set of Differential Algebraic Equations
(DAEs). Equation 1 shows the basic definition of such
a DAE.

F(xxx, ẋxx,vvv, t) = 0 (1)

The value t represents the time. The vector xxx holds all
variables of the system whose derivatives with respect
to time appear inside the equations. The derivatives it-
self are stored in ẋxx. In addition, vvv contains all other al-
gebraic variables. By applying index reduction, (1) is
converted into a DAE with index one or zero. The Un-
derlying Ordinary Differential Equation (UODE) con-
tains all equations and variables necessary to calculate
the reduced state set ẏyy ⊆ ẋxx of the model (see equation
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2) and other equations (see equation 3) [6].

ẏyy = f (yyy, t) (2)

vvv = g(yyy, t) (3)

The equations and variables of the ODE system can be
organized as an incidence matrix, with each matrix-
row representing one equation and each column one
variable [7]. If a variable is part of an equation, the
matrix entry is filled with a value. A simple electric
circuit, containing a power supply and two resistors
as well as a capacitor, is displayed in figure 1. It can
be described by the equations below. The rows and

f1 : vs = o f f set

f2 : vR1 = R1 · ic
f3 : PR1 = vR1 · ic
f4 : vR1 = vs− vR1n

f5 : ic = C · v̇c

f6 : vR2 = R2 · ic
f7 : PR2 = vR2 · ic
f8 : vR2 = vR1n− vc

Figure 1: Simple model of an electrical circuit

columns of the incidence matrix can be arranged in
a way that the matrix forms a block lower trianguler
matrix (BLT). Thus, the blocks of equations can be
solved from the top to the bottom via forward sub-
stitution. First, the power supply voltage vS is calcu-
lated from equation f1. After that, the equations f4, f8,
f6 and f2 of the circuit cannot be calculated as single
equations, as they have two unknown variables. More
precisely they are forming a circular dependency, be-
cause the variable uR1 is solved in equation f2, which
requires variable ic, solved by equation f6, for calcu-
lation. Furthermore, the calculation of f6 depends on
the equation f8 which depends on equation f4. And

Figure 2: A bipartite graph representing the circual de-
pendency between the equations f2, f4, f6 and f8

finally the equation f4, solving variable uR1n, requires
uR1, still solved by f2. This fact is shown in Figure
2. That is why they have to be handled in an equation
system which combines all equations into one block
(see figure 3, gray coloured box). As shown in the ex-
ample, blocks can be very simple, containing just one
single equation or they can be really complex, contain-
ing hundreds of equation stored in an equation system.
In order to solve the system efficiently, the block size

Figure 3: BLT-Matrix of the example on the left, de-
rived task graph on the right side

should be as small as possible. To find the smallest
blocks of the system, Tarjan’s algorithm [8] can be
used. A complete algorithm to get the blocks from
the DAE-System is presented in [6].

3 Task Graph representation

A task graph or data dependency graph is a widely
used technique to describe the different parts of a pro-
gram and their relationships among each other. The
graph contains nodes representing the tasks and di-
rected edges. If an edge goes from node n1 to n2, the
task n1 has to be executed before the task n2 can start.
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Parallel branches of such a graph can be calculated in
parallel, because there are no direct dependencies be-
tween them and thus they could be handled by differ-
ent threads.
To get a task graph out of the BLT-structure, all blocks
of the matrix are converted into a node of the graph.
After that, the calculation dependencies between the
blocks have to be inserted. An edge between the nodes
of the blocks ni and n j is is added to the graph, if the
BLT-matrix has an entry at position (i, j), with i > j
and (i, j) representing the row and column index of
the blockmatrix, respectively.
The task graph of the given example circuit is dis-
played in figure 3. The notation inside the nodes is
{equation index : variable index}. For the given ex-
ample, the last three tasks could be handled in paral-
lel by three different threads. In order to evaluate the
simulation speed, both execution and communication
costs for the tasks and processors have to be known.
The execution cost of a task is the number of cycles
or the time span required to calculate it. Communica-
tion costs are the time to transfer all required variables
from one thread to another. To measure these values,
two benchmark programs were developed. To estimate
the communication costs, a standalone benchmark has
been created which copies different sized data arrays
of 64 bit long floating point value from one thread to
another. By analyzing the task equations, the number
of variables, which are transferred by each edge in the
task graph, can be obtained. Thus a communication
cost estimate can be assigned to each edge. The exe-
cution costs are being measured with the help of the
OpenModelica measure time functionality for a serial
calculation run, which creates a xml-file containing ex-
ecution times for each block. This approach has still
some drawbacks. First, it cannot be exact, as it is not
possible to predict the occurence of cache misses or
context switches between different processes. Second,
one serial execution of the model is required, which
may cause a severe overhead, before the estimates are
available.
Execution costs are displayed on the bottom right cor-
ner of the nodes on a yellow background while com-
munication costs are displayed near the edges, see Fig-
ure 3.

4 Graph simplification

Complex Modelica models may lead to complex task
graphs with thousands of nodes and edges. Schedul-
ing these graphs (see section 5) is a time consuming

process, which can, depending on the scheduling al-
gorithm, scale superlinear with the number of nodes
and edges. Therefore the authors have implemented
two rules to simplify complex task graphs, based on
the ideas of [3]. The first one is a simple rule to merge
chains of nodes with a maximum of one successor and
one predecessor into one, as there is no point in cal-
culating these nodes by different threads. The rule
is called ”mergeSimpleNodes” and an example is dis-
played in figure 4. The second rule, which is more

Figure 4: Example of the ”mergeSimpleNodes” rule.
Node four and five are merged into one.

complex, is called ”mergeParentNodes”. It consoli-
dates a node with its parents, if this leads to an de-
creasing execution time. See figure 5 for an example.
If the nodes 11 and 13 are handled by different threads
than task 12, the execution time increases compared
to the serial execution. To prevent this, the nodes are
merged into task 13′.

Figure 5: Example of the ”mergeParentNodes” rule.
Node 11, 12 and 13 are merged into one.
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5 Task Graph Scheduling

Based on the derived task graph, the different tasks can
be dispersed among different threads, which can later
be distributed on different processors or processor-
cores. This is called Scheduling. In the presented
work the Scheduling is performed during compile time
(static scheduling). If the mapping between tasks and
threads is set during run time, it is called a dynamic
scheduling.
In order to achieve a proper mapping, most of the static
scheduling algorithms use the information about the
execution and communication costs to load the threads
evenly and with shortest idle time. Finding the ideal
schedule is a NP-hard problem [9]. Thus, different
heuristics are used which have been implemented into
the OpenModelica compiler module. To analyse the
scheduling of a task graph several evaluation parame-
ters can be obtained. First, some basic definitions shall
be given. The serial time tS of a model is the sum of
all execution costs of all tasks T

tS = ∑
i∈T

ti (4)

The minimum parallel time tPmin is equal to the sum of
the execution costs along the critical path, denoted as
crit ′

tPmin = ∑
j∈crit ′

t j (5)

This definition neglects all communication costs and
corresponds to the case where all tasks of the criti-
cal path are assigned to the same thread. Further, it
is assumed that all other tasks are handled in paral-
lel by other threads not causing any delays. Clearly,
this would require a sufficiently large number of com-
puting cores. The parallel time tP accounts for a lim-
ited number of computing cores and denotes the time
required to calculate all tasks of a task graph given
a schedule (assignment for each task to a thread or
computing core) considering both execution as well
as communication costs. The Maximum Theoretical
Speed-up nmax can be obtained by dividing the serial
time by the minimum parallel time

nmax =
tS

tPmin
(6)

assuming that an infinite number of computing cores
is available. The Theoretical Speed-up nt provides the
expected speed-up for a given schedule. It is defined
as the serial time divided by the parallel time

nt =
tS
tP

(7)

This quantity shall be used to compare different
scheduling algorithms and to evaluate the implemen-
tation of the parallel code. In the following, differ-
ent scheduling algorithms which will be compared are
presented.

5.1 Level Scheduling

The simplest implemented scheduling algorithm is the
level scheduling, which divides the graph into several
layers. All tasks of one layer have just dependencies
to tasks of previous layers. Thus, no direct depen-
dencies between tasks of the same layer are allowed.
The tasks of each layer are calculated in parallel un-
til the algorithm proceeds with the next layer. Figure
6 shows a small graph example. Each layer is im-
plemented as one OpenMP-Sections-Region and each
task is handled in one OpenMP-Section. An example
is displayed in listing 1.

Listing 1: Level scheduling code for graph in figure 6
s t a t i c vo id solveODE ( d a t a ) {

/ / Leve l 1
#pragma omc p a r a l l e l s e c t i o n s {

#pragma omc s e c t i o n {
e q F u n c t i o n _ 1 2 ( d a t a ) ;

}
#pragma omp s e c t i o n {

e q F u n c t i o n _ 1 1 ( d a t a ) ;
}
#pragma omp s e c t i o n {

e q F u n c t i o n _ 4 ( d a t a ) ;
}

}
/ / Leve l 2
#pragma omp p a r a l l e l s e c t i o n s {

#pragma omp s e c t i o n {
e q F u n c t i o n _ 1 3 ( d a t a ) ;

}
#pragam omp s e c t i o n {

e q F u n c t i o n _ 5 ( d a t a ) ;
}

}
/ / Leve l 3
#pragma omp p a r a l l e l s e c t i o n s {

#pragma omp s e c t i o n {
e q F u n c t i o n _ 1 4 ( d a t a ) ;

}
}

}

Therefore, OpenMP takes care of the concrete map-
ping between tasks and processors. This approach is
following the ideas of a breadth-first-scheduling [10].
An eminent advantage of this scheduling method is
that no information about execution and communica-
tion costs is needed. The scheduling is only based on
the task dependencies. Thus, this algorithm is not fully
static, but a hybrid of static and dynamic scheduling.

5.2 List Scheduling

The authors have also implemented a simple list
scheduling algorithm [11], which can handle the tasks
from root-nodes to leaf-nodes or vice versa. The list
scheduling algorithm performs in the following way.
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Figure 6: Example of level scheduling.

The root-nodes of the task graph are collected in a so-
called ’ready list’. These tasks are distributed to all
available threads. Before the first task assignment, ev-
ery thread has a ready time of zero which means it is
considered to be idle. If a task is assigned to an idle
thread, the execution costs of the task will be added
to its ready-time. The assignment of tasks enables the
scheduling of their successor nodes which will be ap-
pended to the ready-list. The tasks from the ready list
will be distributed successively to the thread with the
earliest ready time. If the predecessor of an assignable
task is scheduled to the same thread, the communica-
tion costs between these tasks are not taken into ac-
count. Otherwise, they have to be added to the ready
time of the thread. The algorithm terminates when the
ready list is empty.

5.3 Modified Critical Path Scheduling

Static scheduling algorithms are reviewed thoroughly.
There is a multiplicity of approved scheduling heuris-
tics and each performance depends on the structure of
the graph, the dispersal of the costs etc. As an ex-
emplary method, the ’Modified Critical-Path Sched-
uler’ (MCP) by Wu and Gajski [12] has been imple-
mented since this one is well-established as a refer-
ence heuristic[13]. The MCP distributes the tasks suc-
cessively like the list scheduling to the thread that al-
lows its earliest execution. The prioritisation of the
assignable tasks is based on their ALAP-binding. The
ALAP-binding stands for the as-late-as-possible start
time and is computed as the longest path from the task
to the finishing time of the last executed task.

5.4 External Scheduling

In order to understand and test the effect of different
schedulings, the authors implemented a manual graph
scheduler. The tasks can be assigend to the threads by
hand on a graphical interface. For instance, the graph
can be divided into vertical stripes, each handled by
one thread like performed by libraries like metis [14].

5.5 Deadlock Detection

To check if a schedule is free of deadlocks, a transfor-
mation into a state / transition - petri net was devel-
oped. Every task of the graph is transformed into two
states and one transition and every edge to one tran-
sition. An example for such a transformation is given
in figure 7, where the task graph is shown on top and
the petri net on bottom. The tasks of each thread are
displayed one below the other. This kind of view gives
more detailed information about the required locks be-
tween the different threads. If the final states of all
threads are connected to a transition that is connected
to the first states (not displayed in the figure), a petri
net tool can check if the graph is free of deadlocks.

Figure 7: Example of state / transition net transforma-
tion
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6 Benchmarks

To compare the different scheduling algorithms with
the serial code, the simulation time of various mod-
els was measured. Three representative models from
the domains Mechanics, Fluid and Electrics were se-
lected out of the modelica standard library ”MSL32”.
The first one is the engine V6 mechanic model. The
second is the branching dynamic pipes example of the
fluid domain. And the last model is the electrical cauer
low pass sc model.
The test system was a computer with an Intel Core
i7-3930K with six cores @ 3.20GHz and 32 gigabyte
RAM running Windows 7 professional. All models
were simulated from 0s to 1s using the dassl-solver.
In order to evaluate if it is possible to achieve shorter
simulation times, the theoretical maximum speed-ups
are displayed in table 1 for the three models.
The generated code of all scheduling algorithms, ex-
cept the level-scheduling, is realized with pThreads
using spin locks. Level-scheduling is based on an
OpenMP implementation, as described in the previous
section. Unfortunately, the results of level-scheduling
were considerably slower than the other algorithms.
Hence they were omitted from the diagrams for the
sake of clarity.

Table 1: Maximum Theoretical Speed-up nmax
Modell nmax

Engine V6 1.11
BranchingDynamicPipes 13.09
CauerLowPass 5.97

For the mechanical model it is not possible to achieve
a speed-up at the moment. This is due to the graph’s
structure. Every multibody system requires the solu-
tion of the following linear system [15]

MMM (qqq) q̈qq = hhh(qqq, q̇qq)+ fff a + GGGT (qqq) fff c (8)

000 = ggg(qqq) (9)

The mass matrix MMM is in general densely populated.
Its number of rows and columns is equal to the de-
grees of freedom of all the tree-joints, see [15]. The
authors have noted that a large portion of the calcula-
tion time is spent on solving this linear system which
corresponds to a single node in the task graph. In case
of the EngineV6 model this can be up to 95% of the
entire execution time. To take advantage of the BLT
approach for such a model, one would have to either
find a way to split up this task into smaller ones or to
solve the task itself in parallel. This will be a topic of

further research. For the fluid and electrical models, a
speed-up is theoretically possible.
The benchmark results are displayed in the figures 8,
9 and 10. As already assumed, no speed-up with the
mechanic model was found. The results of the fluid

Figure 8: Benchmark of the engineV6 example

Figure 9: Benchmark of the dynamic pipes example

benchmarks indicates significant enhancement. The
simulation showed a large step size, resulting in a
lower number of calculations of the ODE functions.
Carrying out such an ODE calculation takes a long
time compared to the other examples. Moreover, the
task graph has a lot of tasks which can be calculated
in parallel. The trend of the Parallel Time indicates
further potential. Additional research is needed in or-
der to close the gap between predicted and measured
speed-up. The low pass example shows currently no
significant speed-up for the BLT parallelization, al-
though the task graph has a lot of tasks in parallel,
as can be seen in the behaviour of the Parallel Time.
The issue appears to be the short execution time of
the entire ODE system. The calculation of this sys-

Equation based parallelization of Modelica models

1218 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961213



Figure 10: Benchmark of the cauer low pass example

tem is about 30 times faster than the calculation of the
branching dynamic pipes ODE system. The overhead
of the parallel code seems to be too big to cope with
such short calculation cycles. At the beginning of the
presented work, the parallel code was solely imple-
mented with OpenMP. In consequence of the bad mea-
surements of the cauer low pass example, the OpenMP
code was exchanged with pThreads code using spin
locks. The execution time of the parallel code could
be halved for the cauer low pass, but is still too large
to achieve a significant speed-up for the model.

7 Conclusion

The implementation has shown that the BLT paral-
lelization approach is able to reduce the simulation
time for some models, especially if they are part of the
fluid domain. To achieve speed-ups for various mod-
els, further research is required, especially to reduce
the overhead of the parallel code and to handle one big
task using multiple cores. The problem with the big
tasks can be solved by applying parallel solvers or by
splitting up the complex task into simpler ones.
Furthermore, some memory analysis needs to be per-
formed to reduce the number of cache misses and in-
validations between the threads. At the moment, the
variables are stored regarding their types (real, int or
boolean) in different arrays. To get some improve-
ments, the variables have to be organized regarding
their task affinity.
All in all the presented BLT approach looks promis-
ing for a parallellization speed-up on ordinary shared
memory systems.
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Abstract

This paper deals with the implementation of a gen-
eral methodology for modeling two-dimensional fluid
flows in Modelica applying the Cascaded Digital Lat-
tice Boltzmann Method. This approach models fluid
flow as collective dynamics of fictitious particles on
the nodes of a regular lattice. The various elements
needed for simulation are described in Modelica and
generic test cases are set up. The method is able to
deal with simple scenarios where the powerful capa-
bilities of advanced CFD tools are not needed.

1 Introduction

Calculating the dynamics of fluid flows is an important
topic in the field of simulation. Common practice is
to simulate complex scenarios by utilizing Computa-
tional Fluid Dynamics (CFD). Despite its capability of
representing fluid flows in a very detailed way it has
the drawback of compatibility. Coupling with other
physical domain simulations is only possible by co-
simulation. In this contribution a general methodology
for modeling two-dimensional fluid flows in Modelica
is shown. Whereas in [1] the Navier-Stokes equations
are solved by a finite volume method, this work deals
with modeling them with a Lattice Boltzmann Method
(LBM).

2 Theory

The Lattice Boltzmann method is a relatively new
simulation technique for fluid systems that has at-
tracted interest as alternative to the discretization of

Figure 1: Lattice Boltzmann D2Q9 grid element

the Navier-Stokes equations. Instead of discretizing
the Navier-Stokes equations to solve the conservation
equations of macroscopic quantities (i.e., mass, mo-
mentum, and energy), LBM is a mesoscopic approach
for modeling macroscopic fluid dynamics based on the
Boltzmann kinetic equation which describes the sta-
tistical behavior of a non-equilibrium thermodynamic
system. In the LBM, the fluid motion is based on the
collective dynamics of fictitious particles on the nodes
of a regular lattice. The dynamics of these particles
is designed to obey the basic conservation laws en-
suring hydrodynamic behavior in the continuum limit.
The basic quantity is the particle distribution function
fi (~x, t) that represents the probability of finding a fluid
particle density i at a location~x and at a time t traveling
with a discrete speed ~ci.
The mass density ρ and the momentum density ρ~v are
given by:

ρ(~x, t) =
n

∑
i=0

fi (~x, t) (1)

ρ(~x, t)~v(~x, t) =
n

∑
i=0

fi (~x, t)~ci (2)
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The motion of the particles is restricted to the node
positions of a regular lattice. In 2D, commonly a
9-speed, quadratic lattice (D2Q9) with mesh spac-
ing ∆x is applied, where the discrete velocities ~ci

connect lattice nodes to first and second neigh-
bors and which has a rest particle f0, see Figure
1. Here, cx = [0,1,0,−1,0,1,−1,−1,1]T and cy =
[0,0,1,0,−1,1,1,−1,−1]T .
The spatial and temporal evolution of the particle
distribution function is described by an explicit dis-
cretization of the Boltzmann equation, given by the
following equation:

fi (~x +~ci∆t, t + ∆t) =

fi (~x, t)−ω
(

fi (~x, t)− f eq
i (~x, t)

)
(3)

There, the left-hand side represents the molecular
free streaming from one lattice node to the other,
whereas the right-hand side represents the molecular
collisions via a single-time relaxation towards local
equilibrium f eq

i on a typical timescale τ = 1/ω. τ
is related to the macroscopic kinematic viscosity
ν = c2

s ∆t (τ−1/2), where cs = 1/
√

3 is the speed of
sound. Commonly ∆t(LB) = 1 in lattice units, thus
rendering the grid spacing ∆x(LB) = 1. Results in
physical units can be obtained by applying the scaling
u(phys) = u(LB)

√
3c(phys)

s .

The local equilibrium is typically a second-order ex-
pansion in the fluid velocity of a local Maxwell distri-
bution,

f eq
i = wi

[
ρ + 3~ci ·~v−

3
2
~v2 +

9
2

(~ci ·~v)2
]
, (4)

where wi is a set of weights normalized to unity. The
single-relaxation-time (SRT) LBM, (3), recovers the
weakly-compressible, athermal Navier-Stokes equa-
tions at low Mach numbers (Ma < 0.3) with second
order accuracy in space and time.
Nevertheless, the SRT-LBM method shows instabili-
ties when the viscosity is reduced to small values, in
order to reach high Reynolds numbers at low Mach
numbers. To enhance the stability, the multiple-
relaxation-times (MRT) collision operator was pro-
posed by [2, 3]. Instead of relaxing the particle distri-
bution functions themselves towards equilibrium, as in
the SRT-LBM, in the MRT-LBM, they are transformed
from velocity space into the corresponding moment
space, where the moments are relaxed towards their
equilibrium values. The moment space of the D2Q9
model has nine velocity moments. The conserved mo-
ments are the density (1) and the flow momentum

(2), the non-conserved moments include the energy,
the stress tensor components, the energy square and
the energy fluxes, for which different relaxation time
scales are specified in order to decouple physical from
higher order moments, thus improving the numerical
stability. The post collision particle distributions f new

i
of the MRT-LBM are then given by the following ex-
pression:

f new
i = fi + M−1S

(
mi−meq

i

)
, (5)

where M is the orthogonal transformation matrix, mi =
M fi are the moments of the system and S is a diagonal
matrix of the relaxation rates.
A specific MRT variant, adopted in this work, is
the Cascaded-Digital-Lattice-Boltzmann (CDLB) al-
gorithm [4], that allows virtually any viscosity value
without loss of stability within the low Mach num-
ber limit. It adopts central moments in the reference
frame moving with the macroscopic velocity and a
generalized local equilibrium which is a function of
both conserved and non-conserved hydrodynamic mo-
ments. The post collision distributions ~f new of the
CDLB are given by

~f new = ~f old + K ·~k (6)

where~k is the CDLB collision term and K is the or-
thogonal transformation matrix, that maps the mo-
ments into velocity space.

K =




1 0 0 −4 0 0 0 0 4
1 1 0 −1 1 0 0 2 −2
1 0 1 −1 −1 0 2 0 −2
1 −1 0 −1 1 0 0 −2 −2
1 0 −1 −1 −1 0 −2 0 −2
1 1 1 2 0 −1 −1 −1 1
1 −1 1 2 0 1 −1 1 1
1 −1 −1 2 0 −1 1 1 1
1 1 −1 2 0 1 1 −1 1




(7)
As the collision term of the CDLB is rather complex,
we refer to the original paper [4].
Using vector notation

K =
[
~K0, . . . , ~K8

]
, (8)

~f =




f0
...
f8


 , (9)

the conserved moments are expressed as
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ρ = ~f ·~K0,

ρvx = ~f ·~K1,

ρvy = ~f ·~K2.

(10)

3 Implementation

Lattice Boltzmann collision equations are usually
written in terms of post-collision distributions f c

i , i.e.,
fi (~x +~ci, t + 1) = f c

i (~x, t).
In this contribution a formulation where the pre-
collision distribution is described in terms of the post-
collision distribution at the respective neighbor node,
i.e., fi (~x, t) = pre( fi (~x, t))≡ f c

i (~x−~ci, t−1) is used.
The operator pre of Modelica makes this formulation
convenient [5].

3.1 Node element

All elements extend from a basic node element, the
partial node model PrtlNode_D2Q9. There, all pa-
rameters and variables like the transformation matrix,
weighting parameters etc. are defined. Furthermore
the internal particle distribution variables are defined
and initialization values are calculated. Collision and
streaming of particles is based on an equidistant time
step which is realized by a clock signal

clock := sample(dt, dt);

where dt is the width of one time step, taken equal to
one (in lattice units). The fi are time discrete quantities
changing their values only at event instants which are
triggered by the clock signal.
Each grid element has a rest particle and eight particles
that are streamed to the first (horizontal and vertical)
and second (diagonal) neighbors of the element. To
link the elements, two kinds of connectors are imple-
mented, a forward connector f_fwd and a backward
connector f_bwd. Each consists of a Real input vari-
able and a Real output variable to match its counter-
part.

connector f_fwd
input Real f_n;
output Real f_p;

end f_fwd;

connector f_bwd
output Real f_n;
input Real f_p;

end f_bwd;

Figure 2: Schematic grid of four D2Q9 node elements
including connections

Connectors are placed on the element models facing in
all eight streaming directions. Connectors 2, 3, 6 and
7 are facing forwards and connectors 4, 5, 8 and 9 are
facing backwards.
Various kinds of node elements extend from this par-
tial model. They are explained in more detail in sec-
tion 4.

3.2 Collision and streaming step

At every time step and at each grid element, the par-
ticle distributions are received, collided and propa-
gated. The receiving and propagating step are gener-
ally known as streaming.
In a conventionally implemented LBM, streaming af-
fects only ports of the same direction. This means,
a particle distribution with velocity~c2 exits port 2 and
enters port 2 of the adjacent element. In Modelica, due
to the connector concept, the case is slightly different.
Port 2 of a grid element is connected to port 4 of the
adjacent element, port 4 is connected to port 2 of the
next element, and so on. To establish a correct stream-
ing behavior the input, which holds the post-collision
value at the last time step, must be mapped to the re-
spective output, e.g., port 4 has to be mapped to port
2, port 2 has to be mapped to port 4. Then the particle
distributions are collided. Then the post-collision val-
ues are written into the output variable of the respec-
tive connector. Propagation to the neighboring grid
elements is done automatically by the connector, no
additional commands are needed.
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when clock then
// mapping
fold[1] := pre(f1);
fold[2] := pre(f4.f_p);
fold[3] := pre(f5.f_p);
fold[4] := pre(f2.f_n);
...

// collision
fnew := ... fold;

// output
f1 := fnew[1];
f2.f_p := fnew[2];
f3.f_p := fnew[3];
f4.f_n := fnew[4];
...

end when;

3.3 Mesh and connections – setting up the
computational domain

In the example model, the 2D-flow model has to be
described and the computational domain set up. Each
model consists of sources, fluid nodes and boundary
conditions. Two ways are possible to build up the
model. The first is to build the model by dragging and
dropping elements to the workspace and drawing con-
nections by hand. Because the number of elements
may be quite high and every element needs eight con-
nects to its neighbours, the effort to set the model up
like this is quite high. A more convenient method is
proposed here. Providing the matrix nodeType that
represents the LB discretized computational domain,
all connections are generated automatically via nested
loops.
The matrix can easily be set up in e.g. Microsoft Excel
and then imported to the simulation example. A sim-
ple example of a two-dimensional duct model is shown
below.

parameter Integer nodeType[:,:]=
{{2,2,2,2,2,2,2,2,2},
{3,1,1,1,1,1,1,1,4},
{3,1,1,1,1,1,1,1,4},
{3,1,1,1,1,1,1,1,4},
{3,1,1,1,1,1,1,1,4},
{2,2,2,2,2,2,2,2,2}};

...
CDLB.D2Q9 node[:,:](nodeType=nodeType,...);

The parameter nodeType is then propagated to the
element CDLB.D2Q9 which acts as generalized ele-
ment representing all node types in conditional defini-
tion.

model D2Q9
...
CDLB.FluidNode fn if nodeType == 1;

CDLB.BounceBackNode bn if nodeType == 2;
CDLB.VelocityNode vn if nodeType == 3;
CDLB.DensityNode dn if nodeType == 4;
...

end model;

The user only has to define the matrix, all connections
are established automatically. They are defined in mul-
tiple loops to interconnect every element with its eight
neighbors. As example, the connections for connector
4 are outlined here:

// connect row 2:end and col 2:end
for i in 2:1:nrow loop

for j in 2:1:ncol loop
connect(node[i,j].f4,node[i,j-1].f2);

end for;
end for;

// connect row 1 and col 2:end
for j in 2:1:ncol loop

connect(node[1,j].f4,node[1,j-1].f2);
end for;

// connect col 1 to col end
for i in 1:1:nrow loop

connect(node[i,1].f4,node[i,end].f2);
end for;

These equations are repeated for all other connectors
and are omitted here for sake of brevity.

4 Elements

4.1 FluidElement

The fluid element implements the collision, (6). To
speedup symbolic pre-processing and compilation
time, this is encapsulated in a function. To avoid re-
flections at the in- and outflow boundaries, sponge
zones are implemented. There the relaxation factor τ is
gradually increased to 1, thus driving the fluid towards
its equilibrium state at the boundary.

4.2 BoundaryElement

To implement a solid, non-slip boundary condition a
local bounce-back rule is applied on the solid node ~xs:

f c
i′ (~xs, t) = fi (~xs, t) (11)

where i′ denotes the link with reversed velocity of i,
i.e., ~ci′ =~ci, pointing into the fluid. Incoming distri-
butions functions at a wall node are reflected back to
the original fluid nodes, with the direction rotated by
π. The “bounce-back on the node” is purely local, thus
being implementable in the current concept, but it has
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been proven to be only first-order accurate in time and
space.
Shifting the solid wall half-way between the two
nodes, leads to the “bounce-back on the link” which
is of second order accuracy:

fi′ (~xl, t + 1) = f c
i (~xl, t) (12)

where~xl is a fluid node next to the solid boundary and
f c is the post-collision value before propagation. Un-
fortunately it is not implementable in the current con-
text, as each node element in Modelica cannot access
its neighbors.

4.3 DirichletElement

Dirichlet boundary conditions can be set up based on
the idea of bounce-back of the non-equilibrium part,
as proposed in [6]. As an example, at a flow bound-
ary having a normal vector into the fluid in positive x-
direction, i.e., f2, f6, f9 pointing into the fluid, these
distribution functions are unknown after streaming.
Equations (1) and (2) can be used to reconstruct the
unknown distributions.
At a velocity boundary node, after streaming
f1, f3, f4, f5, f7, f8 are known and vx,vy are specified.
f2, f6, f9 and ρ need to be determined. Equations (1)
and (2) yield three equations. In order to close the sys-
tem, it is assumed that it is admissible to bounce-back
of the non-equilibrium part of the particle distribution
normal to the boundary, i.e., f neq

i′ = f neq
i ≡ fi′− f eq

i′ =
fi− f eq

i . For a Dirichlet element pointing in positive
x-direction this gives

rho := 1/(1-vx) * ((fo[1]+fo[3]+fo[5]) +
+ 2 * (fo[4]+fo[7]+fo[8]));

fo[2] := fo[4] + 2/3*rho*vx;
fo[6] := fo[8] + 1/2*(fo[5] - fo[3])

+ 1/2*rho*vy + 1/6*rho*vx;
fo[9] := fo[7] + 1/2*(fo[3] - fo[5])

- 1/2*rho*vy + 1/6*rho*vx;

For a known inlet velocity vin,x, this system serves as
velocity inlet, CDLB.VelocityNode, or can be re-
arranged in terms of known density, ρ = ρin, into a
density inlet, CDLB.DensityNode.

4.4 Initial Conditions

At start of the simulation run, a flow at rest is assumed,
setting the distribution functions to their equilibrium
value.

Figure 3: Profile of the magnitude of the flow velocity
in lattice units in a fluid domain with one solid node
at one quarter of the domain length and vertically cen-
tered. A periodic vortex occurs forming a von Karman
vortex.

Figure 4: Profile of the magnitude of the flow velocity
in lattice units in a fluid domain with an orifice at one
quarter of the domain length. A jet is created which is
amplified by aerodynamic effects.

Figure 5: Profile of the vorticity in lattice units in a
fluid domain with an orifice at one quarter of the do-
main length. A jet is created which is amplified by
aerodynamic effects.

5 Test cases and results

5.1 Flow past a cylinder

The first test case deals with the flow around a cylin-
der in a fluid stream, which is formed by one solid
node. It is positioned at approximately one quarter of
the domain length and vertically centered in the com-
putational domain. The nodes at the upper and lower
boundaries are also fluid nodes. As all boundaries are
interconnected with each other, this constitutes peri-
odic flow boundary conditions. The computational do-
main consists of 258 x 30 grid nodes, leading to 570k
equations, which is close to the maximum size man-
ageable in Dymola.
Periodic vortex at the cylinder occurs forming a von
Karman vortex street, see Figure 3 for a snapshot
showing the velocity magnitude in lattice units. In or-
der to obtain a high Reynolds number, the relaxation
factor τ was set to 1/2, yielding a very low kinematic
viscosity, which is only determined by numerical pre-
cision of the solver.

5.2 Flow through an orifice

The second test case is a flow through an orifice where
a jet is formed. The orifice is modeled as solid with

Poster Session

DOI
10.3384/ECP140961221

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1225



non-slip walls and is positioned in a duct with slip-
walls at one quarter of the domain length. The compu-
tational domain consists of 258 x 30 grid nodes, lead-
ing to 570k equations.
Figures 4 and 5 show snapshots of the velocity mag-
nitude and the vorticity in lattice units. Velocity per-
turbations at the flow inlet trigger initial perturbations
in the jet shear layers which are further amplified by
aerodynamic effects due to the Kelvin-Helmholtz in-
stabilities until the jet breaks up into discrete vortices.

6 Conclusions

An approach for simulating fluid flow with the Cas-
caded Digital Lattice Boltzmann method is proposed.
With this approach fluid flow problems can be ad-
dressed in a multi physical modeling language like
Modelica. The method works for small scenarios but
reaches the boundaries of efficient simulation quickly.
Nevertheless, the approach works for 2D flows and can
be extended to 3D flows easily.
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Abstract 

As systems engineering methodologies for complex 
systems make increasing use of modelling and simu-
lation techniques, it has become important to extend 
the MODELICA language to also cover require-
ments, and more generally, properties modelling. 
The ITEA2 MODRIO project is currently developing 
an extension for that very purpose: the FORM-L lan-
guage (FOrmal Requirements Modelling Language). 
This paper presents an overview of the FORM-L 
concepts, and illustrates them with examples based 
on a practical case study, the Backup Power Supply 
(BPS) system. 
Keywords: physical modelling; requirement model-
ling; systems engineering; methodology 

1 Introduction 
Systems engineering methodologies for complex 
systems increasingly rely on, or could benefit from, 
modelling and simulation. For MODELICA to sup-
port activities such as functional validation of system 
requirements, design verification against require-
ments, testing, dysfunctional analyses and verifica-
tion of operational procedures, the ITEA2 MODRIO 
project is developing extensions to the language. One 
of them concerns formal requirements and properties 
modelling, and is called FORM-L (FOrmal Re-
quirements Modelling Language). This paper pre-
sents the main concepts underlying FORM-L, and 
illustrates them with examples taken from a 
MODRIO case study, the Backup Poser Supply 
(BPS) system. 

Section 2 presents the main objectives assigned to 
FORM-L. Section 3 introduces briefly the BPS case 
study in oder to provide a background context for the 
examples given in the floowing sections. Section 4 
presents how FORM-L considers functions, con-
stants and fixed variables. Section 5 introduces the 
notions of condition and event. Section 6 presents the 

notions of properties, requirements, assumptions and 
guards. Section 7 presents the notion of time locator, 
continuous or discrete. Section 8 presents how 
FORM-L views sets and arrays. Lastly, Section 9 
presents how actions are modelled in FORM-L.  

2 FORM-L Overview 

2.1 Motivation 

Paper Innovative Modelling Architecture for the 
Verification of Design against System requirements 
presents how one of the methodologies developed by 
MODRIO (to verify the design of a system against 
its requirements) is supported by FORM-L. 

This includes in particular a clear separation of mod-
els serving different purposes in the systems engi-
neering lifecycle or the support to systems operation. 
In particular, there should be a well-identified model 
that clearly and formally specifies:  

• The boundaries of the system under study. 
• The interactions of the system with its environ-

ment (including human operators), including any 
assumptions made regarding this environment. 

• The system requirements, including functional 
and timing requirements (concerning the interac-
tions with the environment) and system opera-
tional requirements (including quality of service 
and fault-tolerance, and operational constraints 
aiming for example at reducing wear and tear of 
system components).  

2.2 Main Notions 

This is supported by the FORM-L with the notions 
of property, requirement, assumption, and external 
information (to be supplied either by other MODE-
LICA models or by engineering databases). 

The expression of a requirement or a desirable prop-
erty needs to address four basic issues: WHAT, 
WHERE, WHEN (cf. EuroSysLib WP7.1 Property 
Modelling) and HOW WELL. 
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WHAT states what needs to be achieved or what 
must be avoided. This is expressed in FORM-L with 
the notions of condition (that must be satisfied), 
event (that must or must not occur), function and ac-
tion. 

WHERE states where in the system the WHAT 
needs to be achieved. This can be expressed in 
FORM-L by the explicit naming of objects, but also 
with the notion of set, in particular of set resulting 
from queries. Indeed, at the time system require-
ments are specified, early in the system lifecycle, the 
names, number, types, characteristics and locations 
of the objects concerned are often not known yet. 
They are determined at a later stage, the information 
being usually stored in one or more engineering da-
tabases. 

WHEN states when the WHAT needs to be 
achieved. Possibly complex temporal logic is often 
needed when considering reactive systems such as 
the BPS. Such logic can be expressed in FORM-L 
using continuous or discrete time locators. FORM-L 
also includes the notions of finite state automaton, 
statechart and time domain (the latter being ex-
tremely useful, or even necessary, when considering 
hybrid systems). 
HOW WELL states how well the WHAT needs to be 
achieved (as real life systems are bound to have fail-
ures). This is expressed in FORM-L using probabil-
istic properties. Extensive work is being done in the 
framework of MODRIO on stochastic issues and 
multi-mode modelling: FORM-L only addresses 
what concerns properties. 

2.3 Readability 

It is not sure that all aspects of requirements specifi-
cation (in particular complex temporal logic) can be 
represented graphically without risks of misinterpre-
tation from the part of readers, or even authors of 
models. Therefore, the clarity of the FORM-L lan-
guage textual syntax is important, as the language is 
mainly intended to be used by application specialists 
rather than modelling experts. The syntax that is 
proposed here voluntarily includes significant 
amounts of "syntactic sugar" for this very reason. 

3 A Brief Introduction to the BPS 
Example 

3.1 BPS Objective 

The objective of the BPS (Backup Power Supply) is 
to provide electric power to electrical components 
(e.g., pumps and valves in a thermohydraulic indus-

trial installation) that are considered essential, in case 
of loss of the Main Power Supply (MPS). Such com-
ponents could be important to safety (e.g., in an in-
dustrial installation or in a hospital) or could be re-
quired to prevent unacceptable economic losses (in a 
semiconductor fab).  

Figure 1 presents the overall organisation of the BPS 
from the standpoint of the requirements specifiers. 
Figure 2 presents a system architecture developed by 
designers as a possible answer tot he requirements. 
The objective of the system requirements model and 
of the architecture model is to support the verifica-
tion that the architecture indeed meets the require-
ments.  

3.2 BPS Principles 

As the levels of power required by the backed-up 
sets of components are assumed to be very high, and 
the duration of the backing-up to last up to several 
days, the BPS is based on a Back-Up Generator, or 
BUG. This generator has a number of constraints. In 
particular, it cannot power instantaneously all neces-
sary components: if all 'client' components were 
connected simultaneously to the BUG, the BUG 
could be overloaded and stall, due to the fact that 
when electric power is restored to a given compo-
nent, there is an important, transient call for current 
and power (see figure 3). Thus, much like a conven-
tional car engine needs a gearbox, the BPS and its 
BUG need an active control system to ensure a pro-
gressive and orderly increase of requested power 
(hence the presence of circuit breakers). 

 
Figure 3: Transient call for current when electric 

power is supplied to an electric component 

Also, not all components powered by the backed-up 
electric panel have the same needs and functional 
roles. In the case study, six sets of backed-up electric 
components (SBC) have been identified: 

• SBC1 groups components that implement Con-
text Specific Actions (CSA). Such actions are not 
always needed. However, if and when they are, 
then Set1 must be powered back within 20 sec-
onds. 

• SBC2, SBC3, SBC4 and SBC5 are redundant sets 
of components, and it is sufficient to power any 
two of them within 40 seconds. 
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• SBC6 must be powered back within 60 seconds. 
When in operation, the BPS can be in one of three 
main states: 

• Nominal state: the BPS is available and ready to 
perform its missions. 

• Test state: as MPS loss is rare and the BPS is 
seldom required, periodic testing is necessary to 

ensure that when needed, the BPS will indeed be 
able to perform its missions. 

• Maintenance state: the BPS is under repair and is 
not able to perform its main mission, which is to 
provide electric power to the backed-up electric 
panel.  

 
 

. 

 
Figure 1: BPS and its environment as viewed by system requirements specifiers. The overall configuration 

corresponds to the case where the MPS is available 

 
Figure 2: BPS and its environment as viewed by the system designers. Note the introduction of sensors 

(voltmeters, frequency meters, breaker position sensors), of the digital control system GLS (Generator Load 
Sequencer), of the splitting of certain SBCs into smaller Steps. 
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3.3 The BPS Models 

The BPS  case study considers 4 models (see figure 
4): 

• BPS.REQ is a property model specifying the 
functional and quality of service requirements 
applicable to the BPS. This property model also 
describes the environment of the BPS, and the 
interactions between the BPS and that environ-
ment. 

• BPS.ADS is a property model describing an ar-
chitectural design for the BPS. In particular, it 
identifies the components constituting the BPS, 
and puts requirements on these. One objective is 
to verify that this design will indeed satisfy the 
requirements stated by BPS.REQ. 

• BPS.ENV is a behavioural model that simulates 
the system environment of the BPS, including 
operators' actions. 

• BPS.BEV is a behavioural model that simulates 
the design specified by BPS.ADS. 

 
Figure 4: The MODELICA models for the BPS 

4 Functions, Constants and Fixed 
Values 

4.1 Functions 

Functions are features the value of which depend on 
time. In addition to functions already supported by 
current MODELICA, FORM-L has a few additional 
types: 
• Conditions are combinations of Boolean and 

temporal logic. Their values can be true, false or 
undefined. 

• Finite state automata are functions the values of 
which are in an enumerated set (see sec-
tion 10 Discrete States - Finite State Automata). 

• Probabilities are functions the values of which 
are real in the [0., 1.] range (see sec-
tion 13 Probabilistic Properties). 

4.2 Constants 

Qualifier constant may be used to specify that a 
feature does not vary in time and has the same value 
for all simulation runs. This is not absolutely neces-
sary (the FORM-L compiler should be able to detect 
that automatically) but may clarify authors' inten-
tions. 
constant real pi = 3.1416; 

4.3 Fixed Values 

Qualifier fixed may be used to specify that a fea-
ture has a value that is determined at the beginning 
of a run and does not vary during that run. However, 
it may be different in different runs. Here again, this 
is mainly to clarify authors' intentions. 
constant duration CycleTime = ms50; 

fixed duration Phase = random (0.0, Cy-
cleTime);  

The GLS (Generator Load Sequencer, see Figure 2) 
is a digital, synchronous control system inroduced by 
the architectural design. It operates in a discrete time 
domain, the CycleTime of which is 50 milliseconds 
(ms50). The Phase of the time domain is a random 
value that does not change once the system has 
started, but that will be different when the system is 
restarted.  

 
Figure 5: The GLS time domain 

 

5 Conditions and Events 

5.1 Conditions 

Conditions determine the evaluation of Boolean ex-
pressions restricted to time periods specified by con-
tinuous time locators (or CTLs). The general rule is 
that they are true when not in the time period, and 
take the value of the Boolean expression when in the 
time period. However, there are cases where they are 
undefined (see example below). 
Conditions are used to specify so-called condition-
based properties. The difference between the two is 
that properties express something that is desirable, 
required or assumed, whereas conditions are just 
buiding blocks to express properties, as it is often 
preferable to break the expression of complex prop-
erties into simpler, intermediate expressions. 
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condition C = duringAny s4 check Off; 

This condition is used to specify when the MPS can 
or must be declared unavailable. In particular, to 
avoid activating the BPS for short MPS losses, it 
must have been off for at least 4 consecutive seconds 
(s4). 

Condition C is evaluated at the end of each 4 second 
time window (duringAny s4): it is true if Off had 
been true during the complete time window. It is 
false otherwise. It is undefined during the first 4 
seconds of the simulation run, since no 4 second time 
window has elapsed yet. 

5.2 Events 

An event characterises the occurrence of one or 
more facts that have no duration: each of these facts 
is an occurrence of the event. Events are used to spe-
cify so-called event-based properties. 
external Boolean EndMaint; 

event endMaint =  
  when EndMaint becomes true; 

The external Boolean Endmaint represents the time-
continuous signal issued by one of the buttons at the 
disposal of the human operator. This signal is simu-
lated by the behavioural model of the BPS environ-
ment. Transition from false to true (becomes 
true) denotes the end of the on-going maintenance 
operation. 

6 Properties, Requirements, As-
sumptions, Guards 

There are two types of properties: condition-based 
properties, and event-based properties. Two Boolean 
functions are attached to each property: 

• Violated is initially false. It becomes true at the 
first instant where the property is violated, and 
remains so until the end of the simulation run. 

• Evaluated is also initially false. It becomes true 
at the first instant where the Violated / notVio-
lated status can no longer be modified in the 
course of the simulation run, and remains so un-
til the end of the simulation run. 

6.1 Condition-Based Properties 

Like a condition, a condition-based property speci-
fies a Boolean expression and a CTL: the Boolean 
expression should be true during the CTL.  
A three-valued function (satisfied, notSatisfied,  
notApplicable) is attached to each condition-based 
property. During the CTL, the property is satisfied 

when the Boolean expression is true, and notSatis-
fied otherwise. It is notApplicable at time instants not 
covered by the CTL or when the combination of 
CTL and Boolean expression is undefined. It be-
comes Violated at the first instant where it is notSa-
tisfied.  
property P2ce =  
  after (BPSNeeded becomes true)  
    within s60  
  check SBC[6].Powered becomes true; 

This property expresses the need to start providing 
electric power to the 6th SBC (SBC[6].Powered 

becomes true) at most 60 seconds after the BPS 
has been declared as needed. 

6.2 Event-Based Properties 

An event-based property specifies a constraint on the 
number of occurrences of an event during a given 
time locator. 

A three-valued function (belowLimits, withinLimits,  
aboveLimits) is attached to each event-based proper-
ty, indicating whther the number of occurrences is 
below, within or above the limits specified. The 
property becomes Violated at the first instant where 
it is aboveLimits. 

property P2 = {P2a; P2b; P2c};  

required property R7 =  
  until (or{P in P2 | P.Violated})  
    becomes true  
  check no eFailure;  

P2 is the set of properties stating when SBC1 (P2a), 
SBC2-5 (P2b) and SBC6 (P2c) must be powered by 
the BPS. When any one of the SBCs cannot be po-
wered back within the allocated time, a failure signal 
(eFailure) must be sent to the operator.   

Property R7 expresses the requirement that this sig-
nal must not be sent (no eFailure) spuriously, i.e., 
before any one of the P2 properties is violated. 

6.3 Requirements,  

A requirement is a property that MUST be satisfied: 
it is the objective of simulation to verify that it is not 
Violated. 

6.4 Assumptions 

An assumption is a property that is supposed to be 
satisfied: simulation scenarios assume / ensure that it 
is satisfied. Assumptions are usually made with re-
spect to the environment or the boundaries of the 
system under study. They can also be made on sys-
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tem aspects not fully determined yet, in preliminary 
stages of design.  

assumed property  
  during MPS.Unavailable  
  check no eMaint; 

This assumption concerns the human operator's ac-
tions. It states that when the MPS is not available, 
the operator will not launch a maintenance session 
(no eMaint). 

6.5 Guards 

A guard is a property that states the conditions that 
must be satisfied for a model to be valid. It is to be 
used for multi-modelling, when several models are 
available for the same system or components, each 
corresponding to specific situations. 

7 Time Locators 
There are two types of time locators in FORM-L: 
continuous time locators (CTLs) and discrete time 
locators (DTLs). 

7.1 Basic Continuous Time Locators (CTLs) 

A CTL specifies one or more time periods. Time 
periods have a duration and usually have a position 
in time (see Figure 6).  

 
Figure 6: Time intervals 

duringAny duration 

This defines a sliding time window, i.e., any time 
period of a given duration (see Figure 7 and ex-
ample in Section 5.1). 

 
Figure 7: duringAny duration 

Sliding time windows are a very distinct type of CTL 
and cannot always be used as the other types of CTL. 

during condition 

The time periods defined are those where condi-
tion is true (see figure 8). 

 

Figure 8: during condition 

property P4 =  
  during not(BPSNeeded)   // CTL 
  check not(Active); 

In this example, the CTL is specified in line 2. The 
property states that when the BPS is not needed, it 
should not be activate. 

after event 

The time periods defined begin with each occurrence 
of event and last until the end of the simulation run 
(see figure 9). There are as many periods as there are 
event occurrences: if there are more than one occur-
rence, they will overlap. 

 
Figure 9: after event 

event eMustAbortM =  
  (after eMaint within s60)  
  and MPS.eLoss; 

In this example, the meanings of the named events 
and conditions are as follows: 

• eMustAbortM is an event that signals that a 
BPS maintenance request previously raised by 
the operator needs to be cancelled. 

• eMaint is an event raised by the operator sig-
nalling that maintenance will be performed on 
the BPS. 

• MPS.eLoss is an event signalling that the MPS  
has been lost, and thus that the BPS is needed. 

This event occurs when the MPS is lost 60 seconds 
or less after a maintenance request has been issued. 
In such cases, the maintenance request is expected to 
be aborted (see example below). 

after event for duration 

after event within duration 

The time periods defined begin with each occurrence 
of event and last for the specified duration (see 
figure 10).  

 
Figure 10: after event for duration 

Both syntaxes have the same meaning, but whereas 
the expression with for is mainly used for condi-
tion-based properties (the condition must be true for 
a certain time period), the expression with within 
is mainly intended for event-based properties (an 
event must occur within a certain time period). 
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assumed property 
  after eMustAbortM within s5  
  check endMaint; 

This statement assumes that within 5 seconds (s5) 
after an occurrence of eMustAbortM (the event 
signalling that a BPS maintenance request should be 
cancelled), the effective cancellation event (end-
Maint) is indeed raised by the operator. 

after event1 untilNext event2 

The time periods defined begin with each occurrence 
of event1 and last until the first strictly following 
occurrence of event2 (see figure 11). There are as 
many intervals as there are occurrences of event1. 

 

Figure 11: after event1 untilNext event2 
condition Running =  
  after eStart untilNext eStop; 

This statement concerns the backup generator of the 
BPS. The generator can signal several events, includ-
ing eStart (it has started) and eStop (it has 
stopped). The statement defines the time periods 
where the generator is Running. 

until event 

The time intervals defined all start at the beginning 
of the simulation run. There is one time interval per 
occurrence of event, and it ends with the occur-
rence (see figure 12). 

 
Figure 12: until event 

condition BPSNeeded = 
  (MPS.Unavailable or after Op.eVTest) 
  and not(Maintenance)  
  and until Op.eVReset; 

This statement specifies when the BPS is needed. It 
is a time period that begins when the MPS has be-
come unavailable (MPS.Unavailable) or when the 
operator has initiated a periodic test (Op.eVTest), 
under the condition that the BPS is not under main-
tenance (not(Maintenance)). It ends when the 
operator issues a valid reset (Op.eVReset):. 

every duration1 for duration2 

This expression defines periodic time intervals (see 
figure 13). duration2 should be shorter than du-
ration1. 

 

Figure 13: every Duration1 for Duration2 
required property 
  every s10 for s2 check eCheck; 

This statement requires that periodically, every 10 
seconds (s10), event eCheck should occur in the 
first 2 seconds (s2). 

7.2 Combining / Transforming CTLs 

The FORM-L offers various means for deriving new 
CTLs from already existing ones. These are summa-
rised in figure 14. The only type of CTL that cannot 
be used in these expressions are sliding time win-
dows: they can be neither transformed nor combined 
directly, but conditions based on sliding time win-
dows can be used (with keyword when) to define 
CTLs that can be combined and transformed. 

 

Figure 14: Deriving new CTLs from existing ones 

7.3 Basic Discrete Time Locators (DTLs) 

A DTL defines one or more positions in time and has 
no notion of duration. 
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when condition becomes true 

when condition becomes false 

when condition changes 

The DTL has a time position for each instant where 
condition becomes true, false  or changes value 
(see Figues 15 and example of Section 6.1). In a dis-
crete time domain, condition changes value 
when and only when its value at a given instant is 
different from its value at the preceding instant. 

 
Figure 15a: when condition becomes true 

 
Figure 15b: when condition becomes false 

 
Figure 15c: when condition changes 

when fsa becomes state 

when fsa leaves state 

when fsa changes  

when integer changes  

DTLs can be defined when a finite state automation 
(fsa) enters or leaves a given discrete state or 
changes state. They can also be defined when an 
integer function changes value. 

when event 

This expression simply denotes the DTL associated 
with an event. 

every duration 

This expression defines a periodic DTL, the period 
of which is duration (see figure 16). 

 
Figure 16: every duration 

constant duration CycleTime = ms50; 

private fixed duration Phase =  
  random(0.0, CycleTime); 

dtl = (every CycleTime) + Phase; 

This example defines the discrete time domain asso-
ciated with the GLS, which has a synchronous de-
sign: it sees its environment and acts upon it only at 
the instants defined by the specified dtl. The period 

is defined by CycleTime (50 milliseconds). The 
time domain has a random phase defined by Phase. 

7.4 Combining / Transforming DTLs 

FORM-L offers various means for deriving new 
DTLs from already existing ones. These are summa-
rised in figure 17. 

 
Figure 17: Deriving new DTLs from existing ones or 

from CTLs 

8 Sets, Subsets and Arrays 
Sets are an essential ingredient of FORM-L, particu-
larly when requirements and assumptions are stated 
at very early stages of a project, where the precise 
identifications and numbers of the objects constitut-
ing the system are yet unknown.  
Sets are first divided into two main categories: static 
sets (the membership of which does not vary in time) 
and dynamic sets.  

Static sets are either enumerated sets (their members 
are listed individually) or queried sets (their mem-
bership is defined in intention based on constraints 
on static attributes, and is obtained at the beginning 
of a simulation run through a query to an engineering 
database). 

Dynamic sets are always subsets of static sets. Their 
membership is defined based on constraints involv-
ing dynamic attributes. 
All sets are ordered, either explicitly or implicitly. In 
this sense, they are close to single dimension arrays 
(vectors) of the current MODELICA language. 
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However, there is one significant difference: an array 
contains its members and an object cannot belong to 
two different arrays; a set references its members, 
and an object may belong to several sets. 
FORM-L has set operators (such as union or inter-
section), arithmetic operators (such as sum, mini-
mum or maximum) and Boolean operators (such as 
and or or). It also provide a cardinal function that 
calculates the number of members in a set and that 
allows the expression of universal or existential 
quantifiers. 

9 Actions 
FORM-L provides the notion of action to support the 
modelling of designs.  

9.1 Elementary Actions 

Elementary actions belong to one of two types: 

• Assignments to functions. 
• Raising of events. 
They are composed of two parts: an optional delay 
part (specified by a time locator) and an action speci-
fication (the effective event raising or function as-
signment).  

9.2 Composite Actions 

Composite actions regroup two or more actions that 
need to be performed in a coordinated manner at in-
stants specified by a CTL or during time periods 
specified by a DTL. There are two types of coordina-
tion:  

• Sequences, where the member actions are per-
formed one after the other. 

• Simultaneous actions, where all actions are per-
formed at the instants specified by a DTL. 

• Non-ordered actions, where the actions are per-
formed at unspecified instants within the time 
periods specified by a CTL. 

when State becomes Operational(Active;) 
  then sequence 
    raise eStartDG; 
    wait eDGReady  
      then raise eOpenMPSBrk; 
    wait eMPSBrkOpen  
      then raise eShedAll; 
    do 
      wait s1 then raise eCloseDGBrk; 
 wait s5 then raise eReload;  
    end; 
  end; 

This composite action specifies the elementary ac-
tions to be implemented by the GLS when the BPS is 
needed (see Figure 17). 

 
Figure 17: Beginning of the GLS sequencing 

10 Probabilistic Properties 
The MODRIO project is developing extensive sto-
chastic modelling capabilities for MODELICA. 
These will not be addressed here: for requirements 
modelling, FORM-L needs only two simple notions. 

10.1 Probability Function  

The first notion introduced by FORM-L is a function 
of time: its value at a given instant is a Real number 
in the [0., 1.] range that represents the probability 
that a specified event occurred at least once before 
that instant.  
property P3 =  
  during not(BPSNeeded)  
  check not(Active); 

required property R3 =  
  when SingleSensorFailure then P3; 

required property R9 =  
  probabilityFunction 
    (P3.Violated becomes true)  
      < 1-exp(-Y*time);  

Property P3 states that the BPS should not be spuri-
ously activated when it is not needed. Requirement 
R3 states that when there are no BPS component 
failures, or at most one sensor failure, then P3 must 
be satisfied. Requirement R9 puts a limit on the 
probability of spurious activation of the BPS (due to 
BPS components failures). This probability must be 
lower than what it would be if there was a constant 
occurrence rate of spurious activation, equal to Y.  
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10.2 Probability  

The second second notion introduced by FORM-L is 
a Real constant or fixed value (not a function of 
time) in the [0., 1.] range that states the probability 
of an event occurring at least once during a given 
time period (possibly during the whole simulation 
run). This could be used for example to specify con-
ditional probabilities, with the time period represent-
ing the condition. Application of conditional prob-
abilities include probabilities of failure on demand or 
probabilities of common-cause failure.  

property P2ce =  
  after (BPSNeeded becomes true)  
    within s60  
  check SBC[6].Powered becomes true; 

property P2e = {P2ae; P2be; P2ce};  

required property R3a =  
  probability ( 
    (card{P in P2e | P.Violated} == 1) 
       becomes true)  
    < 5*10-3; 

Property P2ce states that SBC6 (SBC[6]) should 
start to be powered within 60 seconds after the BPS 
is declared needed. There are similar properties for 
the other SBCs (P2ae and P2be). They are grouped 
in P2e which is the set of properties regarding the 
timeliness of providing power to the SBCs. 

Requirement R3a specifies the maximum probability 
of not satisfying any single one of these properties. 

11 Conclusions 
A number of tasks remains to be achieved, mainly: 
• Finalizing the FORM-L concrete syntax, in order 

to bring it closer to the current MODELICA syn-
tax when this is not at the cost of clarity and 
conciseness. 

• Deciding on an implementation path in the exist-
ing tools environments. It is likely that integra-
tion with other existing tool environments (in 
particular with Computer Aided Design and 
Product Life Management environments and 
their data bases).  

• Developing the methodological aspects to better 
support systems engineering and systems opera-
tion activities. 
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Abstract

This article introduces a new feature of LMS Imag-
ine.Lab AMESim that allows users to define plant
model controllers. We start by reviewing some chal-
lenging aspects of hybrid state machine handling in
asynchronous Modelica-based physical simulation en-
vironments. We then describe the implementation
available in AMESim, focusing on user interaction and
especially static error checking and reporting.

Keywords: Statechart; Modelica; LMS Imagine.Lab
AMESim

1 Background

Models of physical systems can be built out of
equation-based entities (submodels) whose interaction
through a connection structure yield the behavior un-
der consideration. This way of defining physical mod-
els puts emphasis on technological and/or phenomeno-
logical aspects of modeling: one typically defines en-
tities representing fundamental phenomena (e.g., en-
ergy storage), or entities representing technological as-
semblies (e.g., a cooling system), or any combination
of both, as modeling ‘bricks’. However, this is not
the only nor always the most appropriate way of defin-
ing models. For instance, one sometimes prefers to
put emphasis on states and transitions between states.
This is typically the case when building controllers
used to drive models. These controllers feature op-
erating modes that can be conveniently represented as
states of a certain finite state machine (consider for in-
stance a controller having modes start, run and stop
with transitions between these states indicating possi-
ble mode transitions).

To make the picture complete however, real-world
controllers actually also feature state variables, lead-
ing to infinite (often uncountable) hybrid state ma-

chines. Nevertheless, the state-and-transition view is
still the preferred one in most situations: this obser-
vation motivated the introduction of a new user in-
terface feature in AMESim, allowing users to define
controllers by means of a finite set of states and tran-
sitions, yet offering state variables and equations as a
means to specify not only actions to be performed dur-
ing state transition but also constraints to be verified in
a given state.

Figure 1 shows a simple counter model expressed
in the new state-and-transition view, which has been
highly inspired by Harel’s statechart language [1]. The
corresponding user interface has been built on top of
AMESim’s Modelica translation chain to benefit from
its automatic code generation feature.

/ counter := 0;
reset_count := 0

e / counter := counter + 1

e [counter == 10] / counter := 0;
reset_count := reset_count + 1

2

1

resetcount

e / counter := counter + 1

Figure 1: A simple counter statechart

2 Why statecharts?

Variants of Harel’s statecharts are today by all means
one of the most popular approaches used to describe
state machines in Control tools. On the other hand,
LMS Imagine.Lab AMESim, which is a Physical Sys-
tem Modeling tool, used to favor the technological and
phenomenological aspects of models—which are of-
ten the most natural ones in its application area. How-
ever, models do not necessarily classify as “pure con-
trol” or “pure physical”: some of them involve a mix
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of physical and control aspects (e.g., aircraft mod-
els including aircraft missions, vehicle models includ-
ing driving manoeuvers, etc.). If we want to handle
such models in a simulation tool, we basically have
two options: either we choose a unified representa-
tion, or we offer the ability to work with both the
state-and-transition view and the technological-and-
phenomenological view—and then possibly translate
heterogeneous parts to a common representation un-
der the hood. In the following we explain the reasons
that have driven the choice made in AMESim, whose
last release implements the second option.

2.1 Control in AMESim by means of native
components

Early attempts to mix control with physics in AMESim
naturally made use of the versatile native component
concept. An AMESim component can be seen as a
generic “basic brick” having one or several implemen-
tations called submodels, each of them specifying the
causality attached to each of its port signals. In this
paradigm, there is no fundamental difference between
control signals and physical signals (i.e., signals held
by power variables in corresponding bond graph mod-
els): it follows that native submodels can be used to
implement control. However, while monolithic con-
trollers (i.e., implemented as single submodels) can be
made reasonably safe,1 controllers built out of smaller
bricks suffer from two weaknesses inherited from the
submodel composition operation:

• the resulting flow of events is not synchronized
and

• some control flow defects (resulting, for instance,
in blocking models) cannot be detected at com-
pile time.

As a consequence of the former, cascades of events
are typical of models that deal with discontinuous—
not necessarily piece-wise constant—signals. For
instance, if a submodel’s job consists in convert-
ing its real piece-wise constant input to an integer,
it will trigger a fresh event each time its output
changes,2 even if in this case—the input is piece-wise
constant—we know that instants corresponding to out-
put changes form a subset of those corresponding to

1We’ll come back to them in subsequent sections when talking
about automatic code generation for controllers.

2This is necessary in order to notify a change to possible lis-
tener submodels.

input changes.3 This has unfortunate consequences
over resulting models: for instance, it is not possi-
ble to know, when a bunch of events fire, whether
these events trace back to the same cause or not. Con-
sider our real-to-integer converter example: since each
jump in the output signal slope triggers a fresh event
in disregard of the reason that made the jump neces-
sary (actually another jump, so another event) we end
up having to deal with two simultaneous events.4 Even
if consequences over performance are generally negli-
gible, models have to figure out someway that, given
a bunch of events, some of them are “duplicates” of
others to avoid treating each of them as independent
events, yielding wrong results in some circumstances
(see [2] for concrete examples of such wrong mod-
els). So to avoid practical synchronous issues, some
form of collaboration between submodels—a design
pattern—must be implemented by library developers
and, moreover, understood and correctly used by end-
users. Indeed, this collaboration scheme is unknown
from the modeling tool which is then of no help to
track down misuses of the submodels. This is arguably
too much to require from both library developers and
end-users, who should ideally focus on physics and
control, rather than on low-level implementation de-
tails.

Also, it would be desirable to be able to statically
(i.e., before execution) catch modeling errors resulting
in non-deterministic models and fragile models.5 Alas,
the technological-and-phenomenological approach is
again of no help here: in this paradigm, such mod-
eling errors can only be detected—if they ever are—
at runtime. As a consequence, development of mod-
els involving many discrete states can become cum-
bersome: it requires extensive testing to gain confi-
dence in the correctness of the design, and whenever
an error is detected, the location of the faulty sub-
models can be quite challenging. On the other hand,
modeling with discrete states is precisely where the
state-and-transition approach shines: when the state-
and-transition graph of (part of) a model is explicit, it
is possible to detect at compilation time, as we shall
explain in subsequent sections, non-deterministic and

3In synchronous language terminology, we say that the clock
corresponding to output changes is a subclock of the clock corre-
sponding to input changes.

4This example will be further discussed in subsection 4.1.
5Fragile models are models whose correct execution relies on

a property that escapes the automatic checker’s proof capabilities.
Some of those models are actually correct, but some others are
not: we prefer to reject all suspicious models, forcing users to
disambiguate correct ones (disambiguation is often easy) rather
than accepting wrong models that may be hard to debug.
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fragile patterns that may lead to runtime errors.
Clearly, the technological-and-phenomenological

approach, despite its versatility, reaches its limits when
complex discrete state submodels such as those in-
volved in Control applications come into play. This
observation has motivated the extension of AMESim’s
submodel description capabilities, which now feature
a state-and-transition perspective.

2.2 Statecharts: an intuitive yet expressive
graphical language

The general adoption of (variants of) statecharts in
Control tools is due to their ability to concisely ex-
press complex finite state machines, making them rea-
sonably understandable by humans.

Conciseness is mainly achieved thanks to the nice
concept of composite state, which can be seen, at least
in the original proposal by Harel [1], as a kind of
“pseudo-abstraction” in the sense that this construct
effectively allows some details of the equivalent, un-
factored, flat machine to be abstracted away, but it is
nevertheless necessary to reveal some contents to al-
low inner transitions. Statecharts also feature discrete
state variables (updated in actions), which makes them
suitable to describe even infinite state machines. Ac-
tually, Harel’s statecharts come with many appealing
features, so they constitute a very good starting point
for our targeted applications. However, since they
are historically strongly rooted in the discrete control
world, they lack the concept of continuous state vari-
able. So, like many others did before us, we have
extended statecharts to support hybrid modeling. We
have designed this extension so that it remains sim-
ple and intuitive, yet powerful enough to handle many
practical applications.

We will review in the next section some theoreti-
cal aspects of timed systems that have guided integra-
tion of statechart modeling capabilities in AMESim.
We will then dive in important technical achievements
such as validation and automatic code generation be-
fore presenting the final result from an end-user point
of view.

3 A variant of the statechart lan-
guage

The graphical language implemented in AMESim is
very similar to the original statechart language: a stat-
echart is essentially a set of states represented with
rectangular boxes (labelled count and reset in the

example of Figure 1) and a set of possible state transi-
tions represented with labelled arrows.

A transition can be associated with a trigger, a
guard and actions. A transition is taken when an event
corresponding to its trigger occurs if its guard evalu-
ates to true. In that case, the actions—which are state
variable assignments—are executed. For instance, the
transition from count to reset in Figure 1 labelled

e [counter == 10] /
counter := 0;
reset_count := reset_count + 1

means that when an event associated with e occurs
while count is active and the state variable counter
is equal 10, a transition from count to reset is taken,
counter is set to 0 and reset_count is incremented.

Triggers, or event generators, are defined at state-
chart creation time by boolean expressions that create
events on their rising edges.

In addition to these general features, a statechart
can be augmented with inputs from and outputs to
AMESim. An output can either refer to a state vari-
able, i.e. a discrete variable, or to a continuous signal
controlled by state activations.

4 Theoretical aspects of statecharts
integration in AMESim

When Modelica-based tools simulate the dynamic be-
havior of a system, they actually try to find a reason-
able approximation of the solution of a system of equa-
tions that is supposed to capture the behavior of in-
terest. This system of equations generalizes the so-
called state space representation: it roughly consists
in inputs, outputs and internal variables constrained
by sets of equations whose (possibly dynamic) activa-
tion determine the trajectories of the model. This form
constitutes the actual denotation of the corresponding
desugared program6 from which tools need to deduce
the desired approximation. Now, given a desugared
program, how is this approximation actually obtained?
Of course, at some point, it depends on design choices
made in the simulation tool.7 But, given a common
model description language like Modelica, any imple-
mentation is supposed to follow the same operational
semantics which state how to compute the solution—
not an approximation—of any well-behaved program:

6“Flat program” in Modelica.
7A tool may favor one or several classes of problems (e.g.,

marginally stable problems, discrete problems, etc.). This con-
tributes to the tool’s added value.
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this is somewhat the “reference implementation”—
although a “virtual” one8—of a correct interpreter of
the modeling language. Unfortunately, in practice,
defining sound operational semantics for a physical
system modeling language is such a huge work that,
for most languages available today (including Model-
ica), only informal semantics (i.e., given in written hu-
man language) are available. Consequently, many in-
consistencies simply cannot be spotted, because, con-
trary to formal descriptions, informal descriptions do
not easily allow reasoning about the semantic model
itself. This partly explains why, as pointed out in, e.g.,
[3], physical simulation tools experience difficulties in
correctly handling some hybrid problems.

In AMESim, we had to take this fact into consid-
eration when designing the new state-and-transition
mode (which interacts with continuous behavior) so
that we practically avoid most issues encountered in
an unchecked implementation.

In the following subsections, the issues involved
with coupling statecharts with AMESim models and
the design choices made to circumvent them are dis-
cussed.

4.1 Synchrony vs. Simultaneity issues

Statecharts describe systems that react to the environ-
ment, i.e., they respond to external triggers by exe-
cuting state transitions according to their internal state
and their inputs. In other words, a statechart merely
describes a function that computes a new internal state
from a previous state and a set of inputs while the envi-
ronment is responsible for providing the inputs and for
deciding when this function should be used to compute
a new state.

A first source of non-determinism originates from
the fact that the execution of a statechart can some-
time be triggered by several different event sources
at the same time. The issue is then to tell if the cor-
responding events are actually one and the same, i.e.
they are dependent, or synchronous, events, or if they
are unrelated, i.e., asynchronous, and actually occur in
sequence but just seem to be simultaneous due to nu-
merical approximations.

As an example, let us consider the simple statechart
of Figure 2.

It simply says that

• if the event e1 occurs while in state s0, the state-
chart transitions from s0 to s1,

8This guarantees implementation independence.

s0

 

s1

 e2 e1

Figure 2: A simple statechart

• if the event e2 occurs while in state s1, the state-
chart transitions from s1 to s0 and

• the statechart starts with s0 being active.

If the statechart is executed because only one of e1
or e2 has occurred, the computation of the new state is
quite straightforward. But what should happen if, for
example, s0 is active and both e1 and e2 are sensed
simultaneously? Different interpretations are possible.

A first interpretation might be to assume that events
that occur simultaneously are exactly the same, i.e. that
they originate from the same primary external source
and should consequently only be taken into account
once. In the example this means that the new active
state should be s1.

Another interpretation could be that e1 and e2 are
independent and that the fact that they appear simul-
taneous is just a numerical artefact. In that case, the
statechart would need to be executed twice according
to the sequence in which e1 and e2 have occurred. If
e1 happens first, s1 would become the active state af-
ter the first execution and s0 would again be after the
second one. It should be noted that in this interpreta-
tion it is not enough to know that the events are inde-
pendent: the order in which events occur needs to be
determined as well.

Both interpretations can be perfectly valid depend-
ing on the external context. Let us reuse examples sim-
ilar to those presented in [2] to illustrate this fact.

Let us assume that the events e1 and e2 occur when
some external signals i1 and i2 respectively become
larger or equal to zero.

Figure 3 shows an AMESim model where the same
signal source is connected to both i1 and i2. The
source defines a piece-wise constant signal that is −1
when t < 1 and 1 when t >= 1. As a result, events
e1 and e2 happen simultaneously when t = 1. In that
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case, it would make sense to consider that e1 and e2
refer to the same events and to adopt the corresponding
interpretation in the statechart.

Figure 3: Dependent event sources

Let’s now consider the model shown in Figure 4.
The same statechart model is fed the outputs of posi-
tion sensors attached to two identical mass with vis-
cous friction models. If the velocities and positions
of the masses are initialized to the same values, both
positions will become non-negative simultaneously (if
they ever do). However, it does not make sense to con-
sider that these events are related as the models that
generate them have nothing to do with each other. It
seems much more natural to take them into account
one after the other as if they had been sensed in se-
quence. The order of this sequence is not that impor-
tant here as there is absolutely no reason to favor one
model over the other. Actually, in real life, two seem-
ingly identical systems submitted to the same inputs
will always behave slightly differently at some scale
because of uncontrolled parameters.

Figure 4: Independent event sources

A third way of using the statechart of Figure 2 is
presented in Figure 5. This model illustrates the idea
expressed in Subsection 2.1 about cascading events: a
piece-wise constant signal is fed to i1 while its inte-
ger part is fed to i2. Both inputs cross zero at the same
time, generating simultaneous events. One could con-
sider that they are the same events, as in the model in
Figure 3, but one could also consider that e2 is a con-
sequence of e1 and should then be handled after e1.

Figure 5: Independent event sources where order mat-
ters

The examples presented above show that very dif-
ferent meanings can be given to simultaneous events.
Unfortunately, a continuous-time modeling environ-
ment is unable to give any insight about which is the
expected one, the information being simply unavail-
able. This shortcoming is particularly critical when
executing a statechart as making wrong decisions in a
discrete model can radically alter the course of a sim-
ulation compared to continuous-time detailed physi-
cal models where energy conservation principles make
models more robust with regard to non-determinism.

4.2 Observability of state transitions

In AMESim, just like in Modelica, discrete states can
only be assigned once when a continuous-time event
occurs.9 This makes up another obstacle in the way
of coupling a statechart with a continuous-time model.
Indeed, a statechart may need to execute several transi-
tions without increasing the elapsed time in the model,
thus updating its state multiple times as a response to
a unique continuous-time event.

Let us consider for example the statechart of Fig-
ure 6 featuring an input i, a discrete real output o and
an event generator e. The statechart starts in state s0.
When e generates an event, state s1 is entered and o is
set to 1.0. Besides, if the guard i > 0.0 is satisfied
at that time, s2 directly becomes the new state and o
is set to 2.0, without awaiting a new event.

This clearly contradicts the assumptions stated
above. In Modelica, for instance, something like the
partial Modelica code in Listing 1 would need to be
written, which is invalid as the second when clause in-
troduces an algebraic loop involving s1 and because
s1 and o are potentially constrained by two equations
at once when e occurs.

Listing 1: Invalid Modelica code for the statechart of

9The values of certain states can actually be changed by a Mod-
elica simulator as part of a solving process, but these intermediate
values should never be relied upon in a model.
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s0

 / o := 0.0

s2

s1

 [i > 0.0] / o := 2.0

 e / o := 1.0

Figure 6: A statechart involving a potential double as-
signment

Figure 6
when initial() then

s0 = true;
s1 = false;
s2 = false;
o = 0.0;

elsewhen e then
if pre(s0) then

s0 = false;
s1 = true;
o = 1.0;

end if;
end when;

// when state s1 is entered...
when s1 then

if i > 0.0 then
s1 = false;
s2 = true;
o = 2.0;

end if;
end when;

One could, of course, think of working around these
obstacles by “inlining” the intermediate transition, i.e.
by rewriting the statechart with a direct transition from
0 to s2 as done in Listing 2.

Listing 2: Modelica code for the statechart of Figure 6
using “inlined” transitions

when initial() then
s0 = true;
s1 = false;
s2 = false;
o = 0.0;

elsewhen e then
if pre(s0) then

if i > 0.0 then
s0 = false;
s2 = true;

o = 2.0;
else

s0 = false;
s1 = true;
o = 1.0;

end if;
end if;

end when;

This is valid Modelica, but the behavior is not ex-
actly the expected one. Indeed, from an external point
of view, o jumps from 0.0 to 2.0 directly without ever
taking the 1.0 value. This may seem harmless for one
used to physical continuous-time modeling, but what
if this output was fed to another discrete part, e.g. an-
other statechart, that relies on it to significantly alter
its behavior? Figure 7 shows an AMESim model that
depends on the intermediate value being taken. Event
e is fired when the input becomes positive which at
the same time satisfies the guard i > 0.0. The output
is connected to a discrete subsystem that increments a
counter when it gets exactly equal to 1.0. This means
of course that the counter will only be incremented if
the intermediate value is properly observed.

Figure 7: A model exposing observability issues

It should be noted that using Modelica algorithms
to rewrite the model as shown in Listing 3 exposes the
same issue as o is only equal to 1.0 during an inter-
mediate step inside the algorithm.

Listing 3: Modelica code for the statechart of Figure 6
using an algorithm

algorithm
when initial() then

s0 := true;
s1 := false;
s2 := false;
o := 0.0;

elsewhen e then
if pre(s0) then

s0 := false;
s1 := true;
o := 1.0;

end if;
end when;

// when state s1 is entered...
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when s1 then
if i > 0.0 then

s1 := false;
s2 := true;
o := 2.0;

end if;
end when;

4.3 Design choices

When designing the statechart extension to AMESim,
the main focus was placed on the robustness, reliabil-
ity and usability of the solution. That is why special
care was taken to avoid as much as possible the issues
presented above. This necessarily lead to additional
rules in our variant of the statechart language that will
be justified in this section.

First, it was decided to avoid the simultaneity issues
described in Subsection 4.1 altogether by making sure
that the execution of a statechart is always indepen-
dent of the interpretation given to simultaneous events.
This means that if any two events occur at the same
time, assuming that they are synchronous or asyn-
chronous should not change the upcoming computa-
tion. In the language described in this paper, events
triggering a statechart simultaneously are simply for-
bidden.10

This rule is partially enforced by the statechart en-
vironment of AMESim by statically checking that a
transition cannot generate an event that would conflict
with the one that triggered the transition in the first
place. What is more, simultaneous external events are
detected at runtime and result in aborting the simula-
tion. This guarantees the deterministic execution of
a statechart provided that no dependent event sources
are created by directly connecting—without inserting
a continuous or discrete state variable as a buffer—an
output to an input.11

One may argue that another solution might have
been to stick to one interpretation anytime events occur
simultaneously. But what if the only interpretation that
makes sense is precisely the other one like in the model
of Figure 4, where assuming that the events are depen-
dent is clearly not expected? That is why signaling am-
biguous situations was favored over making arbitrary
choices behind the scene. As a side note, the “indepen-
dent events” interpretation brings its lot of additional
questions. How can the ordering of events be deter-
mined? How can several events be processed without

10This rule may be made less restrictive in the future if it turns
out that it significantly enlarges the range of valid models.

11Avoiding this is the responsibility of the environment and can-
not be enforced locally in a statechart.

increasing the continuous time and without encounter-
ing the issues of Subsection 4.2?12

Similarly, to avoid the observability issues pre-
sented in Subsection 4.2, the decision was made to
enforce that the effect of every taken transition can
always be observed from outside a statechart. This
means that an output cannot be set more than once dur-
ing one execution of a statechart. This property can be
checked statically assuming that the first rule about si-
multaneous events is enforced.

5 Practical validation of statecharts

To ensure the safe execution of a statechart definition,
the fulfilment of the aforementioned constraints has to
be statically checked before generating code. Beside
trivial checks such as making sure that the state ma-
chine contains a unique initial state or that at least one
event generator is present (to ensure time progression),
a few non-trivial checks have also been implemented.
These checks are presented hereafter.

5.1 Transition expression checking

Writing correct transition expressions is error-prone:
as in any other textual language, one can easily make
syntax and semantic errors such as referring to a non-
existent variable or event generator, or combine in-
compatible expressions.

count

 / my_speed := 0

 e / my_speed := my_sped + 1

Figure 8: A statechart with a typo in an identifier

In order to avoid runtime errors due to unknown
identifiers, each input, output and event must be de-
clared before use. All local variables have to be initial-
ized, and thus implicitly declared, on the initial tran-
sition of a statechart. These rules imply that all vari-
ables are known at compile time and allow rejecting
the statechart of Figure 8 where my_sped is not a valid
variable name.

12For instance, a state transition may change an output that in
turn invalidates an event that has already been placed in the pro-
cessing queue.
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Avoiding element misuse requires a more complex
solution: a static type system. This type system was
designed to avoid the need for user provided type an-
notations, which would make writing transition ex-
pressions cumbersome. The Hindley/Damas/Milner
type inference algorithm [4, 5] is used to type check
all transitions without type annotations.

The basic idea of type inference is to traverse all
expressions of a program to gather various typing con-
straints and correlations and then to resolve all those
constraints in a second pass, thus attributing their final
types to variables.

Let us consider for example the following expres-
sion

e / v := 2 + v; x := sin(v) + x

and the primitive type definitions below.

sin Real→ Real
2 ∀α ∈ {Integer,Real},α
(+) ∀α ∈ {Integer,Real},α → α → α

The first step to perform type inference on the ex-
ample expression is to attribute free type variables to
the variables in use, i.e. v will get type β , x type δ and
e type γ .

As e is used in the trigger section of the expression,
the typer can deduce the constraint γ = Event, which
gives the final type for e: Event.

In the first action, the type of the (+) operator im-
plies that both its operands must have the same type,
which can be either Integer or Real. This means that
the type of variable v must satisfy the following con-
straint:

β ∈ {Integer,Real}.

On the other hand, the type constraint for 2 matches
exactly the one for the operands of (+) and can then
be omitted in the next equivalences as it brings no ad-
ditional information.

Similarly, the use of the (+) operator in the second
action yields the following constraint:

δ ∈ {Integer,Real}.

The presence of the sin function generates tighter
constraints, as it bounds the types of the input and out-
put variables, yielding:

β = Real,
δ = Real.

Gathering all the inequalities together gives the fol-
lowing final typing equation system:

β = Real,β ∈ {Integer,Real},
δ = Real,δ ∈ {Integer,Real}.

It can then be simplified to deduce that v has type
Real and that x also has type Real. An impossibility to
simplify type equations, like obtaining Integer = Real
would have meant a type error which should be re-
ported to the user.

5.2 Activation chain analysis

Transitions that have no trigger section do not neces-
sarily stop the execution of a statechart; they are taken
as far as their guards allow, without waiting for another
event.

s0 s1

s2s3

e1 [x >= 0]

[x >= 0]

[x >= 0]

/ x := 0

Figure 9: An activation chain

The execution of the statechart of Figure 9 exhibits
such a behavior: when the event e1 is raised while in
s0, the state machine will take the transition to s1 as
x is equal to 0, then take the transition to s2, as the
transition has no trigger, and finally to s3. To an exter-
nal observer, the visible state activation will go from
s0 to s3 directly. A path made of transitions that can
be taken globally during an execution of a statechart is
called an activation chain.

This behavior can results in infinite looping if not
handled carefully, like in Figure 10. The semantics of
our statechart language imply that the execution will
continue indefinitely between s0 and s1 (highlighted
in red), without ever resuming continuous-time simu-
lation.

To ensure that a statechart will never stall a simula-
tion, activation chain cycling is forbidden, hence forc-
ing users to break cycles with triggers. For example,
fixing the statechart of Figure 10 requires the addition
of a trigger on the transition between states s1 and s0.

The possibility to take several transitions in a single
execution leads to potential duplicated assignments of
variables, as in Figure 6 where variable o is assigned
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 [x >= 0]
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 / x := 0

 [x >= 0]

Figure 10: A cyclic activation chain

twice, once on the transition from s0 to s1 and once
on the transition from s1 to s2.

As explained in Subsection 4.2 about transition ob-
servability issues, this behavior is undesired and the
implementation prevents it by analyzing the assign-
ments along every activation chain and rejecting the
activation chains that assign a variable more than once.

5.2.1 Practical chains analysis

The algorithm used to check the invariants mentioned
above is mainly a depth-first search coupled with
memoization. Each state is visited to compute its acti-
vation chains and forward assigned variables while the
set of visited states in the current activation chain and
the set of already assigned variables are maintained.
Any intersection with the visited values and the ones
already stored results in an error.

Another possibility would be to use a data-flow
framework and express activation and assignment as
liveness information to be propagated by the frame-
work.

6 Code generation strategy

In this section, an overview of a code generation strat-
egy leveraging the existing AMESim Modelica tool
chain is presented.

6.1 Describing statecharts in Modelica

Modelica fits well to our purpose as a statechart that
passes the validation stages discussed in the previous
section can be described by a Modelica model that is:

• valid, i.e., is guaranteed to compile without error,
thanks to the syntax and type check phases, and

• sound with respect to mixed discrete/continuous
semantics as all ambiguous models are filtered
out by the restrictions regarding simultaneous
events.

Listing 4 shows how Modelica code can be gener-
ated to describe the statechart of Figure 1.

Listing 4: Code generated for the statechart of Figure 1
e = pulse > 0.0;
when initial() then

reset_count = 0;
counter = 0;
st2 = true;
st1 = false;

elsewhen e then
if pre(st2) then

if pre(counter) == 10 then
counter = 0;
reset_count = pre(reset_count) + 1;
st2 = false;
st1 = true;

else
counter = pre(counter) + 1;
reset_count = pre(reset_count);
st2 = true;
st1 = false;

end if;
elseif pre(st1) then

counter = pre(counter) + 1;
reset_count = pre(reset_count);
st2 = true;
st1 = false;

else
counter = pre(counter);
reset_count = pre(reset_count);
st2 = pre(st2);
st1 = pre(st1);

end if;
end when;

Each event generator is associated with an
elsewhen clause with the logic to handle this spe-
cific event as the body of the clause. This logic is
encoded as cascading if statements representing the
various transitions, the transition priorities being used
to order the conditions. The equations describe the ac-
cumulated content of the action part of every transition
and of the state activation updates.

Activation chains are generated recursively, for each
level of the chain, the final body standing for the con-
catenation of all the actions. For instance, adding a
transition from reset to count with the expression
[reset_count > 2] and a priority below the exist-
ing one in the example counter statechart would create
an activation chain resulting in the code shown in List-
ing 5.

Listing 5: Code generated for the statechart of Figure 1
augmented with an activation chain

...
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if pre(st2) then
if pre(counter) == 10 then

if pre(reset_count) > 2 then
counter = 0;
reset_count = pre(reset_count) + 1;
st2 = true;
st1 = false;

else
counter = 0;
reset_count = pre(reset_count) + 1;
st2 = false;
st1 = true;

end if;
else

counter = pre(counter) + 1;
reset_count = pre(reset_count);
st2 = true;
st1 = false;

end if;
elseif pre(st1) then
...

7 Graphical user interface aspects

AMESim provides an editor to let users easily create
statecharts and statically validate them, highlighting
erroneous parts in red as seen in Figure 11.

Figure 11: A statechart with a structural error high-
lighted in red

The editor also serves as a debugger as it is able
to replay the behavior of a statechart during simula-
tion, highlighting the active states and showing the val-
ues taken by all variables. Additional post-processing
features are available, such as the possibility to easily
jump between state changes. Timing diagrams repre-
senting state activations can be obtained using the reg-
ular AMESim data plotting facilities by displaying the
activation variable associated with every state.

8 Conclusion and perspectives

In this paper, a few challenging issues associated with
modeling and simulating hybrid models in an asyn-
chronous environment are discussed.

A practical solution implemented in AMESim to
avoid those issues and to offer a reliable and usable
user interface is presented. This solution is built on
top of the AMESim Modelica tool chain and demon-
strates how a specific language can be implemented in
terms of a more general language. The condition is, of
course, that any model expressed in the specific lan-
guage can somehow also be expressed without loss of
meaning in the base language, which demands special
care. However, the advantages of this approach are
appealing as it is then possible to combine the conve-
nience associated with a user friendly dedicated lan-
guage with the power of a more general underlying
language allowing to connect models expressed using
different paradigms together. A core language can thus
be extended to new applicative domains without being
altered, retaining its generality.

Future work involves extending the supported sub-
set of the statechart language, for example to al-
low parallel states. Developing practical and scalable
means of building statecharts by composing smaller
ones is another interesting perspective.
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Abstract

In this paper we present the work done to integrate
OpenModelica into the Ptolemy II framework for
modeling large-scale concurrent systems. To this end
a dedicated computational model for OpenModelica
has been defined in Ptolemy II, and support for tool-
interaction has been implemented. This implemen-
tation will allow to simulate existing Modelica mod-
els by the OpenModelica compiler in a heterogeneous
context together with models from other computa-
tional domains.

Modelica, Ptolemy II, hierarchical system model-
ing, concurrent systems

1 Introduction

Distributed, concurrent systems are becoming increas-
ingly common. However, they are complex to develop.
Therefore a large number of computational models
and tools for modeling and developing such systems
has emerged. The Ptolemy project aims to support
such heterogeneous modeling in Ptolemy II[1], an
open-source software framework for modeling, sim-
ulation and design of large concurrent real-time sys-
tems. This framework is a system- level design en-
vironment that provides the possibility of combining
several variants of models of computation (MoCs) in
one hierarchical heterogeneous model. Ptolemy II also
supports an actor-oriented view of a system where
the basic building blocks of a system are concurrent
components called actors which communicate through
messages sent via interconnected ports.

Ptolemy II currently supports numerous concurrent
programming models, such as process networks, dis-
crete event or continuous time models and interfaces
with other simulations tools such as Matlab [2]. In this
paper we present the integration of Modelica models in
Ptolemy II through an integration with the OpenMod-
elica tool.

Modelica[3] is a non-proprietary, object-oriented,

equation based language aimed at modeling complex
multi-domain physical systems. Moreover, this lan-
guage is supported by a number of free and commer-
cial tools, in particular by OpenModelica [4], an open
source compiler and tool suite, complete with a text
and graphical modeling editor (OMEdit) for modeling
and simulation of cyber-physical systems.

The Modelica Standard Library contains a large
number of models and functions from multiple do-
mains. Integrating Modelica in Ptolemy would enable
the use of these models in concurrent system model-
ing, as well as models from many other existing li-
braries.

In this paper we present the integration process of
OpenModelica into the Ptolemy II framework, and il-
lustrate use of Modelica models from within Ptolemy
II on a simple example.

The paper is structured as follows, Section 2
presents the basic blocks of the integration between
OpenModelica and Ptolemy, Section 3 discusses the
simulation mechanism, Section 4 presents the perfor-
mances of the proposed implementation, Section 5
highlights some related works and finally Section 6
briefly sums up the contents of the paper.

2 Integration Architecture

Ptolemy II is composed by a number of different
domains and supports an actor-oriented modeling
paradigm. Actors are the main building blocks of the
system. They are concurrent components that commu-
nicate through interfaces called ports. Relations define
the interconnection between these ports, and the com-
munication structure between actors. Viewing a sys-
tem as a structure of actors emphasizes its causal struc-
ture and its concurrent activities, along with their com-
munication and data dependencies. A consequence of
an actor-oriented view of a system is the decoupling of
the transmission of the data from the transfer of con-
trol [5].
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2.1 OpenModelica director

Ptolemy II is modular and relies on a well-organized
package structure where the core packages support
the data model, or abstract syntax, of Ptolemy II de-
sign. These packages also support the abstract se-
mantics that allows domains to interoperate with maxi-
mum information abstraction. The user interface pack-
ages provide support for our XML file format, called
MoML, together with a visual interface for construct-
ing models graphically. The library packages provide
actor libraries that are domain polymorphic, meaning
that they can operate in a variety of domains. Addi-
tionally, the domain packages provide domains, each
of which implements a model of computation. Some
of which provide their own, domain- specific actor li-
braries.

A model of computation (MoC) is defined as a set
of rules that governs the interactions between compo-
nents and determines the semantics of a model. More-
over, these rules determine when actors perform inter-
nal computation and update their internal state. The
semantics of the computation model are implemented
through the concept of Director.

In order to integrate OpenModelica into Ptolemy
II, it is necessary to create a dedicated computation
domain with the corresponding director. Since Mod-
elica is a language designed for continuous and dis-
crete event modeling modeling of physical systems
and variables described using DAEs, the continuous-
time domain in Ptolemy II which models physical
processes and supports mixtures of discrete and con-
tinuous behaviors is considered the most suitable for
the Modelica language. Therefore the OpenModel-
ica domain extends the continuos time domain already
present in Ptolemy. Figure 1 shows the OpenModel-
ica director with its parameters, such as the number of
iterations or the solver to be used .

The integration work described in this paper in-
volves three sub-packages of the domain package:
kernel, demo and lib. The kernel package pro-
vides the software architecture for the Ptolemy II data
model, or abstract syntax. This abstract syntax has the
structure of clustered graphs. The classes in this pack-
age support entities with ports, and relations that con-
nect the ports.

2.2 OpenModelica actor

Actors, the basic building blocks of a system, are the
executable entities used to build the models. The
OpenModelica actor reads one or more inputs from

 
 
 

 
Figure 5. OpenModelica director with its parameters. 

 
Each MoC has its own package which leads to design new package for 
OpenModelica domain. I added the new package of OpenModelica domain to one 
of the key packages of Ptolemy II called domain, shown in figure 6.   
Domain package provides domains which implement a MoC, and some of them 
include their own domain-specific actor libraries. 
 

Figure 1: OpenModelicaDirector is provided on the
left menu under the Directors → ExperimentalDirec-
tors.

other actors and simulates the Modelica model. This
simulation can be done in either batch or interactive
processing mode. The results of the simulation can
then be passed to Ptolemy II actors, to be displayed or
modified.

An execution in Ptolemy II is divided into the fol-
lowing phases: setup, iterate, and wrap-up. The setup
phase is divided into two phases, preinitialize and ini-
tialize. The preinitialize sub-phase usually handles
structural information, such as constructing dynami-
cally created actors, determining the width of ports,
and creating receivers. The initialize phase initializes
parameters, resets local states, and produces initial to-
kens. The preinitialization and initialization of an ac-
tor are performed exactly once during the actor’s life
cycle.

To organize the interactions among actors, an itera-
tion is divided into prefire, fire, and postfire.

1. Prefire checks if the preconditions are fulfilled for
the actor to execute, such as the presence of suf-
ficient inputs to complete the iteration.

2. Most of the actions are taken place in the fire
phase, which involves reading the inputs, pro-
cessing data, and producing outputs. Some MoCs
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Figure 2: We can see that the model to be loaded is
contained in the file dcmotor.mo. We can also set the
simulation parameters (in red), the parameters of the
model(green), such as for instance the resistance of the
resistor and apply a filter to select the variables that
should be displayed (in yellow).

Figure 3: The parameters for the Modelica model can
be set through the graphical interface in Vergil.

like synchronous reactive models and CT dif-
ferential equations support fixed-point iteration
which enables the computation of the fixed point
of actor outputs while keeping the state of each
actor constant.

3. Invocation of fire() several times prior to the
invocation of postfire() results to updating the
state of an actor at the time of reaching the fixed
point. At the final stage, wrapup() is invoked
to release resources that were used during execu-
tion.

The domain specific OpenModelica actor is defined
in the lib sub-package. It is an atomic actor which
is visible in Vergil [6], the graphical editor for the
Ptolemy II framework.

In this paper, we illustrate the use of the Open-
Modelica actor to simulate a simple DCMotor exam-
ple. When looking inside the actor, all the simulation
parameters are displayed, as illustrated in Figure 2.
When this model is parametrized through the Vergil
interface, this will initialize the corresponding Model-
ica model (Figure 3).

Figure 4: Client-Server interconnection structure of
the compiler/interpreter main program and interactive
tool interfaces after adding new Ptolemy II as a new
client.

3 Simulation

To simulate Modelica models in Ptolemy II, it is nec-
essary to invoke the OpenModelica Compiler (OMC).
OMC provides a CORBA interface for remotely in-
voking the compiler from client applications. This
interface is used to communicate with OMC from
Ptolemy II (see Figure 4).

An OpenModelicaDirector (Figure 1), which ex-
tends the ContinuousDirector, is implemented in the
Kernel package. The key function of this actor is
postfire(), a method that will be invoked exactly
once during an iteration, after all invocations of the
fire() method in that iteration. However, in this in-
tegration, when postfire() is invoked in OpenMod-
elicaDirector it returns false in order to stop/halt the
invocation of fire() after firing once.

The communication between OpenModelica and
Ptolemy follows the following pattern:

1. The OpenModelica actor starts the OpenModel-
ica Compiler(OMC) server in the initialize()
method, by invoking startServer().

2. In the next step, value(s) of the Modelica param-
eter(s) are modified by Ptolemy IIs’ actor(s) prior
to the simulation of the Modelica model through
OMC.

3. After simulation of the Modelica model, the re-
trieved result back from OMC server is plot-
ted/displayed through Ptolemy IIs’ actors.

4. Finally, OpenModelica actor sends the result to
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Figure 5: The intercations between Ptolemy II and
OpenModelica can be summarized by the following
diagram.

the output port which enables using the generated
result by other Ptolemy IIs’ actors.

All these actions are invoked in the fire() method.
In the final step, the OMC server is halted through in-
voking stopServer() in in the wrapup. These steps
are summed up in Figure 5.

The OMCCommand class provides the implemen-
tation for all the functionalities required by the
initialize(), fire() and wrapup() methods,
except for modifying the component values after
simulation. This functionality is provided by the
UntilSocket class. Figure 6 presents the class di-
agram of the implementation, which contains around
three thousand lines of code. OMCCommand is the
largest class, containig over a thousand of code lines.
Since the Ptolemy II framework is written in Java, the
OpenModelica extensions are also done in Java. Ap-
pendix A includes a code snippet that shows the im-
plementation of the fire() method.

In order to integrate the OpenModelica actor with
components for displatying the simulation results in
ptolemy, a composite actor is constructed. Figure 7
shows the Composite actor that is used for plotting
CSV format, the OpenModelicaDirector that controls
the execution order of the OpenModelica actor and
the RunCompositeActor, and SDF director which is
known as the inside director of RunCompositeActor
controls the execution of CSVReader, RecordDisas-
sembler and XYPlotter whenever RunCompositeActor
is executed.

In the current implementation both batch and inter-
active simulation are possible.

Figure 6: The class diagram for the current implemen-
tation.

	  

Figure 7: OpenModelicaXYPlotter model is com-
posed of OpenModelica actor and RunCompositeAc-
tor.
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3.1 Interactive Simulation

OpenModelica offers a user-interactive and time syn-
chronous simulation known as OpenModelica Inter-
active (OMI). OMI is part of the simulation runtime
core. The output of OMI is an executable simulation
application, running the executable file in an interac-
tive processing mode that enables users to govern the
simulation runtime behavior.

The integration of OMI with Ptolemy is imple-
mented through the following two modules, illustrated
in Figure 8:

Control module is the interface between OMI and
Ptolemy II which is implemented as a single
thread to support parallel tasks and independent
reactivity. The Control module is considered the
major controlling and communication instance
during the simulation initialization phase as well
as for managing simulation properties throughout
the simulation runtime. The Control module also
reacts to the feedback from other internal OMI
components and sends some messages back to
Ptolemy II including error and status messages.

Transfer module gets simulation results from a re-
sult manager and sends them to Ptolemy II upon
launching a simulation. Additionally, the module
employs a filter mask allowing the user to select
the variables whose result values are significant
to Ptolemy II.

At the moment only the step by step simulation of
the OpenModelica models is possible, however the
next step in the development process is to implement
cosimulation. Figure 9 illustrates the results of an in-
teractive simulation, new value(s) for variable(s) of the
Modelica model can be set in the initial value(s) pa-
rameter or the Ramp actor parameter which can be
customized in the same way as the OpenModelica ac-
tor. The value of the init parameter of the Ramp ac-
tor overrides the value of initial value(s) parameter of
OpenModelica actor.

The step time of the simulation in interactive pro-
cessing is calculated by following formula: Simulation
step time = (Simulation stop time - Simulation start
time)/ (Number of intervals).

According to the above formula, the step time is
0.0002 [ (1.0 - 0.0)/500] in this example. The calcu-
lated step time results in the start of the simulation at
0.0002 and completion at 0.0998, as shown in red in
Figure 9.

Figure 8: Interactive simulation mechanism.

 
 

 
Figure 32. Displaying part of simulation result of OpenModelicaInteractive.xml by Display actor. 

7.3.4 Example 4 – Composite model for modifying parameter of the 
super model  

The model OpenModelicaInherit.xml shown in figure 33 is designed similarly to 
OpenModelicaInteractive.xml excluding Ramp actor in the contained model. The 
leading purpose of this example is modifying variable(s) in the base model,  set 
parameters depicted in figure 34 and 35 for non-interactive and interactive 
processing respectively include generated results as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Displaying part of simulation result of Open-
ModelicaInteractive.xml by the Display actor.
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Figure 16. Plotting OpenModelica simulation by XYPlotter and displaying by Display actor. 

 
In the Composite actor that is utilized for plotting CSV format, 
OpenModelicaDirector controls the execution order of OpenModelica actor and 
RunCompositeActor, and SDF director which is known as the inside director of 
RunCompositeActor controls the execution of CSVReader, RecordDisassembler 
and XYPlotter whenever RunCompositeActor is executed as illustrated in figure 

Figure 10: The generated output is displayed in XY-
Plotter as well as in textual format by the correspond-
ing actors.

3.2 Non-interactive simulation

There is also the possibility of running the executable
simulation application which is generated by OMC in
a non-interactive simulation runtime. In contrast to In-
teractive Simulation, this method does not offer any
user-interactive simulation. Running the executable
file in batch processing mode allows to generate the
whole simulation result in CSV or PLT file formats
(Figure 10) that can be displayed and used by other
actors in Ptolemy II.

4 Performance

In this section we compare the simulation times of two
test models in OpenModelica and when simulating
them through Ptolemy, to estimate overhead. The
following table compares the two:

Use Case in Ptolemy II in OpenModelica
OMXYPlotter 25021ms 30ms
OMPltPlotter 28673ms 12ms

As simulating the models in Ptolemy involves estab-
lishing a connection with the OpenModelica compiler
and exchanging data, some overhead is to be expected.
However it is the tradeoff for simulation in a heteroge-
neous environment.

5 Related Works

An integration between Dymola, one of the commer-
cial tools for Modelica modeling and simulation, and
Ptolemy II through a software environment known as
BCVTB4 has been developed [7]. In this approach,
Ptolemy II acts as the middleware for implementing
BCVTB and actors in Ptolemy II are responsible for
starting a server that uses the BSD5 socket utilized for
exchanging data between the simulator and the actor
as well as implementing the inter-process communica-
tion. This approach is implemented by adding BCVTB
block to the Dymola library and it is necessary to in-
clude this block in the Modelica model in order to en-
able co-simulation.

FMI (Functional Mockup Interface) is an evolving
standard for composing model components designed
using distinct modeling tools that can also be used in
the cosimulation of models [8].

6 Conclusion

In this article we have presented the integration of
Modelica models in the Ptolemy II framework for
modeling large-scale heterogeneous concurrent sys-
tems. This will allow the simulation of Modelica mod-
els through the use of the OpenModelica compiler
within the Ptolemy II network.

Moreover the current architecture can serve as a
base for further integration efforts, such as the bisim-
ulation of Modelica models in conjunction with other
formalisms.
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Appendix A

The following code snippet shows the implementation of the initialize() method:

/** Invoke the fire() of the super class. Then, Modelica library and model(s) are loaded.
* Upon modifying the value of variable(s) and parameter(s) by input port or actors’

parameters,
* the Modelica model is built in <i>non-interactive</i> or <i>interactive</i> mode.
* <p>After building the model in an interactive mode, the simulation result
* is calculated step by step according to the parameters of the OpenModelica actor.
* The result is sent in the string format to the output port of the OpenModelica

actor to be
* displayed by Display actor.</p>
* @exception IllegalActionException If the evaluation of the expression
* triggers it, or the evaluation yields a null result, or the evaluation
* yields an incompatible type, or if there is no director.
*/

public void fire() throws IllegalActionException {
super.fire();

// Load Modelica library and model(s).
try {

_omcCommand.loadModelicaFile(fileName.getExpression(),
subModel.getExpression());

// If the model is inherited from a base model,
// that base model should be loaded in advance to the derived model.
// Otherwise, the derived one could not be built.
if (!(dependencies.getExpression().isEmpty() && baseModel

.getExpression().isEmpty()))
_omcCommand.loadModelicaFile(dependencies.getExpression(),

baseModel.getExpression());
} catch (ConnectException e) {
throw new IllegalActionException(

"Unable to load Modelica file/library!" + e.getMessage());
}

// There is a value to be passed to the OpenModelica actor’s port.
if (input.getWidth() > 0) {

// Get the token from input port of OpenModelica actor.
IntToken inputPort = (IntToken) input.get(0);
try {

// Modify components of the Modelica model prior to running the model.
if (!(parameter.getExpression().isEmpty() && initialValue

.getExpression().isEmpty())) {
if (!(baseModel.getExpression().isEmpty())) {

_omcCommand.modifyComponents(inputPort.toString(),
baseModel.getExpression(),
parameter.getExpression());

} else {
_omcCommand.modifyComponents(inputPort.toString(),

subModel.getExpression(),
parameter.getExpression());

}
} else {

_omcLogger
.getInfo("There is no component to modify prior to running the model!");

}
} catch (ConnectException e) {
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throw new IllegalActionException(
"Unable to modify components’ values!" + e.getMessage());

}
// There is no value to be passed to the OpenModelica actor’s port and the new

value is set by
// actors’ parameters.

} else if (!(input.getWidth() > 0)) {
if (!(parameter.getExpression().isEmpty() && initialValue

.getExpression().isEmpty())) {
try {

if (baseModel.getExpression().isEmpty()) {
_omcCommand.modifyComponents(

initialValue.getExpression(),
subModel.getExpression(),
parameter.getExpression());

} else {
_omcCommand.modifyComponents(

initialValue.getExpression(),
baseModel.getExpression(),
parameter.getExpression());

}
} catch (ConnectException e) {

throw new IllegalActionException(
"Unable to modify components’ values of "

+ baseModel.getExpression() + " !"
+ e.getMessage());

}
} else {

_omcLogger
.getInfo("There is no components to modify prior to running the model!");

}
}

// Build the Modelica model and run the executable result file.
// Plot the result file of the simulation that is generated in plt format.
try {

if (!(dependencies.getExpression().isEmpty() && baseModel
.getExpression().isEmpty())) {

_omcCommand.runModel(dependencies.getExpression(),
baseModel.getExpression(),
simulationStartTime.getExpression(),
simulationStopTime.getExpression(),
Integer.parseInt(numberOfIntervals.getExpression()),
outputFormat.getExpression(),
processingMode.getExpression());

if (outputFormat.getExpression().equalsIgnoreCase("plt")
&& processingMode.getExpression().equalsIgnoreCase(

"non-interactive")) {
_omcCommand.plotPltFile(baseModel.getExpression());

}
} else {

_omcCommand.runModel(fileName.getExpression(),
subModel.getExpression(),
simulationStartTime.getExpression(),
simulationStopTime.getExpression(),
Integer.parseInt(numberOfIntervals.getExpression()),
outputFormat.getExpression(),
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processingMode.getExpression());

if (outputFormat.getExpression().equalsIgnoreCase("plt")
&& processingMode.getExpression().equalsIgnoreCase(

"non-interactive")) {
_omcCommand.plotPltFile(subModel.getExpression());

}
}

// In case of building the model in an interactive mode, client and servers are
created,

// IP and ports of the servers are set and streams for transferring information
between

// client and servers are set up all in the constructor of the thread.
// Through starting the thread, the simulation result is sent from the server to

the
// Ptolemy II in the string format.
if (processingMode.getExpression().equalsIgnoreCase("interactive")) {

_omiThread = new OMIThread(variableFilter.getExpression(),
simulationStopTime.getExpression(), output);

// FIXME: This method explicitly invokes run() on an object. In general,
classes implement the Runnable

// interface because they are going to have their
// run() method invoked in a new thread, in which case Thread.start() is the

right method to call.
_omiThread.run();

}
} catch (UnknownHostException e) {

e.printStackTrace();
throw new IllegalActionException("Host Exception: "

+ e.getMessage());
} catch (IOException e) {

e.printStackTrace();
throw new IllegalActionException("Socket Connection Error: "

+ e.getMessage());
} catch (ConnectException e) {

e.printStackTrace();
throw new IllegalActionException("ServerError: " + e.getMessage());

}
}

Poster Session

DOI
10.3384/ECP140961247

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1255



References

[1] Christopher Brooks, Edward A. Lee, Xiaojun
Liu, Stephen Neuendorffer, Yang Zhao,Haiyang
Zheng, Heterogeneous Concurrent Modeling and
Design in Java (Volume 1: Introduction to
Ptolemy II) , April 1, 2008.

[2] Christopher Brooks, Edward A. Lee, Xiaojun
Liu, Stephen Neuendorffer, Yang Zhao, Haiyang
Zheng, Heterogeneous Concurrent Modeling and
Design in Java (Volume 2: Ptolemy II Software
Architecture), April 1, 2008.

[3] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pages, Wiley-IEEE Press, 2004.

[4] OpenModelica Home Page,
www.openmodelica.org, Last Accessed Feb.
2013.

[5] Johan Eker, Jörn W. Janneck, Edward A. Lee,
Fellow, Ieee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Stephen Neuendorffer, Sonia Sachs,
And Yuhong Xiong, Taming Heterogeneity-The
Ptolemy Approach, Proceedings Of The IEEE,
Vol. 91, No. 1, Jan. 2003.

[6] UsingVergil, http://ptolemy.eecs.berkeley.edu/
ptolemyII/ptIIlatest/ptII/doc/
design/usingVergil/using Vergil.pdf, Last Ac-
cessed June 2013.

[7] Michael Wetter, Co-simulation of building en-
ergy and control systems with the Building Con-
trols Virtual Test Bed, Journal of Building Per-
formance Simulation, Volume 4, Issue 3, 2011

[8] David Broman, Christopher Brooks, Lev Green-
berg, Edward A. Lee, Michael Masin, Stavros
Tripakis and Michael Wetter, Determinate Com-
position of FMUs for Co-Simulation, EECS
Department University of California, Berkeley
Technical Report No. UCB/EECS-2013-153 Au-
gust 18, 2013

Integration of OpenModelica in Ptolemy II

1256 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961247



On Extending JGrafchart with
Support for FMI for Co-Simulation

Alfred Theorin Charlotta Johnsson
Department of Automatic Control, Lund University, Lund, Sweden

Abstract

Grafchart is a graphical programming language which
extends Sequential Function Charts (SFC), the PLC
standard languages for sequential, parallel, and gen-
eral state-transition oriented automation applications.
SFC is widely used and accepted for industrial au-
tomation. Grafchart adds higher level features to SFC
such as hierarchical structuring, reusable procedures,
and exception handling to make it convenient to im-
plement and maintain large applications.

Functional Mock-up Interface (FMI) is a standard to
combine dynamic system models for technical system
developed in various tools. Tools can export models as
Functional Mock-up Units (FMUs) which can be com-
bined with other FMUs to compose the whole system.

In this paper adding FMI for Co-Simulation sup-
port to JGrafchart, a free implementation of the
Grafchart language, is conceptually evaluated. It is
discussed how JGrafchart fits into the FMI for Co-
Simulation framework and potential ways to imple-
ment this are discussed. Keywords: Grafchart; FMI;
Co-Simulation; FMI for Co-Simulation; Modelica

1 Introduction

Grafchart is a graphical programming language which
extends Sequential Function Charts (SFC), one of the
IEC 61131-3 [1] PLC standard languages for sequen-
tial, parallel, and general state-transition oriented ap-
plications. SFC is supported by most large indus-
trial automation systems, for example 800xA by ABB,
SIMANTIC S7 by Siemens, RSLogix 5000 by Rock-
well Automation, DeltaV by Emerson, and CENTUM
CS by Yokogawa. SFC is widely used and accepted
for industrial automation, but is a low level program-
ming language and thus implementing larger appli-
cations in SFC is inconvenient. Grafchart adds high
level features such as hierarchical structuring, reusable
procedures, and exception handling which makes it
convenient to implement large applications that are

overviewable and maintainable [2].
Functional Mock-up Interface (FMI) is a recent

standard [3] which aims at combining dynamic system
models developed in various tools. Modelica [4], the
state of the art language to express dynamic behavior
of technical systems, promotes this standard and the
number of tools supporting FMI is growing rapidly. A
tool can export a model as a Functional Mock-up Unit
(FMU) which can then be combined with other FMUs
to compose the whole system. The FMI standard con-
sists of two parts, namely FMI for Model Exchange
and FMI for Co-Simulation. The difference is that for
FMI for Co-Simulation a FMU also includes an indi-
vidual solver to simulate its behavior.

In this paper adding FMI for Co-Simulation support
to JGrafchart, a free implementation of the Grafchart
language, is conceptually evaluated. In Section 2
FMI for Co-Simulation is described, in Section 3 the
Grafchart and JGrafchart basics are covered, and Sec-
tion 4 motivates the need to connect JGrafchart to FMI
for Co-Simulation and discusses possible ways to im-
plement this. Finally, future work is discussed in Sec-
tion 5.

2 FMI for Co-Simulation

FMI for Co-Simulation is a standard which enables
simulation of coupled technical systems with focus
on time-dependent problems. It is designed for both
standalone FMUs and FMUs which are FMI wrappers
for simulation tools.

A co-simulation is executed from a given start-
ing time to a stop time which is not necessarily pre-
specified. There is an FMI master which coordinates
the co-simulation and there are FMU slaves, each cor-
responding to one model or subsystem. Each slave
has a pre-specified set of inputs and outputs which are
known by the master. The master is responsible for
initialization of the slaves and for handling the cou-
pling between them by getting and setting their inputs
and outputs.
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The co-simulation is executed for one time inter-
val at a time, known as a communication step, dur-
ing which each slave executes independently. Between
the communication steps are the communication points
where the master communicates the inputs and out-
puts between the slaves. Slaves can specify their de-
sired communication step size and the communication
step size may also vary during the co-simulation pro-
vided that all slaves support this. A communication
step may also fail. Then a new communication step
of different size may be attempted if all slaves support
redoing communication steps. It is the master which
decides the communication steps and what to do when
one fails.

The standard does not define an FMI master algo-
rithm, and the level of sophistication is decided by the
one who implements the master. What the standard
does define is the API, a set of slave capabilities, and
rules for how these may be used.

An FMU is described by an XML metadata file
which primarily contains the inputs and outputs and
co-simulation capabilities such as support for redoing
communication steps and support for variable commu-
nication step size.

3 Grafchart

Grafchart has the same graphical syntax as SFC with
steps and transitions, where steps represent the pos-
sible application states and transitions represent the
change of application state. Associated with the steps
are actions which specify what to do. Associated with
each transition is a Boolean guard condition. It is a
state machine related language which has been devel-
oped particularly with automation in mind and with
focus on scalability.

A part of a running Grafchart application is shown
in Figure 1. Here two steps are connected by a transi-
tion and there are two variables, namely var and cond.
In the left part of the figure, the upper step has just
been activated which involved executing its S action,
thus setting var to 7. An active step is indicated by
a black dot, known as a token. The upper step will
remain active until the guard condition of the transi-
tion becomes true, that is, until cond gets the value 4.
When the guard condition becomes true, shown in the
right part of the figure, the upper step is deactivated
and the lower step is activated which means that var
is set to 12.

Steps also have additional properties, namely x, t,
and s. x is true if the step is active and false if the step

S var = 7; 

S var = 12; 

cond == 4 

var: 7 

S var = 7; 

S var = 12; 

cond == 4 

var: 12 

cond: 1 cond: 4 

Figure 1: A piece of a running Grafchart application.
The left part shows one application state and the right
part shows a later application state.

is inactive. t is how many scan cycles the step has
been active since the previous activation if the step is
active. For inactive steps t is 0. s works the same as t
but counts seconds instead of scan cycles.

Grafchart supports basic SFC functionality such as
alternative and parallel paths, see Figure 2. At any
time only one alternative path may contain active
steps. On the other hand, parallel paths are executed
in parallel and will contain active steps at the same
time. To create alternative paths a step is connected to
several transitions. To create parallel paths a Parallel
Split is added to split the execution. A Parallel Join
is used to merge the execution again when the parallel
paths are completed.

b !b

c d

fe

g

Parallel Split

Parallel Join

Parallel paths

Alternative paths

Figure 2: A Grafchart application showing how to ex-
press alternative and parallel paths.
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In Figure 1 only the S action type is used. S actions
are executed on step activatation. SFC also supports
several other action types (action qualifiers) which
have other semantics. Grafchart supports fewer ac-
tion types. However, these are more general and can,
among other things, be used to implement the seman-
tics of all action types of SFC. The main action types
in Grafchart are S (executed on step activation), P (ex-
ecuted periodically while step is active), X (executed
on step deactivation), and N (sets a boolean variable to
true (false) on step activation (deactivation)).

Additional constructs such as hierarchical structur-
ing, reusable procedures, and exception handling have
been added in Grafchart which makes it convenient
to implement large applications that are overviewable
and maintainable [2].

With reusable components, code duplication is
avoided. Reusable code can be put in a Grafchart Pro-
cedure which can then be called from any number of
Procedure Steps and Process Steps, see Figure 3. The
difference between Procedure Steps and Process Steps
is that Procedure Steps wait for the call to complete
before the application can proceed while Process Steps
do not.

Procedure

ProcedureStep

ProcessStep

b

c

Figure 3: A Procedure can be called from Procedure
Steps and Process Steps. Each Procedure Step and
Process Step specify which Procedure to call when ac-
tivated.

3.1 Execution Model

Grafchart has a well defined execution model which
ensures sufficiently deterministic execution behavior.
A transition is enabled when all immediately preced-
ing steps are active. An enabled transition is fireable if

its condition is true. Firing a transition involves deacti-
vating the immediately preceding steps and activating
the immediately succeeding steps.

Grafchart applications are, like SFC, executed pe-
riodically, one scan cycle at a time. The execution
model of a scan cycle is described by the following
sequence:

1. Read inputs.
2. Mark fireable transitions.
3. Remove mark for conflicting transitions of lower

priority.
4. Fire marked transitions.
5. Update step properties t and s.
6. Execute P actions.
7. Mark variables subject to N actions.
8. Update marked variables.
9. Sleep until the start of the next scan cycle.

The execution model has the property that an acti-
vated step always remains active for at least one scan
cycle. Note that the execution model does not give a
completely deterministic execution. For example the
firing order of transitions affects which step’s S and X
actions are executed first. Another example is which
step’s P actions are executed first. The application is
not allowed to depend on the execution order in these
cases.

3.2 JGrafchart

JGrafchart is a free Java based integrated development
environment for the Grafchart programming language
which can be downloaded from http://www.control.
lth.se/Research/tools/grafchart.html. It is a research
tool used in for example the EU/GROWTH project
CHEM for control in process industry [5], the EU
FP7 project ROSETTA for robotic assembly [6], and a
master’s thesis for modeling of avionics systems [7].

3.2.1 Inputs and Outputs

JGrafchart can be connected to external environments
through a multitude of customizable input/output (I/O)
integration capabilities and can thus be used to control
external real and simulated processes. This is used in
education, for example in laboratory exercises on se-
quential and batch control, and to control real indus-
trial processes.

One I/O possibility in JGrafchart is the CustomIO,
that is, the I/O elements Digital In, Digital Out, Ana-
log In, and Analog Out as well as inverted variants
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for the Digital In/Out. At the beginning of each scan
cycle each In I/O is read from the external environ-
ment. An Out I/O is written to the external environ-
ment whenever assigned. How the I/O interact with
the external environment depends on the chosen I/O
implementation. A custom I/O implementation is cre-
ated by implementing a set of Java interfaces. With a
custom implementation it is possible to communicate
with practically any external environment. However,
it is limited to Boolean and Real values.

There is also generic support for communicating
with Devices Profile for Web Services (DPWS) de-
vices using the DPWS4J toolkit [8]. Devices and their
supported operations are automatically discovered and
can be called directly.

Another I/O possibility is the SocketIO elements.
JGrafchart then connects to a TCP server and commu-
nicates Boolean, Real, Integer, and String values over
a socket with the message protocol: <identifier>
’|’ <value> ’\n’. The TCP server is responsi-
ble for the interaction with the external environment.
SocketIO is often powerful enough to allow creation of
external adapters to other communication protocols. It
has for example been used to integrate JGrafchart with
a multitude of tools and protocols, among others pro-
totypes for Simulink [7], DPWS [9], LabComm, and
OPC UA support.

It would be useful to also support code genera-
tion to be able to export JGrafchart applications as
FMUs. Code generation has previously been added to
JGrafchart [10, 11] but, due to the current JGrafchart
code base design, the results have been limited and
fragile.

Currently JGrafchart only supports interpreted exe-
cution. To execute an application it must first be com-
piled. The compiler checks if the application is valid
and prepares it for execution by attaching additional
data. Applications are then executed directly in an in-
terpreted manner using the same Java instances as the
editor. JGrafchart is currently being split into three
standalone parts, namely editor, compiler, and execu-
tor. This makes it possible to add robust code genera-
tion capabilities.

4 JGrafchart with FMI Support

4.1 Motivation

In one of our laboratory exercises, JGrafchart is used
to control both a simulated and a real batch tank.
The simulated process is implemented as a simpli-

fied model in Java. It is also possible to implement
simulations of simple processes directly in JGrafchart
[12]. However, there is much potential for improve-
ment in terms of effort for specifying the simulated
model, quality of the models, support for inspect-
ing simulation results, and time required to simu-
late, especially for more complicated physical sys-
tems. Extending JGrafchart with support for FMI for
Co-Simulation gives more and better opportunities to
connect JGrafchart to other tools.

There is also a need to efficiently develop and test
JGrafchart control applications before using them to
control the real system. This may save a lot of time as
many industrial systems have slow dynamics and run-
ning a simple test on the real system could take days.
With a good model of the system the development time
could be considerably reduced, and the quality of the
control application will be higher as there is less resis-
tance in the development process. Industrial systems
are often dangerous and running a proper simulation
first could be essential for safety reasons. For the batch
tank in our laboratory exercise, the simulated process
is 10 times as fast as the real process. Special code is
required to add support for this which both makes it
fragile and susceptible to errors as it is possible to run
the control application in the wrong mode, for exam-
ple in simulation mode against the real system. With
a simulation environment that does not run according
to wall clock time, it can be run faster and without the
special code.

It is also important to verify that the system be-
haves properly when controlled by a JGrafchart appli-
cation. JGrafchart executes periodically and only sees
the sampled behavior. When controlling a continuous
system, the behavior between the sampling points may
also be of interest. Also, currently JGrafchart appli-
cations are always executed according to wall clock
time. With a large or complex simulated system the
JGrafchart application might execute faster than the
rest of the system can be simulated.

Support for state machines were introduced in Mod-
elica 3.3 [13] providing a proper way to implement
hierarchical state machines directly in Modelica. On
one hand, JGrafchart does not provide the mutual hier-
archical structuring propery with data flow that Mod-
elica state machines do [13], but on the other hand it
supports powerful high level language features such as
object orientation, hierarchical structuring, code reuse,
and exception handling. Additionally it is based on an
industrial automation language.
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4.2 Integration

JGrafchart supports the data types Real, Integer,
Boolean, and String which correspond to the FMI data
types fmiReal, fmiBoolean, fmiInteger, and fmiString.
Both variables, lists (arrays), and I/O in JGrafchart use
only these data types. The state of a JGrafchart appli-
cation is described by the variable, list, and I/O val-
ues as well as which steps are active, how long they
have been active, and currently active procedure calls.
The number of simultaneous procedure calls and the
list sizes are not limited and there are no semantics to
limit this. However, there are no list I/O and proce-
dures are not allowed to contain I/O so this is not an
issue for FMI for Co-Simulation.

As the I/O in the JGrafchart application are the
means of connecting it to external components, these
would ideally be the FMU inputs and outputs. The
mapping for CustomIO and SocketIO is straightfor-
ward. DPWS on the other hand is based on method
calls instead of data and need some configuration to
be able to expose the methods as data instead. Thus it
is best to exclude DPWS, at least during prototyping.

JGrafchart applications are executed periodically,
one scan cycle at a time, as described in Section 3.1.
The execution can be modeled as discrete events at
the beginning of each scan cycle. During the rest of
the scan cycle nothing happens. Ideally, there would
be communication points just before and just after
the beginning of each scan cycle. With a sufficiently
small communication step size this should work fine
for all JGrafchart applications, regardless of scan cycle
time. This could be requested by setting the stepSize
attribute of the DefaultExperiment element in the
FMU XML.

JGrafchart applications are currently always exe-
cuted according to wall clock time and it is not possi-
ble to get and set the execution state as there has been
no need for this before. However, it should be possible
to extend JGrafchart with the possibility to get and set
the current execution state to support redoing commu-
nication steps.

4.3 Architecture

This section discusses various ways to connect a
JGrafchart application to an FMI master.

4.3.1 Hardware-in-the-loop

The simplest way is to consider the JGrafchart applica-
tion as a hardware-in-the-loop, see Figure 4. Then the

JGrafchart application executes as usual, with the FMI
master getting and setting its I/O. As discussed before,
the co-simulation must then be able to keep up with
and synchronize with JGrafchart’s wall clock time ex-
ecution. The main advantage with this approach is that
no modifications to JGrafchart are necessary, it would
be sufficient to create an FMU compatible CustomIO
or TCP server for SocketIO. This is a suitable approach
for FMU integration prototyping but it does not im-
prove matters for systems with slow dynamics.

FMI 
CustomIO 
SocketIO 

Hardware-in-the-loop 

Figure 4: Overview of connecting JGrafchart as a
hardware-in-the-loop.

4.3.2 Generic FMI Wrapper

Another approach is to implement a generic FMI
wrapper for JGrafchart and extend JGrafchart with
support for external clocks, see Figure 5. It is a
small effort to add this feature. The same FMI wrap-
per would be possible to use with all JGrafchart ap-
plication but the wrapper would expose different in-
puts and outputs to the FMI master depending on the
JGrafchart application. This approach only requires
slightly more effort than the hardware-in-the-loop ap-
proach and gives more benefits as the co-simulation no
longer executes according to wall clock time. For this
approach it is suitable to also add support for play-
back and to be able to inspect individual scan cycles
of the JGrafchart application during the co-simulation.
To add these features should only be a moderate ef-
fort, it could be as simple as trace printouts or as ad-
vanced as interactive scan cycle stepping. Compared
to the hardware-in-the-loop case, the main drawback
is that modifications to JGrafchart are required. How-
ever, these additions are great additions in general and
are not solely useful for FMI for Co-Simulation. For
example they open up possibilities for integration with
other tools and improves JGrafchart’s debugging capa-
bilities.

FMI 
CustomIO 
SocketIO 

Figure 5: Overview of connecting JGrafchart with a
generic FMI wrapper.
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4.3.3 Standalone FMU

The last approach discussed in this paper is to gener-
ate a standalone FMU for a JGrafchart application, see
Figure 6. The FMU is then self-contained and does not
rely on JGrafchart running in parallel. This is a clean
and portable approach but requires the most effort and
might make it harder to inspect the co-simulation re-
sults. Until the JGrafchart compiler is standalone, the
implementation would also be fragile.

FMI CodeGen 

Figure 6: Overview of using code generation to create
a standalone JGrafchart FMU.

A hybrid approach is to use a generic FMI wrapper
with both JGrafchart and the JGrafchart application
embedded as additional FMU resources, see Figure 7.
Then the FMU is standalone but no code generation
is required. The main drawback with this approach is
that the FMUs would be roughly 20 MB larger.

FMI Export 

Figure 7: Overview of exporting a standalone FMU
with integrated JGrafchart and JGrafchart application.

4.4 Implementation

The FMI API is defined for C and FMUs are dis-
tributed with C source code and/or binary executables
for supported platforms. JGrafchart is written in Java
and is platform independent. However, the FMU it-
self can be implemented in any language which is able
to interact with C code, that is, practically any lan-
guage. There are language specific wrappers for FMI,
for example PyFMI for Python [14] and JFMI for Java
[15] which uses JNA [16] to interface with native code.
Which language is chosen is less important and up to
the one who implements the FMU. However, the Cus-
tomIO implementation must be written in Java.

5 Future Work

Extending JGrafchart to support FMI for Co-
Simulation is only conceptual so far. It looks promis-

ing and there are several alternative ways that it could
be implemented.

The next step is to implement a prototype to verify
that it works in practice. A suitable first attempt would
be a hardware-in-the-loop approach using an unmod-
ified version of JGrafchart and utilizing its CustomIO
and/or SocketIO capabilities. However, this does not
improve matters for slow systems. A desirable future
solution would either be the Generic FMI Wrapper or
the Standalone FMU.
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Abstract 

Development of customized workflows and interfac-

es to deploy Modelica Functional Mockup Units 

(FMUs) with the various FMU tools has been gain-

ing traction in the industry – both with tool vendors 

as well as end users.  

The FMI Add-in for Excel (FMIE) is a commercial 

product from Modelon AB that enables the deploy-

ment of FMUs in Microsoft Excel. FMIE enables the 

user to programmatically control the add-in through 

Visual Basic code in Excel. This allows the imple-

mentation of custom workflows and interfaces for 

the user to interact and automate the tasks involved 

in loading, simulation and analysis of FMUs. 

In this paper we present a workflow in FMIE for an 

automobile thermal management model FMU.  The 

workflow utilizes Visual Basic scripts for automation 

and user-forms for user interaction. 

Keywords: FMU;Automated workflow;FMI Add-In 

for Excel; Visualization; Design of Experiments, 

Batch Simulations, Monte-Carlo Analysis 

1 Introduction 

The Functional Mock-up Interface (FMI) defines an 

interface to be implemented by an executable called 

the Functional Mock-up Unit (FMU) to describe, 

evaluate and simulate models of dynamic systems 

defined by differential, algebraic and discrete equa-

tions in different simulation environments [1][2]. 

The FMI standard has greatly facilitated the transfer, 

exchange of dynamic models between component 

suppliers and Original Equipment Manufactureres 

(OEMs) and enabled export and import of models 

between multiple simulation platforms that have FMI 

export/import functionality. 

The FMI standard as a result, is gaining traction in 

the industry as the technology of choice in the ex-

change of dynamic models between suppliers and 

OEMs. As a result, there have been a large number 

of FMU deployment tools of which the FMI Add-In 

for Excel (FMIE) [3] developed by Modelon AB is a 

popular choice among customers. 

The FMIE integrates FMI-based parallel simulations 

in Excel. The add-in offers the following features: 

 Simulation of compiled dynamic models, 

FMUs generated by any FMI-compliant tool 

such as Dymola, OPTIMICA Studio or Sim-

ulation X. 

 The add-in takes advantage of powerful fea-

tures in Excel to set up and perform batch 

simulations for parameter sweeps and simu-

lations driven by data series. 

 Perform dynamic simulations or solve ini-

tialization problems, in parallel. 

 The FMI add-in supports FMU for Model 

Exchange 1.0 and FMI for Co-Simulation 

1.0. 

 

Due to its application in multiple engineering do-

mains and across several organizations, FMIE pro-

vides a general interactive environment through the 

Microsoft Ribbon interface. From version 1.2 on-

wards, FMIE enables the user to programmatically 

control the add-in through Visual Basic code in Ex-

cel. This has opened up interesting possibilities to 

create custom workflows to automate several tasks in 

the loading, simulation and analysis of FMUs in Ex-

cel with FMIE. 

 

The workflow includes both scripting automation 

and a customized graphical user interface (GUI). The 

automation includes filtering of variables to set-up 

experiments, loading values for these filtered varia-

bles for simulation and scripts for plotting the output 

response to these experiments. Additionally, macros 

to do the same for Design of Experiments (DoE) and 

Monte-Carlo analysis where many hundreds of simu-

lation cases are to be generated in a single experi-
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ment possibly with statistical distributions for multi-

ple parameters/variables. The workflow presented in 

this paper allows all of these steps to be performed in 

just a few mouse clicks interactively and improves 

efficiency and ease of use. 

  

Further, for visualization of results, a customized 

GUI is presented as a Visual Basic for Applications 

user form within Excel.  It presents a streamlined 

interface for plotting experiment trajectories to the 

end user.  This allows the user to quickly find avail-

able trajectories and generate default charts for visu-

alizing and comparing the results. 

2 The FMIE Interface 

The FMIE provides a general graphical interface 

through the Microsoft Ribbon interface and appears 

as one of the tabs in the Ribbon interface of Excel 

and labeled as ’FMI’ as shown in Figure 1. The FMI 

tab contains four different groups of buttons. 

 

 
Figure 1: The FMIE Native Interface 

The FMI tab in the ribbon is divided into four 

groups: Load, FMU, Experiment and Info as high-

lighted in Figure 1 and respectively have buttons to 

load, create and set-up, simulate and analyze results 

of FMU’s. In addition to these buttons, the function-

alities of these buttons are mirrored with API func-

tion calls that are listed in Table 1. These functions 

are written in Visual Basic and the code for these is 

accessed from opening Visual Basic from the Devel-

opers tab. 

FMIGetVersion FMIUpdateSheet 

FMILicenseCheckedOut FMIGetCreateResults 

FMISetCreateResults FMIGetShowResults 

FMISetShowResults FMIGetShowLogs 

FMIetShowLogs FMICreateExperiment 

FMILoadFMU FMISetFilterButton 

FMISetSelectionButton FMISimulateButton 

FMIInitializeButton FMISimulate0 

FMIInitialize0 FMISimulate1 

FMIInitialize1  

Table 1: List of API functions in FMIE. 

2.1 Structure of loaded FMU and experiment 

sheets 

The FMIE follows a pre-defined structure to how the 

information about input, output variables and param-

eters from the FMU are displayed in Excel. The 

loaded FMU displays meta-data containing general 

information of the FMU model e.g. model name, 

FMU kind, number of state variables etc. The list of 

input, output variables and parameters are displayed 

under the Variables section in the same worksheet. 

The variables are identified by the name, variability, 

start value, unit, description etc. and there is a col-

umn to indicate if the variable in the corresponding 

row is to be included in an experiment. This Boolean 

is set to “TRUE” if the variable is to be selected for 

analysis in an experiment. Each of these columns has 

a search filter associated with which the variable list 

can be parsed to select the appropriate variable set 

for analysis. This process gets tedious and inefficient 

when the number of variables in an FMU or the 

number of variables to be selected in an analysis is 

huge. As a result, any workflow to be developed 

should provide an easy and efficient way to filter out 

these variables for analysis. 

 

Once the analysis variables are filtered and an exper-

iment sheet created, the input variables and parame-

ters are separated automatically by FMIE from the 

output variables in the experiment sheet. The nomi-

nal values of the inputs and parameters are also dis-

played and 3 default simulation cases already set-up. 

The user is to then create as many simulation cases 

as needed within the experiment by creating new 

columns adjacent to the 3 already created. The next 

step before simulating the FMU is to load the param-

eter, input values for the experiment. This is also to 

be done manually in the native interface and can be 

automated to improve efficiency. The next section 

describes a template for entering the variable list and 

parameter values for experiments that would enable 

the workflow created to automatically load these into 

the experiment sheet. 

3 Workflow 

A typical workflow involved in the set-up, simula-

tion and analysis of FMUs is illustrated in Figure 2. 

At a higher level, the workflow follows a sequential 

procedure to load the FMU, filtering the relevant 

input, parameter and output variables for the study, 

create experiments and loading the input data for 

simulation, plotting and analysis of results. 
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To standardize the interface for user input and to fa-

cilitate data exchange between model developers and 

end-users, we present a simple front-end template for  

user input of information or data pertaining to the 

analysis to be performed. We present two templates 

– one for batch simulations involving parameter 

sweeps and the other for DoE and Monte Carlo stud-

ies. The proposed workflow is demonstrated in this 

paper with the example of a Co-Simulation FMU of 

a automotive thermal management system proposed 

in [4]. 

3.1 Batch Simulations 

Batch simulations include parameter sweeps and ex-

periments where one or more variables are changed 

individually or simultaneously and studying the ef-

fects of these on certain output variables. As a result, 

the batch simulation sheet needs to include sections 

for including the names of the input, parameter and 

output variables along with a description of each var-

iable. Columns for entering user data are then classi-

fied according to the names of the experiments as 

shown in Figure 3. 

 

 
Figure 2: A typical workflow in the set-up, simulation and 

analysis of an FMU. 

3.2 Design of Experiments and Monte-Carlo 

Analysis 

Similar to the batch simulation template, a template 

for Monte-Carlo analysis is also set-up as shown in 

Figure 4. This template includes fields to enter the 

type of statistical distribution and arguments for each 

statistical distribution. Figure 4 shows an example 

where the efficiency multiplier of the heat exchanger 

stack is varied according to a Gaussian distribution 

with mean 1 and standard deviation 0.1. The current 

implementation of the workflow supports Gaussian, 

uniform and triangular distributions and can be easi-

ly extended to other Excel-supported statistical dis-

tribution functions. 

 

Both templates provide a standardized structure for 

user-input of data for the workflow and enable con-

venient exchange of information between model de-

velopers and end users of the FMU. 

 

Additional fields like the base class have been in-

cluded in the template for model developers to pro-

vide a short description or a snapshot of the base 

class in which the variable is used, so as to give the 

end-users some insight into the variable. 

3.3 Load FMU and Filter Variables 

With the batch simulation or DoE template filled up 

with a set of variables and their corresponding input 

data like that shown in Figure 3-4, the next step in 

the workflow is to filter these variables and create an 

experiment sheet. A sample (partial) Visual Basic 

code shown in Table 2 is an example that loads an 

fmu and prompts the user to choose variables for 

filtering and creates an experiment with 7 cases with 

these variables. 

 
Public Sub FMIE_Filter_vars() 

Dim fmuFile As String 

On Error GoTo ErrFileNotFound 

' Path to FMU 

    fmuFile = Application.ActiveWorkbook.Path & 

"\DriveCycleVTM.fmu" 

 ' Load FMU into Excel 

    FMILoadFMU fmuFile, True, vbNullString 

' Select & Filter variables to create experiment 

    Dim data As Range 

Set data = Application.InputBox(Prompt:= 

"Please select range", Title:="Range Select", 

Type:=8) 

<<Add VB code to set the Include attribute of 

selected data to True>> 

' Create Experiment sheet with 7 simulation cases 

  FMICreateExperiment ActiveSheet,vbNullString ,7  

Exit Sub 

ErrFileNotFound: 

    MsgBox "Error: FMU not found!" 

Table 2: Sample VB code for loading FMU and filtering var-

iables 

The above code loads the fmu named ‘DriveCy-

cleVTM.fmu’, and then prompts the user to select the 

names of the variables from the batch simulation or 

the DoE template sheet to be added to an experiment.  
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Figure 3: Template for user-input for batch simulations in FMIE. 

 

 
Figure 4: Template for user-input for DoE and Monte Carlo analysis in FMIE. 
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The number of simulation cases to be set-up in the 

experiment sheet is also stated explicitly as shown in 

Table 2. 

3.4 Loading Data into an Experiment 

As noted in 3.1 above, the batch simulation template 

sheet includes fields to include the data for inputs 

and parameters to be set in experiments. Figure 3 

includes data for two experiments labeled ‘Exp DC 

Batch’ and ‘Exp  Const Speed’ where the model is 

simulated with different drive cycles in the former 

and a sweep over different speeds with a constant 

speed drive cycle in the latter. 

 

To allow a more general way for users to load input 

data into the experiment sheets involving multiple 

parameter sweeps in the same experiment either as a 

full factorial or independent study, the user form 

shown in Figure 5 is used. A similar form for data 

input for Monte-Carlo Analysis is shown in Figure 6. 

 

These user forms contain private sub-routines for 

processing the selected input and based on the op-

tions chosen, load the input data into the experiment 

sheet. 

 

 
Figure 5: User form for data input for batch simulations 

 
Figure 6: User form for data input for Monte Carlo analysis. 

 

The user form for batch simulation for example lets 

the user choose a range of values for each variable 

and gives the option to run a full factorial sweep of 

all values for all the parameters or input variables 

and also the option to choose a particular set of data 

points for exclusion from simulations. The user form 

for Monte-Carlo analysis has fields to enter the num-

ber of simulations cases to be performed in the study 

and options to choose the uncertain parameters and 

their corresponding attributes (statistical distributions 

and the corresponding arguments) and also the op-

tion to set input data for variables that remain con-

stant throughout the simulation study. The option to 

seed gives the user the ability to repeat the simula-

tion by generating the same set of randomly generat-

ed points as from a prior experiment. 

The userforms described in this section along with 

the private subroutines that process the user input 

and load the data into the FMIE experiment sheet 

can be combined with the VB code shown in Table 2 

to seamlessly integrate the entire FMU and experi-

ment set-up procedure into a single macro for execu-

tion. And when combined with the analysis tools for 

plotting that are described in the next section, pro-

vide the user with an efficient and easy-to-use work 

flow in working with FMUs.  

3.5 Plotting simulation results 

When an end user chooses the option “Create Re-

sults” from an experiment sheet, FMIE will create a 

new “Result” worksheet.  In general this will be the 

same name as the experiment sheet with the prefix 

“Res”.  The structure of these result worksheets are 

column oriented data of the selected output trajecto-

ries sequentially ordered by experiment case.  From 

there the user is free to generate charts of this data as 

they would with other Excel data.  To further in-

crease usability for end users, custom GUIs can also 

be created to manage and generate these charts.  An 

example of this is shown in Figure 7. 

 

 
Figure 7: Illustration of the plotting GUI 

The GUI maintains multiple lists relevant to plot-

able data from experiments.  The first is a list of re-
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sult sheets within the workbook.  This allows the 

user to select which set of results they wish to use.  

When a particular result sheet is selected, the “Cas-

es” list is updated with all the cases within the result 

sheet.   

The user is then free to choose any combination of 

cases they wish to work with.  As the case list selec-

tion changes the lists of dependent and independent 

variables also changes to match the corresponding 

variables for the selected cases.  The user also has 

the option of choosing either the union or intersec-

tion of the set of variables for each selected case.   

The user then chooses any combination of dependent 

variables and a single independent variable.  By de-

fault time is selected.  Next the user can choose an 

existing “Plot Sheet” or define a new sheet directly 

within the drop down list.  The Chart list is updated 

to reflect existing charts on the sheet.  This allows 

the user to add the selected trajectories to existing 

charts or to create new charts with the selected sig-

nals.   

When new charts are chosen they are automatically 

added to the sheet without needing any user interven-

tion on placement or style.  The user is however free 

to manually modify the chart properties after it is 

created. 

4 Conclusions 

In this paper, an approach for implementing a work-

flow to deploy FMUs with the FMI Add-In for Excel 

was presented. A typical workflow in the set-up and 

analysis of FMUs was presented along with a general 

template in Excel of a front-end with which the end-

user interacts. The macros created with the user 

forms for loading data and the FMIE API functions 

can be used as the back-end which enable the end-

user to quickly and efficiently simulate and analyze 

FMU models with relative ease.  They can also be 

used as the front-end interface for generating charts 

of simulation data for quick and simple visualization 

of results. 
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Abstract 

Investigating the use of different fluids and their ad-
vantages in new energy systems has increased the 
need for faster and more robust simulation models. 
The need to explore the potential of new fluids in 
different systems requires dynamic simulations for 
longer periods of time. In this paper, developing and 
improving a medium model for propane is discussed. 
Besides being fast and accurate, the propane model 
should also be stable in different dynamic simulation 
scenarios. 

First, existing libraries are tested and in some 
cases modified to increase the stability. Since the 
simulation speeds were not in an acceptable range in 
the existing models, a new propane model based in 
the refrigerant models in HelmholzMedia Library is 
introduced. The new model is then tested as a refrig-
erant in a direct exchange heat pump system. A 
comparison between an existing propane model and 
the new model shows that much faster simulations, 
up to 35 times, are possible with the new propane 
model. 
 
Keywords: Media Library; Propane; Refrigerant; 
Helmholtz Media 

1 Introduction 

To address the main challenges arising from an ever 
increasing energy demand worldwide and its associ-
ated environmental impacts, it is not only essential to 
optimize the existing energy landscape but is also 
necessary to develop new approaches. One of these 
approaches is to utilize low-exergy heating and cool-
ing systems.  

A well-known method is by the use of heat 
pumps to extract energy stored in the ground. A con-
ventional combination of a heat pump and a heat-

ing/cooling unit consists of three different hydraulic 
cycles, a primary cycle (energy source), a secondary 
cycle (energy sink) and a refrigerant cycle in be-
tween. For dynamic analysis of a complete heating 
or cooling system using a heat pump, the refrigerant 
cycle is usually considered as a black box model. 
This means that the thermal behavior of the refriger-
ant under different conditions is considered to be 
known without knowing the actual state of the re-
frigerant. Although this will reduce the accuracy of 
such a simulation, in larger scales, its great impact in 
the simulation speed is of higher importance. 

To improve the affordability of heat pumps and 
reduce thermal losses in the heat exchangers between 
each cycle, the concept of direct exchange heat 
pumps is considered. This means that instead of hav-
ing a heat exchanger between the energy source 
(ground) and the refrigerant cycle, the refrigerant 
flows directly inside the ground source. In simula-
tions of such systems, a black-box model cannot be 
used and the whole behavior of the refrigerant should 
be simulated without compromising the simulation 
speed. 

There are different methods of simulating differ-
ent refrigerants. C. Heinrich et al. [1] have developed 
models for household refrigerant applicances using 
R600a, T. Pfafferott et al. [2, 3] have developed re-
frigerant models with CO2 and R134a and I. Bell et 
al. [4] have created an open-source fluid library 
available for many different platforms using the 
Helmholz equation of state. These methods use ei-
ther internal or external functions. Although these 
methods can be expanded to different refrigerants, a 
separate propane model is not developed and the ac-
curacy of the models was the main subject and not 
the simulation speed. Since simulation speed is of 
great concern, external media functions are not con-
sidered in this study. In the next chapter an available 
method of describing the behavior of refrigerants 
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internally is discussed. For further simplifications, 
only one refrigerant is considered. 

Because of its low environmental impact, propane 
is chosen as the refrigerant and the modeling of this 
refrigerant is described in this paper. 

2 Available Refrigerant Model 

The design and simulation of heat pumps or power 
cycles require an accurate representation of the 
working fluid. In general a fluid is described by the 
equation of state and additional transport properties. 
The equation of state defines all thermodynamic 
properties in terms of two independent thermody-
namic state variables. Usually these two variables are 
pressure (p) and enthalpy (h), temperature (T) and 
density (ߩ) or, in case of one phase only, pressure 
and temperature. Today fundamental equations of 
state (EoS) in terms of Helmholtz energy are the 
most accurate method available for this purpose [5]. 

2.1 Helmholtz Energy Equation of State 

As described in detail by [6], the Helmholtz EoS us-
es temperature and specific volume or density of the 
fluid as the independent variables. Other variables 
such as specific enthalpy, specific entropy as well as 
partial derivatives of several thermodynamic state 
variables can be calculated directly from these inde-
pendent variables. Additional ancillary equations 
express the vapor pressure and the saturated densities 
in terms of the temperature and thereby define the 
boundary between single-phase and two-phase. 
Transport properties like surface tension, viscosity 
and thermal conductivity however are not part of the 
equations of state and have to be supplied for with 
additional independent correlations. 

The Helmholtz energy equation of state excludes 
the two-phase region. Here all the remaining proper-
ties can be calculated under the condition of mechan-
ical and chemical equilibrium for the liquid and the 
vapor phase. With this assumption, all thermody-
namic properties can be calculated as a function of 
the dew and bubble state properties and the resulting 
steam quality. 

A comprehensive explanation of the Helmholtz 
energy equation of state for the refrigerant propane 
can be found in [7]. 
 

2.2 HelmholtzMedia Fluid Properties Library 

The HelmholtzMedia Fluid Properties Library is an 
open-source Modelica library. The library is devel-

oped to be expandable and contains several different 
refrigerants. The library covers a wide variety of ap-
plications since the implemented EoS are valid for a 
wide range of state variables. 

As mentioned in [6], since the EoS are imple-
mented in their general form, the library is not opti-
mized for speed. Also because the fluid library is 
designed for all conditions, it may be unstable in cer-
tain complex combination of different components, 
such as complex energy systems that include closed 
fluid circuits, which should be avoided in large scale 
simulations. 

3 Methods of Calculation of EoS 

3.1 Inverse Calculation of EoS 

Common variable combinations for engineering ap-
plications often are (p, T), (p, h) or (p, s). The reason 
for choosing these independent state variables is on 
the one hand an improved computational stability 
and on the other hand the fact that changes of state 
are usually expressed via these variables. There are 
two ways to calculate the inverse of the equations of 
state. The first way is to use an implicit description 
which was done in the HelmholtzMedia Fluid Prop-
erties Library. The second solution is to do it explic-
itly which is done in the new propane model dis-
cussed later on. 

3.2 Implicit Calculation of Inverse EoS 

In order to compute all other thermodynamic proper-
ties from the chosen state variables, the correspond-
ing (T, ߩ) must then be determined iteratively, since 
the fundamental equation of state in terms of Helm-
holtz energy is non-reversible. 

The iteration is a root finding algorithm available 
in the base library of Modelica. The two-phase 
boundary of the fluid is described by the vapor liquid 
equilibrium. The dew and bubble states are then cal-
culated by solving two out of three conservative 
equations: the thermal equilibrium, the mechanical 
equilibrium and the chemical equilibrium. Ancillary 
equations for the saturation pressure and the dew and 
bubble densities help finding these states giving start 
values for the iteration. They also serve for a first 
region check for the inverse equation of state calcu-
lation. In the close proximity to the saturation line 
however, the exact values must be calculated by 
solving the vapor-liquid-equilibrium. The vapor-
liquid-equilibrium represents a state where the rate 
of evaporation and the rate of condensation are the 
same on a molecular level. It is characterized by 
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three conditions: thermal equilibrium, mechanical 
equilibrium and chemical equilibrium [8]. 

3.3 Explicit Calculation of Inverse EoS 

Due to the high computational effort for the implicit 
calculation of state an alternative way for expressing 
the state variables in terms of (p, T), (p, h) or (p, s) is 
implemented in Modelica. For these calculations, 
polynomial fit functions were developed for a prede-
fined region. The maximum and minimum values 
were chosen according to the approximate range of 
operation of the application. Here a temperature re-
gion between -10°C and 70°C and a pressure region 
between 0.5 bars and 30 bars was chosen (see Figure 
1). 

For this purpose, the inverse of the whole EoS 
was calculated numerically. The resulted data-set 
was then divided into six different sets (sub cooled 
liquid and superheated steam for density, specific 
enthalpy and specific entropy). Then a surface was 
fitted to each data-set separately. The outcomes of 
this fitting were six polynomial functions of order 
5x5. 

 
Figure 1: Range of validity for the inverse EoS 

4 Implementation in Modelica 

For all the necessary parameters, surface equations 
are added to the new media library. An example of 
such a surface is illustrated in Figure 2.The imple-
mented media library is an extension of PartialTwo-
PhaseMedium which itself is an extension of Par-
tialMedium in the Modelica Standard Library. This 
means that the simple propane model is also compat-
ible with all the existing components in the Fluid 
library. 

Moving from one region to the other makes the 
system not continues resulting in instabilities in solv-
ing the system of differential equations and therefore 
the whole simulation. To avoid these certain func-
tions are developed for the smooth transition be-
tween each state of the fluid. These functions not 

only include the correct value for the properties of 
propane at the discontinuous point, but also include 
the derivative so that smooth transitions are possible. 
Although this method will improve stability, since it 
is only applied in one point, the discontinuity of the 
functions can still be observed in the results. 

 
Figure 2: Illustration of the fitted surfaces in a prede-
fined region for pressure, temperature and specific 
enthalpy 

5 Results and Discussion 

5.1 Accuracy of the Fitted Functions 

As discussed earlier, it is important for the model to 
be accurate. For this purpose, the Sum of squared 
errors (CSE), coefficient of determination 
(RSQUARE), number of evaluated points (DFE) and 
root mean square error (RMSE) are calculated for the 
fitted curves and are shown in Table 1. The low error 
values indicate a very fine fitting of the data. 

Table 1: Accuracy of the inverse equations 
Function SSE RSQUARE DFE RMSE 
,ሺߩ ܶሻீ 0.009132 1.000000 296656 1.7545e-4 
,ሺߩ ܶሻ 0.185102 1.000000 104686 0.001330 

     
ܶሺ, ݄ሻீ 0.073031 1.000000 296656 4.9616e-4 
ܶሺ, ݄ሻ 2.2526e-4 1.000000 104686 4.6387e-5 

     
ܶሺ, ሻீݏ 1.171992 1.000000 296656 0.001988 
ܶሺ, ሻݏ 7.9326e-4 1.000000 104642 8.7067e-5 

 
For comparison between the HelmholtzMedia and 

the fast propane model, both fluid models are simu-
lated at different temperature and pressures in Mod-
elica. The relative error between the two simulations 
is then calculated and is shown in Table 2. The rela-
tive error in all cases is close to zero. For all the sim-
ulation parameters, this error is much smaller than 
the uncertainty in the system. 
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Table 2: Relative error between propane in Helm-
holtzMedia and the fast propane 

T ࣋ p CV CP w 
K mol/cm3 Rel. Err. Rel. Err. Rel. Err. Rel. Err. 

200.0 14.0 -2.1e-8 3.9e-8 2.9e-8 1.4e-10 
300.0 12.0 -5.2e-8 1.0e-7 5.0e-8 1.3e-8 
300.0 0.4 3.2e-8 8.8e-8 9.4e-9 -1.2e-8 
400.0 5.0 0.0 1.9e-8 -2.0e-8 -3.8e-8 
369.9 5.0 2.4e-8 6.0e-8 0.0 -3.8e-8 
 
It can be seen that in the specified range, the rela-

tive error between two models are very close to zero. 
This means if the change in propane properties does 
not fall behind the boundaries chosen for the surface-
fitting, both models can be used interchangeably 
with minimal compromise in accuracy. 

5.2 Simulation Speed Comparison 

Since water is the main fluid used in different energy 
systems, simulations with water can be set as base 
simulations for comparison of the simulation time 
for the new fluid models. Here, the simulation speed 
of both fluid models are compared in identical simu-
lation models with a reference model with the simple 
water model available in Modelica standard library 
as its medium. The results are shown in Figure 3. 

 
Figure 3: Simulation times for different propane 

models relative to water 

The simulation speed of the fast propane is around 2 
times slower than that of water but it is 30 times 
faster than the complete Propane model from the 
HelmholzFluid library. This increase in simulation 
speed can ensure the possibility of simulating com-
plete energy systems for a much longer period of 
time (monthly or yearly simulations). 

6 Conclusions 

To increase the stability and decrease the simulation 
time, HelmholtzMedia model for propane is modi-
fied for a certain region. The inverse calculation of 
the equations of states is done using several fitted 
surfaces instead of the actual EoS for the calculation 
of different variables. 

It can be observed that the relative error between 
both models is almost zero, and on the other hand a 
significant increase in the simulation speed can be 
achieved, making the use of the fast propane model 
for larger simulations possible.  

To conclude the differences between the two 
models, a simple comparison between the two mod-
els is shown in Table 3. This shows that although the 
HelmholzMedia can be used for much wider range 
applications, for certain applications (ranges) it can 
be simplified so that much faster and more stable 
simulations are possible. 

 
Table 3: Comparison between HelmholtzMedia and 
fast propane model 
Property Helmholtz Media Fast Propane 

Stability in 
complex systems 

Not fully stable in 
complex energy 

systems with 
closed fluid cir-

cuits 

Fully Stable between 
-10°C and 70°C and 

between 0.5 to 30 
bars 

Accuracy 100% 
100% between -10°C 

and 70°C and be-
tween 0.5 to 30 bars 

Simulation 
Speed / Simula-
tion speed for 
simple water 

60x 2x 

Number of 
available media 9 1 

 
The downside of the fast propane model is that it 

is only valid for a certain range of temperatures and 
pressures. Although this range is sufficient for many 
engineering applications in low temperature and low 
exergy heating and cooling systems, it is not suffi-
cient for all the applications.  
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Abstract 
Systems engineers face the ever increasing 
chase for reduced time to market, while the 
systems to develop ever increase in 
complexity. Software systems design and 
integration processes have therefor evolved 
along the well-known V-cycle. 

This paper will focus on the software 
integration for mechatronic systems as they 
develop fast due to high demands and 
challenging requirements in the automotive 
industry. 

The development order of model in the loop 
(MIL), software in the loop (SIL), processor in 
the loop (PIL) and hardware in the loop (HIL) 
can be seen as state of the art practised by 
many systems engineers. Driver in the loop 
(DIL) may be in its infancy, but rapidly 
growing. 

The novelty presented in this paper is the 
consistency of the plant models used in the 
integration chain supporting consistent model 
data propagation: Functional Mock-up Units 
(FMU) defined by the open standard of the 
Functional Mock-up Interface1 (FMI). 

Keywords: FMI, FMU, MIL, SIL, PIL, HIL, plant 
models, Modelica 

1 Background 
Volvo develops and calibrates its own engine 
control software. The model based design 
(MBD) process has been deployed for many 
years. The legislation on exhaust emissions 
and fuel consumption has become significantly 
stricter the past years. The change in 
legislation increases the burden of developing 
control software, calibration of parameters and 
validation of the mechatronic system. As a 
result efficiency improvements to the MBD 
process are required. 

Experiences tell that the average development 
and project engineer does not feel comfortable 
with all aspects of MBD. It might simply be 
out of their comfort zone. Part of the project 
assignment was to bring MBD to the test and 
calibration engineer instead. These engineers 
shall be able to work with their de facto 
industry standard measurement, calibration and 
diagnostic (MCD) tools. The aim is to have a 
transparency for the software calibration tools 
as depicted in Figure 6. 

2 Introduction 
The FMI technology has been adapted fast by 
many modelling and simulation software 
vendors. This rapid adaptation of this open 
standard clearly is proof of an industry demand 
for (plant) model exchange. In the past the 
chain from MIL to HIL has been bridged by 
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many hours of manual labour to mix-and-
match many, often for reasons of IP black-box, 
models from different sources and developed 
on different platforms. This was tedious work 
and error prone. 

In the ideal case the plant model follows the 
entire integration process without any model 
modification. With the introduction of the FMI 
toolbox for MATLAB® Coder (FMIT-Coder) 
this vision is achieved. 

Yet, the entire development chain from model 
in the loop to hardware in the loop can make 
use of one and the same source for a plant 
model exported as a Functional Mock-up Unit, 
FMU. 

The main contributions of this paper are the 
use of consistent models throughout the 
integration workflow from desktop to test bed 
in the engine controller development, which by 
the introduction of the FMIT Coder has been 
made available. It is a solution to Volvo’s 
mission to bring simulations to the test 
engineer. The engine test and calibration 
engineer can with help of industry standard 
protocols and tools, like the INCA9 based 
product suite, do his/her calibration work 
against models or hardware. 

The paper is outlined as follows. An 
introduction to the FMI technology is briefly 
drawn up, with emphasis on the toolbox 
available in MATLAB®. The engine and 
vehicle plant model based on commercially 
available Modelica libraries are introduced. 
This is to follow of a more detailed integration 
flow discussion with help of consistent use of 
FMU based plant models. 

3 The Functional Mock-up 
Interface 

3.1 Introduction8 
The FMI is a tool independent standard to 
support both model exchange (ME) and co-
simulation (CS) of dynamic models using a 
combination of xml-files and compiled code. 

The first version was published in 2010. The 
FMI development was initiated by Daimler AG 
with the goal to improve the exchange of 
simulation models between suppliers and 
OEMs. FMI is supported by many CAE tools 
and is used by automotive and non-automotive 
organizations throughout Europe, Asia and 
North America. 

3.2 FMI Toolbox for MATLAB 
FMI Toolbox for MATLAB enables users to 
import FMUs into Simulink® models by means 
of a block-set supporting FMI for Model 
Exchange 1.06 and FMI for Co-simulation 1.07. 
The FMU blocks can then be connected to 
native Simulink blocks, e.g., to support 
development of control systems and MIL 
scenarios. The FMU blocks offer a graphical 
user interface to parameterize the FMU, set 
initial conditions, configure outputs and to set 
the FMU log level, see Figure 1. 

 

Figure 1 FMIT Dialog 

3.3 The FMI ME Calling Sequence 
The option for co-simulation is a self-
contained sampled system, but the model 
exchange alternative requires some tight 
interfacing with the master solver. 

The FMI standard defines a calling sequence 
for simulating the FMU, see Figure 2. The FMI 
functions are executed in the appropriate order 
from the FMU block in the Simulink model. 
The FMU block is based upon an S-Function 
block which defines a list of call back 
functions. When the simulation loop is started, 
the S-function’s call back functions are called 
which then calls the FMI functions. 
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3.4 FMIT Coder for MATLAB 
FMIT Coder, which is an extension to FMIT, 
supports export of FMUs from Simulink 
(plant) models. Export of FMUs according to 
FMI for Model Exchange 1.0 and FMI for Co-
simulation 1.0 (using the fixed-step solvers 
available in Simulink) is supported. This 
feature, which relies on Simulink Coder™, 
enables easy integration of Simulink models in 
FMI compliant tools. 

 

Figure 2 FMI for Model Exchange 1.0 state machine 
calling sequence. 

FMIT Coder also supports code generation 
from Simulink models containing FMU blocks, 
possibly from other sources than Dymola, by 
means of Simulink Coder. Currently only 
source code FMUs are supported. Supported 
targets include besides S-functions one real-
time platform. The latter target enables HIL 
simulation, where a source code FMU is 
connected to native Simulink blocks and the 
aggregated Simulink model is compiled into 
binaries that are executed on a real-time 
computer. This solution provides a tool 
independent approach to FMI-based HIL 
simulation. 

A target definition in Simulink Coder controls 
the code generation and can invoke function 

calls into the build process at the different 
stages of building. An S-function block may 
also hook into the build process that affects the 
code generation. By defining the S-function 
callback function mdlRTW, the S-function has 
to define a TLC-file and may also write data to 
the *.rtw file. The Target Language Compiler 
can then use this data to generate code for the 
FMU block. To control the compilation and 
linkage of the FMU block, the rtwmakecfg.m 
can be used. The rtwmakecfg returns a 
predefined structure with libraries and source 
code to use in the build process. 

The FMIT GUI allows the user to edit output 
signals from the FMUs and make these 
accessible on the real-time target together with 
the other Simulink signals. This allows 
debugging for FMU internal signals on the 
HIL platform too. 

4 Plant model 
To support the different steps in the systems 
integration process, the plant model is ideally 
configured with multi-fidelity4 configurability 
in mind. 

As an example the engine model, shown in 
Figure 3, is implemented using the Dymola® 
Engine Dynamics Library®. The model 
accounts for 1D gas dynamics, lumped thermal 
masses and inertia of the turbo machinery. 
Thanks to the flexibility of the Modelica 
language, relevant modeling assumptions can 
be modified by setting model parameters or 
switching the gas property model. The user can 
for example, within the same model, choose to 
disregard the thermal dynamics of metal 
masses and the gas, disable generation of 
events at flow reversal and adjust time 
constants of gas dynamics. From a 
parameterized plant model with detailed 
dynamic representation, by setting flags related 
to physical modeling assumptions, a simplified 
model well suited for fixed step solvers and 
HIL can be obtained. 
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For defining the engine load a vehicle model 
created with help of the Vehicle Dynamics 
Library® is deployed. The deployment of the 
vehicle model can either be in the same FMU 
as the engine model, because both used 
libraries are supported in Dymola, but may be 
two separate FMU’s. The latter supports a 
transparent and consistent use of models all the 
way from desk top to an engine test bed. 

 

Figure 3 Engine model diagram layer 

5 Systems integration process 

5.1 Introduction 
For completeness many integration steps are 
outlined and discussed below, but a deployed 
development process does not necessarily 
include all presented steps in this document. 

5.2 Model in the loop 
The accessibility and quality of code 
generators has improved tremendously during 
the nineties. This has been an enabler for 
development of controllers in a simulation 
environment. 

Developing control software in a simulation 
environment, like Simulink® in Figure 4, 
allows algorithm testing in a very early stage 
of development. The design iterations can be 
much faster, because the simulation 
environment allows the control engineer to 

quickly change algorithms and instantly 
simulate and thus test. 

Because the plant model is supplied as an 
FMU and run with help of the FMI Toolbox 
for MATLAB5 (FMIT), the development 
engineer that actually masters the domain of 
the hardware can produce a plant model in his 
favourite and ideal modelling environment. In 
this case Dymola® Engine Dynamics Library®. 

 

Figure 4 A MIL (blue block) example of a simple 
engine controller and an EDL based engine model 
exported as an FMU (white block) 

5.3 Software in the loop 
Once the algorithms in the MIL stage perform 
as designed the controller model can be 
transformed into c-code with a coder like 
Simulink Coder or TargetLink® including 
debug information. This exported software 
code can in its turn be linked with external 
sources of code or manual written code if 
desired. 

The created code can firstly be tested in 
Simulink as shown in Figure 5. This solution 
mimics the MIL solution very closely. 

The created code can also be hooked up to 
communicate with other systems and sub-
systems in for instance Silver™ by QTronic3. 
Silver supports virtual module integration and 
test automation. An important benefit for 
Volvo using Silver is the support it has for the 
already deployed engine calibration tools and 
protocols. The calibration engineer won’t see 
the difference if s/he is calibrating a virtual or 
a real engine. 
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The great benefit of SIL is the possibility to 
debug code intended for implementation in a 
mechatronic system. Of course, code can be 
debugged on HIL rigs too, but with SIL the 
algorithms can be tested by means of virtually 
holding time in contrast to HIL based testing 
where time marches on and the external signals 
continue to be updated. 

 

Figure 5 A SIL (blue block) example of a simple 
engine controller and an EDL based engine model 
exported as an FMU (white block) 

All SIL testing can be performed against the 
same plant model FMU as in MIL. 

5.4 Processor in the loop 
The next integration step would be processor 
in the loop. Processor in the loop may be seen 
as a half-way house for HIL. The actual target 
processor is used. High speed IO is directly 
connected to the simulation environment and 
the real sensors and actuators are omitted. PIL 
enables the developer to analyse stack memory 
and CPU load analyses for instance. 

PIL requires a plant model which runs in real-
time and from an FMI perspective would have 
the same requirements as the HIL solution (see 
section below). 

In order to allow high fidelity plant models, 
Virtual PIL2 can be deployed because there is 
no real-time constraint in this configuration. 
This solution creates the ability of target code 
debugging on algorithm level against high 
fidelity signals because time can be stepped 
through, in contrast to PIL and HIL where time 
marches on after a break point in the code. 

5.5 Hardware in the loop 
First, if not foregone by PIL, when the actual 
electronic controller is to be tested on a HIL 
rig with its actual sensors and actuators (these 
are possibly emulated), a demand for real time 
capable FMU’s arises. At the same time there 
exists a wide variety of RT platforms and 
hence the plant model FMU needs to be 
exported as source code. Many of FMU export 
compliant tools will be able to produce source 
code, but may need a special license module. 

Access to source code allows cross compiling 
to RT systems for HIL simulations. 

5.6 Engine calibration support 
Test and calibration engineers use typical 
automotive measurement, calibration and 
diagnostic applications that communicate with 
embedded targets with standardised protocols. 
Silver connects with INCA and thus all 
alternatives from SIL onwards to test bed (and 
in vehicle actually) can use the same 
calibration and measurement tool. Please refer 
to Figure 6 to get an overview of the process. 

With the deployment of FMUs across all 
integration levels, Volvo is able to offer its test 
and calibration engineers one and the same 
interface independent of the integration phase. 
The engineer won’t necessarily know if s/he is 
calibrating virtual or in real life. 

A high fidelity engine plant model consisting 
of a data-driven combustion model and first 
principles air charge model will support virtual 
engine calibration at SIL/VPIL level and 
reduce the number of test beds (and vehicle 
prototypes for that matter) necessary for 
calibration. 

5.7 Test cell support 
The above discussed engine plant model in the 
MIL to HIL chain can be replaced by a 
physical engine in a test bed. The loads in the 
test bed are determined virtually with the 
FMU-Vehicle representing the drive line and 
road loads on the vehicle. This test cell support 
enables calibration of engine controllers with 
respect to different driving cycles. One benefit 
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of using virtual vehicle models is that the 
environmental conditions are more controllable 
than in real vehicles tests. 

The consistent usage of plant models across 
the different experimental domains allows 
propagation of parameters for the physical 
models and data for the empirical models for 
the plant models at different fidelity level all 
the way back to MIL. 

Data retrieved from tests will be part of data- 
and model regression and the process is thus 
improving quality of results over time. 

6 Process summary 
The process summary is depicted in Figure 6. 
Dymola is the environment where the plant 
models for the physical systems, engine and 
vehicle in this case, are created. These models 
are exported as FMU’s. On binary level these 
FMUs can with help of FMIT be used in 
Simulink and can also be natively imported to 
Silver. In Simulink the control software model 

(CSW) is interacting with the physical plant 
models. 

Simulink Coder or TargetLink allow the CSW 
to be exported to Silver. This solution allows 
for SIL and VPIL. Silver supports standard 
CAN protocols and thus standard already 
available measurement, calibration and 
diagnostic (MCD) software can be used. 

The next logical step is the export of plant 
models to the HIL environment with FMIT 
Coder. The model fidelity might be lower to 
account for the real time constraints this 
solution has. The CSW is in the real ECU 
hardware exported with TargetLink. Of course 
the standard MCD software can be invoked to 
alter the ECU calibration. 

Currently the final stage will be the engine test 
bed that has its loads determined with an FMU 
for the vehicle with driveline. For the MCD 
software this is exactly the same use case as 
the HIL solution. 

Figure 6 FMU’s central role in control system integration process. For sake 
of simplicity the PIL solutions are omitted. TL=TargetLink, SC=Simulink 
Coder, CSW=Control Software. 
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The test bed results can be fed back into the 
model parameters and data to evolve fidelity 
and quality of models. An iterative process is 
created to continuously improve model fidelity 
and quality. 

At the end of the process of course, the engine 
and engine controllers are assembled in the 
vehicle. The same MCD-toolset can be used. 

7 Conclusions 
With the speed FMI technology is embraced in 
the industry is clear sign it has solved a long 
existing challenge for systems integration and 
validation engineers. Often tedious and error 
prone manual modifications to adopt the 
supplied models and data to different 
simulation environments have become a 
technology of the past with the introduction of 
FMI compliant FMUs. 

With the FMIT-Coder the FMI based chain of 
FMU deployment is complete. Yet the entire 
suite of validation and verification 
development stages is covered by FMI 
technology. 

The consistent use of FMI compliant models 
has been an enabler for improved work flow 
efficiency and model quality of the MBD 
process. 

Part of the project assignment was to bring 
MBD to the test and calibration engineer. 
These engineers shall be able to work with 
their de facto industry standard measurement, 
calibration and diagnostic tools. The aim to 
have a transparency for the MCD tools is 
accomplished and depicted in Figure 6. 

8 Copyright notice 
All trademarks mentioned belong to their 
respective owners. 
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Abstract 

Matlab is a proprietary, interactive, dynamically-typed 

language for technical computing. It is widely used for 

prototyping algorithms and applications of scientific 

computations. Since it is a dynamically typed language, 

the execution of programs has to be analyzed and inter-

preted which results in lower computational perfor-

mance. In order to increase the performance and inte-

grate with Modelica applications it is useful to be able 

to translate Matlab programs to statically typed Model-

ica programs. 

This paper presents the design and implementation 

of Matlab to Modelica translator. The Lexical and Syn-

tax analysis is done with the help of the OMCCp 

(OpenModelica Compiler Compiler parser generator) 

tool which generates the Matlab AST, which is later 

used by the translator for generating readable and reus-

able Modelica code. 

 

Keywords: Modelica, MetaModelica, Matlab, OMCCp, 

translation. 

1 Introduction 

The Matlab language is dynamically typed; it does not 

have explicit type declarations. A variable’s type is 

implicit from the semantics of its operations and the 

type is allowed to dynamically change at runtime. 

These features improves ease of use for prototyping 

and interactive use, but add heavy run-time overheads, 

such as runtime type checking, array bounds checking 

and dynamic resizing, to its interpretive execution. 

Therefore, Matlab programs often run slower than their 

counterparts which are written in conventional statical-

ly typed programming languages. 

The main goal of this work is the development of a 

translator that accepts Matlab programs as input and 

generates Modelica code as output which is suitable for 

static compilation. Due to the complexity of the Matlab 

language, a realistic goal is to develop a translator for a 

subset of Matlab. 

The translation task of Matlab to Modelica code 

mainly involves the front-end implementation of the 

Matlab to Modelica compiler. The OMCC (OpenMod-

elica Compiler Compiler) compiler generation tool, 

which has been developed as a part of the OpenModeli-

ca project, can be used as a parser and translator gener-

ator extended with advanced error handling facilities. 

The tool is implemented in MetaModelica and integrat-

ed with the MetaModelica semantics specification lan-

guage based on operational semantics for generating 

executable compiler and interpreter modules.  

The OMCCp part of the OMCC tool makes the im-

plementation of the first two stages of a compiler much 

easier and saves time. We have to just write the lexer 

and parser rules for the Matlab language and input them 

to OMCCp to generate the appropriate lexer and parser 

modules in MetaModelica. The generated parser builds 

the Abstract Syntax Tree (AST) for the Matlab source 

code that is parsed.  

The Matlab AST is later used by the second phase 

of the Matlab-to-Modelica translator which performs a 

series of internal transformations and finally generates 

the Modelica-AST which is unparsed to readable Mod-

elica code. 

There exists a large body of computational algo-

rithms which are programmed in the Matlab language. 

The need to have an easy way of using and incorporat-

ing such algorithms within Modelica models, as well as 

achieving improved performance, motivated the devel-

opment of the Matlab to Modelica translator in the 

OpenModelica project. 

This paper is structured as follows: Section 2 pre-

sents some related approaches. Section 3 describes the 

different steps involved in generating a compiler from 
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specifications in different specification formalism. Sec-

tion 4 explains the design and implementation of the 

Matlab to Modelica translator with main focus on the 

translator. The translator description is for the subset of 

the Matlab language grammar for which translation to 

Modelica code is supported. Section 5 explains the type 

inference approaches. Section 6 describes the Modelica 

unparser. Section 7 presents Test results and perfor-

mance measurements.  Finally, Section 8 concludes the 

paper with a short discussion of achieved results. 

2 Related Work 

In this section we discuss a few related approaches for 

the compilation of Matlab code to statically typed lan-

guages. 

The Matlab tamer is an extensible object-oriented 

framework for generation of static programs from dy-

namic Matlab programs implemented in Java. The 

Matlab Tamer supports a large subset of Matlab. It 

builds a complete call graph, transforms every function 

into a reduced intermediate representation, and pro-

vides typing information to aid the generation of static 

code [15]. In an earlier student project we tried to use 

the Matlab tamer framework directly for a translator to 

Modelica. However, that project was not completed. 

MCFOR: A Matlab to Fortran95 compiler is de-

signed for translating Matlab code to Fortran95. It gen-

erates readable and reusable Fortran95 code. MCFOR 

had very limited support for built-in functions. It 

showed that the numerical and matrix features of 

Fortran95 are a good match for the compiled Matlab, 

and that the static nature of the language, together with 

powerful Fortran95 compilers provides the potential for 

high performance [16]. 

3 Background  

3.1 Generating Compiler Phases  

The different phases of the compiler can be generated 

from a formal specification in different formalisms, as 

depicted in Figure 1. 

Generally a compiler is divided into two parts, the 

front-end and the back-end. The scanner and parser 

constitute the front end phase whereas the optimization 

and code generator constitute the back-end phase of the 

compiler. In this paper we focus on the front-end parts 

of the compiler [1] [2], and use the existing Modelica 

unparser to generate the Modelica code from the inter-

nal Modelica AST 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Structure of Compiler Generation using OMCC 

3.2 Lexical Analysis  

The Lexical analysis, performed by a scanner, is the 

first stage of the compilation process. It receives the 

source code as input and generates tokens.  It  also 

identifies the special tokens defined by the specified  

language making it simpler for the next phase of the 

compiler. 

The structure of the tokens are usually specified by 

the use of regular expressions. There are several tools 

available that automate the labor of constructing the 

transition rules to identify the tokens for a scanner. We 

use the Flex tool for this purpose which generates C 

code; the generated C code containing tables is used by 

OMCCp to generate the appropriate lexer components 

in MetaModelica [1] [2]. 

3.3 Syntax Analysis 

The syntax analysis, also called parsing, is the second 

stage of the compilation process. The parser takes the 

tokens generated by the lexer and determines whether 

the tokens are constructed according to the rules of the 

grammar. By doing this it creates the Abstract Syntax 

Tree (AST) if the input conforms to the defined gram-

mar and otherwise reports an error message.  

The AST is used as input to the back-end. The back-

end uses the AST for type checking, optimization, and 

finally generates machine specific code. The grammar 

rules are usually specified in the form of BNF (Backus 

Normal Form). We use the BNF grammar rule format 

of the popular Bison tool for writing the grammar rules; 
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the generated C code contain parse tables that are used 

by OMCCp to generate appropriate parser components 

in MetaModelica [1][2]. 

3.4 Semantic Analysis  

The semantic analysis is the phase in which the com-

piler adds semantic information to the parse tree and 

adds semantic information to the symbol table. This 

phase also performs semantic checks such as type 

checking (checking for type errors), or object bind-

ing (associating variable and function references with 

their definitions), or definite assignment (requiring all 

local variables to be initialized before use), rejecting 

incorrect programs or issuing warnings.  

Semantic analysis usually requires a complete ab-

stract syntax tree, meaning that this phase logically fol-

lows the parsing phase, and logically precedes the code 

generation phase, though it is often possible to fold 

multiple phases into one pass over the code in a com-

piler implementation.  

The translator which takes the Matlab AST as input 

performs a series of internal transformation to produce 

the corresponding translated Modelica AST which can 

be unparsed to the generated textual Modelica code [1] 

[2]. 

4 Design 

The design architecture of the Matlab to Modelica 

translator is depicted in Figure2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Structure of Matlab to Modelica translator  

The translator contains a scanner and a parser for the 

Matlab source code, which build the Matlab abstract 

syntax tree during parsing. The scanner and the parser 

are implemented using the OMCCp tool which gener-

ates appropriate lexer and parser components in Meta-

Modelica. The result of the parser is used as input to 

the translator which performs a series of internal trans-

formations and generates a Modelica AST. The last 

stage is the Unparser where the Modelica AST is un-

parsed to generate the Modelica source code. The scan-

ner, parser and the translator are implemented in Met-

aModelica. In this paper we focus on the Matlab to 

Modelica translator; for detailed information about 

OMCCp see [1] [2].   

4.1 LexerGenerator 

The LexerGenerator is the main package of the lexer 

which generates the necessary lexer subsystems in 

MetaModelica. This module generates three packages 

in MetaModelica namely LexerModelica.mo, 

LextableModelica.mo and LexcodeModelica.mo. For 

more information about these packages see [1] [2]. 

4.1.1 Lexer.mo 

Lexer.mo is the main file which contains the calls to 

other functions in Lextable.mo and LexCode.mo that 

constitute the lexer. The main function of this package 

is to load the source code file and recognize all the to-

kens described by the grammar.  

For recognizing a token the lexer.mo runs DFA (De-

terministic Finite Automata) based on the transition 

arrays found in Lextable.mo. When it reaches an ac-

ceptance state it calls the function action in Lex-

Code.mo which returns list of tokens that are input to 

the parser. The interface of the function which does this 

operation is given below. 

function scan 

  input String fileName "input source code 

file"; 

  input list<Integer> program "source code 

as a stream of Integers"; 

  input Boolean debug "flag to activate 

the debug mode"; 

  output list<OMCCTypes.Token> tokens 

"return list of tokens"; 

 end scan 

4.2 Parser Generator 

The ParserGenerator package is the main package of 

OMCCp that generates the parser which performs the 

syntax analysis of the compiler. ParserGenerator gener-

ates four packages in MetaModelica namely To-

kenModelica.mo, ParserTable.mo, ParserCodeModeli 
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ca.mo and ParserModelica.mo. For more information 

about these packages see [1] [2]. 

4.2.1 Parser.mo 

The main function of this package is to efficiently con-

vert the list of tokens received by the Lexer into Ab-

stract Syntax Tree (AST). The package also contains 

the implementation of the LALR algorithm. For per-

forming this task the package uses the parse table locat-

ed in the package ParseTable.mo, to perform the shift-

reduce action calls it uses the package ParserCodeMod-

elica.mo. The interface of the function which starts the 

construction of AST is given below. 

function parse "realize the syntax 

   analysis over the list of tokens and 

   generates the AST tree" 

  input list<OMCCTypes.Token> tokens "list 

    of tokens from the lexer"; 

  input String fileName "file name of the 

    source code"; 

  input Boolean debug "flag to output 

    debug messages that explain the states 

    of the machine while parsing"; 

  output Boolean result "result of the  

    parsing"; 

  output ParseCode.AstTree ast "AST tree  

    that is returned when the result  

    output is true"; 

end parse; 

 

4.3 Translator 

The transformation translator is the third stage of the 

implementation which takes the Matlab AST as the 

input and performs a series of internal transformation 

and finally generates the Modelica AST. The translator 

package contains several functions which perform the 

above tasks by finding a possible mapping to a Modeli-

ca AST data structure. The implemented translator sup-

ports a particular subset of the Matlab language which 

is discussed in more detail in the following section. 

4.4 Primary Function 

A Matlab program consists of a list of files called M-

files, which include a sequence of Matlab commands 

and statements. We can split the syntax of a Matlab 

function into three parts.  First is the declaration part, 

which consists of the function name, the input and out-

put formal parameters. The next part is the function 

body which consists of a list of statements which ends 

with the keyword end. A sample function in Matlab is 

given below.  

function perfect = isperfect(value) 

  sum = 0; 

  for (divisor = 1 : value - 1)     

    result = value / divisor; 

    if (result == floor(result))  

       sum = sum + divisor; 

    end 

  end 

  if (sum == value)  

     perfect = 1; 

  else 

     perfect = 0; 

  end 

end  

The function name is isperfect which is defined in 

the declaration section. The input and output pa-

rameters are value and perfect respectively.  

The body of function starts right after the declara-

tion line and ends with keyword end which also ends 

the function. Due to the dynamic nature of the language 

there are no data type declarations in the Matlab code. 

All variables inside the function body are local to the 

isperfect function. 

4.4.1 Translation of Matlab to Modelica func-

tion 

A Modelica function consists of three parts. The first 

part is similar to a Matlab function which contains 

function name, input, and output formal parameters. 

Since the Modelica language has static typing we have 

to define each function formal parameter with its prop-

er data type as well asinput and output keywords. 

 The next part is protected. All local variables 

apart from input and output formal parameters have 

to be declared in the protected section with proper data 

types. Finally the body of function starts with the key-

word algorithm and ends with end keyword. An ex-

ample of the Matlab function isperfect translated to 

Modelica is presented below. 

function isperfect 

  input Real value; 

  output Real perfect; 

protected 

  Integer sum; 

  Real result; 

algorithm 

  sum:=0; 

  for divisor in 1:value - 1 loop 

      result:=value / divisor; 

    if result == floor(result) then  

      sum:=sum + divisor; 

    end if; 

  end for; 

  if sum == value then  

    perfect:=1; 

  else 

    perfect:=0; 

  end if; 

end isperfect; 
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4.5 Translation of function declaration state-

ments 

In the function declaration the translator assigns proper 

data types to the input and output formal parameters. 

The translator determines the data types of formal pa-

rameters once the whole function body has been trav-

ersed. An example of the translation is presented be-

low. 

Matlab 

function perfect = isperfect(value) 

Modelica 

function isperfect 

  input Real value; 

  output Real perfect; 

4.6 Identification and Translation of Local 

identifiers   

All variables defined inside the Matlab function body 

are local variables. Modelica declares all local variables 

in the translated function under the protected section. 

Therefore all those local variables have to be assigned 

proper data types before declaration in the protected 

section.  

For translation of this phase we have to identify all 

local variables first since the function body contains 

input and output formal parameters and Modelica does 

not support re-declaration of variables. The translator 

then assigns the proper data types. The process of iden-

tifying the local variables is depicted in Figure 3. 

 

   

 

 
 

 

 

 

Figure 3. Declaration of variables 

To perform this task we declare two lists of strings. 

Assume that there are two lists: a param and an ident 

list. The former contains input and output parameters 

and the latter contains all variables of the function in-

cluding input and output parameters.  

The translator compares both lists and removes all 

those variables from the ident list which were found 

in the param list. Now the ident list only contains lo-

cal variables left but it might have duplicate variables. 

To remove the duplicates compare the list with itself 

and remove all duplicates. 

4.7 Identification and Translation of constant 

variables 

Matlab does not support constant declaration of varia-

bles as in Modelica with the prefix constant keyword. 

Here we mean identifiers whose right hand side is 

equal to any constant value, i.e., real, integer, logical or 

array not any variable. For example, sum = 10 where 

10 is an integer scalar. All these variables are declared 

under the protected heading with their relevant data 

types. Take a look at the following translation: 

 

Matlab 

function [sum] = add_scl_mat(scl1) 

   real1 = 10.5;  

   mat2 = [1,2,3;4,5,6]; 

   sum = mat2 + scl1 + real1; 

end 

 

Modelica 

function add_scl_mat 

  input Real scl1; 

  output Real sum[:,:]; 

protected 

  Real real1; 

  Integer mat2[:,:] = [1,2,3;4,5,6]; 

algorithm 

  real1:=10.5; 

  sum:=mat2 .+ scl1 .+ real1; 

end add_scl_mat; 

The translator identifies two local variables. First the 

variable real1 whose right hand side is a real number, 

i.e., 10.5. The next one is mat2 whose right hand side is 

a two dimensional integer array, i.e., [1,2,3;4,5,6].  

The translator identifies their respective data types 

from the right hand side value and then performs trans-

lation. The translated scalar identifiers only have type 

declarations in the protected section, the assignment of 

values is under the algorithm section whereas arrays 

have both declaration and assignment in the protected 

section.  

4.8 Translation of Function Body 

The function body of the Matlab function is translated 

into a Modelica algorithm section. The body is com-

posed of a list of statements where every statement is 

translated to the relevant Modelica statement. 
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4.8.1 Identification and Translation of Function 

Call 

The syntax for function call and array index operation 

is the same in Matlab using round parentheses, i.e.  

sqrt(i). Thus sqrt can be a function call or an index 

operation. Matlab decides this during execution time. 

However, Modelica has different syntax for index op-

erations. It uses brackets [] instead of parentheses (). 

Thus, sqrt[i] should be used if sqrt is an array that 

should be indexed. The function call has the same syn-

tax as in Matlab, i.e., sqrt(i).  

 

Figure 4. Process of Identifying function call  

Figure 4 presents the process where a function call is 

translated. For correct translation the translator must 

differentiate between function call and index operation. 

The function call in the original Matlab code can ei-

ther be a built-in function in Matlab, a sub-function, or 

a recursive function. For proper generation of translated 

code the translator copies the names of main functions 

and sub-functions into a list of strings.  

Secondly, the mostly used Matlab built-in functions 

are collected and placed in the file Mat_Builtin.mo. 

This file works as a dictionary. If the translator finds 

any function call in input Matlab code it compares the 

name of the function in both the dictionary and the list 

of collected function names. 

 If there is a match in any list then the translator 

looks for a similar function in the other file 

Mod_Builtin.mo where Matlab and Modelica functions 

were placed which have a similar purpose but have dif-

ferent names.  

For example, the disp('text here') function is 

used in Matlab for print/display purpose is replaced to a 

print("text here") function in OpenModelica be-

cause it has a similar purpose. Similarly  rdivide() to 

div(), diag() to diagonal() etc. If the translator 

does not find it, it interprets the identifier as an array 

that should be indexed and the translator replaces pa-

renthesis () by brackets []. 

4.9 Identification and Translation of Anony-

mous function to sub-function 

An anonymous function is just like a standard Matlab 

function. It is placed inside the body of a function and 

accepts inputs and return output as standard Matlab 

functions. However it contains only a single executable 

statement. 

An example of a sub-function translation is present-

ed below. 

 

Matlab 

function [result] = fnc(x) 
 y = 2; 

 sqrt= @(x) x^y; 

 result = sqrt(x); 

end 

Modelica 

function fnc //primary function 
  input Real x; 

  output Real result; 

protected 

  Real y; 

algorithm 

  y:=2; 

  result:=sqrt(x, y); 

end fnc; 

function sqrt   //sub-function 

  input Real x; 

  input Real y; 

  output Real sqrt; 

algorithm 

  sqrt:=x ^ y; 

end sqrt; 

 

Modelica does not support such functions. Therefore 

we handle them differently.  The Translator converts an 

anonymous function to a sub-function in Modelica. The 

translator traverses the whole AST to find out whether 

the body of a function contains any anonymous func-

tion or not. If yes, then translator copies the whole 

anonymous expression from the original code and re-

moves that node from the AST. Afterwards it converts 

it into a sub-function in Modelica. In a function call the 

translator replaces the input parameters with sub-

function input formal parameters. As we see in the code 

sqrt(x) has only one formal parameter but in translat-

ed Modelica code we find two parameters, x and y. 

4.10 Translation of looping statements 

Both languages use similar syntax in for- and while- 

loop header expressions. The translator only translates 

the = sign to the  in keyword and the postfix loop 

keyword in an header expression. 

 Also, the square brackets [] replaces the braces or 

curly brackets {}. Matlab ends  a for loop with an end 
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end for keywords. Therefore translator adds the end 

for keywords at the end. The same ending procedure is 

followed for while loops and if statements as end 

while, end if. An example of the translation is pre-

sented below. 

.Matlab 

for m = 1:14  

end 

Modelica 

for m in 1:14 loop 

end for;  

 

Matlab 

while nFactorial < 100  

end 

 

Modelica 

while nFactorial < 100 loop 

end while;  

4.11 Translation of if statements 

The if statement is also similar in both languages. The 

translator adds the then keyword in the headers of if 

expressions and the endif keyword to end the expres-

sions. An example of the translation is presented below. 

 

Matlab 

if(result == floor(result))  

   sum = sum + divisor; 

end 

 

Modelica 

if result == floor(result) then  

   sum:=sum + divisor; 

end if; 

4.12 Translation of Switch Statement 

Modelica does not currently support the switch state-

ment. When the translator finds a switch statement in 

the original Matlab code it translates it into if-else 

statements with possible elseif branches. An example 

of the translation is presented below. 

 

Matlab 

switch mynumber 

    case -1 

        disp('negative one'); 

    case 0 

        disp('zero'); 

    case 1 

        disp('positive one'); 

  otherwise 

   disp('other value'); 

 end 

Modelica        

if mynumber == -1 then 

  print("negative one"); 

elseif mynumber == 0 then 

  print("zero"); 

elseif mynumber == 1 then 

  print("positive one"); 

end if; 

4.13 Sub-function 

A Matlab file can contain more than one function. If it 

contains multiple functions, then the first function is 

the primary function which can be accessed in other M 

files and the rest of the functions are secondary func-

tions which are called as sub-functions.  

A sub-function is only accessed by its primary func-

tion. All sub-functions are translated into sub-functions 

in Modelica and this process follows the same proce-

dure for translation as for the main/primary function.  

5 Type Inference  

We have adopted the MCFOR "A Matlab To Fortran95 

Compiler" approach for evaluating the types in our 

translator. It starts by analyzing each assignment state-

ment on the right hand side (RHS) of the expression 

and assign types [16]. 

5.1 Statement where Right Hand Side is a con-

stant 

Constant values are very precise sources for assessing 

data types. They are the starting points for our type in-

ference process. If the translator finds an assignment 

statement whose right hand side is a constant (e.g.) 

temp = 10, in Modelica such an expressions will be 

declared as an integer data type. 

 

Example 

temp = 10  => Integer temp 

temp = 10.5 => Real temp 

temp = [1,2,3,4] => Integer temp[1,4]  

"size is 1x4" 

temp = [1,2;3,4] => Integer temp[2,2] 

"size is 2x2" 

5.2 Statement where Right Hand Side is Built-

in function 

Built-in functions in Matlab are well defined therefore 

these functions also provide enough information for 

assessing data types. If an assignment statement con-

tains built-in function on right hand side translator will 

easily assess its type from database where we have a 

list of all built-in functions supported by Modelica with 

their return type. (e.g.) zeros(n,m) is an n-by-m ma-
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trix of zeros. If n and m is equal to 2 then translator will 

declare left hand side identifier as a two dimensional 

Integer array.   

 

Example 

temp = zeros(2,2) => Integer temp[2,2] 

"size is 2x2" 

temp = ones(1,3) => Integer temp[1,3] 

"size is 1x3" 

5.3 Statement where Right Hand Side is a 

computational expression and contains re-

lational operator 

Relational operators always return the results of the 

logical type. (e.g.) c = a < b. 

5.4 Statement where Right Hand Side is a 

computational expression and contain 

arithmetic operator (array) 

Matlab operators not only provide the shape and size 

information for the result but also provide constraints 

on the type and shape of operand. The assignment 

statement where right hand side is matrix computation-

al expression, c = a*b where a & b are matrices.  

In order to evaluate such an expression in Matlab 

the inner dimensions must agree. If a & b have a shape 

of n-by-m and p-by-q, then m must be equal to p. The 

generated result will have the shape of n-by-q. For 

example if we have an expression temp = a * b 

where dimension size of a is 1x3 and b is 3x3 then 

temp have dimension 1x3 and translator declares as an 

Integer temp[1,3]. 

5.5 Statement where Right Hand Side is a 

computational expression and contain 

arithmetic operator (scalar) 

 Consider the following expression temp = a / b 

where a & b are Integer scalar variables. To avoid data 

loss the translator promotes the left hand side variable 

as real data type. 

5.6 RHS is not equal to LHS 

In Matlab we can re-create any variable with different 

type assignment and every assignment can create a type 

conflict where left hand side variable is different from 

the type of the right hand side expression. In such cases 

the translator performs typecasting on right hand side 

expression and defines it with proper data type. 

6 Unparser 

When translating the code to an abstract syntax tree in 

Modelica we need to unparse the AST to get a readable 

output, i.e., Modelica source code. The unparsing is 

performed by the package Dump which is already pre-

sent in the OpenModelica Compiler. The interface of 

the function which starts the unparsing is given below. 

public function unparseStr 

  "Pretty prints the Program, i.e. the 

    whole AST, to a string." 

  input Absyn.Program inProgram; 

  input Boolean markup  

  output String outString; 

end unparseStr;  

7 Testing 

We tested a number of Matlab programs to demonstrate 

that the translator was working properly. 

A sample Matlab function to calculate the area is 

presented below 

function area_sum = area_inside(radius, 

num_boxes) 

  box_length = (2.0*radius)/num_boxes; 

  box_rad = box_length*0.5; 

  box_area = box_length*box_length; 

  

  area_sum = 0; 

  for (xi = 1 : num_boxes) 

    xc = - 1 + box_rad + box_length*(xi – 

        1); 

   for (yi = 1 : num_boxes) 

      yc = 1 + box_rad + box_length*(yi – 

         1); 

   

      dist = sqrt((xc*xc) + (yc*yc)); 

      if (dist < radius) 

        area_sum = area_sum + box_area; 

      end 

    end 

  end 

end 

The above input is translated to the following Modelica 

source code which gives the same result.. 

function area_inside 

  input Real radius; 

  input Real num_boxes; 

  output Real area_sum; 

protected 

  Real box_length; 

  Real box_rad; 

  Real box_area; 

  Real xc; 

  Real yc; 

  Real dist; 

algorithm 

  box_length:=2.0 * radius / num_boxes; 

  box_rad:=box_length * 0.5; 

  box_area:=box_length * box_length; 

  area_sum:=0; 
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  for xi in 1:num_boxes loop 

      xc:=-1 + box_rad + box_length * 

         (xi - 1); 

    for yi in 1:num_boxes loop 

          yc:=1 + box_rad + box_length * 

            (yi - 1); 

      dist:=sqrt((xc * xc) + (yc * yc)); 

      if dist < radius then 

        area_sum:=area_sum + box_area; 

      end if; 

    end for; 

  end for; 

end area_inside; 

 

7.1 Performance Evaluation 

In this section we present the performance of the Mod-

elica code generated by the translator which is com-

pared to the execution time with the corresponding 

Matlab code in Matlab. Before the comparison we 

made sure that both codes generate same results. The 

measurements are listed in Table 1 below. 
 

Table 1. Time measurement of Matlab with Modelica 

Model Scalar/Array Matlab(ms) Modelica(ms) 

Closure 2D-array 185.90 26.49 

IsPerfect scalar 198.60 11.65 

Finite 2D-array 69.98 55.25 

AreaInside scalar 180.05 16.72 

MySort 1D-array 218.45 26.49 

SwapVector 1D-array 80.67 18.02 

BubbleSort 1D-array 109.34                         81.96 

From Table 1 we can clearly see that the generated 

Modelica code has better performance than the Matlab 

code. 

8 Conclusion 

In this paper we have presented a Matlab to Modelica 

translator that works for a specific subset of Matlab. 

The translator generates readable and reusable Modeli-

ca code. It can handle the following Matlab constructs: 

 Functions: Simple, Nested and Sub-functions. 

 Loops: For, Nested For, While, Nested While, and 

break. 

 Statements: If, If else, If elseif else and Switch. 

 Program Termination: return. 

 Arithmetic Operators: Plus +,  Unary plus +,  Minus 

-, Unary minus -, Matrix multiply *, Array multiply 

.*, Matrix power ^, Array power .^, Backslash or 

left matrix divide \, Slash or right matrix divide /, 

Left array divide .\, and Right array divide  ./.    

 Relational Operators: Equal ==,  Not equal  ~=, 

Less than <, Greater than >, Less than or equal <= 

and greater than or equal >=. 

 Logical Operators: Element-wise logical AND &, 

Element-wise logical OR | and Logical NOT ~. 

The generated code can then be statically compiled by a 

Modelica compiler which usually result in better 

runtime performance. 
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10 Appendix 

The Appendix presented below represents the AST data 

structures used for the construction of MATLAB 

source code.  

Absynmat.mo 

encapsulated package AbsynMat 

public type Ident = String; 

uniontype Start 

  record START 

    User_Function usr_fun; 

    Separator sep;     

    list<Statement> stmt_lst; 

  end START; 

end Start; 

 

uniontype User_Function  

   // Begin defining a function. 

  record START_FUNCTION  

    Ident fname; 

    list<Parameter> prm;  

    Option<Separator> sep;              

    list<Statement> stmt_lst;        

    Statement stmt_2nd;  

  end START_FUNCTION; 

 

// Finish defining a function. 

  record FINISH_FUNCTION  

    list<Decl_Elt> ret;    

    User_Function usr;                 

  end FINISH_FUNCTION; 

 end User_Function; 

 

uniontype Argument 

  record ARGUMENT 

    Expression exp; 

  end ARGUMENT; 

   

  record VALIDATE_MATRIX_ROW 

    Argument arg_lst;  

  end VALIDATE_MATRIX_ROW; 

end Argument;    

 

uniontype Command 

  record TRY_CATCH_COMMAND  

    Separator sep; 

    list<Statement> stmt_lst1; 

    list<Statement> stmt_lst2; 

    list<Mat_Comment> m_cmd_lst; 

    list<Mat_Comment> m_cmd_lst2; 

  end TRY_CATCH_COMMAND; 

   

  record UNWIND_PROTECCOMMAND  

    list<Statement> stmt_lst1;  

    list<Statement> stmt_lst2; 

    list<Mat_Comment> m_cmd_lst; 

  end UNWIND_PROTECCOMMAND; 

   

  record DECL_COMMAND 

    Ident identifer; 

    list<Decl_Elt> decl_elt; 

  end DECL_COMMAND; 

   

  record BREAK_COMMAND 

  end BREAK_COMMAND; 

 

  record CONTINUE_COMMAND  

  end CONTINUE_COMMAND;  

 

  record RETURN_COMMAND  

  end RETURN_COMMAND;  

 

  record SWITCH_COMMAND 

    Expression exp;  

    Separator sep; 

    tuple<list<Switch_Case>,                

Option<Switch_Case>> swcse_lst;  

    Option<Mat_Comment> m_cmd_lst; 

  end SWITCH_COMMAND;        

   

  record WHILE_COMMAND 

    Expression exp; 

    Option<Separator> sep; 

    list<Statement>  stmt_lst; 

    Option<Mat_Comment> m_cmd_lst; 

  end WHILE_COMMAND;                          

end AbsynMat;    
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Abstract  

A model predictive control framework for optimal 
heating of a residential building is proposed. The 
control inputs are applied to a virtual building emula-
tor model using a limited amount of measurements. 
State estimation is implemented using moving hori-
zon estimation to reinitialize the states of the control-
ler model in every time step. To implement the mov-
ing horizon estimation, the Modelica equations had 
to be modified. A stochastic input is declared at the 
controller model state equations to represent the pro-
cess noise (model error). The state estimation signif-
icantly improves the output matching between emu-
lator and controller model. The JModelica optimiza-
tion framework proves to be satisfactory for this 
first, limited case investigated here. Future work will 
focus on the extension to different models and pre-
diction errors within the framework developed here. 

Keywords: Model Predictive Control; Moving Hori-
zon Estimation; State estimation; JModelica; Model-
ica 

1 Introduction 

Building heating systems are usually controlled us-
ing a heating curve that determines the supply water 
temperature based on the outside temperature. An 
increased interest in optimal control is encouraged 
by the widespread adoption of optimal control in 
other engineering domains. Model predictive control 
(MPC) is a general purpose control scheme that in-
volves repeatedly solving a constrained optimization 
problem. Optimal control inputs are computed using 
a reduced order controller model and are applied to 
an emulator model or a real case. Measurements of 
(one or more) states in the emulator model or real 
case are used to reinitialize all states of the controller 
model. 

This paper proposes a general framework for 
MPC with state estimation using Modelica models 

and JModelica. The main focus lies on the imple-
mentation of moving horizon state estimation.  

In the literature, otften this step is either bypassed 
by using the controller model as an emulator model 
or by assuming all states can be measured and thus 
the controller model is updated perfectly. However, 
these assumptions do not hold when using MPC in 
real buildings where state estimation is thus needed 
to update all controller model states. 

Because deterministic models cannot explain the 
differences between the system model output and the 
real system observations, stochastic models are 
needed. Therefore, the deterministic model equations 
are extended with a noise term, to overcome the sim-
plifications in the model and the input uncertainty. 
State estimation computes this noise term based on 
statistical knowledge of this extra term and system 
observation.  

For state estimation, often a Kalman filter is con-
sidered, which updates the states, by calculating a 
deterministic estimate, based on the covariance ma-
trices of the noise. A classical Kalman filter  can up-
date the states of a linear time varying model. An 
extended Kalman filter can update the states of a 
non-linear time varying model, by linearizing the 
model equations in the working point. The frame-
work described in the current paper uses Moving 
Horizon Estimation (MHE). MHE solves a least 
squares estimation that determines the optimal state 
estimates, based on covariance matrices of the noise.  

The reason for choosing MHE over Kalman filter 
is twofold: first, the state estimation fits in a frame-
work that is being developed for MPC with Modelica 
models to be used in real buildings. The MPC 
framework starts with parameter estimation of grey-
box controller models in Modelica using the greybox 
building models in a model library (FastBuildings) 
developed by De Coninck et al. [1]. MHE uses the 
Modelica-model differential algebraic equations 
(DAE) formulation directly and thus keeps the great 
flexibility of the greybox parameter estimation 
toolbox. In contrast, Kalman filter is applied to ordi-
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nary differential equation (ODE) models. Second, 
the parameter estimation, the optimal control prob-
lem and the state estimation problem are all optimal 
control problems which are solved using JModelica 
[2]. JModelica allows solving non-linear problems 
using gradient-based optimization. The state estima-
tion and optimal control problem encountered here, 
will always be initiated with an initial guess, based 
on a nearly equal former solution. This will ensure 
that the non-linear problem will be handled robustly. 
This is in contrast with often reported failing of an 
extended Kalman filter (EKF) when handling non-
linear models [3]. 

In this study, the MPC is applied to a virtual, sin-
gle zone residential building equipped with a floor 
heating system and fed by a heat pump. It is repre-
sented by a ‘detailed’ Modelica model, later called 
the emulator model which is presented in [4][4]. On-
ly a limited number of states are measured.  The next 
part of the paper explains the optimization frame-
work step by step, after which the effects of state 
estimation are discussed.  

2 Optimization framework 

Figure 1 schematically shows one loop MPC, which 
is processed every ‘open loop’ time step. The dis-
turbance inputs are ambient temperature, global hor-
izontal solar irradiance and internal gains. The con-
trol input is the floor heating heatflux. Since a heat-
flux is not a physical decision variable, it is translat-
ed into a floor heating water supply temperature set-
point as a function of the measured return tempera-
ture. The temperature of the building zone is also 
measured, for feedback in the high level control.  
The MHE problem looks at the past time window to 
estimate every new initial state variables of the con-
troller model. The MHE optimization is initialized 
by a controller model simulation over that past peri-
od using observed control inputs. This initialization 
is an important part of solving the state estimation 
problem, especially when the model has non-
linearities. 

The optimal control problem(OCP) problem 
looks at the future time window to optimize the con-
trol inputs over the prediction horizon The OCP op-
timization. is initialized using the solution of the 
OCP from the past MPC-step. The shorter the open 
loop horizon, the closer the optimal control inputs 
will be to the initial values. Optimization using linear 
models will always find the global optimum for the 
corresponding linear system. 

 

 
Figure 1: Outline of MPC 

2.1 State estimation 

Because of model mismatch and disturbance predic-
tion errors, the controller model state values deviate 
from the emulator values. To prevent this, a moving 
horizon estimator is implemented to correct the 
states of the controller model based on measure-
ments (or emulator model values). MHE can be seen 
as the dual of the MPC as it solves an optimal con-
trol problem over the past horizon to fit some meas-
urement(s). The difference is that MHE takes the 
fixed past control inputs and optimizes the model 
error: it determines the process noise w over the op-
timization horizon for every state. To understand the 
concept of process noise, one must look at the model 
as a stochastic model. Take a look at the notation of 
a simple, explicit form of the model equations, with 
x the model states and y the output. w represents the 
model error (process disturbance/noise) and v the 
output error (measurement disturbance/noise): 

 
The explicit formulation of the model error w means 
that a stochastic model allows for a difference be-
tween the state change according to a deterministic 
model: f(x,u), and the state change in the real system: 
ẋ. Solving a state estimation problem means finding 
the difference w over the past time, such that the sto-
chastic model accurately represents the real system 
behavior. 
    To solve the state estimation as an optimization 
problem, the following least squares problem should 
be solved by determining wk. 

 
This is known as the ‘full information problem’, 

which minimizes the weighted sum of the output 
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noise v (on some measured outputs y), the model 
noise w and the initial state x0 over the past time. The 
weights can be determined using the inverse covari-
ance matrices of the model error (Q-1), the measure-
ment noise (R-1) and the initial condition (P-1). A 
larger covariance of a model state thus leads to a 
smaller weight in the objective function and a larger 
value for wk as optimal solution. A model state with 
large covariance will have larger deviations from the 
real system, which is to be expected from a larger 
covariance.  

As time progresses, this full information problem 
becomes computationally infeasible. Moving horizon 
estimation removes this difficulty by considering 
only the most recent N measurements. An arrival 
cost is formulated to represent the information about 
the initial states and the measurements prior to N. 
The arrival cost cannot be calculated exactly (full 
information problem) and therefore approximations 
are used. For stability reasons often the prior meas-
urements are disregarded. The initial value x0 is then 
set according to the solution of the last MHE update 
and the arrival cost is thus a constant value. Another 
approach is to calculate deterministic updates of the 
initial MHE states (k=T-N) using an extended Kal-
man filter (EKF). The first approach is followed here 
and prior measurements are disregarded. The MHE 
problem translates to: 

 With ||.||A the 2-norm with weights A. As explained 
before, the weights are determined by the covariance 
matrices. The covariance matrix (Q) for the is a di-
agonal matrix with covariance of each model state on 
its diagonal. The covariance matrices can be consid-
ered a tuning parameter. This is shown Figure 2 
where the R-1 values (weight_meas in the figure) 
takes three different values while keeping the Q-1 
value constant. In order to get the stochastic model 
output to agree more with the measurements: in-
crease R-1/decrease Q-1. And vice versa to agree 
more with the deterministic model state: decrease R-

1/increase Q-1). In this work, the weights are not re-
lated to the covariance matrices yet. However as we 
estimate the greybox models using a parameter esti-
mation, it is mathematically possible to estimate the 
covariance matrices along with the model parameters 
[5]. 

 
Figure 2: State estimation influence of the different 
weighting factors 

 

To implement the MHE optimization problem using 
Modelica models, the model equations need to be 
adapted. Modelica model equations are by design 
deterministic and not stochastic. The DAE system of 
equations in the general implicit form is:  

 
In this equation d represents the disturbance input 
and p the model parameters. Each equation holds and 
simulating a Modelica model generates a determinis-
tic solution for the variables. To use MHE with 
Modelica models, we decide to add a normalized, 
stochastic variable w to every state equation (here for 
a heat capacity, with C=m*c). The stochastic Model-
ica model then looks like:  

 
Figure 3: Stochastic Modelica model heat capacity  

The process noise w is modelled as an input to this 
capacity model. The inputs ‘w’ of all states are opti-
mization variables in the MHE problem. The equa-
tion shows that C*w physically represents an extra 
heat flux, not included in the original deterministic 
equation. It can also be seen that delta_T is a tem-
perature deviation, which is the model error for the 
temperature (state). Since the problem is continuous 
in Modelica, the variable w can be determined in the 
MHE over the past N steps, to find the deviation del-
ta_T of the state T. The Modelica model can be re-
converted into a deterministic model for simulation 
purposes by setting the process noise to zero.  
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2.2 Optimal control problem 

The optimal control problem is solved using a re-
duced order controller model. This controller model 
is identified based on monitoring data by use of a 
grey-box modeling approach. This approach starts 
from the Modelica library FastBuildings which de-
fines potential low-order model candidates. For each 
potential model, parameter estimation is carried out, 
and the resulting models are compared using cross-
validation, confidence intervals and other residual 
analyses. The best model is selected as controller 
model. This grey-box modeling approach is de-
scribed in more detail in [1][6]. For the case investi-
gated in this paper the time series consists of simula-
tion data of the building zone temperature obtained 
by the emulator model, but this could as well be 
measured data. A third order resistance-capacitance 
(RC) model for the building zone fed by a heat pump 
with constant COP of 3.58 gives a good fit (rmse of 
0.08 °C) to the time series generated by the emulator 
model. Figure 5 shows a visual representation of the 

selected RC model from the FastBuildings library. 
There are three heat capacitors which all have a dif-
ferent temperature (state): capEmb.T (heater), cap-
Wal.T (wall) en capZon.T (zone). The last state is an 
output as it is measured in the emulator model. 
 

 
Figure 4: multi-objective optimal control problem 
formulation. 

 

           

 
Figure 5: Visual representation of the third order greybox model in Modelica. 
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The optimal control problem is multi-objective. It 
minimizes both the energy use and the thermal dis-
comfort and is based on a PhD regarding MPC in 
buildings [7]. The problem formulation is shown in 
Figure 4. The control input u (here: u=Qhea) deter-
mines the heat from the heating system to the zone to 
control the zone temperature Tz. The first term in the 
objective function Je is the total electricity used by 
the heat pump, while the second term in the objective 
function Jd is the weighted sum of thermal discom-
fort (overheating and undercooling). 

This multi-objective approach treats the discom-
fort boundaries Tcomf,min/max as soft, asymmetric 
(for β different from 1) constraints through the slack 
variables ϵ. The external inputs (/disturbances) d are 
ambient temperature, solar irradiance, internal gains 
and the electricity price. The latter is kept constant. 
For the disturbances, perfect predictions are used. 
The optimal control input is applied to the emulator 
model and the building zone temperature is meas-
ured. 

2.3 MPC 

The MPC framework is written in Python, because 
JModelica is interfaced in Python. It is tested on an 
emulator model of a single zone residential building 
with floor heating emission system and a heat pump 
for heat production [4].  

The future horizon over which the optimal control 
problem is repeatedly solved and thus over which it 
needs future predictions is chosen to be 2 days. It is 
called the ‘prediction horizon’. The past horizon over 
which the state estimation is repeatedly solved and 
thus over which it needs past measurements is cho-
sen to be 2 days. It is called the ‘state estimation 
horizon’. 

The future horizon over which the optimally de-
termined control inputs are repeatedly applied to the 
emulator model can vary. It is called the ‘open loop 
horizon’. Choosing a shorter open loop horizon 
might improve the control, however it increases the 
number of optimization problems. In the example 
shown in Figure 6 it is chosen to be 1 day. This is a 
long period for control, but it is reasonable as we use 
perfect predictions. The figure also illustrates the 
horizons and the working principle by showing the 
zone temperature state.  

 
 
 
 
 
 
 

First the state estimation (MHE) problem is 
solved to determine the initial state for the optimal 
control problem (OCP). The optimal control input 
determined in the OCP is then fed to the emulator 
model by translating the heat into a supply water 
temperature setpoint. The emulator is simulated with 
this heat input and the temperature of the building 
zone is measured. The measurement is the input to a 
new MHE problem.  

This is shown in Figure 7, at March 2, 00:00h the 
states are updated. The temperatures in the controller 
model are discontinuously changed at every new it-
eration. The figure also illustrates the horizons and 
the working principle by showing the zone tempera-
ture state. 
 

 
Figure 6: MPC framework, result for zone tempera-
tures for 1 MPC iteration. 

 

 
Figure 7: MPC framework, result for zone tempera-
tures for 2 MPC iterations. 
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3 Results 

The MPC is tested over a period of 10 days, with 
an open loop length of 6 hours. This means there will 
be four state updates throughout a day. As explained 
using Figure 6 and Figure 7, the initial values of the 
controller model states x0 for the MPC are deter-
mined by a first solution of the MHE. The initial 
values of the controller model states x0 for the MHE 
can be estimated freely to best capability. In order to 
evaluate the performance, some variations were 
made in the MPC formulation and settings: with and 
without state estimation, larger open loop (control) 
horizon, variation of the weighting in MHE formula-
tion.  

First a case without state estimation is solved. 
From  is clear that the controller model would bene-
fit from measurement feedback. The controller mod-
el (OCP) predicts a too high temperature for the 
states. It stays near its optimal temperature profile of 
around 295 K (21°C) while the emulator model 
(EMU) remains at a lower temperature. The third 
order RC model is not capable of modelling the 
steady state heat loss from the building zone to the 
soil. This third order RC model seems not appropri-
ate for model predictive control without state estima-
tion. The situation improves with state updates as 
can be seen in Figure 9. The controller model is still 
at its 295K (21°C), but due to the feedback of the 
state estimations, there is a better coupling with the 
emulator model. The red curve, which is in the mid-
dle of the two, represents the MHE-model state of 
the zone temperature. I is very close to the the meas-
urements as the weights are chosen to be R-1= {10}, 
and Q-1= I3x3, the identity matrix. This means we as-
sume a higher covariance on the model states than on 
the measurements (R<Q). Remember that the inverse 
of the covariance determines the weighting and not 
the covariance matrix itself. If we change the values 
of these covariance matrices, we get a different re-
sult, which is visible in Figure 10. 

The corrections made by the state estimator are 
visible in the optimal control problem. At every new 
control time step, the optimal control problem is 
solved again starting from the new (in this case low-
er) initial conditions. The lower temperature is im-
mediately compensated by a control input deter-
mined heatflux  from the heat pump to the building 
to regain thermal comfort.  

 
 
 
 

 
The temperature change in the emulator does not 

quite follow the OCP. Firstly, this is because of a 
steady state heat loss to the soil and secondly be-
cause of the slow thermal response of the floor heat-
ing. A control input of 3kW does not spread as fast 
to the building zone as it would in the heater model. 

 
Figure 8: MPC over 10 days with no state updates. 

 
Figure 9: MPC over 10 days with 6 hourly state up-
dates 

 
Figure 10: MPC over 10 days with 6 hourly state up-
dates and a higher covariance for the measurements 
(less trustworthy) 
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These are two important controller model defi-
ciencies. The first one is not so much a problem, as it 
can be overcome by the use of a state estimator. The 
second one can be misinterpreted by the state estima-
tor as the heat to the emulator lags behind. It is there-
fore important to take into account the dynamics of 
the thermal system. If the controller time step is too 
small, the system might overheat as a reaction to the 
zone temperature measurements. 

A comparison is made to MPC with a larger con-
trol time step of 1 hour update. As expected, an im-
proved coupling pulls the emulator model building 
zone temperature towards the optimal values from 
the OCP.  

In Figure 11 the coupling to the emulator model 
is not as would be expected. The building zone tem-
perature of controller model is hourly updated to a 
higher value, and the emulator model does not seem 
able to catch up. One cause to this problem is found 
by examining the translation of the optimal control 
input to a physical temperature setpoint. 

 
Figure 11: MPC over 1 day with 1 hourly state updates 

 

 
Figure 12: Optimal (HH.QHea) vs real (d1.nzeb…) 
heat flux 

 

Since the floor heating system supply temperature 
setpoint and the heat pump setpoint are calculated 
using a measurement of the outlet temperature of the 
floor heating, a problem always arises at startup. As 
the outlet temperature is low when the heating starts, 
the first heatflux through the floor heating is always 
lower than the optimal control heat flux from the 
OCP. This effect can be seen in Figure 12. This 
stresses the importance of good low level control. A 
PID controller could help overcome this discrepancy. 

To conclude we study the result of the MHE op-
timization for temperature difference for the states. 
These temperature differences are the errors of the 
controller model compared to the observations. In 
parameter estimation processes, the model errors are 
studied to decide whether the estimated model is 
‘good enough’. The decision criterium identifying a 
good model is whether the model error (or process 
noise) is white noise. The process noise produced by 
state estimation represents the same error of the 
model. This means that the controller models accura-
cy could be analyzed by looking at the error. The 
noise for the last MHE optimization problem is 
shown in Figure 13 for the three states. 

The error is not white noise. This means there are 
phenomena which are not modelled. From the figure, 
it can be seen that the heater temperature has a 
steady state error with a periodic variation. This error 
might arise from a heat loss to the ground, which is 
not modelled in the controller model. The third order 
RC model cannot represent this loss through a mod-
el. A different RC model should thus be selected for 
parameter estimation. This would render a new better 
controller model, which will improved predictions 
allow better use of the optimal control horizon to 
improve energy savings.  

 
 

 
Figure 13: Process noise on states 
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It is also worth noting that the model error (tem-

perature difference) in Figure 13 changes rapidly 
near the end. This is the case for most of the state 
updates of the MPC analyses with state estimation 
that were studied in this work. The process error on 
capEmb (state) is always high, but decreases rapidly 
in the end. The zone capZon state undergoes the in-
verse transition. This can be seen on Figure 14, 
where this last part of the results of repeated MHE 
solutions are shown.  
 

 
Figure 14: Process noise of the last steps in repeated 
solutions of the MHE problem. 

 

This means that in the MHE model a high noise-
heatflux is present towards the embedded state 
(capEmb.T) and a high negative noise-heatflux is 
present to the zone state (TZon) near the end of the 
interval. This seems to mean that the temperature of 
the Zone is kept high until the end, and is then low-
ered due to a non-physical heatflux.  The question 
rises whether this behavior is to be avoided, although 
it seems to be mathematically correct. Since altering 
the weights R-1 and Q-1 changes the behavior of the 
process noise for the states (and thus the timeseries 
in Figure 13 and Figure 14), the adoption of covari-
ances for every states might mitigate this problem. 
Another solution might be to better initiate the MHE 
problem. This can be done by not disregarding the 
arrival cost, as is done now. 

 
 
 
 
 
 
 
 

4 Conclusions 

In this work, it is shown that stochastic models can 
be implemented in Modelica. This is an important 
step for optimal control framework using MPC. The 
MPC framework uses greybox models, which will 
produce an output which is different from the real 
building. Because not all the states in the controller 
model are measured states, the moving horizon esti-
mator estimates the new initial states of the control-
ler model. This feedback is shows in the fact that the 
measured state in the emulator model will be closer 
to the output state of the controller model. The feed-
back of the measurements in the emulator can be 
tuned by changing the weights in the objective func-
tion of the state estimator. These weights are mathe-
matically the covariance matrices of the model states 
and the measurements, but since they are not always 
known, they can be fine-tuned to give state estima-
tion results.  

The results from the state estimation can be used 
to detect modeling errors or deficiencies in the con-
troller model in the same way the residuals are 
checked in a parameter estimation problem. If the 
residuals are white noise, the controller model accu-
rately models the system. In case the residuals are 
not white noise the controller model does not model 
the system very accurately. The state estimator can 
prevent the controller model from diverging from the 
real situation (observations).  
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BAUSCH-GALL GmbH (LLC) is an engineering company based in Munich, Germany, which sells and supports
Modelica Libraries, works on simulation projects, organizes training courses and does consulting based on
specific technical know-how. BAUSCH-GALL GmbH also offers special design services, devices and products
for radio frequency (RF) applications. Based on a broad range of expertise in the solution of practical problems
by effective computer application, BAUSCH-GALL GmbH serves the market for simulation and computer-aided
engineering.

CENIT has been successfully active for more than 20 years as a leading consulting and software specialist
for optimizing business processes in product lifecycle management (PLM), enterprise information management
(EIM), business optimization & analytics (BOA) and application management services (AMS). The enterprise
focuses chiefly on proprietary software development and on marketing standard solutions by market leaders
such as Dassault Systèmes, SAP and IBM. CENIT employs about 700 staff world-wide, serving customers from
the automotive, aerospace, mechanical engineering, tool and mold construction, financial services, commercial
and consumer goods industries.

Claytex is an engineering consultancy and software distributor that specialises in Systems Engineering. Our
expertise is in the modelling and simulation of complex multi-domain systems using Dymola and Modelica.
We are based in Leamington Spa (UK) and work with Modelica and FMI on a wide variety of projects. Most
recently these include the modelling of Low Carbon Vehicles, Formula 1 and Nascar Sprint Cup racing cars.
These projects apply the models in a wide range of tasks including energy usage calculations, control system
development, powertrain design and driving simulators. We develop a number of application libraries for Dymola
include the Engines, Powertrain Dynamics, SystemID, FlexBody, VDLMotorsports and XMLReader libraries.

Concurrent Real-Time is the industry’s foremost provider of high-performance real-time computer systems and
software solutions. With nearly 50 years of experience in the real-time market, we deliver hard real-time per-
formance in support of the world’s most sophisticated hardware-in-the-loop and man-in-the-loop simulation,
data acquisition and process control applications. With a reputation for reliability and performance, our opti-
mized hardware and software products ensure the success of commercial and government programs worldwide.
Products include the RedHawk Linux real-time operating system with guaranteed response; NightStar tools for
advanced Linux debugging and analysis; iHawk real-time multiprocessors; and Simulation Workbench modeling
environment. Simulation Workbench is currently used by major corporations in a variety of simulation applica-
tions including automotive component testing, vehicle driving systems, engine test stands, aircraft subsystem
testing and maritime control systems. Concurrent Real-Time is based in Pompano Beach, FL, and has offices
throughout North America, Europe and Asia.
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CyDesign Labs was founded in late 2011 to develop a cloud platform for model-based product engineering. At
CyDesign, we believe that the cloud is the future of engineering design. Our product architecture is designed
from the ground up to be deployed and operated in a cloud environment – public or private, open or classified,
big or small. Our primary goal is to allow engineers to configure, model, and analyze a vast array of design
alternatives and to optimize their designs based on requirements.
In October 2013, CyDesign Labs was acquired by ESI Group SA, a leader in virtual product engineering. Under
ESI’s leadership, CyDesign is focusing on the development and deployment of model-based product engineering
solutions for the global automotive and aerospace communities. CyDesign solutions are powered by CyModelica,
a proprietary high-performance Modelica compiler and solver.
CyDesign Labs is based in San Jose, CA, with a subsidiary in Coventry, UK

D2T is a worldwide supplier for powertrain development and calibration, test bed engineering and equipment.
With our state of the art automation, simulation and calibration tools, developed in cooperation with major
OEMs, D2T is strongly involved in hybrid and electric powertrain design and validation. D2T is a subsidiary
of IFPEN.
D2T is your experienced partner for:

• Modeling, simulation and design

• Control, overall supervision and calibration

• Optimization, characterization and validation

Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people with virtual universes to
imagine sustainable innovations. Its world-leading solutions transform the way products are designed, produced,
and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding possibilities for
the virtual world to improve the real world. The group brings value to over 150,000 customers of all sizes in all
industries in more than 80 countries.
Dassault Systèmes’ CATIA provides a fully integrated systems modeling environment that enables systems
engineers to execute and analyze system or sub-systems models, while mixing dynamic and state logic behaviors,
using the open source Modelica language.
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IPG Automotive GmbH is one of the world’s leading suppliers of simulation solutions, test systems and en-
gineering services. Apart from vehicle dynamics simulation the simulation tools CarMaker, TruckMaker and
MotorcycleMaker assist in the development of chassis control systems, driver assistance systems, hybrid tech-
nologies as well as fuel consumption analysis.

In the realm of system simulation, ITI is a leading developer of innovative software solutions and offers a vast
range of engineering services that help to reduce time-to-market significantly. Our interdisciplinary software
application SimulationX allows for comprehensive physical modeling of complex systems. Amongst others we
support our customers in virtual prototyping, result interpretation and optimization of energy-efficient design.
SimulationX supports the Modelica R© language with open and complete CAx interfaces. The software is applied
by more than 700 well-known companies, such as Audi, BMW, Bureau Veritas, Daimler, Fraunhofer-Gesellschaft,
Germanischer Lloyd, Honda, Nikon, Robert Bosch, Siemens, ThyssenKrupp und Veolia.

Since the 2010 conference, LMS considerably increased its effort to make Imagine.Lab the best-of-breed platform
for system simulation. LMS’ will is to deliver a combined structured approach (C-based and Modelica-based) to
best serve the engineering needs, from full system to detailed component modeling over most of the mechatronics
applications. LMS continues to support the establishment of Modelica as an industrial reference through its
dedicated commercial support team as well as its involvement in European research projects and its support of
the FMI. LMS’s position in the Model Based System Engineering software market is considerably increasing to
the benefit of the industry and the recognition of Modelica.
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Maplesoft, a subsidiary of Cybernet Systems Co., Ltd. in Japan, is the leading provider of high-performance
software tools for engineering, science, and mathematics. Its product suite reflects the philosophy that given
great tools, people can do great things. Maplesoft’s core technologies include Maple, the world’s most ad-
vanced symbolic computation engine, and MapleSim, a Modelica-based physical modeling and simulation tool.
With MapleSim, you can leverage the growing collection of industry-tested Modelica components in your own
projects. Maplesoft’s customers include Ford, BMW, Bosch, Boeing, NASA, CSA, Canon, Motorola, Microsoft,
Bloomberg, and DreamWorks, covering sectors such as automotive, aerospace, electronics, defense, and energy.

Modelon provides industry solutions, services and technology for analytical model-based systems engineering
based on the Modelica and FMI open standards. We offer unique know-how in industrial physical modeling,
simulation and optimization, and model-based control design. Our customers are found all over the world and
represent a variety of application areas with some emphasis on the automotive, energy and process industries.
We are proud to have some of the world’s best renowned technology companies among our customers. We serve
our customers from our locations in Sweden, Germany, USA, and Japan.

OpenModelica is an open-source Modelica-based modeling and simulation environment intended for industrial
and academic usage. Its long-term development is supported by a non-profit organization – the Open Source
Modelica Consortium (OSMC). The goal with the OpenModelica effort is to create a comprehensive Open Source
Modelica modeling, compilation and simulation environment based on free software distributed in binary and
source code form for research, teaching, and industrial usage. We invite researchers and students, or any
interested developer to participate in the project and cooperate around OpenModelica, tools, and applications.

Schlegel Simulation GmbH is an engineering company and software distributor based in Munich, Germany.
Our expertise is modeling and simulation of mechatronic systems using Dymola / Modelica and other tools.
We develop simulation models, work on simulation projects, realtime and hardware-in-the-loop simulations, we
develop customer specific simulators and software, and provide consultancy and training. Schlegel Simulation
distributes and supports Dymola.
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Founded by Stephen Wolfram in 1987, Wolfram is one of the world’s most respected software companies. At
the center is Mathematica: the world’s most powerful global computation system. In 2011, Wolfram acquired
MathCore Engineering AB - a founding member of the Modelica Association and an active influence in the
Modelica language design since 1997. Through this, SystemModeler was released in 2012 - the most complete
physical modeling and simulation tool. Unlike other systems, SystemModeler requires no add-ons, fully supports
the standard Modelica model language and is designed to connect perfectly with Mathematica for the ultimate
integrated modeling, simulation, and analysis workflow.

XRG Simulation has extended expertise in thermal energy system simulations in the automotive and building
services field, for the aerospace and shipping industry and for power plants. We are specialized in energy engi-
neering and support industry and research institutions in research, development and improvement of products
and projects. Our excellence is:

• Modelling and simulation of thermodynamic systems

• Mathematical optimization

• Validation of models

• Software development for optimization as well as pre- and post-processing of system simulations
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