
Editor: Prof. Anton Haumer

P R O C E E D I N G S

.

2 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

Proceedings of the 13th International Modelica Conference
Regensburg, Germany, March 4 – 6, 2019

Editor:
Prof. Anton Haumer

Published by:
Modelica Association and Linköping University Electronic Press

Series: Linköping Electronic Conference Proceedings, No. 157
ISBN: 978-91-7685-122-7
ISSN: 1650-3686
eISSN: 1650-3740
DOI: 10.3384/ecp19157
URL: http://www.ep.liu.se/ecp/contents.asp?issue=157

Organized by:
OTH Regensburg Modelica Association
Seybothstr. 2 c/o PELAB, IDA Linköpings Universitet
D-93053 Regensburg S-58183 Linköping
Germany Sweden

Conference location:
OTH Regensburg
Seybothstr. 2
D-93053 Regensburg
Germany

Copyright © Modelica Association, 2019

.

http://www.ep.liu.se/ecp/contents.asp?issue=157
https://www.oth-regensburg.de/en.html
https://modelica.org/
https://www.oth-regensburg.de/en.html

DOI Proceedings of the 13th International Modelica Conference 3
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

PREFACE
The Modelica Conference is the main event for users, library developers, tool vendors and language designers to share
their knowledge and learn about the latest scientific and industrial progress related to Modelica and to the Functional
Mockup Interface.
Since the start of the collaborative design work for Modelica in 1996, Modelica has matured from an idea among a
small number of dedicated enthusiasts to a widely accepted standard language for the modeling and simulation of
cyber-physical systems. In addition, the standardization of the language by the non-profit organization Modelica
Association enables Modelica models to be portable between a growing number of tools. Modelica is now used in
many industries including automotive, energy and process, aerospace, and industrial equipment. Modelica is the
language of choice for model-based systems engineering.
Highlights of the Conference:

• 76 oral presentations and 13 poster presentations, 4 libraries for the Modelica Library Award
• 2 Keynotes
• 7 Tutorials and 2 Industrial User Presentations Sessions
• 14 Vendor Sessions and 17 Sponsors & Exhibitors

Welcome
I warmly welcome you to Regensburg, a city with history going back to Roman times, and to OTH the Technical
University of Applied Sciences Regensburg.
Starting with this conference, you will notice some changes:
First, we are going to organize the International Modelica Conference every two years in spring. In the years between
International Modelica Conferences, Modelica Conferences are organized on other continents with country specific
focus.
Although in 2018 there have been two very successful conferences in Japan and in the United States, we received 101
submissions from authors all over the world which have been thoroughly reviewed.
Second, additional to the tutorials and vendor presentations on the first day of the conference, we are going to have
Industrial User Presentations related to the Modelica Association Projects. These presentations are not included in the
proceedings, but they should provide a nucleus for discussions and broadening the users groups.

I want to thank the members of the Program Committee for their work during the review
process, as well as the members of the Organizing Committee – without their support this
conference wouldn’t have been a success.

Prof. Anton Haumer
OTH Regensburg
Conference Chair

Modelica News

In the name of the Modelica Association that is co-organizing this event, I also would like to welcome you in

Regensburg. It is now already the 13th conference on Modelica, the Functional Mockup
Interface and related technology. Since the number of projects and standards of the Modelica
Association is growing, we would like to give you an overview about the current status in the
traditional "Modelica Association News" section on Tuesday morning: All the Modelica
Association Project leaders will give a short overview about their project and about their future
plans.

Prof. Dr. Martin Otter
DRL, Wessling, Germany

Chair of Modelica Association

.

https://modelica.org/
https://fmi-standard.org/
https://fmi-standard.org/

4 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

Keynote: Modelica and virtual education
Dr. Christian Kral
TGM, Vienna, Austria
Good education of engineering students requires theoretical knoweldge and lots of calculation
experience to better understand theory and applications. Laboratory courses are offered to
better relate theory and practical understanding. Simulations even more improve the linking of
theory and practice, as systemic thinking is supported. Students learn to understand the
interaction of simple models and more advanced systems.
In the keynote speech two virtual education scenarios in engineering will be presented: First, a
workflow of creating and evaluating calculation and simulation examples is proposed. The

workflow is based on Modelica and the online tool Letto. Second, virtual lab experiments of electric machines and
drives are shown. In the virtual lab Modelica variables are controlled and viszualized by Labview. The presented
approaches are possible steps in the direction of virtual education to improve and strengthen the students' expertise
and knowledge and with the particular intention to motivate students.
Bio: Christian Kral received the diploma and doctoral degrees from the Vienna University of Technology, Vienna,
Austria, in 1997 and 1999, respectively. From 1997 to 2000, he was a Scientific Assistant in the Institute of Electrical
Drives and Machines, Vienna University of Technology. Since 2001, he has been with the AIT Austrian Institute of
Technology GmbH (the former Arsenal Research) in Vienna. From January 2002 until April 2003, he was a Visiting
Professor at the Georgia Institute of Technology, Atlanta. Dr. Kral is teaching electric machines and drives at the higher
college of engineering »TGM« in Vienna and the university of applied research, »Technikum Wien« since 2013. His
research interests include the modeling and simulation of electrical systems, machines and drives. He is a member of
the Austrian Electrotechnical Association (OVE) and the Modelica Association. Dr. Kral published over 150 scientific
papers and one book on Modelica and the object oriented modeling of electric machines.

Keynote: Simulation Guided Design for New Automotive Applications
Dr. Gerd Rösel
Continental, Regensburg, Germany

The Automotive Industry has to cope with disruptive technology and business changes within
the next decade. Connected vehicles become reality and drive the development to automated
driving. New mobility solutions will have to answer shared economy demands. The regulatory
requirement on significant reduction of CO2- and pollutant emission leads to fast changing
parallel development of additional propulsion systems in the same period. Consequently, the

variety of solutions within a vehicle will have to serve a furthermore increasing complexity from embedded-systems to
system-of-systems to cyber-physical-systems.
Simulation guided design is the key to handle such complexity in all areas of application for an automotive supplier to
keep quality, time to market and costs under control. The speech covers the main directions of disruptive technology
changes and examples of dedicated solutions. There will be examples given which cover virtual function development
for embedded systems as well as solutions for predictive maintenance and connected energy management as system-
of-systems. The focus will be to point out the necessity to design and optimize such systems by simulation.
Bio: Dr. Gerd Rösel is heading the departments Advanced System Engineering for Engine Systems (since 2015) as well
as Hybrid Electric Vehicle Business Unit (since 2018) for Continental Powertrain. The application and further
development of simulation methodologies is a significant building block in these responsibilities. The variety in
simulation technology covers propulsion system simulation as well as specialized simulation in areas like electric
machines, mixture formation and NVH.
From 1996 until 2015 he has been responsible in different positions for Gasoline- and Diesel-System-Development for
serial and advanced applications. From 1992 to 1997 he was a research associate at Technical University of Dresden
and finished with the graduation of Dr.-Ing. in 1997. The Diploma degree in electrical engineering from Technical
University of Dresden was achieved in 1992.

.

DOI Proceedings of the 13th International Modelica Conference 5
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

ORGANIZING COMMITTEES

Conference Chair
Prof. Anton Haumer, OTH Regensburg, Germany

Conference Board
Dr. Hilding Elmqvist, Mogram, Sweden
Prof. Peter Fritzson, Linköping University, Sweden
Prof. Martin Otter, DLR, Germany
Dr. Michael Tiller, Xogeny, USA

Program Committee
Johan Åkesson, Modelon AB and Department of Automatic Control, Lund University, Sweden
Markus Andres, Dassault Systemes Deutschtland GmbH, Germany
Maximilian Apfelbeck, Max Streicher, Germany
Bernhard Bachmann, Fachhochschule Bielefeld, Germany
John Baras, University of Maryland, USA
John Batteh, Modelon, Inc., USA
Albert Benveniste, INRIA, France
Christian Bertsch, Robert Bosch GmbH, Germany
Volker Beuter, VI-grade GmbH, Germany
Thomas Beutlich, ESI ITI GmbH, Germany
Marco Bonvini, Lawrence Berkeley National Laboratory, USA
Scott Bortoff, Mitsubishi Electric Research Laboratories, Japan
Timothy Bourke, INRIA, France
Daniel Bouskela, EDF, France
David Broman, KTH Royal Institute of Technology, Sweden
Dan Burns, MERL, USA
Felix Bünning, Empa/ETH Zürich, Switzerland
Francesco Casella, Politecnico di Milano, Italy
Massimo Ceraolo, University of Pisa, Italy
Yan Chen, Pacific Northwest National Lab,
Massimo Cimmino, McGill University, Canada
Christoph Clauss, Fraunhofer IIS EAS Dresden, Germany
Johan de Kleer, Palo Alto Research Center, Inc., USA
Mike Dempsey, Claytex, GreatBritain
Hilding Elmqvist, Mogram, Sweden
Olaf Enge-Rosenblatt, Fraunhofer, Germany
Gianni Ferretti, Politecnico di Milano, Italy
Peter Fritzson, Linköping University, Sweden
Leo Gall, LTX Simulation GmbH, Germany
Anton Haumer, OTH Regensburg, Germany
Dan Henriksson, Dassault Systemes, Sweden
Yutaka Hirano, Toyota Motor Corporation, Japan
Jianjun Hu, Lawrence Berkeley National Laboratory, USA
Christoph Höger, TU Berlin, Germany
Bengt Jacobson, Chalmers University of Technology, Sweden
Filip Jorissen, Katholieke Universiteit Leuven, Netherlands
Jochen Koehler, ZF Friedrichshafen AG, Germany
Jiri Kofranek, Charles Univesrity, CzechRepublic
Christian Kral, Electric Machines, Drives and Systems, Austria
Christopher Laughman, MERL, USa

.

6 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

Moritz Lauster, RWTH Aachen University, Germany
Alberto Leva, Politecnico di Milano, Italy
Kristin Majetta, Fraunhofer, Germany
Marek Matejak, Charles University in Prague, CzechRepublic
Alexandra Mehlhase, TU Berlin, Germany
Lars Mikelsons, University of Augsburg, Germany
Ramine Nikoukhah, Altair, France
Henrik Nilsson, University of Nottingham, GreatBritain
Thierry Nouidui, ,
Christoph Nytsch-Geusen, Universität der Künste Berlin, Germany
Zheng O'Neill, The University of Alabama, USA
Hans Olsson, Dassault Systèmes, Sweden
Martin Otter, DLR, Institute of System Dynamics and Control, Germany
Kaustubh Phalak, Ingersoll Rand, Ireland
Andreas Pillekeit, dSPACE, Germany
Adrian Pop, Linköping University, Sweden
Johan Rhodin, ModSimTech, LLC, USA
Lisa Rivalin, Engie Axima / LBNL, USA
Clemens Schlegel, Schlegel Simulation GmbH, Germany
Gerhard Schmitz, Hamburg University of Technology, Germany
Michael Schneider, MAX STREICHER GmbH & Co. KG aA, Germany
Peter Schneider, Fraunhofer IIS, Design Automation Division, Germany
Stefan-Alexander Schneider, University of Applied Sciences Kempten, Germany
Gerald Schweiger, TU Graz, Austria
Michael Sielemann, Modelon Deutschland GmbH, Germany
Martin Sjölund, Linköping University, Sweden
Rita Streblow, RWTH Aachen University, Germany
Ed Tate, Exa, USA
Wilhelm Tegethoff, TLK-Thermo GmbH, Germany
Bernhard Thiele, DLR, Germany
Matthis Thorade, Modelon, Germany
Michael Tiller, Xogeny, USA
Jakub Tobolar, DLR - German Aerospace Center, Germany
Hubertus Tummescheit, Modelon AB, USA
Alfonso Urquia, UNED, Spain
Gavan Valentin, ENGIE Lab, France
Bram van der Heijde, KU Leuven, EnergyVille, Netherlands
Luigi Vanfretti, Rensselaer Polytechnic Institute, USA
Subbarao Varigonda, Cummins, USA
Stephane Velut, Modelon AB, Sweden
Michael Wetter, Lawrence Berkeley National Laboratory, USA
Stefan Wischhusen, XRG Simulation GmbH, Germany
Stephan Ziegler, Dassault Systèmes, Germany
Dirk Zimmer, DLR, Germany
Wangda Zuo, University of Miami, USA

Organizing Committee
Prof. Anton Haumer, OTH Regensburg, Germany
Sandra Schäffer, OTH Regensburg, Germany
Verena Hämmerle, OTH Regensburg, Germany
Sina Fehl, OTH Regensburg, Germany
Lara Helmig, Donauevents, Wenzenbach, Germany
Leonie Dentel, Donauevents, Wenzenbach, Germany

.

DOI Proceedings of the 13th International Modelica Conference 7
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

CONTENTS

PREFACE ... 3
Welcome .. 3
Modelica News .. 3
Keynote: Modelica and virtual education ... 4
Keynote: Simulation Guided Design for New Automotive Applications ... 4

ORGANIZING COMMITTEES .. 5
Conference Chair ... 5
Conference Board .. 5
Program Committee .. 5
Organizing Committee ... 6

CONTENTS ... 7

INDEX OF AUTHORS ... 11

SESSION 1A: BUILDINGS 1 ... 15
A virtual test-bed for building Model Predictive Control developments .. 17
Characterization of Linear Reduced Order Building Models Using Bode Plots ... 25
BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models .. 33

SESSION 1B: POWER & ENERGY 1 ... 39
Open Source PhotoVoltaics Library for Systemic Investigations ... 41
Python-Modelica Framework for Automated Simulation and Optimization .. 51
Demand oriented Modelling of coupled Energy Grids .. 59

SESSION 1C: FMI 1 ... 67
OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP ... 69
FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units .. 79
Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation
Protocol ... 87

SESSION 1D: AUTOMOTIVE 1 ... 97
Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses .. 99
System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures ... 107
Diesel Cooling System Modeling for Electrification Potential ... 117

SESSION 2A: BUILDINGS 2 ... 127
Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems .. 129
Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS................. 139
An Extended Luenberger Observer for HVAC Application using FMI .. 149

SESSION 2B: POWER & ENERGY 2 ... 157
A Modelica-Based Framework for District Heating Grid Simulation ... 159

.

8 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants .. 169
Automated model generation and simplification for district heating and cooling networks 179

SESSION 2C: FMI 2 ... 187
Non Linear Dimension Reduction of Dynamic Model Output ... 189
Relative Consistency and Robust Stability Measures for Sequential Co-simulation 197
Energy balance based Verification for Model Based Development .. 207

SESSION 2D: ELECTRICAL POWER 1 ... 213
Parametrization Of A Simplified Physical Battery Model .. 215
Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica
 ... 221
A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries 229

SESSION 3A: HVAC .. 239
Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage 241
Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking 251
Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions 259
Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment 265

SESSION 3B: LANGUAGE ... 275
Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension ... 277
MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia 289
Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language
 ... 303
Towards a High-Performance Modelica Compiler .. 313

SESSION 3C: MECHANICS & TRANSPORT ... 321
Overview on the DLR RailwayDynamics Library .. 323
Using Baumgarte's Method for Index Reduction in Modelica .. 333
Modeling of Rotating Shaft with Partial Rubbing .. 343
Aspects of Train Systems Simulation ... 353

SESSION 3D: NEW APPLICATIONS ... 363
Modeling Supply and Demand in Modelica .. 365
Modelica Modelling of an Ammonia Stripper ... 375
Algorithms for Component-Based 3D Modeling ... 383
Model visualization for e-learning, Kidney simulator for medical students ... 393

SESSION 4A: POWER & ENERGY 3 .. 403
Platform for Microgrid Design and Operation .. 405
Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables ... 413
Model-Based Controls Development and Implementation for a Hydroelectric Power System 423

SESSION 4B: AUTOMOTIVE 2 ... 433
Fault Insertion for Controller Calibration in a Range of Engine Models ... 435
Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS.................................. 441

.

DOI Proceedings of the 13th International Modelica Conference 9
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics ... 451

SESSION 4C: AEROSPACE .. 461
Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects .. 463
A Modelica-based environment for the simulation of hybrid-electric propulsion systems 471
Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries ... 481

SESSION 4D: NUMERICAL METHODS .. 489
DAE Solvers for Large-Scale Hybrid Models .. 491
Adaptive Step Size Control for Hybrid CT Simulation without Rollback .. 503
Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator 513

SESSION 5A: BUILDINGS 3 ... 523
Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model ... 525
Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems 533
Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems .. 543

SESSION 5B: POWER & ENERGY 4 ... 551
Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor .. 553
Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration 561
Modelling of the Central Heating Station within a District Heating System with Variable Temperatures 567

SESSION 5C: THERMODYNAMIC 1 ... 577
Towards Hard Real-Time Simulation of Complex Fluid Networks ... 579
Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs 589
Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus
on dynamic route .. 599

SESSION 5D: ELECTRICAL POWER 2 ... 605
Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power
Distribution Networks using Modelica and the OpenIPSL .. 607
A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL ... 617
Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library ... 627

SESSION 6A: BUILDINGS 4 ... 637
The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems............... 639
Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving ... 647
Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System ... 655

SESSION 6B: THERMODYNAMIC 2 ... 663
Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process 665

.

10 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas
Flow Metering ... 671
Transient modelling and simulation of a double-stage Organic Rankine Cycle .. 679

SESSION 6C: TOOLS ... 687
A New OpenModelica Compiler High Performance Frontend .. 689
OMJulia: An OpenModelica API for Julia-Modelica Interaction .. 699
 “hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves .. 709

SESSION 6D: AUTOMOTIVE 3 ... 715
Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation 717
Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures .. 725
Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation
 ... 735

POSTER SESSION ... 741
Flow Network based Diagnostics for Incorrect Synchronous Models ... 743
Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products 751
Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library .. 759
Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals
using FMI 2.0 features ... 769
Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems .. 777
Daccosim NG: co-simulation made simpler and faster ... 785
Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica
Models ... 795
Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation ... 805
Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer 811
Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool .. 819
Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles 827
Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica 833
Translating Simulink Models to Modelica using the {\NSP} Platform ... 841

SPONSORS & EXHIBITORS .. 850
Bronze .. 850
Silver .. 850
Gold ... 851
Platin .. 852

.

DOI Proceedings of the 13th International Modelica Conference 11
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

INDEX OF AUTHORS
A

Agosta, Giovanni.. 313
Albuquerque, Maria 375
Alekeish, Khaled .. 87
Altes-Buch, Queralt 533
Aoun, Nadine ... 129
Argaud, Jean-Philippe 553
Arzberger, Max .. 471
Asghar, Adeel 69, 289, 699
Aute, Vikrant.. 241, 259

B
Baldino, Emanuele 313
Bao, Bingrui ... 805
Bartolini, Andrea ... 627
Batteh, John ... 117, 423
Baudette, Maxime 617
Bavière, Roland .. 129
Becker, Christian .. 759
Bellmann, Tobias ... 481
Benedikt, Martin.................................... 87, 735
Benssy, Amine ... 553
Benthin, Jörn ... 59
Bergmann, Gábor .. 503
Bidoggia, Benoit... 221
Bisinella, Ana ... 375
Blacha, Tobias .. 179
Blochwitz, Torsten ... 87
Bode, Carsten 413, 655, 833
Bortoff, Scott 149, 333
Braun, Robert .. 69
Briant, David .. 725
Brkic, Jovan .. 41
Brüggemann, Dieter 679
Brun, Adrien .. 129
Buffoni, Lena.. 69, 699
Bürger, Christoff .. 277

C
Cabrera, Jose Juan Hernandez 785
Cameron, Morgan 451
Carrillo, Rafael ... 17
Casella, Francesco 313, 627, 689
Ceran, Muaz .. 41
Chancelier, Jean-Philippe 841
Chen, Liping ... 463, 827
Chen, Weitao ... 717
Cherubin, Stefano .. 313
Costa, Andrea .. 17

D
Dahash, Abdulrahman 169
De C. Fernandes, Marcelo 617

De Cinque, Pietro .. 17
De Oliveira, Janaína G. 617
Dempsey, Mike 435, 725
Dhumane, Rohit .. 241
Ding, Jianwan .. 463
Dong, Yulu ... 553

E
Eckhardt, Tom ... 159
Eek, Magnus ... 69
Ehrenwirth, Mathias 567, 647
Ehret, Marc ... 323
Elci, Mehmet ... 169
Eller, Tim ... 679
Elmoghazy, Mohamed 41
Elmqvist, Hilding ... 589
Elsheikh, Atiyah .. 795
Ensbury, Theodor 725
Evora, Jose .. 785

F
Farkas, Rebeka .. 503
Febres, Jesús ... 17
Franke, Rüdiger ... 689
Frayssinet, Loïc ... 785
Fritzson, Dag ... 69
Fritzson, Peter 69, 289, 303, 699
Fu, Yangyang 561, 811
Fujinuma, Tomohisa 751
Furic, Sébastien... 841

G
Gan, Dunwen .. 353
Gao, Feng .. 353
Garone, Emanuele 229
Gerrer, Claire-Eleuthèriane 189
Ghidaglia, Jean-Michel................................ 375
Gillot, Romain ... 435
Girard, Sylvain ... 189
Glumac, Slaven ... 197
Goldar, Alejandro 229
Görner, Klaus .. 59
Grether, Gustav .. 323
Grimm, Alexander 215
Guironnet, Adrien 627
Guo, Junfeng ... 805

H
Hadengue, Bruno .. 639
Hagemeier, Anne .. 59
Hällquist, Robert ... 69
Han, Xu ... 265
Hatledal, Lars Ivar ... 79
Haumer, Anton 41, 215

.

12 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

Hebeler, Maximilian 599
Heberle, Florian ... 679
Heckel, Jan-Peter ... 759
Heckmann, Andreas 99, 323
Hellerer, Matthias 481
Helsen, Lieve .. 139
Henningsson, Erik .. 491
Heo, Seung-Jin ... 819
Heyer, Annika .. 59
Hinrichs, Sven .. 709
Hirsch, Hauke 525, 769
Holzinger, Franz Rudolf 735
Horkeby, Sune ... 69
Horváth, Ákos .. 503
Hovland, Geir ... 79
Huang, Sen ... 561
Huismann, Philipp .. 59
Hyun, Min-Su ... 819

I
Inui, Masatomo ... 751
Ishibashi, Tatsuro .. 343

J
Jacobson, Bengt ... 717
Jardin, Audrey .. 553
Jeffs, James .. 107
Jeon, Yonggwon ... 819
Ježek, Filip .. 393
Ji, Yang ... 353
Jorissen, Filip ... 139

K
Kaneko, Mamoru ... 207
Kang, Dae-Oh ... 819
Kater, Christian .. 87
Kawai, Tadao ... 343
Keane, Marcus ... 17
Keck, Alexander ... 323
Kinnander, Åke .. 69
Klobut, Krzysztof .. 17
Kofránek, Jiří .. 393
Köhler, Jürgen .. 599
Kolesnikov, Artem 451
Kormann, Maximilian 665
Kovačić, Zdenko ... 197
Kral, Christian .. 41
Krammer, Martin ... 87
Kremers, Enrique ... 785
Krüger, Imke Lisa ... 665
Kuhn, Martin .. 353

L
Lakhian, Vickram ... 543
Lange, Ralph .. 441

Larsen, Tove A. ... 639
Laughman, Christopher149, 265, 589
Lauster, Moritz 25, 709
Leimeister, Mareike 51
Leitner, Martin .. 99
Lemort, Vincent .. 533
Lenord, Oliver ... 441
Leva, Alberto ... 313
Li, Xiang ... 353
Li, Yaoyu .. 251
Li, Zhenning... 259
Lie, Bernt ... 303, 699
Ling, Jiazhen .. 241
Liu, Bohui .. 353
Liu, Shanshan .. 827
Liu, Yuhui .. 463, 827
Lu, Xing ... 811
Lüdicke, Daniel .. 323

M
Mans, Michael .. 179
Materne, Stefan .. 87
Matsuda, Isao ... 207
McGordon, Andrew 107
Mengist, Alachew 699
Merland, Jean-Pierre 375
Mesa-Moles, Luis Corona 553
Mickan, Bodo .. 671
Milz, Daniel ... 481
Mládek, Arnošt ... 393
Mohammadi, Adeleh 17
Morgenroth, Eberhard 639
Mukherjee, Biswarup 607
Müller, Dirk25, 179, 709
Murakami, Toru .. 207

N
Nabi, Saleh .. 265
Nannestad, Mads .. 221
Neumayr, Andrea 383
Nguyen, Anh ... 423
Nicolai, Andreas 525, 769
Nytsch-Geusen, Christoph 33

O
Ochel, Lennart .. 69
Ochs, Fabian ... 169
Olsson, Hans 491, 743
Östlund, Per .. 689
Otter, Martin 383, 589

P
Paepcke, Anne .. 769
Palanisamy, Arunkumar 69, 699
Park, Sooncheol .. 819

.

DOI Proceedings of the 13th International Modelica Conference 13
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

Petzold, Hans ... 525
Picarelli, Alessandro 107, 435
Pickelman, Dale ... 117
Polák, David ... 393
Pop, Adrian 69, 289, 689, 699

Q
Qiao, Hongtao 259, 265
Quoilin, Sylvain .. 533

R
Radermacher, Reinhard 241
Rädler, Jörg .. 33
Ramm, Tobias 567, 647
Ran, Shenhai .. 717
Ravi, Ashok Kumar 117
Redford, John .. 375
Remmen, Peter .. 179
Robert, Jacques ... 375
Robinson, Simon .. 107
Rogers, Ryan .. 543
Romero, Alberto .. 229
Runvik, Håkan .. 405

S
Sakura, Mamoru .. 207
Sandou, Guillaume 129
Saut, Jean-Philippe 375
Sawada, Kenji .. 207
Scheidegger, Andreas 639
Schmitz, Gerhard 413, 655, 671
Schrag, Tobias 567, 647
Schröder, Nikolas ... 441
Schubnel, Baptiste ... 17
Schuch, Klaus ... 87
Schulze, Christian 513, 599
Schwan, Torsten .. 159
Schwarz, Christoph 323
Seefried, Andreas .. 481
Senkel, Anne .. 655
Sha, Feng ... 353
Shangguan, Duansen 463, 827
Shin, Siichi .. 207
Šilar, Jan ... 393
Singh, Sukhwinder 671
Sjölund, Martin 69, 289, 303, 689, 699
Skriver, Kasper ... 221
Soppa, Andreas .. 87
Stauffer, Yves ... 17
Steingrube, Annette 169

Sterling, Raymond .. 17
Styve, Arne .. 79

T
Takahashi, Toru .. 777
Tavella, Jean-Philippe 785
Tegethoff, Wilhelm 513, 599
Terraneo, Federico 313
Thiele, Bernhard 69, 303
Thorade, Matthis .. 33
Tiller, Michael ... 365
Tobolar, Jakub... 99
Tretsiak, Dzmitry ... 451
Tugores, Carles Ribas 33

U
Unger, Rene .. 159

V
Vallée, Mathieu .. 129
Van der Linden, Franciscus 481
Vanfretti, Luigi491, 607, 617
Vannahme, Anna .. 647
Varchmin, Andreas 513
Velut, Stephane .. 405
Vering, Christian ... 709
Vialle, Stéphane .. 785
Vrabie, Draguna .. 561

W
Wang, Bo .. 353
Wang, Wenyi .. 251
Watanabe, Yutaka 777
Webster, John ... 833
Weis, Pierre .. 841
Weiser, Christian .. 481
Widanage, Widanalage Dhammik 107
Windahl, Johan ... 405

Z
Zhang, Baokun .. 805
Zhang, Houxiang ... 79
Zhang, Zhe .. 221
Zhao, Yan .. 827
Zhou, Fanli .. 805, 827
Ziessler, Ole .. 159
Zimmer, Dirk471, 579, 589
Zsurzsan, Tiberiu-Gabriel 221
Zuo, Wangda 561, 811

.

14 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

DOI Proceedings of the 13th International Modelica Conference 15
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 1A: BUILDINGS 1
A virtual test-bed for building Model Predictive Control developments
Sterling, Raymond and Febres, Jesús and Costa, Andrea and Mohammadi, Adeleh and Carrillo, Rafael and
Schubnel, Baptiste and Stauffer, Yves and De Cinque, Pietro and Klobut, Krzysztof and Keane, Marcus

Characterization of Linear Reduced Order Building Models Using Bode Plots
Lauster, Moritz and Müller, Dirk

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models
Nytsch-Geusen, Christoph and Rädler, Jörg and Thorade, Matthis and Tugores, Carles Ribas

.

16 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

A virtual test-bed for building Model Predictive Control developments

DOI Proceedings of the 13th International Modelica Conference 17
10.3384/ecp1915717 March 4-6, 2019, Regensburg, Germany

A virtual test-bed for building Model Predictive Control developments
Sterling, Raymond and Febres, Jesús and Costa, Andrea and Mohammadi, Adeleh and Carrillo, Rafael and
Schubnel, Baptiste and Stauffer, Yves and De Cinque, Pietro and Klobut, Krzysztof and Keane, Marcus

17

A virtual test-bed for building Model Predictive Control
developments

Raymond Sterling1, Jesús Febres2, Andrea Costa3, Adeleh Mohammadi1, Rafael E. Carrillo4, Baptiste
Schubnel4, Yves Stauffer4, Pietro De Cinque3, Krzysztof Klobut5, Marcus M. Keane1

1Department of Civil Engineering, National University of Ireland, Galway, Ireland
{raymond.sterling,adeleh.mohammadi,marcus.keane}@nuigalway.ie

2Fundación IK4 Tekniker, Spain, jesus.febres@tekniker.es
3R2M Solution SRL, Italy, {andrea.costa2, pietro.decinque}@r2msolution.com

4CSEM SA, PV-center, Neuchâtel, Switzerland
{rafael.carrillo,baptiste.schubnel,yves.stauffer}@csem.ch

5 VTT Technical Research Centre of Finland, Espoo 020400, Finland Krzysztof.Klobut@vtt.fi

Abstract
This paper presents the result of the work performed to
develop a virtual test-bed for development and testing of
Model Predictive Controllers within the district cooling
networks field. These controllers are used for its
application in improving the cooling energy efficiency
in the network’s building. The article explains the use of
the different tools to develop and simulate the models
with an emphasis on the advantages and challenges of
co-simulation and model exchange using the Functional
Mockup Interface.
Keywords: District Cooling, Modelling, FMI, Modelica,
Model predictive control

1 Introduction
INDIGO1 is a Horizon 2020 EU-funded project

carried out by six partners from across Europe that aims
to realise more efficient and economic planning, control
and management of existing District Cooling (DC)
networks. This will be achieved through two specific
objectives. The first one is to widen the use of DC
systems and motivate the competitiveness of European
DC market by the development open-source tools for
planning and modelling DC systems (del Hoyo Arce et
al., 2018). The second objective is to reduce primary
energy consumption via improved DC system
management strategies aimed at system efficiency
maximisation and cost minimisation.

In this paper we present the results of the work
performed to improve the energy consumption of the
DC systems across several tasks of the project. This
includes modelling and simulation of various buildings
and the development and implementation of Model
Predictive Controls (MPC) to reduce energy use in
buildings.

Modelling and simulation within this paper is
presented for the Building models. The geometry,

1 www.indigo-project.eu

materials, weather, air infiltration and internal gains of
the models are developed in EnergyPlus and the model
of the energy systems, focusing on the air distribution
system while air handling units are built in Modelica.

The aim of the modelling was two-fold. To provide
an accurate and validated test-bed for testing the
behaviour of the MPC and, at the same time, generate
the synthetic data used for the initial development of
said controllers.

Model integration across different platforms is
performed via Functional Mock-up Interfaces and this
article presents the full workflow on the implementation
from initial building model development to the
generation of results from the MPC.

2 Building Models – EnergyPlus
In the INDIGO project, all the geometrical models of

the buildings are created considering the external
dimensions. This approach influences the way in which
the linear transmittances of the thermal bridges are
calculated. To create the model, the following
information has been collected:
• Geometry of the building;
• Geometry and position of the shading objects (e.g.

other buildings or trees) located around the
modelled buildings;

• Distribution of the mechanical ventilation and the
relative control;

• Position and properties of opaque and transparent
elements (walls, roofs, windows, floors, internal
partitions);

• Electrical consumption for the different buildings
and for the main equipment that is installed in them,
to estimate the internal gains.

For the development of the models related to the
buildings, DesignBuilder v4.7.0.027 and EnergyPlus2
V8.6 were used (Figure 1). It manages input files in .idf

2 https://energyplus.net/

A virtual test-bed for building Model Predictive Control developments

18 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915717

format, which can be edited in the IDF Editor (free
available online) or in a text editor. The IDF file
contains both the input data that the building model
acquires from the HVAC system model, which is
developed in Modelica, and the output data that the
building model transfers to the HVAC system model.
The weather data are included in an .epw file
(EnergyPlus weather file). The information included in
the .idf file and that one included in the .epw file are
combined in a file that is readable by Modelica,
specifically in a .fmu file. The FMU is exported through
a Python script (Nouidui, Wetter and Zuo, 2014).

Figure 1. Aztarain model (DesignBuilder)

In the building model, there are thermal zones in
which the internal air conditions are considered
uniform. The thermal zones were created based on the
air conditioning system and of its control logics, to allow
an accurate modelling of the HVAC systems, as it is
needed by the INDIGO project. As general rule, the
zones whose thermal conditions are controlled by the
same system (AHU) and based on the same sensors are
modelled as part of the same thermal zone.

2.1 Thermal Zones and internal gains
For each building, the zones were created considering

the following criteria t:
• Distinction between conditioned, not conditioned

and specially conditioned zones (e.g. zones with
special conditioning requirements);

• If two parts of the same building are served by
different AHUs the two parts will be modelled
separately;

• The creation of the zones considers the location of
the terminal units, to define if the conditions of some
rooms are controlled by a post-heating or by a post-
cooling coil.

• The creation of the zones also considers the location
of the temperature sensors within the air distribution

3 http://www.euskalmet.euskadi.net/s07-
5853x/es/meteorologia/estacion.apl?e=5&campo=C039

scheme, to model as close as possible to the reality
the control logic and the temperature of the sensors
on which the control logic is based.
o Rooms whose internal conditions are

measured by a specific sensor (inside the
room or in the return duct) are modelled
separately.

o The location of the sensor is important
because it defines the conditions that will be
used by the control system and therefore
affects the goal of the project.

• Internal gains have been modelled based on working
schedules and a survey which was used to determine
occupancy levels and equipment inside the zones.
The occupation of the different zones was modelled
considering the number of seats or beds represented
in the architectural drawings.

2.2 Weather data
The weather data regarding dry air temperature (°C)

and relative humidity (%) are taken on site while all the
other data (solar radiation, wind velocity, wind
direction, pressure) are taken from the weather station
“C039 - Deusto” of the Basque agency of meteorology
(“Agencia vasca de meteorología”)3 . The weather
station is in the Bilbao city, 2,5 km away from the demo
site presented in this paper.

The global radiance on a horizontal surface expressed
in [W/m2] is information included in the weather file. A
method provided by Reindl, D.T. et. al (1990) was used
to estimate the diffuse radiation and the direct radiation
from the global one. The method was validated for 5
localities in America and in Europe having very
different climates (latitudes from 28.4°N to 59.56°N)
(Reindl, Beckman and Duffie, 1990).

The sun position is evaluated based on the
geographical position of the building.

2.3 Preparation for interfacing with
Modelica

To establish the communication between EnergyPlus
and Modelica the use of the EnergyPlus object
“ExternalInterface” is necessary. This object activates
the external interface of EnergyPlus.

Currently, the only valid entries are PtolemyServer,
FunctionalMockupUnitImport, and
FunctionalMockupUnitExport.

2.3.1 Receiving data from Modelica
For the INDIGO project, the option

“FunctionalMockupUnitExport” was selected because
the EnergyPlus file is exported as a FMU for co-
simulation. The data that Modelica communicates to
EnergyPlus are:

A virtual test-bed for building Model Predictive Control developments

DOI Proceedings of the 13th International Modelica Conference 19
10.3384/ecp1915717 March 4-6, 2019, Regensburg, Germany

• Sensible load [Qs] (W) due to the air supplied by

the mechanical ventilation (for every zone of the
building)

• Latent load [Ql] (W) due to the air supplied by the
mechanical ventilation (for every zone of the
building)

EnergyPlus considers those loads in the same way as
the internal thermal gains.

The use of heat flows instead of typical state variables
(temperature, air mass flow rate, relative humidity etc.)
in the data exchange from Modelica to the building
FMU is motivated by modelling simplifications as
exchanging state variables would significantly increase
the computational effort without providing advantages
over the proposed procedure.

2.3.2 Sending Data to Modelica
The data that EnergyPlus communicates to Modelica

are:
• Temperature [T]

o Site Outdoor Air Dry-Bulb Temperature (°C)
o Zone Mean Air Temperature (°C) (for every

zone of the building)
• Relative humidity [RH]

o Site Outdoor Air Relative Humidity (%)
o Zone Mean Air Relative Humidity (%) (for

every zone of the building)
• Humidity ratio [X]

o Site Outdoor Air Humidity Ratio
(kgWater/kgDryAir)

o Zone Mean Air Humidity Ratio
(kgWater/kgDryAir) (for every zone of the
building)

To calculate the heat flows between the HVAC
system and the building, Modelica requires knowledge
of the temperature and humidity conditions of the zones.
Therefore, these are the variables selected to be
exchanged from the FMU to Modelica.

3 HVAC Models – Modelica
On the demo site for the INDIGO project, six types

of air handling units were identified. However, for
reasons of space in this paper, this work focuses on one
type which is the most common and the one described
in the case study, for further information please refer to
(Sterling et al., 2017).

Modelica models for HVAC systems use components
based on the Modelica.Fluid library to replicate the
schematic of the units. In INDIGO, all AHU will have
fresh (port_F) and supply (port_S) port connections. For
those units with return air, return (port_R) and exhaust
(port_E) port connection are added.

All units will output the heat flow of each active
component (e.g. heating coils and cooling coils).

Nominal design conditions have been imposed for the
cooling coil models since no information about the input
conditions on the water side of the cooling coils is being
gathered by the BMS. Such conditions correspond with
constant input water temperature and constant
maximum mass flow rate achieved when valve is 100%
open.

3.1 AHU Model
For this research work, a full-sized air handling unit

type is demonstrated. It is composed of:
• Heat recovery (HR): two heat exchangers

interconnected via a water circuit;
• Cooling Coil (CC);
• Heating Coil (HC);
• Fans;
• Humidifier (H);

1

2

Return
Fan

Supply

Return

Primary System

Supply
Fan

+

HC

3

6

7

4

8

10

-

CC

5
9

11

12

13

14HX

HR_E

HX

HR_S

15

H
16

17

18

19

20

21

27

26
25

24

22

23

Figure 2. Schematic of the AHU under study

Table 1. AHU Model Components and Variables.
Type: M: Measurement, I: Input

Component Variable Type #
Fan Supply air mass flow rate M 1
Fan Return air mass flow rate M 2
Heating Coil Valve position I 3
Cooling Coil Air output T M 4
Cooling Coil Valve position I 5
Cooling Coil Air input T M 6
Cooling Coil Air input RH M 7
Cooling Coil Air output RH M 8
Cooling Coil Water mass flow rate M 9
Cooling Coil Water input T M 10
HR Supply Air input T M 11
HR Supply Air input RH M 12
HR Exhaust air input T M 13
HR Exhaust Air input RH M 14
HR Exhaust water mass flow rate M 15
Humidifier Air output T M 16
Humidifier Air output RH M 17
Humidifier Valve position I 18

A virtual test-bed for building Model Predictive Control developments

20 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915717

HR Exhaust Air output T M 19
HR Exhaust Air output RH M 20
HR water Pump pressure M 21
Heating Coil Air output T M 22
Heating Coil Air output RH M 23
Heating Coil Water input T M 24
Cooling Coil Water output T M 25
Fan Supply Pump pressure M 26
Fan Return Pump pressure M 27

3.2 AHU Controllers
The AHU has an associated control system (named

AHU_controller) emulating the behaviour of the real
system as closely as possible with the available data
(e.g. O&M manuals from the demo site).

The AHU_controller operates in a mode-switching
hybrid system, i.e., it is a system that can operate in
multiple modes, and can switch between these modes
either through continuous- or discrete-valued signals.
The AHU can operate in 2 nominal modes for
temperature control: (1) when the controlled
temperature is above its set-point plus dead-band
(T_ASP) and (2) when the controlled temperature is
below its set-point minus dead-band (T_BSP):

In the case of T_ASP, the AHU_controller shall:
• Modulate the opening signal valve of the Heating

Coil towards the fully closed position.
• Modulate the opening signal valve of the Cooling

Coil towards the fully opened position.
In the case of T_BSP, the AHU_controller shall:

• Modulate the opening signal valve of the Cooling
Coil towards the fully closed position.

• Modulate the opening signal valve of the Heating
Coil towards the fully opened position

All modulations are performed via PID control.
In this controller humidity control operates

independently from the heating/cooling operation. For
humidity control, the AHU can also operate in two
nominal modes: (1) when the controlled relative
humidity is above its set-point plus dead-band
(RH_ASP) and (2) when the controlled relative
humidity is below its set-point minus dead-band
(RH_BSP).

In the case of RH_ASP, the AHU_controller shall:
• Modulate the opening signal valve of the Cooling

Coil towards the fully opened position.
• Modulate the opening signal valve of the Humidifier

towards the fully closed position.
In the case of RH_BSP, the AHU_controller shall:

• Modulate the opening signal valve of the Cooling
Coil towards the fully closed position.

4 http://fmi-standard.org/

• Modulate the opening signal valve of the Humidifier
Coil towards the fully opened position

All modulations are performed via PID control.
In this controller, heat recovery control operates

independently from the heating/cooling operation. Heat
recovery operates in on/off mode as follows:
• If (Cooling Coil valve > 0 and dH > 0) or (Heating

Coil valve > 0 and dH < 0) then 1.0 else 0.0.
According to maintenance personnel from the demo

site, fans operate at fixed mass flow rate 100%. Hence,
in this controller, fan output is always true.

4 Whole Building Model
4.1 FMU Interfacing

EnergyPlus is a well-established, whole building
energy simulation tool that considers a broad range of
different characteristics of the buildings. It is an optimal
tool to simulate the long-term (days, months and years)
energy performance of the buildings. However, the
implementation of the HVAC systems within
EnergyPlus does not account for dynamics of diverse
elements of such systems (heat exchangers, ducts,
boilers, etc.) making this tool poorly accurate for short-
term (minutes and hours) simulations. To overcome this
issue, we decided to integrate an EnergyPlus model of
the buildings (geometry, materials, weather, internal
gains) with HVAC models developed in Modelica via
the Functional Mock-up Interface4. Figure 3 shows the
data exchange, at each time-step, between HVAC model
in Modelica and each zone in the EnergyPlus building
model.

Modelica
AHU and air
distribution

model

EnergyPlus
Zone Model

Supply Air Sensible Load
Supply Air Latent Load

Zone Temperature
Zone Relative Humidity
Zone Absolute Humidity
Weather Conditions

Figure 3. Modelica/EnergyPlus data exchange
diagram.

4.2 INDIGO demo site model
To demonstrate the approach INDIGO has taken

towards developing the models, part of a building that is
supplied by a single air handling unit has been selected.
This zone is called “Aislamiento” since it is the section
where isolation rooms for immunodepressed patients
are hospitalised. Hence, the Aislamiento zones are
conditioned by a specific AHU because in those rooms
the requested conditions are different. This AHU, which
structure is identical to the one in Figure 2, supplied two
zones that are kept at a pressure positive state. Figure 4
shows the main blocks of the model with corresponding
variable exchange as built in Modelica.

A virtual test-bed for building Model Predictive Control developments

DOI Proceedings of the 13th International Modelica Conference 21
10.3384/ecp1915717 March 4-6, 2019, Regensburg, Germany

Figure 5. AHU Modelica Schematic

In Figure 4, T stands for Temperature, RH for relative
humidity, x for absolute humidity, Qs for sensible heat,
Ql for latent heat, PHC for post-heating coil and SP for
setpoint. As mentioned, the model takes as inputs
weather data and set-points and exchanges with the
EnergyPlus FMU sensible and latent loads calculated
also using the FMU Zone’s information for indoor air
conditions.

To use this model in the MPC developments, the
whole building (AHU in Modelica and physical model
in EnergyPlus-FMU) model was packaged in a FMU as
shown in Figure 6.

From the whole building FMU (Figure 6), the model
only needs as inputs weather data and outputs all the
necessary variables to produce data for developing and
training the MPC controllers. This includes not only the
environmental conditions of the air in different point of
the energy path but also the energy consumption of
relevant elements such as coils.

Figure 6. Whole Building FMU Schematic

4.3 Model simulation
Results from simulating the model for 1-year are

presented in Figure 5. The purpose of performing the
simulation was to validate the suitability of the model
for use in MPC, to validate the values provided in the

Zone 2

AHU

Zone 1
𝑸𝒔𝟏,𝑸𝑳𝟏

𝑻𝟏 ,𝑹𝑯𝟏 , 𝒙𝒙𝟏

𝑻𝒐𝒖𝒕𝒕 ,𝑹𝑯𝒐𝒖𝒕𝒕 , 𝑰𝒓𝒓𝒓𝒓

𝑻𝑺𝑷
𝑹𝑯𝑺𝑷

𝑸𝒔𝟐,𝑸𝑳𝟐

PHC-1

PHC-2
𝑻𝟐 ,𝑹𝑯𝟐 , 𝒙𝒙𝟐

MIX

𝑻𝒓𝒓𝒆𝒕𝒕 ,𝑹𝑯𝒓𝒓𝒆𝒕𝒕 , 𝒙𝒙𝒓𝒓𝒆𝒕𝒕
Whole

Buildign
FMU

Supply air data (𝑇𝑆𝑢𝑝𝑝𝑙𝑦 ,𝑅𝐻𝐻𝑆𝑢𝑝𝑝𝑙𝑦)

Cooling Power Consumption (𝑃𝐶𝑜𝑜𝑙)

AHU data (𝑇,𝑅𝐻𝐻 before/after each component)

Heat to zones (𝑄𝑠1,𝑄𝑙1,𝑄𝑠2 ,𝑄𝑙2)

Zone data (𝑇1,𝑅𝐻𝐻1, 𝑥𝑥1,𝑇2,𝑅𝐻𝐻2 , 𝑥𝑥2)

Weather data

Set-points

Return air data (𝑇𝑟𝑟𝑒𝑡𝑡 ,𝑅𝐻𝐻𝑟𝑟𝑒𝑡𝑡 , 𝑥𝑥𝑟𝑟𝑒𝑡𝑡)

Air to zones data after PHC
(𝑇𝑃𝐻𝐻𝐶_1,𝑅𝐻𝐻𝑃𝐻𝐻𝐶 _1, 𝑇𝑃𝐻𝐻𝐶_2,𝑅𝐻𝐻𝑃𝐻𝐻𝐶 _2)

Figure 4. Results from 1-year simulation

0 50 100 150 200 250 300 350

0

20

40

Time [d]

To

0 50 100 150 200 250 300 350
16

20

24

[d
eg

C
]

Time [d]

AHU_Tsp AHU_Tsupply

0 50 100 150 200 250 300 350
20
21
22
23
24

[d
eg

C
]

Time [d]

T1 T2

0 50 100 150 200 250 300 350

0E0

2E4

4E4

 [W
]

Time [d]

Qflow _cooling Qflow _heating

A virtual test-bed for building Model Predictive Control developments

22 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915717

results were coherent, to check correct the integration of
the different simulation tools via FMU and to check the
proper implementation of the low-level controls. The
model behaves as expected albeit some spikes appear
that show in the middle of the year simulation which are
caused by the mode-changing (e.g. state machine)
implementation of the control system. However, such
spikes do not affect the overall behaviour and result
from the model.

5 Interfacing for MPC and results
This section provides details on the development of

the Model Predictive Controller for the Air Handling
Unit based on the FMU described in the previous
section.

5.1 Interfacing scheme
Figure 7 shows the general interfacing scheme

between the whole building models and the MPC
development framework.

Figure 7 MPC development platform

The main purpose of the whole building models is to
generate synthetic data to train the MPC algorithm on
one side and on the other side to be used as a test-bed to
check that the developed MPC performs as expected.
The MPC algorithm development is explained in the
following sections.

5.2 Design of the MPC
The developed MPC aims at minimising the energy

consumption at building level while maintaining
thermal comfort. The MPC is based on iterative, finite-
horizon, optimisation of the objective function based on
the dynamic model of the plant. The optimization is
defined over the interval [k,k+H], where k is the current
time and H is the prediction (optimisation) horizon.
Typically, only the first (discrete time) step of the
solution is implemented, then the plant state is sampled
again, and a new optimization is repeated in a receding
horizon fashion (see Figure 8).

Figure 8. General diagram of a MPC.
The optimisation problem used by the proposed MPC is
the following:

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑡𝑡,𝑥𝑥𝑟𝑟ℎ

�[𝑤𝑤𝑐𝑐(𝑘𝑘)𝑝𝑝𝑐𝑐(𝑘𝑘) + 𝑤𝑤ℎ(𝑘𝑘)𝑝𝑝ℎ(𝑘𝑘)]
𝐻𝐻

𝑘𝑘=1

+ 𝜆𝜆�{𝑤𝑤𝑡𝑡[𝑡𝑡𝑟𝑟(𝑘𝑘) − 𝑡𝑡𝑖𝑖(𝑘𝑘)]2
𝐻𝐻

𝑘𝑘=1
+ 𝑤𝑤𝑟𝑟[𝑟𝑟ℎ𝑟𝑟(𝑘𝑘) − 𝑟𝑟ℎ𝑖𝑖(𝑘𝑘)]2}

1

subject to constraints:
(𝑡𝑡𝑟𝑟, 𝑟𝑟ℎ𝑟𝑟,𝑝𝑝𝑐𝑐 ,𝑝𝑝ℎ) = 𝑓𝑓(𝑥𝑥𝑡𝑡 ,𝑥𝑥𝑟𝑟ℎ ,Θ) 2

𝑥𝑥𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑥𝑥𝑡𝑡 ≤ 𝑥𝑥𝑡𝑡,𝑚𝑚𝑚𝑚𝑥𝑥 3
𝑥𝑥𝑟𝑟ℎ,𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑥𝑥𝑟𝑟ℎ ≤ 𝑥𝑥𝑟𝑟ℎ,𝑚𝑚𝑚𝑚𝑥𝑥 4

|𝑥𝑥𝑡𝑡(𝑘𝑘 + 1) − 𝑥𝑥𝑡𝑡(𝑘𝑘)| ≤ 𝜌𝜌,𝑘𝑘 = 0, . . . ,𝐻𝐻 − 1 5
|𝑥𝑥𝑟𝑟ℎ(𝑘𝑘 + 1) − 𝑥𝑥𝑟𝑟ℎ(𝑘𝑘)| ≤ 𝛾𝛾,𝑘𝑘 = 0, . . . ,𝐻𝐻 − 1 6

𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑡𝑡𝑟𝑟 ≤ 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥 7
𝑟𝑟ℎ𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑟𝑟ℎ𝑟𝑟 ≤ 𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑥𝑥 8

 The optimization (control) variables are the supply
temperature, 𝒙𝒙𝒕𝒕, and the supply relative humidity (RH),
𝒙𝒙𝒓𝒓𝒓𝒓, setpoints for the AHU. The function
(𝒕𝒕𝒓𝒓,𝒓𝒓𝒓𝒓𝒓𝒓,𝒑𝒑𝒄𝒄,𝒑𝒑𝒓𝒓) = 𝑓𝑓(𝒙𝒙𝒕𝒕,𝒙𝒙𝒓𝒓𝒓𝒓,𝚯𝚯) is the building model
that predicts the room temperature, room RH and the
cooling and heating power as function of the control
variables and the external inputs (predicted weather
conditions and past room state). The problem computes
the optimal setpoints for a prediction horizon of 24
hours. The objective function has two terms: 1) energy
consumption and 2) deviation from desired comfort
level. The regularization weight λ is a positive constant
that balances the trade-off between energy consumption
and desired thermal comfort. The constraints impose
lower and upper bounds for the supply AHU set-points
and for the room temperature and RH. Smoothness
constraints are also included to avoid abrupt changes in
the setpoints in time.

We tested two types of reduced models for the MPC:
1) First principle based models and 2) long short-term
memory recurrent neural network (LSTM-NN). The
first-principle based model uses a simplified physical
model for the AHU coupled with a linear auto-
regressive model for the room envelope. The
coefficients of the auto-regressive model can be updated
every week, or every season based on observed data.

Weather Data

FMU whole building model

E+ Model

Modelica Model

MPC Algorithm

Reduced Order
Models

Optimisation
Algorithm

Control commands (AHU Setpoints)

Generate
Data

Reference Optimiser

Model

Plant

Cost
function Constraints

Predicted
Output

External
Signals

OutputControl
Signal

A virtual test-bed for building Model Predictive Control developments

DOI Proceedings of the 13th International Modelica Conference 23
10.3384/ecp1915717 March 4-6, 2019, Regensburg, Germany

The LSTM-NN is a purely data-driven model that
represents the whole system as an input-output function.
The LSTM-NN is trained from simulated data (model
from sections 3 and 4) using different weather profiles
and setpoint strategies to avoid overfitting and achieve
a good approximation of the system dynamics.

5.3 Results from the MPC
We tested the developed MPC in a simulation model

of the building demo zone in the test site. The model
consists of a room with an AHU. The MPC was tested
using both the reduced physical models and NN models
in the optimization for a period of 28 days in summer
(June-July) with the constraints described in Table 2.

Table 2. Constraints imposed in the MPC problem.
Ideal room

temp. (𝑡𝑡𝑖𝑖)
21.5 °C Ideal room

RH (𝑟𝑟ℎ𝑖𝑖)
50%

Max. room
temp. (𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥) 24 °C Max. room

RH (𝑟𝑟ℎ𝑚𝑚𝑚𝑚𝑥𝑥) 55%

Min. room
temp. (𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚) 20 °C Min. room RH

(𝑟𝑟ℎ𝑚𝑚𝑖𝑖𝑚𝑚) 45%

Max. supply
temp. (𝑥𝑥𝑡𝑡,𝑚𝑚𝑚𝑚𝑥𝑥) 27 °C Max. supply

RH (𝑥𝑥𝑟𝑟ℎ,𝑚𝑚𝑚𝑚𝑥𝑥) 65%

Min. supply
temp. (𝑥𝑥𝑡𝑡,𝑚𝑚𝑖𝑖𝑚𝑚) 21 °C Min. supply

RH (𝑥𝑥𝑟𝑟ℎ,𝑚𝑚𝑚𝑚𝑥𝑥) 45%

The results are summarized in Table 3 also showing
the results obtained using a standard PID controller for
the room. The MPC is evaluated using two scenarios: a
low comfort configuration with λ=1 and a higher
comfort configuration with λ=100. The MPC coupled
with the NN model and with λ=1 yield savings of
approximately 62% in the cooling energy and 26% in
the heating energy compared to the PID controller.
However, it should be noted that the NN-based MPC
achieves an average room temperature close to the ideal
temperature but the room RH is far from the ideal. On
the other hand, the results with λ=100 achieve room
temperatures and RH close to the ideal ones at the
expense of having a slightly larger energy consumption
than the PID controller. In addition, it should be noted
that the NN-based MPC are able to follow better the
thermal comfort constraints than the Physical MPC. OIt
is worth noticing that the RH has a big impact in the
overall energy consumption of the building, thus, better
strategies for RH control should be investigated, e.g.
wider range for RH.

6 Conclusions
This paper presented the developments of a detailed
building energy model aimed at improving cooling
control for further coupling with District Cooling.

6.1 Modelica use
In INDIGO, some advantages in the use of Modelica

for modelling the energy systems where demonstrated:

Table 3. MPC results for 28 days between June and
July using reduced Physical models (Ph-MPC) and NN
models (NN-MPC).
 Ph-MPC NN-MPC

PID λ
= 1

λ
= 100

λ
= 1

λ
= 100

Cooling energy
(kWh) 14,227 4,648 15,244 5,286 15,063

Heating energy
(kWh) 9,234 7,726 13,051 6,759 11,942

MAD temp. (ºC) 0.16 2.27 2.01 1.13 1.16
Mean temp. (ºC) 21.47 23.77 23.51 22.54 22.6
STD temp. (ºC) 0.2 1.11 0.96 0.95 0.89
Min temp. (ºC) 19.49 21.4 21.45 20.02 20.25
Max temp. (ºC) 23.28 26.74 26.08 27.06 26.31
MAD RH (%) 3.47 4.66 5.15 8.19 2.41
Mean RH (%) 52.31 53.98 45.09 57.23 48.57
STD RH (%) 3.7 4.49 2.81 6.92 2.82
Min RH (%) 20.96 0.05 4.69 39.37 0.06
Max RH (%) 93.98 96.86 60.36 99.26 96.45
• The hybrid modelling approach the Modelica

enables in a single tool simplifies the modeler
work, reduces error and provides an easier to use
and understand approach to system’s modelling.
In Modelica, mechanical, electrical, and
thermodynamic modelling can be integrated in
the same model, including control algorithms;

• The object-oriented approach enables model
reusability on the one side and on the other side,
allows for modelling the physical systems
following the physical structure as opposed to a
signal structure used in other languages. This
provides the clear advantage that models are
easier to understand;

• The extension capabilities of Modelica via the
Functional Mock-up Interface allowed to
integrate models from different tools using an
independent and standardized API into the MPC
development environment, thus providing an
integral solution for data analysis, simulation and
optimization in one single environment.

6.2 Functional Mock-up Interface use
Given the variety of development tools used in

INDIGO, to avoid the imposition of a single tool, which
would have limited developments and to allow a
seamless integration of the different developments, the
use of Functional Mock-up units was agreed since all
development tools were found to be compatible with the
FMI standard. Embarking in such approach provided
several benefits but also some challenges for INDIGO
development which are described in the following
sections.

A virtual test-bed for building Model Predictive Control developments

24 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915717

6.2.1 Benefits

Amongst the benefit of using the FMI standard we
found:
• FMI is a standardised approach. For developers this

means there is less effort in the integration between
tools. They only need to agree on the variables to be
exchanged as opposed to have to develop the
integration interface itself.

• The FMI is tool-independent which translates in a
seamless model exchange across different tools

• Models can be re-used for different purposes. This
is a combined advantage between the use of
Modelica and the use of FMI. All public variables
can be made accessible by the FMU which means
that there is no need to change the model in case a
new variable needs to be exported. This results in
less effort and better quality of the developments
produced with FMI and Modelica based models.

6.2.2 Challenges
In INDIGO, the use of the FMI standard also exposed

some challenges:
• Ensuring the efficiency and robustness of the

models is fundamental for the FMUs generated in
terms of usability, performance and error-handling
when running simulations and generating data;

• While the standard for data exchange is certainly
excellent, the integration over two platforms
presents another challenge in the standardisation of
the data to be exchanged.

• Different simulation tools might provide different
results mainly due to the use of different solvers.
This is something that needs to be acknowledged
since it is, for the time being and for a typical
modeller, not trivial;

• The parametrization of the models is not necessarily
evident when doing model exchange, thus it
requires modeller’s attention;

• Documentation of the FMU needs to be provided
separately from the model. If the modeller is used to
Modelica where the documentation is contained
within the model, this might be overlooked when
exchanging the models

6.3 MPC implementation
MPC is a powerful control strategy that anticipates to

future events and takes control actions accordingly.
However, in order to achieve real-time control, the
optimization problem has to be solved faster than the
sampling time of the system. Thus, the reduced models
used within the MPC are of great importance. On one
hand, the model needs to be sufficiently simple and fast
to be used in the optimization loop, and on the other
hand, the model needs to be accurate enough to avoid

erroneous control strategies due to approximation errors
by the reduced models.

In INDIGO, we have explored the use of NN as
reduced models for MPC with satisfactory results. The
advantages of NN, especially recurrent NN such as the
LSTM-NN, are twofold: firstly, fast computation time
to allow its use within the MPC, and secondly, high
accuracy in the modelling to capture both slow and rapid
dynamics of the system. However, in order to capture
the correct dynamic behaviour of the system, the NN has
to be trained with data that explore a large portion of the
data space and model dynamics, which is not often the
case with data collected from a real site. Therefore,
simulation platforms, such as the one developed in
INIDIGO, are a great tool to generate training data for
NN models within a MPC.

Acknowledgments
 Project INDIGO has received funding from

European Union’s Horizon 2020 research and
innovation programme under grant agreement n°
696098.

References
del Hoyo Arce, I. et al. (2018) ‘Models for fast modelling of

district heating and cooling networks’, Renewable and
Sustainable Energy Reviews. Elsevier Ltd, 82(June), pp.
1863–1873. doi: 10.1016/j.rser.2017.06.109.

Nouidui, T. S., Wetter, M. and Zuo, W. (2014) ‘Functional
mock-up unit for co-simulation import in {EnergyPlus}’,
Journal of Building Performance Simulation. Taylor &
Francis, 7(3), pp. 192–202. doi:
10.1080/19401493.2013.808265.

Reindl, D. T., Beckman, W. A. and Duffie, J. A. (1990)
‘Diffuse fraction correlations’, Solar Energy, 45(1), pp. 1–
7. doi: https://doi.org/10.1016/0038-092X(90)90060-P.

Sterling, R. et al. (2017) ‘Demand side detailed models’. doi:
10.5281/ZENODO.1137755.

Characterization of Linear Reduced Order Building Models Using Bode Plots

DOI Proceedings of the 13th International Modelica Conference 25
10.3384/ecp1915725 March 4-6, 2019, Regensburg, Germany

Characterization of Linear Reduced Order Building Models Using Bode Plots
Lauster, Moritz and Müller, Dirk

25

Characterization of Linear Reduced Order Building Models Using
Bode Plots

Moritz Lauster1 Dirk Müller1

1Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germanymlauster@eonerc.rwth-aachen.de

Abstract
Simulations of energy supply systems on the urban scale
call for dedicated thermal building models with low sim-
ulation times and still considering relevant dynamic ef-
fects. A common approach for such models are reduced
order thermal networks that model heat transfer and stor-
age via thermal resistances and capacitances. To con-
tribute to the open question, how much wall elements
should be used in such approaches, this paper character-
izes and compares four different model topologies with
one, two, three and four wall elements. The characteri-
zation using the Linear Analysis toolbox in Modelica and
Bode plots in Python reveals a significantly different be-
havior of the One-Element-Model compared to the higher
order models. In consequence, the Two-Elements-Model
with comparably low simulation times and a similar be-
havior as the higher order models qualifies for urban scale
simulations.
Keywords: Modelica, Reduced Order Model, Urban
Building Energy Model, Bode plot, Linear Analysis Tool-
box

1 Introduction
In the context of global warming and anthropogenic
greenhouse gas emissions, innovative energy supply sys-
tems play an important role to increase energy efficiency.
In particular, when supplying entire districts with heat,
this calls for sophisticated dynamic building models to
consider heat storage effects and compare different sys-
tem options.

When simulating large numbers of buildings, reason-
able simulation times in combination with an appropri-
ate model complexity can be a challenging task. Still,
the models need to account for relevant physical effects
and details to be able to reflect the buildings’ real ther-
mal behavior. In this regard, reduced order models based
on thermal networks are an interesting option. They
use thermal networks analog to electrical circuits and
model heat transfer and storage via thermal resistances
and capacitances. The theory of such models is well re-
searched and discussed inClarke (2001); Davies(2004)
andHensen and Lamberts(2011). The model’s complex-
ity and the simulation time is determined by the layout
of the network and the number of resistances and capac-

itances. Furthermore, the number of resistances and in
particular the number of capacitances determine the spa-
tial and physical resolution of the model and thus define
the accuracy, with which the dynamics of the building are
reproduced. In consequence, the structure of the model
needs to be aligned to the simulation task, the resolution
of dynamic effects and acceptable simulation times.

Reduced order models account for relatively small sim-
ulation times by using a small number of state variables,
in the case of thermal networks associated solely to ther-
mal capacitances. In this way, they qualify for urban scale
simulations, where uncertainties due to unknown bound-
ary conditions and estimated parameters outweigh mod-
eling accuracy. Still, this leads to the question, what the
optimal number of capacitances is for the case of urban
scale simulations.

This question calls for a detailed analysis and charac-
terization of the dynamic behavior of promising reduced
order modelling options. To do so, Bode plots offer the
ability to analyse the magnitude and phase shift of a model
output compared to a model input for an entire range of
excitation frequencies. They allow a dedicated compari-
son of different reduced order models for a broad range
of frequencies as well as for typical frequencies present in
the built environment as e.g. done inAkander(2000) and
Ramallo-González et al.(2013). In consequence, Bode
plots support finding the optimal number of capacitances,
from where adding further elements would not substan-
tially increase model accuracy.

This paper aims at contributing to the field of urban
scale simulations by characterizing four different reduced
order models using Bode plots. It emphasizes on using
Modelica and the Linear Analysis toolbox in combination
with a Python-based Bode plot analysis. The next chap-
ter gives an introduction to reduced order building model-
ing to highlight the impact of thermal capacitances and
presents the four investigated model topologies. After-
wards, the paper outlines the setup of the characterization
and presents the results using Bode plots to answer the
question regarding a reduced order model optimized for
urban scale simulations.

2 Reduced Order Building Models
As mentioned before, when reducing the order of thermal
network models, the question arises, which capacitances

Characterization of Linear Reduced Order Building Models Using Bode Plots

26 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915725

resp. states are crucial for the dynamic behavior and which
can be omitted. Focusing on one thermal zone, the typical
entity in building performance simulations, the number of
capacitances depends on the number of wall elements and
the discretization of these wall elements. This leads to two
options to set up reduced order models:

1. Reducing the number of wall elements, e.g. by merg-
ing roof, floor and external walls to one wall element.

2. Reducing the number of capacitances per wall ele-
ment, which represent the discretization of the wall.

The second aspect is already well investigated (e.g. in
Davies 1994and Rouvel and Zimmermann 1997, 1998)
and lead to the theory of the periodic depth of pene-
tration, which is standardized in DIN EN ISO 13786
(Deutsches Institut für Normung, 2008a). In conse-
quence, this aspect was found to be of minor impor-
tance, so the number is typically fixed to one capac-
itance per wall element and the capacity depends on
the excitation frequency. Two common standardized re-
duced order models, described in DIN EN ISO 13790
(Deutsches Institut für Normung, 2008b) and VDI 6007-
1 (Verein Deutscher Ingenieure, 2015), follow this ap-
proach. However, these two models highlight the dif-
ferences for the first aspect. While the DIN EN ISO
13790 lumps all walls to one wall element and is explic-
itly thought for monthly resolution at maximum, the VDI
6007-1 models asymmetrically (external walls) and sym-
metrically loaded (internal) walls separately. Still, there
is no common agreement, how many wall elements are
necessary for hourly heat demand calculations and which
elements should be lumped.

To contribute to this question, this paper investigates
four different model topologies by lumping either all walls
to one element (as for DIN EN ISO 13790, Figure1), dis-
tinguish between external and internal walls (as for VDI
6007-1, Figure2), further divide between walls exposed
to solar radiation and floor plates (Figure3) and finally

PSfrag replacements

CAir

TRef

TInf

RInf

RExt,con

RExtRExt,Rem

RWin

RWin,con

RExtWin,rad

RWinInt,rad
RExtInt,rad

RInt,con

RInt

TEq,Win

TEq,Ext

CExt

CInt

nExtnInt

Q̇Sol,con

Q̇Sol,Ext

Q̇Sol,Win

Q̇Sol,Int

Q̇IG,rad

Q̇IG,con

Figure 1. Thermal network of the One-Element-Model from
AixLib.

PSfrag replacements

CAir

TRef

TInf

RInf

RExt,con

RExtRExt,Rem

RWin

RWin,con

RExtWin,rad

REinInt,rad

RExtInt,rad

RInt,con

RInt

TEq,Win

TEq,Ext

CExt CInt

nExt
nInt

Q̇Sol,con

Q̇Sol,Ext

Q̇Sol,Win

Q̇Sol,Int

Q̇IG,rad
Q̇IG,rad

Q̇IG,con

Figure 2. Thermal network of the Two-Elements-Model from
AixLib.

separate the roof elements as well (Figure4). To keep the
same basic topology for all options, all models are based
on the layout and principles of the VDI 6007-1. Figure
2 represents the original VDI 6007-1 model except for a
polygon network instead of a star network for the internal
radiation circuit to be able to extend the network without
loss of accuracy (as described inDavies 1993).

In addition, heat transfer through windows is handled
separately to the external walls, since windows commonly
do not incorporate thermal mass and merging windows
and walls would lead to a delay in the windows’ heat trans-
fer. The heat transfer through windows and heat transfer
to the ambient and heat storage in the external walls is
handled via resistances and capacitances in the left part
of Figure2. The right part takes care of heat storage in
internal walls, while the center part deals with convec-
tive and radiative heat exchange within the thermal zone.
Both effects are represented by one circuit each, the in-
door air temperature can be measured at the star point of
the convective circuit. This point connects also to a ther-
mal resistance that is used for infiltration of outdoor air
(resp. the associated heat flux) through gaps in the thermal
zone’s envelope. Further explanations and details about
the model can be found inRemmen et al.(2017) and VDI
6007-1Verein Deutscher Ingenieure(2015).

As mentioned, the One-Element-Model in Figure1 ne-
glects the differing behavior of internal walls and merges
them with external elements to one wall element. With the
Two-Elements-Model in Figure2 in between, the Three-
Elements-Model in Figure3 separates walls exposed to
solar radiation and exposed directly to the ground. This
follows the assumption that ground coupled wall elements
such as floor plates behave thermally different due to the
excitation with a very low frequency (with a time constant
of about one year). Thus, merging them with elements ex-
posed to solar radiation (excitation with a time constant
of one day) might lead to smearing the dynamics of the
themal zone. The same argument applies for the Four-
Elements-Model in Figure4, where the roof is taken care
of seperately to the external walls. However, the time con-
stants of roof elements and external walls should be simi-
lar, but the excitation is shifted in time for horizontal and
vertical elements. Besides the number of state variables,

Characterization of Linear Reduced Order Building Models Using Bode Plots

DOI Proceedings of the 13th International Modelica Conference 27
10.3384/ecp1915725 March 4-6, 2019, Regensburg, Germany

PSfrag replacements

CAir

TRef

TInf

RInf

RExt,con

RExtRExt,Rem

RWin

RWin,con

RExtWin,rad

RWinInt,rad

RExtInt,rad

RInt,con

RInt

TEq,Win

TEq,Ext

CExt CInt

nExt

nInt

Q̇Sol,con

Q̇Sol,Ext

Q̇Sol,Win

Q̇Sol,Int

Q̇Sol,Floor

Q̇IG,rad
Q̇IG,rad

Q̇IG,con

TFloor

CFloor
nFloor

nFloor

RFloor RFloor,Rem
RFloor,con

RFlurInt,rad

RFlurExt,rad

RFlurWin,rad

Figure 3. Thermal network of the Three-Elements-Model fromAixLib.

PSfrag replacements

CAIr

TRef

TInf

RInf

RExt,con

RExtRExt,Rem

RWin

RWin,con

RExtWin,rad

RWinInt,rad

RExtInt,rad

RInt,con

RInt

TEq,Win

TEq,Ext

CExt CInt

nExt

nInt

Q̇Sol,con

Q̇Sol,Ext

Q̇Sol,Win

Q̇Sol,Int

Q̇Sol,Floor Q̇Sol,Ceil

Q̇IG,radQ̇IG,rad
Q̇IG,rad

Q̇IG,con

TFloor

CFloor
nFloor

nFloor

RFloor RFloor,Rem
RFloor,con

RFloorInt,rad

RFloorExt,rad

RFloorWin,rad

TEq,Ceil

CCeil

nCeil

RCeil RCeil,Rem

RCeil,con

RCeilInt,rad

RCeilExt,rad

RCeilWin,rad

RFloorCeil,rad

Figure 4. Thermal network of the Four-Elements-Model fromAixLib.

simulation time is influenced by the way the physical ef-
fects are modelled. In the best case, all phenomena can
be modelled with a linear approach, which further low-
ers simulation time. In the case of reduced order models,
there are four effects that can be linearized to obtain a fully
linear model.

1. The indoor radiative heat exchange follows the
Stefan-Boltzmann law including surface tempera-
tures to the power of four. This can be linearized
around a given temperature, usually the zone’s set
temperature.

2. Convective heat exchange depends on free and
forced convection and includes nonlinearities. For
typical conditions, different standards (e.g. DIN
EN ISO 6946Deutsches Institut für Normung 2015)
provide constant values to linearize the effects.

3. The absorption and transmission of solar radiation on
inclined surfaces requires calculation of angles that
include nonlinear equations. Since these calculations
to not depend on the zone’s state variables, all values
can be precomputed and serve as inputs to the build-
ing model itself.

This setup with linear approaches and a reduced num-
ber of state variables leads to models with a relatively low
complexity, e.g. for the Two-Elements-Model with 28 un-
knowns, two state variables and one algebraic loop with
constant parameters.

The merging or separation of the building elements
leads to four different models with the open question,
which model considers all dominant dynamics while ne-
glecting all others to have as small simulation times as
possible. For this purpose, all four models need to be
characterized in a dynamic way as proposed in the next
chapters.

3 Characterization
The characterization requires the definition of a use case
with a fixed geometry and a known set of physical prop-
erties. In this study, the use case is based on a single
box-shaped room as the typical layout of a thermal zone.
This room follows the geometrical definition of the inter-
national validation guideline ASHRAE 140 (ASHRAE,
2007) with a net floor area of 48m2, two walls with
21.7 m2 and two walls with 16.2 m2 (one internal and one
external wall each) as shown in Figure5. Changes of the
geometry do not influence the results, as long as the rela-

Characterization of Linear Reduced Order Building Models Using Bode Plots

28 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915725

PSfrag replacements

N

Figure 5. Layout of the test room.

tion between the areas is kept similar. For the given case
with similar areas for external walls, roof, floor plate and
internal walls, we expect the largest differences between
the four models, since all elements have a similar impact.

To cover typical physical properties for the building ma-
terials and the wall constructions in the German build-
ing stock, the characterization covers 24 setups with in-
sulation levels varying from "EnEV 2009", "EnEV 2002"
and "WSchV 1995" to "WSchV 1984", representing Ger-
man insulation standards of different years. As a second
aspect, the building mass is varied from "Light-weight"
and "Medium-weight" to "Heavy-weight". Since the cases
"EnEV 2009" and "WSchV 1984" turned out to be the ex-
treme cases, the following chapters will focus on these se-
tups.

The use case in all 24 setups and for all four model
topologies has been modelled in Modelica using the li-
brary AixLib (Müller et al., 2016). AixLib is one of four
application libraries based on the same Modelica IBPSA
core library, described inWetter et al.(2015). Both, the
AixLib and the IBPSA library, are developed fully open-
source and are freely available athttps://github.
com/RWTH-EBC/AixLib and https://github.
com/ibpsa/modelica-ibpsa. The reduced order
models are part of the core library and thus of all four
application libraries.

To characterize the models using Bode plots, all four
model topologies have been transformed to state-space
representation of the form

ẋ(t) = Ax (t)+Bu(t) (1)

y (t) =Cx (t)+Du(t) (2)

with x as state vector,y as output vector andu as
input vector. A stands for the states matrix,B for
the input matrix, C for the output matrix andD for
the feedthrough matrix. This is a valid approach since
we deal with linear time-invariant models. The nec-
essary matricesA,B,C and D can be derived using the
ModelicaLinearSystems2.ModelAnalysis.Linearize func-
tion of the Linear Analysis toolbox. The created .mat-
files containing these matrices can directly be used to
create Bode plots in Python with the help of the Python
package ModelicaRes, available athttps://github.

com/kdavies4/ModelicaRes. In this way, a dedi-
cated analysis of the dynamic behavior of Modelica mod-
els is convenient to perform in a semi-automated process.

4 Results
This chapter presents the results for the given use case,
generated with the process sketched above. As mentioned,
it focuses on the setups "EnEV 2009" and "WSchV 1984"
as they represent the extreme cases of all setups. The
Bode plots show the dynamic behavior for all four model
topologies over a frequency range from 10−6 to 10−3 Hz,
in particular highlighting typical excitation frequencies in
buildings at 1.15−5 Hz (daily) and 2.77−4 Hz (hourly).
Since buildings are typically excited by external (outdoor
air temperature variations) and internal sources (internal
gains, convective and radiative), the Bode analysis is per-
formed twice for each setup. The observed output is the
indoor air temperature as the target value. It would be
even more benefitial to observe the heat flow through the
constructions, which would require strategies to compare
the overall heat flows of the different models or observing
multiple outputs. These topics are marked as future work
and not covered in this paper. The aim is to identify the
model with the lowest order that shows no major differ-
ences to higher order models for indoor air temperature as
output.

Figure6 shows the Bode plot for external excitation of
the heavy-weight "EnEV 2009" setup. The upper part fo-
cuses on the magnitude of the output, while the lower part
concentrates on the phase shift of the output compared to
the input. The pattern of all four models is similar and
follows the PT1-behavior of a low-pass filter. The low-
pass filter originates from the given RC-element for ex-
ternal wall elements, e.g. shown in Figure1. In com-
parison to the other models, only the One-Element-Model
reveals some deviations regarding the damping as well as
for the phase shift. In particular for the typical daily and
hourly excitation frequencies, all models except the One-

PSfrag replacements

Frequency in Hz

P
h

a
se

in◦
M

a
g

n
itu

d
e

in
d

B

1 Element

1 Element

2 Elements

2 Elements

3 Elements

3 Elements

4 Elements

4 Elements

10−6

10−6

10−5

10−5

1.15·10−5

1.15·10−5

10−4

10−4

2.77·10−4

2.77·10−4

10−3

10−3

−160

−140

−120

−100

−80

−110
−100
−90
−80
−70
−90

−80

−60

−40

−20

−40
−30
−20
−10

Figure 6. Bode plot for external excitation with heavy-weight
setup (EnEV 2009) and indoor temperature as observed output.

Characterization of Linear Reduced Order Building Models Using Bode Plots

DOI Proceedings of the 13th International Modelica Conference 29
10.3384/ecp1915725 March 4-6, 2019, Regensburg, Germany

PSfrag replacements

Frequency in Hz

P
h

a
se

in◦
M

a
g

n
itu

d
e

in
d

B

1 Element

1 Element

2 Elements

2 Elements

3 Elements

3 Elements

4 Elements

4 Elements

10−6

10−6

10−5

10−5

1.15·10−5

1.15·10−5

10−4

10−4

2.77·10−4

2.77·10−4

10−3

10−3

−80

−60
−50
−40
−30
−20
−10

−10
−55

−50

−45

−40

−40
−35
−30

Figure 7. Bode plot for internal excitation with heavy-weight
setup (EnEV 2009) and indoor temperature as observed output.

Element-Model behave almost identical.
Figure7 shows the Bode plot for the same heavy-weight

setup in the case of internal excitation. All models show a
PIT1-behavior that is related to the interference of the wall
elements’ PI-behavior and a PT1-behavior of the air vol-
ume. In particular the One-Element-Model deviates from
the other model topologies and reveals a phase shift in the
direction of lower excitation frequencies. This leads to
significant differences, especially for an hourly excitation,
and can be explained by the missing consideration of the
internal walls. In this way, the One-Element-Model on the
one hand neglects parts of the zones’ thermal mass and
other hand does not consider heat transfer between exter-
nal and internal masses. This is mainly visible for internal
excitation, since external excitation is highly damped by
the external wall elements. Though, the other three model
topologies deviate as well from each other regarding the
magnitude as well as the phase shift for low excitation fre-
quencies.

In addition to the heavy-weight setup, Figure8 shows

PSfrag replacements

Frequency in Hz

P
h

a
se

in◦
M

a
g

n
itu

d
e

in
d

B

1 Element

1 Element

2 Elements

2 Elements

3 Elements

3 Elements

4 Elements

4 Elements

10−6

10−6

10−5

10−5

1.15·10−5

1.15·10−5

10−4

10−4

2.77·10−4

2.77·10−4

10−3

10−3

−180

−140

−120

−100

−80

−60

−60
−40
−20
−80 −60

−40

−20

−40
−30
−20
−10

0

Figure 8. Bode plot for external excitation with light-weight
setup (WSchV 1984) and indoor temperature as observed output.

PSfrag replacements

Frequency in Hz

P
h

a
se

in◦
M

a
g

n
itu

d
e

in
d

B

1 Element

1 Element

2 Elements

2 Elements

3 Elements

3 Elements

4 Elements

4 Elements

10−6

10−6

10−5

10−5

1.15·10−5

1.15·10−5

10−4

10−4

2.77·10−4

2.77·10−4

10−3

10−3

−80

−70
−60
−50
−40
−30
−20
−10−60

−55

−50

−45

−40

−35
−30

Figure 9. Bode plot for internal excitation with light-weight
setup (WSchV 1984) and indoor temperature as observed output.

the Bode plot for external excitation of the light-weight
"WSchV 1984" setup. The patterns of all four models
are comparable to the behavior in Figure6, although the
Three- and Four-Elements-Model show significant devi-
ations compared to the One- and Two-Elements-Model.
The impact of these deviations is hard to assess at this
point and will be further investigated in Figure10.

To complete the set of Bode plots, Figure9 shows the
plot for internal excitation of the light-weight setup. The
discussed deviations of the One-Element-Model occur in
this plot in an amplified manner. For the magnitude as well
as for the phase shift, the One-Element-Model clearly de-
viates from the other topologies. Two-, Three- and Four-
Element-Model show similar deviations as in Figure7.

Resulting from the Bode plots, the Two-, Three- and
Four-Elements-Model predominantly show a similar be-
havior, in particular for typical excitations with daily and
hourly time constants. All models have a similar DC-
gain of approximately 1, varying between the models at
the 10th decimal place. Solely the One-Element-Model
reveals major deviations from the other models, in partic-

PSfrag replacements

Time in d

In
d

o
o

r
te

m
p

e
ra

tu
re

in◦
C

1 Element
2 Elements
3 Elements
4 Elements

1 2 3 4 5 6 7 8

17

18

19

20

21

22

Figure 10. Comparison of all four model topologies in the time
domain for the medium-weight setup (EnEV 2002).

Characterization of Linear Reduced Order Building Models Using Bode Plots

30 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915725

Table 1. Maximum and mean deviation of the indoor temper-
ature in K between two- and four-elements-model for setups
"EnEV 2009 Heavy", "EnEV 2002 Medium" and "WSchV 1984
Light".

Heavy Medium Light

Max 0.3 0.4 0.7

Mean 0.1 0.1 0.1

ular for internal excitation. The deviations in general tend
to rise from heavy-weight to light-weight setups and ma-
jorly occur for internal excitation. To evaluate the impact
of these deviations, it is necessary to complement the anal-
yses in the frequency domain by investigations in the time
domain.

For this, yearly simulations of all four model topologies
are performed with time-dependent weather data (TRY
2010 data for Mannheim, Germany), varying internal
gains (generic profiles for persons and machines, convec-
tive and radiative) and free-floating indoor air tempera-
ture. Figure10 shows seven days in spring, where typical
indoor air temperatures between 17 and 21◦C occur and
the typical excitation frequencies of one hour and one day
can be observed. For reasons of clarity, the figure focuses
on the medium-weight setup "EnEV2002". The figure
shows a significant overshoot of the One-Element-Model
in times of local maximum temperatures. This correlates
with the observations in Figure7 and Figure9, where the
One-Element-Model shows a lower damping of internal
excitations. This behavior leads to maximal differences
of the indoor air temperature of 1.2 K compared to the
other model topologies. In comparison, the difference be-
tween Two- and Four-Elements-Model for the same setup
is 0.4 K, as given in Table1. The differences between
the higher-order models tend to rise from heavy-weight to
light-weight setups.

Given the difference in the frequency as well as in the
time domain between the One-Element-Model and the
other topologies, this approach with only one state vari-
able for the wall elements seems inappropriate for dy-
namic builing performance simulations. Following the ap-
proach to keep the number of states as small as possible,
the Two-Elements-Model comes into focus and shows a
significantly better behavior. With these results at hand,
the Two-Elements-Model qualifies for dynamic heat de-
mand calculations on urban scale, where simulation time
plays a major role and modelling simplifications are out-
weighed by uncertainties of the boundary conditions.

5 Conclusions
Urban scale simulations of large building stocks for en-
ergy efficient supply systems call for dynamic building
models with low simulation times while accepting mod-
elling simplifications. Such simplifications are typically
outweighed by uncertainties in boundary conditions on ur-

ban scale. A common approach for such building mod-
els are reduced order models based on thermal networks,
which represent heat transfer and storage via thermal re-
sistances and capacitances. The models’ simulation times,
complexity and order is correlated to the number of state
variables resp. thermal capacitances. Although this topic
has been well researched and standardized approaches ex-
ist on single wall level, the questions remains, how many
wall elements are necessary to model heat storage effects
on urban scale in a sufficient way.

This paper contributes to this question by characteriz-
ing four model topologies with one, two, three and four
wall elements. The thermal masses of a given use case
are therefore merged all together, separated into internal
and external masses, additionally with a separate element
for the floor plate or further splitted up to a separate roof
element. The use case is a simple, box-shaped room,
which is commonly used for model validation. To take
into account different insulation and building mass levels,
the use case contains 24 setups from light-weight, well
insulated scenarios up to heavy-weight, hardly insulated
versions. As extreme cases, the characterization focuses
on an heavy-weight "EnEV 2009" and on a light-weight
"WSchV 1984" setup.

All model topologies and setups are modelled us-
ing the Modelica library AixLib,https://github.
com/RWTH-EBC/AixLib, an application library of the
IBPSA core library,https://github.com/ibpsa/
modelica-ibpsa.

The characterization makes use of Bode plots and
comparisons in the time domain to analyse the behav-
ior of all four topologies with regard to magnitude and
phase shift of the indoor air temperature compared to
a chosen input over a range of excitation frequencies.
Typical excitation frequencies in the field of building
performance simulation with time constants of one day
and one hour can in this way clearly be highlighted.
The necessary matrices to describe the model’s transfer
function can be obtained with the ModelicaLinearSys-
tems2.ModelAnalysis.Linearize function out of the Linear
Analysis toolbox. The resulting files can directly be used
to create dedicated Bode plots in Python with the help of
the Python package ModelicaRes,https://github.
com/kdavies4/ModelicaRes.

The results show that the behavior of the One-Element-
Model significantly differs from the higher order models,
for the magnitude as well as the phase shift, when observ-
ing the indoor air temperature while exciting outdoor air
temperature or internal gains. This originates in neglect-
ing internal masses, what leads to a significantly different
transfer function.The Two-, Three- and Four-Elements-
Model show slight differences in the Bode plots, what re-
quires further analyses in the time domain. The simula-
tion of one year reveals maximal differences in the free-
floating indoor air temperature between Two- and Four-
Elements-Model of 0.4 K. The same case shows dif-
ferences between One-Element-Model and higher order

Characterization of Linear Reduced Order Building Models Using Bode Plots

DOI Proceedings of the 13th International Modelica Conference 31
10.3384/ecp1915725 March 4-6, 2019, Regensburg, Germany

models of 1.2 K.

Based on these results, the Two-Elements-Model quali-
fies for urban scale simulations with low simulation times
while keeping a similar behavior compared to higher order
models. As the differences partly depend on the insulation
and thermal mass level, further research should result in an
adaptive method to automatically choose a reduced order
modelling approach based on these properties.

Acknowledgements
We gratefully acknowledge the financial support by
BMWi (German Federal Ministry of Economic Affairs
and Energy) under promotional reference 03ET1562A.

References
Jan Akander.The ORC method: Effective modelling of thermal

performance of multilayer building components. Disserta-
tion, The Royal Institute of Technology, Stockholm, 2000.

ASHRAE. Standard Method of Test for the Evaluation of Build-
ing Energy Analysis Computer Programs, 2007.

J. A. Clarke.Energy simulation in building design. Butterworth-
Heinemann, Oxford, 2. ed edition, 2001. ISBN 0750650826.

M. G. Davies. Definitions of Room Temperature.
Building and Environment, 28(4):383–398, 1993.
doi:10.1016/0360-1323(93)90015-U.

M. G. Davies. The Thermal Response of an Enclosure to Peri-
odic Excitation: The CIBSE Approach.Building and Envi-
ronment, 29(2):217–235, 1994.

Morris G. Davies.Building Heat Transfer. John Wiley & Sons,
Hoboken, NJ, 2004. ISBN 978-0-470-84731-2.

Deutsches Institut für Normung. Thermal performance of build-
ing components - Dynamic thermal characteristics - Calcula-
tion methods, 2008a.

Deutsches Institut für Normung. Energy performance of build-
ings - Calculation of energy use for space heating and cool-
ing, 2008b.

Deutsches Institut für Normung. Building components and
building elements - Thermal resistance and thermal transmit-
tance - Calculation method, 2015.

Jan Hensen and Roberto Lamberts, editors.Building perfor-
mance simulation for design and operation. Spon Press, Lon-
don and New York, NY, 2011. ISBN 978-0-415-47414-6.

Dirk Müller, Moritz Lauster, Ana Constantin, Marcus Fuchs,
and Peter Remmen. AixLib - An Open-Source Library within
the IEA-EBC Annex60 Framework. InBauSIM 2016: Sixth
German-Austrian IBPSA Conference, pages 3–9, 2016.

Alfonso P. Ramallo-González, Matthew E. Eames, and David A.
Coley. Lumped parameter models for building thermal mod-
elling: An analytic approach to simplifying complex multi-
layered constructions.Energy and Buildings, 60:174–184,
2013. ISSN 03787788. doi:10.1016/j.enbuild.2013.01.014.

Peter Remmen, Moritz Lauster, Michael Mans, Marcus Fuchs,
Tanja Osterhage, and Dirk Müller. TEASER: An open
tool for urban energy modelling of building stocks.Jour-
nal of Building Performance Simulation, pages 1–15, 2017.
doi:10.1080/19401493.2017.1283539.

Lothar Rouvel and Frank Zimmermann. Ein regelungstech-
nisches Modell zur Beschreibung des thermisch dynamis-
chen Raumverhaltens.HLH Lüftung/Klima - Heizung/San-
itär - Gebäudetechnik, 48,49(10, 12, 1):66–75, 24–31,18–29,
1997, 1998.

Verein Deutscher Ingenieure. Berechnung des instationären
thermischen Verhaltens von Räumen und Gebäuden - Raum-
modell, 2015.

Michael Wetter, Marcus Fuchs, Pavel Grozman, Lieve Helsen,
Filip Jorissen, Moritz Lauster, Dirk Müller, Christoph
Nytsch-Geusen, Damien Picard, Per Sahlin, and Matthis Tho-
rade. IEA EBC Annex 60 Modelica Library - An Interna-
tional Collaboration to Develop a Free Open-Source Model-
ica Library for Buildings and Community Energy Systems.
In Building Simulation 2015: 14th Conference of Interna-
tional Building Performance Simulation Association, pages
395–402, 2015.

Characterization of Linear Reduced Order Building Models Using Bode Plots

32 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915725

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

DOI Proceedings of the 13th International Modelica Conference 33
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany

BIM2Modelica – An open source toolchain for generating and simulating thermal
multi-zone building models by using structured data from BIM models
Nytsch-Geusen, Christoph and Rädler, Jörg and Thorade, Matthis and Tugores, Carles Ribas

33

BIM2Modelica – An open source toolchain for generating and

simulating thermal multi-zone building models by using structured

data from BIM models

Christoph Nytsch-Geusen1 Jörg Rädler1 Matthis Thorade2 Carles Ribas Tugores3
1Institut für Architektur und Städtebau, Berlin University of the Arts, Germany, nytsch@udk-berlin.de

2Modelon, Germany, matthis.thorade@modelon.com
3AEE INTEC, Austria, c.ribastugores@aee.at

Abstract
This contribution describes an open source toolchain

which can transfer BIM models of 3D building

constructions from CAAD programs into executable

thermal multi-zone buildings models based on Modelica

building energy simulation libraries. For this purpose,

different open source libraries and tools were integrated

into a Python-based software architecture of the

toolchain: the IfcOpenShell/OCC libraries as the

foundation for the import, analysis, and preparation of

the BIM models; CoTeTo as the tool for the template-

based code generation of the Modelica building models;

the BuildingSystems library as the base for the thermal

multi-zone building models; and JModelica as the

simulation tool to perform the simulation analyses.

While the first part of the paper describes the general

approach and the software architecture of the toolchain,

the second part illustrates its application with an

example of a real building.

Keywords: Building Information Modeling, IFC,

Modelica code generation, Multi-zone building models

1 Introduction

The graphical modelling approach of Modelica, based

on visualized components, connectors, and connections

fits well for 2-dimensional topologies of energy plant

systems, but not for 3-dimensional shapes of buildings

and the topology of their constructions. On the one hand,

the manual configuration of a thermal multi-zone

building in Modelica in a graphical editor, based on

components of a predefined library is an error-prone

process. For example, the definition of a thirteen-zone

building model in Modelica leads to a mo-file with more

than 1,500 lines of code and a huge number of connect

statements (Nytsch-Geusen, 2017). On the other hand,

architects are using modelling tools such as ArchiCAD

or Revit for their 3D building designs and often also

Rhinoceros for prototypical designs. All these tools are

able to export the geometry and the topology of a

building design as a structured BIM model, normally in

the IFC format.

For this reason, different research activities during

the last years have been focused on the automatic

generation of Modelica building models using IFC

building models as the input (e.g. Thorade et al., 2015

and Reynders et al., 2017).

The toolchain described in Thorade et al. (2015) is

based on the SimModel data model (O’Donnell et al.

2011). This data structure is able to store all relevant

information for building energy simulation (the building

construction and the related HVAC system), which is

present in the BIM model itself (the IFC file) and which

is optionally added by further data sources (e.g. data for

missing material properties of building constructions).

All these data are gained and combined by the use of the

simulation tool Simergy (https://d-

alchemy.com/products/simergy): with Simergy the user

imports the architectural model as an IFC file, performs

a space boundary analysis to obtain the topology

information for the multi-zone building model, adds

additional data with the Simergy GUI, and finally

exports the entire data set as a SimModel file in the xml

format. In the next step, a mapping tool takes the

SimModel file, which instantiates and parameterizes the

component and system models from present Modelica

libraries, which reflect the problem of the BIM model.

Because Simergy is a commercial simulation tool and

the simulation tool used here is Dymola, not all of the

toolchain is open source.

The approach of Reynders et al. (2017) describes a

toolchain Ifc2Modelica v0.2, which is based on a Python

framework. It can read IFC-files, determine the building

topology for multi-zone building models, and generate

Modelica building models in four different levels of

complexity (LOC) for the Modelica IDEAS library

(Jorissen et al., 2018). The model complexity reaches

from a detailed thermal multi-zone building model,

where each IFC entity is 1:1 mapped to a correspondent

Modelica component model (LOC1) over some

intermediate steps (LOC2, LOC3) down to a maximum

simplified thermal single-zone building model, where

all IFC entities are mapped to a small number of
Modelica wall, window and door models (LOC4). The

simplification from LOC1 to LOC4 takes place by

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

34 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915733

merging constructions of the same type and orientation

and zones with similar conditions of use with the

objective of a minimum loss of precision in the results

and a maximum acceleration of the computation speed.

The simulation analyses mentioned above were

performed with the commercial Dymola tool, and the

Ifc2Modelica v0.2 toolchain is not released as an open

source project.

The approach described in this paper demonstrates a

Python-based complete open source toolchain, which

reaches from the BIM modelling analysis up to the

Modelica code generation and also supports an

executable building simulation experiment, based on an

open source Modelica simulation tool.

2 Toolchain

The BIM2Modelica toolchain from the IFC file up to the

generated Modelica model includes three serial working

Python modules (compare with Figure 1): a module for

the BIM data import and analysis, a building data model

for storing the analyzed and prepared information for

building energy simulation, and the CoTeTo tool for

generating thermal multi-zone building models based on

the BuildingSystems library (http://www.modelica-

buildingsystems.de).

Figure 1. Software architecture of the BIM2Modelica

toolchain.

2.1 BIM data analysis and preparation

The basis for the IFC data import and the subsequent

data preparation is the IfcOpenShell library

(IfcOpenShell, 2019) in combination with the

OpenCascade library (pythonOCC, 2019). Based on

these two Python libraries, a new library was

implemented which enables the analysis and preparation

of the imported IFC files in the following steps:

1. Filtering and sorting of all IFC types relevant for a

thermal building model (types IfcSite, IfcSpace,

IfcWall, IfcSlab, IfcDoor, IfCColumn, IfcWindow,

etc.)

2. Extraction of all employed building constructions

(type IfcMaterialLayerSet) from the imported IFC

building model

3. Identification of the contact surfaces between the

spaces (type IfcSpace) which represent the thermal

zones and the adjacent building elements (types

IfcWall, IfcSlab etc.) by means of a space boundary

analysis (1st level space boundaries)

4. Determination of potential available openings in the

building elements and the correspondent elements

which fill them out (e.g. the relations between an

IfcWall and an IfcWindow or IfcDoor)

5. Cutting of continuous building constructions (e.g.

IfcWall or IfcSlab) which belong to more than one

IfcSpace into sub components. Each of them can

represent an individual thermal building element in

the thermal building model with a potentially

different thermal boundary condition (2st level

space boundaries).

2.2 Building data model

The building data model consists of a data structure

which stores all of the information in an intermediate

step, before it is used for the code generation of the

thermal building model, expressed in Modelica. The

building data model is realized by a couple of Python

classes which are able to store all of the required

geometry and topology information of each thermal

zone and individual building element. It also includes a

list of all of the construction types used. Further,

information regarding the employed building materials,

the type of use for each thermal zone (ventilation rates,

internal heat sources, set temperatures for heating and

cooling), the building orientation and the building

location can be added, if not already present in the IFC

file.

The information collection of the building data model

covers the typical amount of data for the parametrization

of multi-zone thermal building models. Up to now, it has

exclusively been used as a database for Modelica code

generation, but in principle, it could also be applied to

the creation of multi-zone building models for other

simulation tools such as EnergyPlus or TRNSYS.

2.3 Modelica code generation

In the next step of the toolchain, the Modelica building

models are generated using the information stored in the

building data model. For this purpose, the Python based

module CoTeTo (Code Templating Tool) is used,

which was developed in the EnEff-BIM project (see

Thorade et al., 2015).

Figure 2. GUI of the CoTeTo code generation tool.

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

DOI Proceedings of the 13th International Modelica Conference 35
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany

CoTeTo can be flexibly configured with pluggable

input, filter, and output components which support the

single steps of data acquisition, preprocessing and code

generation using a template system. It can be used

standalone with a GUI (compare with Figure 2) or as an

imported module in Python applications. The code

generation step in CoTeTo is based on the Mako

template engine (Mako, 2019).

2.4 BuildingSystems Library

The CoTeTo code generator for thermal multi-zone

models code was designed for the predefined model

classes (thermal zones, walls, windows, doors etc.) of

the Modelica BuildingSystems library (Nytsch-Geusen

et al., 2016). As other Modelica libraries for building

energy simulation such as IDEAS, AIXLib and

Buildings, the BuildingSystems library uses as its core

the same Modelica IBPSA library (Modelica IBPSA

library, 2019), which is the successor of the former

Annex 60 library (Wetter et a. 2015).

The following code excerpt demonstrates the principle,

upon which the model classes of the BuildingSystems

library are instantiated and parameterized during the

code generation process, based on a Mako template.

Access to the required building information stored in the

building data model takes place in the example over the

Python dictionary data. Outgoing from a generalized

template definition in Mako

% for ele in data['elementsOpaque']:

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes ${ele.name}(

% if

generatorCfg['MODELICA_SWITCHES'].getboole

an('surTemOut'):

 show_TSur = true,

% endif

 redeclare ${ele.constructionData}

constructionData,

 angleDegAzi = ${ele.angleDegAzi},

 angleDegTil = ${ele.angleDegTil},

 AInnSur = ${ele.AInnSur},

 height = ${ele.height},

 width = ${ele.width});

% endfor

the Modelica code for a flexible number of wall models

of a thermal building model can be generated:

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes wall_4(

 redeclare Construction1 constructionData,

 angleDegAzi = 90.0,

 angleDegTil = 90.0,

 AInnSur = 0.0,

 height = 7.8,

 width = 10.000000000000002);

BuildingSystems.Buildings.Constructions.Wa

lls.WallThermal1DNodes wall_5(

 redeclare Construction1 constructionData,

 angleDegAzi = 0.0,

 angleDegTil = 90.0,

 AInnSur = 0.0,

 height = 7.8,

 width = 9.849999999999998);

…

The syntax of the Mako language is similar to the

Python language, but it works with the % sign before

control statements and without indents. Therefore, a for-

loop or a conditional statement in Mako needs an

% endfor and an % endif in addition to the % for and the

% if. Expressions within curly braces, e.g.

${ele.name}, are evaluated, and the result is used for

the code generation process. The example of the Mako

template also illustrates the flexibility of the code

generation process. If the Boolean expression

generatorCfg['MODELICA_SWITCHES'].getboole

an('surTemOut'):

becomes true, the Modelica parameter show_TSur =

true is generated in the Modelica code; otherwise it is

not.

2.5 Toolchain validation

The toolchain was tested with a set of 33 BIM building

models in the IFC 2x3 format, which cover a broad

spectrum of possible geometrical and topological

structures of building constructions (Bazjanac, 2017).

Figure 3 shows a subset of these building models.

Figure 3. Exemplary IFC test cases for validating the entire

toolchain from the BIM data import through the data

preparation to the Modelica code generation.

In addition, three further IFC2X3 models with one, two

and thirteen thermal zones were used for the validation

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

36 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915733

procedure. All of the building models were constructed

in ArchiCAD and afterwards exported as (IFC) BIM-

models.

The validation process was executed for all of the

models in three serial steps:

1. Correct translation of the BIM model into the

building data model.

2. Correct generation of the Modelica building model

with the Mako template.

3. Successful simulation of the generated building

models with JModelica and Dymola and achieving

the same simulation results with both tools.

With the help of these test cases, many potential failures

and weak spots in the algorithms of the IFC import and

data preparation module (e.g. incorrectly calculated

geometries and topologies), the building data model

(e.g. missing attributes) and the code generation

template used in CoTeTo (e.g. required additional

features for a more flexible code generation) could be

detected, fixed, and improved.

2.6 Simulation experiment with

JModelica

After the multi-zone building model code was generated

with CoTeTo, a simulation experiment could be

performed with a Modelica tool. Because the objective

of the development of the toolchain was a pure open

source solution, JModelica (http://JModelica.org) was

used for this purpose. The definition of a Modelica

simulation experiment in JModelica takes place in

Python script, in which the three steps model translation,

model simulation and, result visualization have to be

defined. The JModelica compiler (Python module

pymodelica) obtains the Modelica model over the

method compile_fmu() and generates an executable

FMU in version 1.0 or 2.0.

Figure 4. Compilation and simulation of the thermal

building models with JModelica.

In the following step this FMU is taken by the JModelica

run time system (Python module pyfmi) by using

mymodel, an instance of the Python class

FMUModelBase. This instance is generated as the return

value of the function call load_fmu(). The two

methods calls myModel.simulate_options() and

myModel.simulate() configure the numerical options

and start the simulation experiment. The simulation

results are stored in a Python dictionary and visualized

with a suitable graphical Python library such as

matplotlib or pylab after the simulation experiment is

performed (compare with Figure 4 and the following

excerpt of a Python script, which defines the simulation

experiment):

compile model to fmu

from pymodelica import compile_fmu

fmu = compile_fmu('MultiZoneBuilding',…)

load the fmu

from pyfmi import load_fmu

myModel = load_fmu(fmu)

simulate the fmu and store results

opts = myModel.simulate_options()

opts['solver'] = "CVode"

opts['ncp'] = 240

res = myModel.simulate(start_time=0.0,

final_time=864000, options=opts)

plotting of the results

import pylab as P

fig = P.figure(1)

y1 = res['ambient.TAirRef']

y2 = res['building.TAir[1]’]

y3 = res['building.TAir[5]’]

y4 = res['building.TAir[12]’]

t = res['time']

P.subplot(2,1,1)

P.plot(t,y1,t,y2,t,y3,t,y4)

P.legend(['ambient.TAirRef','building.TAir

[1]'],…)

P.ylabel('Temperature (K)')

P.xlabel('Time (s)')

P.show()

3 Case study

The described approach of the toolchain was evaluated

by the example of a small residential living unit, the

Rooftop building, which was developed for the Solar

Decathlon Europe 2014 (SDE 2014) in Versailles,

France (http://www.solardecathlon2014.fr/en/) by a

student team from UdK Berlin and TU Berlin (see

Figure 5).

Figure 5. The realized prototype of the Rooftop building

on the SDE 2014 competition site in Versailles, France.

This rooftop construction was designed as a solar plus

energy living unit, which can be placed on top of the

building stock (compare with Figure 6) and can be air-

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

DOI Proceedings of the 13th International Modelica Conference 37
10.3384/ecp1915733 March 4-6, 2019, Regensburg, Germany

conditioned and supplied by its own gained energy all

the year around. A detailed description of the Rooftop

building incl. the technologies used (reversible heat

pump, adaptable photovoltaic facades, thermal and

electrical storage management etc.) can be found in

Team Rooftop (2014).

Figure 6. The concept of the Rooftop building as a solar

living unit for the building stock for dense city districts.

The Rooftop building was modelled for the case study

as a 3D BIM model in ArchiCAD. Starting from this

information base, an IFC2X3 model was exported.

Figure 7 shows the visualization of this IFC model with

all construction elements, and Figure 8 shows only the

part of the building model which is relevant to a building

energy simulation.

Figure 7. BIM model Rooftop building with all building

elements.

Figure 8. BIM model of the Rooftop building, reduced to

the relevant building elements for building energy

simulation.

The inner building structure includes four thermal

zones, two of which can be air-conditioned by a floor

heating and a cooling ceiling system (zones lab and

seminar). The other two are only thermal buffer zones

with free floating temperatures (zones toilet and core).

The building construction consists of wooden

lightweight building elements in combination with large

glass facades.

Figure 9. Generated Modelica building model.

At present, the Modelica code generation is restricted to

the thermal building model (see Figure 9); the HVAC

system of the building energy system still has to be

configured by hand.

The generated Modelica model of the Rooftop

building was simulated with JModelica for a period of

four hot summer days for the location Berlin. In

Figure 10, the outside air temperature and the free-

floating air temperatures of the four thermal zones are

illustrated. Because the air change of the generated

building model is suppressed and the large transparent

facades are unshaded in the configuration of the

simulation experiment, the air temperatures in the

seminar zone and the lab zone show the typical

increasing overheating behavior of a “glass house” over

the time.

Figure 10. Simulated indoor climate of the Rooftop

building during four warm summer days (location Berlin).

4 Summary and Outlook

A Python-based open source toolchain for generating

thermal multi-zone building models from BIM models

for the Modelica BuildingSystems library was

successfully implemented, validated, and evaluated by

BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building
models by using structured data from BIM models

38 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915733

means of the case study of the Rooftop building. Up to

now, the code generation process is limited to the

building construction; the HVAC system of the building

has to be manually added.

The source code of the BIM2Modelica toolchain incl.

the code generation tool CoTeTo, the Modelica

BuildingSystems library, and a set of BIM test cases is

available for free and can be downloaded as one

software package from GitHub

(https://github.com/UdK-VPT/BIM2Modelica).

The future development of the toolchain will take place

in collaboration with research partners within the

IBPSA project 1 (https://ibpsa.github.io/project1) in

work package 2.2 “Building Information Modeling”.

Future developments of the BIM2Modelica toolchain

will focus on automatic reduction of the building model

complexity dependent on the given boundary conditions

(orientation of façade elements, conditions of use for the

zones), similar as described in Reynders et al. (2017).

Further, additional specialized CoTeTo templates for C#

code generation that supports a building model

visualization for Unity (https://unity3d.com/de) are

under development (see also Nytsch-Geusen et al.,

2017).

Acknowledgements

The research described in this paper was conducted

within the research project “EnEff BIM: Planung, Aus-

legung und Betriebsoptimierung von energieeffizienten

Neu- und Bestandsbauten durch Modellierung und

Simulation auf Basis von Bauwerkinformations-

modellen” and funded by the Federal Ministry for

Economic Affairs and Energy in Germany (reference:

03ET1177D).

References

Bazjanac, V. (2017). Testing space boundaries that transcribe

complex CAD building geometry into surface geometry

usable by EnergyPlus and similar building energy

performance simulation engines. Internal report, UdK

Berlin, Germany.

IfcOpenShell (2019). The open source IFC toolkit and

geometry engine - http://ifcopenshell.org/python.html (last

access 2019 Jan 21)

Jorissen, F, Reynders, R.; Baetens, R.; Picard, D.; Saelens, D.

and Helsen, L. (2018). Implementation and Verification of

the IDEAS Building Energy Simulation Library. Journal of

Building Performance Simulation, 11 (6), 669-688, doi:

10.1080/19401493.2018.1428361.

Mako (2019). Mako templates for Python -

http://www.makotemplates.org (last access 2019 Jan 21)

Modelica IBPSA library (2019) -

https://github.com/ibpsa/modelica-ibpsa (last access 2019

Jan 21).

Nytsch-Geusen, C.; Banhardt, C.; Inderfurth. A.; Mucha,

K.Möckel, Jens; R., Jörg; Thorade, M.; Tugores, C. (2016).

BuildingSystems – Eine modular hierarchische Modell-

Bibliothek zur energetischen Gebäude- und

Anlagensimulation. BAUSIM 2016 IBPSA. Conference

Proceedings, Dresden, Germany.

Nytsch-Geusen, C.; Inderfurth, A.; Kaul, W.; Mucha, K.;

Rädler, J.; Thorade, M. and Tugores, C.R. (2017). Template

based code generation of Modelica building energy

simulation models. 12th International Modelica

Conference, Conference Proceedings, Prag, Czechia.

O’Donnell, J.; See, R.; Rose, C.; Maile, T., Bazjanac, V. and

Haves, P. (2011). SimModel: A domain data model for

whole building energy simulation. In Proceedings of the

12th IBPSA Building Simulation Conference, Sydney,

Australia.

pythonOCC (2019). pythonOCC – 3D CAD for python -

http://www.pythonocc.org (last access 2019 Jan 21).

Reynders, G.; Andriamamonjy, A.; Klein, R; Saelens, D. 2017

Towards an IFC-Modelica tool facilitating model

complexity selection for building energy simulation (2017).

15th IBPSA Building Simulation Conference, Conference

Proceedings, San Francisco, USA.

Team Rooftop (2014), Deliverable 6 & 7 of the Solar

Decathlon Europe 2014. Official documentation of the

Rooftop project. UdK Berlin and TU Berlin, Germany.

Thorade, M.; Rädler, J.; Remmen, P.; Maile, T.; Wimmer, R.;

Cao, J; Lauster, M.; Nytsch-Geusen, C.; Müller, D. and van

Treeck, C. (2015) An open toolchain for generating

Modelica code from Building Information Models. 11th

International Modelica Conference, Conference

Proceedings, Versailles, France.

Wetter, M.; Fuchs, M.; Grozman, P.; Helsen, L., Jorissen, F.;

Lauster, M.; Müller, D.; Nytsch-Geusen, C.; Picard, D.;

Sahlin, P.; and Thorade, M. (2015). IEA EBC Annex 60

Modelica Library - An international collaboration to

develop a free open-source model library for buildings and

community energy systems. 14th IBPSA Building

Simulation Conference, Conference Proceedings,

Hyderabad, India.

DOI Proceedings of the 13th International Modelica Conference 39
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 1B: POWER & ENERGY 1
Open Source PhotoVoltaics Library for Systemic Investigations
Brkic, Jovan and Ceran, Muaz and Elmoghazy, Mohamed and Haumer, Anton and Kral, Christian

Python-Modelica Framework for Automated Simulation and Optimization
Leimeister, Mareike

Demand oriented Modelling of coupled Energy Grids
Benthin, Jörn and Heyer, Annika and Huismann, Philipp and Hagemeier, Anne and Görner, Klaus

.

40 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Open Source PhotoVoltaics Library for Systemic Investigations

DOI Proceedings of the 13th International Modelica Conference 41
10.3384/ecp1915741 March 4-6, 2019, Regensburg, Germany

Open Source PhotoVoltaics Library for Systemic Investigations
Brkic, Jovan and Ceran, Muaz and Elmoghazy, Mohamed and Haumer, Anton and Kral, Christian

41

Open Source PhotoVoltaics Library
for Systemic Investigations

Jovan Brkic1 Muaz Ceran1 Mohamed Elmoghazy1 Ramazan Kavlak1

Anton Haumer2 Christian Kral1
1TGM Wien XX, College of Engineering, Austria, dr.christian.kral@gmail.com

2OTH Regensburg, Germany, anton.haumer@oth-regensburg.de

Abstract

For the planning of photovoltaic power plants standard
software tools are used. Most of these software tools use
statistical solar data to determine the overall energy har-
vest of a photovoltaic plant over one year. The calcula-
tions rely on stationary location and ideal boundary con-
ditions, e.g., constant ambient temperature. Even though,
for example, shadowing may be considered by standard
software, the investigation of untypical configurations and
problems cannot be performed by such software, as most
configurations cannot be changed by the user.

The presented PhotoVoltaics library was devel-
oped with the intention to provide a flexible framework
for standard and non-standard problems. Particularly,
the PhotoVoltaics library can be coupled with other
Modelica libraries to perform systemic investigations. An
application library, PhotoVoltaics_TGM, is provided
as add-on, where measured data of two photovoltaic pants
of the TGM in Vienna can be compared with simulation
results. This add-on library serves as validation of the
PhotoVoltaics library.

Keywords: Photovoltaics, cell, module, plant, data sheet,
converter, maximum power tracking, irradiance, terres-
trial solar model

1 Introduction

For academic and scientific investigations and calculations
in the engineering field of photovoltaics an open source li-
brary is advantageous. Currently, some Modelica libraries
exist which provide photovoltaic plans on different levels
of abstractions.

The Buildings library (Wetter, 2017) includes pho-
tovoltaic plant models based area of cross section and ef-
ficiency parameters. The plant models evaluate the irra-
diance input and calculate the harvested power by means
of a non-standard electrical connector. Additionally, the
Buildings library provides blocks for the processing of
public irradiance data available from EnergyPlus.

In the BuildSysPro library a photovoltaic model is
provided based on physical material and geometry param-
eters, but not electrical parameters (BuildSysPro, 2017).
Electric power is represented by a signal output, so the
actual interaction with maximum power control and the
power grid cannot be modeled in a physical way.

The PVSystems library relies on manufacturer data
and uses electrical connectors from the Modelica Standard
library (PVSystems, 2017). The photovoltaics model in-
cludes a series and parallel resistor but unfortunately no
parameterization aid is provided to determine the resis-
tance parameters. Temperature dependency is considered
by means of a temperature signal input. Even though the
PVSystems library relies on a roughly similar physical
modeling approach as the PhotoVoltaics library, the model
behavior is not consistent. The investigation of the open
circuit voltage at standard conditions and a slightly higher
temperature shows simulations results which clearly devi-
ate from the data sheet parameters.

The PhotoVoltaics library was developed during
a Diploma project at the College of Engineering, TGM,
in 2016--17. It is available on GitHub (Kral, 2017). The
main target of this library was to provide physical models
of photovoltaic components that show consistent behavior
and can be parameterized solely on data sheet values. So
the open circuit voltage and short circuit current including
their temperature dependencies were intended to be mod-
eled to fully match the given data sheet values.

The paper presents the structure of the provided li-
braries in Section 2. In Section 3 the data sheet parameters
are presented and explained. Based on these parameters,
the included cell, module and plant model are elaborated
in Section 4. Different converters and the maximum power
tracking are explained in Sections 5 and 6. The irradiance
models of Section 7 are needed for the system investiga-
tions of complex photovoltaic systems. The library vali-
dation and further application examples are presented in
Sections 8 and 9.

Open Source PhotoVoltaics Library for Systemic Investigations

42 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915741

Figure 1. Structure of the PhotoVoltaics library

2 Library Structure
The PhotoVoltaics library includes:

• Photovoltaic (PV) components (cells, modules and
plants)

• Converters (DC/DC, quasi static single and three
phase, transient three phase)

• Diodes

• Analytic irradiance models (terrestrial, arbitrary sun
location)

• Records of selected industrial module data sheets

The structure of the library is depicted in Figure 1. Gen-
eral configuration examples are included in the package
Examples. Additional application examples which al-
low the validation of the proposed models are provided in
the external package PhotoVoltaics_TGM shown in
Figure 2.

3 Data Sheet Parameters
Most data sheet parameters refer to standard conditions
(STC) of a module. These conditions are characterized by

Figure 2. Structure of the PhotoVoltaics_TGM library, in-
cluding application and validation examples

the reference temperature Tref = 25 ◦C and the reference
irradiance irradianceref = 1000 W/m2. Under these
reference conditions the following quantities are listed:

• Open circuit voltage Voc,ref under reference condi-
tions

• Short circuit current Isc,ref under reference conditions

• Maximum power voltage Vmp,ref under reference
conditions

• Maximum power current Imp,ref under reference con-
ditions

• Linear temperature coefficient of open circuit voltage
αV oc,ref at reference conditions

• Linear temperature coefficient of short circuit current
αIsc,ref at reference conditions

Typically, the temperature coefficient of maximum power
is also listed in the data sheet of a photovoltaic module.
This parameter is, however, not evaluated in the proposed
model, since the model inherently considers the maximum
power temperature coefficient from the open and short cir-
cuit temperature coefficients.

Each module is usually equipped with nb bypass
diodes. These diodes are usually connected anti paral-
lel to two or more strings of the photovoltaic cells. The
diodes are used to overcome reverse operating conditions
caused by partial shading of the module. In order to con-
sider the bypass diodes properly in the model, the param-
eters BvCell, Ibv and Nbv listed in Listing 1 are taken
into account.

Photovoltaic modules usually consist of ns series con-
nected cells, but have no parallel connected cells. The cell
parameters are determined from the module parameters as

Open Source PhotoVoltaics Library for Systemic Investigations

DOI Proceedings of the 13th International Modelica Conference 43
10.3384/ecp1915741 March 4-6, 2019, Regensburg, Germany

shown in Listing. 1. Additionally, the temperature voltage
at reference temperature,

Vt,ref =
k · Tref

Q
, (1)

is calculated as final parameter. In this equation k is the
Boltzmann constant andQ is the elementary charge (of an
electron). The module parameters are organized as record
in Modelica.

Listing 1. Record of module data

record ModuleData "Data of PV module"
extends Modelica.Icons.Record;
import SI=Modelica.SIunits;
parameter String moduleName = "Generic";
parameter SI.Temperature TRef = 298.15
"Reference temperature";

parameter SI.Irradiance irradianceRef
= 1000 "Reference solar irradiance";

parameter SI.Voltage VocRef = 30.2
"Reference open circuit module voltage
> 0 at TRref";

final parameter SI.Voltage
VocCellRef = VocRef / ns "Reference open
circuit cell voltage > 0 at TRref";

parameter SI.Current IscRef= 8.54
"Reference short circuit current
> 0 at TRref and irradianceRef";

parameter SI.Voltage VmpRef = 24.0
"Reference maximum power module
voltage > 0 at TRref";

final parameter SI.Voltage VmpCellRef
= VmpRef / ns "Reference maximum power
cell voltage > 0 at TRref";

parameter SI.Current ImpRef = 7.71
"Reference maximum power current
> 0 at TRref and irradianceRef";

parameter SI.LinearTemperatureCoefficient
alphaIsc = +0.00053 "Temperature
coefficient of reference short circuit
current at TRref";

parameter SI.LinearTemperatureCoefficient
alphaVoc = -0.00340 "Temperature
coefficient of reference open circuit
module voltage at TRref";

parameter Integer ns = 1
"Number of series connected cells";

parameter Integer nb = 1
"Number of bypass diodes per module";

parameter SI.Voltage BvCell = 18
"Breakthrough cell voltage";

parameter SI.Current Ibv = 1
"Breakthrough knee current";

parameter Real Nbv = 0.74
"Breakthrough emission coefficient";

final parameter SI.Voltage VtCellRef
= Modelica.Constants.k * TRef / Q
"Reference temperature voltage of cell";

constant SI.Charge Q = 1.6021766208E-19
"Elementary charge of electron";

end ModuleData;

D D

Iph Iphid

Rp

Rs

id ip

ii

vv

(a) (b)

Figure 3. (a) Basic and (b) extended equivalent circuit diagram
of PV cell

p.i n.ip n

heatPort

fixedTemperature

T=T

K

v
a
r
i
a
b
l
e
I
r
r

moduleData

Generic

const

k=constantIrradiance

diode

signalCurrent

g
a
i
n

Figure 4. Modelica implementation of the cell model
SimpleCell

4 PhotoVoltaics Components

4.1 Photo Voltaic Cells
The basic photovoltaic component is the cell. The imple-
mented model consists of a diode and current source as
shown in Figure 3 (Mahmoud et al., 2012). The current
source represents the solar power source and the diode
includes the semiconductor properties of a cell. The ba-
sic equivalent circuit diagram of Figure 3(a) could be
extended by a series resistor Rs and a parallel resistor
Rp. The extended model may be more accurate than
the basic model, but from data sheet values the extended
model can usually not be parameterized as the slopes
of the voltage versus current characteristics are not pro-
vided accurately enough by the manufacturers. Therefore,
the PhotoVoltaics library includes only basic mod-
els, so far. The actual implementation of the cell model
SimpleCell is depicted in Figure 4.

In the basic photovoltaic cell model the source current
Iph is modeled directly proportional to the actual irradi-
ance the cell is exposed to, including temperature depen-
dence

Iph
Iph,ref

=
irradiance

irradianceref
+ αIsc(T − Tref), (2)

where T is the actual operating temperature of the current
source. The actual irradiance can be considered in two

Open Source PhotoVoltaics Library for Systemic Investigations

44 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915741

−5 −4 −3 −2 −1 0

diodexm.v (V)

−20

−15

−10

−5

0

5

10

15

20
d
i
o
d
e
x
m
.
i

(A
)

Figure 5. Diode model with two exponential regions and one
linear region

ways:

• A constant quantity constantIrradiance is
provided as parameter if the boolean parameter
useConstantIrradiance = true

• A signal input variableIrradiance
is enabled if the boolean parameter
useConstantIrradiance = false

The variable irradiance in (2) is thus as-
signed to either constantIrradiance or
variableIrradiance depending on the boolean
parameter useConstantIrradiance.

The diode models is especially designed for the purpose
of photovoltaic applications. It covers the forwards and
backwards breakthrough region. For numerical reasons
the current versus voltage characteristic of the used diode
model considers three different regions:

• Forward exponential range for positive cell voltages,

i = Ids

(
exp

(
v

mVt

)
− 1

)
+
v

R
, (3)

where R = 108 Ω is a parallel resistance used to sta-
bilize the model numerically; Ids represents the satu-
ration current m is the ideality factor of the diode

• Backward linear range in the reverse direction start-
ing from zero voltage

• Backward exponential range of negative voltages in
the breakthrough region

The current versus voltage characteristic of the imple-
mented diode model depicted in Figure 5 is determined
by the experiment DiodeCompare using ns = 1,
nsModule = 1 and npModule = 1. The variables
Ids and m of the diode forward exponential region (3) are
determined through the operating conditions of the photo-
voltaic cell. The first condition is derived from the open
circuit case of Figure 3(a) substituted in (3),

Isc = Ids

(
exp

(
Voc

mVt

)
− 1

)
. (4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

cell.v (V)

0

2

4

6

8

10

c
e
l
l
.
i
G
e
n
e
r
a
t
i
n
g

(A
)

(a)

(b)

(c)

(d)

Figure 6. Cell current versus cell voltage for (a) irradiance =
250 W/m2, (b) irradiance = 500 W/m2, (c) irradiance =
750 W/m2, and (d) irradiance = 1000 W/m2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

cell.v (V)

0

1

2

3

4

5

c
e
l
l
.
p
o
w
e
r
G
e
n
e
r
a
t
i
n
g

(W
)

(a)

(b)

(c)

(d)

Figure 7. Cell power versus cell voltage for (a) irradiance =
250 W/m2, (b) irradiance = 500 W/m2, (c) irradiance =
750 W/m2, and (d) irradiance = 1000 W/m2

In this equation the photo current is equal to the short
circuit current. The impact of the parallel resistance on
this equation is neglected. The second conditions is deter-
mined by the temperature voltage

Vt =
k · T
Q

. (5)

Additionally the temperature dependencies of the open
circuit and short circuit voltage of the photovoltaic cell
have to be taken into account:

Voc = Voc,ref (1 + αV oc(T − Tref)) (6)
Isc = Isc,ref (1 + αIoc(T − Tref)) (7)

This implementation causes the saturation current Ids and
the ideality factor m to be temperature dependent. The
variability of these quantities is a result of consistent op-
erating conditions of the proposed model based on manu-
facturer data.

The linear scaling of the short circuit current accord-
ing to (2) for constant temperature is demonstrated in Fig-
ure 6. Figure 7 shows the dependence of the maximum

Open Source PhotoVoltaics Library for Systemic Investigations

DOI Proceedings of the 13th International Modelica Conference 45
10.3384/ecp1915741 March 4-6, 2019, Regensburg, Germany

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

cell.v (V)

0

2

4

6

8

10
c
e
l
l
.
i
G
e
n
e
r
a
t
i
n
g

(A
)

(a)(b)(c)

Figure 8. Cell current versus cell voltage for (a) T = −20 ◦C,
(b) T = 10 ◦C, (c) T = 40 ◦C

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

cell.v (V)

0

1

2

3

4

5

c
e
l
l
.
p
o
w
e
r
G
e
n
e
r
a
t
i
n
g

(W
)

(a)(b)(c)

Figure 9. Cell power versus cell voltage for (a) T = −20 ◦C,
(b) T = 10 ◦C, (c) T = 40 ◦C

power point on irradiance. The impact of the operating
temperature on the short circuit current and the open cir-
cuit voltage is shown in Figure 8. In this figure a typical
case is evaluated, considering a positive temperature coef-
ficient of the short circuit current and a negative tempera-
ture coefficient of the open circuit voltage. Since the abso-
lute value of the temperature coefficient of the open circuit
is greater than the temperature coefficient of the short cir-
cuit current, the temperature coefficient of the maximum
power is negative. Consequently, the maximum power
harvest of a photovoltaic cell decreases with increasing
temperature, see Figure 9.

The photovoltaic cell model also considers shading of a
cell. In this implementation shadow = 0 represents the
case of full exposure to solar irradiance, whereas shadow
= 1 considers zero irradiance. In addition to conventional
shading caused by visible obstacles, this approach also al-
lows the consideration of the dimming of the cell over time
due the impact of pollution (Häberlin and Renken, 1999;
Renken and Häberlin, 1999).

p.i n.ip n

heatPort

fixedTemperature

T=T

K

v
a
r
i
a
b
l
e
I
r
r

moduleData

Generic

const

k=constantIrradiance

diode

signalCurrent

g
a
i
n

Figure 10. Modelica implementation of the symmetric module
model SimpleModuleSymmetric

4.2 Symmetric Photovoltaic Modules

In the PhotoVoltaics library two different module
classes are provided. The symmetric module assumes uni-
form shading of all cells of a module. In this case the by-
pass diodes are not taken into account.

The cell currents iCell and the cell voltages vCell
correspond with the module current i and the module
voltage v by

iCell = i, (8)
ns ∗ vCell = v. (9)

In (8) it is considered that a module has no parallel con-
nections. However, both the current source and the diode
model are designed such way that parallel and series con-
nections may be considered by scaling the photo current
and the diode voltage and current, respectively. Therefore,
the SimpleModuleSymmetric model of Figure 10
looks similar to the cell model of Figure 4.

4.3 Asymmetric Photo Voltaic Module

The asymmetric photovoltaic module consists of a phys-
ical series connection of cells (Figure 11). For each cell
the corresponding shading can be adjusted by the mod-
ule array parameter shadow. The division of the number
of series connected cells by the number of bypass diodes,
ns/nb, has to have zero remainder in order to model the
bypass diodes symmetrically.

4.4 Symmetric Plant

The symmetric plant model is designed in the spirit of
a symmetric module model as shown in Figure 10. For
the plant model the number of series and parallel con-
nected modules, nsModule and npModule are consid-
ered. The plant current i and the plant voltage v corre-

Open Source PhotoVoltaics Library for Systemic Investigations

46 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915741

p.i n.ip n

heatPort

fixedTemperature

T=T

K

v
a
r
i
a
b
l
e
I
r
r

moduleData

Generic

const

k=constantIrradiance

cell

collectorModule

m=moduleData.ns

diode

collectorByPass

m=moduleData.nb

r
e
p
l
i
c
a
t
o
r

Figure 11. Modelica implementation of the module model
SimpleModule

Figure 12. Converter models of the PhotoVoltaics Library

spond with module and cell currents and voltages by:

npPlant ∗ iModule = i (10)
iCell = iModule (11)

nsPlant ∗ vModule = v (12)
ns ∗ vCell = vModule (13)

5 Converters

The power conversion from a photovoltaic cell, module or
plant to a DC, single or three phase AC grid is performed
by means of converter models, see Figure 12. The con-
verter models are all designed the same way considering
the following characteristic behavior:

• Neither conduction nor switching losses are taken
into account

• The converter models rely on ideal power conversion

• The voltage of the photovoltaic DC side can be ad-
justed (controlled) by a signal input

For the DC/DC conversion only, a converter model with
integrated maximum power tracker is provided.

6 Maximum Power Tracking

In order to harvest the maximum energy, a photovoltaic
plant has to be operated in the point of maximum power,
see Figures 7 and 9. The photovoltaic DC side voltage has
to be controlled such way that the maximum power point
is reached. There are various maximum power tracking
methods available in the literature. For the sake of sim-
plicity there is only one discrete maximum power tracker
implemented so far.

The implemented maximum power tracker is a block
which evaluates the sensed power through a signal input.
The output is the controlled photovoltaic DC voltage. The
tracker samples the input power with a fixed sampling pe-
riod. The output voltage is permanently changing in order
to always follow changes of the maximum power point.

The initial setting is the voltage of the maximum power
point according to the data sheet of the used modules. The
output voltage gets increase by a voltage increment ∆v·s,
where s = −1, so the output voltage actually gets de-
creased. If the sensed power is greater than the previously
sensed power, the voltage will be decreased again. This
procedure is performed until the actually sampled power
gets smaller than the previously sampled power. In that
case the sign s will be altered. Then the output voltage
starts increasing, again until the maximum power point is
exceeded. This way, under steady state thermal and solar
conditions, the output voltages is continuously changed
between three different stages.

The experiment SimpleModuleMP investigates the
maximum power tracking under varying irradiance con-
ditions and a sampling time of one second. The initial
irradiance is equal to 200 W/m2. From 100 to 200 sec-
onds the irradiance increases linearly up to 1000 W/m2

and remains constant until 300 seconds. Figure 13 and 14
show the power and reference voltage versus time, respec-
tively. The reference voltage starts with the voltage of the
maximum power point Vmp,ref = 24 V, which refers to
1000 W/m2. However, since the experiment starts with
200 W/m2, the reference voltage is decreased to roughly
20 V in order to reach the actual maximum power point
of approximately 30 W under these conditions. After in-
creasing the irradiance to 1000 W/m2 the reference volt-
age is controlled up to 24 V which is equal to the expected
Vmp,ref = 24 V. From the voltage waveform the operating
behavior of the controller can be observed. In quasi static
operation the reference voltage is controlled upwards and
downwards by ∆v, having the maximum power point in
between. The nonlinear increase of the reference volt-
age between 200 and 300 seconds is due to the fact that
the irradiance and the maximum power of the module are
not related linearly. Even though the power curve ap-
pears smooth in Figure 13, is also reveals discrete power
changes when zooming into the curve.

Open Source PhotoVoltaics Library for Systemic Investigations

DOI Proceedings of the 13th International Modelica Conference 47
10.3384/ecp1915741 March 4-6, 2019, Regensburg, Germany

0 50 100 150 200 250 300

time (s)

20

40

60

80

100

120

140

160

180

200
m
p
T
r
a
c
k
e
r
.
p
o
w
e
r

(W
)

Figure 13. Example SimpleModuleMP, power versus time

0 50 100 150 200 250 300

time (s)

19

20

21

22

23

24

25

m
p
T
r
a
c
k
e
r
.
v
R
e
f

(V
)

Figure 14. Example SimpleModuleMP, reference voltage
versus time

7 Irradiance Models

In the PhotoVoltaics library terrestrial irradiance
models are provided. The calculations are based on
(Quaschning, 2011). The used equations are not discussed
in this paper. However, the basic idea was to provide an
analytic solar model that calculates the irradiance from the
following parameters:

• Start day

• Start month

• Start year

• Time zone

• Longitude

• Latitude

• Reference irradiance (default value is 1000 W/m2)

• Angle of inclination, γ, of the photovoltaic module
with respect to the horizontal plane

• Azimuth of the photovoltaic module orientation (N =
0 ◦, E = 90 ◦, S = 180 ◦, W = 270 ◦, see Figure 21(c))

Figure 15. Photovoltaic plants of the TGM in Vienna

The start time of a simulation experiment refers to local
time 00:00 of the indicated start day (and month and year).
In this model, the following effects are not considered:

• Reflection

• Diffusion

• Visible obstacles in the vicinity of the photovoltaic
plant

The purpose of the analytic solar model is to provide a ba-
sis for systemic investigations without having real weather
conditions distorting the virtual experiments.

Since the Buildings library (Wetter, 2017) provides
models to determine the effective irradiance based on sta-
tistical weather data, there are no extra models included in
the PhotoVoltaics library to serve this purpose. Open
access weather data of Vienna, Austria are included in the
PhotoVoltaics library (EnergyPlus, 2017).

8 Validation

The PhotoVoltaics_TGM library is an additional li-
brary dedicated to the comparison of the simulation and
measurement data of two photovoltaic plants located at the
College of Engineering, TGM, in Vienna, Austria (Fig-
ure 15). The library relies on the PhotoVoltaics and
the Buildings library (Wetter, 2017). The investigated
plants are named after the manufacturer of the modules,
Trina and Comax; see (Trina, 2017) and (Comax, 2017).
The two plants are equipped with one irradiance sensor
which allows the validation of the proposes cell and mod-
ule models of the PhotoVoltaics library. For the two differ-
ent plants one validation example, each, will be presented
in this paper. The modules are aligned with the building,
the direction is roughly south. The angle of inclination
equals 10 ◦.

For the validation of the PhotoVoltaics_TGM li-
brary a constant module temperature of 25 ◦C is used. If
necessary, measured or modeled temperature data could
be fed to the thermal connector of the module.

Open Source PhotoVoltaics Library for Systemic Investigations

48 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915741

p
l
a
n
t

ground

converter

= ~

converter

vDCRef

PV

src

mpTracker
groundAC

v
o
l
t
a
g
e
S
o
u
r
c
e

+
-

powerSensor

P

integrator

I

k=1

combiTimeTable

writeCSV

CSV

power(W)

moduleData

TSM 230 PC05

Figure 16. Model of the Trina plant of TGM in Vienna, reading
irradiance data from a file

The first example, shown in Figure 16, refers to the
Trina plant on 2016-06-29. The measured irradiance data
are depicted in Figure 17 are fed to the irradiance in-
put connector. A shadow of 0.1 is taken into account in
the model, to consider the degradation due to pollution
(Häberlin and Renken, 1999). The generated DC power is
fed to the AC power grid by means a quasi static DC/AC
converter including power tracking. The simulated power
is also integrated to determine the energy harvest of this
day. An additional interface block is used to write time
versus power data directly to a CSV file to simplify the
evaluation with a spreadsheet processing software.

The irradiance waveform of Figure 17 shows one sig-
nificant drop at 16:30 caused by the shadow of the high-
riser school building, which is located next to the pho-
tovoltaic plants. The maximum irradiance reaches about
1000 W/m2 and occurs at 13:30.

Since the power generated by the plant is directly pro-
portional to the irradiance, the simulated DC power in Fig-
ure 18 shows the same drop at 16:30 as the irradiance.
This figure also shows the measured DC and AC power
of the converter. The measured DC power shows a high
congruence with the simulated DC power. The measured
AC power is smaller than the DC power due to the loss
of the DC/AC converter. In the simulation, the converter
loss is not taken into account. Consequently, there is no
equivalent quantity in the simulation to be compared to
the measured AC power.

The second example investigates the Comax plant at the
TGM in Vienna on 2016-06.29. This plant has a smaller
peak power than the Trina plant. The simulated DC power
and the measured AC power are shown in Figure 19. Un-
fortunately, the converter of the Comax plant does not
measure the DC power. Therefore, only the measured AC
power can be compared to the simulated DC power. The
difference between the two curves is again caused by the
converter loss. However, by comparing the Figures 18 and
19 it can be roughly estimated that measurement and sim-
ulation again show a good agreement, if similar converter

0 6 12 18 24

time (h)

0

200

400

600

800

1000

ir
ra

di
an

ce
(W

/m
2
)

Figure 17. Measured irradiance at TGM in Vienna on 2016-06-
29

0 6 12 18 24

time (h)

0

500

1000

1500

2000

po
w

er
(W

)

(a)
(b)
(c)

Figure 18. Power of the Trina plant at TGM in Vienna on 2016-
06-29, (a) simulated DC power, (b) measured AC power and (c)
measured DC power

losses for both cases are presumed.

The comparison of the measurement and simula-
tion results of the two plants validates the presented
PhotoVoltaics library.

0 6 12 18 24

time (h)

0

500

1000

1500

2000

po
w

er
(W

)

(a)
(b)

Figure 19. Power of the Comax plant at TGM in Vienna on
2016-06-29, (a) simulated DC power, (b) measured AC power
and (c) measured DC power

Open Source PhotoVoltaics Library for Systemic Investigations

DOI Proceedings of the 13th International Modelica Conference 49
10.3384/ecp1915741 March 4-6, 2019, Regensburg, Germany

9 Applications

Typical applications of the PhotoVoltaics library are sys-
temic investigations which include photovoltaics. Since
all photovoltaic components are equipped with a thermal
heat port, the influence of temperature on the operational
behavior may be investigated. Particularly, the library is
capable of investigating of the total energy consumption
and generation of alternative building concepts including
interaction with the power grid.

One special application of the PhotoVoltaics li-
brary is the Phileas rover of the Austrian Space Forum
(Austrian Space Forum, 2017). This rover is equipped
with four triangularly shaped solar panels. The four panels
are equipped with photovoltaic cells and shape a pyramid
in the upright position as shown in Figure 20(a). At the top
of the pyramid all four panels are mechanically connected.
This top point can be moved vertically only. The remain-
ing two bottom points of each face can only move in the
horizontal plane as sketched in Figure 20(b). So, by ver-
tically adjusting the top point of the four panels, the total
energy harvest of the panel configuration can be changed.
The actual panel configuration is characterized by the in-
clination angle γ of a panel as shown in Figure 20(a) and
(b).

The Modelica model of the Phileas rover is depicted in
Figure 21. If the position of one solar panel is known the
position of other second panels is displaced by 90 ◦, and
so on. Therefore, the input connectors of the model are
the inclination angle γ and the azimuth of panel number
1. The inclination angles of the four panels are equal. The
location of the sun is fixed in this model in order to al-
low systemic investigations. The irradiance of each of the
four models is calculated and fed to the respective signal
input of the panel. Each panel is connected with a DC/DC
converter including maximum power tracker. The output
sides of the four DC/DC converters are connected in par-
allel.

In the experiment SolarPyramidBatteryCharge
a simplified investigation is made. The azimuths of the
panels are kept constant and the inclination angle γ is var-
ied between 0 and 60 ◦. The output connectors of the four
parallel DC/DC converters are supplying a battery with
constant voltage. The panel parameters are taken from a
standard module. The actual geometric size of the four
panels is not taken into account, since it cause a scaling
of power only. An additional simplification of the experi-
ment is done by using terrestrial solar irradiances instead
of the irradiances on the Mars. The sun height is set to 22 ◦

and the sun azimuth is equal to 260 ◦ (see Figure 20(c)),
i.e., the orientation of the sun is close to west. The four
panels are oriented towards the main directions (panel 1 =
north, panel 2 = east, panel 3 = south, panel 4 = west). The
calculated powers of the four panels (1)–(4) and the sum
power (Σ) are depicted in Figure 22. When increasing the
inclination angle γ up to approximately 22 ◦, the power
of solar panel number 2 drops to zero. This is a conse-

(c)

N

S

EW

azi
mu

th

(b)

γ

(a)

γ

Figure 20. Solar panels of the Phileas rover (a) in most upright
position and (b) in inclined position; (c) definition of the azimuth

nModule

azimuth

gamma

heatPort

fixedTemperature

T=T

K

dc_p

dc_n

moduleData

Generic

const

k=Modelica.Constants.pi / 2

a
d
d
1

a
d
d
1

+

+
1

+
1

a
d
d
2

a
d
d
2

+

+
1

+
1

a
d
d
3

a
d
d
3

+

+
1

+
1

m
o
d
u
l
e
1

m
o
d
u
l
e
2

m
o
d
u
l
e
3

m
o
d
u
l
e
4

irradianceParameter1

irradianceParameter2

irradianceParameter3

irradianceParameter4

dcConverter1

=
PV

bat

=

dcConverter2

=
PV

bat

=

dcConverter3

=
PV

bat

=

dcConverter4

=
PV

bat

=

Figure 21. Model of the Phileas rover of the Austrian Space
Forum (Austrian Space Forum, 2017)

quence of the inclination angle being greater than the sun
height. The power of panel number 4 becomes the great-
est, since it is oriented to west, close to the azimuth of the
sun. All four panel powers start at the same starting power
at γ = 0 ◦, since they are then equally located in the plane.
The total power shows a local maximum at γ = 0 ◦ and a
global maximum at γ = 42 ◦.

0 10 20 30 40 50 60

γ (◦)

−50

0

50

100

150

200

250

300

po
w

er
(W

)

(Σ)

(4)

(1)

(3)

(2)

Figure 22. Power versus inclination angle γ of panels (1)–(4)
and sum (Σ)

Open Source PhotoVoltaics Library for Systemic Investigations

50 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915741

10 Conclusions
In this paper the open source PhotoVoltaics library
was presented. Various photovoltaic components are ex-
plained based on typical data sheet parameters provided
by manufacturers. Different models of cells, modules and
plants are explained. Additional models of converters in-
cluding maximum power tracking are described. In order
to make systemic investigations, different analytic solar
model are introduced.

Based on measurement data of two small photovoltaic
plant at the TGM in Vienna, a validation of the library is
performed. An application example of the Phileas rover
of the Austrian Space Forum is investigated to demon-
strate the potential of systemic investigations enabled by
the PhotoVoltaics library.

References
OeWF Austrian Space Forum. The Phileas Rover, June 2017.

URL http://oewf.org/en/polares-science/
phileas-rover/.

BuildSysPro. Edf’s modelica library for buildings, districts
and energy systems modelling, June 2017. URL https:
//github.com/edf-enerbat/BuildSysPro.

Comax. Photo voltaic module data sheet Comax
TSM 200 DC 01A, June 2017. URL http:
//www.elektra.si/uploads/datoteke/trina_
tsm-195-200-205-210dc80.08_mono.pdf.

EnergyPlus. Weather data by location, europe wmo region
6 - austria, June 2017. URL https://energyplus.

net/weather-location/europe_wmo_region_
6/AUT//AUT_Vienna.Schwechat.110360_IWEC.

Heinrich Häberlin and Christian Renken. Allmähliche Reduk-
tion des Energieertrags von Photovoltaikanlagen durch per-
manente Verschmutzung und Degradation. Bulletin SEVIVSE
10/99, 1999.

Christian Kral. Modelica PhotoVoltaics library, June
2017. URL https://github.com/christiankral/
PhotoVoltaics.

Yousef Mahmoud, W. Xiao, and H. H. Zeineldin. A simple
approach to modeling and simulation of photovoltaic mod-
ules. IEEE Transactions on Sustainable Energy, 3(1):185–
186, January 2012.

PVSystems. Library toolbox for photovoltaic systems analy-
sis, June 2017. URL https://github.com/mmanana/
pvsystems.

Volker Quaschning. Regenerative Energiesysteme: Technologie
- Berechnung - Simulation. Hanser, 7 edition, 2011.

C. Renken and H. Häberlin. Langzeitverhalten von netzgekop-
pelten Photovoltaikanlagen; Schlussbericht. Technical re-
port, Berner Fachhochschule, Hochschule für Technik und
Architektur (HTA) Burgdorf, 1999.

Trina. Photo voltaic module data sheet Trina TSM
230 PC05, June 2017. URL https://http:
//www.franklin-electric.com.au/media/
52578/Trina%20TSM190-200DC01A_WW.pdf.

Michael Wetter. Modelica Buildings library, June
2017. URL https://github.com/lbl-srg/
modelica-buildings.

Python-Modelica Framework for Automated Simulation and Optimization

DOI Proceedings of the 13th International Modelica Conference 51
10.3384/ecp1915751 March 4-6, 2019, Regensburg, Germany

Python-Modelica Framework for Automated Simulation and Optimization
Leimeister, Mareike

51

Python-Modelica Framework for Automated Simulation and
Optimization

Mareike Leimeister1,2

1Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, United Kingdom
2Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems, Germany,

mareike.leimeister@iwes.fraunhofer.de

Abstract
Modeling and simulation are essential for the devel-
opment of complex engineering systems, such as wind
turbines. Thus, Fraunhofer IWES (Fraunhofer Institute
for Wind Energy Systems) has developed the MoWiT
(Modelica for Wind Turbines) library for fully-coupled
aero-hydro-servo-elastic simulations of wind turbine
systems. To meet the needs for detailed assessment and
design development of such sophisticated engineering
systems, which imply iterative steps for design opti-
mization, a Python-Modelica framework is set up and
presented in this paper. By means of this, the simulation
of MoWiT models can easily be managed, including
redefinition of model parameters, specification of output
sensors and simulation settings, integration of optimiza-
tion algorithms, post-processing of simulation results,
as well as parallel execution of several simulations. The
application of this Python-Modelica framework is shown
based on the example of a design optimization task of a
floating wind turbine support structure.

Keywords: Modelica, OneWind, MoWiT, Python, wind
turbines, automated design optimization

1 Introduction
The development process of engineering systems is
very complex, labor-intensive, and extensive. System
simulation, analysis, and of course optimization are
of high importance in, for example, power, control,
automotive, aerospace, marine, material, or building
engineering. The focus of interest could range from
general design optimization, through performance or
efficiency enhancement, including for example flow
properties or comfort aspects, to a commonly envisaged
cost reduction. Regardless of objectives, constraints,
criteria, and engineering system, design processes always
implicate several iterations, in which the evolving designs
are tested, analyzed, and modified accordingly until
an optimized design is achieved. Thus, an automated
simulation framework is essential to cope with the large
number of simulations, required to assess and develop
such an engineering system design in detail, but also to

support design optimization processes, in which iterative
simulations have to be executed.

Good examples for such intricate engineering sys-
tems and their extensive development process are wind
turbines. These power plants have to comply with require-
ments from standards, such as IEC 61400-3 (International
Electrotechnical Commission, 2009) or DNVGL-ST-0437
(DNV GL AS, 2016), and need to be tested on their per-
formance in various environmental conditions, including
loads and system responses. However, the complexity of
wind turbine systems, with their non-linear system behav-
ior and couplings between aerodynamics, hydrodynamics
(if offshore), control system, and structural dynamics,
makes modeling and simulation indispensable.

Thus, at Fraunhofer IWES (Fraunhofer Institute for
Wind Energy Systems) a computational model for wind
turbine load calculations has been developed in the
open-source object-oriented and equation-based modeling
language Modelica. This modeling language has the
power to deal with multi-physics problems and, hence,
can be used for simulation of various engineering systems.
The MoWiT (Modelica for Wind Turbines) library1 is
capable of fully-coupled aero-hydro-servo-elastic simu-
lations of wind turbine systems - onshore, bottom-fixed
offshore, or even floating offshore. The hierarchical pro-
gramming and the multibody approach in Modelica allow
representation of the entire wind turbine system through
models for single components. This component-based
structure of the MoWiT library simplifies the adaption
and modification of a wind turbine model because single
components can easily be exchanged or customized.
(Leimeister and Thomas, 2017; Thomas et al., 2014;
Strobel et al., 2011)

Even if MoWiT can model the non-linear system
behavior, a large number of simulations are required for
the design of an optimized wind turbine system. For
this purpose a Python-Modelica framework is developed
for automated execution of simulations and optimization
tasks.

1formerly OneWind Modelica library

Python-Modelica Framework for Automated Simulation and Optimization

52 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915751

In this paper, first the simulation framework in Python,

interfacing with models created in MoWiT, is presented
in detail in Section 2, followed by the extension of the
framework for automated optimization applications,
covered in Section 3. Afterwards, the application of this
Python-Modelica framework is shown exemplarily on
the design optimization of a floating wind turbine system
(Section 4). Conclusions are given at the end in Section 5.

2 Simulation Framework in Python
The framework for automated simulation of wind turbine
models requires

1. a modeling environment, which is the MoWiT library
building upon the Modelica modeling language;

2. a tool for executing the time-domain simulations
(Dymola2);

3. and a programming interface (Python3) for external
and automated control of the simulations.

The tools, which are selected to be incorporated in one
framework for automated simulation, stand in perfect
mutual complement. The Modelica based modeling
environment in combination with the Dymola simulation
engine is very suitable for time-domain simulations
of complex multi-physics engineering problems. Pro-
gramming in Python, on the other hand, facilitates the
management and handling of simulations, controls the
entire simulation process, and creates a set framework for
automated application to engineering systems models and
problems.

A schematic representation of the simulation frame-
work in Python is presented in Figure 1. In Modelica,
using the MoWiT library, the considered wind turbine
system is specified and all parameters are set, so that the
model can be simulated in Dymola. With setting up the
MoWiT model, a Modelica package is created. This is

2https://www.3ds.com/products-services/catia/products/dymola/
(Accessed: 5 October 2018)

3https://www.python.org/ (Accessed: 26 October 2018)

Figure 1. Simulation framework in Python.

the main input to the Python-Modelica framework as it
contains all necessary information about the simulated
model (structure, components, parameters, equations,
states, ...). Due to the fact that the Python-Modelica
framework should also be used to set and modify parame-
ter values according to specific simulation requirements,
it is important to add annotation(Evaluate=false)
to these parameters, when defining them in the MoWiT
model.

The simulation framework in Python itself works
on different levels, as shown in Figure 1. It contains a
Model Wrapper for processing the Modelica package
and establishing the interface to Modelica based on the
Python package BuildingsPy4. On the next level, the
Simulation Manager handles the instances from the
Model Wrapper and manages the simulations. Finally,
a main script is required to execute the simulation task
and define additional commands, for example for writing
result files or for post-processing.

2.1 Processing the Modelica Package
The Modelica package of the created MoWiT wind
turbine system model is given as input to the Model
Wrapper. The Python-Modelica interface is defined
based on the available interface between Python, Mod-
elica, and Dymola, provided by the Python package
BuildingsPy4. Within this package, the main class,
which is finally required to simulate a Modelica model, is
the Simulator.

2.1.1 The Simulator

The Python script for the class Simulator is taken
from the Python package BuildingsPy and slightly
modified to make it compatible with the used Python
3.x version. The Simulator provides the interface
between Python and Modelica to run simulations with
Dymola. Based on the inputs for model name and the
path to the Modelica package of the MoWiT model, the
used simulation engine (Dymola) and the path to the
executable, as well as optional inputs for working and

4http://simulationresearch.lbl.gov/modelica/buildingspy/
(Accessed: 9 October 2018)

Python-Modelica Framework for Automated Simulation and Optimization

DOI Proceedings of the 13th International Modelica Conference 53
10.3384/ecp1915751 March 4-6, 2019, Regensburg, Germany

output directories, the methods for setting paths, directo-
ries, but also simulation parameters and commands are
defined. Furthermore, methods for adding pre-processing
statements when translating or simulating the model, as
well as post-processing statements before writing the
log-file are specified. Finally, the methods to simulate a
model, translate a model, or simulate a translated model
are declared.

2.1.2 The Model Wrapper
The Simulator is called within the Model Wrapper,
which specifies parameters, paths, and simulation settings
for Dymola to be used in the Simulator. Besides this,
also parameters to be set for translation or to be redefined
before simulation, pre-processing statements to be added
ahead of translation or simulation, as well as a list of
output sensor names are defined.

The basic Model Wrapper class directly processes a
Modelica package of a MoWiT model and modifies, if
required, specified parameters and settings. Additionally,
a method is defined to write Dymola commands for
generating a ∗csv output file after completion of the
simulation. Furthermore, the total number of simulations
to be executed is specified. This is especially relevant
when running several simulations, which could be pro-
cessed in parallel or successively. This is managed by the
Simulation Manager, which is introduced in the next
Subsection 2.2.

2.2 Managing the Simulation
Wrapped models are then further processed in the
Simulation Manager. The input list of wrapped mod-
els could contain

• one instance of a Model Wrapper class, corre-
sponding to just one MoWiT model;

• one instance of a Model Wrapper class, based on
one and the same model, however, comprising sev-
eral simulations with different parameter settings;

• or several different instances of a Model Wrapper
class for working with various MoWiT models.

These models in the list of wrapped models can be han-
dled either successively or in parallel, while for the lat-
ter the number of processors used for multi-processing
in a pool can be specified as additional input to the
Simulation Manager. Both forms of management are
available for different processing methods:

• translating a wrapped model;

• simulating a translated wrapped model;

• creating a turbulent wind file.

The first two methods are calling functions in the
Simulator. The latter method is only relevant for simu-
lations with turbulent wind. This is defined through the
turbulence intensity, as well as the wind spectrum type
(Kaimal, von Karman, or Mann). In this Python-Modelica
framework application, TurbSim (Jonkman, 2009) is used
for generating a turbulent wind field. A file containing the
time series of the wind speed could

• either already exist and the path to this file has to be
specified directly in the MoWiT model or is given as
input to the Simulation Manager;

• or still has to be generated, which requires the path
to the TurbSim executable, as well as the wind
turbine and simulation case specific TurbSim input
file.

2.3 Executing the Task
Finally, a main script is required to execute the simulation
task and define additional commands, for example for
writing result files or post-processing calculations. This
script highly depends on the application case. Hence,
for running a large number of simulations, such as in the
case of design load case simulations, only the simulations
to be executed, as well as simulation settings, paths,
and input parameters are to be specified. However, for
applying the Python-Modelica framework to automated
optimization tasks, additional code, in which design
variables and objective functions are defined and linked
to existing Python packages for optimization, has to be
written in the main script. More detailed information
on the Python-Modelica framework extension for the
use for automated optimization is given in the following
Section 3.

3 Extension for Automated Optimiza-
tion

The Python-Modelica framework, as presented in Sec-
tion 2, serves as basis for further applications, apart
from automated simulation, such as the realization of
optimizations. The extension of the Python-Modelica
framework for automated optimization is of significant
importance, as optimization tasks are highly iterative.
This finds profitable use in the design and optimization
of wind turbine systems. Due to the complexity of an
(offshore) wind turbine model, comprising a huge number
of parameters, and the non-linear system behavior,
optimization problems cannot directly be solved and a
large number of iterations has to be gone through.

The wind turbine system model, which should be
used for optimization purposes, has to be wrapped and
processed with the Model Wrapper and Simulation
Manager, respectively, according to the explanations

Python-Modelica Framework for Automated Simulation and Optimization

54 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915751

in Subsections 2.1 and 2.2. This, together with further
definitions regarding the optimization process, is passed
to the main script, by which means finally the execution of
the optimization algorithm is started (see Subsection 2.3).
Additional information on the optimization itself is pro-
vided by separate classes, clustered into the optimization
problem, the optimizer, and the optimization algorithm,
which are introduced in the following Subsections 3.1 to
3.3.

3.1 The Optimization Problem

Based on the model from the Simulation Manager, the
optimization problem has to be described. This comprises
definitions of design (also called optimization) variables,
objective functions, as well as additional constraints. As
the Python-Modelica framework works without a GUI,
all input has to be provided in the programming scripts.
These, however, are coded in such a way, that they all
internally use variables, which are only once defined in
the main script and assigned their values by means of the
user input.

The optimization variables are the design parameters
of the wind turbine model, which are to be modified
during the optimization iterations. The parameter names
must be provided according to the Modelica dot-notation
and following the structure within the MoWiT model.
Since these parameters are assigned new values during
the optimization, it is important that they are still existing
in the compiled model (see the remark at the beginning of
Section 2).

As important as optimization variables for an optimiza-
tion procedure are objective functions. These describe
the goals, which are to be obtained by means of the
optimization. Mostly, optimization routines are defined
to minimize the objective functions, thus, these have to
be provided accordingly. Depending on the optimization
routine type, only one or several objective functions can
be processed. For multi-objective optimizers, each goal
can be defined separately. However, if the optimizer
can handle only one objective function, all goals have
to be combined in one expression, in which weight can
be incorporated to rank the importance of the single
objectives.

The two key elements of the optimization problem are
already specified by means of the optimization variables
and the objective functions; however, further input can
be given in form of constraints. These apply either for
the goals and specify if only certain values are allowed
or if dependencies or relations exist, or for the design
parameters and define the allowable ranges of values
which they can take on.

3.2 The Optimizer
The optimization problem is given to an optimizer, which
then executes the optimization task and algorithm. There
are several open-source optimizers available for the use in
a Python environment, such as optimization routines from
OpenMDAO (Multi-disciplinary Design, Analysis, and
Optimization), an open-source framework for efficient
multi-disciplinary optimization, (openmdao.org, 2016);
PyGMO (Python Parallel Global Multi-objective Opti-
mizer), focussing on multi-objective (MO) optimization,
(Izzo and Biscani, 2015); or Platypus with a special
focus on MOEAs (MO Evolutionary Algorithms) (Hadka,
2015) - just to name a few examples.

In the presented Python-Modelica framework, op-
timization routines from Platypus (Hadka, 2015) and
OpenMDAO (openmdao.org, 2016) are implemented.
Only gradient-free optimizers can be used for the applica-
tion to wind turbine models in MoWiT, as these models
represent too complex systems, which cannot be reduced
to one single equation by means of minimization tech-
niques. Furthermore, the high complexity also attributes
greater importance to multi-objective optimizers.

Apart from optimizer-specific inputs, a criterion has to
be specified for limiting the number of iterations within
the optimization process. This could be defined for
instance through the number of optimization cycles to be
performed or a convergence tolerance for the results.

3.3 The Optimization Algorithm
Using the defined optimization problem and the specified
optimizer, as described in Subsections 3.1 and 3.2, respec-
tively, the optimization algorithm is executed. In each run,
the design variables are modified, based on the objective
results from previous simulations, complying with the
defined value ranges of the optimization variables, and
following the optimizer-specific routine. The iterative
optimization simulations are terminated as soon as the
specified stop criterion is fulfilled. Figure 2 visualizes this
process schematically. Furthermore, depending on the
specified processing method, as set in the Simulation
Manager (see Subsection 2.2), several simulations within
the optimization routine may be executed in parallel.

Due to the fact that - especially at the beginning of the
optimization routine - also suboptimal settings might be
selected by the optimizer, it could happen that simulations
of individual models are aborted before the specified
simulation duration. To handle these or similar failures
a query condition can be incorporated when analysing
the results for evaluating the objective functions. One
possible approach is to check if the simulation was
successful by evaluating the last entry in the time output.
In case of aborted simulations, the goals might not be

Python-Modelica Framework for Automated Simulation and Optimization

DOI Proceedings of the 13th International Modelica Conference 55
10.3384/ecp1915751 March 4-6, 2019, Regensburg, Germany

Figure 2. Automated optimization algorithm in Python.

derived as defined, but set to undesireable values to ensure
that these unsuccessful and thus suboptimal individuals
are excluded and not considered further by the optimizer.

During the execution of the optimization algorithm,
the simulation results are written in ∗csv output files ac-
cording to the defined method in the Model Wrapper, as
outlined in Paragraph 2.1.2. By means of supplementary
code, additional outputs, such as the objectives of each
solution, can be written and exported subsequent to the
optimization.

4 Application Example: Design Opti-
mization of Wind Turbine Systems

Optimization tasks in the development of wind turbine
systems are wide-ranging. Mostly costs, and thus indi-
rectly also performance and material demand, are the
main drivers, but optimization problems can for instance
as well be related to noise emissions, dimensions, and
lifetime. In the following the Python-Modelica framework
is exemplarily applied to automated design optimization
of a floating offshore wind turbine system.

In this optimization task, the floating spar-buoy wind
turbine system from phase IV of the Offshore Code
Comparison Collaboration project OC3 (Jonkman, 2010)
is used. The floating wind turbine system consists
of a spar-buoy platform, which supports the NREL
5 MW reference wind turbine (Jonkman et al., 2009).
The visualization of the MoWiT model in Dymola
is presented in Figure 3. There, also the coordinate
system of the wind turbine, as well as the nomenclature
of the six degrees of freedom of movement are introduced.

The optimization algorithm is defined based on the fol-
lowing problem and settings:

• Three parameters of the spar-buoy floating plat-
form are selected as design variables with their cor-

responding allowable value ranges: the diameter
(between 6.5 m and 10.0 m) and the height (be-
tween 68.0 m and 108.0 m) of the spar-buoy col-
umn, as well as the density of the ballast (between
1281.0 kg/m3 and 2600.0 kg/m3). A fourth indi-
rect variable, the amount of ballast (filling height in
the column), is internally determined and adjusted,
based on the design parameters and to ensure floata-
tion of the system.

• Three objective functions and corresponding con-
straints are defined to limit the maximum system
inclination (pitch) to 10◦, limit the maximum na-
celle or tower-top acceleration to 1.962 m/s2, and to
minimize the floater translational motion (combined
surge, sway, and heave).

• The optimizer NSGAII5 from Platypus (Hadka,
2015) is used due to the multi-objective optimization
task and the optimization algorithm is executed for
25 generations with 36 individuals each.

The variation of the floater design within the opti-
mization algorithm is shown in Figure 4. The black
shape represents the original geometry and corresponding
ballast height (indicated by the dashed line). A few
exemplary geometries of individuals obtained during the
optimization are presented in different green tones and
reveal the ranges of the design variables.

A more detailed analysis of the simulation results
shows that both the spread of the design parameters and
the spread of the optimization objectives converge, with
having a minimum spread in generation number 13, as
indicated in Figure 5. From this, the final optimum ge-
ometry is selected, which is displayed in red in Figure 4.
With this design, the objectives are achieved, while still
fulfilling the prescribed boundaries and constraints for the
design parameters.

5Non-dominated Sorting Genetic Algorithm II

Python-Modelica Framework for Automated Simulation and Optimization

56 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915751

Figure 3. Floating spar-buoy wind turbine system in MoWiT, including coordinate system and
system degrees of freedom, as well as wind inflow direction.

Figure 4. Interim (green
tones) and final (red) results
from the floater design opti-
mization procedure, in com-
parison with the original de-
sign (black).

(a) Development of the design variables column diameter (blue), col-
umn height (cyan), and ballast density (green), together with the original
values (red).

(b) Development of the objectives for system inclination (violet), na-
celle acceleration (orange), and floater translation (brown).

Figure 5. Results from the floater design optimization procedure, arrows indicate the generation from which the final optimum
design is selected.

5 Conclusion
In this paper, a Python-Modelica framework is presented,
by which means Modelica models can be managed and
simulations executed automatically, using scripts pro-
grammed in Python. Models for entire wind turbine sys-
tems (onshore, bottom-fixed offshore, or even floating off-
shore) are created in the MoWiT library, which are then
simulated in Dymola. The external and automated control
of the simulations is taken over by various Python scripts.

These are split up into methods for processing the Model-
ica package of the MoWiT model, methods for managing
the simulation, and the main script for executing the task
and performing further (post-)processing. By means of
this Python-Modelica framework iterative simulations
can automatically be performed, which is very relevant
for the assessment, design, and optimization of wind
turbine systems. For the latter application, the framework
is extended to cover also definitions for optimization al-
gorithms, including optimization problem and optimizer.

Python-Modelica Framework for Automated Simulation and Optimization

DOI Proceedings of the 13th International Modelica Conference 57
10.3384/ecp1915751 March 4-6, 2019, Regensburg, Germany

An exemplary optimization task for design optimization
of a floating wind turbine support structure demonstrates
that the presented Python-Modelica framework automates
the execution of a large number of simulations, is capable
of handling non-linear system behaviors, and thus is a
valuable tool for detailed assessment of wind turbine
system designs.

Acknowledgements
This work was partially supported by grant EP/L016303/1
for Cranfield University, University of Oxford and
University of Strathclyde, Centre for Doctoral Train-
ing in Renewable Energy Marine Structures - REMS
(http://www.rems-cdt.ac.uk/) from the UK Engineering
and Physical Sciences Research Council (EPSRC). The
author also wants to thank Philipp Thomas and Niklas
Requate from Fraunhofer IWES, as well as Athanasios
Kolios and Maurizio Collu from University of Strathclyde
for their contribution.

References
DNV GL AS. Loads and site conditions for wind turbines: Stan-

dard DNVGL-ST-0437. November 2016 edition, 2016. URL
https://www.dnvgl.com/.

David Hadka. Platypus Documentation, Release. 2015.
URL https://platypus.readthedocs.io/en/
latest/.

International Electrotechnical Commission. Wind turbines –
Part 3: Design requirements for offshore wind turbines: In-
ternational standard IEC 61400-3. 1.0 edition, 2009.

Dario Izzo and Francesco Biscani. Welcome to PyGMO,
2015. URL https://esa.github.io/pygmo/
index.html.

Bonnie J. Jonkman. TurbSim User’s Guide: Version 1.50: Tech-
nical Report NREL/TP-500-46198. National Renewable En-
ergy Laboratory, 2009.

Jason Jonkman. Definition of the Floating System for Phase IV
of OC3: Technical Report NREL/TP-500-47535. National
Renewable Energy Laboratory, 2010.

Jason Jonkman, Sandy Butterfield, Walt Musial, and George
Scott. Definition of a 5-MW Reference Wind Turbine for Off-
shore System Development: Technical Report NREL/TP-500-
38060. National Renewable Energy Laboratory, 2009.

Mareike Leimeister and Philipp Thomas. The OneWind Model-
ica Library for Floating Offshore Wind Turbine Simulations
with Flexible Structures. In Proceedings of the 12th Inter-
national Modelica Conference, Linköping Electronic Con-
ference Proceedings, pages 633–642. Linköping University
Electronic Press, 2017. doi:10.3384/ecp17132633.

openmdao.org. OpenMDAO 2.4.0 Beta documentation:
Optimizer, 2016. URL http://openmdao.org/

twodocs/versions/latest/tags/Optimizer.
html#optimizer.

Michael Strobel, Fabian Vorpahl, Claudio Hillmann, Xin Gu,
Adam Zuga, and Urs Wihlfahrt. The OnWind Modelica Li-
brary for Offshore Wind Turbines - Implementation and First
Results. In Proceedings of the 8th International Modelica
Conference, Linköping Electronic Conference Proceedings,
pages 603–609. Linköping University Electronic Press, 2011.
doi:10.3384/ecp11063603.

Philipp Thomas, Xin Gu, Roland Samlaus, Claudio Hillmann,
and Urs Wihlfahrt. The OneWind Modelica Library for Wind
Turbine Simulation with Flexible Structure - Modal Reduc-
tion Method in Modelica. In Proceedings of the 10th Inter-
national Modelica Conference, Linköping Electronic Con-
ference Proceedings, pages 939–948. Linköping University
Electronic Press, 2014. doi:10.3384/ECP14096939.

Python-Modelica Framework for Automated Simulation and Optimization

58 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915751

Demand oriented Modelling of coupled Energy Grids

DOI Proceedings of the 13th International Modelica Conference 59
10.3384/ecp1915759 March 4-6, 2019, Regensburg, Germany

Demand oriented Modelling of coupled Energy Grids
Benthin, Jörn and Heyer, Annika and Huismann, Philipp and Hagemeier, Anne and Görner, Klaus

59

Demand oriented Modelling of coupled Energy Grids

Jörn Benthin1 Annika Heyer1 Philipp Huismann1 Michael Djukow1 Anne Hagemeier2 Klaus Görner1
1Gas- und Wärme-Institut Essen e.V., Germany,

{benthin, heyer, huismann, k.goerner}@gwi-essen.de

2Fraunhofer UMSICHT, Germany, anne.hagemeier@umsicht.fraunhofer.de

Abstract
This paper describes the development of a modular

approach for modelling and simulation of coupled

energy grids within different kinds of settlement

structures. One presented thesis is that the spatial

distribution of the demand structure is given by the

urban framework and should be the origin of the

modelling of coupled energy grids on the distribution

level. Thus, the logic is that the grid is developing

towards the given and developing demand structure and

not vice versa. The defined spatial distribution delivers

the loss relevant lengths between the consumers and

producers, which are needed for pipes and cables.

Following these assumptions, a modular approach was

realised by creating a so-called GridConstructor. This

constructor allows it to easily build user defined urban

frameworks and combine them with a single grid or

multiple grids (electricity, gas, heat). These grids can be

coupled via different systems. In conclusion, first results

of coupled grid simulations are presented.

Keywords:

Thermodynamic and energy systems applications,

Large-scale system modelling

1 Introduction

The ongoing integration of renewable energy sources

into the different energy grids is one of the major tasks

for the next decades. The overall goal behind this

integration is the decarbonisation of the energy

consumption in the different structural sectors

(industrial, service, residential, mobility). Due to the

highly volatile and increasing power input of the

renewable energy sources, the need for coupled energy

grids and flexibilities is rising (Behnert, 2018).

Especially on the distribution level, the question

arises how the different grid designs (electricity, gas,

heat) will look like and how these networks are going to

connect and interact. To find the ecological and

technological optimum, different coupled design

options have to be analysed.

To address these questions, different libraries and

software tools are available. In general, these tools share

one common approach. This approach is defined by the

modelling hierarchy, which sets the grid structure as a

fixed boundary and not the urban framework.

The natural process in the development of cities and

districts is that the demand structure is given by the

urban framework and its developing demand and

decentralised production. The energy grids have to

develop towards these needs and therefore the grid

design, connections and interactions are the variables of

this adjustment process. The given or designed spatial

structure of the settlement delivers the loss relevant

lengths between the consumers, producers and the

demand density, which are needed for the sizing of

pipes, cables and the design of the resulting networks.

These assumptions were used in the research project

IntegraNet (IntegraNet, 2018) to develop a modular

approach for modelling urban frameworks at the

distribution grid level.

The TransiEnt (TransiEnt, 2018) library developed

within the project Transient.EE (Andresen, 2017) by the

Hamburg University of Technology was used for the

work presented in this paper.

2 GridConstructor

2.1 Modelling Philosophy

The future energy grid will undergo considerable

changes through decentralisation, an increasing share of

renewable energy supply and sector coupling

technologies. In order to investigate the potentials of

these technologies and other feasible innovations in grid

design, the modelling of energy grids needs to be able to

map the existing structure as well as future options.

Thus, a modelling philosophy for energy grids should be

based upon flexibility to allow the research of multiple

configurations of technologies and types of energy

supply.

In case of energy grids, the network structure, as in

routing and connections of pipes and cables to

consumers, is not fixed and can change depending on

the energy supply strategy and time. For example, it

might happen that an energy concept for a district based

entirely on decentralised oil heating systems is

converted to an energy supply via district heating, PtH

Demand oriented Modelling of coupled Energy Grids

60 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915759

or gas heating. In this case the overall grid structures are

changed and extended, but the demand structure, as in

the distances between consumers and their location,

stays constant. Based upon this, the modelling of energy

grids only from a standpoint of grid structure with fixed

types of pipes and cables, that are derived from the given

technologies, is no optimal solution to target research

projects regarding the development of future energy

grids. The use of such models would make simulations

with changing technologies difficult since changes in

energy generation can involve a change in grid structure.

Instead, modelling based on demand structure is more

feasible, since it will usually not undergo modifications

with changed technologies or grid structure.

2.2 Structure

Based on a demand structure oriented modelling, the

GridConstructor (GC) has been conceptualised for

Modelica. The GC uses reoccurring patterns in the

demand structure to model the energy grid in a flexible

and user-friendly way. Based upon settlement types

defined in (Blesl, 2001), energy grids can be described

using several grid segments with changing numbers of

consumers. These grid segments contain variable

number of grid elements with one or two consumers

each (see Figure 1).

Figure 1: Demand structure (a - distribution grid, b – grid

segment, c – grid element)

In the presented modelling approach, one GC

represents one grid segment. The GC enables the

modelling of a grid segment by creating a series of grid

elements using arrays of models. For the GC, the used

technologies, number of consumers as well as grid

structure parameters such as length or type of cables are

freely exchangeable. By connecting several GC, each

representing a grid segment, a distribution grid can be

modelled. Each of the GC used in the modelling of the

distribution grid can be individually configured

regarding technology as well as properties for the grid

structure like cable type or length. Due to the

interchangeability of parameters and technologies inside

the GC, case studies of changing configurations of grid

structures and used technologies of existing energy grids

as well as future scenarios are possible.

Each GC consists of an array of grid element models

(GridElement (GE)). Depending on user input, one or

multiple GE are strung together to create a grid segment.

The basic idea of the GE model is that each grid element

ultimately consists of an energy demand (electricity,

space heating and hot water) and technologies to meet

that demand and/or to generate additional energy (see

Figure 2). Each of the consumers inside the GE is

represented by its own energy demand and technologies.

For each GE, either one or two consumers can be

activated. In this way, an exact representation of the

demand and grid structure is possible as well as a

simplified representation.

Figure 2: Basic idea behind the GridElement structure

and connection scheme for one consumer inside a

GridElement.

The GE model consists of sub-models providing the

mentioned demand, representing used technologies and

grid structures inside the grid element (see Figure 3).

This includes:

• Gas and district heating pipe models

• Electric cable models

• Models representing used technologies

• Models providing time series of energy

demand

Simulations of gas distribution networks are enabled

by the use of gas pipe models taken from the Modelica

library TransiEnt and adjusted to calculate the pressure

drop not from nominal values, but via the Darcy-

Weißbach equation with the function

StraightPipe.dp_overall_MFLOW provided by the

FluidDissipation library inside Modelica. The gas pipe

is parametrised regarding length and diameter.

Changing composition of the gas, for example through

hydrogen injection, is accounted for.

The electric grid is modelled by using an electric

cable model from TransiEnt library. The type of cable

(diameter, material, resistance) is freely exchangeable

via use of replaceable models.

For simulations of district heating networks, three

models representing district heating pipe pairs are

placed inside the GE as replaceables. The central pipe

model represents the distribution pipe of the heat carrier

(b)

(a)
(c)

Energy demand

Technologies

Gas

District Heating

Electricity

Demand oriented Modelling of coupled Energy Grids

DOI Proceedings of the 13th International Modelica Conference 61
10.3384/ecp1915759 March 4-6, 2019, Regensburg, Germany

in the grid element. For the connection of consumers to

the distribution pipe, two pipe models are placed

perpendicular to the distribution pipe. If faster

simulations are desired or physical effects in the house

pipes are neglected, the models of the house connections

may be deactivated. The use of parallel pipe models

increases usability by parameterising the pipes

homogeneously for length and geometry. Alternatively,

the user is able to specify the nominal diameter based

upon manufacturer specifications saved within records

inside Modelica from which the pipe geometry is set.

Initialization parameters for temperature and pressure

for supply and return pipes are provided on the top level

of the modelled energy grid.

[n]

Grid-Element

Top-Level Grid-Constructor

[1]

[n]

System_1

System_2

Demand_1

Demand_2

a

b

c

Figure 3: Structure of the GridConstructor and

GridElement. a – gas pipe model, b – district heating pipe

model, c – electric cable model.

The district heating pipes used inside the GE are

modelled after the PlugFlow approach described in

(Heijde, 2017; Hägg, 2016). Contrary to pipe models

with spatial discretisation, the PlugFlow approach

determines the fluid properties only at the inlet and

outlet of the pipe by means of the residence time.

Temperature wave propagation and heat loss are both

handled by use of the spatialDistribution() function

included in Modelica. Validation work carried out for

the PlugFlow approach in (Heijde, 2017) and as part of

simulations within the IntegraNet shows good accuracy

to measurements.

Pressure drop calculations inside the pipe model are

carried out with the Darcy-Weißbach equation using the

function StraightPipe.dp_overall_MFLOW provided by

the FluidDissipation library. Fluid properties such as

density or specific heat capacity are calculated with

models from the TILMedia suite developed by the TLK-

Thermo GmbH.

Electric cables, gas pipes and district heating pipes

can be deactivated or activated as required.

Corresponding connectors are deactivated

automatically. Multiple GE inside a GC and sub-models

inside of a GE are connected automatically.

The technologies used inside the GE are integrated in

models called Systems_1 and Systems_2 representing

technologies used for the top consumer (1) and bottom

consumer (2) of the grid element. Consumers inside a

grid segment are divided into a top row and bottom row

representing the two sides of a road. Inside each of the

System models multiple models for technologies like gas

boilers, photovoltaics or heat pumps are activated or

deactivated based upon the settings defined during

parametrisation of the GC.

For the energy demand, time series of heat and/or

cooling and electricity demand with arbitrary resolution

(s, min, h) are used and provided by the models

Demand_1 and Demand_2 for both consumers. These

time series are saved inside comma separated value

(csv) files and may be provided for the model outside

Modelica based upon real life measurements, computer

generated data or standard load profiles. Technology

models defined inside System use these profiles to meet

the associated demand.

2.3 Programming & Modelling details

To enable flexible modelling of grid segments, the

necessary programming effort can be divided into the

following problem statements:

• Enabling the creation of the demand and grid

structure

• Exchangeability of technologies

• Enabling a user-friendly parametrisation

The demand and grid structure inside the grid

segment are achieved by use of Boolean arrays. For this,

the user has to define the number of grid elements n

inside the grid segment. From this, n GE models are

initialized inside a GC model (see Figure 4).

1 nn-12

true false false true

Figure 4: Arrangement of GE models inside a GC

By use of for-loops, automatic connections of GE

inside the GC are achieved:

for i in 1:n-1 loop

connect(Grid_Element[i].PortOut,

Grid_Elements[i+1].PortIn);

end for;

Demand oriented Modelling of coupled Energy Grids

62 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915759

The inlet connectors for the first GE (n=1) and the

outlet connectors for the last GE (n) are connected to the

connectors of the GC by regular connect statements. All

connectors and their interconnections are dependent on

booleans, which are set depending on the technologies

used. Also, the models for gas pipes, district heating

pipes and cables are conditional models and are

activated/deactivated depending on parametrisation.

Therefore, unused models are removed from the

equations during compilation.

In each GE, one or two consumers can be connected

to the energy grid. To achieve this property, an array of

Booleans second_Consumer[:] is created with which all

models belonging to the second consumer are activated

if the boolean is true (see Figure 4). This Boolean is

always set false if only one consumer is supposed to

exist in the related GE, no matter if it’s the top or bottom

consumer.

By use of records, properties of the GE models inside

the GC are set. The records are defined to have all the

properties associated to a given type of parametrisation

objective. For example, length and cable type of the

electric cable models inside each GE are set as array

parameters inside the record CableParameters. The

length of the cable model in each GE inside a GC is

assigned as follows:

parameter Records.CableParameters

pipeparameters[:] =

fill(Records.CableParameters(),30);

protected

parameter SI.Length len[:]=

CableParameters.len_cable;

[. . .]

Grid_Element[n](

redeclare model cable =

Components.CableModel(length = len),

[. . .]);

Records are not only used for the parametrisation of

models representing grid structure, but also for the

exchangeability of technologies in the models System_1

and System_2. A record called TechnologyMatrix with

parameters as integers for all available technologies is

created. This record is used for each consumer (top and

bottom) as a matrix with columns representing

technologies and rows representing each GE. The set

parameters inside this matrix are propagated from the

GC to the corresponding GE and corresponding

technology. With these propagated integers (zero or

one), technology models like gas boilers or photovoltaic

are activated or deactivated with if-Statements. Integers

are used instead of booleans to reduce the time the user

needs to enter the parameters. Technologies get

activated with one and deactivated with zero. For this

approach to work, all possible technology models must

be present as default in the System model, but each of

the models can be deactivated freely. Connectors inside

the model System (1 and 2) are activated and deactivated

based upon used technologies without user-input. For

example, district heating connectors are only activated

if technologies corresponding to district heating are

used. The values inside the TechnologyMatrix can be

freely changed from simulation to simulation.

Parametrisation of technologies in System_1 and

System_2 for properties like efficiency is realised by use

of further records containing the parameters used in the

individual models. Set parameters are propagated to

activated technologies and used as input for the models

with the redeclare model statement.

The demand time series data is provided to System

with a model CombiTimeTable each inside the model

Demand_1 and Demand_2. In order for each of the

consumers to use their own energy demand as a time

series, the data for space heating, domestic hot water

heating and electricity must be stored inside three csv

tables with each column representing another consumer.

Alternatively, the demand time series can be provided in

a single csv-file, which contains groups of columns with

each column group specifying the demand data for one

consumer. Each group consists of three columns that

specify the data for the electricity, space heating and

domestic hot water demand respectively. The time

series for the energy demands are assigned to the

Demand models for each GE by accessing the

corresponding column in the provided time table.

Columns are accessed and assigned in series starting

from a user defined integer start_c1 and start_c2

representing the top and bottom consumer:

Grid_Element[n](

 [. . .]

redeclare model Demand_1 = Demand_1

(row={i for i in start_c1:(n+start_c1 -

1))},

redeclare model Demand_2 = Demand_2

(row={i for i in start_c2:(n+start_c1 -

1))},

 [. . .]);

2.4 Parametrisation

The parametrisation of one GC can be divided into the

following steps:

1. Define number of grid elements (n) as well as the

arrangement of consumers (secondConsumer)

2. Deactivate/activate inlet and outlet connectors

3. Set properties of energy distribution models

4. Assign load-profiles

5. Define and set properties of technologies used

Parametrisation of the GC starts with the definition of

grid elements in the given grid segment. As an example,

Figure 5 shows a grid segment consisting of six grid

Demand oriented Modelling of coupled Energy Grids

DOI Proceedings of the 13th International Modelica Conference 63
10.3384/ecp1915759 March 4-6, 2019, Regensburg, Germany

elements with one or two consumers per grid element.

Based on this example, the user passes n=6 to the GC

and arranges the consumers on the grid element by

setting the booleans for secondConsumer. The booleans

secondConsumer are stored in an array with the

alignment orientation source to sink. The orientation of

the consumer to the street for secondConsumer is

irrelevant and does not influence the simulation (see

Figure 5).

consumers arranged

n = 6 {false, true, true,

true, true ,false}

6

Number of grid elementsgrid segment

Figure 5: Graphical representation of the first steps for

parameterizing the GC

As a next step, the user deactivates unused connectors

of the GC with checkboxes. For example, the gas inlet

and outlet connectors are not necessary if a district

heating network and electricity network without gas

network is to be simulated. As mentioned, this also

automatically deactivates any connector and energy

distribution model associated to the deactivated

connectors. If previous GC models have already been

placed and parameterised, the GC can be connected to

the corresponding GC via the respective connectors.

Subsequently the properties of energy distribution

models (gas pipes, cables and district heating pipes) are

set by editing the corresponding records. Each row

inside the array of records represents one of the grid

elements (see Figure 6).

Figure 6: Parametrisation of gas pipes and electric cables

models inside a GC

With the basic structure of the grid segment set, the

user is able to pass the load profiles for heat and

electricity demand to the GC. For this, the path to the

csv-tables is set for the top consumers and bottom

consumers. Consumers virtually transformed to exist in

the top row during the arrangement of secondConsumer

have to have their corresponding load profile inside the

csv-table for the top row even though they, in reality, are

placed on the other side. If the demand profile tables are

used in more than one GC, the start column of the load

profiles has to be passed as the integer start_c1 and

start_c2.

Finally, the technologies used in each network

element of the GC are defined by using two arrays of the

record TechnologyMatrix for the upper and lower rows

of consumers. Technologies for the consumers are

deactivated/activated with ones (activated) and zeros

(deactivated). Analogue to the parametrisation of the

pipes and cables, each row inside the parameter array

represents a grid element and consumer (see Figure 7).

Parameters of the activated technologies are set with

further records similar to the parameterisation of gas

pipe, cable and district heating pipe models.

Figure 7: Defining technologies used in the GC for each

GE with use of a record

With the GC fully parametrised and connected to

other corresponding GC models, the simulation of the

desired energy grid is possible.

Currently, the parametrisation is the most time-

consuming part of modelling an energy grid, which is

considerably simplified by the GC approach.

3 Use Cases

In the following section, utilizations of the GC for

simulation of energy grids are presented. At first, a

coupled gas and electric grid simulation of a rural

district is described. Subsequently, the simulation of a

low temperature district heating network (DHN) is

described with the aim of investigating heat losses and

potentials for Power-to-Heat (PtH).

3.1 Simulation of a coupled gas and

electricity grid

In the following the first use case and the general

functionality and usability of the provided models are

presented. General challenges of modelling a coupled

electric power and gas distribution grid with different

technologies such as photovoltaic (PV) or Power-to-Gas

(PtG) are shown.
In many research projects, no real measurement data

of the demands per building is available. To anyhow

introduce high fluctuations into the modelled district,

profiles for the heat demand according to the VDI 4655

(Verein Deutscher Ingenieure, 2008) can be used. Using

the same profile for each building would lead to

unrealistically high gradients and maxima of the total

Demand oriented Modelling of coupled Energy Grids

64 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915759

demand. Thus, to also depict needs to balance between

the consumers, it is necessary to shift the VDI-profiles

individually for each building over time. For shifting a

normal distribution is used.

One challenge when simulating large networks, is to

secure stable initialisation. Especially when using

parallel and serial networks of gas pipes, the

initialisation of the pressure loss for the given heat

demands at the first-time step is fairly difficult. To avoid

having to calculate the complete network in a static

cycle beforehand, initialisation using zero heat demand,

resulting in zero gas flow, can be used. This increases

the usability of the model, especially when changing the

grid structure frequently due to different scenarios.

The described modelling approach has successfully

been used to simulate and analyse a rural example

district containing 314 buildings - all of them connected

to the electric grid and 166 buildings also supplied with

gas.

Figure 8 shows the resulting electricity surplus of this

grid with PV for one day each of different seasons of the

year.

Figure 8: Total electricity load for the simulated example

district with PV for three different days of the year

The simultaneous simulation of the coupled electric

power and gas grid enables the analysis of sector

coupling technologies, such as PtG. Converting all

surplus electric power into hydrogen and feeding it into

the gas grid leads for the observed grid for the spring

day to the curves as depicted in Figure 9. The resulting

volume fraction of hydrogen of up to 64 % exceeds the

admissible range clearly. Implementing a monitoring of

the gas properties and corresponding control strategies,

enables the analysis of the resulting residual load with

different limit values for the gas properties.

Figure 9: Hydrogen feed-in into the gas grid from PtG

without control of the gas properties at a spring day

Using the same basic grid, different scenarios with

various combinations of technologies (conventional

heating systems, PV, CHP-systems and PtG) have been

simulated including variations of the corresponding

automation and control strategies.

Thus, the presented modelling approach enables a

straightforward comparison of the different supply and

control strategies.

Further details on the modelling of this specific grid

and simulation results can be found in (Garzon-Real et

al, 2018).

3.2 Simulation of a district heating network

Besides the coupled electrical and gas grid, the GC

was used to simulate and examine a planned low

temperature DHN regarding heat losses and potentials

for PtH. The examined DHN is based upon the use of a

heat source providing heat to achieve a supply

temperature of around 25 °C all year round. This supply

temperature is elevated to the necessary temperature

levels for domestic hot water and room floor heating by

use of heat pumps at high coefficients of power. Pipes

planned for the network are regular uninsulated

polyethylene pipes embedded in a filling of sand. The

DHN is supposed to provide heat to a district with

around 200 consumers made up of residential and

commercial energy-efficient buildings.

Modelling of the heating network was carried out

according to the specifications of the network and

demand structure given by the project. PtH was

considered in the combination of heat pumps and PV

systems. For this, two scenarios of the DHN with 100

and 50 % utilization of the available roof areas for PV

are investigated. Standard load profiles are used for the

heat demand and a combination of measurement data

and computer-generated load profiles for the electricity

demand. Real-life weather data for solar radiation as

well as ground and air temperature provided by the

German weather service (Deutscher Wetterdienst, 2017)

were taken from weather stations closest to the planned

area of the DHN.

-500

-400

-300

-200

-100

0

100

200

300

400

500

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00R
e

s
id

u
a

l
lo

a
d

 o
f

th
e

 d
is

tr
ic

t
in

 k
W

Time

Winter Spring Summer

Winter

Spring
Summer

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

F
ra

c
ti
o

n
 i
n

 m
³/

m
³

o
r

k
g

/k
g

Time

Volume
fraction H₂ in
m³/m³

Mass fraction
CH₄ in kg/kg

phimax = 64 %

Demand oriented Modelling of coupled Energy Grids

DOI Proceedings of the 13th International Modelica Conference 65
10.3384/ecp1915759 March 4-6, 2019, Regensburg, Germany

The DHN has been simulated for one year with an

hourly resolution, resulting in computing times of

around 6 h for a single simulation and 13 h for three

parallel simulations of different scenarios. Deactivation

of house pipes can reduce the simulation run time

further.

Simulation of the heating network resulted in a heat

demand of 6700 MWh/a with a peak load of 2500 kW

(see Figure 10). The heat loss of the DHN was

determined to be 25 % of the annual heat supplied to the

DHN (1675 MWh/a). Analysis of the DHN simulation

revealed low heat carrier velocities due to oversized

pipes and thus increased heat losses.

Figure 10: Simulated heat load of the DHN and

corresponding heat loss profile

Complementary, the results of the simulation made it

possible to determine the transition period from winter

to summer as the critical time for operation of the DHN.

Due to sudden increases in outside temperature during

this transitional period, the heat demand of the DHN

drops significantly. With lowered heat demand the mass

flow through the DHN is decreased resulting in a

significant cooling of the heat carrier inside the pipes. In

this context, periods of high temperatures during the

transition period, followed by sudden drops in

temperature can lead to a DHN operation where it is not

possible to immediately provide heat to the consumer

until the heat carrier temperature is increased again.

As mentioned, the DHN is simulated coupled with

the electrical grid to examine the potentials for PtH. The

electricity demand of the district is 6600 MWh/a. At

100 % utilization of the available roof areas with PV, 27

% of the electricity demand is met. For the 50 %

scenario, 13 % of the electricity demand is met by the

PV systems. Due to the contradictory nature of heat

demand and electricity generation of PV systems, the

potential of heat pumps to lower the negative residual

load is low (see Figure 11).

Figure 11: Sorted residual load for both roof utilization

scenarios with and without heat pump electricity demand

4 Summary and Outlook

The approach of demand oriented modelling of urban

frameworks and the corresponding energy grids was

presented. The general modelling philosophy was

explained and described in its realisation and the

fundamental development ideas were shown in detail. In

conclusion first examples are presented and can give a

first view on the potentials of the work.

In the future several additional features will be realised.

For example, advances during the development

regarding the design of the GC make it possible to

further reduce the time needed for parametrisation. By

use of identification integers (ID) the import of

parametrisation data from Geographical Information

Systems (GIS) saved inside Excel files is going to be

automated. Each consumer in the desired energy grid

gets assigned an ID from which data used for

parametrisation as well as corresponding load profiles

are imported into the GC models in Modelica. Based on

this approach, the automatic generation of GC models

with the help of Excel is currently being developed.

Additionally, a direct import of GIS data into Modelica

is conceptualised using the programming language

Python.

All shown work will be published within a future

release of the TransiEnt library.

Acknowledgements

The authors thank the German Federal Ministry for

Economic Affairs and Energy for funding the project

»Integrierte Betrachtung von Strom-, Gas- und

Wärmesystemen zur modellbasierten Optimierung des

0

500

1000

1500

2000

2500

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

P
o

w
e

r
in

 k
W

DHN Heat loss

-2000

-1000

0

1000

2000

0 1460 2920 4380 5840 7300 8760

R
e

s
id

u
a

l
lo

a
d

 i
n

 k
W

Time in h

100% no heat pump 50% no heat pump

100% with heat pump 50% with heat pump

Demand oriented Modelling of coupled Energy Grids

66 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915759

Energieausgleichs- und Transportbedarfs innerhalb der

deutschen Energienetze - IntegraNet« (FKZ 0324027B).

References

L. Andresen, P. Dubucq, R. Peniche, G. Ackermann, A.

Kather, G. Schmitz. Abschlussbericht des

Verbundvorhabens: Transientes Verhalten gekoppelter

Energienetze mit hohem Anteil Erneuerbarer Energien.

Technische Informationsbibliothek, Hannover. 2017. doi:

10.2314/GBV:1002659345

M. Behnert, A. Hartke, T. Bruckner Spannungsfeld

Netzstabilität – Lehren aus vergangenen Blackouts für eine

sichere zukünftige Stromversorgung.

Energiewirtschaftliche Tagesfragen, No. 9, pp. 10-14,

2018.

M. Blesl. Räumlich hoch aufgelöste Modellierung

leitungsgebundener Energieversorgungssysteme zur

Deckung des Niedertemperaturwärmebedarfs. Universität

Stuttgart – IER, 2002.

Deutscher Wetterdienst (DWD). Measurements from Climate

Data Center (CDC). 2017.

J. Garzon-Real, B. Dahlmann, M. Zdrallek, J. Hüttenrauch, M.

Wupperfeld, J. Benthin, A. Heyer, F. Burmeister, R. Albus,

W. Köppel, K. Peters. Entwicklung und Validierung eines

kombinierten Strom- und Gasnetzautomatisierungs-

konzepts auf Verteilnetzebene. gwf Gas + Energie, No 10,

pp.68-81, 2018.

B. Heijde, M. Fuchs, et al. Dynamic equation-based thermo-

hydraulic pipe model for district heating and cooling

systems. Energy Conversion and Management, No. 151, pp.

158 - 169, 2017. doi: 10.1016/j.enconman.2017.08.072.

R. Hägg. Dynamic Simulation of District Heating Networks

in Dymola. Masterthesis, Department of Energy Sciences,

Lund Universitet, 2017.

IntegraNet, https://www.integranet.energy/, Fraunhofer

UMSICHT, Gas- und Wärme-Institut Essen e.V., 2018.

TransiEnt, https://www.tuhh.de/transient-ee/, Technische

Universität Hamburg Harburg, 2018.

Verein Deutscher Ingenieure. VDI 4655 Referenzlastprofile

von Ein- und Mehrfamilienhäusern für den Einsatz von

KWK-Anlagen. Beuth Verlag GmbH, 2008.

DOI Proceedings of the 13th International Modelica Conference 67
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 1C: FMI 1
OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP
Ochel, Lennart and Braun, Robert and Thiele, Bernhard and Asghar, Adeel and Buffoni, Lena and Eek,
Magnus and Fritzson, Peter and Fritzson, Dag and Horkeby, Sune and Hällquist, Robert and Kinnander, Åke
and Palanisamy, Arunkumar and Pop, Adrian and Sjölund, Martin

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units
Hatledal, Lars Ivar and Zhang, Houxiang and Styve, Arne and Hovland, Geir

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol
Krammer, Martin and Schuch, Klaus and Kater, Christian and Alekeish, Khaled and Blochwitz, Torsten and
Materne, Stefan and Soppa, Andreas and Benedikt, Martin

.

68 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 69
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite
Model Editing and SSP
Ochel, Lennart and Braun, Robert and Thiele, Bernhard and Asghar, Adeel and Buffoni, Lena and Eek,
Magnus and Fritzson, Peter and Fritzson, Dag and Horkeby, Sune and Hällquist, Robert and Kinnander, Åke
and Palanisamy, Arunkumar and Pop, Adrian and Sjölund, Martin

69

OMSimulator – Integrated FMI and TLM-based Co-simulation
with Composite Model Editing and SSP

Lennart Ochel1 Robert Braun1 Bernhard Thiele2 Adeel Asghar1 Lena Buffoni1 Magnus Eek3

Peter Fritzson1 Dag Fritzson4 Sune Horkeby5 Robert Hällquist3 Åke Kinnander5 Arunkumar
Palanisamy1 Adrian Pop1 Martin Sjölund1

1PELAB – Programming Environment Lab, Dept. of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden, {lennart.ochel, robert.braun}@liu.se

2Institute of System Dynamics and Control, German Aerospace Center (DLR), 82234 Weßling, Germany,
bernhard.thiele@dlr.de

3Saab AB, Bröderna Ugglas gata, SE-582 54 Linköping, Sweden
4SKF AB, SE-415 50 Göteborg, Sweden

5Siemens Turbomachinery AB, Slottsvägen, SE-612 31 Finspång, Sweden

Abstract
OMSimulator is an FMI-based co-simulation tool and re-
cent addition to the OpenModelica tool suite. It sup-
ports large-scale simulation and virtual prototyping us-
ing models from multiple sources utilizing the FMI stan-
dard. It is integrated into OpenModelica but also avail-
able stand-alone, i.e., without dependencies to Modelica-
specific models or technology. OMSimulator provides
an industrial-strength open-source FMI-based modelling
and simulation tool. Input/output ports of FMUs can be
connected, ports can be grouped to buses, FMUs can be
parameterized and composed, and composite models can
be exported according to the (preliminary) SSP (System
Structure and Parameterization) standard. Efficient FMI-
based simulation is provided for both model-exchange and
co-simulation. TLM-based tool connection is provided
for a range of applications, e.g., Adams, Simulink, Beast,
Dymola, and OpenModelica. Moreover, optional TLM
(Transmission Line Modelling) domain-specific connec-
tors are also supported, providing additional numerical
stability to co-simulation. An external API is available
for use from other tools and scripting languages such as
Python and Lua. The paper gives an overview of the tool
functionality, compares with related work, and presents
experience from industrial usage.
Keywords: FMI, FMU, SSP, modelling, simulation, co-
simulation, composite

1 Introduction
The use of virtual prototyping methods in product de-
velopment has become an indispensable tool to manage
the complexity of competitive modern products and in-
dustrial processes. Modelling the dynamic behaviour of
such products and processes often requires considering
systems that are composed of physical subsystems (usu-
ally from different physical domains) together with com-
puting and networking. The Modelica language, which al-

lows integrating discrete-time dynamics (e.g., control soft-
ware) and continuous-time dynamics (process behaviour),
is well suited for this task.

However, a frequent problem in larger industrial
projects is that although component-level models are
available, it is a big hurdle to integrate them into larger
system simulations. This is because different develop-
ment groups and disciplines, e.g., electrical, mechanical,
hydraulic, and software, often use their own approaches
and special purpose tools for modelling and simulation.

To improve the interoperability of behavioural mod-
els, the MODELISAR project (MODELISAR Consor-
tium, 2011), developed the Functional Mock-up Interface
(FMI) as a standardized exchange format for behavioural
models. Figure 1 illustrates the basic concept: Model
components are exported as Functional Mock-up Units
(FMUs) from their respective discipline specific tool, an-
other simulator tool can import the FMUs and integrate
them into a Functional Mock-up using a suitable master
algorithm for coupling the individual units. In October
2014, the improved version FMI 2.0 was released to the
public (FMI development group, 2014).

Figure 1. Model integration using FMI (source:
https://www.fmi-standard.org/).

The motivation behind FMI is easily understood, how-
ever, coupling different simulator codes is a major chal-
lenge and an active research area. Modular simulation

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

70 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

of a global system by coupling different simulator codes
may easily result in an unstable integration or may require
proceeding in prohibitively small time steps (Schierz and
Arnold, 2012). Successful co-simulation needs:

• A suitable module interface (this is what FMI stan-
dardizes) and

• A suitable master algorithm for coupling the modules
(not standardized in FMI).

In previous work, Transmission Line Modelling (TLM)
was integrated as one possible approach to co-simulation
in OpenModelica (Siemers et al., 2006), also considered
as one approach to gain speed-up by simulation paral-
lelization during the RTSIM project (Sjölund et al., 2010;
Sjölund, 2015), however, this was not based on FMI.
Additional difficulties arise if discrete-time models (e.g.,
control software) are included within a co-simulation
setup (hybrid co-simulation). With regards to hybrid co-
simulation, the latest FMI 2.0 standard was shown to have
deficiencies and different proposals to amend these defi-
ciencies were discussed, e.g., (Broman et al., 2013; Cre-
mona et al., 2016; Tavella et al., 2016; Cremona et al.,
2017).

This paper describes an industrial-strength co-
simulation approach. First, it discusses FMI for
co-simulation in general and then it introduces the
OMSimulator tool framework in Section 3. Based on that,
the graphical user interface is outlined in Section 4 and
some industrial applications are discussed in Section 5.

2 FMI for Co-Simulation
The FMI 2.0 standard defines two interfaces (FMI devel-
opment group, 2014, p. 4):

• FMI for Model Exchange (FMI-ME): The intention
is that a modelling environment can generate C code
of a dynamic system model that can be utilized by
other modelling and simulation environments.

• FMI for Co-Simulation (FMI-CS): The intention is to
provide an interface standard for coupling simulation
tools in a co-simulation environment.

The two interfaces share common parts and concepts,
in particular:

• FMI C-application programming interface (API): All
computations are evaluated by calling standardized
C-functions.

• FMI Extensible Markup Language (XML) descrip-
tion schema: The schema describes the structure
and content of an XML file (named modelDescrip-
tion.xml) generated by the modelling environment
which exports an FMU. This modelDescription.xml
file contains the definition of all variables and other
structural information of an FMU in a standardized
form.

• An FMU is delivered as a zip file which contains
the XML description file, the code that provides the
C-API either in binary form as shared library or as
source code, as well as potential additional resources,
e.g., tables, model icon, and documentation.

Basically, FMI-ME differs from FMI-CS in that it re-
quires the importing tool to provide a numerical solver
for simulating the FMU. Such solvers require vectors for
states, derivatives and zero-crossing functions which are
exposed by the FMI-ME API. By contrast, FMI-CS does
not require the importing tool to provide a numerical
solver. Instead, all required solvers are embedded within
the FMI-CS and the related information is not exposed by
the FMI-CS API.

2.1 FMI-based Co-Simulation
An FMI-based composite model for co-simulation can be
constructed with both co-simulation and model-exchange
FMUs. The building blocks determine certain constraints
of the composite model structure. A straightforward de-
rived structure from the FMI specification is given in Ta-
ble 1.

Table 1. Overview of co-simulation building blocks.

solver components
master algorithm co-simulation units

• CS-FMU
• integrator + set of ME-FMUs

integration method set of ME-FMUs

The master algorithm forces the so-called global time
steps, which are used to exchange information between
co-simulation units. Each co-simulation unit takes its own
local time steps to reach the next forced global time step.

A co-simulation unit can be composed of a set of ME-
FMUs. In this case, these ME-FMUs can communicate
with a higher exchange rate than the global time step, ba-
sically at each local time step.

2.1.1 Initialization

Initialization must be performed within a dedicated initial-
ization mode. A consistent initial state is computed based
on the dependency information provided by the FMUs
(optional FMI feature) and the actual connections between
the FMUs. First, all parameters will be set to either pre-
defined values or explicitly overwritten by the user’s in-
put. The same applies to start values, which might be cru-
cial for internal nonlinear systems and external algebraic
loops. After that, all the information is propagated based
on the dependency information.

2.1.2 Simulation

The continuous simulation is performed by a master-
algorithm which synchronises all co-simulation units and
exchanges information between them based on internal

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 71
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

output-input dependencies and external input-output de-
pendencies. The continuous simulation gets interrupted if
an event is detected or the final simulation time is reached.

2.1.3 Event handling

The discrete event simulation takes place if discrete
changes are detected. Co-simulation FMUs cannot expose
internal events, which means that only discrete changes in
output variables at communication time points can be de-
tected. In that case, the changes are propagated and a new
consistent model state is computed. This might be an iter-
ative process in case of algebraic loops.

The situation for model-exchange FMUs is a bit differ-
ent. A set of connected exchange-FMUs are simulated us-
ing a shared solver and events can be processed and com-
municated within this set of FMUs directly when they oc-
cur.

2.2 Numerically Stable Co-Simulation
Co-simulation requires different parts of the complete
model to be solved separately by isolated solvers. This
will inevitably delay the interchanged variables to the next
communication step. Such delays may affect numerical
stability and simulation accuracy.

In many cases, a master algorithm with fixed commu-
nication step size is used and the step size is reduced until
the results appear to be stable for the given problem. This
is performance consuming and can only ensure stability
in the observed working points. More sophisticated solu-
tions include adaptive communication step-size (Schierz
et al., 2012) or relaxation techniques (Schweizer et al.,
2016). Such methods typically rely on rollback mecha-
nisms, which are often not available (state serialization in
FMUs is optional).

One technique that addresses this issue is TLM (Krus,
2011). Every physical element has a finite information
propagation speed. By mapping the physically motivated
delays to the communication points in the model, artifi-
cial time delays can be avoided. As a result, the stability
properties of the simulation model will reflect the stability
properties of the physical system it represents. In other
words, the separation into different solvers will not af-
fect the numerical stability of the complete model. The
TLM implementation in OMSimulator is based on previ-
ous work by SKF (Siemers et al., 2009; Fritzson et al.,
2018). The boundary equations for a TLM connection are
shown in Equation 1 and 2:

e1(t) = e2(t −∆t)+Zc [f1(t)+ f2(t −∆t)] (1)
e2(t) = e1(t −∆t)+Zc [f2(t)+ f1(t −∆t)] (2)

e1, e2: effort variables
f1, f2: flow variables

Zc: characteristic impedance
∆t: time delay

It can be noted that the effort variable on one side of
the connection is always independent of variables on the
other side within a (usually small) time frame of ∆t, during
which solvers on both sides can work independently.

With FMI for co-simulation, sub-models can only ex-
change variables at communication time points. This in-
duces sampling errors, which greatly reduces the benefits
of TLM. OMSimulator addresses this by supporting in-
terpolation, either by sending derivatives of the input sig-
nals or by providing the sub-models with interpolation
tables (Braun et al., 2017b). Based on the assumption
that sampling errors arise from aliasing, a related solu-
tion could be to use anti-aliasing filters (Benedikt et al.,
2013; Drenth, 2017). Another solution based on increas-
ing communication step size using context-based extrapo-
lation was proposed by (Khaled et al., 2014). Both inter-
polation and anti-aliasing features would greatly benefit
from callback functions for writing intermediate outputs
and requesting intermediate inputs. This improvement has
been suggested to the FMI design group.

3 OMSimulator Tool Framework
OMSimulator is a unified co-simulation tool that supports
FMI 2.0 for model exchange and co-simulation. One of its
unique features is the support of TLM for numerically sta-
ble co-simulation. Simulations can be performed as soft
real-time or offline simulations.

3.1 Main Framework Aspects
OMSimulator is developed as a standalone open-source
simulation library with a rich C-API. The integration into
the OpenModelica graphical editor OMEdit demonstrates
how the C-API can be utilized for providing an intuitive
(graphical) user experience. Additionally, OMSimulator
provides a command-line interface (CLI) and scripting in-
terfaces for Python and Lua. These different interfaces can
be used to integrate OMSimulator into third-party tools
and specialized applications, e.g. flight simulators and op-
timization applications.

The open-source implementation enables research on
various co-simulation questions, e.g. dependency-graph-
based master algorithms for parallel and multi-rate execu-
tion of FMI components.

3.2 Simulation Architecture
Composite models are constructed as a tree of certain
building blocks. The root node is either a TLM system,
weakly-coupled system (WC system), or strongly-coupled
system (SC system). The systems differ in the way con-
nections are handled:

• TLM systems contain TLM connections, which can
basically be considered as physical-motivated de-
layed connections.

• Weakly-coupled systems are used for actual co-
simulation. All simulation units run independently

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

72 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Figure 2. PI controller model created from 9 FMUs and connected to 2 lookup tables for the boundary conditions.

and are synchronized by a master algorithm at cer-
tain communication time points.

• Strongly-coupled systems are used to wrap-up
model exchange FMUs into a co-simulation unit.
They share a common solver and use a continuous
communication schema.

A system can contain other systems, components (i.e.
FMUs or lookup tables), connectors, and buses.

4 Graphical User Interface with Com-
posite Model Editor

A graphical user interface has been developed as an ex-
tension to the existing OpenModelica Connection Editor
(OMEdit) (Asghar and Tariq, 2010) and the composite
model editor presented in (Mengist et al., 2015). OMEdit
communicates with OMSimulator through the C-API for
visual composite modelling.

4.1 Visual Modelling
The graphical user interface allows the user to create com-
posite models and add systems, components (FMUs, ta-
bles and external models), connectors, buses and connec-
tions to the model. Each composite model is displayed in
the form of a hierarchical tree as shown in the left column
of Figure 2.

Each element in the hierarchical tree consists of an icon,
diagram and text view except for the top-level model, con-
nectors and buses. The model element does not have an

icon view and the connectors and buses are non-editable
shapes.

A user can create a connection between two connectors
or between two buses. A bus or a TLM bus consists of a
list of connectors. When a connection between two buses
is made, a bus connection dialog is shown (see Figure 3).
The dialog maps the inputs and outputs of the buses auto-
matically. This allows making connections for large sys-
tems trivial.

4.2 Simulation and Post Processing
The model needs to be in the instantiated state before per-
forming the simulation. Once the model enters into the in-
stantiation phase the user can set the FMU parameters and
start the simulation. The user interface shows the sim-
ulation status and progress using the callback functions
from the C-API. The simulation results are visualized in
the plotting perspective of OMEdit as shown in Figure 4.

5 Industrial Applications and Bench-
marks

In this section, several industrial applications are pre-
sented.

5.1 Saab Use Case
Analysing and designing sub-systems separately is not
enough in modern aircraft development. A competitive
product needs to be developed considering the joint be-
haviour of tightly coupled sub-systems in order to avoid

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 73
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

Figure 3. Bus connection.

sub-optimization as well as to achieve the desired high
level of aircraft integration. Engineers and researchers,
therefore, need to have the means of detailed analysis us-
ing coupled simulation models, developed in a wide va-
riety of different domain-specific tools, available on their
desktop computers. Scalable, numerically stable, and dis-
tributed simulations need to be achieved while preventing
tool vendor lock-in effects as well as minimizing licensing
costs (Hällqvist et al., 2018).

A detailed aircraft vehicle systems simulator is devel-
oped throughout the OpenCPS project. The simulator
aims to serve as an industrially relevant platform for test-
ing standardized methods for connecting and simulating
models from different tools in the OMSimulator as well
as other integrating simulation tools. The aircraft systems
simulator is developed in parallel to the OMSimulator,
continuously exposing industrial needs and requirements
that were not captured during the master simulation engine
specification phase (OpenCPS project partners, 2016). An
early prototype of the aircraft vehicle systems simulator
was presented in (Hällqvist et al., 2017). The simula-
tor was further developed and expanded to enable stud-
ies of pilot thermal comfort connected to Environmen-
tal Control System (ECS) performance (Hällqvist et al.,
2018; Schminder et al., 2018). The latter combines the
domains of hardware, software, and human factors mod-
elling. Two different composite models of the same sys-
tem were created: one using only traditional connections
between FMUs, referred to as an FMI composite model,
and one with only TLM type connections, referred to as a
TLM composite model.

A schematic description of the different included sub-

Figure 4. Simulation result.

systems is presented in Figure 5. The simulator includes
an engine model designed to provide the included ECS
with air at high temperature and pressure depending on
the aircraft boundary conditions. The boundary condi-
tions are expressed by the aircraft operational point along
with outputs from the included atmosphere model. In
turn, the ECS provides its consumers with conditioned
air at the correct mass flow, temperature, and pressure.
The specified mass flows, temperatures, and pressures are
achieved via a total of five modelled motorized valves
controlled by a modelled software, denoted ECS Con-
trol in the figure. The included consumers are a ther-
moregulatory cockpit model, described in detail by Sch-
minder et al. in (Schminder et al., 2016), along with
two simple place-holder consumers representing subsys-
tems requiring air cooling and/or pressurization. The
cockpit model provides necessary inputs to the included
pilot comfort model which incorporates numerous well-
established comfort measures into the simulation, such as
the Fighter Index of Thermal Stress (Nunneley and Stib-
ley, 1979). The Engine, ECS, and ECS Control mod-
els are expressed using the Modelica language whereas
the atmosphere, cockpit, and pilot comfort models are
developed in Matlab/Simulink (MathWorks). All mod-
els are exported as FMUs for co-simulation, the Model-
ica models using Dymola (Dassault Systemes AB), and
the Matlab/Simulink models using the Dassault developed
toolbox FMI Kit for Simulink. The Modelica models
are all exported with the variable order and variable step
solver CVODE (Lawrence Livermore National Labora-
tory) whereas the Matlab/Simulink models are exported
with fixed step solvers.

In (Braun et al., 2017b), different approaches to estab-
lishing interoperability between FMI for Co-Simulation
and TLM were developed and evaluated. The most suited
approach of using callback functions for FMUs to request
inputs at the times they are needed is not possible with
FMI 2.0. One feasible workaround is to use fine-grained

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

74 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Figure 5. Schematic overview of an aircraft systems simulator comprising detailed sub-system simulation models.

interpolation inside FMUs, see Section 2.2. The mission
simulation presented here serves as an industry grade ver-
ification test-case for the method of using fine-grained in-
terpolation, in the OMSimulator, to ensure numerical sta-
bility during transient conditions.

A subset of the mission boundary conditions are pre-
sented in Figure 6, the altitude corresponds to the left-
hand side y-axis and the Mach number to the right-hand
side y-axis. The ECS consumer supply pressure is plotted
for simulations using only TLM connections (Red) and
using only traditional native FMI connections (Black) in
Figure 7. The results are similar and the discrepancies are
likely a result of aliasing effects resulting from a slightly
too long communication interval in the native FMI simu-
lation. The main difference between the presented simu-
lations is that all included FMUs are executed in parallel,
using physically motivated delays, for the TLM compos-
ite model. In contrast to the native FMI zero-order-hold
sampling resulting in constant input to FMUs during each
master step, the TLM solution guarantees the availability
of interpolated input data at the discretion of each FMU’s
internal solver. For this particular composite model ex-
ample, the TLM parallelization does not decrease the sim-
ulation execution time compared to the native FMI sim-
ulation. The main reason for this is that the composite
model is not well structured from a parallelization per-
spective, and thus the FMU representing the ECS physical
system clearly dominates the computational effort. In ad-
dition, the native FMI simulation is tuned to use the largest
communication interval possible challenging the numeri-
cal stability of the master simulation, whereas the com-
munication interval in the TLM simulation is based on the
real physics and does not compromise numerical stability.
Further up-scaling by adding FMUs for other aircraft sub-
systems, such as a fuel system, a hydraulic system, and an
auxiliary power unit, would reveal the scalability benefits,
in terms of execution time, of the TLM solution.

The presented use case demonstrates the OMSimulator
as an industrially relevant open-source alternative or com-

plements to existing FMI-supporting master simulation
tools in aircraft vehicle systems applications. Combining
the TLM technique with the more traditional method of
simulating coupled FMUs is a most promising and flexi-
ble approach for scalable, numerically stable and accurate,
distributed simulation. The use case shows that combin-
ing models from multiple modelling and simulation do-
mains, from both industry and academia, is feasible using
the OMSimulator. In (Hällqvist et al., 2018) and (Schmin-
der et al., 2018), the focus is placed on studies relating
ECS performance to pilot thermal comfort. Other pos-
sible areas of application are various optimization stud-
ies, e.g., minimizing the engine air consumed by the ECS
while maximizing pilot comfort.

Figure 6. A subset of the simulation boundary conditions, Alti-
tude and Mach number.

5.2 Energy Demonstrator
Driven by the need to limit global warming, the energy
systems worldwide are in a phase of expanding renewable
energy as an alternative to conventional power plants.

The design and control of combined cycle power plants
are expected to become increasingly more important as
a method of balancing the electric networks with a large
share of renewable energy input. This demonstrator is mo-

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 75
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

Figure 7. ECS supply pressure to included fuel system model.
Results from the TLM Composit model simulation is depictd as
red and the Native FMI Composite model simulation as black.

tivated by the need to enable suppliers, in an early design
phase, to test the complete functionality by utilizing well-
verified models from different sources, without having to
convert all models to run by the same tool. This is needed
for the entire electrical grid.

The project goal of this joint energy demonstrator was
to combine FMUs from four different suppliers, to show
that each supplier’s verified knowledge, expressed by their
FMU, could be used for design, and transient analysis of
a power plant.

Figure 8. Energy demonstrator of a combined cycle power sta-
tion with detailed accurate models (total over 30000 equations)
from different suppliers, provided as FMUs.

The power plant in Figure 8 is a combined cycle plant
(CCPP) with steam extraction to a district heating system.
The FMUs are a gas turbine (GT) supplying flue gases to a
heat recovery steam generator (HRSG) that supplies steam
to a district heating system (DH). The GT shaft drives a
generator connected to a large utility network, the model
named SMIB. The HRSG also supplies steam to a steam
turbine that is included in the HRSG model.

Following entities supplies FMUs for the CCPP:

1. Siemens Industrial Turbomachinery AB supplies the
GT

2. KTH supplies the net model

3. EDF supplies the HRSG with ST

4. Equa AB supplies the DH

The simulation results of the generator power during
GT start-up from the model shown in Figure 8 depend on
communication interval and error tolerance. To achieve
accurate results, the simulation settings need to be tight-
ened up which increases the simulation time dramatically.
This encouraged us to develop further advanced simula-
tion technologies, such as a master-algorithm with vari-
able step size and input extrapolation based on output
derivative information.

OMSimulator has the capability for early multi-domain
simulations in the design and configuration phase but also
supporting behaviour control in the operational and re-
cycling phase and support closed loops for a sustainable
environment.

With this new technology and with the promising test
results we will be able to support the vision of sustainable
zero emission power plants with optimized solutions and
also bridge technologies from different partners.

5.3 SKF 3D Mechanical Demonstrator
Models of 3D mechanics typically contain stiff equations
and short time constants. This makes them especially sen-
sitive to delayed variables and thereby poses an interest-
ing challenge for co-simulation. To demonstrate the sta-
bility benefits of TLM, a model of a hydraulic crane with
two actuators was developed, see Figure 9. The intention
is to simulate a model of a roller bearing from SKF to-
gether with the surrounding system for achieving accurate
boundary conditions. SKF is one of the world’s largest
suppliers of bearings and has a great interest in simulat-
ing their bearing models together with models from cus-
tomers. This model constitutes a typical scenario, where a
system model developed by a customer is connected to a
bearing model developed by the supplier. An early proto-
type of the demonstrator was presented in (Braun et al.,
2017a). Table 2 shows an overview of the sub-models
in the composite model. All mechanical bodies are mod-
elled in Dymola and exported as FMUs. The crane arms
are connected through a roller bearing modelled in SKF
BEAST (Fritzson et al., 2014, 2018). The crane me-
chanics is modelled using rigid bodies, while the bear-
ing model contains flexible bodies and contact mechanics.
Motion is controlled by a hydraulic system modelled in
Hopsan, a system simulation tool specialized for hydraulic
and mechatronic systems developed by Linköping Univer-
sity (Axin et al., 2010). Experiments show that the model
works well with FMI for model exchange. With FMI for
co-simulation, either callback functions or fine-grained in-
terpolation (see section 2.2) are required to achieve stable

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

76 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Figure 9. The SKF crane demonstrator model is used to verify
stability in 3D connections.

results. When using sampled inputs with zero-order hold,
stability cannot be achieved even when using a step-size
1000 times smaller than the other methods. Results and
performance cannot be compared to a monolithic imple-
mentation because there is no tool capable of simulating
all three parts of the model: the bearing, the crane and
the hydraulic system. Nevertheless, results are fully re-
alistic. The motion agrees well with simplified models.
Static forces and torques all have correct magnitudes. No
unaccountable phenomena have been observed.

Table 2. Overview of the different sub-models in the SKF
demonstrator model.

Sub-model Tool
Boom FMU (Dymola)

Jib FMU (Dymola)
Load FMU (Dymola)

Piston FMU (Dymola)
Bearing BEAST

Hydraulics Hopsan
Controller Hopsan

6 Related Work
Table 3 compares related tools and libraries that also sup-
port similar co-simulation functionality. There are both
commercial and free-of-charge solutions available with
different licences. All tools support both model-exchange
and co-simulation FMUs. PyFMI is the only tool which
does not include built-in support for lookup tables. This
feature is quite handy, but not critical because it can be
isolated and solved by dedicated FMUs.

Except for Simulink, all tools support handling of al-
gebraic loops. In Simulink, however, it is not possible
to execute such composite models. Introducing a delayed
signal can circumvent this issue, but is not considered as
an appropriate solution since it introduces unintended dy-
namics.

All the tools except FMI Composer (Modelon), provide
some kind of scripting interface. DACCOSIM (Virginie
et al., 2015), Simulink and Dymola have proprietary solu-
tions and OMSimulator, PySimulator (Pfeiffer et al., 2012;

Asghar et al., 2015), FMI Go! (Lacoursière and Härdin,
2017), and PyFMI (Christian et al., 2016) are based on
open scripting languages.

OMSimulator uses the upcoming SSP standard as an
exchange format for composite models, as well as FMI
Go!, and FMI Composer.

7 Conclusions
OMSimulator 2.0 is part of the OpenModelica 1.13.0 re-
lease and also available as a standalone application. It pro-
vides the following functionality. It supports both FMI
variants, i.e. model-exchange and co-simulation. It sup-
ports also the TLM technique to decouple co-simulation
units and potentially stabilize the simulation. TLM con-
nections enable direct tool-coupling as well, e.g. with
Adams, Beast, and Simulink.

The OpenModelica graphical editor OMEdit is con-
nected to OMSimulator via a C-API and provides a rich
user experience.

The SSP standard, which is still under development,
is supported as an early prototype to enable exchanging
models with an open and independent standard. As an ex-
tension to the current SSP version, signal grouping and
bus connections are supported and integrated into the SSP
using annotations.

Compared to other tools, OMSimulator has outstand-
ing features like TLM and SSP support. The open-source
implementation facilitates use by academics and also in
industry. It can be used as a research platform for co-
simulation.

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENCPS, and EMPHYSIS projects and in the Vinnova
RTISIM project. Support from the Swedish Government
has been received from the ELLIIT project. The Open-
Modelica development is supported by the Open Source
Modelica Consortium. Many students, researchers, and
engineers have contributed to the OpenModelica system.
There is not room here to mention all these people, but we
gratefully acknowledge their contributions.

References
Adeel Asghar, Andreas Pfeiffer, Arunkumar Palanisamy,

Alachew Mengist, Martin Sjölund, Adrian Pop, and Pe-
ter Fritzson. Automatic regression testing of simula-
tion models and concept for simulation of connected
FMUs in PySimulator. In Fritzson and Elmqvist (2015).
doi:10.3384/ecp15118671.

Syed Adeel Asghar and Sonia Tariq. Design and implemen-
tation of a user friendly OpenModelica graphical connec-
tion editor. Master’s thesis, Linköping University, De-
partment of Computer and Information Science, Decem-
ber 2010. URL http://urn.kb.se/resolve?urn=
urn:nbn:se:liu:diva-65864.

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

DOI Proceedings of the 13th International Modelica Conference 77
10.3384/ecp1915769 March 4-6, 2019, Regensburg, Germany

Table 3. Comparison of related tools.

OMSimulator DACCOSIM Simulink PyFMI
Commercial No No Yes No
Open-source OSMC-PL, GPL AGPL2 No LGPL
Lookup Table Yes Yes Yes No
Alg. Loops Yes Yes No Yes
Scripting Python, Lua proprietary proprietary Python
GUI Yes Yes Yes No
SSP Yes No No No
platform Linux/Win/macOS Linux/Win Linux/Win/macOS Linux/Win/macOS

Dymola PySimulator FMI Go! FMI Composer
Commercial Yes No No Yes
Open-source No BSD MIT No
Lookup Table Yes Yes Yes Yes
Alg. Loops Yes Yes Yes Yes
Scripting proprietary Python Go No
GUI Yes Yes No Yes
SSP No No Yes Yes
platform Linux/Win Linux/Win Linux/Win/macOS Linux/Win/macOS

Mikael Axin, Robert Braun, Alessandro Dell’Amico, Björn
Eriksson, Peter Nordin, Karl Pettersson, Ingo Staack, and
Petter Krus. Next generation simulation software using trans-
mission line elements. In Fluid Power and Motion Control,
Bath, England, September 2010.

Martin Benedikt, Daniel Watzenig, and Anton Hofer. Mod-
elling and analysis of the non-iterative coupling pro-
cess for co-simulation. Mathematical and Computer
Modelling of Dynamical Systems, 19(5):451–470, 2013.
doi:10.1080/13873954.2013.784340.

Robert Braun, Adeel Asghar, Adrian Pop, and Dag Fritzson.
An open-source framework for efficient co-simulation of fluid
power systems. In Proceedings of 15th Scandinavian Inter-
national Conference on Fluid Power, June 7-9, 2017, num-
ber 144, pages 393–400, Linköping, Sweden, June 2017a.
Linköping University Electronic Press, Linköpings univer-
sitet.

Robert Braun, Robert Hällqvist, and Dag Fritzon. TLM-based
Asynchronous Co-simulation with the Functional Mockup
Interface. In IUTAM Symposium on Solver Coupling and Co-
Simulation, Darmstadt, Germany, September 2017b.

David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and
Michael Wetter. Determinate composition of fmus for
co-simulation. Technical Report UCB/EECS-2013-153,
EECS Department, University of California, Berkeley,
Aug 2013. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2013/EECS-2013-153.html.

Andersson Christian, Åkesson Johan, and Führer Claus.
PyFMI: A Python Package for Simulation of Cou-
pled Dynamic Models with the Functional Mock-up
Interface. Technical Report 2, Centre for Mathemat-
ical Sciences, Lund University, 2016. URL https:
//lup.lub.lu.se/search/publication/
961a50eb-e4a8-43bc-80ac-d467eef26193.

Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher
Brooks, and Edward A. Lee. Fide: An fmi integrated develop-
ment environment. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC ’16, pages 1759–
1766, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-
3739-7. doi:10.1145/2851613.2851677.

Fabio Cremona, Marten Lohstroh, David Broman, Edward A.
Lee, Michael Masin, and Stavros Tripakis. Hybrid co-
simulation: it’s about time. Software & Systems Modeling,
November 2017. ISSN 1619-1374. doi:10.1007/s10270-017-
0633-6.

Dassault Systemes AB. Dymola. URL https:
//www.3ds.com/products-services/catia/
products/dymola/.

Edo Drenth. Method and system for control and co-simulation of
physical systems, March 2 2017. US Patent App. 15/232,261.

FMI development group. Functional Mock-up Interface for
Model Exchange and Co-Simulation v2.0. Modelica Associ-
ation Project “FMI”, October 2014. URL https://www.
fmi-standard.org/. Standard Specification.

Dag Fritzson, Lars-Erik Stacke, and Jens Anders. Dy-
namic simulation–building knowledge in product develop-
ment. Evolution, 1, 2014.

Dag Fritzson, Robert Braun, and Jan Hartford. Composite mod-
elling in 3-d mechanics utilizing transmission line modelling
(tlm) and functional mock-up interface (fmi). 2018.

Peter Fritzson and Hilding Elmqvist, editors. Proceedings of the
11th International Modelica Conference, September 2015.
Modelica Association and Linköping University Electronic
Press. doi:10.3384/ecp15118.

Robert Hällqvist, Rober Braun, and Petter Krus. Early Insights
on FMI-based Co-Simulation of Aircraft Vehicle Systems. In

OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP

78 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915769

Proceedings of the 15th Scandinavian International Confer-
ence on Fluid Power, Linköping, Sweden, 2017.

Robert Hällqvist, Jörg Schminder, Magnus Eek, Robert Braun,
Roland Gårdhagen, and Peter Krus. A novel FMI and TLM-
based simulator for detailed studies of thermal pilot com-
fort. In Proceedings of the 31st Congress of the International
Council of the Aeronautical Sciences (ICAS), Belo Horizonte,
Brazil, 2018.

Abir Ben Khaled, Laurent Duval, Mohamed El Mongi Ben Gaïd,
and Daniel Simon. Context-based polynomial extrapolation
and slackened synchronization for fast multi-core simulation
using fmi. In International Modelica Conference, pages 225–
234. Linköping University Electronic Press, 2014.

Petter Krus. Robust modelling using bi-lateral delay lines for
high speed simulation of complex systems. In DINAME
2011: 14th International Symposium on Dynamic Prob-
lems in Mechanics, 2011. URL http://urn.kb.se/
resolve?urn=urn:nbn:se:liu:diva-67897. In-
vited conference contribution.

Claude Lacoursière and Tomas Härdin. Fmi Go! A Simula-
tion runtime environment with a client server architecture
over multiple protocols. In 12th Int. Modelica Confer-
ence, Prague, Czech Republic, 2017. URL https:
//www.modelica.org/events/modelica2017/
proceedings/html/submissions/
ecp17132653_LacoursiereHardin.pdf.

Lawrence Livermore National Laboratory. SUNDIALS:
SUite of Nonlinear and Differential/ALgebraic Equation
Solvers. URL https://computation.llnl.gov/
projects/sundials/cvode.

MathWorks. Simulink. URL https://www.mathworks.
com/products/simulink.html.

Alachew Mengist, Adeel Asghar, Adrian Pop, Peter Fritzson,
Willi Braun, Alexander Siemers, and Dag Fritzson. An open-
source graphical composite modeling editor and simulation
tool based on fmi and tlm co-simulation. In Fritzson and
Elmqvist (2015). doi:10.3384/ecp15118181.

MODELISAR Consortium. MODELISAR - From System Mod-
eling to S/W running on the Vehicle, 2011. URL https:
//itea3.org/project/modelisar.html.

Modelon. FMI COMPOSER. URL https:
//www.modelon.com/products-services/
modelon-deployment-suite/fmi-composer/.

Sarah Nunneley and Richard Stibley. Fighter Index of Thermal
Stress: Development of Interim Guidance for Hot-Weather
USAF Operations. Journal of the American Society of Heat-
ing and Ventilating Engineers, 50:639–642, 1979.

OpenCPS project partners. FMI Master Simulation Tool Re-
quirement Specification, December 2016. URL https:
//itea3.org/project/opencps.html.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin
Otter, and Matthias Reiner. PySimulator – A Simula-
tion and Analysis Environment in Python with Plugin In-
frastructure. In 9th Int. Modelica Conference, Munich,

Germany, 2012. URL http://www.ep.liu.se/ecp/
076/053/ecp12076053.pdf.

Tom Schierz and Martin Arnold. Stabilized overlapping modular
time integration of coupled differential-algebraic equations.
Applied Numerical Mathematics, 62(10):1491 – 1502, 2012.
ISSN 0168-9274. doi:10.1016/j.apnum.2012.06.020.

Tom Schierz, Martin Arnold, and Christoph Clauß. Co-
simulation with communication step size control in an FMI
compatible master algorithmnak. In 9th Int. Modelica Con-
ference, Munich, Germany, pages 205–214, 2012.

Jörg Schminder, Roland Gårdhagen, Elias Nilsson, Karl Storck,
and Matts Karlsson. Development of a Cockpit-Pilot Model
for Thermal Comfort Optimization During Long-Mission
Flight. In Proceedings of the AIAA Modeling and Simulation
Technologies Conference, 2016.

Jörg Schminder, Robert Hällqvist, Magnus Eek, and Roland
Gårdhagen. Pilot performance and heat stress assessment
support using a cockpit thermoregulatory simulation model.
In Proceedings of the 31st Congress of the International
Council of the Aeronautical Sciences (ICAS), Belo Horizonte,
Brazil, 2018.

Bernhard Schweizer, Daixing Lu, and Pu Li. Co-simulation
method for solver coupling with algebraic constraints incor-
porating relaxation techniques. Multibody System Dynamics,
36(1):1–36, 2016. ISSN 1573-272X. doi:10.1007/s11044-
015-9464-9.

Alexander Siemers, Dag Fritzson, and Peter Fritzson. Meta-
Modeling for Multi-Physics Co-Simulation applied for Open-
Modelica. In International Congress on Methodologies
for Emerging Technologies in Automation (ANIPLA2006),
Rome, Italy, November 13–15 2006.

Alexander Siemers, Dag Fritzson, and Iakov Nakhimovski. Gen-
eral meta-model based co-simulations applied to mechanical
systems. Simulation Modelling Practice And Theory, 17(4):
612–624, 2009. doi:doi:10.1016/j.simpat.2008.10.006.

Martin Sjölund. Tools and Methods for Analysis, Debugging,
and Performance Improvement of Equation-Based Models.
Doctoral thesis No 1664, Linköping University, Department
of Computer and Information Science, 2015.

Martin Sjölund, Robert Braun, Peter Fritzson, and Petter Krus.
Towards efficient distributed simulation in modelica using
transmission line modeling. In 3rd International Workshop
on Equation-Based Object-Oriented Languages and Tools.,
Oslo, Norway, October 2010. URL http://www.ep.
liu.se/ecp/047/.

J. P. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis,
M. Schumann, A. Cuccuru, and S. Revol. Toward an ac-
curate and fast hybrid multi-simulation with the fmi-cs stan-
dard. In 2016 IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), pages 1–5,
September 2016. doi:10.1109/ETFA.2016.7733616.

Galtier Virginie, Vialle Stephane, Dad Cherifa, Jean-Philippe
Tavella, Lam-Yee-Mui Jean-Philippe, and Plessis Gilles.
Fmi-based distributed multi-simulation with daccosim. pages
39–46, 2015. URL http://dl.acm.org/citation.
cfm?id=2872965.2872971.

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

DOI Proceedings of the 13th International Modelica Conference 79
10.3384/ecp1915779 March 4-6, 2019, Regensburg, Germany

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units
Hatledal, Lars Ivar and Zhang, Houxiang and Styve, Arne and Hovland, Geir

79

FMU-proxy: A Framework for Distributed Access to Functional
Mock-up Units

Lars Ivar Hatledal1 Houxiang Zhang1 Arne Styve2 Geir Hovland3

1Department of Ocean Operations and Civil Engineering, NTNU, Norway, {laht,hozh}@ntnu.no
2Department of ICT and Natural Sciences, NTNU, Norway, asty@ntnu.no

3Department of Engineering Sciences, UiA, Norway, geir.hovland@uia.no

Abstract
The main goal of the Functional Mock-up Interface (FMI)
standard is to allow simulation models to be shared across
tools. To accomplish this, FMI relies on a combination
of XML-files and compiled C-code packaged in a zip
archive. This archive is called an Functional Mock-up
Unit (FMU) and uses the extension .fmu. In theory, an
FMU can support multiple platforms, however this is not
always the case and depends on the type of binaries the
exporting tool was able to provide. Furthermore, a library
providing FMI support may not be available in a particular
language, and/or it may not support the whole standard.
Another issue is related to the protection of Intellectual
Property (IP). While an FMU is free to only provide the
C-code in binary form, other resources shipped with the
FMU may be unprotected.

In order to overcome these challenges, this paper
presents FMU-proxy, an open-source framework for ac-
cessing FMUs across languages and platforms. This is
done by wrapping one or more FMUs behind a server pro-
gram supporting multiple language independent Remote
Procedure Call (RPC) technologies over several network
protocols. Currently, Apache Thrift (TCP/IP, HTTP),
gRPC (HTTP/2) and JSON-RPC (HTTP, WebSockets,
TPC/IP, ZeroMQ) are supported. Together, they allow
FMUs to be invoked from virtually any language on any
platform. As users don’t have direct access to the FMU or
the resources within it, IP is more effectively protected.
Keywords: RPC, FMI, Co-simulation, Model Exchange

1 Introduction
No one simulation tool is suitable for all purposes, and
complex heterogeneous models may require components
from several different domains, perhaps developed in sep-
arate domain specific tools. How such components could
be integrated in a standardized way is a problem the Func-
tion Mock-up Interface (FMI) (Blochwitz et al., 2012)
aims to solve. More specifically, FMI is a tool indepen-
dent standard to support both Model Exchange (ME) and
Co-Simulation (CS) of dynamic models. Currently at ver-
sion 2.0, the standard was one of the results of the MOD-
ELISAR project and is today managed by the Modelica
Association.

A model implementing the FMI standard is known as
an Functional Mock-up Unit (FMU), and is distributed as
a zip-file with the extension .fmu. This archive contains:

• An XML-file that contains meta-data about the
model, named modelDescription.xml.

• C-code implementing a set of functions defined by
the FMI standard.

• Other optional resources required by the model im-
plementation.

The FMI standard consists of two main parts:

• FMI for Model Exchange (ME): Models are exported
without solvers and are described by differential, al-
gebraic and discrete equations with time-, state- and
step-events.

• FMI for Co-Simulation (CS): Models are exported
with a solver, and data is exchanged between subsys-
tems at discrete communication points. In the time
between two communication points, the subsystems
are solved independently from each other.

It’s worth noting that a single FMU may support both
ME and CS, and that the former may be wrapped by an
importing tool into the latter.

FMI has seen high adaption rates since it’s inception in
2011. The official tools page at fmi-standard.org/
tools currently shows about 120 tools supporting FMI
in one way or another. Clearly, the standard is solving
a real problem. However, there are still some practical
challenges related to it.

• FMI is cross platform in theory, but in practice
this depends on the exporting tools ability to cross-
compile native binaries. This is often not the case,
making some FMUs unavailable for a certain plat-
form.

• While FMI has been implemented in several lan-
guages, such as C (JModelica, 2017; QTronic,
2014), C++ (Widl et al., 2013; Hatledal, 2018),
Python (Dassault Systems, 2017; Andersson et al.,

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

80 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915779

2016) and Java (Hatledal et al., 2018; Cortes Mon-
tenegro, 2014; Broman et al., 2013), out-of-the-box
support for FMI is still missing in many languages.

• An FMU may require a license or pre-installed soft-
ware on the target computer, making the FMU un-
available on many systems.

• Some FMI implementations only supports CS, mak-
ing parts of the standard unavailable. Others may
support ME also, but may not provide an easy way of
solving them. Thus, some users may find the thresh-
old for utilizing this feature too high.

• IP protection is not covered by the standard, however,
model exporters are free to implement such mecha-
nism as they see fit. Regardless, some model owners
may worry about leaking IP and might be reluctant
in sharing FMUs with others.

In order to resolve these issues, we present FMU-proxy,
a framework for accessing FMUs compatible with FMI
2.0 for CS and ME in a language and platform indepen-
dent way. The language and platform independent nature
of the framework is achieved using well established RPC
technologies, allowing clients and servers for FMU-proxy
to be written in almost any language, on any platform. As
noted by (Durling et al., 2017), server solutions such as
presented in this paper are effective at protecting IP and
unintended distribution. Furthermore, they allow FMUs
with special requirements, such as pre-installed software
and licence requirements, to be utilized on other systems.

Server implementations already exist for C++ and for
the Java Virtual Machine (JVM), while client imple-
mentations exist for C++, Python, JavaScript and the
JVM. Thanks to the stub generation capability of selected
RPC frameworks, additional implementations in other lan-
guages are easy to realize as most of the code will be gen-
erated by the RPC compiler.

FMU-proxy is different from other similar frameworks
offering distributed execution of FMUs in that it com-
pletely separates itself from the master algorithm. It is a
completely standalone project which provides the infras-
tructure required to invoke FMUs over the wire. And just
that.

Rather than having a number of tools creating their
own, perhaps non-modular or internal, distribution mech-
anism, we hope FMU-proxy can be considered as an alter-
native or drop-in replacement for existing solutions. Pos-
sibly, creating a eco-system of remotely available FMUs
in the process.

The source code of FMU-proxy is available online1 un-
der a permissive MIT license.

The rest of the paper is organized as follows. First some
related work is given, followed by a presentation of the
high-level architecture of the framework and subsequent

1https://github.com/NTNU-IHB/FMU-proxy

implementation notes. Finally, a conclusion and future
works are given.

2 Related work
Since the inception of the FMI standard, a multitude of
libraries and software tools supporting the standard has
been implemented. As of November 2018, the official
FMI web page lists 120 such tools. Most of which sup-
ports invocation of FMI 2.0 compatible simulation mod-
els. A list of open-source tools with FMI import capabil-
ities are given in Table. 1. Of these tools, four support
distributed invocation of FMUs. These are:

DACCOSIM (Distributed Architecture for Controlled
CO-SIMulation) (Galtier et al., 2015; Dad et al., 2016),
a FMI compatible master algorithm, that lets the user
design and execute a simulation requiring the collabora-
tion of multiple FMUs on multi-core computation nodes
or clusters. DACCOSIM is implemented in Java and is
built on-top of the Eclipse Rich Client Platform, which
provides the user with a GUI for setting up and running
co-simulations. For complex scenarios with many FMUs
and/or connections, a DSL can be used to replace the GUI.
JavaFMI (Cortes Montenegro, 2014) is used for simulat-
ing and building FMUs. For communications, the Ze-
roMQ middleware is used. DACCOSIM is released under
the AGPL license and is available for both Windows and
Linux.

Coral (Sadjina et al., 2017) is a free and open-source
software for distributed FMI based co-simulation, licensed
under the MPL 2.0. Coral support FMI 1.0 and 2.0
for CS and was developed as part of the R&D project
Virtual Prototyping of Maritime Systems and Operations
(ViProMa) (Hassani et al., 2016). According to the au-
thors, Coral is primarily a C++ library, but also acts as
a tool as it requires setting up and running several pro-
grams in a distributed fashion. Additionally, it comes with
a Command Line Interface (CLI) for running simulations.
Coral works by installing a server program called a slave
provider on each of the machines that should participate
in a simulation. This program is responsible for publish-
ing information on which FMUs are available on that ma-
chine, and exposes a subset of the FMI standard, com-
patible with both FMI 1.0 and 2.0, over the network. It
also handles loading and running FMUs at the request of
the master software, which acts as a client. Coral relies on
the FMI Library (JModelica, 2017) to interact with FMUs,
while networking is facilitated by the ZeroMQ middle-
ware. Google Protocol Buffers are used for encoding/de-
coding messages sent over the network. A special feature
of Coral is that slaves run in parallel, with variable val-
ues passed between them in a distributed fashion. Loggers
and visualizers must therefore be implemented as FMUs
themselves.

FMI Go! (Lacoursière and Härdin, 2017) is an open-
source (MIT) distributed software infrastructure to per-
form distributed simulations with FMI compatible com-

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

DOI Proceedings of the 13th International Modelica Conference 81
10.3384/ecp1915779 March 4-6, 2019, Regensburg, Germany

Table 1. Open Source Software tools for simulating FMUs

FMI support
CS ME

Name v1.0 v2.0 v1.0 v2.0 Standalone Plugin Distributed API CLI GUI Version License
Coral x x x x x x 0.9.0 MPLv2
DACCOSIM x x x x 2.1.0 AGPL
FMI Go! x x x x x x x - MIT
FIDE x x x - -
FUMOLA x x x x x x x alpha -
Hopsan x x x 2.10.0 GPLv3
INTO-CPS x x x - MIT
MasterSim x x x x x x 0.5.0 LGPLv3
Ptolemy II x x x x x x x 10.0.1 MIT
Xcos FMU wrapper x x x x x 0.6 CeCILL
λ -Sim x x x - -
OpenModelica x x x x x 1.12.0 GPLv3

ponents, that runs on Windows, Linux and Mac OS X.
Both CS and ME FMUs are supported, where ME FMUs
are wrapped into CS FMUs. ME FMUs are preferred, as
then the FMI Go! run-time environment can provide roll-
back and directional derivatives of the FMU. In CS FMUs,
these features are considered optional and are often lack-
ing, but may be required to achieve accurate and or stable
simulations. FMI Go! used a client-server architecture,
where a server hosts an individual FMU. Google Protocol
Buffers are used for mapping the various FMI functions to
messages that are transmitted using the ZeroMQ middle-
ware. The Message Passing Interface (MPI) is also sup-
ported. The global stepper is then a client, consuming re-
sults produced by the FMUs. For applications that would
want access to the simulation data, such as loggers, visual-
ization etc., the global stepper serves also as a server. The
System Specification and Parameterization (SSP) (Köhler
et al., 2016) is used for defining the structure of a simula-
tion. Additionally, a bare-bone CLI for this purpose also
exists.

λ -Sim (Bonvini, 2016) is a tool implemented on top
of Amazon Web Services (AWS) that converts FMI based
simulation models into REST APIs. Provided with an
FMU bundled with a JSON configuration file, λ -Sim
builds a series of AWS services that will run simulations
upon requests from a RESTful API. A web-based GUI is
available, allowing users to load the generated API, simu-
late the model and visualize the results.

In (Hatledal et al., 2015) a software architecture for
simulation and visualization based on FMI and web tech-
nologies was presented, using the Java only Remote
Method Invocation (RMI) system for distributed access of
FMUs.

Efforts has also been made to integrate the High Level
Architecture (HLA) (Dahmann et al., 1997) and FMI in
the works of (Awais et al., 2013) and (Garro and Falcone,
2015).

Additionally, the emerging standard Distributed Co-
Simulation Protocol (DCP) (Krammer et al., 2018) should
be mentioned. It is subject to proposal as a standard for

real-time and non-real-time system integration and sim-
ulation, and standardization as a Modelica Association
Project (MAP). The DCP is compatible with FMI and just
like FMI, it defines only the slave. The design of a master
is not in scope of the specification.

FMU-proxy is similar to the DSP in that it aims to en-
able distributed Co-Simulation. However, it does not de-
fine a standard, but mimics FMI for function definitions
and leverages existing RPC frameworks and protocols for
serialization and networking. It also makes no special con-
siderations for real-time system integration like DSP does.

FMU-proxy differs from the other tools mentioned
above as it does not actually simulate any FMUs. It merely
provides access to the FMUs in a flexible way, support-
ing multiple RPCs and network protocols. Time stepping,
variable routing, plotting etc. and other typical task per-
formed by a master tool is left implemented by the inte-
grating tool. This is a feature, allowing FMU-proxy to be
lightweight, easy to use and re-usable in different software
tools.

3 Software Architecture
This section introduces the high level concepts of FMU-
proxy. The software architecture is shown in Fig. 1 and
consists of three main parts:

Figure 1. Software architecture.

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

82 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915779

1. Discovery Services A discovery service is a web ap-

plication whose main responsibility is to communi-
cate to users information about and the location of
available FMUs. This information can be obtained
visually through a web interface, or programmati-
cally through an HTTP request.

The discovery service has the following three HTTP
services:

• /availablefmus: Called by user applications.
Returns a JSON formatted string containing in-
formation about all available FMUs registered
with the discovery service. The information in-
clude data from the modelDescription.xml as
well as the IP address of the host machine and
the RPC port(s).

• /register: Called by proxy-servers on start-up.
Registers the server with the discovery server.
Transmits network information, and informa-
tion about the modelDescription.xml for each
locally available FMU.

• /ping: Called by the proxy-servers at regular
intervals, otherwise they will be considered to
be offline by the discovery service.

The discovery service is an optional feature and is not
required when the remote end-point of an RPC ser-
vice can be easily obtained. For instance when run-
ning the server on a physically accessible machine,
allowing the IP address and RPC port(s) to be man-
ually obtained. Another use case could be running
both the client and server on localhost to enable in-
vocations on FMUs from an otherwise unsupported
language.

Multiple discovery services may be online at any
given time.

2. Proxy-server

A proxy-server is responsible for making available
one or more FMUs over a set of RPCs. At the very
least, an implementation should support both Thrift
and gRPC. Additional RPCs, such as JSON-RPC are
optional.

In addition to the RPC support, an implementation
must be able to communicate with the discovery ser-
vice over HTTP. Upon starting the server, the remote
address of a discovery service should be specified.
In order to ensure that the list of available FMUs are
kept up to date, a heartbeat connection to the dis-
covery service is established. At regular intervals,
the server sends a ping - or heartbeat - over HTTP
signalling that it is still online. When enough time
has passed without such a notification, the server is
considered offline and it’s listing is subsequently re-
moved from the discovery service.

FMU-proxy supports both ME and CS FMUs run-
ning on the back-end, but the user is only provided
with a CS API, as ME models are wrapped. Which
solver and parameters to use are configurable by the
user, however the availability of certain solvers are
dependent on the server implementation.

3. Proxy-clients
Proxy clients are used to connect with the FMUs
hosted by the remote server(s). FMU-proxy aims
to provide flexibility, such that clients can be imple-
mented in a wide variety of languages and platform.

Using Thrift or gRPC, the process of generating
the required source-code for interacting with an re-
mote FMU is quite straightforward. Listing. 1 shows
the command required for generating the required
sources when targeting Thrift in JavaScript. Simi-
larly, Listing. 2 shows how C++ sources for gRPC
are generated.

Listing 1. Generating JavaScript sources for interfacing
with remote FMUs using Thrift.

thrift -js service.thift

Listing 2. Generating C++ sources for interfacing with
remote FMUs using gRPC.

protoc -I=. --plugin=protoc-gen-grpc=
grpc_cpp_plugin --cpp_out=. --
grpc_out=. service.proto

The framework accomplishes several things, such as:

• Additional language support. FMUs can be ac-
cessed in previously unsupported languages with low
effort, as no XML has to be parsed and no C-code has
to be interfaced. Depending on the RPC used, stubs
are auto-generated.

• Cross platform access to any FMU. FMUs can be
invoked from unsupported platforms, i.e an FMU
compiled only for Windows can be invoked from a
Linux system. Naturally, a server running on a plat-
form supported by the FMU is required.

• FMI compliance without FMU packaging. It al-
lows models to be compliant with the FMI standard
without actually being packaged as an FMU. From a
client’s perspective, there is no difference between
a "physically backed" FMU and one implemented
in-memory. All the client sees is the RPC interface
mimicking FMI.

• Relaxed run-time constraints. FMUs that require
special software and/or licenses can be invoked from
otherwise incompatible systems.

• Re-usability. As the framework is decoupled from
the master algorithm, it can be used by any software
tool with a centralized master architecture that wants
to support distributed execution of FMUs.

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

DOI Proceedings of the 13th International Modelica Conference 83
10.3384/ecp1915779 March 4-6, 2019, Regensburg, Germany

4 Implementation
This section describes some of the implementation details
related to FMU-proxy. Currently, it comes with server im-
plementations for C++ and the JVM. Client implementa-
tions exist also for C++ and the JVM. Additionally, proof
of concept implementations for Python and JavaScript are
bundled. In addition to the servers and clients, FMU-
proxy comes bundled with an implementation of a discov-
ery service.

4.1 The Discovery Service
The discovery service has been implemented in Kotlin, a
statically typed language 100% interoperable with Java.
The front-end seen in Fig. 2 has been implemented using
PrimeFaces, a UI component framework for Java Server
Faces (JSF). It offers basic functionality such as the ability
for users to download available RPC schemas and to view
information about available FMUs in a structured way.

Figure 2. The discovery service’s web interface. Here available
FMUs are listed, showing network information and data from
the modelDescription.xml.

4.2 Proxy-server
Two server implementations have been realized, each de-
scribed more in detail below. Which one to deploy in pro-
duction depends on the users need for RPCs supported,
stability, stability, quality of the available ME solvers,
memory foot-print and performance. No one implemen-
tation will excel at everything.

4.2.1 JVM

The JVM implementations is written in Kotlin and rely on
FMI4j (Hatledal et al., 2018) for interacting with FMUs.
FMI4j supports FMI 2.0 for CS and ME. ME models can
be wrapped as CS ones using solvers from Apache Com-
mons Math.

The implementation supports Thrift (TPC/IP - binary,
HTTP - JSON), gRPC (HTTP2 - protocol buffers) as well
as JSON-RPC (HTTP, TCP/IP, WebSockets, ZeroMQ). Of

the two current implementations, this one is considered
the most stable and feature rich.

4.2.2 C++

The C++ implementation is cross-platform and is written
in C++17. All dependencies are available using the library
manager vcpkg, making it easy to build on any platform.
Currently, Thrift (TPC/IP - binary, HTTP - JSON) and
gRPC (HTTP2 - protocol buffers) are supported RPCs.

FMI4cpp (Hatledal, 2018) is used for interacting with
FMUs. It supports FMI 2.0 for CS and ME. ME mod-
els can be wrapped as CS ones using solvers from Boost
odeint.

4.3 Proxy-client
FMU-proxy comes bundled with client implementations
for C++, the JVM, Python and JavaScript. The two lat-
ter are crude and ought to be considered as proof of con-
cept. They are, however, bundled with the source code to
showcase how easy it is to interface with FMU-proxy from
new languages. A MATLAB demo using JSON-RPC over
HTTP is also available.

The C++ and JVM implementations are more elabo-
rate, providing a unified, higher level API for the users.
No matter which RPC is used, there is no difference be-
tween a remote and local FMU slave for the user. As il-
lustrated by Figure. 3, they all share the same interface,
defined by FMI4cpp and FMI4j for C++ and JVM imple-
mentations respectively. Assuming a tool is using one of
these FMI implementations, support for distributed execu-
tion can be seamlessly added with minimal changes to the
existing code base.

Figure 3. FMI4cpp and FMI4j’s slave interface could hide
slaves stemming from either an in-memory implementation or
an actual FMU. A slave in any language supported by the cho-
sen RPC could also be implemented directly behind the RPC
layer.

5 Conclusion and Future Work
In this paper an open-source framework for working with
FMUs across languages and platforms, named FMU-
proxy, has been presented. It has been designed to allow

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

84 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915779

distributed execution of FMUs, which also enables access
to FMUs in previously unsupported languages and on in-
compatible platforms. Since FMU-proxy is independent
of the master algorithm, it can be re-used across software
projects.

Some features of FMU-proxy include:

• Brings FMI capabilities to previously unsupported
languages and otherwise incompatible platforms.

• By implementing the RPC functions directly, FMI
compliant models can be implemented without hav-
ing to package them into FMUs.

• Allows code re-use between projects that requires
distributed execution of FMUs, independent of im-
plementation language.

• Enables companies to securely share FMUs. By
hosting their own proxy server and directory service,
neither the FMUs nor the knowledge about them
leaves the company controlled servers.

• A unified slave interface for C++ and JVM users. On
these platforms, local and remote slaves implement
the same interface.

Server implementations exists for C++ and the
JVM, while client implementations exists for JavaScript,
Python, C++ and the JVM. Due to the language inde-
pendent nature of the RPC frameworks and protocols
used, and especially the code-generation feature of se-
lected RPC frameworks, further client implementations in
additional languages require little effort.

Several enhancements to FMU-proxy is planned for the
future, including:

1. Automatic distribution of FMUs over the network.
It should be possible to upload an FMU to the Dis-
covery Service, which in turn should find a suitable
server for it to run on.

2. Manual distribution of FMUs over the network. It
should be possible for the user to directly upload an
FMU to an available proxy-server.

3. Publication of the C++ implementation to the cross-
platform C++ library manager vcpkg.

4. Benchmark results, comparing the different imple-
mentations, RPCs and local vs. distributed execution
of FMUs.

5. Once released, FMI 3.0 support will be added.

FMU-proxy is available from GitHub at
https://github.com/NTNU-IHB/FMU-proxy.
Here, pre-built server executables can be obtained. Client
libraries for Java are available through maven at https:
//jitpack.io/#NTNU-IHB/FMU-proxy, while
client libraries for C++ will be available through vcpkg.

6 Acknowledgement
The research presented in this paper is supported by the
Norwegian Research Council, SFI Offshore Mechatron-
ics, project number 237896.

References
Christian Andersson, Johan Åkesson, and Claus Führer. Pyfmi:

A python package for simulation of coupled dynamic models
with the functional mock-up interface. Technical Report in
Mathematical Sciences, 2016(2), 2016.

Muhammad Usman Awais, Peter Palensky, Atiyah Elsheikh, Ed-
mund Widl, and Stifter Matthias. The high level architec-
ture rti as a master to the functional mock-up interface com-
ponents. In Computing, Networking and Communications
(ICNC), 2013 International Conference on, pages 315–320.
IEEE, 2013.

Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, et al.
Functional mockup interface 2.0: The standard for tool in-
dependent exchange of simulation models. In Proceedings
of the 9th International MODELICA Conference; September
3-5; 2012; Munich; Germany, number 076, pages 173–184.
Linköping University Electronic Press, 2012.

Marco Bonvini. Lambdasim, 2016. URL https://
github.com/mbonvini/LambdaSim. (Date accessed
11-November-2018).

David Broman, Christopher Brooks, Edward A. Lee, Thierry S.
Nouidui, Stavros Tripakis, and Michael Wetter. Jfmi
- a java wrapper for the functional mock-up interface,
2013. URL https://ptolemy.eecs.berkeley.
edu/java/jfmi/. (Date accessed 23-June-2018).

Johan Sebastian Cortes Montenegro. Javafmi una librería java
para el estándar functional mockup interface. 2014.

Cherifa Dad, Stephane Vialle, Mathieu Caujolle, Jean-Philippe
Tavella, and Michel Ianotto. Scaling of distributed multi-
simulations on multi-core clusters. In Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WET-
ICE), 2016 IEEE 25th International Conference on, pages
142–147. IEEE, 2016.

Judith S Dahmann, Richard M Fujimoto, and Richard M Weath-
erly. The department of defense high level architecture. In
Proceedings of the 29th conference on Winter simulation,
pages 142–149. IEEE Computer Society, 1997.

Dassault Systems. Fmpy, 2017. URL https://github.
com/CATIA-Systems/FMPy. (Date accessed 23-June-
2018).

Erik Durling, Elias Palmkvist, and Maria Henningsson. Fmi and
ip protection of models: A survey of use cases and support in
the standard. pages 329–335, 07 2017.

Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe
Tavella, Jean-Philippe Lam-Yee-Mui, and Gilles Plessis.
Fmi-based distributed multi-simulation with daccosim. In

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

DOI Proceedings of the 13th International Modelica Conference 85
10.3384/ecp1915779 March 4-6, 2019, Regensburg, Germany

Proceedings of the Symposium on Theory of Modeling & Sim-
ulation: DEVS Integrative M&S Symposium, pages 39–46.
Society for Computer Simulation International, 2015.

Alfredo Garro and Alberto Falcone. On the integration of hla
and fmi for supporting interoperability and reusability in dis-
tributed simulation. In Proceedings of the Symposium on The-
ory of Modeling & Simulation: DEVS Integrative M&S Sym-
posium, pages 9–16. Society for Computer Simulation Inter-
national, 2015.

Vahid Hassani, Martin Rindarøy, Lars T Kyllingstad, Jørgen B
Nielsen, Severin Simon Sadjina, Stian Skjong, Dariusz Fathi,
Trond Johnsen, Vilmar Æsøy, and Eilif Pedersen. Virtual pro-
totyping of maritime systems and operations. In ASME 2016
35th International Conference on Ocean, Offshore and Arctic
Engineering, pages V007T06A018–V007T06A018. Ameri-
can Society of Mechanical Engineers, 2016.

Lars Ivar Hatledal. Fmi4cpp, 2018. URL https://github.
com/SFI-Mechatronics/FMI4cpp. (Date accessed
16-November-2018).

Lars Ivar Hatledal, Hans Georg Schaathun, and Houxiang
Zhang. A software architecture for simulation and visualisa-
tion based on the functional mock-up interface and web tech-
nologies. In Proceedings of The 57th Conference on Simula-
tion and Modelling (SIMS 56): October, 7-9, 2015, Linköping
University, Sweden. Linköping University Electronic Press,
Linköpings universitet, 2015.

Lars Ivar Hatledal, Houxiang Zhang, Arne Styve, and Geir Hov-
land. Fmi4j: A software package for working with func-
tional mock-up units on the java virtual machine. In Proceed-
ings of The 59th Conference on Simulation and Modelling
(SIMS 59), 26-28 September 2018, Oslo Metropolitan Uni-
versity, Norway, number 153, pages 37–42. Linköping Uni-
versity Electronic Press, 2018.

JModelica. Fmi library, 2017. URL http://www.
jmodelica.org/FMILibrary. (Date accessed 09-
December-2017).

Jochen Köhler, Hans-Martin Heinkel, Pierre Mai, Jürgen
Krasser, Markus Deppe, and Mikio Nagasawa. Modelica-
association-project "system structure and parameterization"–
early insights. In The First Japanese Modelica Confer-
ences, May 23-24, Tokyo, Japan, number 124, pages 35–42.
Linköping University Electronic Press, 2016.

Martin Krammer, Martin Benedikt, Torsten Blochwitz, Khaled
Alekeish, Nicolas Amringer, Christian Kater, Stefan Materne,
Roberto Ruvalcaba, Klaus Schuch, Josef Zehetner, et al. The
distributed co-simulation protocol for the integration of real-
time systems and simulation environments. In Proceedings
of the 50th Computer Simulation Conference, page 1. Society
for Computer Simulation International, 2018.

Claude Lacoursière and Tomas Härdin. Fmi go! a simula-
tion runtime environment with a client server architecture
over multiple protocols. In Proceedings of the 12th Interna-
tional Modelica Conference, Prague, Czech Republic, May
15-17, 2017, number 132, pages 653–662. Linköping Uni-
versity Electronic Press, 2017.

QTronic. Fmu sdk, 2014. URL http://www.qtronic.
de/de/fmusdk.html. (Date accessed 23-June-2018).

Severin Sadjina, Lars T Kyllingstad, Martin Rindarøy, Stian
Skjong, Vilmar Æsøy, Dariusz Eirik Fathi, Vahid Hassani,
Trond Johnsen, Jørgen Bremnes Nielsen, and Eilif Peder-
sen. Distributed co-simulation of maritime systems and oper-
ations. arXiv preprint arXiv:1701.00997, 2017.

Edmund Widl, Wolfgang Müller, Atiyah Elsheikh, Matthias
Hörtenhuber, and Peter Palensky. The fmi++ library: A
high-level utility package for fmi for model exchange. In
Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013 Workshop on, pages 1–6. IEEE, 2013.

FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units

86 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915779

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 87
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

Standardized Integration of Real-Time and Non-Real-Time Systems: The
Distributed Co-Simulation Protocol
Krammer, Martin and Schuch, Klaus and Kater, Christian and Alekeish, Khaled and Blochwitz, Torsten and
Materne, Stefan and Soppa, Andreas and Benedikt, Martin

87

Standardized Integration of Real-Time and
Non-Real-Time Systems: The Distributed Co-Simulation

Protocol

Martin Krammer1 Klaus Schuch2 Christian Kater3 Khaled Alekeish4 Torsten Blochwitz4

Stefan Materne5 Andreas Soppa6 Martin Benedikt1

1VIRTUAL VEHICLE Research Center, Austria, {martin.krammer,martin.benedikt}@v2c2.at
2AVL List GmbH, Austria, klaus.schuch@avl.com

3Leibniz Universität Hannover, Germany, kater@sim.uni-hannover.de
4ESI-ITI GmbH, Germany, {torsten.blochwitz,khaled.alekeish}@esi-group.com

5TWT GmbH, Germany, stefan.materne@twt-gmbh.de
6Volkswagen AG, Germany, andreas.soppa@volkswagen.de

Abstract
Co-simulation techniques have evolved significantly
over the last 10 years. System simulation and
hardware-in-the-loop testing are used to develop com-
plex products in many industrial sectors. The Func-
tional Mock-Up Interface (FMI) represents a stan-
dardized solution for integration of simulation mod-
els, tools and solvers. In practice the integration and
coupling of heterogeneous systems still require enor-
mous efforts. Until now no standardized interface or
protocol specification is available, which allows the
interaction of real-time and non-real-time systems of
different vendors. This paper presents selected tech-
nical aspects of the novel Distributed Co-simulation
Protocol (DCP) and highlights primary application
possibilities. The DCP consists of a data model,
a finite state machine, and a communication proto-
col including a set of protocol data units. It sup-
ports a master-slave architecture for simulation setup
and control. The DCP was developed in context of
the ACOSAR project and was subsequently adopted
by Modelica Association as a Modelica Association
Project (MAP). It may be used in numerous indus-
trial and scientific applications. The standardization
of the DCP allows for a modular and interoperable de-
velopment between system providers and integrators.
In the end, this will lead to more efficient product
development and testing.
Keywords: DCP, co-simulation, real-time, integra-
tion, standard

1 Introduction
Modeling and simulation represent key methods for
successful development of cyber-physical systems.
With the introduction of co-simulation methodolo-
gies, holistic cross-domain or system simulations be-
came possible. This enabled exchange and integration
of simulation models, tools, and solvers from different

sources. The automotive industry is characterized by
a multi-tiered organization. A deep hierarchy of sup-
pliers performs distributed development and integra-
tion of automotive components, parts, and systems,
that in the end are manufactured to complete vehi-
cles. Depending on the stage of development, simu-
lation models or real prototypes are available. The
advantage of simulation models is that they can be
tested in terms of software. Software tests are compa-
rably cheap. However, they typically do not consider
timing aspects or uncertainties of measured quanti-
ties. On the other hand, prototypes are advantageous
when it comes to product validation. A prototype
shows real-world behaviour and interacts with the en-
vironment. The disadvantages are that prototypes
are usually very expensive, and safety critical or rare
situations are difficult to test. For these reasons it
seems advantageous to combine simulation and real-
world prototype based testing approaches. For cer-
tain use cases this is considered as a possible solution
to cope with the arising complexity, due to the high
number of different scenarios and situations. This es-
pecially includes the field of automated driving (Doms
et al., 2018). The European Union’s automotive in-
vestment in research and development has increased
to 53.8 billion Euro annually (European Automobile
Manufacturers Association, 2018). Testing efficiency
is key to successful product development. Interop-
erability of simulation tools and test infrastructure
contributes to testing efficiency. Therefore the use of
standards is essential.

The DCP (Distributed Co-Simulation Protocol)
was developed in the ACOSAR project (Krammer
et al., 2016). ACOSAR stands for "Advanced Co-
Simulation Open System Architecture". ACOSAR
was an ITEA 31 (Information Technology for Euro-
pean Advancement) project. Three original equip-

1http://www.itea3.org

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

88 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

© VIRTUAL VEHICLEAugust 2014 / Benedikt ACOSAR - Project proposal 1

Co-simulation Environment

Simulation

Environment
FMU

Drivetrain

Simulation

Environment

Li-Ion

Battery
Cooling

FMU

PC or Computing Cluster

(Co-) Simulation Environment

Transport protocol

Distributed co-simulation
protocol

(e.g. engine
testbench)

Communication Systems

Real-time
system

Wired
communication

(e.g. CAN)

Wireless
communication
(e.g. BlueTooth®)

Interprocess
communication

(e.g. shared memory)

Proprietary Interface Functional Mockup Interface (FMI) Distributed Co-Simulation Protocol

Figure 1. DCP concept.

ment manufacturers (OEM), 9 companies from the
automotive supply chain, including simulation tool
vendors, system and component providers, as well
as 4 partners from research and academia cooper-
ated. Their main goals were (1) the specification
and demonstration of the DCP, and (2) preparation
of standardization of the DCP with a recognized stan-
dardization body in order to promote it as the next
co-simulation standard. Figure 1 shows an overview
of the DCP’s concept.

2 Related Work
The Functional Mock-up Interface (FMI) is intro-
duced in (Blochwitz et al., 2011). The FMI was pro-
posed to solve the need for interoperability between
models and solvers. It was developed in the MOD-
ELISAR project, starting in 2008. The FMI specifica-
tion is standardized as a Modelica Association Project
(MAP). Its current version is 2.0 and was released
in 2014. The FMI specification defines an interface
for model exchange and co-simulation. Today more
than 100 software tools support the FMI2. For dis-
tributed simulation environments, network commu-
nication technologies are frequently used in practice.
However, such a "communication layer is not part of
the FMI standard" (Modelisar Consortium and Mod-
elica Association Project "FMI", 2014, p.93).

The Distributed Co-Simulation Protocol (DCP) is
introduced in (Krammer et al., 2018). Its five main
design ideas are highlighted; the improvement of in-
teroperability between systems from different ven-
dors, the integration of distributed real-time systems,
the compatibility to a broad range of computing plat-
forms, the support of multiple transport protocols,
and development efficiency. The paper also intro-
duces a typical architecture description of a DCP
slave. It also describes the DCP’s three different oper-
ating modes, namely hard real-time (HRT), soft real-
time (SRT), and non real-time (NRT). They describe
a DCP slave’s relationship to absolute time. In gen-

2http://fmi-standard.org/tools/

eral, deadlines must be kept for HRT and SRT op-
erating modes. Simulation time must or should be
synchronous to absolute time. The NRT operating
mode can be used for distributed, computational co-
simulation. In NRT operating mode, simulation time
is independent from absolute time. The DCP speci-
fies a state machine that governs the behaviour of a
DCP slave. It defines five phases of a simulation cy-
cle. Furthermore, the paper describes the main con-
cepts of the communication protocol, including the
design of protocol data units (PDU), the request and
response mechanism, as well as the mechanism for
configuration and exchange of input and output data.
An example for UDP as a transport protocol is given,
explaining the mechanism in detail.

In (Krammer and Benedikt, 2018) an algorithm for
efficient generation of configurations for exchange of
input and output data is given. The problem of find-
ing such a configuration is an instance of the bin pack-
ing problem. In order to run such an algorithm, a
co-simulation scenario description is required. The
paper suggests a solution based on an XML schema
description.

3 The Distributed Co-Simulation
Protocol

The DCP is designed as a novel communication pro-
tocol on application level. It is intended for configura-
tion and data exchange in co-simulation applications.
The following sections provide details on features and
technical novelties. Furthermore, the relationship to
the FMI standard is highlighted.

3.1 DCP Feature Overview
3.1.1 Communication Architecture
The DCP implements the master-slave principle. It
enables a DCP master to organize and configure its
DCP slaves, so that a specific co-simulation scenario
can be realized. A DCP slave represents a single sub-
system of the co-simulation scenario. It can be a
hardware-in-the-loop (HiL) system, a test bench, a

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 89
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

simulation tool, or similar system.

The DCP is a communication protocol intended for
co-simulation configuration and data exchange. It is
defined as a communication protocol that is indepen-
dent of the underlying transport protocol. Classifica-
tion of the DCP according to the Open Systems Inter-
connection (OSI) model (Zimmermann, 1980; Inter-
national Telecommunication Union, 1994) is ambigu-
ous. Its main properties fulfill major criteria for the
application layer, e.g. access for application processes
to the OSI environment. This is the highest layer
defined in the OSI model. The DCP also features
properties of the presentation layer, e.g. the design
of DCP protocol data units (PDU), their associated
fields and corresponding data types. The DCP imple-
ments a registration scheme, that allows the setup and
simulation of co-simulation scenarios. This can be in-
terpreted as a session. For the transport layer, the
DCP defines mechanisms like the PDU sequence ID.
Despite the fact that some transport protocols target
properties like reliability (e.g. transmission control
protocol, TCP), the DCP provides basic mechanisms
to achieve similar behavior when a transport protocol
is used that does not support this property (e.g. user
datagram protocol, UDP).
3.1.2 State Machine
The DCP protocol is operated by a discrete state ma-
chine. The main design goal of this state machine
is to ensure safe and reliable operation of real-time
and non-real-time systems. In total, the DCP state
machine consists of a set of 19 states grouped in 6
superstates. The entry point to the state machine
is reached when the DCP software implementation
is loaded to the DCP slave, the latter also indicates
that the slave becomes available for registration by
the master. A simulation cycle represents one com-
plete pass through the DCP state machine.

The state machine enables simulation cycles having
6 different phases. In phase 1, a DCP slave is regis-
tered with a master which takes ownership of its reg-
istered slave. The later DCP slave is then exclusively
controlled by its master. In phase 2, the DCP mas-
ter configures its DCP slaves by generating a valid
configuration scenario based on the DCP slave de-
scription of its slaves. Also for connection oriented
transport protocols, a connection is established dur-
ing the current phase. In phase 3, an iterative ini-
tialization process is carried out, the outcome of this
process is establishing a consistent initial state over
interconnected slaves. (see 3.2.2 for more details). In
phase 4, The DCP slave in real-time operating modes
is running and inputs/outputs are exchanged accord-
ing to the configurations. Moreover, simulation time
is mapped to absolute time. For non-real-time oper-
ating mode, simulation time does not progress at this
phase. See section 3.2.3 for more details. Phase 5 ap-
plies only to non-real-time systems and each slave at

this phase computes exactly one communication step
and output is communicated to other slaves. Also the
virtual simulation time is incremented by the number
of specified steps. Phase 6 is intended to stop the
simulation in a safe way, a stop of simulation can be
triggered either by the master or by the slave itself.
3.1.3 Communication Protocol
To facilitate the communication between the master
and slaves, DCP introduces the concept of Protocol
Data Units (PDUs) that can be exchanged between
the master and slaves. DCP addresses different types
of PDUs which are used for different purposes and
they serve distinct functionalities. So according to the
functionalities of the PDUs, they are categorized in
different families. DCP defines three top PDUs fam-
ilies named as Control, Notification (NTF) and Data
(DAT) PDUs. The Control PDUs are further divided
into Request and Response (RSP) families. Note that
the Request PDUs are only sent by the master to its
slaves and they consist of Configuration (CFG), State
Change (STC) and Information (INF) requests. A
slave upon receiving a request from its master has to
acknowledge by sending a RSP PDU. DCP slaves can
use NTF PDUs to inform the DCP master about cer-
tain events, for example, when the slave changes its
state. Data PDUs can be used to transmit inputs and
outputs between DCP slaves (slave-to-slave commu-
nication) and between the DCP master and its DCP
slaves. Parameters (fixed or tunable), which are also
packed in Data PDUs, can only be transmitted by the
DCP master.

The Control PDUs are exchanged according to the
request-response pattern. The latter pattern allows
the DCP master to send specific requests to its slaves,
it also enables each slave to inform its DCP master
about the result of a requested action. Considering
that DCP might be used on top of an unreliable trans-
port protocol, packets loss might occur during the ex-
change of Control PDUs. Handling the latter situa-
tion can be determined by the DCP master and DCP
slaves. For example, the DCP master might decide to
initiate the retransmission of a Request PDU after a
certain period of time.
3.1.4 DCP Data Exchange
DCP facilitates the exchange of input/output data
between slaves. It enables a slave either to send
data to other slaves directly or to send data to the
master which passes this data on to all destination
slaves. While the former communication way saves
time and resources, the latter is intended for more
sophisticated co-simulation configurations including
extrapolation techniques or step-size control. A co-
simulation DCP slaves configuration consists of a
set of their DCP slave descriptions, the connections
between their inputs and outputs as well as some
other settings chosen by the master. This configu-

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

90 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

ration is rolled out to the slaves during the config-
uration phase. A slave that needs to send output
data, receives a CFG_output PDU from the master,
for each output data. The same applies to input
data, the slave receives a CFG_input PDU for each
input data it is going to receive. In addition to the
two mentioned types of Control PDUs, the master
also sends CFG_target_network_information and
CFG_source_network_information PDUs. The lat-
ter two types of Control PDUs enable slaves to know
where to send or from where to receive data, respec-
tively, and their contents depend on the communica-
tion medium.

In addition to the input and output data, DCP also
enables the master to send data for the parameters
of its slaves and only the master can send this kind
of data. Parameters can be either fixed or tunable,
both types can be set during the configuration phase
using the CFG_parameter PDU. While fixed param-
eters can be set only using the latter PDU, tunable
ones can be set using the DAT_parameter PDU dur-
ing any of the states that allow DAT_input_output
PDUs to be sent. In the same way like the other Data
PDUs, DAT_parameter PDUs are sent according to
the stored configuration information which is received
using the CFG_tunable_parameter PDUs during the
configuration phase.

3.2 Technical Novelties
3.2.1 Integration Process

The DCP specification document describes the de-
sign of a DCP slave only. A DCP master is required
to control a co-simulation scenario, which includes at
least one DCP slave. In order to design and set up
such a scenario, the DCP defines a non-normative de-
fault integration methodology. It defines the roles of
a DCP slave provider, and a DCP integrator. The
DCP integrator uses the DCP slave descriptions and
a DCP master for configuration and control of the
scenario.

The DCP slave description (DCPX) is a XML (Ex-
tensible Markup Language) file which describes one
single DCP slave. It contains all static informa-
tion related to one specific DCP slave. Its struc-
ture is defined by a normative XML XSD (XML
Schema Definition) file. The top level structure of
this schema definition file is shown in Figure 2. The
DCP slave provider must provide an accompanying
DCP slave description together with a DCP slave.
The DCP master can attain all required information
about available slaves by accessing their description
files.

According to the specification, the DCP slave
description must be stored in a single file named
dcpSlaveDescription.dcpx, which in turn must be
placed in a DCP file. The DCP file is a zip encodedC:\work\spaces\Modelica\dcp-design\Specification\dcpx\dcpSlaveDescription.xsd 20.11.2018 08:28:35

Page 1Registered to Martin Krammer (Virtual Vehicle)

dcpSlaveDescription

attributes

OpMode

UnitDefinitions

TypeDefinitions

VendorAnnotations

TimeRes

Heartbeat

TransportProtocols

CapabilityFlags

Variables

1 ..

dcpVariable

Variable

attributes

Input

Output

Parameter

StructuralParameter

Annotations

assertions

Log

assertions

Figure 2. DCP slave description schema definition.

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 91
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

file (ISO/IEC JTC 1/SC 34, 2015) having the exten-
sion .dcp. Its internal structure is normative and
designed to hold multiple DCPX files which are com-
pliant to different DCP version numbers. This is one
example of several design provisions taken into ac-
count to provide a future-proof DCP specification.

The set of DCP slave description schema files is
normative. It does not only define the required struc-
tures of elements and attributes, but also supplemen-
tary assertions and constraints. Assertions and con-
straints are highly efficient for expressing logical rela-
tionships between elements and attributes.

Assertions are expressed in the xs:assert tag us-
ing the XML Path Language (XPath). An XPath
expression addresses parts of an XML document in
terms of a tree structure (Document Object Model,
DOM). One location step in this tree consists of axis,
node-test, and an optional predicate. An example for
such an assertion is shown in Listing 1. It links the
capability flag canMonitorHeartbeat to the defined
XML child element Heartbeat. This prevents e.g. a
set capability flag while the associated configuration
information contained in the child element is missing.
Assertions are a feature of XSD version 1.1. How-
ever, an XSL transformation (XSLT) file is specified,
transforming the provided XSD version 1.1 schema
definition file into a XSD version 1.0 schema defini-
tion file.

Furthermore, xs:unique, xs:key and xs:keyref
tags are used to express constraints. Typical exam-
ples of application include the verification of unique-
ness of names and the verification of cross-referenced
key values.

In context of the DCP specification assertions and
constraints provide strong formalisms which can be
used for automated DCPX validation. This has
shown to be advantageous in comparison to informal
textual rules given in the specification document.

<xs:assert test="
((./ CapabilityFlags / @canMonitorHeartbeat

eq true ()) and boolean (./ Heartbeat))
or

((./ CapabilityFlags / @canMonitorHeartbeat
eq false ()) and boolean (./ Heartbeat)
eq false ())

"/>

Listing 1. Assertion for capability flag and XML child
element, as defined in the DCP slave description schema
file.

3.2.2 Simulation Initialization
The DCP supports initialization calculations to
achieve a consistent initial condition of connected
DCP slaves. The DCP description file contains in-
formation about the DCP slave’s dependencies. A
dependency describes if an output is controllable by

an input or parameter. Dependency information can
be specified for the Initialization and Run superstates
separately. The first is applicable prior to simulation,
whereas the latter is applicable during simulation.
Additionally, a DCP slave can mark outputs to be
valid only in Initialization superstate. Such outputs
are called initial outputs.

In the initialization phase simulation time does not
progress. Hence, the master may roll out a configura-
tion where the master receives all outputs and sends
all inputs to the DCP slaves. The inputs sent by
the master to the DCP slaves are not necessarily the
outputs of other DCP slaves, a sophisticated master
could send values chosen by a numerical solver in-
stead (to solve algebraic loops). Algebraic loops in
the context of FMI are explained in (Broman et al.,
2013).

Connected DCP slaves may form pseudo algebraic
loops. Such pseudo algebraic loops can be detected
by exploiting the dependency information provided
by the individual DCP slaves.
3.2.3 Simulation Synchronization
The master can observe the whole system to check if a
global stable state was reached. The master informs
the slaves afterwards to start the actual simulation
test run. The achieved initial consistent configura-
tion might still not correlate with reality. An output
of a DCP slave could represent a physical quantity
which typically fluctuates within certain boundaries.
To minimize this difference and to circumvent this is-
sue separate states were introduced. Each slave has
the possibility to indicate that a local stable state has
been reached, after fade out of transient oscillations.
The master may observe the whole scenario to check
if a global stable state was reached. If this is the case,
the master may start the actual simulation run.
3.2.4 Connection-oriented Transport Proto-

cols
The DCP supports connection-oriented and packet-
oriented transport protocols.

To support connection-oriented protocols, two ma-
jor mechanism were introduced to the DCP.

First of all, new states were introduced to distin-
guish between opening an endpoint and opening a
connection. This is necessary to enable coordinated
slave-to-slave communication. Without this distinc-
tion it would not be possible to detect if a slave has
successfully opened its endpoints, ready to accept
connections. Using this mechanism the master is able
to instruct all slaves to open all endpoints first. After
that, the slaves may establish their connections.

Second, the length of each PDU is sent on the
stream, ahead of the actual PDU of the connection-
oriented transport protocol. This eases implementa-
tion of slaves, because a slave is free to decide how
many bytes he has to receive, independent from a

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

92 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

Simulation Scenario

<< calculate >>

Slave 1 Slave 2

DCP over CAN
Memory

Scenario Configuration
XML File

KCD
XML File

Slave 1

DCP
Implementation *

CAN HW*

CAN Bus

Legend Slave 2

DCP
Implementation *

CAN HW*

Action before simulation cycle starts

<< user input >>
<< generate >>

<< distribute>>

 STC_register

PDU send after distribution of KCD &
Scenario Configuration

* Not standardized. Architecture of an slave
implementation can differ between vendors.

Master Tool

Figure 3. Possible scenario of DCP over CAN

slaves’ configuration. In addition to that, PDU length
verification also became possible.

Without the length ahead of the PDU a slave can
only guess the length, based on its own assumptions.
Misbehavior by other participants in terms of PDU
length would not be detectable.
3.2.5 Non-native Transport Protocols
The DCP distinguishes between native and non-
native transport protocols. Native DCP means that
the mapping of PDUs to the transport protocol pre-
serves the bit sequence.

If a transport protocol cannot fulfill this condition
it is called a non-native transport protocol. One ex-
ample of such a non-native transport protocol is the
CAN bus communication system. Due to limitations
of CAN, e. g. the CAN payload is limited to 8 bytes,
not all Control PDUs can be send via CAN. For this
reason the configuration of a slave will not be com-
municated by CAN.

To support the exchange of configuration PDUs
for CAN an XML model is specified. The informa-
tion contained in this model has to be generated by
a master tool. It must be transmitted to the slave as
a static configuration before simulation start. This
model contains a K-matrix and the scenario config-
uration. The K-matrix contains all elements to de-
scribe the messages and signals of the CAN bus and
the participation of the bus members to the messages.
The scenario configuration contains all elements to
describe the co-simulation scenario. When using a
native DCP transport protocol instead, this informa-
tion would be distributed to each DCP slave using
configuration PDUs. In addition, the co-simulation
scenario contains various other information, like DCP
slave names, DCP slave identifiers, and their UUIDs
(universally unique identifiers). The UUID is used
to match information from these elements to DCP
slaves. However, the way how information from the
XML model is transferred to the DCP slaves is out of

scope of DCP.
Figure 3 shows a possible scenario how DCP over

CAN may be used in practice. A user defines the
desired co-simulation scenario in master tool, sup-
porting DCP over CAN. Based on this scenario the
master calculates the K-Matrix and the scenario con-
figuration in the DCP over CAN model and stores
these information in different files. For the K-matrix
e.g. the open source file format KCD was chosen.
Any other file format describing CAN communica-
tions, e.g. DBC from Vector, would also be possible.
After slaves are started, the CAN hardware is config-
ured using the KCD file. The DCP implementation
is configured using the scenario information. As a re-
sult, all slaves are waiting in state alive. The master
tool sends out the register PDUs using the CAN bus
and starts the simulation cycle.

3.2.6 Complex data types
New sensor technologies are currently evolving, for
example camera, lidar or radar systems for the au-
tomotive market. In the automotive domain, these
sensor types are used to enable advanced driver as-
sistance systems (ADAS), to pursue the goal of auto-
mated driving. Test and operation of these systems
rely on transmission of multidimensional or binary
data types.

The DCP defines a binary data type to transmit ar-
bitrary information. The binary representation con-
sists of a 32 bit unsigned integer value that specifies
the length in bytes of the actual data, followed by the
binary data itself. The data is transmitted as given
without any change in bit or byte order. Thus, the
maximum length of data is limited to 232−1 bytes. A
DCP slave can limit this maximum length per vari-
able, by specification of a maximum length in the
DCP slave description. It is also possible to spec-
ify a MIME type compliant to RFC 2045 (Freed and
Borenstein, 1996). The DCP integrator has to ensure
compatibility between outputs and connected inputs

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 93
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

of binary data type, in the sense of maximum length
and MIME type.

The DCP offers the possibility to define variables as
arrays. An array variable is a data structure consist-
ing of a collection of variables of the same type, each
identified by an array index. A variable may have a
constant number of dimensions. Each dimension has
a size, defined by a constant or a structural parame-
ter. By using a structural parameter it is possible to
change the size of a dimension at any time.

3.2.7 Logging

The DCP supports the transmission of arbitrary log
data from a DCP slave to its master. For that, it de-
fines two different approaches, namely log-on-request
and log-on-notification.

For log-on-request, log messages are stored by the
DCP slave. They are picked up by the master on re-
quest and at any time. Thereby the master can avoid
a high workload caused by log messages in the real-
time-critical superstate Run. For log-on-notification,
log messages are not stored within the DCP slave.
Instead, they are transmitted to the master immedi-
ately. This mechanism supports devices with limited
memory capacities, like micro-controllers.

The exact format of a log message is defined in the
DCP slave description by using log templates. A log
template consists of a category, level and a message.
The category is defined in the DCP slave description.
The possible values for the level are defined by the
DCP. The category and the level can be used by the
master to configure the logging of the DCP slave in
a group wise manner. It is not necessary to configure
every single log template individually.

The message of a log template defines the actual log
string which is displayed to the user. In this string
placeholders can be set, which define the values sent
by a DCP slave to the master with the log message
as seen in Figure 4. The full log message is then gen-
erated by the master, by replacing the placeholders
with the received values from the slave.

3.3 Interaction with FMI
Right from the beginning of the ACOSAR project
existing solutions for distributed co-simulation and
system integration were carefully surveyed (Lichten-
stein et al., 2016). Today, the FMI represents one
of the most frequently used standards in the field of
simulation. It is applied in many domains, including
automotive, aerospace, maritime, or power grid do-
mains. It is implemented in more than 100 commer-
cial and open source tools. The ACOSAR consortium
members recognized the feature set of FMI which rep-
resents the current state-of-the-art for co-simulation.
As a consequence, the consortium proposed the adop-
tion and extension of available concepts. The most
important ones are described below.

The FMI follows a master-slave principle. In FMI
for co-simulation different simulators can be coupled,
if they are able to communicate data during simu-
lation at certain time points. The master algorithm
must handle data exchange between functional mock-
up units (FMU) (Bastian et al., 2011). For exam-
ple, it connects the output of an FMU to the in-
put of another FMU. A co-simulation scenario rep-
resents a collection of interconnected FMUs. This
introduces numerous challenges to the design of a
master. The sequence of FMU calculations, or in-
terpolation and extrapolation algorithms for FMUs
operating with different step sizes represent some ex-
amples. A DCP master also connects the outputs
of DCP slaves with the inputs of DCP slaves. In
order to do so, a DCP master must be able to gen-
erate and roll out a configuration based on the in-
tended simulation scenario (Krammer and Benedikt,
2018). In contrast to the FMI, the DCP also enables
direct slave-to-slave communication. As an immedi-
ate consequence, dedicated coupling algorithms, like
NEPCE (Benedikt et al., 2013) may only be applied
if communication between DCP slaves is routed via
the master.

The master-slave principle also follows economic
goals. Slave providers agree on a standard, but com-

Slave

Log Template
Id = 1

Category = Safety
Level = Error

Msg = "Component %uint8 is overheating. Temp. at %float32 °C"

<< send >>

NTF_Log
time = 03.10.2019 10:32

log_template_id = 1
log_arg_val = 7, 120.3

Master

Display

Time Level Category Message
03.10.2019 10:32 Error Safety Component 7 is overheating. Temp. at 120.3 °C.
...

Legend

Action before
simulation cycle starts

Action during
simulation cycle

<< read from dcp slave description >>

Figure 4. Example of log-on-notification mechanism.

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

94 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

pete in slave implementation. This allows an inte-
grator to choose from best-in-class solutions. From a
slave provider’s perspective the market entrance bar-
rier is lowered, since he is able to offer accessible so-
lutions. Furthermore, the master algorithm, which is
not standardized neither for FMI nor for DCP, may
enable a stronger position on the market.

The FMI is operated using a state machine. Since
state machines are one major method for the design
and operation of communication protocols, the DCP
was also defined on the basis of a state machine. The
specification defines which PDUs can be sent and re-
ceived in each state, the possible transitions between
states, and the possible behaviour in each state. The
DCP defines an Initialization superstate, which
corresponds to the Initialization Mode of FMI.

The integration process of FMUs is supported by
a standardized XML schema definition. It is used to
generate one modelDescription.xml file per FMU. It
contains the necessary information for instantiation
and use of an FMU. It must be placed in the root
directory inside an FMU, to allow an FMI master
to read this information. Furthermore, a FMU may
contain source code and/or compiled libraries. Due
to the nature of DCP slaves, the inclusion of source
code and/or compiled files within a DCP slave file is
currently not explicitly specified.

4 Use Case

4.1 Overview

Typical use cases for the DCP include vehicle test
benches, where real and virtual components are inte-
grated into the same simulation scenario. This allows
the execution of test cases that would not be possible
in reality, due to cost, availability of components, or
safety reasons. In this section we present a use case
that is based on an engine testbed (PUMA from AVL
List GmbH3) that interacts with a simulated vehicle
and a simulated driver. A schematic overview of this
use case is shown in Figure 5. The vehicle and the
driver are simulated within one DCP slave ("Vehi-
cle"), and the testbed available as another DCP slave
("Engine"). This use case is simulated as an SRT sce-
nario. The connections of output variable to input
variables between DCP slaves are shown as solid ar-
rows in Figure 6.

4.2 Dependency Structures

The outputs of the DCP slave "Vehicle" are ytorque and
yalpha; the output of the DCP slave "Engine" is yspeed.
The two DCP slaves are connected in the following

3http://www.avl.com

Engine Testbed PUMA

Engine

ECU

Vehicle and driver simulation

Speed

Torque

Alpha

DCP Slave “Vehicle“ DCP Slave “Engine“

Vehicle

Driver

Figure 5. Vehicle-engine co-simulation use case.

way:

Vehicle.ytorque→ Engine.utorque

Vehicle.yalpha→ Engine.ualpha

Engine.yspeed→Vehicle.uspeed

To be able to start from a non-trivial start condition,
both slaves declare parameters (Vehicle: pstart

velocity,
pstart

gear , pstart
alpha; Engine: pstart

speed) that can be set in the
Initialization superstate (see Section 3.2.2). In
the Initialization superstate, the DCP slave "Ve-
hicle" calculates the initial output as follows:

yinit
speed := fspeed(pstart

velocity,pstart
gear ,pVehicle)

and the DCP slave "Engine" provides the initial out-
put as follows:

yinit
alpha := falpha(utorque,p

start
speed,pEngine)

pVehicle and pEngine are the vectors that contain all
not explicitly mentioned parameters of the Vehicle
and the Engine, respectively.

These initial outputs are used to set parameters
(Engine.pstart

speed, Vehicle.pstart
alpha) of the opposite DCP

slave:

Vehicle.yinit
speed→ Engine.pstart

speed

Engine.yinit
alpha→Vehicle.pstart

alpha

If the master uses an output value of one DCP-slave to
set a parameter of another DCP-slave, we call this a
parameters connection. Such parameter connections
are shown in Figure 6 as dotted arrows.

The dependency of outputs on other variables may
be different in the Initialization superstate and
in the Run superstate. In the Initialization su-
perstate, the outputs of the DCP slave "Vehicle" are
calculated according to:

ytorque := ftorque(pstart
velocity,pstart

gear ,pEngine)
yalpha := pstart

alpha

The output yspeed of the DCP slave "Engine" in
the Initialization superstate is determined by the
parameter pstart

speed, i.e.:

yspeed := pstart
speed

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

DOI Proceedings of the 13th International Modelica Conference 95
10.3384/ecp1915787 March 4-6, 2019, Regensburg, Germany

Engine testbed PUMAVehicle and driver simulation

yspeed

ytorque

yalpha

yalpha;init

palpha;start

yspeed;init pspeed;start

DCP Slave “Vehicle“ DCP Slave “Engine“

ualpha

utorque

uspeed

pgear;start

pvelocity;start

Figure 6. Vehicle-engine co-simulation scenario including dependency structure information during initialization.

4.3 Analysis
DCP slaves can provide information about the depen-
dency structure of their outputs in the DCP slave de-
scription file (see Section 3.2.1). A DCP master may
use this information to check if algebraic loops must
be solved to achieve a consistent initial configuration.
A graph may be used for such a check, where the
nodes are variables of the DCP slaves. Each connec-
tion, parameter connection or dependency represents
an edge of the graph. If the graph is acyclic, no al-
gebraic loop needs to be solved. Note that without a
given dependency structure, the DCP master would
have to assume that each output depends on all in-
puts and parameters. The dependencies of outputs
on inputs and parameters in the Initialization su-
perstate of the described DCP slaves are shown in
Figure 6. A dashed arrow from a variable x (an input
or a parameter) to an output y indicates a depen-
dency of y on x. It can be seen immediately that the
graph does not contain any loops. Hence, a simple
sequence of setting inputs/parameters after receiving
output values is sufficient to achieve a consistent ini-
tial configuration. The DCP slaves state machines
can subsequently be transitioned to superstate Run in
order to perform synchronization (see Section 3.2.3)
followed by the actual test case.

5 Standardized Solution
The Modelica Association4 is a non-profit, non-
governmental organization with members from Eu-
rope, North America, and Asia. Since 1996, its sim-
ulation experts have been working to develop the
open standard Modelica and the open source Mod-
elica Standard Library. Today it aims at coordinated
standardization, development of software technology,
and corresponding methods in the fields of cyber-
physical systems and systems engineering. Currently
the Modelica Association operates five Modelica As-
sociation Projects (MAP), where the DCP represents

4http://www.modelica.org

the most recent addition to the portfolio. The Mod-
elica Association requires that all MAP results must
be made available under an open source license.

The DCP was accepted as a MAP in 2018. The
DCP specification document is initially published un-
der a Creative Commons Attribution Share-Alike 4.0
license5. The DCP slave description schema files, the
DCP C++ reference implementation, and other sup-
porting materials are initially published under a BSD
3-clause license6.

MAP DCP follows its own rules. They are nego-
tiated between its members and must be acknowl-
edged by the Modelica Association. Contributions to
MAP DCP are welcome. Visitors may contribute to
MAP DCP in an informal way. Advisory Commit-
tee members actively support the design of the DCP.
Its members must attend project meetings and sign
a contributor’s license agreement. They have access
to development infrastructure, including mailing lists
and file repositories. Steering Committee members
have voting rights and define the strategy, feature
roadmap, and future releases of the DCP. Further-
more, they must provide an implementation of the
DCP specification, or part of it, in a commercial or
open source tool. They should actively use DCP in in-
dustrial projects. Further information on these topics
can be found on the DCP website7.

6 Conclusion
The DCP enables integration of real-time systems and
simulation environments in a standardized way. A
stronger relationship between virtual and real worlds
demands for new methodologies in simulation and
test. Applications like automated driving, where high
numbers of real world scenarios can be simulated be-
fore tests are conducted, can significantly benefit from
the DCP.

5https://creativecommons.org/licenses/by-sa/4.0/
6https://opensource.org/licenses/BSD-3-Clause/
7http://www.dcp-standard.org

Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

96 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915787

The DCP specification version 1.0 is released by the

Modelica Association. It represents the new state-of-
the-art for co-simulation and test. The DCP is devel-
oped further by a consortium of original equipment
manufacturers (OEM), simulation tool providers and
software vendors, as well as suppliers for components
and test equipment.

Despite the fact that the DCP was developed with
other standards in mind, like the FMI, there are still
challenges ahead. The FMI compatibility can still
be improved, and the development of other software
technologies like the SSP (System Structure and Pa-
rameterization) will require additional alignment ac-
tivities in the future.

References
Jens Bastian, Christoph Clauß, Susann Wolf, and Peter

Schneider. Master for Co-Simulation Using FMI. In Pro-
ceedings of the 8th International Modelica Conference,
pages 115–120, 2011. doi:10.3384/ecp11063115.

Martin Benedikt, Daniel Watzenig, Josef Zehetner, and An-
ton Hofer. NEPCE - A nearly energy-preserving coupling
element for weak-coupled problems and co-simulations.
International Conference on Computational Methods for
Coupled Problems in Science and Engineering, pages 1–
12, 2013.

Torsten Blochwitz, Martin Otter, Martin Arnold, Con-
stanze Bausch, Christoph Clauß, Hilding Elmqvist,
Andreas Junghanns, Jakob Mauss, Manuel Monteiro,
Thomas Neidhold, Dietmar Neumerkel, Hans Olsson,
Jörg-Volker Peetz, and Susann Wolf. The functional
mockup interface for tool independent exchange of simu-
lation models. In In Proceedings of the 8th International
Modelica Conference, pages 105–114, 03 2011. ISBN 978-
91-7393-096-3. doi:10.3384/ecp11063105.

David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward a. Lee, Michael Masin, Stavros Tripakis, and
Michael Wetter. Determinate composition of FMUs
for co-simulation. In 2013 Proceedings of the In-
ternational Conference on Embedded Software, EM-
SOFT 2013, pages 1–12. Ieee, sep 2013. ISBN
9781479914432. doi:10.1109/EMSOFT.2013.6658580.
URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6658580.

Thomas Doms, Benedikt Rauch, Bernhard Schrammel,
Christoph Schwald, Edvin Spahovic, and Christian
Schwarzl. Highly Automated Driving - The new chal-
lenges for Functional Safety and Cyber Security. White
paper, TÜV Austria Holding AG and VIRTUAL VEHI-
CLE, Vienna, Austria, 2018.

European Automobile Manufacturers Association. The Au-
tomobile Industry Pocket Guide 2018/2019. Technical
report, European Automobile Manufacturers Associa-
tion, Brussels, Belgium, 2018. URL http://www.acea.
be.

Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose
Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies. RFC 2045, November 1996.
URL https://rfc-editor.org/rfc/rfc2045.txt.

International Telecommunication Union. Information tech-
nology – Open Systems Interconnection – Basic Refer-
ence Model: The basic model. ITU-T Recommendation
X.200, International Telecommunication Union, 1994.

ISO/IEC JTC 1/SC 34. Information technology - Doc-
ument Container File - Part 1: Core. Standard, In-
ternational Organization for Standardization, Geneva,
Switzerland, October 2015.

Martin Krammer and Martin Benedikt. Configuration of
slaves based on the distributed co-simulation protocol.
In 2018 IEEE 23rd International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), vol-
ume 1, pages 195–202. IEEE, 2018.

Martin Krammer, Nadja Marko, and Martin Benedikt.
Interfacing Real-Time Systems for Advanced Co-
Simulation - The ACOSAR Approach. In Cather-
ine Dubois, Francesco Parisi-Presicce, Dimitris Kolovos,
and Nicholas Matragkas, editors, STAF 2016 Doctoral
Symposium and Projects Showcase, pages 32–39, Vi-
enna, Austria, 2016. Dubois, Catherine Parisi-Presicce,
Francesco Kolovos, Dimitris Matragkas, Nicholas.

Martin Krammer, Martin Benedikt, Torsten Blochwitz,
Khaled Alekeish, Nicolas Amringer, Christian Kater,
Stefan Materne, Roberto Ruvalcaba, Klaus Schuch,
Josef Zehetner, Micha Damm-Norwig, Viktor Schreiber,
Natarajan Nagarajan, Isidro Corral, Tommy Sparber,
Serge Klein, and Jakob Andert. The distributed co-
simulation protocol for the integration of real-time sys-
tems and simulation environments. In Proceedings of
the 50th Computer Simulation Conference, SummerSim
’18, pages 1:1–1:14, San Diego, CA, USA, 2018. Soci-
ety for Computer Simulation International. URL http:
//dl.acm.org/citation.cfm?id=3275382.3275383.

Leonid Lichtenstein, Florian Ries, Michael Völker, Jos
Höll, Christian König, Josef Zehetner, Oliver Kotte,
Isidro Corral, Lars Mikelsons, Nicolas Amringer, Stef-
fen Beringer, Janek Jochheim, Stefan Walter, Corinna
Mitrohin, Natarajan Nagarajan, Torsten Blochwitz,
Desheng Fu, Timo Haid, Jean-Marie Quelin, Rene
Savelsberg, Serge Klein, Pacome Magnin, Bruno La-
cabanne, Viktor Schreiber, Martin Krammer, Nadja
Marko, Martin Benedikt, Stefan Thonhofer, Georg Stet-
tinger, Markus Tranninger, and Thies Filler. Literature
Review in the Fields of Standards, Projects, Industry,
and Science. Technical report, ACOSAR Consortium,
2016.

Modelisar Consortium and Modelica Association Project
"FMI". Functional Mock-up Interface for Model Ex-
change and Co-Simulation, Version 2.0, 2014.

Hubert Zimmermann. OSI reference model–The ISO model
of architecture for open systems interconnection. IEEE
Transactions on communications, 28(4):425–432, 1980.

DOI Proceedings of the 13th International Modelica Conference 97
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 1D: AUTOMOTIVE 1
Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses
Tobolar, Jakub and Leitner, Martin and Heckmann, Andreas

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures
Jeffs, James and McGordon, Andrew and Widanage, Widanalage Dhammik and Robinson, Simon and
Picarelli, Alessandro

Diesel Cooling System Modeling for Electrification Potential
Batteh, John and Ravi, Ashok Kumar and Pickelman, Dale

.

98 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

DOI Proceedings of the 13th International Modelica Conference 99
10.3384/ecp1915799 March 4-6, 2019, Regensburg, Germany

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses
Tobolar, Jakub and Leitner, Martin and Heckmann, Andreas

99

Anti-Roll Bar Modeling for NVH and Vehicle Dynamics Analyses

Jakub Tobolář1 Martin Leitner1 Andreas Heckmann1

1German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling,
Jakub.Tobolar@DLR.de

Abstract
The latest extension of the DLR FlexibleBodies Library
concerns the field of automotive applications, namely the
anti-roll bar. For the particular purposes of NVH and ve-
hicle dynamics, the anti-roll bar module provides two ap-
propriate levels of detail, both being based upon the beam
preprocessor. In this paper, the procedure on preparing
the models and their application for particular automotive
related analyses is presented.
Keywords: anti-roll bar, vehicle chassis, flexible body,
beam model, finite element

1 Introduction
Whenever an automotive suspension is excited in vertical
direction due to road irregularities or driving maneuvers
in an asymmetrical way, i.e. differently on the right and
the left side of the vehicle, the roll motion of the car body
is stimulated. This concerns – in common case – the com-
fort and driving experience of the car passengers. In limit
conditions’ situations, such a roll motion can influence the
road-holding forces in a way that vehicle’s driving safety
is affected significantly. Consequently, it is advantageous
to introduce an additional suspension component in partic-
ular tailored to influence the dynamical roll motion char-
acteristics independently from the layout of the vertical
suspension. This so-called anti-roll bar (also called stabi-
lizer or anti-sway bar), see e.g. (Rill, 2012) or (Heißing
and Ersoy, 2011), connects the suspensions on the right
and the left side of the vehicle’s axle by a cranked bar that
acts as a torsional spring, see Figure 1.

Therefore, the design of the anti-roll bar is mainly tar-
geted on its torsional stiffness, but also has to comply with
the available space at the underfloor and must allow for at-
tachments to the vehicle body and to both vertical suspen-
sions. These requirements quite often result in the anti-roll
bar to be a geometrical complex structural element that is
prone for dynamical vibrations.

In daily practice, the Finite Element (FE) method
turned out to be the adequate tool to design the geometri-
cal and the structural properties of anti-roll bars. However,
the driving behavior of vehicles, to which the anti-roll bar
significantly contributes, is commonly developed using
multibody simulation – generally utilizing the MultiBody
package of the Modelica Standard Library in the Modelica
community. In addition, the DLR FlexibleBodies Library

C

A

S

Figure 1. Vehicle axle with an anti-roll bar (color emphasized,
courtesy of Wikimedia Commons).

(Heckmann et al., 2006) provides capabilities to incorpo-
rate data that originate from FE models in Modelica mod-
els. Thus, a tool chain to perform vehicle dynamics sim-
ulation including the structural characteristics of anti-roll
bars is in principle available.

In common design tasks, driving maneuvers or noise,
vibration and harshness (NVH) scenarios are first ana-
lyzed in multibody simulations. Then, the FE method is
used to redesign the anti-roll bar in order to improve its
characteristics. Subsequently, a FE to multibody interface
has to be used to prepare the new FE data for the DLR
FlexibleBodies Library and, finally, the vehicle dynamics
simulation has to be invoked again in order to assess the
modification. This tool chain or loop, respectively, is in-
convenient and makes it difficult to set up computational
optimization procedures.

The given background motivates the introduction of a
new modeling capability called AntiRollBar into the DLR
FlexibleBodies Library. In the present paper, a principle of
the flexible body modeling and of the beam theory behind
the AntiRollBar model is given in Sections 2.1 and 2.2,
respectively. In Section 3, a framework of the AntiRollBar
and its parametrization is discussed. Section 4 presents
first simulation experiments provided.

2 Theoretical Background
2.1 Flexible Bodies Theory
The mechanical description of flexible bodies in multi-
body systems is based on the floating frame of reference

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

100 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915799

Figure 2. Vector chain of the floating frame of reference.

approach, i.e. the absolute position1 rrr = rrr(ccc, t) of a specific
body particle is subdivided into three parts:

• the position vector rrrR = rrrR(t) to the body’s reference
frame,

• the initial position of the body particle within the
body’s reference frame, i.e. the Lagrange coordinate
ccc 6= ccc(t),

• and the elastic displacement uuu(ccc, t) that is approxi-
mated by a Taylor expansion, here limited to first
order terms, with space-dependent mode shapes
ΦΦΦ(ccc) ∈ R3,n and time-dependent modal amplitudes
qqq(t) ∈ Rn, cf. (Wallrapp, 1994):

rrr = rrrR +ccc+uuu , uuu =ΦΦΦ qqq . (1)

All terms in equation (1) are resolved w.r.t. the body’s
floating frame of reference (R). That’s why the angular ve-
locity of the reference frame ωωωR have to be taken into ac-
count when the kinematic quantities velocity vvv and accel-
eration aaaR of a particle are derived, see (Heckmann et al.,
2006). The decomposition in equation (1) makes it possi-
ble to superimpose a large nonlinear overall motion of the
reference frame with small elastic deformations.

The kinematic quantities are inserted into Jourdain’s
principle of virtual power. Subsequently, the equations
of motion of an unconstrained flexible body are formu-
lated neglecting deflection terms of higher than first order
(Wallrapp, 1994, (38)):

 mIII3 sym.

md̃ddCM JJJ
CCCt CCCr MMMe

aaaR
ω̇ωωR
q̈qq

=

= hhhω −

 000
000

KKKe qqq+DDDe q̇qq

+ hhhe, (2)

1Both vectors and matrices are written in bold symbols, whereby
vectors are of lower case letters and matrices of upper case letters.

where the following quantities and symbols appear:
m body mass,
III3 3×3 identity matrix,
dddCM(qqq) position of center of mass,
JJJ(qqq) inertia tensor,
CCCt(qqq) inertia coupling matrix (translational),
CCCr(qqq) inertia coupling matrix (rotational),
hhhω(ωωω,qqq,q̇qq) gyroscopic and centripetal forces,
hhhe external forces,
MMMe structural mass matrix,
KKKe structural stiffness matrix,
DDDe structural damping matrix.

In the context of the anti-roll bar modeling, the struc-
tural mass, stiffness and damping masses are gained as
the result of a FE preprocessing step whose background is
given in the following section. Note, that the FE prepro-
cessing is implemented internally so that the user does not
need to switch to a different modeling tool.

2.2 FE Beam Theory

The structural models used in multibody analysis are
usually obtained from FE analysis and subsequently re-
duced by e.g. modal decomposition approaches. For
the anti-roll bar structural models, a simple, classical fi-
nite element beam formulation is employed. Therein,
the three-dimensional problem is split into a two-
dimensional, cross-sectional analysis and a subsequent,
one-dimensional analysis along the beam’s reference axis.
Solving the two-dimensional problem simply involves
integration of the material properties (Young’s modu-
lus, shear modulus and density) over the specified cross-
sectional geometry. With the resulting cross-sectional
stiffness and inertia resultants, the corresponding consti-
tutive matrix CCC can be built. Along with a given strain
field, one arrives at the description for the force and mo-
ment distributions along the beam axis.

The one-dimensional analysis is based on (Bazoune
et al., 2003), where an adjustable Timoshenko beam el-
ement was implemented, that uses linear shape functions
for longitudinal displacements and torsional deformation.
In order to describe the bending deformation, a cubic
ansatz function is used in the lateral displacements and
corresponding rotational fields. The unknown coefficients
can be solved using the description for the total slopes in-
cluding a constant transversal shear, the force and moment
equilibrium equations and the discrete boundary condi-
tions at both ends of the beam. These equations can then
be partitioned by discerning between displacement field
contribution and discrete boundary condition excitation.
In a parametric space from [0,1], the shape functions that
are needed for the shear displacements and bending rota-

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

DOI Proceedings of the 13th International Modelica Conference 101
10.3384/ecp1915799 March 4-6, 2019, Regensburg, Germany

tions read:

N1
bs =

1
1+Θ

(1−3ξ
2 +2ξ

3),

N2
bs =

1
1+Θ

(3ξ
2−2ξ

3),

N1
bb =

1
1+Θ

(ξ −2ξ
2 +ξ

3 +1/2(2ξ −ξ
2)Θ),

N2
bb =

l
1+Θ

(−ξ
2 +ξ

3 +1/2ξ
2
Θ),

N1
ss =

Θ

1+Θ
(1−ξ),

N2
ss =

Θ

1+Θ
ξ ,

N1
sb =−

Θl
1+Θ

1/2ξ ,

N2
sb =−

Θl
1+Θ

1/2ξ , (3)

where ξ denotes the parametric coordinate along the beam
axis, l the beam length and Θ the bending to shear stiff-
ness ratio. The shape function superscripts indicate the
left (1) or right (2) beam end and the two-letter subscripts
specify the shear (s) and bending (b) field types (first let-
ter) and the contributing boundary condition (second let-
ter). As previously described, their derivatives w.r.t. the
parametric coordinates and the constitutive equations of
cross-sectional resultants can then be used to calculate the
shear and bending moment distributions along the beam
and integrated using e.g. a Gauss’ quadrature.

In accordance with Galerkin’s weighted residual
method, one can substitute into the classic expression of
virtual work done by all internal forces, to arrive at a for-
mulation for the linear element stiffness matrix KKK, which
in matrix form reads,

KKK =
∫

l
BBBTCCCBBB dl, (4)

where BBB is the matrix of shape function derivatives de-
scribing the element strain field. Rotating all element stiff-
ness matrices into the reference inertial coordinate system
and assembly in a unified degree-of-freedom set, leads
to the total stiffness matrix of the structure. In a similar
fashion the consistent mass matrix MMM can be determined,
using cross-sectional inertia resultants and the matrix of
shape functions N. In case of the anti-roll bar a decou-
pled, lumped mass approach was chosen instead, where
structural inertia is distributed equally at both ends of the
beam. Shear center, neutral axis and center of gravity
offsets from the reference line were realized as wrappers
around the element stiffness and element mass matrices
in order to be able to tailor the bar properties more accu-
rately.

To facilitate a further reduction of the number of de-
grees of freedom, an optional Guyan’s reduction (Guyan,
1964) can be performed next. The Guyan’s reduction is es-
sentially a static residualization of stiffness onto a chosen

few degrees of freedom (DoF). Therein, all DoF are par-
titioned into an "analysis" set (index a) and an "omitted"
set (index o) and a constraint w.r.t. the omitted degrees of
freedom being force free is applied. The resulting trans-
formation matrix between the analysis set and the original,
full DoF set reads,[

xxxa
xxxo

]
=

[
III

−KKK−1
oa KKKoa

][
xxxa
]
. (5)

In order for the mass and stiffness matrix to be compat-
ible with the generalized equations of motion, a normal
modes analysis is performed afterwards. The resulting
eigenfrequencies and eigenvectors form a modal solution
set that is used to reduce the structural degrees of free-
dom to the user-specified number of frequencies and mode
shapes retained. Additional information required for the
flexible multibody approach such as, center of gravity lo-
cation, mass, inertia tensor and the inertia coupling terms
are then calculated with the help of six, linearly indepen-
dent rigid body mode shapes. Currently only first order
inertia terms are considered, while integration of the non-
linear, second order terms is still subject to future work.

3 Beam Based Anti-Roll Bar Model
The introduced beam model can be utilized in various ap-
plications. In the following, we focus on a typical use case
in the automotive area – the anti-roll bar.

The AntiRollBar model implemented in DLR Flexible-
Bodies, see the model’s icon in Figure 3, allows for the
modeling of flexible bars with an (almost) arbitrary ge-
ometrical shape in a user-friendly way and considers the
attachments to the vehicle body and the suspensions elab-
orated in Section 3.1. It is tailored to be used for driv-
ing maneuvers, where frequencies higher than 20 Hz are
out of interest but require unnecessarily large computa-
tional resources. Alternatively, the user may specify the
AntiRollBar model to be employed for NVH analysis up
to 400 Hz. And last but not least, an animation of the new
AntiRollBar model and its deformation field is also pro-
vided in order to assess simulation results visually.

3.1 Anti-Roll Bar Arrangement
To reduce the number of input parameters, the common
shape of the anti-roll bar and its mounting to the vehicle’s
parts are considered. As can be seen in Figure 1, there are

name
preproc=false

Figure 3. Icon of the new AntiRollBar model in the DLR Flexi-
bleBodies Library.

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

102 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915799

typically two mounts (C) on the vehicle’s body holding
the anti-roll bar. To fulfill its operational goal of stabiliz-
ing the rolling vehicle, each of the anti-roll bar’s ends is
additionally connected to a suspension part on each ve-
hicle’s side (S). Thus, exactly four mounting points are
incorporated to connect the implemented beam based An-
tiRollBar. Since the common anti-roll bar is made of
semifinished tube with ring-shaped cross section, the in-
put parameters are additionally limited to outer and inner
diameter of the cross section.

Considering the abovementioned restrictions, the ge-
ometry input reduces to Cartesian coordinates x, y and z of
meaningful geometry points along the anti-roll bar’s cen-
ter line and its outer and inner diameters (do and di, re-
spectively) at these points. Additionally, four of the points
have to be marked as mountings to the vehicle. Conse-
quently, the input reads as:

// x y z do di connect
0.10 0.51 0.0 0.02 0.014 1

-0.17 0.42 0.0 0.02 0.014 0
-0.20 0.38 0.0 0.02 0.014 0

...

Note that the four points relevant for mountings are
marked in the last column by “1”.

The input parameters of the implemented AntiRollBar
are detailed in the following sections. They reflect espe-
cially the two intended application areas of the AntiRoll-
Bar implementation – the vehicle handling analysis and
the NVH. Another important aspect – which applies for
both of the analyses – is the option to either input some
particular predefined data of the analyzed anti-roll bar or
to calculate it in preprocessing steps by the AntiRollBar
model itself. The workflow of the latter is depicted in Fig-
ure 4.

3.2 Parameters for Noise, Vibration and
Harshness Analysis

Let us consider the parameter input mask as shown in Fig-
ure 5 first. Here, the first parameter labeled Analysis spec-
ifies the option to activate the model for the NVH. Thus,
the flexible body model based on a modal description will
be activated in the AntiRollBar model background – in
particular the ModalBody component of the DLR Flexi-
bleBodies library. This submodel incorporates a plenty
of parameters of which just three are present in the input
mask of the AntiRollBar, namely:

• fileFlexBody – a shared name of files which describe
the flexible body dynamics and animation – SID 2

and obj 3, respectively. To simplify the input, this
name is required without the file suffix, assuming
that both SID and obj files of the modeled anti-roll
bar have the same name.

2Standard Input Data file
3File with 3D data in Wavefront OBJ format, see e.g.

http://www.fileformat.info/format/wavefrontobj/egff.htm

Linear FE Beam Processor

NVH Handling

FE to MBS
Conversion

Reduced ModelModal Body

User Interface

Eigenvalue Solver Static Condenstation

Figure 4. Preprocessing steps of the AntiRollBar model with
two branches for NVH or vehicle handling scenarios.

• n_modes – the number of eigenmodes to be consid-
ered.

• Nodes – (exactly four) specific node numbers to be
associated to the AntiRollBar connector frames.

At this point, the meaning of the parameter preprocess-
ing shall be further explained. In Figure 5, this parameter
is set to false. Thus, it is required that the user inputs
both the SID and obj files by defining fileFlexBody and
the indexes of the connector nodes using Nodes. The in-
formation on the number of eigenmodes is, in contrast, not
relevant, and therefore disabled.

The situation changes when the user wishes to gener-
ate the data in a preprocessing step setting preprocess-
ing = true. Then, fileFlexBody indicates no more the name
of the existing files but the name of files to be generated
by the preprocessor, see below, and n_modes is the infor-
mation being additionally required. The parameter array
Nodes is then read from the last column of the geometry
table shown in Section 3.1. This table, called geometry,
has to be saved in the input file indicated by the param-
eter fileName. This file must additionally contain a ta-
ble called material with anti-roll bar material properties.
In particular, material density ρ , Young’s modulus E and
shear modulus G are required in the current AntiRollBar
implementation. An example on the input data file format
is given in Appendix A. For better understanding on the

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

DOI Proceedings of the 13th International Modelica Conference 103
10.3384/ecp1915799 March 4-6, 2019, Regensburg, Germany

Figure 5. Parameter menu to specify AntiRollBar model.

preprocessing procedure, the steps are highlighted in the
left branch of Figure 4.

As mentioned above, there is a particular output if the
preprocessing is enabled for the NVH analysis. Then, two
files are generated – one in SID and the other one in wave-
front format. The SID file, see (Wallrapp, 1994), con-
tains the modal reduced anti-roll bar structure where the
input n_modes defines the number of retained modes. The
Wavefront file (signalized by an obj suffix) enables the vi-
sualization of the anti-roll bar, see Figure 6. As common
to DLR FlexibleBodies library, the anti-roll bar is visual-
ized by both solid and wireframe elements, whereby the
number of vertices and face elements of the wireframe
grid can be influenced by the user.

3.3 Parameters for Vehicle Dynamics
The next Analysis option is the one for the vehicle dynam-
ics. This case utilizes the following parameters:

• stiffness – a 4×4 stiffness matrix and

• r_rel_start – a 4×3 matrix containing Cartesian co-
ordinates to get the proper position of the four con-
nector frames.

The simplified matrix stiffness applies according to equa-
tion (5) for purely vertical DoF’s considered in the four
anti-roll bar mountings. If both stiffness and r_rel_start
should be generated by preprocessor, the input simplifies
to only fileName. The right branch of Figure 4 shows all
necessary preprocessing steps in this case.

C1

x
S2

S1

C2

y

z
F2

Figure 6. Anti-roll bar model with a connecting link on each
side.

4 Simulation Experiment
For parametrization of the AntiRollBar, an important
question concerns the number of eigenmodes which have
to be considered when generating the SID file for NVH
analysis. This influences not only the simulation results
significantly, but also the simulation time.

To evaluate this phenomena we have defined a simple
virtual experiment, depicted in Figure 6, which is intended
to excite all the considered eigenmodes – similarly to an
experimental modal analysis with single point excitation.
In this experiment, the anti-roll bar is connected to the in-
ertial frame at the vehicle’s body mounts C1 and C2 via two

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

104 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915799

Table 1. Eigenfrequencies of the evaluated anti-roll bar.

Eigenmode Eigenfrequency / Hz

1 61,7
2 100,7
3 121,9
4 139,9
5 217,2
6 321,4
7 375,0
8 467,9
9 521,6
10 556,8
11 640,0
12 817,8
13 927,0

spring-damper elements. Additionally, a link with two ball
joints – a typical connection in automotive applications –
is used to join one anti-roll bar’s end to the inertial frame
at fixed point S1. The other end is connected similarly to
point S2 which, in contrast, can freely move in vertical di-
rection (z-axis in Figure 6).

In the simulation scenario, the anti-roll bar is first
preloaded at S2 with a constant vertical force F2. After
some time period which guarantees that the mechanism is
at rest, the link connection is “released” by fast drop of the
force towards zero. Thus, a desired damped oscillation of
the anti-roll bar around its unloaded state is induced. With
this procedure, two criteria can be assessed: a) the overall
stiffness of the anti-roll bar by relating the applied force F2
to the static displacement of point S2 and b) the simulation
time tCPU.

The anti-roll bar used in this example is asymmetric in
vehicle’s longitudinal plane, see also Appendix A for par-
ticular data input. For this geometry, the eigenmodes up
to the frequency f = 1000Hz are given in Table 1.

The Figures 7 and 8 show the resulting overall stiff-
ness call of the anti-roll bar and the simulation times tCPU,
respectively, over the number of considered modes
n_modes. Since there is a significant drop in call between
n_modes = 1 and n_modes = 2 in Figure 7 a), the pa-
rameter call is plotted in Figure 7 b) without the value for
n_modes = 1.

The deployment call in Figure 7 b) reflects the influence
of single modes on the anti-roll bar stiffness. The eigen-
mode 2 is the most significant as there is an extraordinary
change in the stiffness. Another change can be observed
for eigenmode 6. For higher eigenmodes, the modifica-
tions in call are marginal and – as can be seen in Figure 8 –
only lead to unnecessary increase of the simulation time.

Consequently, at least the first six eigenmodes, i.e.
n_modes = 6, should always be considered for the eval-
uated anti-roll bar’s geometry. This applies even for NVH
analyses in lower frequency range of interest. A higher

a) n_modes = [1;13]

0 2 4 6 8 10 12
0

0.5

1

1.5
·105

n_modes

c a
ll
/(

N
/m

)

b) n_modes = [2;13]

0 2 4 6 8 10 12

2.24

2.26

2.28

2.3

·104

n_modes

c a
ll
/(

N
/m

)

Figure 7. Anti-roll bar stiffness call for changing number of
modes.

number of eigenmodes could nevertheless be introduced,
but then a progressive increase of simulation time has to
be taken into account.

5 Conclusions
The presented automotive anti-roll bar model can be ap-
plied for both the vehicle dynamics and the NVH analy-
sis. The simulation experiment emphasizes the changes in
model behavior depending on the structure’s eigenmodes
and shows how to indicate significant eigenmodes, which
should always be included in the analyses. Due to the de-
pendency of the eigenmodes on the anti-roll bar’s geom-

2 4 6 8 10 12

15

20

25

30

n_modes

t C
PU
/s

Figure 8. Simulation time tCPU for n_modes = [1;13].

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

DOI Proceedings of the 13th International Modelica Conference 105
10.3384/ecp1915799 March 4-6, 2019, Regensburg, Germany

etry and material data, this identification has to be per-
formed for each particular anti-roll bar.

The future development of the presented model will fo-
cus on the incorporation of structural damping as input
parameter. Moreover, higher order models should be im-
plemented for higher model fidelity.

Acknowledgements
The authors would like to thank to Frank Su and Jim
Alanoly from Ford Motor Company, Dr. Bilal Maiteh
from Dassault Systemes and John Batteh, John Griffin and
Johan Andreasson, all from Modelon AB, for initialization
of this work and important support provided at the begin-
ning period of the project.

References
A. Bazoune, Y. A. Khulief, and Stephen N. G. Shape Functions

of Three-Dimensional Timoshenko Beam Elements. Journal
of Sound and Vibration, pages 473–480, 2003.

R. J. Guyan. Reduction of stiffness and mass matrices. AIAA
Journal, 3:380, 1964.

A. Heckmann, M. Otter, S. Dietz, and J. D. López. The DLR
FlexibleBody library to model large motions of beams and of
flexible bodies exported from finite element programs. In 5th
International Modelica Conference, pages 85–95, 2006.

B. Heißing and M. Ersoy. Chassis Handbook. Vieweg+Teubner
Verlag, 1 edition, 2011. DOI 10.1007/978-3-8348-9789-3.

G. Rill. Road Vehicle Dynamics: Fundamentals and Modeling.
CRC Press, 2012. ISBN 978-1-4398-3898-3.

O. Wallrapp. Standardization of flexible body modeling in
multibody system codes, Part 1: Definition of standard input
data. Mechanics of Structures and Machines, 22(3):283–304,
1994.

A Appendix: Example of Input Data
File

#1

Map containing anti-roll bar data
=================================
Table "material"
Size: [3,1]
Contains material data:
Density rho [kg/m^3]
Young’s modulus E [N/m2]
Shear modulus G [N/m2]
#
Table "geometry"
Size: [:,6]
Contains geometry data.
No. of rows = No. of geometry relevant
points on anti-roll bar’s center line.
#
Note:

1) Both symmetric and non symmetric
anti-roll bar is applicable.
2) Exactly four connectors are
available at the moment,
i.e. the last column must contain
exactly four non zero integers
(the value of it plays no role).
3) The points are given successively
from the left end-point to the
right end-point.
4) Diameter outer must always be
greater then diameter inner.
#
double material(3,1)

7.86e3
2.07e11
7.90e10

#
x y z do di connect
double geometry(21,6)

0.06 0.62 0.03 0.024 0.018 1
0.06 0.60 0.03 0.024 0.018 0
0.04 0.60 0.08 0.024 0.018 0
0.00 0.60 0.10 0.024 0.018 0

-0.06 0.58 0.05 0.024 0.018 0
-0.11 0.56 0.04 0.024 0.018 0
-0.16 0.51 0.04 0.024 0.018 0
-0.16 0.46 0.04 0.024 0.018 1
-0.16 0.10 0.04 0.024 0.018 0
-0.23 -0.06 0.02 0.024 0.018 0
-0.23 -0.24 0.02 0.024 0.018 0
-0.23 -0.30 0.02 0.024 0.018 0
-0.16 -0.41 0.04 0.024 0.018 0
-0.16 -0.46 0.04 0.024 0.018 1
-0.16 -0.51 0.04 0.024 0.018 0
-0.11 -0.56 0.04 0.024 0.018 0
-0.06 -0.58 0.07 0.024 0.018 0
0.02 -0.60 0.10 0.024 0.018 0
0.05 -0.60 0.08 0.024 0.018 0
0.06 -0.60 0.03 0.024 0.018 0
0.06 -0.62 0.03 0.024 0.018 1

Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses

106 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp1915799

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

DOI Proceedings of the 13th International Modelica Conference 107
10.3384/ecp19157107 March 4-6, 2019, Regensburg, Germany

System level heat pump model for investigations into thermal management of
electric vehicles at low temperatures
Jeffs, James and McGordon, Andrew and Widanage, Widanalage Dhammik and Robinson, Simon and
Picarelli, Alessandro

107

System level heat pump model for investigations into thermal
management of electric vehicles at low temperatures.

James Jeffs1 Dr. Andrew McGordon1 Alessandro Picarelli2 Dr. Simon Robinson3 Dr. W.
Dhammika Widanage1

1WMG, University of Warwick, United Kingdom, j.jeffs@warwick.ac.uk
2Claytex ltd., United Kingdom, alessandro.picarelli@claytex.com@company

3Jaguar Land Rover, United Kingdom, srobin43@jaguarlandrover.com

Abstract
One of the challenges concerning electric vehicles is their
performance in cold climates. As the temperature drops
below 10◦C battery capacity begins to reduce and heating
demand starts to claim a larger proportion of total vehicle
energy expenditure. Although efficient, electric vehicles
waste heat through a few components, resulting in oppor-
tunity to harvest waste heat through a heat pump. With
multiple options for harvesting heat and the option to heat
the battery, a model and architecture has been developed
to give flexibility in a wide range of thermal management
scenarios. This paper explores the details of the model and
presents two example cases of interest to demonstrate the
model’s applicability.
Keywords: Electric vehicle, thermal management, heat
pump

1 Introduction
With electric vehicles beginning to take a larger market
share of new vehicle sales, one common concern of elec-
tric vehicle drivers is the choice they may have to make at
low temperature between heating and range (Allen, 2013;
Bullis, 2013). Operation of electric vehicles below 10◦C
is hindered by the effect of low temperatures on battery ca-
pacity and the increased electrical consumption caused by
cabin heating (Meyer et al., 2012). The combined effect
of decreased battery performance and increased heating
demand gives a range loss of up to 60% at −20◦C com-
pared to 20◦C. Heat pumps are slowly being introduced
as a solution to this problem; however the flexibility of
heat pumps creates an opportunity for new, innovative and
complex thermal management solutions, with many oper-
ational modes available for consideration and exploration
(Jeffs et al., 2018).

1.1 Battery performance at low temperatures
Many investigations have been carried out into the perfor-
mance of Lithium ion cells at low temperatures. The three
areas which are cause for concern are ageing, power and
capacity. The consensus on ageing of cells at low tem-
peratures is that charging causes the formation of metallic
lithium on the cathode, a process known as lithium plat-

ing. Lithium plating is associated with fast charging of
a cell (over 0.5C, where 1C is the the current required
to charge the cell in one hour) and so can be avoided by
charging slowly and reducing the power harvested through
regenerative braking. Power reduction has also been a
concern when operating cells at low temperatures. Rui
(Rui et al., 2011), Zheng (Zheng et al., 2016) and Jague-
mont (Jaguemont et al., 2016) concluded that the primary
cause of power capability reduction was due to an increase
in charge transfer resistance. However, it has also been
shown that for a typical pack sizing, a 70% reduction
in power can be sustained while the vehicle is still able
to complete usual drive cycles (UDDS, HWFET, US06)
(Saxena et al., 2015). Reflecting on this literature, pre-
cautions are built into the model to take account of power
reduction and increased ageing.

The biggest concern regarding electric vehicle opera-
tion at low temperatures is the reduction in range associ-
ated with reduced capacity. Much research has been pub-
lished reporting cell capacity as a function of temperature
and some examples are summarised in Figure 1 which dis-
plays the work of Nagasubramanian (Nagasubramanian,
2001), Zhang (Zhang et al., 2003), Ji (Ji et al., 2013),
Jaguemont (Jaguemont et al., 2014), Dow Kokam (Dow,
2010) (manufacturer) and Panasonic (Pan, 2012) (manu-
facturer). The general consensus reached through this se-
lection of work is that cell capacity decreases by approx-
imately 20− 40% at −20◦C and by as much as 70% at
−40◦C.

1.2 Cabin Heating
Cabin heating is the greatest non-powertrain consumer of
energy on a vehicle at low temperatures (Lindgren and
Lund, 2016; Broglia et al., 2012). In early production elec-
tric vehicles such as the first generation Nissan Leaf, the
cabin heat was provided by a positive thermal coefficient
(PTC) heater. PTC heaters are close to 100% efficient, but
generate all of their heat using electrical energy from the
battery. Due to the high demand of cabin heating, typi-
cally 4-7kW, this has a significant impact on the vehicle’s
range. Meyer et al. (Meyer et al., 2012) investigated the
split between the impact of cabin heating and low tem-
perature battery effects; performing tests with heating on

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

108 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157107

Figure 1. A summary of the capacity loss a function of tem-
perature as reported by the following sources; Nagasubrama-
nian (Nagasubramanian, 2001), Zhang (Zhang et al., 2003), Ji (Ji
et al., 2013), Jaguemont (Jaguemont et al., 2014), Dow Kokam
(Dow, 2010) (manufacturer) and Panasonic (Pan, 2012) (manu-
facturer).

full (continuously), and heating off at −7◦C. During the
two tests at −7◦C over the LA4 drive cycle (also known
as FTP-72 or the Urban Dynamometer Driving Schedule),
Meyer et al. = found that the use of PTC heaters led to
a 41% reduction in vehicle range compared to its 20◦C
range. In comparison, a range reduction of just 15% was
found with the heating off at the same temperature, which
can be attributed to the effect of low temperatures on an
Li-ion battery. The combined effect of heating demand
and reduced battery capacity is a 60% reduction in range
at −20◦C (Reyes et al., 2016).

Heat pumps are now becoming more dominant as a so-
lution to vehicle heating, with examples found in vehicles
such as; Jaguar iPace, BMW i3, Nissan Leaf (latest gener-
ation), Renault Zoe and others. The main advantage of
a heat pump is that it doesn’t solely generate heat, but
can extract and upgrade heat; making it useful for cabin
heating. This can be done at more than 100% efficiency.
Examples of research in this area include Leighton et al.
(Leighton, 2015), who demonstrated a lab bench system
capable of extracting heat from ambient; upgrading it with
heat from power electronics and a PTC heater, then heat-
ing the cabin and battery. In this example the power elec-
tronics, PTC heater, cabin and battery were in series in a
coolant loop with the heat pump’s condenser in the order
stated. In 2014 Ahn et al. proposed a dual source heat
pump which could harvest waste heat from the motor as
well as ambient; this can be distinguished from Leighton’s
work as the motor would be located on the evaporator
loop, rather than the condenser loop. Using simulation,
Ahn showed that the addition of waste heat from the motor
increased the maximum coefficient of performance (COP)
from 3 to 3.4, but also allowed the heat pump to work more
effectively at lower temperatures, where heat extraction

from ambient is more difficult. In 2017 Jeffs et al. pro-
posed the use of a thermal battery to further assist energy
saving at low temperature. They showed that an optimally
sized thermal battery would be able to effectively replace
the PTC heater, which was previously needed to aid heat
pump warm up. Here an average energy saving of 25.3%
was made over a temperature range of −20◦C to 14◦C us-
ing a cruising drive cycle, while not compromising cabin
warm up times (Jeffs et al., 2017). This selection of work
shows the range of use cases which a heat pump may be
subjected to, a point further demonstrated by Jeffs et al.
in 2018, where 32 operational modes where identified and
compared for a multiple source heat pump on an electric
vehicle (Jeffs et al., 2018).

1.3 Goals for Model capability
From section 1.2 it is clear that a consensus on a thermal
management architecture from low temperature perspec-
tive has not been reached. With multiple components on
the vehicle wasting heat, as well as the added complex-
ity of balancing cabin and battery heating, and the added
complexity of optimally operating a heat pump in a dy-
namic environment, a model which allows users to flexibly
reconfigure the thermal architecture of the vehicle could
help guide the thermal architecture on vehicles in the fu-
ture.

The model developed in this work has the objective of
providing the following features.

1. The ability to dynamically connect and disconnect
components from the thermal management system.

2. The ability to arbitrarily request heat flows between
components (e.g. request 5kW for cabin heating),
while being physically limited by sensibly sized heat
exchangers.

3. Contain a control system for the heat pump which
self regulates compressor speed regardless of vehicle
configuration.

4. Run quickly enough to be useful for performing pa-
rameter sweeps and optimisations in suitable time
frames. (PC configuration: Laptop, using i7-6600U
@ 2.6GHz with 16GB RAM. Dymola version 2019
using Visual Studio 2015/Visual C++ 2015 Express
Edition (14.0).)

2 Method
Here the details of the models are discussed with justifi-
cations of choices made during the development process.
The top level of the vehicle is shown in Figure 2. In
this figure the sub-models; heatDemandCommander, heat
pump control unit HPCU, battery, Heat Pump, and Cabin
model can be seen. These sub-models will be discussed in
more detail in the following subsections, starting with the
battery. Following the description of the model, two test

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

DOI Proceedings of the 13th International Modelica Conference 109
10.3384/ecp19157107 March 4-6, 2019, Regensburg, Germany

Figure 2. The top level of the model is shown.

cases are presented which demonstrate the model’s versa-
tility.

The model has been developed using Dymola based on
the Modelica language. This work relies on the following
libraries and providers; “Claytex VeSyMA-Powertrain"
and “TLK-Thermal Systems library".

2.1 Battery
The battery is modelled both electrically and thermally.
The electric side uses a first order RC network equivalent
circuit model (ECM), as seen in Figure 3. The compo-
nents in this model are parameterised using look up ta-
bles which are a function of component temperature, as
measured using the thermal model, and the cell’s state
of charge (SOC). The resistor and open circuit voltage
(OCV) values are scaled by the number of cells in series
to produce an RC circuit which represents one string of
the pack. This data was generated specifically for Xalt
40Ah cells by Yashraj Tripathy in (Tripathy et al., 2018).
This type of battery model is typically seen in literature
(Jaguemont et al., 2016; Ruan et al., 2014) when mod-
elling pack size batteries for vehicle application. In this
application the vehicle was configured in a 2p108s (2 par-
allel strings of 108 cells in series) arrangement giving a
pack size of approximately 30kWh; although altering the
pack size for different operations is possible. This can be
achieved by reducing the number of cells in series by ad-
justing nS_cell, seen in the top left of Figure 3, this will
also automatically adjust the sizing of thermal mass in the
thermal model. Alternatively, individual strings may be
deleted or duplicated, changing the number of cells in se-

ries, this would require the re-parametrisation of the ther-
mal and state of charge models accordingly.

Since the parameters of the RC network are dependent
on temperature, a thermal model was created to estimate
the bulk temperature of the pack. Figure 3 shows that the
ohmic losses from the resistors in the circuit are calculated
and exported from the sub-model as Total waste power.
The sum of these losses from each string in parallel is used
as the heat generation through losses in the thermal model.
The thermal model can be seen in Figure 4. In this model
the heatCapacitor seen in the centre represents the bulk
of the battery and its temperature is used as the battery
temperature. It has three modes of heat exchange; input
heat from waste heat generation in the cells, interaction
with the thermal management system, and thermal losses
to ambient. The latter heat exchange is modelled using
the flat plate parallel flow equation (Bergman et al., 2011),
given in Equation 1,

h̄ = (0.037Re4/5 −871)Pr1/3 k
L

(1)

where k, Re and Pr are the thermal conductivity,
Reynolds number and Prandtl number of the convection
fluid. The Reynolds number and Prandtl number are de-
fined in Equations 2 and 3. L is the length of the surface
over which the fluid is flowing, here 4m is used as an ap-
proximation of the length of the underside of the vehicle.

Re =
ρvL

µ
(2)

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

110 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157107

Figure 3. Electric first order RC model for the battery, scaled by
number of cells in series using parameter nS_cells, seen in the
top right.

Pr =
Cpµ

k
(3)

In Equations 2 and 3 ρ , v, µ and Cp are density, velocity,
dynamic viscosity and specific heat capacity of convective
fluid, in this case air. The final heat flow to ambient is then
given by

Qambient = Ḡ(Tplate −Tambient) (4)

or

Qambient = h̄×W ×D×L(Tplate −Tambient). (5)

It should be noted from literature that the capacity of a
battery is dependent of its temperature; in research con-
cerning the operation of electric vehicles in low temper-
atures this should be accounted for. The state of charge
model is used to estimate the state of charge of the battery
through the drive cycle as a function of temperature. To
achieve this, the state of charge model has an additional
lookup table which contains information about the per-
centage of capacity available as a function of temperature.
This is then used to scale the Coulomb counting equation
by the factor Ce f f seen in Equation 6. Other examples of
this adjustment to Coulomb counting can be seen in (Tri-
pathy et al., 2018) and (Barai et al., 2016).

SOC(t) = SOCinit −
1

Ce f f

∫ t

0
I(t)dt (6)

Figure 4. Thermal model of the battery with heat exchanges
between ambient through a resistor to an exterior metal plate,
and to the thermal management system through heat port seen at
the top of the figure.

2.2 Cabin
The cabin has a target temperature of 22◦C which can be
used to assess the thermal comfort achieved when using
the heat pump. The cabin model can be seen in Figure 5.
An infinite air source with ambient temperature is taken
into the cabin and heated in the eAC component, seen in
Figure 5. The heated air is then pumped into the cabin,
where a single air volume and heat capacitance are used
to measure the cabin temperature. This heat capacitor
has four modes of loosing heat; convection to ambient
through panels, thermal exchange with soft furnishings,
thermal exchange with hard furnishings, and cabin air ex-
haust. The convection to ambient through the exterior sur-
faces is modelled using a variable thermal conductance
with dependency on vehicle speed. The model uses two
heat capacitances for air to hard furnishings (such as dash-
board panels, glass etc.) and soft furnishings (such as the
seats, carpet etc.), with thermal resistances between the
air and these components. Finally there are two volumes
representing the air in the cabin; one large and one small.
The larger air volume represents the majority of the cabin
where the target temperature is imposed. The smaller air
volume is used to harvest cabin exhaust waste heat, here
up to 30% of the heat can be extracted and used in the heat
pump. This amount reflects the claims made by BMW in
(Suck and Spengler, 2014).

2.3 Heat Pump
The heat pump has the flexibility to dynamically connect
to, and disconnect from, components around the vehicle.
There are two places in the heat pump where these con-
nections are controlled. In Figure 6 there is a row of ther-
mal switches at the top of the model, this is the first point
of control regarding component connections. Inside these
switches there is a thermal conductor which is either set to
0 to thermally isolate the component from the heat pump,
or controlled by a PID controller to achieve the desired
heat exchange. The desired heat flow is set in the heatDe-

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

DOI Proceedings of the 13th International Modelica Conference 111
10.3384/ecp19157107 March 4-6, 2019, Regensburg, Germany

Figure 5. Cabin model

Figure 6. The uppermost level of the heat pump where thermal
connections across the vehicle are made and controlled. In the
centre is the middle layer of the heat pump which contains the
physical models of the coolant and refrigeration circuits.

mandCommander and will be discussed further in section
2.5. This layer acts to control the thermal connection be-
tween the heat exchangers in the middle level of the heat
pump model and the vehicle components. This is impor-
tant as it allows for arbitrary heat demands to be requested,
which might then be used to guide heat exchanger sizing
or coolant control to maintain an optimal temperature in
a component. The second point of control for component
connections is in the coolant circuits labelled high temper-
ature circuit (HTC) and chiller circuit, found in the middle
level of the heat pump, seen in Figure 7.

The middle level of the heat pump model is used to
house, pump coolant between, and direct heat flows to,
the 3 main models of the heat pump. These are the HTC,
chiller circuit and refrigeration loop. Inputs to this level
include coolant mass flow rate (which is then controlled
by a pump and PID), compressor power demand which
is passed onto the refrigerant model, and cabin tempera-
ture which is used to shut off the PTC heater in the HTC.
The coolant circuits themselves contain heat exchangers

Figure 7. The middle level of the model contains the coolant
circuits and the refrigeration loop and is used to control coolant
flow between them.

which have been sized using examples and estimates taken
from components found on existing vehicles. This level
also sees the input of heat recuperated from cabin exhaust,
which is used to increase the temperature of the chiller
loop.

The coolant circuits, HTC and chiller are shown in Fig-
ures 8 and 9 respectively. They have operating temper-
atures of 90◦C and −10◦C respectively. In Figure 8 the
thermal battery and PTC heater are in series before the
coolant reaches the cabin, battery and ambient which are
in parallel. It can also be seen that all components with the
exception of the PTC heater have a bypass option; this is
the second control point for component connections which
can be used to thermally isolate a component from the sys-
tem. This arrangement was chosen so that thermal battery
could be used to increase the coolant temperature from
the condenser output and under certain conditions negate
the need for the PTC heater, which is set to turn off if
the coolant temperature exceeds 85◦C. The hot coolant is
then split between the battery and the cabin, giving the
user flexibility in selecting how much heat to send to each
component; either by using the heatDemandCommander,
setting different bypass amounts for each component, or
adjusting the heat exchanger sizing. Here it should be
mentioned that the PTC heater is controlled by a PID with
the objective of getting the cabin to its set point, unless
shut off by excessive coolant temperature.

The chiller circuit is arranged in a similar way to the
HTC, as seen in Figure 9, with the components capable
of contributing heat to the system set in parallel. These
heat exchangers allow heat to be extracted from; the mo-
tor and inverter (as one unit), the gearbox and driveline
(which will be treated as one component and referred to as
transmission), the battery, the thermal battery, and ambi-
ent. The chiller circuit also uses bypasses to thermally iso-
late components from the heat pump. The bypass valves
are set to values 0.99 for open and 10−8 for closed, to

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

112 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157107

Figure 8. The coolant loop used for high temperature compo-
nents, i.e. cabin and battery heating, PTC input, heat battery
input, and rejecting heat to ambient for air conditioning opera-
tion.

Figure 9. The chiller circuit is used for thermal exchange and
extraction, i.e. extracting from the motor and inverter, the gear-
box and driveline, ambient, heat battery. There is also the capa-
bility to cool the cabin and electric battery if needed.

prevent errors and problems encountered with zero flow.
These valves are controlled by the switch blocks in the
bottom left of Figures 8 and 9, which is connected to the
controlBus and is controlled in the HPCU.

The bottom level of the heat pump contains the physical
model of the refrigerant circuit. In this example R134a is
used, but the refrigerant circuit may be quickly reconfig-
ured by selecting a different refrigerant in the SIM block
and changing pressure settings accordingly. The configu-
ration of the heat circuit is typical of what may be found
in literature (Leighton, 2015; Ahn et al., 2014). Since the
heat exchanger has liquid coolant heat exchangers on both
the condenser and evaporator sides, some care has been
taken to create a control system which does not exceed
the physical limits of the coolant and refrigerant set by
the library. The coolant is prevented from going beyond
its temperature limits using the HPCU which controls the
compressor demand seen on the right of Figure 10. The
refrigerant is protected from exceeding its pressure limit
by the PID labelled PID_pressureControl seen in Figure
10, which is set to limit the pressure to 30bar; chosen cor-
responding to R134a’s pressure-enthalpy diagram. Given
two power demands existing at this level, the demand ac-

Figure 10. The refrigeration cycle is physically modelled. At
this level the speed of the compressor is controlled either by the
demand from the heat pump controller, or a PID which stops the
system pressure getting too high.

cording to the pressure controller and the demand input
from the HPCU, the minimum of these values is used
to control the compressor, ensuring that neither refriger-
ant pressure nor coolant temperature exceed their physical
limits.

2.4 Heat Pump Control Unit (HPCU)

The heat pump control unit has three purposes; firstly
to set the desired coolant flow for the HTC and chiller
circuits, secondly to control which components are con-
nected to, or thermally isolated from, the heat pump, and
finally to set the desired power output of the heat pump
compressor. The first of these roles is done by putting
a constant mass flow demand onto the control bus to be
used at the heat pump middle level. For the motor and
inverter (single unit), the transmission and the cabin, the
thermal switching can be thought of as binary. To ensure
a heat flow is created when the component is thermally
active, the connection is only allowed to be made if there
is a sufficient temperature difference between the compo-
nent and the coolant loop. For the electric battery, thermal
battery and ambient, extra rules exist for logical opera-
tion of these sources. Firstly, the electric battery is con-
nected to the HTC (being heated) when its temperature is
below 20◦C; above this temperature it is thermally isolated
from the heat pump. If the electric battery’s temperature
should rise above 30◦C it is connected to the chiller (being
cooled). Both these temperatures were chosen for sensi-
ble electric battery operation. The heat battery is first con-
nected to the HTC, helping to rapidly increase the HTC
temperature during the warm up phase. When it can no
longer heat the HTC it is connected to the chiller, where
it is fully discharged, then thermally isolated. Finally, am-
bient is only used as a heat source when its temperature is
above −10◦C, which, in a normal vehicle, would prevent
frost from building up on the ambient heat exchanger, re-
ducing its effectiveness.

The compressor controller, shown in Figure 11, has the
purpose of getting the cabin and battery to temperature

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

DOI Proceedings of the 13th International Modelica Conference 113
10.3384/ecp19157107 March 4-6, 2019, Regensburg, Germany

Figure 11. The compressor controller

while ensuring that the HTC and chiller don’t exceed their
temperature limits. PID controllers are used to create a
compressor power demand according to the battery and
cabin current and target temperatures, the greatest of these
demands is taken to ensure there is enough heat to meet
these requirements. Additionally, PID controllers are used
to set a power demand needed to bring the chiller and HTC
loops to their target temperatures. The minimum power
request (from either the cabin and battery, the chiller and
the HTC controls) is then passed to the compressor; the
minimum is used so that, if a component has reached its
set point, it is not pushed beyond that target by the re-
quirements of another component. This logic prevents the
battery and cabin from overheating and reduces the chance
of the model failing due to the coolant breaching its tem-
perature limits.

2.5 heatDemandCommander
This component is used to set requested heat flows for
thermally active components around the vehicle. For this
work constant heat flows were requested. The heat flow
request is then put on the control bus to be used as the set
point for PID controllers in the switches found in the heat
pump, described in section 2.3.

2.6 Test cases
Here 2 unique test cases are proposed to demonstrate the
flexibility of this work for testing a variety of scenarios.
These test cases are:

1. Can the electric battery be used as a heat source when
its temperature is above 0◦C (chosen to maintain re-
generative braking). To explore this case 5 scenarios
will be tested and compared; 1. heating the battery
(as described in section 2.4), 2. cooling the battery,
3. disconnecting the battery, 4. battery disconnected
and PTC off, and 5. battery cooled with PTC off.

2. Is the transmission useful as a thermal source for
the heat pump? This is tested by using ambient and
transmission as heat sources, then comparing the to-
tal vehicle energy consumption and cabin tempera-
ture profile. As with the previous case, these 2 sce-
narios will be retested with the PTC heater off. To
make a complete assessment of the transmission as a
thermal contributor it will be tested in isolation, i.e.
the motor will be disconnected from the heat pump
leaving the transmission and ambient as the only con-
tributors.

Both of these test cases are demonstrated at 0◦C ambi-
ent temperature and using the WLTP drive cycle. While
the results of these two cases will be shown in detail, the
model has been used in many more scenarios.

3 Results
Here the results of the two cases will be shown and dis-
cussed.

3.1 Case 1
In this demonstration, the comparison is made between
heating the battery and cooling the battery by adjusting
its target temperature in the switches controller. The bat-
tery will also be disconnected from the heat pump to pro-
vide a baseline. Figure 12 shows the battery temperature
through the drive cycle. Here it can be seen that the sce-
narios have performed as expected. When the battery is
heated it quickly reaches its target temperature (20◦C),
at which point it is isolated from the heat pump. Dur-
ing this heating phase 5kW of heat flow is requested in
the heatDemandCommander which is then sustained by
the models controllers. Despite being disconnected from
the heat pump at target temperature, the battery’s temper-
ature continues to rise due to internal resistance and self
heating. Should the temperature rise above 30◦C then the
battery would connect to the chiller. This temperature is
chosen somewhat arbitrarily, although some cooling is re-
quired to reduce ageing and mitigate against thermal run-
away and other safety concerns associated with high tem-
perature cell operation. In the second scenario it can be
seen that the cooling keeps the battery temperature much
lower throughout the cycle. The battery temperature rises
quickly at the end of the cycle, during the high speed sec-
tion; this reflects the higher losses the battery will expe-
rience through maintained lower temperatures. Finally, if
the battery is not thermally managed as in the third sce-
nario of case 1, the battery temperature is allowed to rise
unaided until it is naturally limited by reduced loss and
thermal loss to ambient.

Figure 13 is used to show the impact each scenario has
on the cabin temperature. When the battery is heated there
is less heating capacity for the cabin and hence the temper-
ature, and therefore comfort, is reduced. When the battery
is cooled there is extra thermal capacity and so the cabin is
heated faster and thermal comfort is improved. However,

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

114 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157107

Figure 12. The battery temperature through the WLTP cycle
shown for the first 3 scenarios proposed in case 1.

Figure 13. The cabin temperature is shown for the 3 scenarios
proposed in case 1.

the extra heat that is extracted from the battery does not
appear to make a significant difference to the cabin tem-
perature compared to disconnecting the battery from the
heat pump. While the extra heat from the battery should
provide extra heat for the cabin, the heat pump is already
saturated with heat from ambient and the motor, hence the
extra heat only serves to increase the coolant temperature
on the chiller. Furthermore with the additional heat from
the PTC heater (on in all cases) the HTC quickly reaches
temperature.

Scenarios 4 and 5 have been used to demonstrate the
benefit that battery cooling can provide to cabin heating
when the heat pump is not saturated with heat. Here it can
be seen that the cabin temperature suffers in both scenarios
where the PTC heater is off. However, the additional heat
extracted from the battery now allows the cabin to heat up
faster and reach a higher final temperature, compared to
no heat extraction and no PTC heater.

Table 1 shows the energy consumption and the final

Table 1. The total electrical energy consumption and final SOC
for the 5 scenarios proposed in case 1.

Scenario Energy Consumed Final SOC

1 8.08 kWh 81.1 %
2 8.24 kWh 78.5 %
3 7.68 kWh 80.8 %
4 6.45 kWh 83.9 %
5 7.68 kWh 79.6 %

Figure 14. The cabin temperature is shown for the 4 scenarios
proposed in case 2.

SOC corresponding to the 5 scenarios. Since the rate at
which SOC is used is dependant on temperature, the final
SOC is not directly proportional to energy consumption,
but is also linked to temperature profile. Here it should be
noted that scenario 1 (where the battery is heated) has a fi-
nal SOC higher than scenario 2 (unheated). Operating at a
higher average temperature through the cycle reduces the
losses through internal resistance, increasing the terminal
voltage and reducing the current required to produce the
same power, hence the difference in final SOC.

With regards to point 4 of section 1.3, it took 32 minutes
and 51 seconds to simulate all the scenarios required for
case 1. This gives and average simulation time of 6 min-
utes and 34.2 seconds. Since WLTP is a 30 minute drive
cycle this equates approximately 4.6 times faster than real
time, meaning the simulation is adequately fast.

3.2 Case 2
Here the benefit of including the transmission as a thermal
contributor to the heat pump is evaluated. This is done by
comparing 4 scenarios, firstly a baseline case with ambi-
ent the thermal contributor, and secondly with the trans-
mission as an additional contributor, then repeated with
the PTC heater off.

Like in case 1 the heat pump is saturated before the
transmission is introduced as a contributor; hence the heat
extracted does not make a noticeable difference to the

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

DOI Proceedings of the 13th International Modelica Conference 115
10.3384/ecp19157107 March 4-6, 2019, Regensburg, Germany

Table 2. Total electric energy consumption for the 4 scenarios
proposed in case 2

Scenario Energy Consumed

1 7.82 kWh
2 7.68 kWh
3 6.05 kWh
4 6.72 kWh

cabin comfort, as can be seen when comparing scenarios
1 and 2 in Figure 14. As with the battery, when the PTC
heater is turned off the extra heat provided to the cabin
makes more of a difference, as in scenarios 3 and 4. The
compromise of this extra cabin comfort is the cost of ex-
traction and the extra load that is put on the motors due to
the transmission being kept at a lower, less efficient tem-
perature. The energy consumption for each scenario is
given in Table 2.

In Table 2 it can be seen that when the PTC heater is in
use (scenarios 1 & 2) the extra heat from the transmission
saves energy. In other words the energy saved from reach-
ing HTC target temperature slightly earlier, which causes
the PTC heater to shut off, exceeds the costs of operat-
ing the transmission at a lower efficiency and extracting
the heat. Although, since the heat pump is operating at
capacity before the transmission is introduced, the cost of
extraction is negligible. Considering this, in these circum-
stances the transmission is viable as a thermal contributor,
on the condition that the engineering or implementation
costs do not outweigh the potential benefits. When the
PTC heater is not used, the extra costs of using the trans-
mission do not return an energy saving and so increase
total consumption. Given the extra thermal comfort pro-
vided, seen in Figure 14, this is probably a worthwhile
compromise.

Again for completion, the simulation time for case 2
was 28 minutes and 40 seconds, or 7 minutes and 10 sec-
onds per scenario, or approximately 4.2 times faster than
real time. This further evidences that the model runs re-
liably fast, completing simulations in an adequately short
amount of time.

4 Discussion
The results presented above show the variability and po-
tential power of this model for evaluating different thermal
management strategies in cold climates. One of the key
questions in this area concerns the thermal management
of batteries; in case 1 some scenarios are proposed and
evaluated. Each scenario evaluated met the expected out-
come; for example heating the battery uses more energy
and reduces cabin comfort compared to disconnecting the
battery from the heat pump, seen by comparing scenarios
1 and 3. It was also shown that the battery may be used as
a heat source when cabin heating is not saturated, as seen
in scenarios 2, 4 and 5. It is also interesting to note that

the reduced battery efficiency and lower effective SOC of
extracting heat from the battery means that it is not worth
doing, as energy consumption and final SOC of scenario
5 are worse than scenario 3. This difference is marginal
and under other circumstances (temperature, battery tar-
get temperature, battery size, ambient temperature etc.)
the same may not be true. This platform gives the user
the ability to easily and quickly explore these spaces.

In case 2 it was shown that the transmission is a viable
contributor to the heat pump. This was demonstrated by
the energy saving achieved when the PTC heater is in use,
and the additional thermal comfort when it was not. Con-
sidering this further investigation into its use with a more
complex system should be undertaken. While it is seen to
provide a benefit on its own, in a system where cabin heat
is saturated, its use may not be as valuable as seen with
scenarios 1 and 2. The system proposed has the ability
to further explore these scenarios and make a more com-
plete recommendation for the use of the transmission as a
thermal contributor to the heat pump.

Finally a review of the objectives that were set in sec-
tion 1.3. Firstly, goal 1. is shown in the case 1, scenario
1 where the battery disconnects itself from the heat pump
when it reaches its target temperature. This is an example
of passive dynamic connection and disconnection, how-
ever a schedule could be implemented to directly control
the connection timings. Secondly, in case 1 the model suc-
cessfully sustained the requested heat flow of 5kW to the
battery while it was being heated. Thirdly, in sections 2.4
and 2.3 a control system for the compressor was described
which self regulates according to coolant temperatures,
cabin and battery target temperatures and refrigerant pres-
sure. This control system ensures the cabin and battery
reach their target temperatures without model failing due
to breach of physical limits. Fourthly and finally, in the ex-
amples shown the case 1 took 32 minutes and 51 seconds
to complete, while case 2 took 28 minutes and 40 seconds
to complete which are perfectly usable time frames when
evaluating thermal management strategies.

5 Conclusion
The model has been demonstrated in a range of cases and
scenarios. Its versatility in answering many thermal man-
agement problems has been shown and the objectives set
to prove this have been met. The results from the tests pro-
posed and evaluated are justifiable and make sense when
compared to what is known about electric vehicles oper-
ating in low temperatures and the nature of heat pumps.
Hence this work shows a valuable, versatile tool in explor-
ing thermal management of complex heat pump systems
on electric vehicles in low temperature climates.

Acknowledgement
This project was possible thanks to funding provided by
EPSRC, funding and support from Jaguar Land Rover, and
software and modelling support from Claytex Services Ltd

System level heat pump model for investigations into thermal management of electric vehicles at low
temperatures

116 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157107

References
Jae Hwan Ahn, Hoon Kang, Ho Seong Lee, Hae Won Jung,

Changhyun Baek, and Yongchan Kim. Heating performance
characteristics of a dual source heat pump using air and waste
heat in electric vehicles. Applied Energy, 119:1–9, 2014.

Megan Allen. http://www.fleetcarma.com/
electric-car-range-in-bitter-cold/, 2013.
Accessed: 29/11/2018.

Anup Barai, Kotub Uddin, WD Widanalage, Andrew McGor-
don, and Paul Jennings. The effect of average cycling current
on total energy of lithium-ion batteries for electric vehicles.
Journal of Power Sources, 303:81–85, 2016.

Theodore L Bergman, Frank P Incropera, David P DeWitt, and
Adrienne S Lavine. Fundamentals of heat and mass transfer.
John Wiley & Sons, 2011.

Lionel Broglia, Gabriel Autefage, and Matthieu Ponchant. Im-
pact of passenger thermal comfort and electric devices tem-
perature on range: a system simulation approach. World Elec-
tric Vehicle Journal, 5(4):1082–1089, 2012.

Kevin Bullis. https://www.
technologyreview.com/s/522496/
electric-vehicles-out-in-the-cold/, 2013.
Accessed: 29/11/2018.

Superior Lithium Polymer Cell: Technical Data Sheet. Dow
Kokam, 9 2010.

J Jaguemont, L Boulon, Y Dubé, and D Poudrier. Low tempera-
ture discharge cycle tests for a lithium ion cell. In 2014 IEEE
Vehicle Power and Propulsion Conference (VPPC), pages 1–
6. IEEE, 2014.

Joris Jaguemont, Loïc Boulon, and Yves Dubé. Characterization
and modeling of a hybrid-electric-vehicle lithium-ion battery
pack at low temperatures. IEEE Transactions on Vehicular
Technology, 65(1):1–14, 2016.

J. Jeffs, A. McGordon, W. D. Widanage, S. Robinson, and A. Pi-
carelli. Use of a thermal battery with a heat pump for low
temperature electric vehicle operation. In 2017 IEEE Vehicle
Power and Propulsion Conference (VPPC), pages 1–5, Dec
2017. doi:10.1109/VPPC.2017.8330932.

James Jeffs, Andrew McGordon, Alessandro Picarelli, Si-
mon Robinson, Yashraj Tripathy, and Widanalage Widan-
age. Complex heat pump operational mode identification and
comparison for use in electric vehicles. Energies, 11(8):2000,
2018.

Yan Ji, Yancheng Zhang, and Chao-Yang Wang. Li-ion cell op-
eration at low temperatures. Journal of The Electrochemical
Society, 160(4):A636–A649, 2013.

Daniel Leighton. Combined fluid loop thermal management for
electric drive vehicle range improvement. SAE International
Journal of Passenger Cars-Mechanical Systems, 8(2015-01-
1709), 2015.

Juuso Lindgren and Peter D Lund. Effect of extreme temper-
atures on battery charging and performance of electric vehi-
cles. Journal of Power Sources, 328:37–45, 2016.

Norm Meyer, Ian Whittal, Martha Christenson, and Aaron
Loiselle-Lapointe. The impact of the driving cycle and cli-
mate on electrical consumption and range of fully electric
passengers vehicles. In Proceedings of EVS, volume 26,
2012.

Ganesan Nagasubramanian. Electrical characteristics of 18650
li-ion cells at low temperatures. Journal of applied electro-
chemistry, 31(1):99–104, 2001.

Lithium Ion NCR18650. Panosonic, 2012.

J. R. M. Delos Reyes, R. V. Parsons, and R. Hoemsen. Win-
ter happens: The effect of ambient temperature on the travel
range of electric vehicles. IEEE Transactions on Vehicular
Technology, 65(6):4016–4022, June 2016. ISSN 0018-9545.
doi:10.1109/TVT.2016.2544178.

Haijun Ruan, Jiuchun Jiang, Bingxiang Sun, Ningning Wu, Wei
Shi, and Yanru Zhang. Stepwise segmented charging tech-
nique for lithium-ion battery to induce thermal management
by low-temperature internal heating. In Transportation Elec-
trification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Con-
ference and Expo, pages 1–6. IEEE, 2014.

XH Rui, Y Jin, XY Feng, LC Zhang, and CH Chen. A com-
parative study on the low-temperature performance of lifepo
4/c and li 3 v 2 (po 4) 3/c cathodes for lithium-ion batteries.
Journal of Power Sources, 196(4):2109–2114, 2011.

Samveg Saxena, Caroline Le Floch, Jason MacDonald, and
Scott Moura. Quantifying ev battery end-of-life through anal-
ysis of travel needs with vehicle powertrain models. Journal
of Power Sources, 282:265–276, 2015.

Gerrit Suck and Carsten Spengler. Solutions for the thermal
management of electrically driven vehicles. ATZ worldwide,
116(7-8):4–9, 2014.

Yashraj Tripathy, Andrew McGordon, and Chee Low. A new
consideration for validating battery performance at low am-
bient temperatures. Energies, 11(9):2439, 2018.

SS Zhang, K Xu, and TR Jow. The low temperature performance
of li-ion batteries. Journal of Power Sources, 115(1):137–
140, 2003.

Fangdan Zheng, Jiuchun Jiang, Bingxiang Sun, Weige Zhang,
and Michael Pecht. Temperature dependent power capability
estimation of lithium-ion batteries for hybrid electric vehi-
cles. Energy, 113:64–75, 2016.

Diesel Cooling System Modeling for Electrification Potential

DOI Proceedings of the 13th International Modelica Conference 117
10.3384/ecp19157117 March 4-6, 2019, Regensburg, Germany

Diesel Cooling System Modeling for Electrification Potential
Batteh, John and Ravi, Ashok Kumar and Pickelman, Dale

117

Diesel Cooling System Modeling for Electrification Potential

John Batteh1 Ashok Kumar Ravi2 Dale Pickelman3
1Modelon Inc., USA, john.batteh@modelon.com

2Modelon Engineering Private Limited, India, ashokkumar.ravi@modelon.com
3Hanon Systems, USA, dpickelm@hanonsystems.com

Abstract
Electrification of automotive systems presents
significant opportunities for improvements in cooling
system efficiency and performance. This paper
describes an effort to develop an analytic platform for
Hanon Systems to evaluate the electrification potential
for powertrain cooling systems. The paper describes
the development of a baseline diesel cooling system
model based on the Ford 6.7L Power Stroke diesel. A
variant of the system with electric pumps is also
modeled. Performance of the baseline conventional
and electric pump system are compared on a typical
automotive drive cycle to quantify potential benefits of
the electric pump system and advanced controls.

Keywords: cooling systems, diesel, electrification

1 Introduction
Electrification is a pervasive trend in the auto industry,
from fully electric vehicles to hybrids to electrification
of individual subsystems and components. For all
powertrain systems, thermal management of the
components is a critical requirement for the safe and
efficient operation of the system. Furthermore, thermal
constraints for electric powertrains can limit
performance (Stellato, 2017). Significant energy is
required to pump cooling fluid for thermal
management. Though varying with engine,
cycle/operating conditions, fuel type, system design,
etc., 1-3% of fuel energy can be consumed by pumps
for cooling and lubrication systems (Thiruvengadam,
2014).

In conventional cooling systems, mechanical pumps
are driven by the engine. Connected through a fixed
drive ratio to the engine, mechanical pumps operate
based on engine speed. Since the flowrate is linked to
the engine speed, sizing of the pumps for mechanical
systems for maximum cooling load can be problematic.
In many vehicles, maximum cooling load results from
operating conditions with high engine load and
potentially low engine speed and vehicle
speed/external air flow. To meet this maximum
demand, the requirement drives a large pump size.
With the linking of pump speed to engine speed,
significant inefficiencies can result from mismatch in

pump efficiency to typical operating conditions,
overflow in the system, and potentially even over
cooling under some conditions.

Replacing a mechanical pump with an electric pump
can yield significant benefits. With the pump speed
decoupled from the engine speed, the electric pump
can be sized more appropriately to meet cooling system
demand. Decoupling from the engine operation also
means that the electric pump speed can be controlled to
provide flowrates on demand to better match the
cooling load demand. Advanced control strategies can
also lead to additional benefits by optimizing warm up
for lubricating fluids like engine oil and transmission
oil. Previous analytic studies have demonstrated
potential benefits of 1.2% for electric pump systems
with advanced controls on a vehicle driven by a 1L
turbo gas direct injection engine with additional
benefits due to optimized transmission thermal
conditions (Zheng, 2018). While careful design of the
system is required to fully realize these efficiency
improvements, there is clearly motivation to pursue
given the potential impact on fuel economy or electric
range.

System modeling with Modelica has been widely
used for vehicle thermal management simulations
(Bouvy, 2012; Krüger, 2012; Batteh, 2014; Stellato,
2017). With a powerful and flexible modeling
framework and proven commercial libraries, Modelica
provides an ideal platform for architectural studies and
controls prototyping for advanced vehicle thermal
management. This paper describes an effort to develop
an analytic platform for Hanon Systems to evaluate the
electrification potential for powertrain cooling systems.
The goal of this analytic platform is to allow rapid
virtual prototyping of different cooling systems for
evaluation of the potential of Hanon hardware and
controls solutions for system optimization. To
demonstrate this platform, a model of a diesel cooling
system based on a Ford Power Stroke diesel 6.7L V8
was developed. A baseline model of the system is
developed with Liquid Cooling Library (Modelon AB,
2018) and then modified to include electric pumps
from Hanon. The results from the simulations are
compared on a typical automotive drive cycle to
quantify potential benefits of the electric pump system.

Diesel Cooling System Modeling for Electrification Potential

118 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157117

2 Diesel Cooling System Model
This section provides an overview of the diesel cooling
system model. The model is based on the Ford Power
Stroke (code name “Scorpion”) 6.7L V8 diesel
designed for the North American light commercial
truck market (Deraad, 2010). The Power Stroke diesel
is used in Ford F series and Super Duty pickup trucks.
The Ford Scorpion diesel was designed with an
innovative dual loop cooling system. The following
sections provide an overview of the full system model
and relevant component modeling details.

2.1 System and Model Overview
The Scorpion diesel system has two cooling loops: a
high temperature loop and a low temperature loop. The
two circuits are completely unmixed and interact with
each other via the two stage EGR cooler and via the
radiator air flow with the low temperature radiator in
front of the high temperature radiator. The high
temperature loop provides cooling and coolant flow for
the following components:

• Engine block and head

• Turbocharger

• EGR cooler (1st stage)

• Heater core

• Engine oil cooler
The low temperature loop provides cooling and coolant
flow for the following components:

• EGR cooler (2nd stage)

• Transmission oil cooler

• Charge air cooler

• Fuel cooler
Figure 1 shows the entire diesel cooling system

model. The model was built without substantial
system hierarchy per request when getting started with
Modelica-based modeling. The model was built based
on publicly available information on the system,
including the service manual for the engine and cooling
system. Characterization of the model is discussed in
Section 2.2. To help understand the coolant flow and
system operation, a discussion of relevant sections of
the model follows.

The high temperature loop operates at typical
coolant operating temperatures around 100°C. Starting
from the high temperature pump, the coolant flow
splits between the EGR cooler and the engine. The
flow through the engine goes to the left and right block
and head. Some flow from the left side is sent to the
turbocharger. Some flow from the right side of the
engine is sent to the engine oil cooler. The flow from
the EGR cooler, turbocharger, and resulting flow
through the engine join downstream before the
thermostat. Some flow goes to the heater core while
the remaining flow goes through the thermostat. The

thermostat controls the balance of flow between the
radiator and the bypass. The heater core flow merges
downstream of the radiator and then flows to the degas
bottle. The resulting flow is mixed with the bypass and
flow from the engine oil cooler and then flows to the
pump.

The low temperature loop is a fairly complex
hydraulic circuit with multiple flow branches and
operating modes based on coolant temperature. The
low temperature loop also has operation at higher
temperatures and at lower temperatures. The higher
temperature portion of the system operates at coolant
temperatures greater than 45°C and maintained
approximately at 60°C. The lower temperature part of
the circuit operates at coolant temperatures greater than
20°C and maintained approximately at 45°C. Starting
from the pump, some of the flow splits to the upper
section of the radiator and the other part of the flow
goes to a high temp thermostat that can direct flow to
the EGR cooler second stage and the transmission oil
cooler. When the coolant temperature is below 45°C,
the high temp thermostat is closed, and some of the
flow is sent directly to the transmission oil cooler and
EGR cooler. When the coolant temperature is above
45°C, the high temp thermostat starts to open and flow
to the EGR cooler and transmission oil cooler is
extracted after passing through the radiator upper
section. The low temperature thermostat is located in
the radiator tank. This thermostat controls the flow
between the upper and lower sections of the radiator.
When the coolant entering the radiator is less than
20°C, the radiator is bypassed altogether, and the flow
is directed to the fuel cooler and charge air cooler.
When the coolant reaches 20°C, the low temperature
thermostat starts to open and allows coolant flow
through the upper and low sections of the radiator
before flowing to the charge air cooler and fuel cooler.
Recall that the flow to the EGR cooler and
transmission oil cooler can be extracted after the
radiator upper section. Under different operating
conditions, it is possible to bypass the radiator
altogether, use only the upper section of the radiator, or
use both the upper and lower sections of the radiator.
To allow this capability, the two sections of the
radiator are modeled as separate heat exchangers. The
flow from all coolers joins at the degas bottle upstream
of the pump.

The Scorpion diesel system provides a nice
benchmark for an analytic platform for virtual
prototyping of hardware and control strategies given its
overall complexity with multiple loops, multiple
coolers, and multiple different temperature levels.

Diesel Cooling System Modeling for Electrification Potential

DOI Proceedings of the 13th International Modelica Conference 119
10.3384/ecp19157117 March 4-6, 2019, Regensburg, Germany

Figure 1. Diesel cooling system model based on the Ford Power Stroke diesel 6.7L V8 with high temperature and low
temperature circuits

Diesel Cooling System Modeling for Electrification Potential

120 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157117

 In addition to the coolant hydraulic circuits, simple
hydraulic circuits are modeled for the transmission oil
and engine oil. Figure 2 shows this simple circuit for
the engine oil cooler and also the implementation of
the simple circuit. The inputs to the circuit are the oil
flowrate through the cooler and the heat input to the oil
and are considered boundary conditions. With this
simple circuit, it is possible to simulate dynamic oil
temperatures including warmup. While more detailed
models can be built if information is available to do so,
it is important to have dynamic estimates of oil
temperature to ensure that oil temperature limits are
respected when considering system variants and also to
estimate potential benefits of faster oil temperature
warmup for friction reduction.

Figure 2. Simple engine oil circuit

Several configurable elements are included in the
model to provide the flexibility to switch between the
mechanical pump system and the electric pump system.
The pump models in the high temperature and low
temperature circuits are replaceable models and can be
changed individually. A control bus structure is also
established. Sensor signals from relevant components
are placed onto the control bus. A controller
component is then connected to the coolant pumps to
specify the pump speed. For the mechanical pump
system, the engine speed is passed through to the
mechanical pumps offset by a fixed ratio. For the

electric pump system, controllers are implemented as
discussed in subsequent sections.

The focus of the system model is on the cooling
system, but obviously simulation of the cooling system
is not possible without the relevant heat inputs and
boundary conditions. While a full vehicle simulation
can provide some of these inputs, that scope was
outside of the focus of the current effort. To support
the cooling system modeling effort, a simple map-
based engine shown in Figure 3 was developed to
estimate heat input from the engine and turbocharger
along with operation conditions (flow and
temperatures) for the EGR cooler, fuel cooler, and
charge air cooler as a function of engine operating
conditions. The inputs to the model are the engine
brake power and engine speed. The brake specific fuel
consumption (BSFC) map was used to calculate fuel
flow based on published data (Deraad, 2010). Figure 4
shows the BSFC map as extracted. While highly
simplified, this engine model allows simulation of the
key inputs from the engine without requiring highly
detailed information on the engine and engine
operating conditions. Data for this model was input
based on some published operating conditions (Deraad,
2010) and then supplemented with nominal
information for diesel engines. Predictive capability of
this model would obviously be improved with actual
engine characterization data, but the basic model does
provide a practical computational approach for the
engine in lieu of detailed engine mapping data.

Figure 3. Map based engine model

Diesel Cooling System Modeling for Electrification Potential

DOI Proceedings of the 13th International Modelica Conference 121
10.3384/ecp19157117 March 4-6, 2019, Regensburg, Germany

Figure 4. Engine BSFC map as extracted from reference
(Deraad, 2010)

In conjunction with the engine model, the boundary
conditions for the system are as follows:

• Engine brake power

• Engine speed

• Vehicle speed

• Heat input and flow for engine oil

• Heat input and flow for transmission oil

• Heater core air temperature and flowrate

• Inlet air temperature of low temperature radiator
An initialization component is included with the

system model to allow convenient, consistent
initialization of the system and specification of the
boundary conditions. The initialization component
also includes the ability to override the engine
calculations to allow isothermal simulations and
simulation of the system at specified steady state
boundary conditions.

Summary records are included for both the high
temperature and low temperature circuits to allow
easy access to relevant outputs, including flowrates,
temperatures, heat rejection in the coolers, etc.

2.2 System Characterization
One of the main challenges in building the model of
the Scorpion diesel cooling system is the lack of data to
parameterize the components and characterize the
system outside of publicly-available data in literature.
This data along with knowledge of similar systems was
used to get a reasonable, first cut system model though
is admittedly imperfect and not desirable for model
accuracy.

One key piece of characterization data is the flow
and efficiency data for the mechanical pump. This data
was not readily obtained from published literature.
Hanon provided estimates of the flow and system head
requirements for the circuits. This data was then used
to characterize the mechanical pump model at different

operating speeds. No mechanical efficiency data was
provided so the pump was assumed to operate at a
constant 55% efficiency. This value could be
considered on the high side, but a conservative value
was chosen so as to not bias results towards the electric
pumps. For the calculation of energy to drive the
pump, the fuel power required to drive the pump was
calculated using the engine BSFC.

For the electric pump system variant, Hanon
provided estimates of the pump efficiency and
flowrates vs. head characteristics at various speeds
based on development and actual hardware. The flow
characteristics for the HCP-1KW pump used in the
high temperature circuit are shown in Figure 5. The
efficiency data provided mapped from hydraulic power
to electric power. Since the electric pump system is
included in a conventional system and to provide
consistent comparisons of energy to drive the pump,
the fuel power required to drive the electric pumps was
calculated based on the efficiency data provided and an
estimate of the alternator efficiency along with the
engine BSFC. The alternator efficiency was assumed
to be 55% at all operating conditions. With this
approach, fuel energy comparisons can be made
between the mechanical and electric pump systems.

Figure 5. Flow characteristics for Hanon HCP-1KW
pump used in high temperature cooling loop

Since no detailed flow information was available for
the individual flow branches at different conditions,
assumptions were made based on information for a few
operating points to establish a flow distribution. The
cooling system service manual provided information
on the thermostat opening conditions for both the high
temperature and low temperature circuits. As can be
seen in Figure 1, lumped flow resistances were
included in the various branches to allow calibration of
the flow distribution. The flow resistances are
parameterized with an operating point friction model
that takes nominal flow and pressure drop data for a
given operating point. Using information for the

E
n
g
in

e
 B

M
E

P
 [
b
a
r]

Diesel Cooling System Modeling for Electrification Potential

122 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157117

thermostats, isothermal flow tests were conducted at
various operating conditions to calibrate the flow
resistances in the model to provide the desired flow
distribution. The flow characterization of the system
remains fixed and only the pumps are switched to go
from the mechanical to electric pump system.

The system volume for the high temperature and
low temperature circuits were provided in the cooling
system manual. The distribution of the volume within
the individual circuit was provided based on rough
judgement of the sizes of the various components. The
volume of the oil circuits was also obtained based on
available data and entered into the simplified circuits.

Following the flow characterization of the system,
thermal characterization of the system is required to
run reasonable thermal simulations. Typically this sort
of characterization is easily provided based on heat
exchanger performance characteristics that can be
readily entered into the model. The heat exchangers in
the system shown in Figure 1 include the high
temperature radiator, heater core, engine oil cooler, low
temperature radiator broken into upper and lower
sections, EGR cooler broken into high temperature and
low temperature sections, transmission oil cooler, fuel
cooler, and charge air cooler. These heat exchangers
are all modeled using the StaticEffectivenessTable
model in Liquid Cooling Library. This model specifies
the heat exchanger performance as a 2D effectiveness
table based on the mass flowrates of the individual
fluid streams. However, this sort of data was not
readily available in public literature. To provide
characterization data for the heat exchangers, Hanon
provided data for similar types of heat exchangers
based on simulated and actual hardware. This data was
then scaled as needed to provide the effectiveness maps
used in the model. The heater core was not
characterized but was set to an inactive state in the
model.

To characterize the radiator airflow, the flow areas
to the high temperature radiator and the two sections of
the low temperature radiator were estimated. A table
for the grill factor as a function of vehicle speed was
estimated. Using this table, the external air velocity
was calculated. This velocity was then converted to a
mass flow using the flow area parameters. Since the
low temperature radiator is in front of the high
temperature radiator, the external air outlet temperature
from the low temperature radiator is used as the inlet
temperature for the high temperature radiator. While
manually considered in this model, detailed heat
exchanger models using Heat Exchanger Library
(Modelon AB, 2018) handles this stacking effect in a
natural, distributed way based on component geometry
and stack layout. These models could be integrated
into the cooling system circuit but were beyond the
scope of this effort given that they require design-
oriented geometric data not readily available.

2.3 Electric Pump Control
The conventional mechanical system operates without
active control for the coolant flow as the pump speeds
are determined by the engine, and thermostats are
passive flow control devices based on operational
setpoints. For the system retrofit with electric pumps,
a controller is implemented to control the pump speed.
Figure 6 shows the electric pump controller. The
controller operates based on target coolant
temperatures for the various coolers. The commanded
pump speed increases as coolant temperatures exceed
the target temperatures. A minimum pump speed is
specified to ensure that there is sufficient flowrate to
avoid hotspots in the system. In addition, the pump
hardware is designed to only operate in a particular
speed range. A maximum pump flowrate is also
specified to ensure that the pump stays within
operational limits.

Figure 6. Electric pump controller

3 Simulation Results
Following the characterization of the system, a series
of simulations were run to evaluate the potential of the
electric pump system as compared to the baseline
mechanical pump system. The simulations were
conducted on the FTP cycle. Figure 7 shows operating
conditions for the FTP cycle used for the simulations
including the following plots from top to bottom:

• Vehicle speed [kph]

• Engine speed [rpm]

• Engine power [W]

• Fuel flow rate [g/s]

• High temperature radiator flow rate [kg/s]

• Low temperature radiator flow rate [kg/s]

Diesel Cooling System Modeling for Electrification Potential

DOI Proceedings of the 13th International Modelica Conference 123
10.3384/ecp19157117 March 4-6, 2019, Regensburg, Germany

Figure 7. Operating conditions for FTP cycle

3.1 Baseline Electric Pump Controller
The electric pump controller is based on target coolant
temperatures for various parts of the system. Unlike
the mechanical pump system, the electric pump system
can operate at lower pump speeds and flowrates.
However, effectiveness of coolers can be low at low
flowrates. With low effectiveness, there is minimal
heat extracted in the cooler and thus no real effect on
the coolant temperature. In this situation, the
temperature of the fluid being cooled rises, but the
electric pump controller will not respond to increase
the flowrate since it is based on coolant temperature
targets. Thus, a series of simulations were run to
identify the appropriate minimum pump speed to
ensure that the engine oil and transmission oil
temperatures are kept under control. Figure 8 shows a
comparison of the engine oil and transmission oil
temperatures for the mechanical pump system and
electric pump system at different minimum pump
speeds. Based on these simulations, the minimum
pump speed is set to 2000 RPM for the high
temperature electric pump and 3000 RPM for the low
temperature electric pump to provide similar

temperatures as in the baseline mechanical pump
system.

Figure 9 compares coolant temperatures in and out
of the high temperature radiator along with the
thermostat opening and mass flowrate through the
radiator for the mechanical and electric pump systems.
The coolant profiles are very similar.

Figure 8. Effect of minimum electric pump speed on
engine and transmission oil temperatures

Figure 9. Comparison of coolant temperatures and
flowrates at high temperature radiator

Diesel Cooling System Modeling for Electrification Potential

124 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157117

Figure 10 compares high temperature pump

conditions between the mechanical and electric pump
systems. Since the FTP cycle is such a lightly loaded
cycle, the electric pump system can operate at the
minimum pump speed for the entire cycle. A
comparison of the pump flowrates shows how much
flow circulates in the mechanical pump system due to
the linking of pump speed with engine speed. Even
though the overall efficiency of the electric pump
system is lower than that of the mechanical pump
system, the total pump energy is significantly less in
the electric pump system as the hydraulic power
requirement is so much lower due to the lower
flowrates.

Figure 10. Comparison of high temperature pump
conditions for mechanical and electric pump systems

Figure 11 compares temperatures in the low

temperature circuit between the mechanical and
electric pump systems. Temperatures are similar
between the two systems though slightly higher in the
electric pump system.

Figure 12 compares low temperature pump
conditions between the mechanical and electric pump
systems. Again, the electric pump system can run at
the minimum pump speed for the entire cycle. As with
the high temp pump, the overall flowrates are
significantly less in the electric pump system. The
overall efficiency of the electric pump system is again
lower than the mechanical pump system. For the low
temperature circuit, the total pump energy for the
electric pump system is larger than the mechanical
pump system as the reduction in hydraulic power is not
enough to offset the reduced efficiency.

Figure 11. Comparison of temperatures in the low
temperature circuit

Figure 12. Comparison of low temperature pump
conditions for mechanical and electric pump systems

Table 1 shows a comparison of the fuel consumption
between the mechanical and electric pump systems.
The fuel consumption on the cycle is reduced from
1.6% of the total cycle fuel to approximately 0.9% of
the total cycle fuel with the electric pump system. As
discussed previously, the electric pump system
provides a benefit on the high temperature circuit but
not on the low temperature circuit due to the flowrate
required to manage the transmission oil temperatures
given that the mechanical pump system is inherently
more efficient.

Diesel Cooling System Modeling for Electrification Potential

DOI Proceedings of the 13th International Modelica Conference 125
10.3384/ecp19157117 March 4-6, 2019, Regensburg, Germany

Table 1. Fuel consumption comparisons for the
mechanical and electric pump systems

3.2 Electric Pump Controller with Oil-Based
Control

As described in Section 2.3, the baseline electric pump
controller is based on target coolant temperatures.
However, this control scheme requires that the
minimum pump speed is set to control oil temperatures
indirectly. As seen in the previous section, the electric
pump system basically operates at minimum pump
speed due to the light loads in the FTP cycle.

Another potential benefit of the electric pump
system is the ability to accelerate the warmup of the
engine and transmission oil by controlling the flow to
the oil coolers. This benefit translates into fuel
consumption due to reduced losses and friction due to
oil temperatures that more rapidly reach the desired
operating range. To evaluate this potential, the control
algorithm was modified to explicitly control the engine
and transmission oil temperatures in addition to target
coolant temperatures for the other coolers. Figure 13
shows a comparison between the two different electric
pump control strategies for the engine and transmission
oil temperatures. By explicitly considering the oil
temperatures in the electric pump strategy, the electric
pump system can deliver oil temperatures that more
quickly reach desired operating range while still
managing the maximum temperature constraints.

Though the additional steps to translate these
operating temperature benefits into fuel consumption
metrics were beyond the scope of this work, they are
being considered for further development of the
simulation platform for Hanon. Potential future work
also includes simulation of different vehicle cycles to
evaluate fuel economy potential on a wider range of
relevant usage profiles.

Figure 13. Comparison of electric pump systems with
coolant only and coolant + oil temperature control, engine
and transmission oil

4 Summary
This paper describes an effort to develop an analytic
platform for Hanon Systems to evaluate the
electrification potential for powertrain cooling systems.
This analytic platform allows rapid virtual prototyping
of different cooling systems to evaluate the potential of
Hanon hardware and controls solutions for systems
optimization. This platform was demonstrated on a
model of the diesel cooling system for the Ford Power
Stroke diesel 6.7L V8. A baseline model of the
mechanical pump system was built and characterized
for flow and thermal response. An electric pump
variant of the system was built by replacing the
mechanical pump with electric pumps from Hanon.
Two different electric pump control strategies were
implemented. The electric pump system demonstrated
a fuel economy benefit when evaluated on the FTP
cycle and also showed the potential benefit for more
rapid warmup of engine and transmission oil with a
modified control algorithm.

Future work on this model includes opportunities for
better system characterization if data on the actual
system can be obtained. In particular, actual
characterization of the mechanical pump and heat
exchanges would greatly improve model accuracy.
Quantifying the benefits of the increased warmup of
the oil temperatures for reduction in friction and losses
is also a focus of future work. Integrating the cooling
system model with a full vehicle simulation would
reduce the need for driving the simulations with engine
conditions and pick up additional interactions with the
vehicle loads. Simulation on different vehicle cycles
would also allow the evaluation of fuel economy
potential on a wider range of usage profiles.

Diesel Cooling System Modeling for Electrification Potential

126 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157117

While this work focused on simply replacing the

mechanical pump with electric pumps, future work
with this modeling capability includes evaluation of
concepts to redesign the system and develop control
strategies to take full advantage of the capability of the
electric pump system to deliver flow on demand to
individual coolers in the high and low temperature
circuits.

Acknowledgements
The authors would like to thank Chris Leonello and
Ondrej Pavlica from Hanon Systems for providing
surrogate heat exchanger data to support thermal
characterization of the system.

References
Arvind Thiruvengadam, Saroj Pradhan, Pragalath

Thiruvengadam, Marc Besch, Daniel Carder, and Oscar
Delgado. Heavy-Duty Vehicle Diesel Engine Efficiency
Evaluation and Energy Audit, Final Report, October 2014,
https://www.theicct.org/sites/default/files/publications/HD
V_engine-efficiency-eval_WVU-rpt_oct2014.pdf

John Batteh, Jesse Gohl, Sureshkumar Chandrasekar.
Integrated Vehicle Thermal Management in Modelica:
Overview and Appliations. Proceedings of the 10th
International Modelica Conference, March 10-12, 2014,
Lund, Sweden. doi: 10.3384/ECP14096409.

C. Bouvy, P. Jeck, J. Gissing, T. Lichius, L. Ecksterin.
Holistic Vehicle Simulation using Modelica - An
Application on Thermal Management and Operation
Strategy for Electrified Vehicles. Proceedings of 9th
International Modelica Conference, pp. 263-270, 2012.

Deraad, S., Fulton, B., Gryglak, A., Hallgren, B. et al., "The
New Ford 6.7L V-8 Turbocharged Diesel Engine," SAE
Technical Paper 2010-01-1101, 2010,
https://doi.org/10.4271/2010-01-1101.

I. Krüger, A. Mehlhase and G. Schmitz. Energy
Consumption of Battery Cooling In Hybrid Electric
Vehicles. Proceedings of 14th International
Refrigeration and Air Conditioning Conference, 2012.

Modelon AB, Lund, Sweden. (2018). Heat Exchanger
Library. http://www.modelon.com/products/modelon-
library-suite/heat-exchanger-library/

Modelon AB, Lund, Sweden. (2018). Liquid Cooling
Library. http://www.modelon.com/products/modelon-
library-suite/liquid-cooling-library/

Massimo Stellato, Luca Bergianti, and John Batteh.
Powertrain and Thermal System Simulation Models of a
High Performance Electric Road Vehicle. Proceedings of
the 12th International Modelica Conference, May 15-17,
2017, Prague, Czech Republic. doi: 10.3384/ecp17132171.

Jason Zheng. Multi-Disciplinary Approach to Thermal
Systems Design and Optimization. SAE Thermal
Management Systems Symposium, 18TMSS-0012, October
9-11, 2018. San Diego, CA.

DOI Proceedings of the 13th International Modelica Conference 127
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 2A: BUILDINGS 2
Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems
Aoun, Nadine and Bavière, Roland and Vallée, Mathieu and Brun, Adrien and Sandou, Guillaume

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS
Jorissen, Filip and Helsen, Lieve

An Extended Luenberger Observer for HVAC Application using FMI
Bortoff, Scott and Laughman, Christopher

.

128 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

DOI Proceedings of the 13th International Modelica Conference 129
10.3384/ecp19157129 March 4-6, 2019, Regensburg, Germany

Dynamic Simulation of Residential Buildings Supporting the Development of
Flexible Control in District Heating Systems
Aoun, Nadine and Bavière, Roland and Vallée, Mathieu and Brun, Adrien and Sandou, Guillaume

129

Dynamic Simulation of Residential Buildings Supporting the

Development of Flexible Control in District Heating Systems

Nadine Aoun1,2,3 Roland Bavière2 Mathieu Vallée2 Adrien Brun2 Guillaume Sandou1
1 L2S, CentraleSupélec, Gif-sur-Yvette, France, {Nadine.Aoun, Guillaume.Sandou}@centralesupelec.fr

2 CEA, LITEN, Grenoble, France, {Nadine.Aoun, Roland.Baviere, Mathieu.Vallee, Adrien.Brun}@cea.fr
3ADEME, Angers, France, Nadine.Aoun@ademe.fr

Abstract
Load shifting, peak shaving and night-time setback are

key demand-side management measures to make the

operation of District Heating Systems (DHSs) more

flexible and efficient. These goals can be achieved

through appropriate control strategies exploiting the

building’s and space heating system’s thermal inertia.

To ease the development of such an advanced controller,

we programmed a detailed dynamic Modelica simulator

representative of French multi-stories radiator-heated

residential buildings. We parametrized the simulator to

vary the factors influencing the flexibility potential of a

building (e.g. envelope properties, additional internal

mass such as partition walls and furniture, the heating

system…). This helped us designing a reduced-order

building model relevant to our application and setting up

a robust identification method for its parameters. We

finally used the detailed simulator to test an optimal

space-heating controller, thereby allowing many

incremental improvements without jeopardizing end-

users thermal comfort. This simulation work paves the

way to considering the actual implementation of our

advanced controller on a real building.

Keywords: District Heating System, Optimal Control,
Building Simulation, Reduced-order building model

1 Introduction

1.1 Context of this research

District Heating (DH) has been known for many years

as an efficient mode for space heating and domestic hot

water preparation in dense urban areas. District Heating

Systems (DHSs) have genuinely an important role to

play in the future of sustainable energy systems (Lund

et al., 2014, 2010) as they allow greater integration of

renewable power and recycling of low-temperature

excess heat; therefore, a substantial reduction in fossil

fuel consumption, 𝐶𝑂2 emissions as well as heat

production costs can be achieved by converting from

individual to district heating. Yet exploiting the full

potential of a DHS relies on advanced management at 3

levels: production, distribution and demand. Demand-

Side Management (DSM) of DHSs is a key measure for

peak load shaving. It consists in modulating the heat
demand for buildings’ space heating by using the

available thermal inertia for a free short-term heat

storage. Relying on this technology at a city scale, DH

production load could be reduced at peak hours thus

avoiding the start-up of expensive and pollutant fossil

fuel generation units.

Our research group is involved in the design of an

optimal space-heating controller for residential

buildings connected to DHS. Within the FP7 City-Zen

project (City-zen, 2018) we will demonstrate the use of

this controller on a building located in the city of

Grenoble, France. To support our work during the

design and validation phases, we developed a detailed

building dynamic simulator. This paper reports on the

development of the simulator and its use in the research

context we have just described.

1.2 Structure of this paper

We organized the remaining part of this paper as

follows. Section 2 gives an overview of the

programming languages and simulation environments

suitable to our application. We then describe the detailed

building simulator in section 3. In section 4 we present

how we used the simulator to develop and assess an

optimal space-heating controller. In section 5, we

discuss the obtained results and conclude our study.

2 Simulation environments

This part is focusing on building thermal simulation and

more broadly on platforms integrating Building Energy

Model (BEM). Figure 1 shows examples of applications

and related simulation tools. It also indicates an order of

magnitude of the number of buildings modelled for each

of the applications and the category to which the

building model belongs. BEM could be split into two

categories, the classic and the simplified.

The classic approach is originally designed for a

stand-alone building: TrnSys, EnergyPlus, Pleiade,

IDA-Ice, BuildSysPro, Buildings… The building is

broken down into a set of walls and volumes. The

geometric description can be very realistic. The main

assumptions that are made are the unidirectional

conductive transfers, and uniform variables on the air

volumes. A detailed description of modelling methods

is proposed in (JA Clarke, 2001) and (Bruno Peuportier,

2016). These simulation tools have been the subject of

numerous benchmarks (Judkoff and Neymark, 2013),

(Brun et al., 2009) and experimental validations.

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

130 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157129

The simplified approach generally uses analogy

between electricity and heat transfer to represent models

as an electrical circuit. This type of modelling assumes

a linearization of the long wave radiative transfers and

constant heat transfer coefficient. (Foucquier et al.,

2013) presents and assess other simplifications that are

generally made: merging thermal zones, merging walls

and reducing walls discretization. This approach is used

in building control-command, energy diagnosis but also

when the number of building is important (network

control, micro-climate, urban energy flow). There is a

wide variety of Resistance-Capacitance (RC) scheme

and no dedicated benchmark.

Figure 1. Building simulation environments for various

applications and number of buildings.

We can notice that our field of application is the one

for which some tools are based on a detailed modelling

and others on a simplified modelling. There is currently

no consensus on the approach to be used. (Frayssinet et

al., 2017) shows that more detail envelope meshing than

usual simplified BEM is needed when studying power

demand. (Perez et al., 2015) presents the R7C4 mono-

zone model developed to consider the major phenomena

in the DIMOSIM simulation platform. In their opinion,

classic BEM is not appropriated to simulate a lot of

building at the same time due to their high

computational time and/or required parameters.

(Nageler et al., 2018) presents a study with 34 buildings

modelling by means of classic BEM and data driven

method. They show that this is technically feasible.

(Ribault et al., 2017) showed that Energyplus has

interesting feature for decision-support tools for urban

densification in a 22 buildings model district. The ease

of implementation of distributed computing tends to

move the boundary and allow the use of detailed models

in large numbers.
In view of the above, we used the Modelica language

that allowed us to implement both approaches. A classic

BEM for the building simulator (see section 3) and a

simplified approach for the optimal space-heating

controller (see section 4.1).

3 The building simulator

3.1 Generalities

The building simulator is a generic, easily

parameterized Modelica model of a multi-storeys

building with the main vocation of generating reliable

data in replacement of real in-situ measurements. We

made some simplifications to obtain representative

results while maintaining the parametrization burden

tractable. An important design goal of our simulator is

the ability to produce numerical results at the expense of

reasonable simulation run times.

We built our simulator as a pile of thermally

connected identical floors. For simplicity, we

considered a rectangular footprint and we discretized

each floor into 4 thermal zones, with configurable

surface fractions, as shown in Figure 2. The orientation

of the building simulator is set using the Θ azimuth angle

between the North direction and the building main axis

(see Figure 2). The default value of 0 for Θ can be used

to represent and “ideal” orientation where equivalent

Night, Day, Kitchen and Bathroom zones are facing

North, South, West and East, respectively.

Figure 2. Spatial discretization of one floor (top view)

showing the modelled elements and the thermal

phenomena considered in the simulator.

We represent each thermal zones using a MixedAir

model from the Modelica Buildings library (Wetter et

al., 2011). Thus, our simulator considers transient heat

conduction through opaque walls, heat transfer through

glazed surfaces (with consideration of solar and infrared

irradiations), and external/internal convective and

radiative heat transfers. Our simulator also includes a

hydronic space-heating system composed of a

centralized production unit, distribution pipes and

radiators each equipped with a thermostatic valve. We

used the RadiatorEN442_2 model from the Buildings

library and models from our own Modelica

DistrictHeating library (Giraud et al., 2015) for the

1 10 100 1000

BuildSysPro
Buildings

IDA ICE
trend

trend
Smart-E

Smart-E

CitySim

Classic BEM

Simplified BEM

Night Zone

Day ZoneK
it

ch
e

n

B
ath

ro
o

m

Internal Gain

In
te

rn
al

 M
as

s

Thermal
Conduction

Thermal
Convection

External Wall Glazing System Bearing Wall

Infrared
Radiation Solar Radiation

Distribution

Heat Exchange
due to Ventilation

Heat Exchange due to
Door Opening

Radiative & Convective
heat source with

temperature regulation

N
θ

Z

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

DOI Proceedings of the 13th International Modelica Conference 131
10.3384/ecp19157129 March 4-6, 2019, Regensburg, Germany

distribution pipes, the centralized production unit and

the thermostatic valves.

We also implemented a stochastic model of internal

gains at the thermal zone level. We statistically model

the signal for each zone by combining three heat sources

related to occupancy profile, electric appliances and

domestic hot water use at a 10 minutes time step.

Finally, we expose the simulator to meteorological

boundary conditions; we used the ReaderTMY3, a

weather file reader from Buildings in which we can

upload Typical Meteorological Year (TMY) data for

various cities in France and Europe. An interested reader

will find further modelling details in the following

sections.

3.2 The envelope and the internal structures

External walls forming the envelope integrate glazing

systems of specific height and width, with neither

overhangs nor side-fins. Thermal zones are separated by

bearing walls. As for the zones’ interior, we carried out

the modelling of internal partition walls and furniture

with special attention since their mass is potentially a

significant contributor to short-term storage. In fact,

many studies have found that thermal inertia of

building’s internal mass has the potential, under certain

conditions, to maintain a decent comfort level inside the

building for hours after cutting off, or reducing, the

heating power (Antonopoulos and Koronaki, 2000; Le

Dréau and Heiselberg, 2016; Wolisz et al., 2015).

Therefore, empty zones would not reflect the correct

dynamics of the building. Furnishing elements and light

partition walls are modelled as horizontal and vertical

slabs, respectively with the properties listed in Table 1.

We referred to (Johra and Heiselberg, 2017), a survey

on the internal mass and its equivalent heat capacity

found in residential and single office buildings in

Denmark, to set these material properties, mass and

dimensions of furniture equivalent slabs.

Table 1. Properties of the internal mass equivalent slabs:

Thermal conductivity (k), Specific heat capacity (c),

Density (ρ), Mass per zone area (m) and thickness (ε).

Materia

l
𝐤

(𝐖 𝐦 ∙ 𝐊⁄)

𝐜
(𝐉 𝐤𝐠 ∙ 𝐊⁄)

𝛒
(𝐤𝐠 𝐦𝟑⁄)

𝐦
(𝐤𝐠 𝐦𝟐⁄)

𝛆
(𝐦𝐦)

Metal 60 450 8000 25 3

Wood /

Plastic
0.2 1400 800 25 18

Cerami
c /

Glass

1.25 950 2000 5 10

Light
materia

l

0.03 1400 80 15 120

Light
partitio

n walls

0.015 1150 384 25 100

3.3 Thermal phenomena within the zones

This section details the physical modelling of the

considered thermal phenomena, symbolically depicted

in Figure 2.

Object-oriented Modelica language allows reusability of

pre-developed and validated components. In our

simulator, we rely on a thermal zone model, called

MixedAir found in the Modelica Buildings library and

we use to it model each of the building’s zones.

MixedAir is a volume of homogenous medium, typically

ambiance air, with boundary elements including walls,

slabs, windows, floor and ceiling. These construction

elements, also found in Buildings library, may be

exposed to external meteorological conditions via a

weather bus reading a weather file, or boundary

conditions of adjacent thermal zones in the case of a

shared wall, or the boundary conditions of the same

thermal zone in the case of internal partition walls.

Under dynamic simulation and due to temperature

differences, the volume of air exchanges heat with its

surroundings, thus affecting its thermal states and those

of the surroundings elements. Here is a concise

description of the thermal phenomena that are modelled

within MixedAir, further details may be found in (Wetter

et al., 2011).

 Convection

Thermal convection on both sides of each construction

element. Two options are available, either using a

temperature, flow and tilt dependent convection

coefficient or one with a fixed value. In our simulator,

we selected a fixed coefficient of 3 𝑊/𝑚2 for internal

convection and 10 𝑊/𝑚2 for external convection.

 Conduction

Thermal conduction through multi-layers construction

elements is assumed to be mono-directional and

computed by solving the heat equation after

discretization into a number of states. For each layer, the

number of states is proportional to the ratio between the

layer thickness and the square root of the material’s

diffusivity:

𝑛𝑠𝑡𝑎 ∝ 𝜀 ∙ √

𝑐 ∙ 𝜌

𝑘
 (1)

 Radiation

MixedAir has a complex model for solar radiation

thoroughly described in (Wetter et al., 2011) In short,

solar radiation that penetrates the unshaded windows is

computed. First it strikes the floor construction where

part of it is absorbed and the rest is reflected towards the

walls and the ceiling. Surfaces then exchange longwave

radiation between each other according to the Stephan-

Boltzmann law which may optionally be linearized.

Additionally, other sources of radiation may be injected,

for instance radiative heat from internal gain or from a

heating system. An interesting output from the radiation

model embedded in MixedAir is the room’s radiative

temperature roughly equal to the average temperature of

all the internal surfaces. Note that in our simulator all

windows are simulated with no shades for simplicity.

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

132 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157129

 Mass transfer

Although MixedAir is designed with a fluid port for

explicit modelling of aeraulic flows, in our simulator

direct heat transfer to the outdoor environment and

between zones respectively due to ventilation and door

opening is modelled as follows:

o Simple-flux ventilation

 Φ𝑧𝑜𝑛𝑒→𝑜𝑢𝑡𝑑𝑜𝑜𝑟 = 𝜌𝑎𝑖𝑟 ∙ 𝑐𝑝
𝑎𝑖𝑟 ∙ 𝑉 ∙ 𝑛

∙ (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟 − 𝑇𝑧𝑜𝑛𝑒)
(2)

where 𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟 and 𝑇𝑧𝑜𝑛𝑒 are the 𝜌𝑎𝑖𝑟(𝑘𝑔/𝑚3) and

𝑐𝑝
𝑎𝑖𝑟 (𝐽/𝑘𝑔 ∙ 𝐾) respectively stand for the density and

specific heat capacity of air, 𝑉(𝑚3) is the air volume of

the thermal zone and 𝑛 is the number of volume changes

per second. In reality 𝑛 is often variable and should be

stochastically modelled depending on tenant’s

behaviour, however in our work we assume it to be

constant to a value recommended under European

standards. A typical value for 𝑛 ranges from 0.2 to 0.6

volume changes per hour (ASHRAE Standard, 1989).

The default value in the simulator is 0.3.

o Door opening

 Φ𝑖→𝑗 = 𝜌𝑎𝑖𝑟 ∙ 𝑐𝑝
𝑎𝑖𝑟 ∙ 𝑆𝐷𝑜𝑜𝑟 ∙ 𝑣𝑚𝑖𝑥

∙ (𝑇𝑧𝑜𝑛𝑒[𝑖] − 𝑇𝑧𝑜𝑛𝑒[𝑗])
(3)

where 𝑆𝐷𝑜𝑜𝑟(𝑚2) is the open area separating two adjacent

zones, 𝑣𝑚𝑖𝑥(𝑚: 𝑠) is an equivalent mixing air velocity

through the door opening. The default value for 𝑣𝑚𝑖𝑥 is

0.13 𝑚/𝑠 (Van Schijndel et al., 2003).

The MixedAir model can then be subject to external

heat flows connected through two ports: one for

convective heat and another for radiative heat. External

heat sources are typically the heating system and the

internal heat gain due to electric appliances and

occupancy. The following sections describe how these

latter sources have been modelled.

3.4 The space-heating system

This section describes the modelling of the heating

system. The model is composed of radiators fed by a

two-pipe distribution network that connects a

centralized production unit, located in the building

basement, to the heated rooms.

As already stated in section 3.1, we used the

RadiatorEN442_2 model from Buildings, which

includes computation methods inspired by the EN-442

European standard. To favour numerical efficiency, we

limited the discretization level to 3 fluid control

volumes.

We developed a model of thermostatic valve to
control the hydronic flow through each radiator. The

first part of the model is a heat capacity exchanging heat

with its environment and representing the sensing bulb

of the valve. We defined the heat exchange coefficient

using a standard correlation valid for natural convection

flows around a vertical cylinder. In most practical

situations, this leads to an equivalent thermal time

constant (defined as the ratio between inertia and the

sensing-bulb to environment thermal conductivity) of

approximately 10 minutes. The second part of the model

relates the position of the valve to the difference

between the sensing bulb temperature and the set-point

value. Our model fulfils the specifications of the

European standards NF EN 215 to regulate the internal

air temperature around a specific set point temperature.

We also used pairs of pre-insulated tubes, available

in our Modelica DistrictHeating library (Giraud et al.,

2015) to model the building’s internal space-heating

network. These tubes account for the hydraulic head

losses and thermal losses occurring in the system. The

model also accounts for heat accumulation in the tubes.

Figure 3 describes the model we used to represent the

centralized production unit of the building’s space-

heating system. This unit can represent a substation

when the building is connected to a DHS. As can be seen

in the figure, the thermal power injected in the system at

the substation, hereafter denoted ΦSST, is controlled by a

cascade of two regulators. “Regulator 1” controls the

supply temperature denoted 𝑇𝑠 by adapting ΦSST. The

set-point value for 𝑇𝑠 is traditionally provided by a

heating curve, whose output is noted 𝑇𝐻𝐶, 𝑇𝑒𝑥𝑡 being the

external temperature. In our case, the set-point value for

𝑇𝑠 can be lower than 𝑇𝐻𝐶 ; it is then provided by

“Regulator 2” which is fed by a set-point value for ΦSST,

denoted Φ𝑆𝑆𝑇
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡, and an indirect measurement of ΦSST

built upon the mass flow-rate (�̇� in Figure 3), and the

supply and return (𝑇𝑟 in Figure 3) temperatures. The

reasons that guided us to design this control strategy are

twofold. First, it can be implemented on existing

systems and second, its architecture allows shifting

between a traditional temperature-driven mode to a

more advanced mode where the heating power is

planned using a Model Predictive Control (MPC)

approach. This aspect is illustrated in section 4 of the

present paper.

3.5 Internal heat gain model

Each zone in the building simulator receives a direct

internal heat gain flux, half of which is assumed to be

convective and the other half is radiative. MixedAir
handles these heat fluxes and integrates them into the

heat balances of the air and the radiative exchange

respectively. MixedAir can also handle latent heat gain,

yet it is not used in our work for simplification.

The original stochastic internal gain signal, which is

then divided into the two mentioned halves, is modelled

beforehand, separately by combining three heat sources

related to occupancy profile, electric appliances and

domestic hot water use. Generating this signal requires

a database with information concerning the presence

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

DOI Proceedings of the 13th International Modelica Conference 133
10.3384/ecp19157129 March 4-6, 2019, Regensburg, Germany

schedule of occupants inside the building, and whether

or not they are active or not (i.e. sleeping). In both cases,

the occupants’ presence generates heat due to their

metabolism, and furthermore when they are active, their

presence triggers the possibility of using electric

devices, such as stoves, ovens and laundry equipment.

Whereas other appliances are independent of the activity

of tenants, such as refrigerators. All appliances dissipate

heat as a fraction of their power input and with a certain

delay due to their relative thermal inertia. Domestic hot

water usage and its temperature level also affect the

signal of internal heat gain. Unfortunately, all the data

needed to build the internal gain profile is not available

for contemporary households in France. Luckily, a

survey was carried out in the UK in 2000 and the

collected data concerning the occupancy profiles and the

electric devices usage is available for the modelling of

internal gain signal of our work (Richardson et al., 2010,

2008). We used Markov chains to model a realistic

evolution of the signal based on these data. We referred

to the work in (Paatero and Lund, 2006; Widén et al.,

2009; Yao and Steemers, 2005) for the modelling of the

fraction of dissipated heat from the electric appliances

and the domestic hot water. The model generates a

signal per zone for a year with a 10 minutes step in

accordance with the magnitudes found in the French

thermal regulation 1. We then connect the profiles to the

building simulator.

3.6 Parametrization

The simulator can be parameterized to describe various

types of buildings. Yet there is one particular building

of interest in our work for the upcoming experimental

demonstration of the advanced control strategy; it is a

1 Arrêté Du 30 Avril 2013 Portant Approbation de La Méthode de Calcul

Th-BCE 2012 Prévue Aux Articles 4, 5 et 6 de L’arrêté Du 26 Octobre
2010 Relatif Aux Caractéristiques Thermiques et Aux Exigences de

Performance Énergétique Des Bâtiments Nouveaux et Des Parties

Nouvelles de Bâtiments. Annexe Détaillant La Méthode de Calcul Th-
BCE 2012. 2017

newly built, 8 stories residential building called Le

Salammbô, situated in the neighbourhood of Zac

Flaubert in Grenoble – France. It has been constructed

in accordance with the recommendations of the latest

European standards related to buildings thermal

consumptions (RT 2012 2) and consumes 20% less than

the threshold set by the standards. It is connected to a

low-pressure district heating loop and serves as a

demonstrator in the European project City-Zen (City-

zen, 2018).

However, according to Tabula 3, a statistical study of

the French residential buildings from a thermal point of

view, Le Salammbô (constructed in 2016) is not

representative of buildings of its category (multifamily

house) in France (see Figure 4).

Figure 4. Number of multifamily houses per construction

period (Source Tabula 3).

In order to carry out a more inclusive and

representative research on advanced control strategies

of space-heating demand in DHSs, we decided to

parameterize 3 different simulators with the same

2
http://www.gbpn.org/databases-tools/bc-detail-

pages/france#General%20Information
3

http://episcope.eu/fileadmin/tabula/public/docs/brochure/FR_TABULA

_TypologyBrochure_Pouget.pdf

ΦSST

Regulator 1

Regulator 2

Min

Φ𝑆𝑆𝑇
𝑆𝑒𝑡 𝑝𝑜𝑖𝑛𝑡

𝑇𝑠

𝑇𝑟 �̇�

𝑇𝐻𝐶

𝑇𝑒𝑥𝑡

𝑇𝑒𝑥𝑡

Figure 3. Schematic view of the centralized space-heating production unit composed of hydraulic connections, a

circulation pump, the heat generator (right) and the controllers (left).

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

134 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157129

geometric parameters as Le Salammbô but with different

construction materials found in Tabula 3 representing:

˗ A recent building constructed after 2012 because it

is representative of Le Salammbô itself.

˗ A building constructed between 1976 and 1981;

this category is thermally interesting because it

comes just after the year where the first European

standards concerning buildings thermal

performance (RT 1974) have been introduced.

˗ A building constructed before 1915, since it is the

most commonly found in France.

Table 2. Main thermal characteristics for 3 building

simulators.

The main thermal characteristics of the simulators are

reported in Table 2. Note that the sizing power is

estimated as the building’s thermal losses under extreme

conditions of -11°C external temperature (the sizing

temperature used in the city of Grenoble) with no solar

radiations of internal heat gain.

3.7 Numerical performance

In this section, we report on the numerical performance

of the simulator. We monitored the numerical efficiency

of a 8 stroreys building simulator, amounting 32 thermal

zones and radiators. The corresponding computational

problem weighs 79 𝑘 non-trivial equations. We

translated the model using DYMOLA 2019, compiled it

with Microsoft visual C++ build tools 2015, and

executed it on a Dell Power Edge 𝑅640 server, operated

by Windows Server 2016 equipped with two Intel Xeon

Gold 6154 3 GHz processors of 18 cores each. For

numerical efficiency reasons, we disabled multi-

threading. We also decided to enable the Node

Interleaving option thereby configuring the server as a

Symmetric Shared Memory Multiprocessing (SMP)

computer. These settings where found to be optimal for

the parallel execution of a simple “for” loop with

reduction using OpenMP.

Our test consists in executing simulation runs using

various solvers and computing options. The simulations

are run for typical winter meteorological conditions.

The execution time is expressed under the form of an

acceleration factor 𝐴𝑐𝑐𝑓 defined as the ratio between the

simulated period to the execution time. Thus, 𝐴𝑐𝑐𝑓 = 168

means that a simulation covering a period of 1 week

lasts 1 hour since a week is composed of 168 hours. We

limited the maximal time step used by the integrator to

900 𝑠 by generating time events.

Figure 5. Execution time, expressed as an acceleration

factor with respect to real time, as a function of the

number of cores and type of solver for a 𝟖 storeys

building simulator.

Figure 5 presents the obtained results. The simulation

runs are generally shorter when the number of cores

used for the calculation increases. Figure 5 shows a

quasi-linear trend when the number of cores involved in

the calculation is low. However, above 8 cores, there are

no more benefits in parallelization. A second

observation is that when appropriate solver settings are

used, the model execution time can reach 𝐴𝑐𝑐𝑓 = 420.

Such execution speed is well suited for control

applications implying simulation periods in the day to

week range. A reduction in the number of thermal zones

and/or number of storeys would be necessary to perform

annual simulations.

4 Using the simulator to assess an

optimal space-heating controller

In this section, we describe how we used the simulator

to design and test an optimal space heating controller

enabling load shedding for DH network. More

specifically, we used the simulator to perform three

essential steps:

1. Designing a reduced-order building model relevant

to our application (section 4.1)

2. Setting up a robust identification method for this

model (section 4.2)

3. Validating the obtained optimal space-heating
controller, within our simulation tool Pegase

(section 4.3)

30

300

1 10

Accf

of cores

CvOde
RadauIIA
DASSL
y = x
y = sqrt(x)

Simulator Envelope
Glazing

system

Number

of air

renewal

per

hour

Sizing

heating

power

(kW)

After 2012

Concrete,

exteriorly

insulated with
16 cm of

expanded

polystyrene

double-
glazed

with 16

cm of
argon

0.3 56.2

Between

1976 and

1981

Cinderblock,

exteriorly

insulated with 4
cm of expanded

polystyrene

double-
glazed

with 6

cm of air

0.4 88.6

Before

1915

Stone (40 cm-
thick),

uninsulated

single-

glazed
0.5 134.8

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

DOI Proceedings of the 13th International Modelica Conference 135
10.3384/ecp19157129 March 4-6, 2019, Regensburg, Germany

One important aspect to underline is that a key issue

in the context of our application is the need to perform

the building model identification as well as the optimal

control with very limited measurements inside the

building itself. In particular, optimal space heating

control would be very beneficial to DH operators,

however they typically have no access to detailed

information or measurements inside the building they

are heating. In this context, the detailed and versatile

building simulator described in the previous section 3

provided a perfect environment for validating the

proposed strategy on a range of different buildings, so

that to ensure its reproducibility using real-world data.

4.1 Reduced-order building model design

A first step in the proposed optimal control approach is

the design of a reduced-order building model (ROM). In

our case, we are specifically considering linear or linear-

saturated models, which are suitable for a mixed-integer

linear programming (MILP) optimization. Although

various optimization techniques could be used to

perform optimal control, the MILP formulation provides

many advantages (proven optimality, short resolution

times, easy deployment). It was also shown in previous

works that these advantages greatly compensate for the

small loss of precision compared to more detailed non-

linear models (Ommen et al., 2014; Schütz et al., 2017).

Simple building modelling is a well-researched topic

(see section 2). RC modelling starts by defining the

structure of the ROM; i.e. the number of elements we

wish to represent for a belief that they might have a

considerable influence in the desired application. The

simulator comes in handy to test the influence of certain

elements. In this section, a parametric study performed

using the simulator and which has helped setting the

ROM structure is described.

We shall first recall that the ROM will be used to

apply and assess DSM measures. For instance, during

load shifting, we want to rely on this model to optimally

plan the heat delivered to the building without

jeopardizing the thermal comfort. We expect the real

building inertia to delay the mean internal temperature

drop, thus offering heat demand flexibility. Therefore, a

reliable ROM structure should well predict these delays.

In simplified RC models, thermal delays are created by

introducing thermal capacitances (C). The simulator

will help us determine, per building class, which

element in the building is worth being represented by a

“C” in the RC model for MPC applications.

To answer this question we considered the 3 building

simulators already presented in section 3.6 and Table 2.

For each of these buildings we considered 3 levels of

internal mass by simply modifying the parameter of the

mass density per m² of furniture-equivalent slabs:

˗ Empty zones with no internal mass.

˗ Light internal mass of a total of 70 kg/m².

˗ Heavy internal mass of a total of 140 kg/m².

For each case we considered 3 simulations to assess the

influence of the heating circuit inertia:

˗ A simulation where the heating system model

is omitted and heat is directly injected into the

zones through the internal air node.

˗ A simulation with low temperature radiator

system having a supply water at 50°C

˗ A simulation with high temperature radiator

system having a supply water at 70°C

Using the thus derived versions of the simulator, we

could record the effect of shutting down the heating

power to characterize the building time constants, using

the following simulation protocol:

1. Reaching steady state conditions, for an internal

temperature set-point of 20°C.

2. Cutting out the power supply at the substation.

3. Recording the internal temperature drop, up to a

1°C drop from the set point.

4. Comparing the time constants sensibility obtained

for each insulation class to the addition of internal

mass and the heating system’s inertia.

From this study we could conclude that taking into

account both the space-heating circuit and the internal

thermal mass were of prime importance for load

shedding for all building classes. The obtained detailed

results from the simulator can also be compared to the

experimental study in (Kensby et al., 2015), in which

conclusions could only be reached about the need for

considering several time constants.

Therefore, we propose the structure depicted in

Figure 6 for MPC applications. The building model

features 3 thermal capacitances, 4 thermal resistances

and 3 solar gain coefficients. The building model is

linear and can be easily derived from the analogical

network. The heating circuit model features 1 thermal

capacitance to delay the heat delivered at the substation

level Φ𝑆𝑆𝑇 from that injected into the air node Φ𝑟𝑎𝑑. It

is symbolically represented in Figure 6. Equations of

this model include a saturation to limit the substation

power to its maximum sizing value. These aspects are

rarely modelled in other studies, but the flexibility of

Modelica enabled us to model them and assess their

importance in a single tool.

Figure 6. Structure of ROM proposed in light of the

parametric study performed using the building simulator.

Symbolic representation of the
heating circuit model

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

136 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157129

Table 3. Nomenclature of the ROM elements.

Symbol Meaning Subscript Relative to

𝑇 Temperature [K] 𝑒𝑥𝑡
The external

environment

𝑪
Thermal capacitance
[J/K] 𝑎𝑖𝑟

The building
indoor air

𝑹𝒗
Thermal resistance of

ventilation [K/W] 𝑒𝑛𝑣
The building

envelope

𝑹𝑶

Thermal resistance

between the envelope

and the outdoors [K/W]
𝑚𝑎𝑠𝑠

The building
internal mass

𝑹𝒊

Thermal resistance

between the indoor air

and the envelope [K/W]
𝑐𝑖𝑟

The heating
circuit

𝑹𝒎

Thermal resistance

between the indoor air

and the internal mass
[K/W]

𝒌𝒔
Solar gain coefficient

[m²]

ΦSST
Space-heating power at
the substation [W]

Φrad
Space-heating power at

the radiators [W]

𝜙𝑠𝑜𝑙
Global horizontal solar

radiation flux [W/m²]

4.2 Reduced-order model identification

After the structure definition comes the parameters’

identification. This step requires historical data to tune

the parameters of the ROM (Figure 6, marked in a bold

font in Table 3), with the goal of obtaining an optimal

set of parameters that best fits that historical data. In our

work, historical data is replaced by data generated by the

building simulator, and we restrain it to real-world data

accessible to DH operators which is mostly found at the

substation level, i.e. outside the building. This means we

need to identify the parameters based on the space-

heating load power at the substation, and without

continuous and intrusive internal temperature

measurements.

The detailed building simulator was again of great

help for this task, as it enabled us to test several

identification methods as well as to verify the results on

the internal temperature behaviour (which would not be

available in the real world).

The identification method itself is based on the

GenOpt optimisation toolkit, and will be described in a

future publication. Although more detailed results are

out of scope of this paper, we could in particular

highlight the following two results:

 The chosen ROM performs better at describing the

internal temperature behaviour when identified with

only load power at substation, compared to other

model structures. Interestingly, most previous work

considering identification using internal

temperature measurements had different findings,

which are not exploitable in our case.

 The correlation between the load power error and

the internal temperature error only appears for very
low load power errors, meaning that a set of

identified parameters may seem to perform

correctly when looking at load power error, but may

be performing poorly when looking at internal

temperature error. A more specific characterization

of this result is under study.

4.3 Validation of an optimal space heating

controller

Based on the previous steps and on other work, we were

able to design an optimal space heating controller. The

space-heating controller is designed to act at the district

heating substation level.

As explained in section 4.1, this controller is based

on a MILP problem formulation, as well as on a

receding horizon principle. More specifically, it

performs the following operations at regular time

intervals (here 15 minutes):

1. Collect data available at substation level (esp. load

power), as well as weather and energy cost

predictions. The hypothesis here is that energy

provision costs are variable over the day, either

because of renewable energy usage or by taking

into account variations in the global network load

leading to various generator use.

2. Formulate a MILP optimization problem, aiming

especially at controlling the power injected at

substation level while minimizing energy provision

costs and over/under-heating inside the building.

Part of this MILP problem is obtained from the

reduced-order building model, which describes the

expected thermal behaviour of the building.

3. Solve the MILP optimization problem over the a

given horizon (typically 24h), in order to define the

optimal trajectory of the control variable (here the

power injected at substation level)

4. Apply the obtained set point for the next time

interval (here 15 min), before performing the

optimization again to adjust for prediction changes

and real system behaviour.

At the validation step, the obtained set points are not

applied to the real building, but instead to the building

simulator. This particularly enables us to validate that

the internal temperature constraints and thermal comfort

are well respected.

We used our optimal control tool called Pegase.

Pegase is based on the Functional Bloc Simulation

Framework (FBSF, 2018) which provides a very

efficient C++ co-simulation master fully compatible

with the FMI 2.0 standard. Pegase also embeds MILP

formulation capacities based on the Eigen linear algebra

library (Eigen, 2018), and is integrated with numerous

MILP solvers. Using this tool, each iteration step

(problem formulation, resolution and building

simulation) is performed in a few seconds on a standard

PC, using the GLPK open source solver in this case

(GLPK, 2018). A real-world deployment of the

controller is also available, in which case the building

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

DOI Proceedings of the 13th International Modelica Conference 137
10.3384/ecp19157129 March 4-6, 2019, Regensburg, Germany

simulator FMU is simply replaced with communication

to the real system in place.

Figure 7 presents some first results obtained with the

optimal space-heating controller. In Figure 7, the

predictive quantities, the outputs of the controller and

the results of the detailed building simulator are

respectively plotted with dot-dashed lines, dashed lines,

and solid lines. From top to bottom, the first 2 graphs

present the evolutions of the external temperature, the

total solar irradiation and the energy costs respectively.

We then present the planned substation power and the

internal building mean temperature. The bottom plot

shows the evolutions of the supply and return

temperatures of the space-heating system. To enable the

comparison with a standard control strategy, we also

plotted the supply temperature provided by the

buildings’ heating curve (see section 3.4).

Figure 7 shows that our controller is able to adapt the

substation heating power to the actual heating needs of

the building. This leads to a decrease of the supply

space-heating temperature when solar gains contribute

to space heating. Another interesting feature is that the

controller is able to decrease the internal building

temperature when energy prices are high thereby

demonstrating that the space-heating strategy considers

a balance between the energy purchase costs and the

end-users’ thermal comfort.

Figure 7. Sample results obtained with the space-heating

optimal controller of the model predictive control type.

5 Conclusion

In this paper, we present a Modelica-based building

simulator and show how it can efficiently support the

development of demand-side management control

strategies. Based on the MixedAir model available in the

Buildings library and on component models developed

in the DistrictHeating Library, we designed a

customizable simulator for multi-stories radiator-heated

residential buildings, representative of the French

district heating sector. By using Modelica as a support

language, we were able to model not only the building

envelope, but also to other relevant elements such as the

internal mass and the radiator heating system, which

play an important role when considering load shifting.

We also assessed the numerical performance of this

building simulator, especially the parallelization

features of the Dymola simulation tool. Although the

results show some limitation in the parallelization, we

could reach an acceleration factor of 420, meaning that

420 hours can be simulated in 1 hour, in our case using

8 cores in parallel. Such execution speed is well suited

for control applications implying simulation periods in

the day to week range. A reduction in the number of

thermal zones and/or number of storeys would be

necessary to perform annual simulations.

Finally, we illustrate how we used the building

simulator to design and assess an optimal space-heating

controller. In particular, we used the simulator to

perform three essential steps: designing a reduced-order

building model; setting up a robust identification

method for this model; validating the obtained optimal

space-heating controller. In all these tasks, being able to

define various building models with different

parameters, as well as to check the results of the optimal

space-heating controller on the simulator were essential.

Acknowledgements

We gratefully acknowledge ADEME (Agence de

l'Environnement et de la Maîtrise de l'Énergie) and the

City-Zen project for their support and financial

contribution in funding the Ph.D. thesis of Nadine Aoun.

References

Antonopoulos, K.A., Koronaki, E.P., 2000. Effect of indoor

mass on the time constant and thermal delay of

buildings. Int. J. Energy Res. 24, 391–402.

https://doi.org/10.1002/(SICI)1099-

114X(200004)24:5<391::AID-ER585>3.0.CO;2-L

ASHRAE Standard: Ventilation for Acceptable Indoor Air

Quality, 1989. . American Society of Heating,

Refrigerating and Air-Conditioning Engineers,

Incorporated.

Brun, A., Spitz, C., Wurtz, E., Mora, L., 2009. Behavioural

comparison of some predictive tools used in a low-

energy building, in: Eleventh International IBPSA

Conference. pp. 27–30.

Bruno Peuportier, 2016. Energétique des bâtiments et

simulation thermique, Eyrolles. ed.

City-zen, 2018. City-zen Project [WWW Document].

Cityzen-Smartcity. URL http://www.cityzen-

smartcity.eu/

Foucquier, A., Brun, A., Faggianelli, G.A., Suard, F., 2013.

Effect of wall merging on a simplified building

energy model: accuracy vs number of equations, in:

13th International Building Performance Simulation

Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District
Heating Systems

138 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157129

Association (Building Simulation 2013), Chambéry,

France, 25-28 August 2013.

Frayssinet, L., Kuznik, F., Hubert, J.-L., Milliez, M., Roux, J.-

J., 2017. Adaptation of building envelope models for

energy simulation at district scale. Energy Procedia,

CISBAT 2017 International ConferenceFuture

Buildings & Districts – Energy Efficiency from

Nano to Urban Scale 122, 307–312.

https://doi.org/10.1016/j.egypro.2017.07.327

Giraud, L., Bavière, R., Vallée, M., Paulus, C., 2015.

Presentation, validation and application of the

DistrictHeating Modelica library, in: 11th

International Modelica Conference. Presented at the

11th International Modelica Conference, Versailles.

JA Clarke, 2001. Energy Simulation in Building Design.

Johra, H., Heiselberg, P., 2017. Influence of internal thermal

mass on the indoor thermal dynamics and integration

of phase change materials in furniture for building

energy storage: A review. Renew. Sustain. Energy

Rev. 69, 19–32.

https://doi.org/10.1016/j.rser.2016.11.145

Judkoff, R., Neymark, J., 2013. Twenty years on!: updating

the IEA BESTEST building thermal fabric test cases

for ASHRAE standard 140. Proc. BS2013.

Kensby, J., Trüschel, A., Dalenbäck, J.-O., 2015. Potential of

residential buildings as thermal energy storage in

district heating systems – Results from a pilot test.

Appl. Energy 137, 773–781.

https://doi.org/10.1016/j.apenergy.2014.07.026

Le Dréau, J., Heiselberg, P., 2016. Energy flexibility of

residential buildings using short term heat storage in

the thermal mass. Energy 111, 991–1002.

https://doi.org/10.1016/j.energy.2016.05.076

Lund, H., Möller, B., Mathiesen, B.V., Dyrelund, A., 2010.

The role of district heating in future renewable

energy systems. Energy 35, 1381–1390.

https://doi.org/10.1016/j.energy.2009.11.023

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen,

J.E., Hvelplund, F., Mathiesen, B.V., 2014. 4th

Generation District Heating (4GDH). Energy 68, 1–

11. https://doi.org/10.1016/j.energy.2014.02.089

Nageler, P., Koch, A., Mauthner, F., Leusbrock, I., Mach, T.,

Hochenauer, C., Heimrath, R., 2018. Comparison of

dynamic urban building energy models (UBEM):

Sigmoid energy signature and physical modelling

approach. Energy Build. 179, 333–343.

https://doi.org/10.1016/j.enbuild.2018.09.034

Ommen, T., Markussen, W.B., Elmegaard, B., 2014.

Comparison of linear, mixed integer and non-linear

programming methods in energy system dispatch

modelling. Energy 74, 109–118.

https://doi.org/10.1016/j.energy.2014.04.023

Paatero, J.V., Lund, P.D., 2006. A model for generating

household electricity load profiles. Int. J. Energy

Res. 30, 273–290. https://doi.org/10.1002/er.1136

Perez, N., Riederer, P., Inard, C., Partenay, V., 2015. Thermal

building modeling adapted to district energy

simulation, in: Building Simulation.

Ribault, C., Bouquerel, M., Brun, A., Schumannb, M.,

Rusaouën, G., Wurtz, E., 2017. Assessing tools

relevance for energy simulation at the urban scale:

towards decision-support tools for urban design and

densification. Energy Procedia, CISBAT 2017

International ConferenceFuture Buildings &

Districts – Energy Efficiency from Nano to Urban

Scale 122, 871–876.

https://doi.org/10.1016/j.egypro.2017.07.452

Richardson, I., Thomson, M., Infield, D., 2008. A high-

resolution domestic building occupancy model for

energy demand simulations. Energy Build. 40,

1560–1566.

https://doi.org/10.1016/j.enbuild.2008.02.006

Richardson, I., Thomson, M., Infield, D., Clifford, C., 2010.

Domestic electricity use: A high-resolution energy

demand model. Energy Build. 42, 1878–1887.

https://doi.org/10.1016/j.enbuild.2010.05.023

Schütz, T., Schiffer, L., Harb, H., Fuchs, M., Müller, D., 2017.

Optimal design of energy conversion units and

envelopes for residential building retrofits using a

comprehensive MILP model. Appl. Energy 185, 1–

15. https://doi.org/10.1016/j.apenergy.2016.10.049

Van Schijndel, H., Zmeureanu, R., Stathopoulos, T., 2003.

Simulation of air infiltration through revolving

doors, in: Eighth International IBPSA Conference,

Eindhoven, Netherlands.

Wetter, M., Zuo, W., Nouidui, T.S., 2011. Modeling of heat

transfer in rooms in the modelica “buildings”

library, in: Proceedings of Building Simulation

2011: 12th Conference of International Building

Performance Simulation Association. Presented at

the 12th Conference of International Building

Performance Simulation Association Building

Simulation 2011, BS 2011, pp. 1096–1103.

Widén, J., Lundh, M., Vassileva, I., Dahlquist, E., Ellegård,

K., Wäckelgård, E., 2009. Constructing load profiles

for household electricity and hot water from time-

use data—Modelling approach and validation.

Energy Build. 41, 753–768.

https://doi.org/10.1016/j.enbuild.2009.02.013

Wolisz, H., Kull, T.M., Streblow, R., Müller, D., 2015. The

effect of furniture and floor covering upon dynamic

thermal building simulations. Presented at the

Energy Procedia, pp. 2154–2159.

https://doi.org/10.1016/j.egypro.2015.11.304

Yao, R., Steemers, K., 2005. A method of formulating energy

load profile for domestic buildings in the UK.

Energy Build. 37, 663–671.

https://doi.org/10.1016/j.enbuild.2004.09.007

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

DOI Proceedings of the 13th International Modelica Conference 139
10.3384/ecp19157139 March 4-6, 2019, Regensburg, Germany

Integrated Modelica Model and Model Predictive Control of a Terraced House
Using IDEAS
Jorissen, Filip and Helsen, Lieve

139

Integrated Modelica Model and Model Predictive Control of a
Terraced House Using IDEAS

Filip Jorissen1 Lieve Helsen1,2

1Mechanical Engineering, KU Leuven, Belgium, {filip.jorissen, lieve.helsen}@kuleuven.be
2EnergyVille, Belgium

Abstract
Modelica has been used extensively within the Thermal
System Simulation (The SySi) research group at KU Leu-
ven to simulate and optimize the control and design of
building energy systems. Within this scope, the open
source Modelica library IDEAS has been developed and
papers have been published that explain how IDEAS can
be used to develop fast simulation models and MPC. This
paper presents an open-source simulation model of a ter-
raced house for which these earlier presented guidelines
are applied and for which MPC results are made available.
A full-year simulation of the nine-zones model takes four
minutes and energy savings of 12.8 % are reported com-
pared to a current-practice rule-based controller, although
MPC has thermal comfort violations of up to 0.4 K.
Keywords: IDEAS, Model Predictive Control, TACO,
Building Energy Simulation

1 Introduction
Building space heating and HVAC account for 15 % of
the world final energy use (International Energy Agency,
2015). Therefore, according to the European Union’s Di-
rective 2010/31/EN (European Parliament, 2010), an in-
creasing effort is spent at increasing buildings efficiency
by improving their insulation level, by installing HVAC
systems with a high primary energy efficiency (e.g. a
combination of heat pump and floor heating or concrete
core activation), and by increasing the share of renew-
able energy sources in buildings. These systems increase
the thermal time constants of the building and introduce a
rapidly changing collection of devices into the built en-
vironment. Efficient design and operation of buildings
therefore calls for a dynamic simulation tool that can fol-
low rapidly changing trends. Furthermore, further sys-
tem integration with district heating systems and electri-
cal distribution networks calls for a tool that is not lim-
ited to a fixed set of disciplines. ‘Traditional’ Building
Energy Simulation (BES) tools often only offer a limited
set of models and can be difficult to extend. Furthermore,
their algorithms often tightly integrate equations and algo-
rithms for solving them into the same code (Wetter et al.,
2016; Wetter, 2009; Wetter et al., 2015), which compli-
cates the maintenance of such codes. Furthermore, ex-
tracting model equations is usually not supported.

Modelica thus has some clear advantages over these
BES tools. Firstly, Modelica is not limited in terms
of what models can be integrated. Secondly, Modelica
treats the model equations and algorithms for solving
them separately. The same set of equations can thus be
coupled to different solvers. This includes solvers both for
simulation and optimization. Since the model equations
are available, they can be differentiated automatically,
which enables the use of highly efficient derivative-based
optimization algorithms.

For these reasons, the Thermal Systems Simula-
tion (The SySi) research group at KU Leuven has
co-developed the open-source Modelica library IDEAS
(Jorissen et al., 2018c) together with the Building physics
department and the company 3E since 2010. One of
the main motivations for our continued development of
IDEAS, is to use the building models for optimal de-
sign and control applications, where the availability of
the model equations poses a crucial advantage. The de-
velopment of IDEAS is part of the IBPSA project 1,
the successor of the IEA EBC Annex 60 (Wetter and
van Treeck, 2017), which coordinates the development
of IDEAS with the Modelica libraries Buildings (Wet-
ter et al., 2014), AixLib (Müller et al., 2016) and Build-
ingSystems (Nytsch-Geusen et al., 2013). Our research
focusses in particular on Model Predictive Control (MPC).
Based on IDEAS, two main white-box approaches for
MPC have been developed so far.

Firstly, the model can be implemented using component
models from the package IDEAS.LIDEAS, which con-
tains component models that support linearisation. This
way the building envelope can be exported in the state
space form

dx(t)
d t

= Ax(t)+Bu(t). (1)

Where variables x(t) are state variables and variables u(t)
are the boundary conditions of the building such as the
solar irradiation that enters through each window. Time
series data for the vector u(t) is also generated using
IDEAS. The model can thus be exported to other frame-
works such as python or Matlab. The component mod-
els, templates and a minimum working example required
for using LIDEAS have recently been made open source
and can now be found in IDEAS.LIDEAS. For more de-

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

140 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157139

tails with respect to this linearisation toolchain we refer
the reader to Picard et al. (2015). This methodology can
only be used to export linear models and as such its func-
tionality is limited to linear problems, although non-linear
equations can be added to the exported linear model man-
ually.

Secondly, to overcome these hurdles, a non-linear
Toolchain for Automated Control and Optimization
(TACO) has recently been developed by Jorissen et al.
(2018b). TACO interprets a Modelica model using
the JModelica framework (Åkesson et al., 2010) and
automatically translates the model into an efficient
optimization code that is implemented using CasADi
(Andersson et al., In Press, 2018). The goal of TACO is to
significantly reduce the engineering overhead required for
developing MPCs for building applications by leveraging
object oriented Modelica models. Jorissen et al. (2018a)
describe the detailed Modelica model of an office building
and a comparison with measured data. An MPC has
been developed for this model by Jorissen (2018). In
simulations the operational cost of the building was
reduced by more than 50 %, however thermal depletion
of the ground by passive cooling was not accounted for.

These applications demonstrate the potential of Model-
ica and MPC for building applications. Since Modelica is
a general-purpose modelling language, multiple problem
formulations are possible and multiple solvers can be
chosen by the user. Both affect the model computation
time and robustness for simulations and optimizations.
Our models combine many state variables in the building
envelope model with non-linear equations and algebraic
loops in the Heating, Ventilation and Air Conditioning
(HVAC) models, and discrete equations in the building
control. For the simulation of large models this com-
bination can lead to long computation times. Jorissen
et al. (2015) and Jorissen et al. (2018d) describe how
models can be manipulated to speed up computations.
Furthermore, we propose to use explicit time integrators
such as Euler integration since the computation time of
Euler integration scales better with the number of state
variables than for implicit solvers. These tips are applied
by Jorissen et al. (2018a) on the model of a 32-zones
office building.

These guidelines for implementing computationally
efficient building models using Modelica may however be
difficult to apply by IDEAS users since a clear example
model is not available. Similarly, unexperienced Modelica
users may not understand how these integrated building
models can be structured. This limits the usability of
IDEAS. This paper therefore presents a Modelica example
model of a 9 zones terraced house building in Modelica.
The guidelines for increasing the simulation speed are
applied and explained. Furthermore, the performance
of an MPC controller for this model is compared to a
rule-based controller (RBC). This comparison can be

extended in the future within the scope of the IBPSA
project 1, which aims to develop BOPTEST, a set of
benchmarks for comparing advanced building controllers
such as MPC. Both the model and the optimal control
trajectories from the MPC are included in the IDEAS
library as of release 2.1 such that they can serve as a case
study model or benchmark for other research applications.

This paper is structured as follows. Section 2 de-
scribes the building that is modelled and Section 3 ex-
plains how this building is modelled using components
from the IDEAS library. Section 4 then explains how the
guidelines from earlier work are applied to this example
model and presents the resulting computation speed. Sec-
tion 5 compares an MPC based on this model to the RBC
implementation that is included with the model. Conclu-
sions are presented in Section 6.

2 Building Description
This paper presents the IDEAS model of a real terraced
house that consists of three floors and an attic. The build-
ing layout is sketched in Figure 1. The ground floor con-
sists of 1) a living room and a hallway with a combined
surface area of 4.6 m x 8 m in the front of the building
and 2) a dining room, kitchen and glazed veranda behind
the main building, which have a combined ground surface
area of 4.6 m x 5 m. The first floor consists of a hallway
(1.6 m x 4 m), bathroom (3 m x 4 m) and bedroom (4.6
m x 4 m). The top floor consists of a bedroom (4.6 m x 4
m) underneath a mansard roof, and an office (4.6 m x 4 m)
underneath a gabble roof, which contains a Velux window
of 1.2 m2. Both parts of the roof are insulated with 12 cm
of polyurethane, 5 cm of glass wool and are finished with
plasterboard of 12.5 mm.

The building was constructed around 1926 and its
façade consists of uninsulated brick walls without cavity
and a thickness of approximately 28 cm. The front 4 m of
the building has a cellar, whose ceiling is uninsulated. The
ground floor consists of parquet on tiles on solid ground,
while the other floors consist of fiberboard or wooden floor
board on wooden beams. The ceilings below the floors are
finished using plasterboard, which is attached to a metal
frame. An acoustic insulation layer of 5 cm lies on top of
this frame. The building windows consist of PVC frames
with triple glazing. A vertical technical shaft runs through
center of the building, which contains the heating system
pipes and collectors and the ventilation ducts.

The building is heated using a gas boiler of 30 kW
(Bulex Thermomaster T30/35). Radiators supply heat to
each of the rooms except the dining room, porch and
kitchen. The radiators are connected to a common col-
lector for each floor using alupex tubes. The collectors
are connected in series to the boiler. The boiler is on-off
controlled using a Bulex Exacontrol E7C thermostat in the
living room. A ventilation unit (Brink Renovent Excellent
300 +) supplies air to the bedrooms, office and living room

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

DOI Proceedings of the 13th International Modelica Conference 141
10.3384/ecp19157139 March 4-6, 2019, Regensburg, Germany

Ground floor First floor Second floor

Radiator

Ventilation supply

Legend

Ventilation exhaust

Bedroom 1

1844 W

1822 W

676 W

Bathroom

Bedroom 2

Office /
man cave

1844 W

16
71

 W

4373 W

Living room

Dining room

Glazed verandaKitchen

Figure 1. Sketch of the building layout and the location of radiators and vents.

and extracts air in the bathroom and living room. The
nominal air flow rate of the unit is 300 m3/h, for which
heat is recovered with an efficiency of approximately 75
%. The heat exchanger is automatically bypassed during
summer, which is not modelled yet. The ventilation unit
operates at a fixed flow rate of 70 m3/h.

3 Model Description
An integrated Modelica model of this building is created
using the IDEAS library (Jorissen et al., 2018c). The
model consists of four parts:

1. The building envelope, which consists of zones,
walls and windows.

2. The heating system, which consists of a pump,
heater, pipes, radiators and thermostatic valves.

3. The ventilation system, which consists of fans, ducts,
two bypass valves and a heat exchanger.

4. The thermostat.

Each of these parts is illustrated in Figure 2. The model
is part of the IDEAS library and can be found in the pack-
age IDEAS.Examples.PPD12.

3.1 Ventilation System
The top of Figure 2 illustrates the ventilation sys-
tem, which consists of two fans, two bypasses, a
heat exchanger and ducts that are connected to the

zones. Ducts are modelled using the component
IDEAS.Fluid.FixedResistances.Junction.
The pressure drop of each branch of the junction is
estimated from the design flow rate of the system and the
diameter and free area fraction of the vents. The pressure
drop of the ducts is neglected. This results in nominal
pressure drops in the order of 500 Pa for a flow rate of 0.1
kg/s.

The model IDEAS.Fluid.Movers.
FlowControlled_m_flow from the IBPSA li-
brary (Wetter, 2013) prescribes the flow rate of the fans.
The total pressure drop is thus computed from the fluid
flow network, which is in turn used to compute the fan
electrical power use. A fixed fan efficiency of 23.75 % is
assumed, which coincides with the measured efficiency at
nominal flow rate.

The model IDEAS.Fluid.HeatExchangers.
ConstantEffectiveness computes how much heat
is recovered. It assumes a fixed heat exchange effectivity.
Ideal dampers, without pressure drop, are used to model
the bypasses.

As indicated in Figure 1, air is injected in some rooms,
while air is extracted from other rooms. Manual connec-
tions are added to allow air exchange between rooms such
that mass is conserved. In the future this functionality will
be integrated into IDEAS such that these connections need
not be added by the user.

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

142 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157139

i

living

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

hallway

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

Diner

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

Porch

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

bedRoom1

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

bathRoom

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

stairWay

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

bedRoom2

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

bedRoom3

Flo

B

C

D

Cei

A

Flo

B

C

D

Cei

A

T

M

K

M

K

M

K

M

K

M

K

M

K

T

fanSup

fanRet

bouAir

Thex

eps=0.75

sim.Te

Te

MbypassRet

M

bypassSup

bypContr

k=0

thermostat

B
R

EHea

I
k=1/3600000

TSup

k=273.15 + 70

E

Figure 2. Illustration of the Modelica model of the building. The top includes the ventilation, which consists of two fans, a heat
exchanger, ducts and two bypasses. The middle contains the building envelope model, which consists of walls, windows and zone
templates, which integrate more walls and windows for a rectangular zone. The bottom shows the heating system, which consists
of a heater, pump, pipes, radiators and thermostatic valves. In between middle and bottom the thermostat can be found.

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

DOI Proceedings of the 13th International Modelica Conference 143
10.3384/ecp19157139 March 4-6, 2019, Regensburg, Germany

3.2 Building Envelope
The middle of Figure 2 represents the build-
ing envelope, which is modelled using compo-
nents from IDEAS.Buildings. The main
functionality of these components was described
by (Jorissen et al., 2018c). Most notably, the
model IDEAS.Buildings.Components.
RectangularZoneTemplate is used to define
the zones, their parameters and interconnections. Interior
walls, external walls, roof and windows are included in
the zone template for each orientation. When the zone
geometry is not simply rectangular, or when a floor has
to be split into two parts, additional surfaces are added
manually. See e.g. two separate floor models are used
to model the floor of bedroom 1 since it is both above
the living room and the hallway. The radiators and
ventilation system are also connected to the zones but
these connections are hidden in Figure 2. The surface
(walls, windows, etc.) parameters consist of the surface
dimensions, orientations and its structure, which is
defined using records such as illustrated in listing 1.

Listing 1. Example use of a record to define the material layers
of a ceiling

record F l o o r " Ppd12 f l o o r wi th suspended gypsum c e i l i n g "
ex tends I D E A S . B u i l d i n g s . D a t a . I n t e r f a c e s . C o n s t r u c t i o n (

i n c L a s t L a y = I D E A S . T y p e s . T i l t . F l o o r ,
f i n a l mats ={

I D E A S . B u i l d i n g s . D a t a . M a t e r i a l s . G y p s u m (d = 0 . 0 1 2 5) ,
I D E A S . B u i l d i n g s . D a t a . M a t e r i a l s . A i r (d = 0 . 0 7 5) ,
I D E A S . B u i l d i n g s . D a t a . I n s u l a t i o n . G l a s s w o o l (d = 0 . 0 5) ,
I D E A S . B u i l d i n g s . D a t a . M a t e r i a l s . A i r (d = 0 . 1 5) ,
I D E A S . B u i l d i n g s . D a t a . M a t e r i a l s . T i m b e r (d = 0 . 0 2 2) }) ;

end F l o o r ;

The wall opening between the living room and the din-
ing room is modelled using the recently introduced option
in the InternalWallmodel to model a ‘cavity’ or door.
This model approximates the buoyancy-driven advection
between zones using the zone temperature differences, the
ideal gas law and Bernoulli’s principle. We assume that all
doors are closed, i.e. they are not modelled using the door
model option. Furthermore, we assume that the common
walls with the neighbours are adiabatic.

3.3 Heating System
The bottom of Figure 2 illustrates the heating sys-
tem model. It consists of six radiators, a pump
and an ideal heater. Radiator thermal powers are
indicated in Figure 1. The pump head is un-
known and is assumed to be 100 kPa. The ideal
heater model IDEAS.Fluid.HeatExchangers.
PrescribedOutlet is used, which supplies a pre-
scribed temperature set point unless this implies that a
thermal power of more than 30 kW or less than 0 kW is
supplied. The boiler efficiency is computed as a function
of the return water temperature using the polynomial fit to
the data that is provided in a temperature range of 25 ◦C
to 65 ◦C. The slope at the end of the range is extrapolated
up to 75 ◦C. The resulting efficiency is implemented as in
Listing 2.

Listing 2. Efficiency implementation of the boiler
M o d e l i c a . S I u n i t s . E f f i c i e n c y e t a = {−6.017763 e−11, 2 .130271 e−8,

−3.058709 e−6, 2 .266453 e−4, −9.048470 e−3, 1 .805752 e−1,
−4.540036e−1}∗{ TRet ^(6− i) f o r i in 0 : 6 } ;

Radiators are modelled using the model
RadiatorEN442_2. Each radiator has a thermostatic
valve, which is modelled using the model TwoWayTRV,
which consists of a valve with a linear opening character-
istic that is controlled by a proportional controller with
a fixed temperature set point and a proportional band of
2 K. The proportional controller is implemented such
that the valve is closed when the temperature set point is
reached. The set point equals 30 ◦C for the radiator in
the living room, since the thermostat is mounted in this
room. The remaining radiators have a set point of 21 ◦C.
The pressure drop of the pipes is computed using their
dimensions.

3.4 Thermostat
The thermostat is a custom implementation, which turns
the boiler on or off. Since the supply temperature is not
actively controlled, the heater supply water temperature is
fixed to 70 ◦C. The thermostat operates on a schedule. The
temperature set point is 21 ◦C from 7:00 to 9:00 and from
18:00 to 23:00 on week days and from 7:00 to 23:00 on
weekend days and 16 ◦C otherwise. Note however that
the thermostat is activated one hour earlier to ensure that
the building has heated up in time. Since the thermostat is
mounted in the living room, the thermostat uses the living
room temperature as an input. Furthermore, it implements
a hysteresis controller with a hysteresis band of 1 K above
the set point temperature. When enabled, the boiler pump
head is set to 1 bar.

4 Computational Aspects
We now discuss some Modelica-related implementation
details that affect the computation time.

4.1 Computation Time
As described by Jorissen et al. (2015), implicit integrators
are not well suited for simulating models with many states
and, depending on the model size, explicit integrators such
as Euler integration may be more suited. Our model has
about 330 state variables. Therefore, the model param-
eters have been chosen to avoid small time constants by
considering fast processes to be steady state, such that the
model can be simulated using (explicit) Euler integration.
We now explain for each part of the model how this was
done.

4.2 Envelope Model Configuration
Jorissen et al. (2018c) describe in detail how the models
in IDEAS.Buildings have been adjusted to speed up
computations. I.e. fast dynamics in the window glazing
are lumped into a single thermal capacitor and non-linear
algebraic loops are avoided by choosing an appropriate
discretisation scheme of the heat conduction equations.

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

144 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157139

Furthermore, we configure the massDynamics of the
zone models to SteadyState, which implements an in-
compressible air model, which thus avoids a state variable
for the zone air pressure.

4.3 Ventilation System Configuration
In the ventilation system we avoid the generation of
algebraic loops that solve for enthalpy by using the
portFlowDirection_* variables. Furthermore, the
energyDynamics and massDynamics of the junc-
tions, fans and bypasses are set to SteadyState, which
avoids more states with a small time constant. Similarly,
the input filter of the fans is removed.

4.4 Heating System Configuration
In the heating system, the used water medium is al-
ready incompressible by default, such that we need not
set massDynamics. The valve filters are not removed
since they react already sufficiently slowly. However, the
junctions energyDynamics are set to SteadyState.
The radiator energy dynamics are not neglected. How-
ever, the number of elements of the radiator is reduced
from the default value of 5 to 3, such that the radiator seg-
ment volumes are sufficiently large to avoid instabilities
when the radiator mass flow rate is large. Furthermore,
the series pressure drops of the thermostatic valve, the ra-
diator and the pipes are merged into a single pressure drop
equation by using the parameter dpFixed_nominal of
the valve model. The pressure drop of the pipes between
the collectors of each floor are neglected since their inter-
nal diameter is 20 mm instead of 12 mm, which causes
pressure drops that are 7.7 times smaller for the same
mass flow rate, moreover these pipes are shorter. This
causes the earlier mentioned series connections to be in
parallel with respect to each other, meaning that they have
the same pressure drop. This can be exploited by setting
from_dp=True in the valve models, since then a single
iteration variable can be used to solve the resulting alge-
braic loop (Jorissen et al., 2018d). For a more detailed dis-
cussion and motivation for these configurations and sim-
plifications we refer the reader to Jorissen et al. (2018d)
and Jorissen et al. (2015).

4.5 Computation Time Results
Using this configuration, which also speeds up Dassl, the
model can be evaluated at a speed 156 000 times faster
than real time using explicit Euler integration with a fixed
step size of 15 s and 44 000 times faster than real time
using Dassl with a tolerance of 10−4.1 Simulating a full
year thus requires 4 minutes. Euler has an error of 0.14 %
on the total computed energy use when comparing to LSo-
dar with a tolerance of 10−6, while Dassl has an error of
0.017 %.

1On a Macbook pro with 2.7 GHz i7-6820HQ processor, using Dy-
mola 2019 with option Evaluate=true and virtual machine software Par-
allels 11 running Ubuntu 14.04.

5 Application of Model Predictive
Control

While IDEAS was originally designed as a Modelica
library for building and district energy simulation, the
models are now also suited for optimization applications
such as MPC. Using TACO, the presented model can be
translated into an MPC controller by performing only
minor modifications such as linearising the building enve-
lope heat transfer equations (Jorissen, 2018, Appendix A).

As a demonstration, an MPC controller was developed
that minimizes

J(t) = Pf an,sup(t)+Pf an,ret(t)+0.25Q̇(t) (2)

where Pf an(t) is the electrical power use of the fans and
Q̇(t) is the thermal power use of the heater. A weighting
factor of 0.25 is used since gas is about four times less
expensive than electricity in Belgium. Furthermore, the
living room operative temperature is lower bounded to
21 ◦C during the schedule indicated in Section 3.4. We
optimize the heater supply water temperature, which is
upper bounded to 75 ◦C and the fan mass flow rates,
which are lower bounded to their set point value of
70 m3/h and upper bounded to the nominal value of
300 m3/h. The bypasses are closed and the pump is
always enabled. The resulting controller is coupled to the
simulation model and is operated for a full year in a closed
loop simulation. The optimal control results are stored in
a csv file and are included as a benchmark in the model
IDEAS.Examples.PPD12.VentilationMPC.

A comparison with RBC (see
IDEAS.Examples.PPD12.VentilationRBC),
which operates on the same temperature set point and
using the same schedule, is shown in Figure 3. The figure
shows that MPC is unable to satisfy the comfort con-
straint, which is caused by model mismatch between the
MPC model and the simulation model. For instance, the
building envelope convective heat transfer equations are
linearized for the MPC, which causes the heat convection
coefficients to be overestimated. The average comfort
violation of MPC for the living room peaks at about
0.4 K.

MPC often uses much lower supply water temperatures
than RBC, of about 45 ◦C, which is reflected in a smoother
heating profile. This is clearly visible in the thermal power
of the heater. Furthermore, Figure 5 shows smoother tem-
perature profiles for zones that are controlled using a ther-
mostatic radiator valve, which heat the rooms more than
required due to the thermal inertia of the radiators and
the zone air temperature. The total energy use of RBC
is 6590 kWh while MPC uses only 5749 kWh. This
implies a final energy use reduction of 12.8 %. While
these are modest energy savings, this is to be expected
for badly insulated buildings with simple heating systems,

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

DOI Proceedings of the 13th International Modelica Conference 145
10.3384/ecp19157139 March 4-6, 2019, Regensburg, Germany

16

18

20

22

Living temperatures [˚C]RBCMPC Set point

0 1 2 3 4 5

0

10

20

30

Time [d]

Heater thermal power [kW]MPC RBC

Figure 3. Comparison of zone temperature and thermal power results for RBC and MPC

which have only limited flexibility that can be exploited by
MPC. These energy savings are only partly explained by
the comfort violations of MPC, since lowering the RBC
temperature set point by 1 K for the whole year results in
an energy use of 6212 kWh.

The MPC uses control intervals of one hour such that
it is forced to start heating one hour in advance in order
to satisfy the comfort constraint. If smaller control inter-
vals were used, the pre-heating could be postponed which
would lead to larger energy savings.

The model also computes the return water temperature
dependent gas energy use. The MPC has a lower sup-
ply water temperature so it is unexpected that the average
heat generation efficiency of MPC is in fact lower than
that of RBC. The gas energy use for MPC is 6317 kWh
instead of 7218 kWh (only 12.5 % reduction). This is at
least partly caused by the fact that the pulsed behaviour of
RBC causes it to have relatively low return water tempera-
tures for the short period of time when the boiler is active,
which increases the efficiency. During a winter period, for
RBC the return water temperatures rises from about 30 ◦C
to 50 ◦C, while the MPC has a more constant return wa-
ter temperature of about 40 ◦C, as illustrated in Figure 4.
Note that the largest heat production for RBC occurs at
the lower range of the return water temperatures. This
shows the importance of integrated system simulations for
making detailed analyses. Note however, that these results
may no longer hold when more detailed convection corre-
lations and a more detailed boiler efficiency computation
are used.

16

20

24
Living temperatures [˚C]RBCMPC Set point

0

20

40
Heater thermal power [kW]MPC RBC

0.88

0.92

0.96

EfficiencyMPC RBC

1.2 1.3 1.4 1.5 1.6

20

40

60

[°
C

]

Time [d]

Return water temperatureMPC RBC

Figure 4. Comparison of heater efficiency for RBC and MPC

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

146 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157139

16

20

24

[°
C

]

Living

16

20

24

[°
C

]

16

18

20

22

[°
C

]

0 1 2 3 4 5
16

20

24

[°
C

]

Time [d]

16

20

24

[°
C

]

MPC RBC

Bedroom 1

Bedroom 2

Office

Bathroom

Figure 5. All zone temperatures for RBC and MPC

6 Conclusion
Modelica and open-source libraries such as IDEAS can
have large added value in the building energy simulation
and optimization community. This paper applies formerly
published guidelines for efficient model development us-
ing IDEAS and implementation details to reduce compu-
tation time to the example model of a terraced house. The
example is provided open-source and thus provides Mod-
elica and IDEAS users with a clear example of how to use
IDEAS for integrated building energy simulations. The
building is first described, after which the model imple-
mentation and computational aspects are explained. The
model simulation time is 4 minutes for one year. Fur-
thermore, a white-box Model Predictive Controller (MPC)
is generated for the model using TACO, a Toolchain for
Automated Control and Optimization. MPC uses 12.8 %
less energy than rule-based control, which is partly caused
by the lower supply water temperatures that generate a
smoother heating profile. While these are modest energy
savings, larger energy savings are typically obtained for
more complex buildings with longer time constants than
this uninsulated building with a simple heating system.
The model and MPC results are available in the IDEAS
library in the package IDEAS.Examples.PPD12 and
can thus serve as a starting point for other research. Future
work will focus on validating the model and on expanding
the heating system complexity and thus its control options.
More complex benchmarks will be developed within the
frame of BOPTEST development in IBPSA project 1.

7 Acknowledgements
This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion program under grant agreement No 723649.
The original project acronym is “MPC-.GT”.

This work emerged from the IBPSA Project 1, an in-
ternational project conducted under the umbrella of the
International Building Performance Simulation Associ-
ation (IBPSA). Project 1 will develop and demonstrate
a BIM/GIS and Modelica Framework for building and
community energy system design and operation.

References
J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and

H. Tummescheit. Modeling and optimization with Opti-
mica and JModelica.org – Languages and tools for solv-
ing large-scale dynamic optimization problems. Com-
puters & Chemical Engineering, 34(11):1737–1749, 2010.
doi:10.1016/j.compchemeng.2009.11.011.

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and
M. Diehl. CasADi – A software framework for nonlinear op-
timization and optimal control. Mathematical Programming
Computation, In Press, 2018.

European Parliament. Directive 2010/31/EU of the european
parliament and of the council of 19 may 2010 on the energy
performance of buildings (recast). Official Journal of the Eu-
ropean Union, 18(06), 2010.

International Energy Agency. World energy outlook 2015. Tech-
nical report, 2015.

F. Jorissen. Toolchain for Optimal Control and Design of Energy
Systems in Buildings. Phd thesis, Arenberg Doctoral School,
KU Leuven, April 2018.

F. Jorissen, M. Wetter, and L. Helsen. Simulation Speed Anal-
ysis and Improvements of Modelica Models for Building En-
ergy Simulation. In 11th International Modelica Conference,
pages 59–69, Paris, 2015. doi:10.3384/ecp1511859.

F. Jorissen, W. Boydens, and L. Helsen. Implementation and
Verification of the Integrated Envelope, HVAC and Con-
troller Model of the Solarwind Office Building in Model-
ica. Journal of Building Performance Simulation, 2018a.
doi:10.1080/19401493.2018.1544277. Published on line.

F. Jorissen, W. Boydens, and L. Helsen. TACO, an Auto-
mated Toolchain for Model Predictive Control of Build-
ing Systems: Implementation and Verification. Journal
of Building Performance Simulation, 12(2):180–192, 2018b.
doi:10.1080/19401493.2018.1498537.

F. Jorissen, G. Reynders, R. Baetens, D. Picard, D. Sae-
lens, and L. Helsen. Implementation and Verification of
the IDEAS Building Energy Simulation Library. Journal

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

DOI Proceedings of the 13th International Modelica Conference 147
10.3384/ecp19157139 March 4-6, 2019, Regensburg, Germany

of Building Performance Simulation, 11(6):669–688, 2018c.
doi:10.1080/19401493.2018.1428361.

F. Jorissen, M. Wetter, and L. Helsen. Simplifications
for Hydronic System Models in Modelica. Journal of
Building Performance Simulation, 11(6):639–654, 2018d.
doi:10.1080/19401493.2017.1421263.

D. Müller, M. Lauster, A. Constantin, M. Fuchs, and P. Rem-
men. AIXLIB – An Open-Source Modelica Library Within
the IEA-EBC Annex 60 Framework. In J. Grunewald,
C. Felsmann, A. Nicolai, and J. Seifert, editors, BauSIM,
pages 3–9, Dresden, 2016. Fraunhofer IRB Verlag, Stuttgart.

C. Nytsch-Geusen, J. Huber, M. Ljubijankic, and J. Rädler.
Modelica buildingsystems- eine modellbibliothek zur simu-
lation komplexer energietechnischer gebäudesysteme. Bau-
physik, 35(1):21–29, 2013.

D. Picard, F. Jorissen, and L. Helsen. Methodology for Ob-
taining Linear State Space Building Energy Simulation Mod-
els. In 11th International Modelica Conference, pages 51–58,
Paris, France, 2015. doi:10.3384/ecp1511851.

M. Wetter. Modelica-based Modeling and Simulation to Support
Research and Development in Building. Journal of Building
Performance Simulation, 2(2):143–161, 2009.

M. Wetter. Fan And Pump Model That Has A Unique Solution
For Any Boundary Condition And Control Signal. In 13th
Conference of International Building Performance Simula-
tion Association, pages 3505–3512, Chambéry, France, 2013.

M. Wetter and C. van Treeck. IEA EBC Annex 60: New Gener-
ation Computing Tools for Building and Community Energy
Systems. The Regents of the University of California and
RWTH Aachen University, 2017. ISBN 978-0-692-89748-5.
URL http://www.iea-annex60.org/pubs.html.

M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang.
Modelica buildings library. Journal of Build-
ing Performance Simulation, 7(4):253–270, 2014.
doi:DOI:10.1080/19401493.2013.765506.

M. Wetter, T. S. Nouidui, D. Lorenzetti, E. A. Lee, and A. Roth.
Prototyping the Next Generation EnergyPlus Simulation En-
gine. In J. Mathur and V. Garg, editors, 14th Conference of
International Building Performance Simulation Association,
pages 403–410, Hyderabad, 2015. International Building Per-
formance Simulation Association.

M. Wetter, M. Bonvini, and T. S. Nouidui. Equation-based lan-
guages - A new paradigm for building energy modeling, sim-
ulation and optimization. Energy & Buildings, 117:290–300,
2016. doi:10.1016/j.enbuild.2015.10.017.

Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS

148 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157139

An Extended Luenberger Observer for HVAC Application using FMI

DOI Proceedings of the 13th International Modelica Conference 149
10.3384/ecp19157149 March 4-6, 2019, Regensburg, Germany

An Extended Luenberger Observer for HVAC Application using FMI
Bortoff, Scott and Laughman, Christopher

149

An Extended Luenberger Observer for HVAC Application
using FMI

Scott A. Bortoff1 Christopher R. Laughman1

1Mitsubishi Electric Research Laboratories, Cambridge, MA, USA, {bortoff, laughman}@merl.com

Abstract
In this paper we show how a Functional Mockup Unit
(FMU) may be used for the realization of an Extended
Luenberger Observer (ELO), which may be considered
the deterministic version of an Extended Kalman Filter
(EKF). The ELO has advantages over an EKF in some
situations, such as lower computational burden and im-
proved convergence. Nonlinear observers, such as those
that make use of changes of coordinates to linearize, or
approximately linearize the estimate error, are continuous-
time dynamical systems that use so-called output injection
to modify the dynamics of a model. Output injection pro-
vides a similar feedback effect as the correction step of
an EKF. However, nonlinear output injection is a slightly
FMU different use case because the ELO is a continuous
time object. It is realized by feedback around a model-
sharing type of continuous time FMU, in contrast with the
algorithmic realization of a discrete-time EKF, which uses
the co-simulation form of FMU. We illustrate the design
and realization of an ELO for a building HVAC example,
in which we estimate unmeasured heat flows and unmea-
sured boundary conditions for use in a building “digital
twin.” We also make some remarks about model reduc-
tion and the challenges in realizing a conventional EKF
for these types of models.
Keywords: Estimation, Buildings, HVAC, FMI, FMU

1 Introduction
State estimation is one of the important use cases for the
Functional Mockup Interface (FMI). For example, states
of a nonlinear continuous-time model can be estimated
from discrete-time measurements of the input and output
of a plant using a continuous-discrete Extended Kalman
Filter (EKF), realized using the co-simulation form of a
Functional Mockup Unit (FMU) of the plant (Brembeck
et al., 2014, 2011). Fundamentally, the EKF, and its vari-
ous extensions estimate the state in a two-step process. In
the prediction step, the EKF computes the predicted state
estimate using a discretized plant model. Then in the cor-
rection step, the covariance and gain are computed as a
function of the predicted state estimate, and the predicted
state estimate state is corrected. The discrete-time pre-
diction model is then initialized using the corrected state,
and the process is repeated. Importantly, the two steps are
coupled in a causal manner: The prediction step at time

(k + 1) depends only upon the correction step at time k,
and the correction step at time k depends only on the pre-
diction step at time k. This fact allows an FMU to be used
in an algorithm to estimate the state in the prediction step,
since it can be initialized using the corrected state estimate
from the previous correction step.

An observer is an alternative technology for estimation
of the plant states and parameters. An observer is a de-
terministic, continuous-time dynamical system that takes
as input the measured input and measured output of the
plant, and produces as its output an estimate of the state
of the plant. It is similar to the Kalman filter, but based on
deterministic assumptions and mathematics. Fundamen-
tally, the concept of output injection is used to stabilize
the observer error dynamics, which govern the difference
between the estimated state and the plant state. Output
Injection means that a signal is injected (added) to the
derivative of the observer state vector as stabilizing feed-
back. Because of this, it is the continuous-time dynamics
of the plant with output injection that needs to be sim-
ulated. There are not separate prediction and correction
steps.

In this paper we show how an instantiation of a model-
exchange type of FMU can be used with the Dymola tool
to realize output injection, enabling design and implemen-
tation of linear and nonlinear state observers and specifi-
cally the Extended Luenberger Observer (ELO). Our spe-
cific interest is to estimate unmeasured performance vari-
ables of a building and HVAC system as a part of a
building “digital twin.” Toward this end we have con-
sidered several alternative methods to estimate the per-
formance variables, including various flavors of the EKF.
However, these may prove too computationally burden-
some for our application because the number of states can
be large (hundreds), the number of measurements can be
large (tens to hundreds), and the EKF can be computa-
tionally challenging because of the covariance update, al-
though there are many techniques such as model reduction
and square root filtering that are available to improve its
computational efficiency. More importantly, an EKF can
fail to converge, or in some cases, cause the model to fail
at run time, at least for our building HVAC applications.
Convergence failures are caused by some of the character-
istics of the model that we consider in this paper, which
are not unusual for this field of application. The model
is stiff (with time constants ranging from milliseconds to

An Extended Luenberger Observer for HVAC Application using FMI

150 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157149

several weeks — eight orders of magnitude), and is nu-
merically ill-conditioned (with states varying 8-9 orders
of magnitude because of the choice of units). Thus the Ja-
cobian may not accurately predict the state over the fixed
and usually large EKF sample time, causing it to diverge.
Moreover, the model itself contains state constraints, such
as a non-negative limit on mass concentrations, which can
be violated at run time because of the EKF correction step,
causing a run-time error.

On the other hand, the ELO is relatively simple and
light-weight computationally. In its simplest form, it uses
a constant feedback gain matrix that is computed at de-
sign time from the steady-state solution of a Ricatti equa-
tion, and therefore avoids the real-time covariance update
and computation of the system Jacobian that is necessary
for the EKF. Further, it may offer improved stability and
performance advantages over the EKF (and similar filters)
for certain applications because it makes use of implicit
variable-step solvers for the continuous-time model.

This paper is organized as follows. In Section 2, we re-
view the basics of the Extended Luenberger Observer. In
Section 3, we construct an ELO for a case-study building
and HVAC system and show some simulation results. We
show how the FMU is used to allow for the output injec-
tion. Finally in Section 4 we conclude by making some
observations on potential improvements of FMI to better
enable realization of estimators of different types.

2 Background
Following (Zeitz, 1987), consider the nonlinear system

ẋ = f (x,u,d) (1a)
y = h(x) (1b)
z = g(x) (1c)

where x ∈ Rn is the state, u ∈ Rm is the control input, as-
sumed measured, d ∈ Rq is a disturbance measurement,
assumed measured, y ∈ Rr is the measured output, and
z ∈ Rp is the performance output, assumed unmeasured.
Our objective is to estimate the performance output z. The
Extended Luenberger Observer is the system

˙̂x = f (x̂,u,d)+K(y− ŷ) (2a)
ŷ = h(x̂) (2b)
ẑ = g(x̂) (2c)

where x̂ ∈ Rn is the state estimate, ẑ ∈ Rq is the perfor-
mance output estimate, and K is the observer gain. Sys-
tem (2) is a copy of the original system, with the vector
K(y− ŷ), which is called output injection, added to the
state equations.

The state estimate error x̃ = x− x̂ is then governed by
the system

˙̃x = f (x,u,d)− f (x̂,u,d)−K(y− ŷ) (3a)
ỹ = h(x)−h(x̂) (3b)
z̃ = g(x)−g(x̂). (3c)

We linearize (3) about an equilibrium x̄ in a neighborhood
of x, defining

F =
∂ f
∂x
|x=x̄ , H =

∂h
∂x
|x=x̄ , and G =

∂g
∂x
|x=x̄ , (4)

so that the linearized error dynamics, neglecting higher-
order terms, are

˙̃x = (F−KH)x̃ (5a)
ỹ = Hx̃ (5b)
z̃ = Gx̃ (5c)

There exists an observer gain K to make the origin of (5a)
locally exponentially stable if the pair (F,H) is detectable.

There are many methods for the design of the observer
gain K e.g. (Luenberger, 1971; Chen, 1984; Friedland,
1986). In fact, more generally we can consider nonlin-
ear changes of state coordinates z = Φ(x,u,d), nonlinear
changes of the output coordinates ξ = Γ(y), and nonlin-
ear output injection K(y) as in (Krener and Isidori, 1983;
Krenner and Respondek, 1985; Hou and Pugh, 1999). Re-
search on methods for computing these remains an ac-
tive area of research e,g, (Boutat et al., 2009; Tami et al.,
2013). Here we will simply linearize the system (1) about
an equilibrium and compute the gain K that minimizes the
quadratic cost

J = min
∫

∞

0
z̃T Qz̃+ ỹT Rỹdτ (6)

by solving the steady-state Algebraic Riccati Equation

0 = AP+PAT −PHT R−1HT P+Φ
T QΦ, (7)

from which the observer gain is K = (R−1HP)T .

3 Building “Digital Twin” Case Study
In this section we design an ELO to estimate unmeasured
performance outputs in a commercial building HVAC sys-
tem. The primary purpose of the observer is to estimate
heat flows through the walls, ceiling and floor, and also
to estimate the unmeasured heat loads, denoted q, in the
occupied space. These estimates can be used to better un-
derstand building performance and improve human com-
fort and energy efficiency.

The building, diagrammed in Figure 1, is the top floor
of a medium-sized commercial office building, with open
floor plan for office work. We model the floor as a single
room with four outside walls, a floor and a ceiling. Above
the ceiling is a small plenum space that separates the ceil-
ing from the roof. The walls are made up of between one
and four layers of building materials. Windows are on
the South and West facing facades. The air conditioning
system is a chilled water plant, with fan coils for cool-
ing. Outside air ventilation is provided by a constant speed
ventilation fan, and the outside air passes through an En-
ergy Recovery Ventilation Unit (ERV) for pre-cooling in

An Extended Luenberger Observer for HVAC Application using FMI

DOI Proceedings of the 13th International Modelica Conference 151
10.3384/ecp19157149 March 4-6, 2019, Regensburg, Germany

Plaster Board
Air

Rockw
ool

Carpet Tile

Air

Concrete Slab

Ceiling Material

Concrete

Room
Mixed

Air

South
Facing

Window

ALC

Outside
Air

South and
West Wall
(Outside)

North
and East

Wall
(Indoor) Constant Indoor Temperature

Constant
Indoor

TemperatureScaled-Up
RAC

Outside
Air

Insulation

Plenum

Roof

Blinds

Outside W
all x 4

Floor

Outside W
all Orfice

OrficeOutside
Air

PI
Control

TMY3
Weather
(Tokyo)

Ventilation Air Fan

Figure 1. Building with plenum.

the summer season, but is otherwise not treated. For pur-
poses of design, we assume there are three measurements
available on a one minute sampling interval: The room
temperature Tr, the plenum temperature Tp, and the return
water temperature Tw. We also assume that the weather
variables are measured hourly. These include the outside
air temperature, humidity, wind speed, direct and indirect
solar radiation in visible and infra red radiation, cloud con-
ditions, and the atmospheric pressure. The room tempera-
ture Tr is compared to a reference set-point, and the error
is fed back through Proportional-Integral (PI) feedback to
actuate the valve in the fan coil.

The system is modeled using the Modelica buildings
library (Wetter et al., 2014) as two rooms: one represent-
ing the working space, and the second representing the
plenum, as shown in Figure 2. The outside walls have four
layers, and the windows are double-paned glass. Orfices
are put between the plenum and room to represent airflow
between them, although its velocity is very close to zero
nominally. A cooling coil is connected to a variable speed
chilled water pump to provide variable capacity cooling.
An Energy Recovery Ventilator (ERV) is included to pre-
cool the outside ventilation air, which is provided at a fixed
rate. All of the model components are taken from the
Modelica buildings library. Typical Meteorological Year
(TMY) weather for Tokyo is used in all simulations. The
complete model has 85 states, three measured outputs, one
input (the water pump speed), and eleven disturbance in-
puts corresponding to the eleven weather variables used in
the building library. A PID controller from the Modelica
Standard Library is added to the model later for feedback
to regulate the room temperature to a desired set-point.

We now step through the design and implementation
steps, beginning with model augmentation, which is done
in order to estimate unmeasured model inputs, then model
linearization, order reduction, feedback gain design, and
FMU realization.

3.1 Model Augmentation
After constructing the nominal model, it must be modified
for use as an estimator. Normally the heat load q is consid-
ered an input to the model. (Actually, there are three dif-

ferent types of heat load: Radiative, Sensible and Latent.
Here we assume all of the heat load is sensible.) However,
in order to estimate q from the available measured outputs,
we augment the model to include q as a state. We assume
that the heat load is constant, and then add the equation

q̇ = 0 (8)

to the Modelica model. This is done by adding an inte-
grator to the model as the heat load, with its input set to
zero. This will allow us to estimate the heat load with zero
steady-state error if it is constant, and a small tracking er-
ror if it is time-varying.

Mathematically, the building and HVAC model is

ẋ = f (x,u,d,q) (9a)
q̇ = 0 (9b)
y = h(x) (9c)
z = g(x) (9d)

where z is the heat flow through the surfaces of interest
(floor, walls, ceiling, and window), y is the three measure-
ments, x is the 85-dimensional state vector, d represents
the measured weather inputs into the model, and u is the
water valve control input. The model used for estimator
design does not include the PI feedback controller, which
is added later for simulations.

3.2 Linearization
We then simulate model for approximately one million
seconds (about 1 week). This is necessary because the
slowest observable mode in the model has a time constant
of approximately eight hours, which comes from the con-
crete building materials in the walls. For the linearization,
we zero the radiative effects of the weather, and assume
the outdoor temperature and humidity are constants repre-
senting typical weather in the summer. This is not ideal,
since the radiative effects are dominant. However, it is ef-
fective for this particular application. The linearization is

Weather

Heat
Loads (3)

Ventilation

Temperature
Controller

Water Based
Cooling

PlenumRoom

Figure 2. Modelica model.

An Extended Luenberger Observer for HVAC Application using FMI

152 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157149

represented as

ẋ = Ax+Bu (10a)
y =Cx (10b)

3.3 Observer Gain Design
We design the observer gain K ∈ R86×3 as outlined in the
previous section, with a penalty Q ∈ R86×68 on the esti-
mated states, and R ∈ R3×3 penalizing the measurements.
For simplicity, these are set to be diagonal matrices. How-
ever, we find that a solution to the Riccati equation (7) for
the linearized model and any such values of Q and R does
not exist! We must analyze the linearized model (10), and
then modify and reduce it in order to properly design the
feedback gain K.

Computing the spectrum of A, we find a total of three
states have eigenvalues at exactly zero, one state has an
eigenvalue at almost zero, but corresponding to a time
constant of several months, and the remainder have real
negative parts with time constants ranging from 12ms to
7hours, as expected. (It may surprise the reader to see
such fast modes in a model of an HVAC system. These
are due to heat flow in the metal heat exchanger.) One of
the three zero eigenvalues corresponds to the integrator,
which can be verified by computing the left eigenvalues
of A and showing that the integrator state corresponds ex-
actly with the corresponding left eigenvector. (This means
that the integrator state is affected by none of the other
states, but it does affect other states, and is, in fact, ob-
servable.) The other two states with exactly zero eigen-
value correspond to “physical” states that are introduced
into the orfice equations in the model, which can be seen
by inspecting the following code taken from the Modelica
buildings library.

Real mExc(quantity="Mass", final unit="kg")
"Air mass exchanged (for purpose of

error control only)";
initial equation
mExc=0;

equation
if forceErrorControlOnFlow then
der(mExc) = port_a.m_flow;

else
der(mExc) = 0;

end if;

We see that the state mExc is introduced for er-
ror control, and has its derivative set to zero if
forceErrorControlOnFlow=false. This state
has no effect on a simulation, but it is included in the
linearization. Inspection of the corresponding rows of
B and C verify that this state is neither controllable nor
observable, and is obviously not stable. Its presence in
the model therefore causes the Riccati equation solver to
fail. We therefore symbolically remove the two states
mExc, corresponding to the two orfices in our model, from
the linearization by removing the corresponding rows and
columns. Note that this is not a numerical calculation.

K

ŷw +
-

Observer

u

d

q

y

z

ḃx = f(bx, u, d, bq) + w1

ḃq = w2

by = h(bx)

bz = g(bx, d, bq)

bz
d

u

Building + HVAC

Figure 3. Observer block diagram.

Then in the estimator, we simply initialize these states at
zero and they are effectively ignored.

The other eigenvalue near zero has an eigenvector that
is nearly aligned with the potential energy state of the
plenum air. However it is not an exact alignment, so we
cannot say that the physical state is exactly this slow state.
Its presence in the model causes the Riccati solver to fail
for some values of Q and R. We therefore remove it from
the linear model by modal decomposition, resulting in an
83-dimensional reduced model, which is detectable from
our three measurements (because it is exponentially sta-
ble). This reduced model is used to design a reduced-order
feedback gain Kr, and the full order gain is computed by
using a value of zero for the three states that were removed
and expanding back to the original 86-dimensional sys-
tem.

3.4 FMU Realization
A block diagram of the observer is shown in Figure 3.
This shows the structure of the inputs and outputs to the
observer. It takes as input the control input u, the measured
disturbances d, and the output injection vector w, which is
the feedback signal K(y− ŷ). The output injection vector
w is added to the dynamic equations. This diagram shows
the augmented state to include the unmeasured heat loads
q.

An FMU makes realization of the observer possible, be-
cause it is essentially a DLL for the right-hand side of the
ordinary differential equation, and once loaded into a tool
like Dymola, can be manipulated to allow for the output
injection. Figure 4 shows the Modelica model that adds
the output injection vector w to the right-hand side of the
differential equation that is defined by the FMU. Essen-
tially we declare the real input vector w and add each com-
ponent to the lines that define the der(·). We have
created Python scripts to automate the process of editing
the Modelica file. We then instantiate the modified FMU,
wrap the feedback gain around it, and declare inputs and
outputs to drive the new model with data. Note that the or-
der of the states in the linearization is often different than
the order of states in the FMU. So as a practical matter,

An Extended Luenberger Observer for HVAC Application using FMI

DOI Proceedings of the 13th International Modelica Conference 153
10.3384/ecp19157149 March 4-6, 2019, Regensburg, Germany

Figure 4. Modification of FMI in Dymola.

we typically re-order the states of the linearization so that
it corresponds to that in the FMU.

3.5 Simulation Results
To test the observer, we first simulate it using data gener-
ated from the original model. For both systems, we de-
sign a PI feedback controller to regulate the room tem-
perature. We then simulate the data-generating model for
Tokyo weather during the last week of June. We drive
this model with an “actual" heat load as an input, as-
sumed to be zero until 8:00am when the workday starts
and it ramps up continuously to 4kW over one hour. (Of
course, the observer estimates this value.). We sample the
weather hourly, and the three temperature measurements
on a one minute clock, which is the typical sampling rate
for these applications. We then apply this data to the mod-
ified FMU, which also includes the same feedback con-
troller.

Some of the results are shown in Figure 5 and 6. In
Figure 5 we see that the ambient, plenum and water re-
turn temperatures have good information content, while
the regulated room temperature remains relatively con-
stant and therefore provides little information to the ob-
server. The plot also shows the estimated heat flows. The
flow through the ceiling is dominant, while that through
the south and west walls is relatively small. Heat flow
through the west wall is larger in the early evening, due
to solar radiation. The heat flow through the ceiling peaks
about six hours after the solar radiation peak, because of
the large amount of heat storage in the concrete above the
plenum. The plot at bottom shows the estimated and “ac-
tual” heat load. The observer is able to estimate the heat
load with little lag, and with zero steady-state error as ex-

pected. Figure 6 shows a close-up of the estimated and
actual heat loads. The observer is able to estimate the heat
load with some small lag and zero steady-state accuracy
when the actual load achieves its constant value at 9:00am.

4 Conclusions
In this work we have used FMU to realize an Extended
Luenberger Observer for a building HVAC application.
The approach is an alternative to an Extended Kalman Fil-
ter, and may offer some advantage in some applications,
such as improved convergence and reduced computational
complexity. The observer is constructed by augmenting
the model dynamics to allow for estimation of boundary
conditions, which is the heat load input to the model, lin-
earizing, reducing and designing a feedback gain to sta-
bilize the observer error dynamics, and then realizing the
feedback using output injection by modifying the FMU.
Some initial simulation results are provided as a simple
proof of concept.

There are several extensions to this work and we expect
to publish alternative formulations and experimental vali-
dation in the future. The most obvious is to compare the
performance to an Extended Kalman Filter and its vari-
ants. The design of the EKF is made possible by features
of FMI that allow for computation of the system Jacobian,
starting and time stepping of the model, and setting of the
model initial conditions which is done in the correction
step.

To date we have experienced quite a few challenges
with the EKF for this application. First, we find that the
correction step, which modifies the state, can push the
model outside its domain of validity. Often the states
are corrected in a manner that causes a state to violate
one of its limits. Mass fractions of water are particu-
larly troublesome. Although we might consider using
dry air models, the performance of the HVAC system is
strongly affected by humidity, and neglecting this physics
is not desirable. Is it possible to derive Modelica models
that extend regions of validity, into perhaps non-physical
domains? Modelers should think about this possibility,
since the models themselves are useful for things beyond
forward time-domain simulations. Of course, it may be
possible to modify the EKF itself, preventing the correc-
tion step from violating constraints. Indeed, a key reason
to consider Moving Horizon Estimators is that the con-
straints in the model may be enforced.

A second difficulty we have experienced with the EKF
is divergence, which may be caused by the stiffness and
poor conditioning of the model itself. We find that of-
ten the very slow states can be perturbed in the correction
step, causing very slow convergence or simply poor per-
formance. It may be possible to avoid some of this by
projection or resetting some of the states, although some
of the states of interest, e.g. some heat flows, depend on
the slow dynamics in the model. On the other hand, the
ELO seems more robust. This may be because it is using

An Extended Luenberger Observer for HVAC Application using FMI

154 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157149

the implicit variable-step DASSL solver.

We remark that a more thorough analysis of the slow
modes in these models is necessary. Often their presence
in a linearized model can cause conventional Hankel-norm
model truncation to fail. This is because these modes
are very slow, with eigenvalues very close to zero. The
Hankel-norm truncation begins by computing a spectral
decomposition, and only removes those modes with suf-
ficiently small Hankel singular value, and that are suf-
ficiently stable i.e., have a sufficiently negative eigen-
value. Such a truncation will keep these slow modes in
the model, even if they are very weakly controllable and
observable. Therefore, they must be removed from the
linearization before the Hankel-norm truncation is done.
Although these modes can apparently be removed in a
spectral decomposition of the linearization at design time,
there is no guarantee that the resulting reduced order
model will result in a correct estimator or controller de-
sign, and the modes are still present in the simulation
model. There are open questions such as how these should
be initialized in an estimator. The precise cause of these
slow modes needs further investigation.

References
D. Boutat, A. Benali, H. Hammouri, and K. Busawon. New

algorithm for observer error linearization with a diffeomor-
phism on the outputs. Automatica, 45(10):2187–2193, 2009.

Jonathan Brembeck, Martin Otter, and Dirk Zimmer. Nonlin-
ear observers based on the functional mockup interface with
applications to electric vehicles. In Proceedings of the 8th
Modelica Conference, pages 474–483, 2011.

Jonathan Brembeck, Andreas Pfeiffer, Michael Fleps-Dezasse,
Martin Otter, Karl Wernersson, and Hilding Elmqvist.
Nonlinear state estimation with an extended FMI 2.0 co-
simulation interface. In Proceedings of the 10th International
Modelica Conference, pages 53–62, 2014.

Chi-Tsong Chen. Linear System Theory and Design. Holt, Rine-
hart and Winston, 1984.

Bernard Friedland. Control System Design: An Introduction to
State-Space Methods. McGraw-Hill, 1986.

M. Hou and A. Pugh. Observer with linear error dynamics for
nonlinear and multi-output systems. Systems & Control Let-
ters, 37(1):1–9, 1999.

A. Krener and A. Isidori. Linearization by output injection and
nonlinear observers. Systems & Control Letters, 3(1):47–52,
1983.

A. Krenner and W. Respondek. Nonlinear observers with lin-
earizable error dynamics. SIAM Journal on Control and Op-
timization, 23(2):197–216, 1985.

D. Luenberger. An introduction to observers. IEEE Transactions
of Automatic Control, 16(6):596–602, 1971.

Sigurd Skogestad and Ian Postlethwaite. Multivariable Feed-
back Control: Analysis and Design. Wiley, 2005.

R. Tami, D. Boutat, and G. Zheng. Extended output depending
normal form. Automatica, 49(7):2192–2198, 2013.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui, and Xiufeng
Pang. Modelica buildings library. Journal of Building Per-
formance Simulation, 7(4):253–270, 2014.

M. Zeitz. The extended luenberger observer for nonlinear sys-
tems. Systems & Control Letters, 9(2), 1987.

An Extended Luenberger Observer for HVAC Application using FMI

DOI Proceedings of the 13th International Modelica Conference 155
10.3384/ecp19157149 March 4-6, 2019, Regensburg, Germany

Figure 5. Simulation Results.

6:00am
8:00am

~4kW

Figure 6. Close-up of the heat load estimation.

An Extended Luenberger Observer for HVAC Application using FMI

156 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157149

DOI Proceedings of the 13th International Modelica Conference 157
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 2B: POWER & ENERGY 2
A Modelica-Based Framework for District Heating Grid Simulation
Schwan, Torsten and Ziessler, Ole and Eckhardt, Tom and Unger, Rene

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants
Dahash, Abdulrahman and Steingrube, Annette and Ochs, Fabian and Elci, Mehmet

Automated model generation and simplification for district heating and cooling networks
Mans, Michael and Blacha, Tobias and Remmen, Peter and Müller, Dirk

.

158 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

A Modelica-Based Framework for District Heating Grid Simulation

DOI Proceedings of the 13th International Modelica Conference 159
10.3384/ecp19157159 March 4-6, 2019, Regensburg, Germany

A Modelica-Based Framework for District Heating Grid Simulation
Schwan, Torsten and Ziessler, Ole and Eckhardt, Tom and Unger, Rene

159

A Modelica-Based Framework for District Heating Grid Simulation

Dipl.-Ing. Torsten Schwan
1
 Dipl.-Ing.-cand. Ole Ziessler

1
 Dipl.-Ing. Tom Eckhardt

1

Dipl.-Ing. René Unger
1

1
EA Systems Dresden GmbH, Germany, {torsten.schwan, ole.ziessler, tom.eckhardt,

rene.unger}@ea-energie.de

Abstract
The interdisciplinary modelling language Modelica is

increasingly used in the design and evaluation of

energy systems. Heat supply represents a considerable

share of the global energy supply. Especially in

European cities, district heating grids are often used

and implemented for heat coverage. The increasing

integration of renewable energies and the extension of

existing grids require engineers to be able to analyze

and evaluate the behavior of such grids, not only

statically in certain operating conditions, but also

dynamically to enable the representation of complex

system interaction.

This paper shows and describes a new approach as

to how Modelica models can be used to evaluate the

dynamic behavior of district heating grids. It

furthermore introduces a consistent framework to

parameterize these models with GIS-data via the COM

interface. The advantages of the shown approach

compared to previously used static methods are shown

with specific case studies.

Keywords: district heating grid, renewable energies,
heat supply, GIS-data integration

1 Introduction

The development and planning of energy systems

represents an increasing challenge for engineers. On

the one hand, the goal of decarbonization in energy

supply requires an increasing integration of volatile

renewable energies. This volatility requires the

integration of additional storage systems, ultimately

resulting in the introduction of additional degrees of

freedom and thus complexity, in power plant control.

On the other hand, the distribution of energy

between production and consumers must be adapted to

increasing decentralization and partial changes of

exergy levels. This applies distinctly to district heating

grids, which are particularly complex and widespread.

The lowering of temperature levels within these grids

leads to significantly reduced distribution losses. This

temperature reduction also enables the integration of

alternative heat sources such as solar thermal, which

are not dependent on conventional combustion-based

heat production.

For engineers, the challenge is both the design and

evaluation of the central heating plants and the grid

itself. The methods used up to present for this purpose

have primarily included static calculations, of the

system behavior for specific operating points. With this

method the maximum load in winter is given priority

and partial load cases are only considered

subordinately. However, in order to be able to compare

the system behavior with regard to energy efficiency,

operating costs and ecological footprint, it is

particularly important to consider these partial load

cases. In addition, the integration of condition-based

systems, such as storage, require a dynamic analysis

approach rather than a static operating point analysis,

based on system equilibrium.

Static grid calculation tools, such as STANET or

BENTLEY, combine a clear, GIS-based grid

representation with a calculation of the behavior of

individual grid components, such as pipes, branches

and house connections, based on extensive databases.

These tools enable the calculation of temperature and

pressure behavior in different grid areas for specific

operating points on the basis of an iterative calculation

approach. They also enable a clear grid and result

representation on the basis of map data which facilitate

an easy-to-understand result evaluation and

interpretation. However, these tools do not have

dynamic modeling capabilities.

Pressure and temperature are scalar physical states.

This makes the use of the versatile modelling language

Modelica ideal for adding dynamic considerations to

existing calculation approaches. The approach of

modelling district heating networks on the basis of

Modelica has already been discussed in several

research studies.

Soons et.al. 2014 implemented a complex district

heating grid model including heat production,

distribution and thermal building models with reduced

complexity, based on Modelica, of a renewable energy

building campus. The study considered temperature

losses within the grid as well as resultant pressure

drops depending on pipe friction. Schwan, et.al. 2014

implemented a Modelica model of a small rural town

center with complex building models, district heating

grid piping and renewable heat production based on the

A Modelica-Based Framework for District Heating Grid Simulation

160 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157159

Green Building library models. Hägg 2016 adapted

available pipe models of the Modelica Standard

Library (MSL) by replacing the finite volume method

with a spatial distribution operator approach.

Schweiger, et.al. 2017 implemented a Python-based

framework to automatically generate a district heating

grid model based on Modelon’s Thermal Power

Library. The master thesis of Hermansson et.al. 2017

describes a framework using Matlab to automate the

data processing, modelling and simulation of Modelica

district heating models.

All these approaches and studies already address a

wide range of required toolsets and simulation models

which engineers require to analyze and evaluate district

heating grids in a dynamic way. The models and

methods are mainly based on research work at

universities and associated companies. However,

planners and engineers involved in the practical

implementation of such district heating networks

require a uniform toolset based on standard planning

tools and databases as well as a uniform presentation of

the results of planning-specific parameters. The

approach presented here enables the automated transfer

of data from standardized district heating network

simulation tools, such as STANET and BENTLEY,

using standard MS Office products and the COM

interface. In this way the often 5,000+ parameters for

the modelling of a grid can easily be gathered,

transferred and written into the model. In addition, the

results obtained from the model can be fed back into

the existing evaluation procedures.

2 Modelling Approach

Simulation models of hydraulic grids are

comparatively easy to implement compared to complex

power plant systems. The number of necessary model

components is manageable. However, the size and

complexity of a heating grid requires an overall model

with a multitude of equal model components which are

each defined by a multitude of parameters. This aspect

characterizes the actual challenge in dynamic

modelling.

Within this work a Modelica-based library of grid

components has been implemented with the following

six components:

 Pipeline

 Heating plant

 Grid node

 House connection station

 Pipe branch

 Pipe junction

The pipeline is the most important element of such a

library. This model component describes the heat loss

over the insulation (�̇�𝑙𝑜𝑠𝑠) in the flow and return pipes

of individual grid sections as described in equation 1:

�̇�𝑙𝑜𝑠𝑠 = 𝛥𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∙ 𝑙𝑝𝑖𝑝𝑒 ∙ (𝑇𝑚𝑒𝑑 − 𝑇𝑔𝑟𝑜𝑢𝑛𝑑) (1)

The model also calculates the individual pressure

drop (Δp) of a pipe depending on pipe roughness (2),

pipe bends (3) as well as other fittings (4).

Furthermore, it identifies pressure losses due to

geodetic elevation differences (5).

∆𝑝𝑟𝑜𝑢𝑔ℎ = 𝜆𝑝𝑖𝑝𝑒 ∙ 𝑙𝑝𝑖𝑝𝑒 ∙ 𝜌𝑚𝑒𝑑 ∙
𝑣𝑝𝑖𝑝𝑒
2

2∙𝑑𝑖,𝑝𝑖𝑝𝑒
 (2)

𝛥𝑝𝑏𝑒𝑛𝑑𝑠 = 𝜁𝑝𝑖𝑝𝑒 ∙ 𝑙𝑝𝑖𝑝𝑒 ∙ 𝜌𝑚𝑒𝑑 ∙
𝑣𝑝𝑖𝑝𝑒
2

2
 (3)

𝛥𝑝𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 = ∑𝛥𝑝𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (4)

𝛥𝑝𝑔𝑒𝑜 = 𝜌𝑚𝑒𝑑 ∙ 𝑔 ∙ 𝛥𝑧 (5)

The sum of these elements characterizes the total

pressure drop within a pipeline. The gradient

dependent, absolute pressure losses of a pipe are

almost compensated between flow and return (i.e. only

the difference between temperature-specific densities

of the fluidic medium (𝜌𝑚𝑒𝑑), cause a pressure drop).

The main pressure loss in a pipeline is dependent of

the pipe friction (i.e. 90% plus in horizontal pipes).

This pipe friction is highly reliant on the type of

stream, i.e. laminar or turbulent in a smooth or rough

pipe. To identify the stream type, the pipe friction

coefficient (𝜆𝑝𝑖𝑝𝑒) is calculated based on Reynolds

number (Re), includes the dynamic viscosity

coefficient (𝜂𝑚𝑒𝑑) as well as the roughness coefficient

(𝑘𝑝𝑖𝑝𝑒) and the pipe diameter (𝑑𝑖,𝑝𝑖𝑝𝑒).

𝑅𝑒 =
𝑣𝑝𝑖𝑝𝑒∙𝑑𝑖,𝑝𝑖𝑝𝑒∙𝜌𝑚𝑒𝑑

𝜂𝑚𝑒𝑑
 (6)

The Reynolds number is thus used as an indicator

for the stream type. If the Reynolds number is smaller

than 2,300, the stream type is defined as laminar.

𝜆𝑝𝑖𝑝𝑒,𝑙𝑎𝑚 =
64

𝑅𝑒
 (7)

A Reynolds number between 2,300 and 100,000

indicates a turbulent stream type for a smooth pipe.

𝜆𝑝𝑖𝑝𝑒,𝑡𝑢𝑟𝑏,𝑠𝑚𝑜𝑜𝑡ℎ =
0.3164

√𝑅𝑒
4 (8)

Any higher Reynolds number than 100,000

represents turbulent stream for a rough pipe.

𝜆𝑝𝑖𝑝𝑒,𝑡𝑢𝑟𝑏,𝑟𝑜𝑢𝑔ℎ =
1

(2∙𝑙𝑜𝑔103.71∙
𝑑𝑖,𝑝𝑖𝑝𝑒

𝑘𝑝𝑖𝑝𝑒
)2

 (9)

All other model components of the library are less

complex. They are mainly implemented with reduced
complexity, to contribute to a suitable simulation

performance such as in the case of large grids with

A Modelica-Based Framework for District Heating Grid Simulation

DOI Proceedings of the 13th International Modelica Conference 161
10.3384/ecp19157159 March 4-6, 2019, Regensburg, Germany

multiple house connection stations and complex

pipelines.

The house connection station model is defined

through an inverse model which calculates required

volume flow dependent on simulated flow temperature

and the associated return temperature (TReturn).

𝑇𝑅𝑒𝑡𝑢𝑟𝑛 = min(𝑇𝑅𝑒𝑡𝑢𝑟𝑛,𝑚𝑎𝑥, 𝑇𝐹𝑙𝑜𝑤 −
𝑄𝐻𝑒𝑎𝑡𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑐𝑝,𝑚𝑒𝑑∙𝜌𝑚𝑒𝑑∙𝑞𝑣,𝑚𝑎𝑥
) (10)

The maximum return temperature (TReturn,max) is a

system specific parameter, which depends on heating

surface configurations and even more importantly, on

hot water supply system type. Additionally, the return

temperature is determined by the maximum volume

flow of the considered house connection station. If the

total heat consumption exceeds the defined maximum

level, the maximum volume limit further decreases

resultant return temperature.

Figure 1: Concept of the heat consumption calculation

in the House Connection Station model

The dynamic volume flow is only influenced by the

temperature difference between flow and resultant

return temperature as well as simulated heat

consumption. To provide suitable simulation

performance, the heat consumption is not calculated

with a complex multi-zone building model but by a

look-up representation of overall heat consumption of a

building, dependent on outdoor temperatures (c.f.

Figure 1).

This approach is especially feasible for residential or

office buildings and building complexes as well as

similar occupancy types. These building types do not

include high internal heat loads nor major solar heat

gains (if the window share is not higher than roughly

25%). Below the heating limit, the heat consumption is
thus, mainly linearly dependent on the outdoor

temperature. Above this limit, heat consumption is

comparatively constant (i.e. base load) and is mainly

influenced by occupancy specific heat consumption

(i.e. hot water consumption).

The developed modelling approach describes the

grid behavior in an inverse direction. It highly

simplifies the simulation of individual buildings’

thermal behavior by only using 10 parameters. The

main results of a grid simulation include pressure and

temperature behavior in different grid parts as well as

the total required heat supply and pressure drop in the

considered heating plant. This heating plant model

provides an outdoor temperature dependent flow

temperature (i.e. heating curve) as well as the

maintenance return pressure. Further possible

calculations include the total heat supply dependent on

temperature difference, volume flow and total pressure

drop dependent on resultant flow pressure. These

values represent the most important dimensioning

variables of a heating plant.

A district heating network can be constructed as a

radial, ring or mesh system. Radial networks represent

the simplest form of a network in which a large main

pipeline feeds several distribution pipelines, forming

individual branches. In these branches, the pressure of

the main pipe is distributed homogeneously over all

distribution pipes. The resultant flow pressure is again

inversely calculated by the maximum pressure drop of

all distribution pipes. The flow temperature for all

branches corresponds to the main pipe and the return

temperature is calculated using the mixing ratio of the

distribution pipes.

𝑝𝑟𝑒𝑡𝑢𝑟𝑛,𝑚𝑎𝑖𝑛 = 𝑝𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ1 = 𝑝𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ2 (11)

𝑝𝑓𝑙𝑜𝑤,𝑚𝑎𝑖𝑛 = max(𝑝𝑓𝑙𝑜𝑤,𝑏𝑟𝑎𝑛𝑐ℎ1, 𝑝𝑓𝑙𝑜𝑤,𝑏𝑟𝑎𝑛𝑐ℎ2) (12)

𝑇𝑓𝑙𝑜𝑤,𝑚𝑎𝑖𝑛 = 𝑇𝑓𝑙𝑜𝑤,𝑏𝑟𝑎𝑛𝑐ℎ1 = 𝑇𝑓𝑙𝑜𝑤,𝑏𝑟𝑎𝑛𝑐ℎ2 (13)

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑚𝑎𝑖𝑛 =
𝑞𝑣,𝑏𝑟𝑎𝑛𝑐ℎ1∙𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ1+𝑞𝑣,𝑏𝑟𝑎𝑛𝑐ℎ2∙𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ2

𝑞𝑣,𝑏𝑟𝑎𝑛𝑐ℎ1+𝑞𝑣,𝑏𝑟𝑎𝑛𝑐ℎ2
 (14)

Modelling ring or mesh systems requires additional

components (i.e. pipe junction) which calculate the

volume flow distribution between two pipes of a

junction, depending on the pressure drop (c.f. equation

15).

𝑞𝑣,𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 = 𝑞𝑣,𝑚𝑎𝑖𝑛 ∙
∆𝑝𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛2

(∆𝑝𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛1+∆𝑝𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛2)
2 (15)

A grid node is also added which is used to identify a

specific point of the grid between two parts of one pipe

(e.g. in case of a diameter reduction).

Furthermore, district heating grids can include two

or more heating plants at different grid positions. This

case highly increases the model complexity as it is not

possible to implement such a structure with a complete

inverse modelling approach.

A Modelica-Based Framework for District Heating Grid Simulation

162 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157159

Figure 2: Example grid structure and corresponding Modelica simulaton model as well as sample result

representation

A Modelica-Based Framework for District Heating Grid Simulation

DOI Proceedings of the 13th International Modelica Conference 163
10.3384/ecp19157159 March 4-6, 2019, Regensburg, Germany

The main challenge in these models is to identify the

dynamic movement of the grid point at which volume

flow reversal takes place, especially if both heating

plants work with different operation strategies (e.g.

basic heat supply, residual heat supply).

The first approach to solving this modelling problem

considered the application of the Navier-Stokes

equation for the development of a non-inverse pipe

model.

However, first implementations with this

methodology showed significant disadvantages

regarding simulation performance. The alternative

approach implements pipe components (i.e. flow and

return) with two inverse directions. The model is able

to dynamically detect reverse flow and switch grid

calculation between both pipe elements. This shows

that to achieve maximum simulation performance more

complex modelling techniques and methods are

necessary. However, this disadvantage can be

compensated using script-based partly automated

modelling frameworks.

3 Modelling Framework

The library components described above show the

implemented approach for modelling the behavior of a

district heating grid in the Modelica modelling

language. However, in this area of application, the

main challenges faced are the parameterization of the

model and the evaluation and presentation of the

results. A typical district heating grid with a total

length of approx. 50 km and 250 house connection

stations requires the processing of 12,000 plus

parameters as well as the evaluation of more than 1,000

grid components.

Most parameters of district heating grids today are

already available in electronic form such as in data

bases of GIS-based but static district heating grid

simulation models (e.g. BENTLEY, STANET, etc.).

These data bases can most often be easily exported to

common data formats like *.csv or *.txt and therefore

be imported in MS Excel.

Furthermore, SimulationX, the Modelica simulation

environment used to implement the above described

library components, provides a script-based (via

Python or VBA) access to the simulation model via the

MS COM interface. Imported grid parameters can thus

be used to automatically parameterize the implemented

district heating-grids, simulation model. Even the

model structure itself (i.e. components’ position,

orientation and connections) can be implemented via

script using model internal annotations. Therefore, the

model structure represents real-world grid layout and

available GIS data (i.e. x and y coordinates) provide

sufficient information for automatic modelling.

Besides automated variant analyzes, SimulationX

furthermore enables an automatic export of simulation

results via the same COM interface (Neidhold et.al.

2018). Therefore, a set of suitable MS Excel templates

and evaluation scripts provide an easy to use

framework to integrate Modelica simulation models as

well as common MS Office tools in a consistent

workflow for district heating grid analyzes.

4 Simulation Examples

One complex simulation example is a medium-size

district heating grid in a town in eastern Germany. It

has a total pipeline length of approximately 50 km. The

total installed heating power output is 20 MW which is

divided by about 40% to 60% between a base load and

residual load heating plant (c.f. Figure 2).

The grid only has to overcome slight geodetic

differences in height of about 40 m. A maintenance

pressure of an estimated 5 bar is thus provided by the

residual heating plant.

The grid is currently under reconstruction. It

previously consisted of two main individual grids, each

with their own heating plant, supplying heat to the

north western and south eastern part of the city. Both

former grids will now be connected to one complex

district heating grid with a base and a residual load

heating plant. Furthermore, a small local heating grid

in a peripheral residential area will be connected to

benefit from the increased heat supply efficiency of the

new grid with modern cogeneration power plants.

Finally, new customers of the district heating grid

shall be acquired. Therefore, additional pipelines to

peripheral buildings (e.g. a large school complex) will

be built in the south west and north east area.

Figure 3: Simulated heat power output in both heating

power plants in a reference year – Differences between

static and dynamic grid simulation

To effectively plan the reconstruction it is necessary

to analyze the resultant requirements on total heat

supply as well as pressure drops in both heating plants

with regards to the developed operation strategy.

Additionally, an evaluation of all relevant grid areas in

regards to maximum flow pressure as well as heat and

Modelica model

Grid structure and

result representation

Base load

heating plant

Residual load

heating plant

Simulation results of static district

heating grid simulation tools

Dynamic simulation results with

Modelica models

A Modelica-Based Framework for District Heating Grid Simulation

164 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157159

pressure losses in varying pipelines, is necessary. This

is ultimately required to confirm that the planned grid

operation with the two power plants fits the

requirements of all customers and all weather

conditions. Furthermore, the simulation results are used

in the sizing process to determine the right dimension

of circulation pumps, cogeneration units as well as

peak-power boilers.

Additionally, the simulation results characterize the

remaining grid capacity of all grid parts which can be

utilized (i.e. provide access to additional customers).

They also indicate pros and cons of different piping

solutions for additional grid parts.

Figure 5: Simulated pressure drop in both heating

power plants in a reference year

Figure 3 depicts one of the previously described

result sets from the district heating grid simulation

model, showing the dynamic heat power output of both

the base load and the residual load power plant. It

illustrates that most heat over the year is provided by

the base load power plant (heat power output with a

maximum of 9MW can be supplied for almost half of

the year). The peak-power output of the residual heat

power plant however, exceeds the maximum of the

base load with about 13 MW at the end of January.

This significant difference between peak load and base

load (about 2 MW) results mainly from the connected

residential buildings which only consume little

amounts of heat to produce domestic hot water, during

the summer time (base-load periods).

Figure 5 shows the corresponding dynamic pressure

drop behavior in both heating power plants mainly

dependent of outdoor-temperature specific, heat-power

output. In times of shutdown the pressure drop at the

residual power plant remains at the minimum level

which is provided from the base load power plant at its

grid position. During these times, the complete flow is

provided by the circulation pumps of the base load

power plant. In the case that peak-heat power is

required, the pressure drop in the residual load power

plant significantly increases (up to 7 bar), often even

above the base load heat power plant pressure

parameters (max. about 5.5 bar). In this case, most of

the grid’s customers are supplied by the residual load

power plant.

Figure 4 furthermore shows a section of the grid in

the north eastern area which shall be extended with

additional pipes to supply further single-family houses.

The main question regarding the maximum grid

capacity in this area, that is posed, is if all considered

buildings can be additionally connected to the grid

without exceeding maximum capacity.

The simulation results showed that the maximum

specific pressure drop in the considered pipelines as

well as the maximum flow speed does not overrun

pipe-specific limits (i.e. 1 m/s flow speed and 150

Pa/m specific pressure drop). Thus the model could

confirm that the existing grid capacity is sufficient, to

additionally connect all remaining single-family homes

in the considered street.

Figure 4: Example simulation results – maximum flow speed and specific pressure drop in one of the grid parts

A Modelica-Based Framework for District Heating Grid Simulation

DOI Proceedings of the 13th International Modelica Conference 165
10.3384/ecp19157159 March 4-6, 2019, Regensburg, Germany

5 Heating Power Plant Models

The above described approach and methods enable

the dynamic simulation of district heating grids which

allows engineers to better evaluate and plan such grids.

This results in more detailed and accurate grid

parametrizations and information.

Using this information gain and utilizing the

Modelica modelling language further aspects of district

heating can be examined and developed. One of these

areas is the development of detailed heating power

plant models to test and evaluate unit commitment

algorithms and methods.

Due to the global goal of decarbonization

cogeneration units have been promoted as a middle-

term solution to decentralizing energy production.

These units combine power and heat production. This

improves overall process efficiency and thus such units

are common in district heating grids. The produced

electricity is directly marketed on the stock exchange,

meaning that prices vary on a quarterly hour bases

(prices are released for the next 24 hours). Therefore,

through utilizing heat storage capacities, the trade with

production flexibility offers new economic incentives

for heating power plant operators.

Operators are required to plan their power

production for the next 24h (Day-Ahead Planning). To

automate and optimize this planning process, unit

commitment algorithms have been developed which

take into account fluctuating electricity prices and

future heat demands. These algorithms can mostly only

be tested using simplified static verification methods.

This can be problematic as simplifications are often

made in the algorithm development process which

cannot be tested or evaluated using these static

methods. The following chapter will describe an

approach that enables a dynamic simulation and

evaluation of such algorithms using the Modelica-

based library Green City.

Figure 6: Example Heating Power Plant

Green City is a newly developed simulation library in

ESI ITI’s SimulationX for holistic modeling of heating,

cooling and electric power supply, storage systems and
consumption models in buildings and city quarters. It is

based on the existing Green Building approach used to

simulate sophisticated HVAC systems including

renewables, storages, control strategy and eMobility.
To enable the above described dynamic simulation a

model-based test platform was developed on the basis

of an example heating power plant. The simplified

example plant consists of 3 different cogeneration

units, one heat storage system, 2 peak-heat boilers and

a district grid (summarized as one thermal load).

The challenge of building the above example plant

was that not all of the components needed where

available in the standard Modelica libraries, like Green

City in SimulationX. Since the cogeneration units

needed to be controlled through external *.txt files (via

a time-dependent reference power output curve) that

were written by the unit commitment algorithms, an

interface as well as a new unit controller was

developed, that enabled the coupling of the planning

algorithm and the model. Another Interface was

established that enabled the link between the heat

prediction algorithms (temperature dependent) and the

district heating grid.

The cogeneration units were further developed to be

able to adjust running cycles so that minimal unit

modulations were upheld. Furthermore, the boilers

control technology was adapted so that a peak-heat

operating mode was possible. Utilizing these new

library components a complete model based platform

could be developed.

To examine the above developed model and test its

validity different test scenarios were defined and

implemented. The first looked at plausibility and the

second at sensitivity to prediction errors. These test

scenarios were simulated using three daily case

examples which are defined through different heating

periods (i.e. summer, winter, transition period).

Furthermore 2 algorithm types were used to create

different unit commitment plans for the above

described example days. One algorithm applied only a

heat-controlled operation (baseline algorithm) and the

other implementing an electricity revenue optimization.

This allowed for an overall validity evaluation of the

described model and the investigation of the possibility

of algorithm assessment.

Figure 7: Example of Simulation Assessment

A Modelica-Based Framework for District Heating Grid Simulation

166 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157159

The following figure shows an example of such a

plausibility investigation. It is visible that technological

processes such as running cycle adjustment and peak

power compensation through the boiler are correctly

implemented within the model. Furthermore, the

incorporation of the heating storage is visible in the

flexible relocation of heat production.

The described test scenario evaluations showed that

the Modelica based model was able to plausibly depict

the system technology of a heating power plant

including cogeneration units, taking into account

physical and technological constraints. The developed

simulation model thus, enables a dynamical and

transient validation of unit commitment planning

algorithms. The study shows that both the plausibility

and sensitivity of such algorithms can be investigated

using the developed model based test platform. This

ultimately enables the optimization and evaluation of

such algorithms before real world implementation. It

also showed the advantages of dynamic investigations,

using the Modelica modelling language, opposed to

mere static approaches.

6 Conclusion

The presented simulation approach enables

engineers and scientists to simulate thermal and

hydraulic behavior of a district heating grid. Apposed

to conventional GIS-based grid simulation tools, the

developed approach using the versatile modelling

language Modelica enables the consideration of

weather dependent dynamic effects as well as storage

capacity influences, over a year, within one model.

This inevitably enables engineers to better evaluate

part load conditions.

GIS-based grid simulation tools however, provide

copious data bases of required system elements (e.g.

pipes of different sizes and manufacturers) as well as

an easy-to-understand frontend to illustrate simulation

results with graphical references to individual grid

parts on the map. To close this gap, the existing COM-

Interface between the Modelica simulation

environment SimulationX and MS Excel was extended

to automatically build and parameterize gird models

utilizing the imported grid data base. Furthermore, the

interface was also used to implement post processing

routines for result evaluation and graphic presentation.

The approach has been tested with sufficient

measurement data of several example grids. The results

are valid for district heating grids of small to medium

size.

As an example, measurement data of another 20 km

district heating grid in a small city in eastern Germany

was used which allowed for a comparison of both

thermal as well as hydraulic behavior of the

implemented models. Figure 8 shows a brief

comparison of the measured vs. the simulated pressure

drop of this analyzed grid depending on the outdoor

temperature. Due to the highly simplified approach of

building modelling (c.f. Figure 1), the grid model

cannot fully represent building storage capacities. This

thus results in fluctuating measurement values

regarding specific outdoor temperature. It however,

sufficiently reproduces the hydraulic behavior in all

grid parts (peak loads, basic loads) which are necessary

for grid analyzes and system design.

Figure 8: Comparison of measured vs. simulated

pressure drop depending on outdoor temperature

The simplified modeling approach enables high

performant models with sufficient simulation speed. A

50 km plus grid with about 2,000 grid elements and

about 1,400 model states needs an estimated time of

one to two hours for a yearly simulation. Furthermore,

the dynamic modelling approach of Modelica enables

the evaluation of 100+ grid operating points within a

single simulation run. Existing static district heating

grid simulation models only allow for the evaluation of

one operating point with each simulation run (c.f.

Figure 3).

Future development will include extended process

automation to further expand the approach, enabling

the simulation, evaluation and presentation of large-

scale district heating and ultimately cooling grids.

Nomenclature

Following definitions and symbols are used within

this paper to describe the model functionality in

equations 1 to 15.

�̇�𝑙𝑜𝑠𝑠 - Heat loss over the insulation

𝛥𝑄𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 - Heat transmission coefficient of pipe

𝑙𝑝𝑖𝑝𝑒 - Length of pipe

𝑇𝑚𝑒𝑑 - Medium temperature

𝑇𝑔𝑟𝑜𝑢𝑛𝑑 - Ground temperature

∆𝑝𝑟𝑜𝑢𝑔ℎ - Pressure drop of pipe dependent on

 pipe roughness

𝜆𝑝𝑖𝑝𝑒 - Pipe friction coefficient

𝜌𝑚𝑒𝑑 - Medium density

A Modelica-Based Framework for District Heating Grid Simulation

DOI Proceedings of the 13th International Modelica Conference 167
10.3384/ecp19157159 March 4-6, 2019, Regensburg, Germany

𝑣𝑝𝑖𝑝𝑒 - Pipe flow speed

𝑑𝑖,𝑝𝑖𝑝𝑒 - Inner pipe diameter

𝜁𝑝𝑖𝑝𝑒 - Pressure loss coefficient of pipe

𝛥𝑝𝑏𝑒𝑛𝑑𝑠 - Pressure drop of pipe bends

𝛥𝑝𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 - Pressure drop of pipe fittings

𝛥𝑝𝑒𝑙𝑒𝑚𝑒𝑛𝑡 - Constant pressure drop of

 individual pipe fittings

𝛥𝑝𝑔𝑒𝑜 - Pressure drop of pipe dependent on

 geodetic elevation differences

𝑔 - Gravity constant

𝛥𝑧 - Elevation difference

𝜂𝑚𝑒𝑑 - Dynamic viscosity coefficient

𝑘𝑝𝑖𝑝𝑒 - Roughness coefficient

𝑅𝑒 - Reynolds number

𝜆𝑝𝑖𝑝𝑒,𝑙𝑎𝑚 - Pipe friction coefficient of

 laminar stream

𝜆𝑝𝑖𝑝𝑒,𝑡𝑢𝑟𝑏,𝑠𝑚𝑜𝑜𝑡ℎ - Pipe friction coefficient of

 turbulent stream for a smooth

 pipe

𝜆𝑝𝑖𝑝𝑒,𝑡𝑢𝑟𝑏,𝑟𝑜𝑢𝑔ℎ - Pipe friction coefficient of

 turbulent stream for a rough

 pipe

𝑇𝑅𝑒𝑡𝑢𝑟𝑛 - Return temperature

𝑇𝑅𝑒𝑡𝑢𝑟𝑛,𝑚𝑎𝑥 - Maximum return temperature

𝑇𝐹𝑙𝑜𝑤 - Flow temperature

𝑄𝐻𝑒𝑎𝑡𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 - Building heat consumption

𝑞𝑣,𝑚𝑎𝑥 - Maximum volume flow of

 building’s grid connection

𝑐𝑝,𝑚𝑒𝑑 - Specific heat capacity of medium

𝑝𝑟𝑒𝑡𝑢𝑟𝑛,𝑚𝑎𝑖𝑛 - Absolute pressure of main return

 pipe

𝑝𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ1- Absolute pressure of return branch1

𝑝𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ2- Absolute pressure of return branch2

𝑇𝑓𝑙𝑜𝑤,𝑚𝑎𝑖𝑛 - Flow temperature in main pipe

𝑇𝑓𝑙𝑜𝑤,𝑏𝑟𝑎𝑛𝑐ℎ1 - Flow temperature in branch1

𝑇𝑓𝑙𝑜𝑤,𝑏𝑟𝑎𝑛𝑐ℎ2 - Flow temperature in branch2

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑚𝑎𝑖𝑛 - Return temperature in main pipe

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ1- Return temperature in branch1

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑏𝑟𝑎𝑛𝑐ℎ2- Return temperature in branch2

𝑞𝑣,𝑏𝑟𝑎𝑛𝑐ℎ1 - Volume flow in branch1

𝑞𝑣,𝑏𝑟𝑎𝑛𝑐ℎ2 - Volume flow in branch2

𝑞𝑣,𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 - Volume flow in junction1

𝑞𝑣,𝑚𝑎𝑖𝑛 - Volume flow in main pipe

∆𝑝𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 - Total pressure drop in junction1

∆𝑝𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 - Total pressure drop in junction2

References

Soons, F.F.M.; Torrens Galdiz, J.I.; Hensen, J.L.M.;

Schrevel, R.A.M. de. A Modelica based computational

model for evaluating a renewable district heating system.

9th International Conference on System Simulation in

Buildings, December 10-12, 2014, Liege, Belgium

Hägg, R. Dynamic Simulation of District Heating Networks

in Dymola. Thesis for the degree of Master of Science in

Engineering Department of Energy Sciences Faculty of

Engineering, Lund University, 2016.

Schwan, T.; Unger, R.; Lerche, C.; Kehrer, C. Model-Based

Design of Integrative Energy Concepts for Building

Quarters using Modelica. 10th International Modelica

Conference, March 10-12, 2014, Lund, Sweden.

Schweiger, G.; Runvik, H.; Magnusson, F.; Larsson, P.-O.;

Velut, S. Framework for dynamic optimization of district

heating systems using Optimica Compiler Toolkit. 12th

International Modelica Conference, May 15-17, 2017,

Prague, Czech Republic.

Hermansson, K.; Kos, C. Building and Simulating Dynamic

Models of District Heating Networks with Modelica.

Master thesis, School of Business, Society and Engineering

Energy Engineering, Mälardalen University, Sweden,

2017.

Neidhold, T.; Hofmann, T. New in SimulationX 3.9. ESI

Forum 2018, November 8-9, 2018, Weimar, Germany.

A Modelica-Based Framework for District Heating Grid Simulation

168 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157159

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

DOI Proceedings of the 13th International Modelica Conference 169
10.3384/ecp19157169 March 4-6, 2019, Regensburg, Germany

Optimization of District Heating Systems: European Energy Exchange Price-Driven
Control Strategy for Optimal Operation of Heating Plants
Dahash, Abdulrahman and Steingrube, Annette and Ochs, Fabian and Elci, Mehmet

169

Optimization of District Heating Systems: European Energy

Exchange Price-Driven Control Strategy for Optimal Operation of

Heating Plants

Abdulrahman Dahash1 Annette Steingrube2 Fabian Ochs1 Mehmet Elci2

1. Unit of Energy Efficient Buildings, University of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria,
Abdulrahman.Dahash@uibk.ac.at

2. Fraunhofer-Institute for Solar Energy Systems, Heidenhofstraße 2, 79110 Freiburg im Breisgau, Germany
Annette.Steingrube@ise.fraunhofer.de

Abstract

District heating (DH) systems are often seen as a good

practical approach to meet the local heat demand of

districts. Yet, under today’s regulations to renovate

buildings on high efficiency standards, the local heat

demand is decreasing. Therefore, the operation of DH

systems is also affected by the changing heat demand

profile, which might lead to less profit for the operators

of DH systems. Thus, the operators strive for an optimal

operation at which the heat demand is met and the

profits are maximized. In this work, a control strategy

for optimal operation of a combined heat and power

(CHP) based DH is presented. The proposed control

strategy couples the operation of CHPs to the European

energy exchange (EEX) price by implementing different

operation constraints. This configuration is

accompanied with another, which is the installation of

additional storage volume. Thereby it is held to provide

the optimal operation for the plant technically and

economically.

Keywords: Modelica/Dymola, District Heating,

Heating Plant, Power-Based Model, Optimal
Operation, Control Strategy, Storage.

1 Introduction

District heating (DH) systems represent a key energy

solution that have been deployed for years in a growing

number of cities worldwide (Werner, 2017) (Rezaie, B.

and Rosen, M. A., 2012). Thereby, DH systems are

envisioned as an effective approach to provide

affordable, local and low-carbon energy to the

consumers through diversity of supply, energy

balancing and storage (Guelpa et al., 2018). Therefore,

DH systems are envisioned as one of the practical

approaches for the global transition to sustainable

energy utilization in many urban centers (Fiacro Castro

Flores, 2018).

Moreover, combined heat and power (CHP) based

DH systems are seen as a flexible heat-supply option as

it provides heat to meet the local heat demand in urbans

and, therefore, these CHPs are frequently heat driven
(Elci et al., 2015). CHP produces also electricity as a

byproduct and feeds it into the national power grid

helping in balance it due to the fluctuating renewables,

especially during periods where renewables hardly

provide useful energy (Buffat, R. and Raubal, M.,

2019). Consequently, CHP’s electricity is fed into the

grid at a variable or fixed tariff depending on the

European energy exchange (EEX) market. Thus, this fed

electricity might lead to gain profits out of the electricity

produced.

In the coming years, it is believed that buildings’

heat demand will gradually decrease due to the

refurbishment regulations. The goal in the

refurbishment process is to have energy demand as low

as possible. This demand profile and the national

electricity demand fluctuate seasonally and hourly with

asynchronous patterns, thus it is important to guarantee

an optimal-operation of the heating plants coupled to the

DH networks. Thus, the operators of DH systems strive

for an optimal operation at which the heat demand is met

and the profits are maximized (Dahash et al., 2017).

Consequently, it is of importance to introduce an

optimal-operation for the heating plants coupled to DH

networks.

Furthermore, this operation strategy should be

subjected not only to the buildings’ heat demand, but

also to electricity selling price in the market, fuel costs

and electricity demand in the national power grid. In this

context, it is pointed out that such an optimal operation

is a future challenge in DH domain due to the

complexity, the high number of parameters and its

combinatorics and the optimal planning for heat-

generation between the different heat sources in the

heating plant (Zhou et al., 2014). Following this

challenge, it is highly advised to rely on decision

support/making tools, which are dependent on model

predictive control (MPC) to achieve the optimal

operation (Giraud et al., 2017).

In this study, we present a control strategy for

optimal operation of CHPs in heating plants coupled to

DH networks. In this control strategy, the electricity

market price is introduced to take advantage of the

periods during which the electricity price is relatively

high to maximize revenue. To test this strategy, a

validated power-based model of a DH system is used.

This model shows the amount of energy flows between

the different parts of the DH system (supply side,

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

170 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157169

transmission network and demand side). The reasons

behind this modeling approach are the less simulation

time and the better insight in the heating plant’s

operation (Dahash, 2016). For the modeling,

Modelica/Dymola was used as a simulation tool since

Modelica supports the description of mathematical

equations following the physical modeling paradigm.

2 Methodology

2.1 Case Study

As a case study, a district in the city of Freiburg in

the south of Germany was used. This district is called

Weingarten and it was built in the 1960s. Under current

regulations regarding comfort, energy efficiency and

modern building technology, the buildings in the

western part have to be renovated into more energy-

efficient buildings. This refurbishment requires major

structural, technical and economic interventions in order

to modernize the district’s buildings, renew

Weingarten’s energy supply system and operate it

optimally.

The district’s heat demand is provided by a central

heating plant that supplies heat to two districts (i.e.

Rieselfeld, Weingarten) via a DH network as shown in

Figure 1.

In the heating plant, 6 gas-fired CHP units, each with

1200 kWel / 1490 kWth, are installed and the operation

of them is mainly heat-driven. Consequently, two CHP

units are operating almost continuously year-round to

meet the base-load. Thus, over 75 % of the annual

amount of heat produced comes from CHP units, while

the remainder is generated by peak boilers (3*9300

kW). Also, in order to achieve smooth operation of the

CHP units, there are two thermal energy storage (TES)

systems with a total volume of 360 m3. They help in

meeting the demand over short periods.

2.2 DH System Model Description

A thermo-hydraulic model of a DH system with fully

described details requires high computational efforts

(simulation time), particularly when modelling large

DH systems with many heat supply technologies,

consumers, long-distance networks and complex

operation scheme. Accordingly, it is important to reduce

the complexity of the models to a degree in which all

physical properties remain accurate. Thus, it is vital to

underline the crucial goal of modelling process in order

to reduce the computational efforts and time (Dahash et

al., 2019).

In this study, the main goal is to simulate correctly

the operation of the central heating plant and to test the

proposed control strategy and its applicability with

another optimization configuration (installing additional

TES volume). As a result, many general assumptions are

set in the system layout in order to simplify the model.

These assumptions are as follows:

1. The demand side (consumers) is modelled as a

single heat sink. This sink is directly connected to

the network. This means there is only one single

loop in which the heat sink is directly coupled to

the network without the need of heating

substations.

2. The three peak boilers in the heating plant are

represented in a single equivalent boiler with a total

thermal power of 27,900 kW.

3. Since the two TES units are connected in series in

the heating plant, it is possible to represent them as

one single unit. Therefore, a single TES unit with a

total volume of 360 m3 is implemented in the

model.

The heating plant model used in this study is

extensively described in an earlier study (Dahash et al.,

2017). Also, the validation of this model was carried out

in the aforementioned literature. Therefore, only the

control strategies are comprehensively discussed in the

following sections in order to comprehend the changes

in the control strategy and to compare the results.

Moreover, the reference and the proposed control

schemes for the CHP are presented, whereas no changes

are seen necessary for the boiler and storage controllers.

2.3 Reference Control Strategy

2.3.1 CHP Controller

Herein, the bottom segment temperature for storage

is set to 70°C and the upper one is set to 100°C. For each

CHP unit, an individual CHP controller is installed in

the model. In this controller, the heat demand and the

storage temperatures (upper and bottom) are

simultaneously checked. From Figure 2, 3 cases can be

determined to run the CHP unit, which are:

1. Power case (a): if the heat demand is higher

than the nominal CHP’s heat output and the

temperature of the bottom segment is higher

than 70°C, then the CHP unit runs.

2. Power case (b): if the heat demand is higher

than nominal CHP’s heat output and the

temperature of the bottom segment is lower

than 70°C, then the CHP unit runs.

3. Power case (c): the CHP unit runs, when the

following conditions are all true:

i. The heat demand is lower than nominal

CHP’s heat output, and

ii. The heat demand is higher than 95 % of the

CHP’s heat output (equals 1.425 MW), and

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

DOI Proceedings of the 13th International Modelica Conference 171
10.3384/ecp19157169 March 4-6, 2019, Regensburg, Germany

Figure 1: Geographical top view of the Weingarten and Rieselfeld district with the central heating station and DH network

(Bachmaier et al., 2015)

iii. The upper storage temperature is lower than

95°C.

Regarding power case (a), as the storage temperature

is equal to or higher than 70°C, this means the storage

can be discharged. On the contrary, if the storage

temperature is less than the set bottom temperature

(70°C), this means the energy stored in the storage

system cannot be used and, therefore, power case (b) is

activated to supply the heat directly to the consumers.

While power case (c) is activated in order to cover the

heat demand that is higher than 1.425 MW and the

remaining of the heat output charges the storage.

Moreover, if the heat demand (or the remaining heat

demand for CHP 2-6) is less than 1.425 MW or the

upper storage temperature is higher than 95°C, then the

corresponding CHP unit turns off.

2.3.2 Storage Controller

This controller plays a role in the energy balance of

the entire heating plant, since it gives a signal to

discharge or charge the storage system. The controller

flowchart is shown in Figure 3. Therein, it is illustrated

that there are two inputs and a single output. One input

is the storage bottom temperature. Based on the

temperature, a decision is made as whether the storage

system can be discharged.

If the temperature of storage’s bottom, however, is

higher than 70°C, this sends a true signal to the switch

component to discharge the storage system to cover the

remaining demand. Otherwise, the output is set to zero

when the temperature is less than 70°C. Thus:

�̇�storage = �̇�demand − ∑ �̇�CHP,𝑖

6

𝑖=1

 (1)

Occasionally, the storage system cannot be

discharged because the last segment temperature is less

than that allowed for discharging and, therefore, the

remaining heat demand proceeds to the next controller,

which is the boiler controller that runs the boiler in order

to meet the required amount of heat.

2.3.3 Boiler Controller

The boiler controller is a simple unit, which computes

how much heat demand remains after the total output of

the CHP units and the discharged capacity of the storage

system. Next, it gives an output signal to run the boiler

in a partial mode to meet the remaining heat demand,

thus:

0 ≤ �̇�boiler ≤ 27.9 MW (2)

Here, the remaining demand is computed as below:

 �̇�boiler = �̇�demand − ∑ �̇�CHP,𝑖 − �̇�storage

6

𝑖=1

 (3)

The term �̇�storage refers to the usable heat in the

storage system. Therefore, the usable temperature lies

between 70°C and 100°C.

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

172 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157169

Yes

(a)

No

No

(b)

(c)

No

Yes

Yes

Yes

No

Demand

(remaining demand)

Storage bottom

temperature (Tbottom)

Demand >

CHP output?
Tbottom 70 °C

CHP off

Or

Calculate the

remaining

demand

Next heat

source

CHP on

Storage upper

temperature (Tupper)

Demand > 95 %

CHP output?

Tupper 95 °C

Or

Storage can be discharged

Or

Figure 2: CHP controller flowchart (reference case).

Yes

No

Demand
Total output of CHP

units that are on

Bottom storage

temperature

Remaining Demand =

Demand – CHP units Output
Discharge storage

Bottom storage

temperature 70°C?

Next heat source

Storage cannot be

discharged

Figure 3: Storage controller flowchart.

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

DOI Proceedings of the 13th International Modelica Conference 173
10.3384/ecp19157169 March 4-6, 2019, Regensburg, Germany

2.4 Proposed Control Strategy

In this control strategy, the major changes take place

in the CHP controller, as it is the primary regulator of

the heating plant. Firstly, a price threshold is determined

and implemented in the CHP controller. Then a

constraint is set in the controller, if EEX price is higher

than this threshold, then it is worthwhile to run the CHP

units to maximize the revenue regardless of the heat

demand. Nevertheless, the following question arises:

What if a situation occurs where the storage is fully

charged, the EEX price is high enough to run the

CHP units and the heat demand is relatively low?

Having considered this scenario, the control strategy

is constructed such that if the heat demand is high and

EEX price is lower than the threshold, the CHP units run

to meet the demand and the rest is stored. Accordingly,

the storage is set to a predetermined temperature. In

addition, when EEX price is more than the threshold, the

CHP units run to feed the electricity produced into the

grid and the storage is charged until 100°C (fully

charged) regardless of the heat demand. Furthermore, to

determine the optimum storage temperature to fulfill the

energy balance constraint, an iterative algorithm is built

as shown in the Figure 4.

 Guess Ts

Evaluation of energy

supply

Energy-balance

constraint violated?

Optimum temperature

No

Yes

Estimation of electricity

revenue

Figure 4: An iterative approach to determine the optimum

storage temperature.

Figure 4 illustrates that firstly, a guess for the storage

temperature is made, and it is assumed 80°C, and then

the simulation runs until the energy supplied by the

heating plant is seen. Next, the energy-balance

constraint is inspected, if it is true and there is a balance,

then optimum storage temperature is found. If not, then

another guess is made and the simulation runs again

until the energy balance constraint is fulfilled.

Following this iterative approach, the optimum storage

temperature is determined to be 86°C and the price

threshold is set to a specific value (e.g. 36 €/MWh), at

which the energy-balance constraint is fulfilled. Thus,

the storage capacity is used up to 86°C when there is a

heat demand regardless of the EEX price. Whereas the

rest of storage capacity (86°C up to 100°C) is kept for

periods at which EEX, price higher than the threshold.

Essentially, the CHP units are forced to run when the

electricity price is high even though there is no heat

demand. Therefore, the heat can be stored in the TES

and the electricity is fed into the grid and sold for high

prices. Figure 5 illustrates the flowchart for this

proposed controller, and it is seen that there are 4 power

cases to run the CHP unit.

The power cases are:

1. Power case (a): if the heat demand is higher

than the nominal CHP’s heat output and the

EEX price is higher than 36 €/MWh, then the

CHP unit runs.

2. Power case (b): if the heat demand is higher

than nominal CHP’s heat output and the

temperature of the bottom segment is lower

than 70°C, then the CHP unit runs.

3. Power case (c): if the heat demand is higher

than the nominal CHP’s heat output and the

temperature of the bottom segment is higher

than 70°C, then the CHP unit runs.

4. Power case (d): if the heat demand is lower

than the nominal CHP’s heat output and the

EEX price is higher than 36 €/MWh, then the

CHP unit runs.

It is worth to mention that if the power case (d) is

activated, this means the heat demand is lower than

CHP’s heat output and, therefore, the demand is met

firstly and the rest goes to the storage to be stored. The

storage here is allowed to store heat up to 100°C, this

matches (f) in Figure 5. While if the EEX price is lower

than 36 €/MWh, then the storage is allowed to store the

heat at a maximum temperature of 86°C regardless the

heat demand as seen in the flowchart above, this

matches line (e) in the flowchart. Also, in case the heat

demand is higher than CHP’s heat output, then the CHP

unit runs regardless the EEX price and this constraint is

covered by power cases (b) and (c). Moreover, in the

below flowchart, the cases to discharge the storage are

not shown.

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

174 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157169

Yes

Yes No

(b)

(a)

Yes

(c)No

(d)

(f)

No

No

(e)

Demand

(remaining demand)

Storage bottom

temperature (Tbottom)

Demand >

CHP output?
Tbottom 70 °C

Or

Calculate the

remaining

demand

Next heat

source

CHP on

EEX price

EEX 36 euro/

MWh?

CHP onAnd

Or

Charge Storage to 100°C

And Charge Storage to 86°C

Or

Figure 5: CHP controller flowchart (proposed case).

2.5 Techno-Economic Governing Equations

The energy consumed (gas) to cover the production

of heat and electricity from a CHP is computed as:

𝑄fuel =
𝑄th + 𝐸el

𝜂tot
= 𝑄gas (4)

Same equation (4) is also applied to calculate the

thermal energy produced by and energy supplied to the

boilers, as they only produce heat. Additionally, the total

cost of fuel energy supplied (i.e. gas) to the CHP or the

boiler is given by the following equation:

𝐶gas = 𝑐gas ∙ 𝑄gas (5)

𝑐gas is the specific cost of the gas as stated in the

contract between the gas supplier and the heating plant

operator. It is taken as 30 €/MWh, whereas 𝐶gas is the

cost of gas in euros.

As the heating plant operator, Badenova, sells the

heat produced with a mean price of 5.5 cent/kWh

calculated out of Badenova’s pricing sheet, the revenue

gained from the heat produced is also computed as

below:

𝑅heat = 𝑐heat ∙ 𝑄demand (6)

On the other hand, Badenova does not sell the

electricity generated at a fixed price due to a varying

EEX price in electricity market. Thus, it is possible to

implement the variable electricity price in the future

and, therefore, the electricity revenue is calculated as

below:

𝑅electricity = ∫ 𝑃el ∙ 𝑐el(𝑡) ∙ d𝑡
𝑡

0

 (7)

𝑐el is the current electricity price in EEX in [€/MWh].

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

DOI Proceedings of the 13th International Modelica Conference 175
10.3384/ecp19157169 March 4-6, 2019, Regensburg, Germany

All these equations are implemented in Dymola as

computational units for both operations (reference and

proposed) to compute the different parameters (thermal

energy production, electricity generation, gas

consumption, revenues and costs). After calculating

these values, the annual net profit of each operation is

calculated as below:

𝑁𝑃 = 𝑅heat + 𝑅electricity − 𝐶total (8)

𝐶total is the total cost of gas supplied to the heating

plant for both of CHP units and boilers.

3 Simulation Results and Discussion

The determination of the storage temperature is the

most critical aspect in order to avoid violating the

energy-balance constraint. Therefore, many simulations

were carried out following the iterative procedure that is

described in Figure 4. Nevertheless, only the results of

successful simulations are considered here and

compared with the reference case of the model (the

normal CHP controller).

The simulation results reveal a slight increase in the

operation of CHPs during the years 2014, 2015, 2016

and 2020 compared to the reference operation. In these

scenarios, year 2014 represents the buildings’ heating

demand before the refurbishment, whereas the years

2015 and 2016 stand for the status during the

refurbishment. Year 2020 represents the forecasted

heating demand when the buildings are completely

renovated into more energy-efficient ones.

Furthermore, the increase in CHPs operation is

accompanied by a reduction in the produced heat from

boilers as seen in Figure 6.

Yet, Figure 6 depicts that the CHPs’ heat output

decreases as the price threshold increases from 30

€/MWh up to 45 €/MWh. This is because the period in

which EEX price around 30 €/MWh is more frequent

compared to both other periods. Therefore, more heat is

produced from the boilers during periods with high price

threshold. If the price threshold is set to 45 €/MWh and

EEX price is around 30 €/MWh, then the CHPs

operation will not be feasible since they run in full-load

and, thus, they demand high gas consumption. So, they

generate electricity, which will be sold at low EEX price

and, then, low profits. Whereas it is more feasible to run

the boilers since the can run in partial load and cover the

low heat demand fully.

As a result, the total gas consumption also varies,

which also has in return an influence on the economic

feasibility of the new control strategy. However, since

the operator of the heating plant buys gas with a fixed

price, then the changes in gas consumption have minor

influence on the economic feasibility compared to the

influence of EEX price.

To increase the feasibility of this control strategy,

additional TES units are installed. Each unit with a

volume of 210 m3. The additional volume will allow the

CHPs to run smoother, longer and more flexible during

periods at which EEX price is high enough. During such

periods, the heat demand is met, whilst the remainder of

produced heat is stored in TES. When heat is needed

later and EEX price is low, then there is no need to run

the CHPs or the boilers. It could be enough to discharge

TES and if more heat is needed, then the boilers run.

Out of the results, it is decided to select years 2016

and 2020 and show their results in context of CHPs and

boilers heat output to demonstrate that increasing the

TES volume with such a controller might lead to less

operation of boilers and CHPS can run longer and, hence

more profits.

Figure 7 and Figure 8 illustrate the amount of heat

produced by CHPs and boilers with an increasing TES

volume for the selected years (2016 and 2020).

Figure 6: Comparison of CHPs’ and Boilers’ heat output for three price thresholds compared to the reference case (blue

bar) during the years 2014, 2015, 2016 and 2020 (All cases are subjected to VTES = 360 m3).

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

176 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157169

Figure 7: Comparison of CHPs’ and Boilers’ heat output for three price thresholds compared to the reference case (blue

bar) during the year 2016.

Figure 8: Comparison of CHPs’ and Boilers’ heat output for three price thresholds compared to the reference case (blue

bar) during the year 2020.

The annual net profit is calculated for each scenario

following equation (8) and then compared to the

reference scenario to display the annual net profit

percentage (Δ𝑁𝑃 (%)) in Figure 9. The net profit

percentage is computed from the following equation:

 Δ𝑁𝑃 (%) =
(𝑁𝑃)pro−(𝑁𝑃)ref

(𝑁𝑃)ref
∙ 100 (9)

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

DOI Proceedings of the 13th International Modelica Conference 177
10.3384/ecp19157169 March 4-6, 2019, Regensburg, Germany

Figure 9: Net profit percentage for the proposed control strategy at different storage volumes compared to the reference

case (reference control strategy and VTES = 360 m3).

It is worthwhile to mention that the control strategy

is seen not highly beneficial in year 2020 for the TES

volume of 360 m3. This is attributed to the expected

negative EEX prices in the corresponding year, which in

return is due to higher electricity share from renewables.

Therefore, a drop in EEX prices is expected. Thus, the

CHPs run for less time during these periods.

The results pinpoint that this control strategy is held

to be feasible, especially in the cases with a TES volume

beyond 360 m3. This volume increase enhances the

operation of the heating plant and maximizes the profits

as seen in Figure 9.

Obviously, the volume increase triggers the CHPs to

run more during periods that do not violate the EEX

threshold. Therefore, more thermal energy can be stored

in the heat storage even if the heat demand is met. Then,

this additional heat is used later when heat is required

and EEX prices are lower than the threshold. Thus, TES

can be discharged. Additionally, it is significant to
underline that this volume increase reduces the boilers’

operation to a minimum.

Furthermore, the numerical results indicate that more

storage volume yields effective and feasible operation

of the heating plant in total as seen Figure 7 and Figure

8, therefore, it is translated into higher profits as shown

in Figure 9.

4 Conclusion

This study was carried out to optimize the operation

of a CHP-based DH system. A valid power-based model

for DH systems was used. Two promising optimization

configurations are selected and tested accordingly.

Firstly, an EEX-price driven control strategy is

examined to quantify the economic benefits. The

outcomes indicate a slight increase in the profits (see

Figure 6). Therefore, a second configuration was also

tested in parallel with the aforementioned configuration

(EEX-driven control strategy), which is installing

additional TES volume. This configuration seems to

deliver better results than standing the proposed control

strategy alone (see Figure 9).

Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for
Optimal Operation of Heating Plants

178 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157169

Moreover, an increase in the profit of 0.55 % (price

threshold of 30 €/MWh) in year 2020 is not a strong

motivation for the operator of the heating plant to

implement the new control strategy. Therefore, it is

worthwhile to add some other constraints to the control

strategy in order to achieve the economic feasibility.

Thus, it is recommended to further constraint the CHPs

operation such that if the EEX price is negative, then the

boilers run instead.

Future work will focus on inspecting the influence of

the proposed control strategy on the DH supply and

return temperatures. Therefore, thermo-hydraulic

models are needed for this task in order to develop the

control strategy further and to determine the optimal

storage volume.

5 Acknowledgements

This work is part of the project Weingarten 2020

Monitoring funded by the BMWi (Federal Ministry for

Economic Affairs and Energy, Project No.:

O3ET2364A). The presentation of this work is financed

by the Austrian “Klima- und Energiefonds” and

performed in the frame of the program

“Energieforschung”. It is part of the Austrian flagship

research project “Giga-Scale Thermal Energy Storage

for Renewable Districts” (giga_TES, Project Nr.:

860949). Therefore, we wish to acknowledge the

financial funding from the aforementioned agencies.

Also, our thanks go to the operator of Weingarten

heating plant, Badenova WärmePlus, for the

cooperation in the project.

6 Nomenclature

7 References

Bachmaier et al., 2015. Spatial Distribution of Thermal

Energy Storage Systems in Urban Areas Connected to

District Heating for Grid Balancing. Energy Procedia,

Volume 73, pp. 3-11.

Buffat, R. and Raubal, M., 2019. Spatio-temporal

potential of a biogenic micro CHP swarm in

Switzerland. Renewable and Sustainable Energy

Reviews, Volume 103, pp. 443-454.

Dahash et al., 2017. A Power-Based Model of a Heating

Station for District Heating (DH) System Applications.
Proceedings of the 12th International Modelica

Conference, Prague, Czech Republic, pp. 415-424.

Dahash et al., 2019. A comparative study of two

simulation tools for the technical feasibility in terms of

modeling district heating systems: An optimization case

study. Simulation Modelling Practice and Theory,

Volume 91, pp. 48-68.

Dahash, A., 2016. A Comparative Study of Modeling
Approaches for District Heating Systems, Offenburg,

Germany: Offenburg-University of Applied Sciences.

Elci et al., 2015. Grid-interactivity of a Solar Combined

Heat and Power District Heating System. Energy

Procedia, Volume 70, pp. 560-567.

Fiacro Castro Flores, J., 2018. Low-Temperature Based

Thermal Micro-Grids: Operation and performance

assessments, Stockholm, Sweden: KTH Royal Institute

of Technology.

Giraud et al., 2017. Optimal Control of District Heating
Systems using Dynamic Simulation and Mixed Integer

Linear Programming. Proceedings of the 12th

International Modelica Conference, Prague, Czech

Republic, pp. 141-150.

Guelpa et al., 2018. Thermal request optimization in

district heating networks using a clustering approach.

Applied Energy, Volume 228, pp. 608-617.

Rezaie, B. and Rosen, M. A., 2012. District heating and

cooling: Review of technology and potential

enhancements. Applied Energy, Volume 93, pp. 2-10.

Werner, S., 2017. International review of district heating

and cooling. Energy, Volume 137, pp. 617-631.

Zhou et al., 2014. Dynamic modeling of thermal

conditions for hot-water district-heating networks.

Journal of Hydrodynamics, Ser. B, 26(4), pp. 531-537.

Symbol Description Unit

𝑐 Specific cost [€/MWh]

𝐶 Cost [€]

𝐸 Energy (i.e. electrical) [J]

𝑁𝑃 Annual net profit [€/a]

𝑃 Power [W]

𝑄 Heat [J]

�̇� Heat flow rate [W]

𝑅 Revenue [€]

t Time [s]

𝑉 Volume of the storage tank [m3]

𝛥 Difference [-]

𝜂 Efficiency [-]

Abbreviation Definition

DH District heating

TES Thermal energy storage

CHP Combined heat and power

EEX European energy exchange

MPC Model predictive control

Automated model generation and simplification for district heating and cooling networks

DOI Proceedings of the 13th International Modelica Conference 179
10.3384/ecp19157179 March 4-6, 2019, Regensburg, Germany

Automated model generation and simplification for district heating and cooling
networks
Mans, Michael and Blacha, Tobias and Remmen, Peter and Müller, Dirk

179

Automated model generation and simplification for district heating
and cooling networks

Michael Mans1 Tobias Blacha1 Peter Remmen1 Dirk Müller1

1Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, mmans@eonerc.rwth-aachen.de

Abstract
The current operation of district heating networks often
relies on static analyses and control parameters. In the
future, possible integration of renewable energy sources
like solar or geothermal energy are getting more and more
important. To investigate the impact of these new en-
ergy source in combination with new control strategies,
dynamic simulation models for district heating and cool-
ing systems are getting more important. However, these
models are often large and therefore have large computa-
tion times and require manual effort to create and optimize
them. Thus, this paper investigates in the simulation of a
large and meshed district heating network. We present a
workflow for automated generation and model simplifica-
tion of simulation models based on GIS data. The validity
of the model simplification is proven and the usability of
the model is demonstrated by a Use Case with two differ-
ent control strategies.

Keywords: District Heating and Cooling Networks,
Model Simplification, Control Strategies

1 Introduction
The current design and operation of district heating net-
works often relies on static analyses and control parame-
ters. In the future, possible integration of renewable en-
ergy sources like solar or geothermal energy as well as
distributed heat sources is getting more important. As the
integration of renewable and distributed energy sources
are influencing the dynamic behavior of thermal networks,
understanding and representing these dynamic processes
within such systems is of great importance. This applies
not only to the design of these networks but in partic-
ular the operation and implementation of different con-
trol strategies. Dynamic simulation models for thermo-
hydraulic systems provide an opportunity to gain insights
in the dynamics of district heating and cooling (DHC) net-
works. Although various demonstration for complex dis-
trict heating and cooling (DHC) systems, with high share
of renewable energy have already been realized (Lund
et al., 2014) and dynamic models have been applied to
thermal networks (Schweiger et al., 2017), dynamic mod-
eling of DHC networks are still rarely used for design and
operational optimization. One of the reasons for this is the
complex modeling of these systems.

In recent years, the IEA-EBC Annex 60 (Wetter et al.,
2015) and the follow-up project IBPSA Project 1 develop
models in the modeling language Modelica for building
and urban energy systems. This cooperation has resulted
in a thermo-hydraulic pipe model that meets the require-
ments for the simulation of complex district heating and
cooling networks (van der Heijde et al., 2017). In addi-
tion, tools were developed for the automated generation of
models of complex network structures (Fuchs et al., 2016).
These tools make use of object-oriented programming in
Modelica and GIS (Geographical Information Systems)
data to generate network system models.

In the case of complex networks, which are character-
ized, for example, by several feed in or a meshed net-
work topology, large and complex models are the con-
sequence. These models have a large number of equa-
tions, state events and Jacobian-evaluations. This makes
the translation and simulation of these models slow and of-
ten leads to instabilities. Optimizing the models with sev-
eral hundred pipes and substation is very time-consuming
and requires manual input as well as very detailed expert
knowledge. One option to make the models faster and
more stable is topological and parametric model simpli-
fication. Model simplification for heat network calcula-
tions has been widely used, (Larsen et al., 2004). How-
ever, these simplifications often involve a loss of spatial
information. For distributed networks with multiple feed
in with different temperature levels, the spatial distribution
plays a decisive role.

For this reason, we present a methodology for model
simplification for complex and meshed thermal networks.
In a first step, GIS data is subjected to a topological sim-
plification. Certain pipes are replaced by weighted analo-
gous pipes. This is necessary to create an executable sys-
tem model, which still reflects the spatial properties of the
network. In the second step, particularly short pipe sec-
tions are identified and modeled with a static pipe model.
This reduces the number of equations, state events and
Jacobian-evaluations but still keeps the spatial resolution
of the model.

The paper is divided into five chapters. After the in-
troduction, the methodology section describes the models
used. In addition, the methodologies for model simplifi-
cation are presented in more detail here. The presented
methodology is tested using the example of two control

Automated model generation and simplification for district heating and cooling networks

180 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157179

strategies for the thermal network of a research center in
Germany. Before the paper ends with a summary, the lim-
itations and an outlook, a verification of the model simpli-
fication as well as results of the use case are shown in the
results section.

2 Methodology
In this section we present different models and tools used
for the dynamic simulation of district heating and cooling
networks. For this purpose, the dynamic simulation mod-
els of the individual components of a district heating or
cooling system that are necessary to build a system model
are presented first. Afterwards it is shown how these com-
ponent models are used for the automated generation of a
district heating system model using the Python tools ues-
graphs and uesmodels, (Fuchs et al., 2016). Starting from
a GIS data set, the process of model generation, parame-
terization and model simplification is described. Finally,
the control strategies of the district heating network con-
sidered as an example are presented.

Dynamic Simulation Models
For the dynamic simulation and analysis of district heating
networks, dynamic, thermo-hydraulic simulation models
are used which are developed in the modeling language
Modelica. Modelica provides the possibility to text-only
description of the models and a object oriented modeling
approach. This makes it easy to provide a model gen-
eration process with the help of other frameworks, more
suitable for large data handling, such as Python. In ad-
dition, Modelica is capable of a multi-physics simulation
approach which is useful for future investigations regard-
ing the flexibility of thermal networks to the electrical net-
work for example.

The system model of the district heating networks con-
sists of three main components: The models for the hy-
draulic network (i. e. the pipes and junctions), the substa-
tion models that represent the consumers connected to the
network and the model of the central heat supply. These
models are combined according to the considered network

sourceIdeal

Substation1 Substation2

Pipe1

Pipe4

soilTemperature

heatDemand1

soil

Pipe2

Pipe3

heatDemand2

T_supply

k=1217+7273.15

dp

k=200000

Figure 1. Exemplary system model of a district heating network

topology to build a system model of the respective DHC
network. The individual component models are connected
to each other by fluid connectors, developed in the An-
nex 60 (Wetter et al., 2013). These connectors provide
information on the state of the fluid, including the mass
flow, thermodynamic pressure and the specific thermody-
namic enthalpy of the medium. All used models are devel-
oped within the Modelica libraries Modelica IBPSA (Wet-
ter et al., 2015) and AixLib (Müller et al., 2016).

The pipe elements of a district heating network
are modeled using a dynamic, equation-based thermo-
hydraulic pipe model, the so-called plug-flow pipe model
developed by (van der Heijde et al., 2017). This section
explains the underlying idea of the plug-flow pipe model
and describes additional work to use this model within a
system model. The plug-flow pipe model is based on a
plug-flow approach, which enables the dynamic simula-
tion of long pipes, including the pipe network of district
heating and cooling networks. Besides the hydraulic be-
havior, heat losses, heat storage effects of the medium and
the pipe as well as the propagation of temperature waves
along the pipe can be simulated. In addition, the pipe
model is usable for various network layouts (e.g. branched
and meshed networks), thus enabling a wide range of ap-
plications in the field of dynamic simulation of DHC net-
works. For this purpose, the properties of the pipe, such as
the length, diameter as well as the thermal and hydraulic
properties of the pipes and the pipe insulation can be spec-
ified with physical parameters. In order to be able to repre-
sent the pressure losses of a pipe segment more accurately,
the plug-flow pipe model features the parameter fac. This
parameter allows to take into account the flow resistances
of e.g. bends and thermal expansion joints for each pipe
section individually. In order to simulate the heat losses
more accurately, we added a model that represents the sur-
rounding soil as a combination of cylindrical thermal re-
sistors (R) and capacitances (C). These RC-combinations
model cylindrical heat transfer and thermal storage effects
in the pipe and the surrounding soil. The pipes are con-
nected by thermal connectors to the inside of the cylin-
drical thermal capacities. On the outside, the undisturbed
soil temperature is used for the heat loss calculation. In
contrast to the static design methods, dynamic simulation
models allow to take into account changing soil temper-
atures during the year. Therefore, the annual profile of
the undisturbed soil temperature is calculated according
to Florides et al. (Florides and Kalogirou, 2005).

The pipe model is used to model the network topology
and thus the system model. In a real network there are
pipes and pipe sections of different length. Whereas the
dynamic behavior along long pipe sections is of great in-
terest, the effects in shorter pipes play a less important
role (e.g. connection to buildings). The spatialDisribu-
tion() operator is used in the plug-flow pipe model to cal-
culate the advection of fluid through the pipe and thus the
temperature propagation along the pipe. For reducing the
complexity of the system model and thus the number of

Automated model generation and simplification for district heating and cooling networks

DOI Proceedings of the 13th International Modelica Conference 181
10.3384/ecp19157179 March 4-6, 2019, Regensburg, Germany

equations and the computation time, a pipe model without
spatialDistribution() operator was developed based on the
plug-flow pipe model. This simplified pipe model is used
for short pipe length, see section 3.

In the system model, the substation models represent
the heat consumption of the connected buildings. For
this purpose, the heat demand profiles of the individual
buildings serve as model input and can either be deter-
mined using dynamic building simulations or defined us-
ing measured values. The demand profiles are loaded with
Combi Time Tables and assigned to the corresponding sub-
stations. The model parameters of the substation are the
nominal return temperature on the one hand, and the min-
imum temperature difference between flow and return line
on the other. These parameters are used in combination
with the heat demand profiles to control the mass flow of
the substations. For this purpose, the flow temperature
at the inlet of the substation is measured with a temper-
ature sensor. Based on the heat demand profile and the
measured flow temperature, the required mass flow is cal-
culated using the defined return temperature. Using this
equation-based control approach, the substation ideally
covers the heat demand of the building at every time step.
By combining several substations in one system model,
the total mass flow in the DHC network is determined.
In order to provide the mass flow with the required flow
temperature, a heat source is used in the model of the cen-
tral heat supply of the district heating system. For testing
different flow temperature controls, the supply tempera-
ture of the district heating network is defined as model in-
put. Constant supply temperatures but also temporal tem-
perature profiles, such as outside temperature-dependent
heating curves, are possible. In addition, the return pres-
sure and the pressure difference between flow and return
are parameters of the supply model. Using a mass flow
sensor and temperature sensors that measure the flow and
return temperatures, the heating power of the heat supply
is calculated.

Figure 1 shows exemplary the structure of the system
model of a simple district heating system with one heat
supply, two substations and four pipes. The upper two
pipes represent the flow line, the lower two pipes the re-
turn line of the district heating network. For one pipe, the

Figure 2. Original model cutout of an exemplary district heating
grid

connection to the RC-model of the surrounding soil and
the connection between the RC-model and the undisturbed
soil temperature are also shown. The heat demand profiles
of the two substations are integrated with two Combi Time
Tables. The inputs of the supply model (supply tempera-
ture and pressure drop) are defined as constant values in
the example.

Workflow and Model Reduction
The used workflow for district heating grid simulations
presented in this paper is divided into 4 steps:

• GIS data import

• Network topology optimization

• Model reduction

• Model export

Whereas, the first two steps (GIS data import and
network topology optimization) is handled by an Open-
Source tool called uesgraphs (Fuchs et al., 2016), the last
two steps are handled by a tool called uesmodels. Ues-
graphs handles information of district networks (electric-
ity, heating, cooling and gas) as a graph with edges and
nodes and is written in Python. In the context of this paper,
we use a GIS network topology of a real network in Ger-
many. This data, stored in a Postgres SQL database, is im-
ported in uesgraphs, which can represent the related build-
ings and building substation as nodes, as well as pipes as
edges. To each node and edge individual information are
assigned, for example the address of the building or the
diameter and the insulation standard of the pipe.

Figure 2 shows an exemplary cutout of the investigated
district heating network, substations in green dots, net-
work edges and nodes in red lines / dots and the central
supply as a green dot with a red circle. Using all edges of
the network as a representation of single pipes in the sim-
ulation model, it is obvious that the resulting simulation
model will have a high complexity and a huge number of
used components. Therefore we reduce and optimize the
shown network topology to reduce the number of nodes
and edges. This step, which is carried out on the graph,

Figure 3. Simplified model cutout of an exemplary district heat-
ing grid

Automated model generation and simplification for district heating and cooling networks

182 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157179

7050 7100 7150 7200 7250 7300 7350 7400 7450
Time in s

60

80

100

Te
m

pe
ra

tu
re

 in
 °C static 60 m

plug-flow 60 m
static 120 m
plug-flow 120 m

Figure 4. Step response to a temperature step of dynamic and
static pipe model with different lengths

refers to the simplification of the network typology (Net-
work topology optimization).

Figure 3 shows the exemplary result of the automated
simplified network topology for the same cutout of the dis-
trict heating grid. The simplified network contains much
less pipe network representations by nodes and edges.
This is mainly done by a weighted reduction of the exist-
ing pipes between nodes which represent junctions, sub-
stations or supplies. Therefore, all pipe edges between
two network nodes which have more then two connecting
edges are summarized and replaced by one pipe edge, rep-
resenting the weighted diameter and the total length of the
pipes reduced. An good example is the substation in the
lower right corner, where three edges are simplified to one
straight edge, representing the sum of the total length of
the original three edges. In addition, the new represent-
ing edges summarize the pressure losses of the replaced
pipe sections caused by bends and take these into account
by increasing the already described parameter fac in the
plug-flow pipe model.

In the two last steps, the network model and its features
are further processed and exported. Therefore, a further
model simplification is applied, to reduce simulation time
and numerical complexity. In this case, the used Python
tool uesmodels is able to replace all pipes below a cer-
tain length with a static pipe model instead of the IBPSA
plug-flow pipe model, which reduces the simulation com-
plexity through the reduction of the system of equations
of the system model while causing only minor losses in
accuracy. Regarding the impact of this replacement, re-
sponses on a temperature step on both models were in-

Figure 5. District heating network of the investigated research
center in Germany

vestigated. Figure 4 shows the comparison of the plug-
flow pipe model with the static pipe model, used for the
replacement, on a temperature step of 50 K. Two differ-
ent length with typical pipe diameters and mass flows are
compared with a simulation output of 90s. One can see
that with longer pipe length, the dynamic behavior of the
two models are different, but with shorter pipes, in this
case 60 meters of length, there is no difference observed.
This leads to the conclusion that shorter pipe length can be
replaced with static pipe models with no huge deviation in
terms of the dynamic behavior. In addition, its shown that
the steady state behavior before and after the temperature
step is equal, resulting in a feasible assumption for the re-
placement.

Afterwards, the network graph and its features gets
translated to Modelica code with the use of mako tem-
plates (Mayer, 2016). The resulting simulation model is
ready to run in the simulation environment Dymola.

Control Strategies
The control of district heating and cooling networks has a
big impact on the operation and efficiency of a district en-
ergy system. Especially for the integration of renewable
energies into conventional heating and cooling networks
as well as into 4th generation heating and cooling net-
works (Lund et al., 2014), the control of these networks
is important because generation and demand are tempo-
rally decoupled (Vandermeulen et al., 2018). Since these
control strategies and the resulting network operations are
becoming increasingly complex, dynamic system models
are important for developing and testing these strategies.
In this paper, two different simple control strategies of
a district heating network are exemplary examined and
compared on the basis of dynamic simulations. For this
purpose, a constant flow temperature is compared with a
variable flow temperature that is dependent on the outdoor
air temperature.

3 Use Case
The subject of the presented Use Case is the research cen-
ter Jülich in Germany. The research campus consists of
over 200 buildings with different usage, for example of-

Figure 6. Simplified district heating network of the investigated
research center in Germany

Automated model generation and simplification for district heating and cooling networks

DOI Proceedings of the 13th International Modelica Conference 183
10.3384/ecp19157179 March 4-6, 2019, Regensburg, Germany

Table 1. Modelica translation and simulation information of original and reduced model

Model Characteristics Original Model Reduced Model Difference in %

Number of equations 82527 81411 -1.4
Simulation Time in s 116920 64107 - 45.2
Number of Components 15475 15357 - 0.8
Number of state events 13551 10162 - 25.0
Number of Jacobian-evaluations 27855 22681 - 18.6

fices and laboratories. The building stock varies between
different construction periods, with a peak between the
year 1958 and 1968. Nearly all buildings on the research
center are connected to a district heating network, which
is supplied by waste heat of a nearby lignite-fired power
plant. The annual peak load of around 28 MW are sup-
plied with the help of more then 100 substations to the
buildings for space heating, domestic hot water and pro-
cess heat. Figure 5 shows the district heating network of
the described Use Case. The green dots represents the sub-
stations for the buildings, the red edges the actual heating
network and the green dot with the red circle the central
supply unit. The network diameters are qualitatively in-
dicated by the width of the red edges of the graph. The
network itself has a total pipe length of 37 km and pipe
widths between DN 32 and DN 400. The pipes are all
plastic jacket pipes to ensure low heat losses while having
high flow temperatures between 90 - 140 °C.

In the context of the presented paper, the Use Case
shows the application of a dynamic simulation model
with the presented methodology. Leading to a simulation
model where the influence of different control strategies
can be tested. This will be illustrated in this paper us-
ing examples of two different control strategies. In this
case, the used geographical network information shown in
Figure 5 are reduced with the methodology described in
section 2, leading to a simplified, weighted network lay-
out shown in Figure 6. Ones can see that the complex-
ity in terms of the representing network edges is reduced,
especially regarding the representation of the thermal ex-
pansion joints and exact directions of the pipe edges. The
simplified representation is then translated to a dynamic
model representation in Modelica.

Regarding the application in the context of this pa-
per, different simulation exercises are present in section 4.
Starting with the comparison and evaluation of the simu-
lation model reduction in terms of complexity. Basis for
this is the graph where the network topology optimiza-
tion has already been applied. This graph is used to cre-
ate a simulation model where all pipes are modelled with
the plug-flow pipe model. For comparison a simulation
model, which is simplified by the step of model reduc-
tion described in section 2 is automatically generated. The
simplification is verified by a comparison of both simula-
tion results.

The simplified model is used to compare two different

control strategies for the heating network. A fixed temper-
ature control strategy and a control strategy with variable
flow temperature that is dependent on the outdoor air tem-
perature are applied to present the capability and usabil-
ity of the simplified dynamic simulation model to answer
control strategy related questions of district heating grids.

4 Results
The presented Use Case is used to examine different sim-
ulations already described in section 3. Starting with the
comparison of a complex model and a simplified model.
Evaluating the translation characteristics as well as simu-
lation time and results. Followed by a comparison of two
control strategies to exemplary show the capability of the
presented methodology and simulation models.

Model Reduction
The presented simulation model reduction takes the net-
work topology optimization, known from Figure 6, as a
starting point. Exporting the raw simplified network data
to a simulation model, a Modelica system model with
100 substations and 258 pipes is created. Translating this
model, in the following called original model, Dymola
creates the translation information shown in Table 1. Us-
ing a standard workstation with 32 GB of RAM and 12
Cores for the simulation of this model, we are not able to
create a stable and reproducible simulation. Replacing 59
pipes of the original 258 pipes with the static pipe model, a
simulation model with the characteristics shown in Table 1
was created, following the described methodology. In this
simplified case, uesmodels replaces all network pipes with
a length shorter then 20 m with static pipes, while ensur-
ing that a reduced pipe is not followed by another reduced
pipe. Meaning that in the presented case, 64 pipes were
shorter than 20 m but only 59 got replaced to ensure that
no further error gets introduced by replacing a lot of con-
nected pipes with static pipes.

Comparing the simulation log for this two models, a
significant reduction in the number of state events as well
as the number of Jacobian-evaluations is achieved. In
addition a more stable and reproducible simulation was
achieved on the same machine, while reducing the simu-
lation speed by 45.2 %. All simulations were tested on
different workstations with comparable hardware specifi-
cations, whereas only one of them was able to translate the
original model without running into a bad allocation er-

Automated model generation and simplification for district heating and cooling networks

184 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157179

Table 2. Results of the control strategy comparison

Fixed Variable
Temperature Temperature

Temperature 120 °C 95 - 120 °C
Provided Energy 83.9 GWh 82.6 GWh
Heat Loss 9.9 GWh 8.6 GWh
Pumping Energy 45.0 MWh 61.5 MWh

rors. After the reduction, all of the testes machines could
run the model without errors. Leading to the assumption,
that with the current models and level of detail, the inves-
tigated network with its meshed structure is on the edge of
possible thermal network simulations with the used com-
puters. Nevertheless, the reduction needs to be compared
in terms of actual simulation variables. Thus, we present a
comparison of the original model with the reduced model
by comparing their supplied heat. In addition, the calcu-
lated mass flow rates at the supply and the calculated re-
turn temperatures at the supply are compared with a time
step of 15 minutes. The total supplied heat of the original
model is 82.7 GWh, while the total supplied heat of the
reduced model is 82.6 GWh, showing good accordance.

The comparison in Figure 7 and Figure 8 shows the
difference between the both results. It is shown that
the overall maximum difference in mass flow calculation
is +0.7 kg

s /− 1.97 kg
s (total average mass flow: 55.2 kg

s),
while the maximum difference in return temperature is
0.1K/− 0.2K (total average return temperature: 60 °C).
For a better visualization of the small error, Figure 9
shows the error as a histogram, underlining the small er-
rors between the two models, with an expected value of
−0.00032K. Nevertheless, ones can see e.g. in Figure 8,
that there are some spikes and thus a deviation between
the two compared simulations. The reason for this be-
havior could be the heat loss calculation of the static pipe
model. Leading to smaller heat losses and smaller tem-

2017-01
2017-03

2017-05
2017-07

2017-09
2017-11

2018-01

Time in month

2

1

0

1

2

M
as

s
flo

w
 d

iff
er

en
ce

 in
 kg s

Figure 7. Mass flow difference between the results of the re-
duced and complex model at central supply unit

perature drops on nearly zero mass flows compared to the
plug-flow model. Keeping in mind that these spikes at
the central supply are very small compared to the absolute
average temperature values of 60 °C, we further investi-
gated the deviations between the original and the reduced
model. Figure 10 shows the mean value of the calculated
deviations of the flow temperature for one year at all sub-
stations. It is shown, that the majority of the deviation is
smaller then 1 K. Nevertheless, there are higher devia-
tions which need to be further investigated in future work.
In the scope of this paper, the reduced model compares
good enough to the original model in terms of accuracy to
further investigate top level control strategies, while im-
proving overall stability and simulation speed.

Control Strategies
As already described in section 3, the presented district
heating network is used to apply an exemplary compari-
son of two control strategies for district heating networks.
In the context of this paper and based on the simplified
simulation model, two simple control strategies are com-
pared, showing the exemplary usage and capability of the
workflow and the simulation models. One simulation is
performed with a fixed flow temperature of 120 °C in the
flow line of the heating network to fulfill the tempera-
ture requirements of the buildings on cold days. A second
simulation is performed with a variable flow temperature
curve based on the ambient temperature. The results for
the overall supplied heat, the overall heat loss in the net-
work and the used pumping energy are shown in Table 2.

On the one hand, comparing the total supplied heat, the
variable flow temperature reduces the amount of heat use
by 1.3 GWh due to lower heat losses in the network. On
the other hand, regarding the used pumping energy, the
variable flow temperature increases the energy demand by
16.5 MWh. Compared to the reduced amount of heat in-
put, the slight increase of pumping energy is small, that
the variable flow temperature should be preferred against
the fixed flow temperature.

2017-01
2017-03

2017-05
2017-07

2017-09
2017-11

2018-01

Time in month

0.2

0.1

0.0

0.1

0.2

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 in

 K

Figure 8. Return temperature difference between the results of
the reduced and complex model at central supply unit

Automated model generation and simplification for district heating and cooling networks

DOI Proceedings of the 13th International Modelica Conference 185
10.3384/ecp19157179 March 4-6, 2019, Regensburg, Germany

5 Conclusion and Limitations
The presented paper describes a workflow for automated
generation and simplification of DHC network simula-
tions with Python and Modelica. Two different type of
simplifications are applied, on the one hand the network
topology is optimized by reducing the total number of
pipes in the model. On the other hand the model itself
is reduced by using static pipe models for short pipe sec-
tions. The dynamic simulation models are based on in-
ternationally develop district heating and cooling compo-
nents such as the IBPSA plug-flow pipe model. The au-
tomated workflow is applied to an existing district heat-
ing network of a research center in Jülich, Germany. The
comparison of the simulation model reduction shows good
accuracy between the original and reduced simulation
model in terms of the simulation results, while reducing
the simulation time by 45.2 %. To show the capability and
usability of the presented workflow and simulation mod-
els, two different basic control strategies where examined,
showing significant improvements for a variable flow tem-
perature. The system model was not validated as part of
this work. However, this is essential for the use of the
model to optimize operation of DHC and will be done in
future investigations. The paper shows the usability of the
modeling language Modelica for DHC control optimiza-
tion. Future work will include a comparison of the used
models with even more simplified models, to elaborate
which model detail is necessary for the evaluation of top
level control strategies as well as the detail comparison of
different models at different points at the network. Never-
theless, the paper present possible network simplification
and their results of an Modelica user oriented view. How-
ever, future research needs to include the investigation of
the impact on the numerical system, especially regarding
the agebraic loops and blocks.

Acknowledgments
Grateful acknowledgement is made for financial support
by BMWi (German Federal Ministry of Economic Affairs

0.2 0.1 0.0 0.1
Temperature error in K

0

2000

4000

6000

8000

10000

C
ou

nt
s

Figure 9. Histogram of temperature difference between the re-
sults of the reduced and complex model at central supply unit

and Energy), promotional references 03ET1352A. This
work was supported by the Helmholtz Association under
the Joint Initiative “Energy System 2050 - A Contribution
of the Research Field Energy”.

References
G. Florides and S. Kalogirou. Annual ground temperature mea-

surements at various depths. In 8th REHVA World Congress,
Clima, Lausanne, Switzerland. 2005.

M. Fuchs, J. Teichmann, M. Lauster, P. Remmen,
R. Streblow, and D. Müller. Workflow automa-
tion for combined modeling of buildings and district
energy systems. Energy, 117:478–484, dec 2016.
doi:10.1016/j.energy.2016.04.023. URL https:
//doi.org/10.1016/j.energy.2016.04.023.

Helge V Larsen, Benny Bøhm, and Michael Wigbels. A com-
parison of aggregated models for simulation and operational
optimisation of district heating networks. Energy Conversion
and Management, 45(7):1119 – 1139, 2004. ISSN 0196-
8904. doi:https://doi.org/10.1016/j.enconman.2003.08.006.
URL http://www.sciencedirect.com/
science/article/pii/S0196890403002140.

H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J. E. Thorsen,
F. Hvelplund, and B. V. Mathiesen. 4th generation district
heating (4gdh): Integrating smart thermal grids into future
sustainable energy systems. Energy, 68:1–11, 2014.

M. Mayer. Mako templates for python, 2016. URL http:
//www.makotemplates.org/.

D. Müller, M. Lauster, A. Constantin, M. Fuchs, and P. Rem-
men. Aixlib-an open-source modelica library within the iea-
ebc annex 60 framework. In BauSIM 2016, pages 3–9. 2016.

G. Schweiger, P.-O. Larsson, F. Magnusson, P. Lauenburg, and
S. Velut. District heating and cooling systems-framework
for modelica-based simulation and dynamic optimiza-
tion. Energy, 137:566 – 578, 2017. ISSN 0360-5442.
doi:https://doi.org/10.1016/j.energy.2017.05.115. URL
http://www.sciencedirect.com/science/
article/pii/S0360544217308691.

3 2 1 0
Temperature error in K

0

10

20

30

C
ou

nt
s

Figure 10. Histogram of the mean values of the quarter hourly
deviations of one year for all substations

Automated model generation and simplification for district heating and cooling networks

186 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157179

B. van der Heijde, M. Fuchs, C. Ribas Tugores, G. Schweiger,

K. Sartor, D. Basciotti, D. Müller, C. Nytsch-Geusen,
M. Wetter, and L. Helsen. Dynamic equation-based
thermo-hydraulic pipe model for district heating and
cooling systems. Energy Conversion and Man-
agement, 151:158 – 169, 2017. ISSN 0196-8904.
doi:https://doi.org/10.1016/j.enconman.2017.08.072. URL
http://www.sciencedirect.com/science/
article/pii/S0196890417307975.

A. Vandermeulen, B. van der Heijde, and L. Helsen. Controlling
district heating and cooling networks to unlock flexibility:
A review. Energy, 151:103 – 115, 2018. ISSN 0360-5442.
doi:https://doi.org/10.1016/j.energy.2018.03.034. URL
http://www.sciencedirect.com/science/
article/pii/S0360544218304328.

M. Wetter, C. van Treeck, and J. Hensen. New generation com-
putational tools for building and community energy systems.
Energy in Buildings and Communities Programme. IEA EBC
Annex, 60, 2013.

M. Wetter, M. Fuchs, P. Grozman, L. Helsen, F. Jorissen,
D. Müller, C. Nytsch-Geusen, D. Picard, P. Sahlin, and
M. Thorade. Iea ebc annex 60 modelica library-an interna-
tional collaboration to develop a free open-source model li-
brary for buildings and community energy systems. In Pro-
ceedings of building simulation 2015, 2015.

DOI Proceedings of the 13th International Modelica Conference 187
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 2C: FMI 2
Non Linear Dimension Reduction of Dynamic Model Output
Gerrer, Claire-Eleuthèriane and Girard, Sylvain

Relative Consistency and Robust Stability Measures for Sequential Co-simulation
Glumac, Slaven and Kovačić, Zdenko

Energy balance based Verification for Model Based Development
Sawada, Kenji and Sakura, Mamoru and Kaneko, Osamu and Shin, Seiichi and Matsuda, Isao and Murakami,
Toru

.

188 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Non Linear Dimension Reduction of Dynamic Model Output

DOI Proceedings of the 13th International Modelica Conference 189
10.3384/ecp19157189 March 4-6, 2019, Regensburg, Germany

Non Linear Dimension Reduction of Dynamic Model Output
Gerrer, Claire-Eleuthèriane and Girard, Sylvain

189

Non Linear Dimension Reduction of Dynamic Model Output

Claire-Eleuthèriane Gerrer1 Sylvain Girard1

1Phimeca Engineering, France, {gerrer,girard}@phimeca.com

Abstract
Most advanced mathematical methods for the analysis of
numerical model cannot cope with functional outputs of
dynamic Modelica models. Principal component analy-
sis is a well established method for dimension reduction,
and can be used to tackle this issue. It relies however on
a linear hypothesis that limits its applicability. We illus-
trate on a case study how the non linear method of auto-
associative model overcomes this shortcoming and pro-
vides physically interpretable data representations.
Keywords: dimension reduction, functional data anal-
ysis, FMI, OtFMI, principal component analysis, auto-
associative model, sensitivity analysis.

1 Introduction
The advent of the functional mock-up interface (FMI) and
the emergence of associated tools considerably facilitated
the analysis of Modelica models with advanced mathe-
matical methods. Sensitivity analysis, model emulation,
Bayesian inference and the like can now be performed
routinely using scripting language such as Python (Girard
and Yalamas; Girard et al., 2018) except for a substantial
hurdle: many Modelica models are dynamic, and func-
tional outputs are difficult to handle. Dimension reduction
is a means to sidestep this difficulty. Principal component
analysis (PCA) is by far the most prominent method for
dimension reduction. This almost one century old statis-
tical learning method (Hotelling, 1933) has been applied
in virtually all fields where data are available. It is easy
to implement and to understand, and relatively robust. It
relies however on the hypothesis that the variables at hand
can be aggregated into linear combinations, which unfor-
tunately is not true for many dynamic model outputs. We
illustrate this issue on a simple case study, and show how
an alternative approach of more general applicability, the
auto-associative model (AAM), allows to overcome it. Fi-
nally, we show how low dimension representations pro-
duced by AAM can be leveraged to get insights about the
modelled physical phenomena.

2 Why reducing the dimension of dy-
namic model?

A computer experiment is the analysis of the output of
a model obtained by varying its inputs according to a
design of experiment. Modelica models are more often

than not dynamic, namely their outputs are functions of
time. Discretised time functions are high dimensional vec-
tors which considerably obstructs the analysis. First, it is
subjected to the “curse of dimensionality” (Houle, 2015),
namely a variety of undesirable consequences of increas-
ing the dimension. For instance, the volume of a cube in-
creases exponentially with its dimension, and sample size
required to densely fill it become quickly prohibitive. Dis-
tances in large dimension spaces loose their discriminating
power, especially when the component variables are cor-
related, which is specially true for discretised time func-
tions. Indeed, it is not straightforward to compare curves
as it is with numbers. In statistical analysis, modelling the
joint distribution of a set of more than 4 dependent vari-
ables, for instance using kernel estimation, is generally in-
tractable.

Actually, the great majority of mathematical methods
involved in computer experiments apply to models with
scalar outputs. For instance, sensitivity analysis (Saltelli
et al., 2008) aims at measuring the relative influence of
the inputs on an output. Applying sensitivity analysis to
each of them individually yields sensitivity indices that
are functions of time: the output values at each chosen
time step can be considered as distinct output variables.
This approach to sensitivity analysis, sometimes deemed
“sequential” (Girard, 2014, chapter 7) has its merits but is
difficult to interpret.

Model emulation (also known as meta-modelling or
surrogate modelling) is another technique that cannot cope
with high dimensional outputs. It consists in substituting
a CPU inexpensive mathematical approximation for a nu-
merical model in order to achieve large sample size re-
quired for instance by some optimisation techniques, or
for Bayesian parameter estimation, or to enable instanta-
neous interaction with the model. Kriging is an example of
method for emulating numerical models (Roustant et al.,
2012).

A common expedient to enable analysing functional
outputs is to project them on a function basis (Campbell
et al., 2006). When there is no obvious candidate, prin-
cipal component analysis allows to automatically build an
adapted basis.

3 Linear dimension reduction with
principal component analysis

The geometric approach to PCA provides the most intu-
itive understanding of the method. The discretisation in d

Non Linear Dimension Reduction of Dynamic Model Output

190 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157189

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t (

m
)

1
2
3

4
5
6

Figure 1. The first 6 trajectories of the training set when only
the coefficient of restitution varies.

steps of N realisations of a functional model output can be
seen as a point cloud of N points in Rd . PCA then finds
the axes along which data spread the most. These axes,
called principal directions, have the property to minimise
the distances between the points of the point cloud and
their projection on the axes (Jolliffe and Cadima, 2016).

Each principal direction defines a linear combination of
the initial d variables called principal components. The
projection of the data points along the principal directions
are called scores.

The principal directions of the data set are sequentially
built, so as to be mutually orthogonal. The set of the prin-
cipal directions form a new basis in the space Rd . The
k first principal directions, k ∈ {1, . . . ,d}, form a basis of
the linear subspace of dimension k that best contains the
scatter plot. Thus, PCA finds the linear subspace of given
dimension (or hypercube, because the span of the data is
usually limited) that best contains the point cloud.

3.1 PCA of the bouncing ball model
We applied PCA to a set of 128 trajectories of the famous
bouncing ball model adapted by Tiller (2015)1: a ball is
dropped from a given height and bounce back touching the
ground with a fraction of the velocity it acquired during
the fall determined by a fixed coefficient of restitution.

The trajectories were simulated with coefficient of resti-
tution sampled between 0.7 and 0.9. following a Sobol’
sequence (Sobol’, 1979) so as to avoid redundancies. We
used an FMU generated with OpenModelica, and the
OtFMI Python module2 (Girard, 2017) to carry out the
simulations. Figure 1 displays the first 6 trajectories of
this training set. All trajectories coincide before the first
bounce at 0.45 s and increasingly deviate from one another
at each subsequent bounce.

We simulated the next 896 (= 1024− 128) trajectories
of the Sobol’ sequence to serve as a test sample for eval-
uating the performance of PCA. They were discretised
at 300 evenly spaced time steps. Because the model has a

1The adapted bouncing ball model is available at http://book.
xogeny.com/behavior/discrete/bouncing/.

2https://github.com/openturns/otfmi.

single input, the intrinsic dimension of the set of trajecto-
ries, namely the smallest number of parameters required
to fully parametrise it, is 1. The test trajectories were
projected onto the first principal direction and compared
to their original counterpart. The top panel of Figure 2
compares the worst reconstructed trajectory to the origi-
nal. Here “worst” understands as resulting in the biggest
root mean squared error (RMSE) between reconstruction
and original. It must be noted however that the first 28 test
trajectories sorted by decreasing RMSE are very similar
to one another, as well as to those sorted by decreasing
absolute error or relative error. Beyond that rank, the ab-
solute error ranking diverges substantially from the two
others. One principal component is clearly insufficient to
capture the diversity of the trajectories: the reconstructed
trajectory does not even touch the ground after the sec-
ond bounce. Indeed, the middle and bottom panel show
that the absolute and relative reconstruction errors with a
single principal component are outsize. As expected, the
error is null before the first bounces. It then displays a
complex oscillatory pattern, ensuing from both the physi-
cal phenomenon and the sampling scheme. Interestingly,
the absolute error globally increase as time goes by, de-
spite the lessening of average height.

3.2 Time delays, a major stumbling block for
PCA

What happens here is that the the point cloud of trajecto-
ries has a linear dimension much greater than 1. It is a one
dimensional manifold extending in multiple directions in
R300. As such, it cannot be “enclosed” in a line. Fig-
ure 3 illustrates the result of increasing the number of re-
tained principal components (left panel). The decrease in
all three error measures (absolute, relative and RMSE) is
rather slow. For instance, a reduction to dimension 4 still
results in a substantial number of relative errors greater
than 50 %.

PCA attempts to catch the main temporal dynamics of
functional outputs by linear combinations of the discre-
tised values. Time shifts are non linear relationships in-
volving time and an input variable. Fukunaga and Olsen
(1971) illustrated this issue by considering a model whose
output is a bump of fixed shape (they use a Gaussian bell
curve) centred at variable time instants. In that case the
principal directions spans the same vector space as the
collection of bumps centred at each time step. Hence, the
exact linear dimension grows with refinement of the time
resolution of the discretisation. Non linear dimension re-
duction techniques are required to handle such situations.

4 Auto-associative models for non lin-
ear dimension reduction

The auto-associative model (AAM) proposed by Girard
and Iovleff (2008)3 approximates point clouds by implic-

3Stéphane Girard, not Sylvain.

Non Linear Dimension Reduction of Dynamic Model Output

DOI Proceedings of the 13th International Modelica Conference 191
10.3384/ecp19157189 March 4-6, 2019, Regensburg, Germany

0.0

0.5

1.0
H

ei
gh

t (
m

) Reference
Reconstructed

0.2

0.0

0.2

E
rr

or
 (m

)

Time (s)
2

1

0

1

2

R
el

at
iv

e
er

ro
r

Figure 2. Reconstruction performance of PCA with a single principal component when only the coefficient of restitution varies.
Top: comparison between original and reconstructed trajectories producing the worst RMSE. Middle: absolute reconstruction
errors. Bottom: relative reconstruction errors. Intervals where the height was below 0.1 m were discarded. Lines are set to 0.1
opacity; darker tint indicate superposition of a large number of lines.

itly defined manifolds, instead of cubes like PCA does.
It handles non linearity and can generally achieve reduc-
tion to dimension equal or close to the intrinsic dimension
while preserving the fidelity of the reconstruction.

The algorithm for building AAM has 4 steps that are
repeated until reconstruction is good enough:

1. Direction computation – A direction is computed by
maximising an index, namely a function of the coor-
dinates of the projection of the data points onto that
direction. We used the index suggested by Girard and
Iovleff (2008) that best preserves nearest neighbours.

2. Projection – The point cloud is projected onto the
computed direction. The resulting coordinates will
be called scores, by analogy with PCA terminology.

3. Regression function estimation – The regression
function linking scores to the data points is esti-
mated, here by spline regression.

4. Update – The point cloud from the current iteration
is replaced by the residuals, namely the difference
between data points and the output of the regression
function estimated in step 3.

The algorithm terminates when the residuals are small
enough. The final dimension is equal to the number of
iterations.

PCA is a special case of auto-associative models where
the regression functions are postulated to be linear. Its in-
dex is the variance of the projection of the point cloud.
Its maximisation is equivalent to minimising the mean
squared error between projections and data points. In that
respect, it is a global index, contrary to the index we used
for AAM based on nearest neighbour preservation, a local
property.

4.1 AAM of the bouncing ball model
We fitted an AAM of dimension 1 on the same training set
of 128 trajectories as before. We used a basis of 28 splines
for the regression estimation. The number of splines was
tuned manually, but this could be automatised for instance
using cross validation.

Figure 4 illustrates the very good performance of the
method. The worst reconstruction on the same test set as
before is almost a perfect match, except for a tiny time de-
lay and a blunting of the cusp at the last bounces. More
than 90 % of the reconstructions have relative error be-
low 10 % throughout the simulation, and more than 99 %
of them have a maximal absolute error below 0.037 m.

Figure 3 shows that AAM performs better than PCA
even if we keep a large number of principal components.
In particular, the maximum absolute error of AAM is sig-
nificantly smaller to that of PCA with 10 components.

Even better results were obtained in another similar ex-
periment where the initial height, instead of the coefficient

Non Linear Dimension Reduction of Dynamic Model Output

192 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157189

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
 (m

)

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e
er

ro
r

1 2 3 4 5 6 7 8 9 10
Number of principal

components

0.00

0.02

0.04

0.06

0.08

R
M

SE
 (m

)

AAM

Figure 3. Distributions of time maximum absolute error, rel-
ative error and RMSE between test trajectories and reconstruc-
tions with increasing number of principal components (left), and
reconstructions by a one dimensional AAM (right) when only
the coefficient of restitution varies. Blue lines indicate the me-
dians. Boxes span the interval between first, Q1, and third, Q3,
quartiles. Whiskers reach the last data point above (resp. below)
Q1− 1.5× (Q3−Q1) (resp. Q3 + 1.5× (Q3−Q1)). Dots are
points outside the reach of the whiskers.

of restitution, varied (results not shown). In a third ex-
periment, we simulated 512 training trajectories with both
the coefficient of restitution and initial height varying, re-
spectively between 0.7 to 0.9 and between 0.9 m to 1.1 m.
Figure 5 shows the first 6 trajectories of this training set,
whose size was augmented to 4096− 512 = 3584 trajec-
tories. The effect of the two input variables combine: the
higher the starting height, the higher the velocity at the
first bounce. This is exemplified by the 5th trajectory (vi-
olet line) resulting from both high coefficient of restitution
(0.875) and initial height (1.075 m): its second bounce
is substantially away from the group of other trajectories
(compare Figure 1). From visual inspection of the trajec-
tories in Figure 1 and 5, we infer that the intrinsic dimen-
sion of the 2 input model is most likely equal to 2 because
the two inputs have different effects on the output.

Figure 6 compares the performance of PCA with in-
creasing number of principal components with that of
AAM of dimension 1 and 2. Errors in reconstruction
by PCA are globally much higher than in the single in-
put experiment. Their distributions are leptokurtic (more
“peaked”) and positively skewed: there are a lot of impor-
tant errors far away from the median and spanning a large
interval. AAM performs not as good as in the single input
experiment but is still much better PCA with 2 compo-
nents, and roughly equivalent to PCA with 5 components.

4.2 Sensitivity analysis in AAM projection
space

The gain in performance between the dimension 1 and 2
AAM, visible in Figure 6 (right panel), supports our guess
that the intrinsic dimension of the model is 2. We con-
firmed that fact by analysing the sensitivity of the AAM
scores to the coefficient of restitution and initial height.
We computed first order and total Sobol’ indices with the
Monte Carlo algorithm proposed by Sobol’ (2001) along
with the “Jansen 1999” and “Saltelli 2010” estimators ad-
vocated by Saltelli et al. (2010).

The first AAM score is almost exclusively depen-
dent on the coefficient of restitution (first order in-
dex: 94.2 %), with negligible interaction (second order
joint index: 0.7 %). The second AAM score is dominated
by the initial height (first order index: 78.5 %), with sub-
stantial contribution of the coefficient of restitution (first
order index: 9.2 %), and interaction between the two (sec-
ond order joint index: 12.2 %).

In order to interpret the physical meaning of these re-
sults, we reconstructed trajectories corresponding to loca-
tions evenly distributed along lines in the AAM projection
plan. These “cross-sections” of the AAM plan space are
shown in Figure 7. They illustrate what it means to have,
say, “an average AAM first score and an high AAM sec-
ond score”. The first score mostly controls the bouncing
instants. As a matter of fact, the middle plot of Figure 7
is pretty similar to Figure 1 showing the effect of the co-
efficient of restitution alone, which is coherent with the
result of the sensitivity analysis stated above. The sec-

Non Linear Dimension Reduction of Dynamic Model Output

DOI Proceedings of the 13th International Modelica Conference 193
10.3384/ecp19157189 March 4-6, 2019, Regensburg, Germany

0.0

0.5

1.0
H

ei
gh

t (
m

) Reference
Reconstructed

0.2

0.0

0.2

E
rr

or
 (m

)

Time (s)
2

1

0

1

2

R
el

at
iv

e
er

ro
r

Figure 4. Reconstruction performance of a dimension 1 AAM when only the coefficient of restitution varies. Same graphical
convention as in figure 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t (

m
)

1
2
3

4
5
6

Figure 5. The first 6 trajectories of the training set with both the
coefficient of restitution and initial height varying.

ond score affects the height of the peaks while keeping
bouncing instants constant. It is similar to the effect of
varying initial height alone (not shown), except that the
latter alters bouncing instants. AAM actually automati-
cally decomposed the influence of the input into a “time
delay and damping” component, and a “height only” com-
ponent. This level of legibility cannot be achieved with
PCA whenever the linearity hypothesis does not hold.

It should be noted that the procedure detailed above is
fully automatic. We treated the model as a black box, and
did not took advantage of any insight about its physical or
mathematical properties. This is particularly alluring as it
forebodes routine usage by non specialists, and possible
inclusion into graphical Modelica tools.

5 Conclusion and perspectives
Recent enrichments of the Modelica technological ecosys-
tem enable straightforward implementation of advanced
computer experiments with Modelica models. There re-
main however a major hurdle to overcome, namely adapt-
ing the panoply of mature mathematical methods to dy-
namic models with functional outputs. We showed on an
example that linear dimension reduction with PCA may
fall short of this objective, even for rather simple mod-
els. The recently developed non linear approach of AAM
seems a very promising candidate to supplement, or even
replace it altogether. It achieved very satisfying results on
the presented case study and other more realistic ones not
shown here. It is only little more complicated from the
theoretical viewpoint, and almost as easy to use as PCA.
“Degrees of freedom” in the algorithm are kept at a mini-
mum, thus avoiding the need for elusive tuning skills.

Our implementation of the regression estimation is
rather elementary. Hence, there is room for further per-
formance enhancement. On the theoretical side, the ques-
tion of how to define relevant metrics in the space of AAM
scores is of great interest for sensitivity analysis or super-
vised importance sampling.

Acknowledgement
This work was partially supported by the Paris region
through the FUI research project “Modeliscale”, a collab-
oration with Dassault Systèmes, Inria, EDF, Engie, CEA
INES, DPS, Eurobios and Phimeca Engineering.

Non Linear Dimension Reduction of Dynamic Model Output

194 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157189

0.0

0.1

0.2

0.3

0.4

E
rr

or
 (m

)

0

1

2

3

R
el

at
iv

e
er

ro
r

1 2 3 4 5 6 7 8 9 10
Number of principal

components

0.00

0.05

0.10

0.15

R
M

SE
 (m

)

AAM

Figure 6. Distributions of time maximum absolute error, rel-
ative error and RMSE between test trajectories and reconstruc-
tions with increasing number of principal components (left), and
reconstructions by a 1 and 2 dimensional AAM (right) with both
the coefficient of restitution and initial height varying. Same
graphical convention as in Figure 3.

Score 1

Sc
or

e
2

Sampled trajectories
Score 1 varies
Score 2 varies

0.0

0.2

0.4

0.6

0.8

1.0
H

ei
gh

t (
m

)
Score 1 varies

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t (

m
)

Score 2 varies

Figure 7. One dimensional cross-sections of the AAM projec-
tion space. Top: grey dots locate train and test trajectories in
the AAM projection space; circles (resp. triangles) are located
on arbitrary lines to illustrate the effect of varying the 1st (resp.
2nd) projection score. Middle (resp. bottom): reconstructed tra-
jectories corresponding to the circle (resp. triangles) of same tint
in the top plot.

Non Linear Dimension Reduction of Dynamic Model Output

DOI Proceedings of the 13th International Modelica Conference 195
10.3384/ecp19157189 March 4-6, 2019, Regensburg, Germany

References
Katherine Campbell, Michael D. McKay, and Brian J. Williams.

Sensitivity analysis when model outputs are functions. Reli-
ability Engineering & System Safety, 91(10-11):1468–1472,
2006.

Keinosuke Fukunaga and David R. Olsen. An algorithm for
finding intrinsic dimensionality of data. IEEE Transactions
on Computers, C-20(2):176–183, feb 1971. doi:10.1109/t-
c.1971.223208. URL https://doi.org/10.1109/
t-c.1971.223208.

Stéphane Girard and Serge Iovleff. Auto-associative models,
nonlinear principal component analysis, manifolds and pro-
jection pursuit. In Lecture Notes in Computational Science
and Enginee, pages 202–218. Springer Berlin Heidelberg,
2008. doi:10.1007/978-3-540-73750-6_8. URL https:
//doi.org/10.1007/978-3-540-73750-6_8.

Sylvain Girard. Physical and Statistical Models for Steam Gen-
erator Clogging Diagnosis. Springer International Publish-
ing, 2014. doi:10.1007/978-3-319-09321-5. URL https:
//doi.org/10.1007/F978-3-319-09321-5.

Sylvain Girard. Otfmi: simulate FMU from OpenTURNS: User
documentation. Technical Report RT-PMFRE-00997-003,
Phimeca, 2017.

Sylvain Girard and Thierry Yalamas. A probabilistic take on
system modeling with modelica and python. URL https:
//tinyurl.com/proba-system-model.

Sylvain Girard, Thierry Yalamas, and Michael Baudin. Statis-
tical learning and 0D/1D modelling: application to battery
ageing. In Lambda Mu 21 proceedings. Institut de maîtrise
des risques (IMdR), 2018.

Harold Hotelling. Analysis of a complex of statistical variables
into principal components. Journal of educational psychol-
ogy, 24(6):417, 1933.

Michael E Houle. Inlierness, outlierness, hubness and discrim-
inability: an extreme-value-theoretic foundation. Technical
Report NII-2015-002E, 2015.

Ian T. Jolliffe and Jorge Cadima. Principal component anal-
ysis: a review and recent developments. Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 374(2065):20150202, mar 2016.
doi:10.1098/rsta.2015.0202. URL https://doi.org/
10.1098/rsta.2015.0202.

Olivier Roustant, David Ginsbourger, and Yves Deville. DiceK-
riging, DiceOptim: two R packages for the analysis of com-
puter experiments by kriging-based metamodeling and opti-
mization. Journal of Statistical Software, 51(1):1–55, 2012.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campo-
longo, Jessica Cariboni, Debora Gatelli, Michaela Saisana,
and Stefano Tarantola. Global sensitivity analysis: the
primer. Wiley Online Library, 2008.

Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campo-
longo, Marco Ratto, and Stefano Tarantola. Variance based
sensitivity analysis of model output. Design and estimator for

the total sensitivity index. Computer Physics Communica-
tions, 181(2):259–270, 2010.

Il’ya Meerovich Sobol’. On the systematic search in a hy-
percube. SIAM Journal on Numerical Analysis, 16(5):790–
793, 1979. doi:10.1137/0716058. URL http://dx.doi.
org/10.1137/0716058.

Il’ya Meerovich Sobol’. Global sensitivity indices for nonlinear
mathematical models and their Monte Carlo estimates. Math-
ematics and Computers in Simulation, 55:271–280, 2001.

Michael M. Tiller. Modelica by Example. Xogeny, 2015. URL
http://book.xogeny.com/.

Non Linear Dimension Reduction of Dynamic Model Output

196 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157189

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

DOI Proceedings of the 13th International Modelica Conference 197
10.3384/ecp19157197 March 4-6, 2019, Regensburg, Germany

Relative Consistency and Robust Stability Measures for Sequential Co-simulation
Glumac, Slaven and Kovačić, Zdenko

197

Relative Consistency and Robust Stability Measures for Sequential
Co-simulation

Slaven Glumac1 Zdenko Kovačić2

1AVL-AST d.o.o., Croatia, slaven.glumac@avl.com
2University of Zagreb Faculty of Electrical Engineering and Computing, Croatia, zdenko.kovacic@fer.hr

Abstract
The paper introduces a matrix co-simulation model of lin-
ear time invariant differential equations using general lin-
ear methods. This model is used to develop a calculation
of relative consistency measure based on worst case de-
fect calculation. It is shown how a robust stability mea-
surement based on spectral radius can be used to measure
robustness to slave parameter changes. Both consistency
and stability measurements are calculated based on the lin-
ear model, and can be calculated prior to the co-simulation
run. Finally, multi-objective optimization has been pro-
posed to utilize introduced measurements for tuning the
co-simulation master.
Keywords: co-simulation, master, robust stability, relative
consistency, multi-objective optimization

1 Introduction
Co-simulation is a multi-method simulation of a coupled
system, also known as simulator coupling (Kübler and
Schiehlen, 2000). A co-simulation run can be quite diffi-
cult to set up in practice since models of the system are
usually black boxes. When no previous information is
available about co-simulation slaves, the procedure for the
choice of a co-simulation master usually boils down to re-
peated trial and error. This is usually due to the fact that
the system is more than the sum of its parts. The reason
to co-simulate multiple simulators is to get the notion of
the coupled system behavior. However, without any in-
formation about the behavior it is difficult to setup a co-
simulation master.

In this paper co-simulation slaves are not completely
black boxes. It is presumed that Jacobian matrices of
slaves are available. (Åkesson et al., 2012). FMI 2.0 stan-
dard (FMI 2.0) defines an optional interface to Jacobian
matrices of a slave. A linearized model is used to make the
prediction of quality for a coupled system co-simulation.
A goal of this paper is to introduce quality measures inde-
pendent of internal states of the slaves.

Local error control is analyzed and shown to be a fea-
sible method for bounding the global co-simulation er-
ror (Arnold et al., 2014). However, methods for local er-
ror estimation are usually expensive, e.g. Richardson ex-
trapolation requires three times more co-simulation steps
executed. There are predictor/corrector methods (Busch,

2012; Schweizer and Lu, 2015) which allow for run-time
local error estimation as a side-effect. Defect control (En-
right, 2000) presents an alternative to local error control.
The defect control has been used to control the error of
differential algebraic equations which makes it an ideal
candidate for the use in co-simulation environments. This
paper expand the idea of defect control by introducing a
worst case defect calculation in order to enable a relative
consistency estimate prior to the co-simulation run.

Stability is an important measure of system quality
which does not depend on the initial states1. Zero-
stability (Kübler and Schiehlen, 2000) is an important re-
quirement for a co-simulation. However, a co-simulation
cannot be more or less zero-stable, it can only be zero-
stable or not. This leads to a search for a relative sta-
bility measure. In co-simulation there has been experi-
mental work on determining stability regions for differ-
ent co-simulation solvers (Busch, 2012; Schweizer et al.,
2015). The authors have compared co-simulation masters
based on the size of a plotted stability region. This paper
tries to propose the use of stability radius estimate (Hin-
richsen and Pritchard, 2005) in order to formalize this ap-
proach. Intuitively, robust stability is a particularly im-
portant property of a co-simulation. In practice, rapid
prototyping is one of the main reasons for the use of co-
simulation. During rapid prototyping, parameters or some
parts of a single slave are expected to change. Robustness
to such changes would mean that a user of a co-simulation
does not have to adapt the master.

With quality measures defined the optimization be-
comes a feasible method for the choice of a co-simulation
master. The optimization in co-simulation has been intro-
duced as a means to improve the parameters of the simu-
lated system in order to get a better signal response (Gedda
et al., 2012). This paper introduces a problem of improve-
ment of a co-simulation master as a multi-objective opti-
mization problem (Kalyanmoy, 2001).

The next section introduces a co-simulation model
used in this paper and underlying assumptions about co-
simulation slaves. A presented matrix model of a co-
simulation step enables the calculation of quality mea-
sures introduced in the following sections. The third sec-
tion shows the example of modeling a two-mass oscillator.
This example is used for the verification of quality mea-

1for linear systems

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

198 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157197

sures and demonstration of multi-objective optimization.
The next section introduces a relative consistency and a
robust stability measure. Both measures are minimized
with the help of multi-objective optimization described in
the fifth section. The section with conclusions and de-
scription of future work concludes the paper.

2 Co-simulation Model
2.1 Co-simulation Slave
A co-simulation slave according to the FMI 2.0 standard
is a tuple:

Gi = (Vi,Ui,Yi,Di,vi,seti,geti,doStepi) (1)

where Vi is a set of internal states of Gi, Ui is a set of
input variables, Yi is a set of output variables, Di ⊂Ui×Yi
is a set of output-input dependencies, vi is an initial state
of the FMU, seti is a function which sets the value to an
input variable, geti is a function which returns the value of
an output variable, and

doStepi : (Vi,R+)→Vi (2)

is a function which implements a simulation step, i.e. it
integrates the internal state2. Let v be the internal state,
and t the local time of the slave. The function:

v′ = doStepi(v,h) (3)

will change the internal state to v′, and advance the local
time of the slave to t +h.

In this paper it is assumed that the ith co-simulation
slave solves the following system of equations:

ẋi(t) = Aixi(t)+Biui(t) (4a)
yi(t) = Cixi(t)+Diui(t) (4b)

where xi :R+→R|Xi| is the state signal3, ui : R+ → R|Ui|

is the input signal, and yi : R+→R|Yi| is the output signal.
A nonlinear differential equation:

ẋi(t) = fi(xi(t),ui(t))

yi(t) = gi(xi(t),ui(t))
(5)

can be transformed to (4) by linearization:

Ai =
∂ fi

∂xi
, Bi =

∂ fi

∂ui
, Ci =

∂gi

∂xi
, Di =

∂gi

∂ui
(6)

During co-simulation each slave performs the integra-
tion of its states (4a) in a doStepi function (2):

xi[k] = xi(tk) = xi(tk−1 +h)

= xi(tk−1)+

tk∫
tk−1

Aixi(τ)+Biui(τ)dτ

= xi(tk−1)+

tk∫
tk−1

Aixi(τ)+Biui[k]dτ

(7)

2 The slave accepts any step size h, i.e. does not do a step rejection
in case of an event.

3 Xi is a set of internal state variables of the continuous system.

where h is the communication step size. This paper limits
the analysis to zero-order hold as seen in the above equa-
tion, i.e. the value of input signal is assumed to be constant
throughout a slave integration:

ũ(τ) = u[k] , tk−1 < τ 6 tk (8)

In this paper it is assumed that a linear model (4a) is inte-
grated by a linear method:

v′i = Gvv
i vi +Gvu

i ui

x′i = Gxv
i v′i

(9)

where vi : R|Vi|.
Integration of a linear system (4a) with any general

linear methods can be formulated in the above manner.
The derivation of matrices (9) can be done analogous to
the derivation of the absolute stability matrix (Jackiewicz,
2009).

The function geti should return the output values con-
sistent to (4b):

y′i = Cixi +Diui (10)

This formulation is consistent with the mathematical
model of co-simulation in the FMI standard (FMI 2.0,
Section 4.1.2), although the definition of the kth signal
sample is a bit different, both for input signals (8) and the
output signal:

ỹ(tk) = y[k] (11)

In this paper the kth signal sample refers to a last signal
value sampled in the iteration of a co-simulation master.
This is described in more detail in next sections.

2.2 Co-simulation Network
A network of co-simulation slaves is a tuple:

N = (G,L) (12)

where G = {G1,G2, . . .Gn} is a set of n co-simulation
slaves, U = U1 ∪U2 ∪ ·· · ∪Un is a set of input variables
of all co-simulation slaves, and Y = Y1 ∪ Y2 ∪ ·· · ∪ Yn
is a set of output variables of all co-simulation slaves,
L ∈R|U |×|Y | is a matrix representing output-input connec-
tions.

Let u(t), y(t), x(t) denote the column stacked values of
all co-simulation slaves, respectively:

u(t) =

u1(t)

u2(t)
...

un(t)

 , y(t) =

y1(t)

y2(t)
...

yn(t)

 , x(t) =

x1(t)

x2(t)
...

xn(t)

 (13)

Output-input connections are denoted as matrix L:

u(t) = Ly(t) (14)

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

DOI Proceedings of the 13th International Modelica Conference 199
10.3384/ecp19157197 March 4-6, 2019, Regensburg, Germany

Let system matrices of the co-simulation slaves (4) form a
block diagonal matrix:

A = blockDiag(A1,A2, . . . ,An)

B = blockDiag(B1,B2, . . . ,Bn)

C = blockDiag(C1,C2, . . . ,Cn)

D = blockDiag(D1,D2, . . . ,Dn)

(15)

The coupled system can be described by the following
equations:

ẋ(t) =
(

A+BL(I−DL)−1 C
)

x(t) (16a)

y(t) = (I−DL)−1 Cx(t) (16b)

An implicit assumption is that there are no algebraic loops
in the system, i.e. det (I−DL) 6= 0. This system is de-
scribed to give a reference for the exact solution of the
co-simulation.

2.3 Co-simulation Master
A co-simulation master is an algorithm that executes a co-
simulation of the network (12). The master presented in
this paper (Algorithm 1) executes a non-iterative sequen-
tial co-simulation. It is determined by the communica-
tion step size h, extrapolation elements and the calling se-
quence of co-simulation slaves.

A calling sequence of co-simulation slaves determines
the execution order of co-simulation slaves. Let the func-
tion σ : I → I define the calling sequence where I =
{1,2, . . . ,n} is the set of slave indices. The calling se-
quence is defined by the following expression:

i = σ(r) (17)

which states that the co-simulation slave Gi is executed rth

in the calling sequence.
The extrapolation is used to determine the values of

continuous signal between4 and beyond known communi-
cation points. This paper assumes the zero-order hold ap-
proximation of inputs during integration of co-simulation
slave (8). The extrapolation elements of the co-simulation
slave Gi are determined by the following equations:

w′i = Fww
i wi +Fwy

i y
u′i = Fuw

i w′i
(18)

The extrapolation element can have access to all the out-
puts of all the slaves in the co-simulation network5. This
allows for modeling of more advanced extrapolation tech-
niques (Benedikt et al., 2013; Stettinger et al., 2014).

The assignment of time to a discrete signal value is
done at the end of a co-simulation iteration. Let ũ(t) and

4 The term extrapolation is used loosely, it refers both to interpola-
tion and extrapolation.

5 Extrapolation matrices should be chosen with care to be consistent
with the connection matrix L from (14).

ỹ(t) denote the signals reconstructed from discrete sam-
ples provided by the co-simulation run.

In this paper the following equality holds:

ũ(kh) = u[k], ỹ(kh) = y[k] (19)

This definition is important for consistency measurements
introduced in the next sections.

Let the stacked values of the co-simulation system vec-
tors be denoted as:

z =
[
xT vT yT wT uT

]T (20)

This vector allows to model the co-simulation with
a known model of linear time invariant co-simulation
slaves (4), linear method of integration (9), and linear
extrapolation methods (18). It allows to reformulate the
equations of a co-simulation of black boxes (Algorithm 1)
to a sequential multi-method integration of known mod-
els (Algorithm 2).

The integration of each co-simulation slave can be re-
formulated to:

z′ = Giz (21)

where equation (9) should be satisfied:

x′i =

{
Gxv

i Gvv
i vi +Gxv

i Gvu
i ui, j = i

x j, j 6= i

v′j =

{
Gvv

i vi +Gvu
i ui, j = i

v j, j 6= i

y′j = y j, w′j = w j, u′j = u j

(22)

The output update of a co-simulation slave can be refor-
mulated to:

z′ = Hiz (23)

where (10) should be satisfied:

y′j =

{
Cixi +Diui , j = i
y j , j 6= i

x′j = x j, y′j = y j, w′j = w j, u′j = u j

(24)

The extrapolation elements can be reformulated to:

z′ = Fiz (25)

where (18) should be satisfied:

x′j = x j, v′j = v j, , y′j = y j

w′j =

{
Fww

i wi +Fwy
i y, j = i

w j, j 6= i

u′j =

{
Fuw

i Fww
i wi +Fuw

i Fwy
i y, j = i

u j, j 6= i

(26)

Such kind of reformulation allows for calculation of Al-
gorithm 2 with the use of matrix operations. An iteration

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

200 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157197

Algorithm 1 Sequential co-simulation

Require: N, σ , h, t0, tend
k := 0 . Initialization phase
z := Rvv0
while ‖∆z‖> ε do

for r := 1 to n do
i = σ(r)
wi := Fww

i wi +Fwy
i y . Extrapolation

ui := Fww
i wi

for ui ∈Ui do
vi := seti(vi,ui,ui[ui])

for yi ∈ Yi do . Read outputs
y[yi] := get j(s j,y j)

z[0] = z
while t0 + kh < tend do . Computation phase

for r := 1 to n do
i = σ(r)
wi := Fww

i wi +Fwy
i y . Extrapolation

ui := Fww
i w

for ui ∈Ui do
vi := seti(vi,ui,ui[ui])

si = doStepi(si,h) . Update internal state
for yi ∈ Yi do . Read outputs

y[yi] := get j(s j,y j)

k := k+1
z[k] := z . Signal assignment

of the computation phase of the algorithm can be reformu-
lated as:

z[k] = ΦΦΦz[k−1] (27)

The computation matrix ΦΦΦ can be calculated by tracing
the steps of calculation phase of the algorithm:

ΦΦΦ =
n

∏
r=1

ΦΦΦσ(r) = ΦΦΦσ(n)ΦΦΦσ(n−1) . . .ΦΦΦσ(1) (28)

where ΦΦΦi represents the update of the overall co-
simulation slave done by the co-simulation slave Gi:

ΦΦΦi = HiGiFi (29)

In this paper the initialization is done with the help of
a fixed-point iteration. Initialization matrix ΦΦΦ0 is used to
model an iteration of the initialization algorithm:

ΦΦΦ0 = ΦΦΦ|Gi=I, i∈I (30)

The initialization matrix is equal to computation ma-
trix (27) with excluded solver updates6 (function doStepi),
i.e. integration matrices Gi = I equal to identity matrix.
An iteration of the initialization phase of the algorithm can
be reformulated as:

z′ = ΦΦΦ0z (31)
6 A closer look at Algorithm 1 shows that the initialization and the

computation phase are almost identical. The function call of doStepi,
i.e. the integration is missing in the initialization phase.

Algorithm 2 Sequential multi-method integration

Require: N, σ , h, t0, tend
k := 0 . Initialization phase
z := Rvv0
while ‖∆z‖> ε do

for r := 1 to n do
i = σ(r)
z := Fiz . Extrapolation
z := Hiz . Read outputs

z[0] = z
while t0 + kh < tend do . Computation phase

for r := 1 to n do
i = σ(r)
z := Fiz . Extrapolation
z := Giz . Update internal state
z := Hiz . Read outputs

k := k+1
z[k] := z . Signal assignment

The initialization phase is started with a value assignment:

z = Rvv0 (32)

where:
v = v0

xi = Gxv
i vi

(33)

need to be assigned to respective positions in the co-
simulation value vector z. The initialization phase of the
algorithm can be modeled with:

z[0] = ΦΦΦ
∞
0 Rvv0 (34)

where:
ΦΦΦ

∞
0 = lim

m→∞
ΦΦΦ

m
0 (35)

The conditions for the initialization phase to converge to
the above limit are stated in the next sections.

3 Test System
3.1 Two-mass Oscillator
The example system is a two mass oscillator (Figure 1)
The system consists of two co-simulation slaves, G1 and
G2. Input variables of slaves G1 and G2 are:

U1 = {G1.x,G1.y}, U2 = {G2.F} (36)

respectively. Output variables of slaves G1 and G2 are:

Y1 = {G1.F}, Y2 = {G2.x,G2.y} (37)

respectively. The connection matrix is equal to:

L =

G1.F G2.x G2.v

G1.x 0 1 0
G1.v 0 0 1
G2.F 1 0 0

 (38)

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

DOI Proceedings of the 13th International Modelica Conference 201
10.3384/ecp19157197 March 4-6, 2019, Regensburg, Germany

c1

d1

m1

G1 .F = G2 .F

G1 .x = G2 .x

G1.v = G2 .v

ck

dk

m2

c2

d2

G1 G2

Figure 1. The example system used in the experiments through-
out this paper is a two mass oscillator with force-displacement
coupling. Slave G1 provides force as an output, while slave G2
provides the displacement and velocity of mass m2.

Slave G1 solves the following equations:

A1 =

[
0 1

− c1+ck
m1

− d1+dk
m1

]
B1 =

[
0 0
ck
m1

dk
m1

]
C1 =

[
ck dk

]
D1 =

[
−ck −dk

] (39)

Slave G2 solves the following equations:

A2 =

[
0 1
− c2

m2
− d2

m1

]
B2 =

[
0
1

m2

]
C2 =

[
1 0
0 1

]
D2 =

[
0
0

] (40)

Unless stated otherwise, the following system parameters
are used in experiments throughout this paper:

m1 = 10, c1 = 1, d1 = 1, ck = 1, dk = 2
m2 = 10, c2 = 1, d2 = 2

(41)

The co-simulation slaves use CVODE (Hindmarsh
et al., 2005) solvers with a tight tolerance bound in order to
provide a solution as close as possible to the exact one. For
the purpose of analysis the integration of a co-simulation
slave is assumed to be analytic (Hartman, 2002):

vi[k] = eAihv[k−1]+(eAih− I)A−1
i Biui[k]

xi[k] = vi[k]
(42)

The integration matrices are defined as follows:

Gvv
i = eAih, Gvu

i = (eAih− I)A−1
i , Gxv

i = I (43)

where i ∈ {1,2}.

3.2 Extrapolation
A zero-order hold (ZOH) element takes the last value and
assigns it to the input:

Fww
i,ZOH = 0, Fwy

i,ZOH = I, Fuw
i,ZOH = I (44)

where i ∈ {1,2} and forms Fi,ZOH according to (26).
Nearly energy preserving coupling element (NEPCE)

is an extrapolation element which tries to control the cou-
pling error (Benedikt et al., 2013). Its implementation

Figure 2. The plot shows output responses of four different co-
simulation masters applied to the two-mass oscillator example
system with co-simulation step size of h = 1.

consists of an implementation of an integral controller.
The implementation in this paper is modeled as:

Fww
i,NEPCE = ααα i

Fwy
i,NEPCE = I−ααα i

Fuw
1,NEPCE = I

(45)

where i ∈ {1,2} and forms Fi,NEPCE according to (26). It is
interesting to note that a ZOH extrapolation element be-
longs to a subset of NEPCE extrapolation elements since:

Fi,ZOH = Fi,NEPCE |ααα i=0 (46)

In later sections it is shown that tuning of NEPCE param-
eters can make a co-simulation more robust to parameter
changes of the simulated system.

3.3 Sequential Co-simulation

Table 1. Co-simulation Masters

Master σ F1 F2

Seidel12 σ12 F1,ZOH F2,ZOH

Seidel21 σ21 F1,ZOH F2,ZOH

Control12 σ12 F1,NEPCE F2,ZOH

Control21 σ21 F1,ZOH F2,NEPCE

A calling sequence (17) for a sequential co-simulation
of two slaves can be either:

σ12(r) =

{
1, r = 1
2, r = 2

(47)

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

202 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157197

or:

σ21(r) =

{
2, r = 1
1, r = 2

(48)

In the experiments presented in this paper, four co-
simulation masters specified in Table 1 are used. Control
master is named after the use of an error controller, namely
Fi,NEPCE . It is interesting to note that Seidel master is a
subset of Control master:

Seidel =Control|ααα=0 (49)

This fact stems directly from (46).
The signal response for each of them applied to (41) is

presented in Figure 2. Through this paper the analysis of
results has been done with the help of NumPy (Oliphant,
2015) and Matplotlib (Hunter, 2007). The slaves and a
reference configuration is available at repository Bench-
markFMUs (Glumac, 2017).

4 Relative Quality Measurements of
Co-simulation

The goal of this section is to introduce measurements for
the quality of co-simulation which do not require multi-
ple co-simulation runs. The information from the previous
sections should form the basis for such measurements.

4.1 Requirements for Initialization Phase
This paper uses fixed-point iteration (34) as an initializa-
tion algorithm for the co-simulation (Algorithm 1). In or-
der for this algorithm to converge to an initial state, matrix
ΦΦΦ0 should be stable and have only eigenvalues with value
1 on the unit circle. Matrix ΦΦΦ0 is stable if its spectral ra-
dius is:

ρ(ΦΦΦ0)6 1 (50)

and its eigenvalues on the unit circle are semi-
simple (Elaydi, 1996). The stability alone is not enough
for the initialization to terminate. The above stability con-
straint (50) still allows for bounded oscillations of the
fixed-point iteration. In order to prevent them the follow-
ing constraint should be satisfied:

|λ |= 1⇒ λ = 1 (51)

i.e. the only eigenvalues on the unit circle should only
have the value of 1. By using Jordan decomposition it can
be seen that a sequence of matrices ΦΦΦ

k has eigenvalues
moving on the unit circle whenever eigenvalues are differ-
ent from e j0 = 1, i.e. they have bounded oscillations.

The consistent initialization is defined in (Andersson,
2016), i.e. equations (14) and (16b) should be satisfied
after the initialization phase:

y[0] = Lu[0] (52a)

y[0] = (I−DL)−1 Cx[0] (52b)

Conditions (50), (51) and (52) are introduced as a prereq-
uisite for relative consistency measurement presented in
the next subsection.

4.2 Relative Consistency
A local error control is a valid procedure to bound the
global co-simulation error (Arnold et al., 2014). However,
a local error depends on the initial state of the system and
needs to be evaluated during co-simulation. Similar holds
for the defect (Enright, 2000) which is used as the basis
for the method proposed in this section. The goal of the
method is to calculate the measure for consistency of the
co-simulation with knowing only the structure of the sys-
tem.

A connection defect is defined as:

δ [k] = ‖y[k]−Lu[k]‖ (53)

This definition of consistency is valid for a non-iterative
co-simulation and can be measured during co-simulation
with little or no extra cost. This measurement is useful as
an indication whether or not to repeat a co-simulation run.
However, an estimate for a single step of the co-simulation
would be useful prior to the co-simulation run. The ex-
pression for the exact value of all the co-simulation values
in the kth step can be calculated following (34):

z[k] = ΦΦΦ
k
ΦΦΦ

∞
0 Rvv0 (54)

The defect in the same step can be calculated:

δ [k] =
∥∥∥(Sy−LSu)ΦΦΦ

k
ΦΦΦ

∞
0 v0

∥∥∥ (55)

where Sy and Su are selection matrices defined by the fol-
lowing equation:

y = Syz
u = Suz

(56)

The defect (55) still depends on the initial solver state v0.
In order to obtain a worst case estimate for defect in kth

step, a matrix norm induced (Lancaster and Tismenetsky,
1985) by vector norm should be employed:

‖M‖= sup
v0 6=0

‖Mv0‖
‖v0‖

(57)

From the above definition it immediately follows that a
defect (55) is bounded by:

‖Mv0‖6 ‖M‖‖v0‖ (58)

This guarantees that minimizing the following relative
consistency measure:

δ (ΦΦΦ) =
∥∥∥(Sy−LSu)ΦΦΦ

k
ΦΦΦ

∞
0

∥∥∥ (59)

will bound the defect with respect to internal solver state.
The norm used for all of the experiments in this paper is
1-norm ‖ . ‖1.

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

DOI Proceedings of the 13th International Modelica Conference 203
10.3384/ecp19157197 March 4-6, 2019, Regensburg, Germany

Figure 3. The figure compares the relative consistency measure-
ment (first subplot from the top) and global errors of position,
velocity and force outputs (second, third, and forth subplot from
the top, respectively).

Figure 3 presents the analysis whether relative consis-
tency provides a good indication of the global error. It
can be seen that global error of each particular signal in
the test examples follows the relative consistency measure.
The experiment conducted gives confidence in using (59)
as a minimization objective in order to improve the co-
simulation master.

4.3 Robust Stability
The unstructured stability radius of a matrix (Hinrichsen
and Son, 1989) is defined as the size of perturbations
needed to bring the system to the verge of instability:

r(ΦΦΦ) = inf{‖∆∆∆‖ : ρ(ΦΦΦ+∆∆∆)< 1} (60)

where ρ(ΦΦΦ) is the spectral radius of a matrix defined as:

ρ(ΦΦΦ) = max
ΦΦΦννν=λννν

|λ | (61)

A stability radius calculates an important value for co-
simulation. If a co-simulation master is set-up with some
known linear time-invariant slaves, it is expected that this
master is robust with respect to the changes of slave pa-
rameters. With a bigger stability radius the master is ex-
pected to work more reliably if a co-simulation slave is

Figure 4. The figure shows the spectral radius of a two-mass
oscillator co-simulation with respect to change of coupling stiff-
ness ck (upper plot) and coupling damping dk (lower plot). The
plots are used to indicate the size of stability region in terms of
system parameters.

switched. In practice, this allows for a better prototyp-
ing of a complex system without a need to tune the co-
simulation master.

In this paper a simplification of calculation has been
considered. For the unstructured stability radius (60), the
following relation holds (Hinrichsen and Son, 1989):

r(ΦΦΦ)6 1−ρ(ΦΦΦ) (62)

The equality holds only for normal matrices. This is the
reason of the assumption that the spectral radius can be
considered a good robust stability measure7.

In order to check whether a spectral radius (61) is a
good pointer of a stability radius, the robustness of sys-
tem (41) to change of stiffness ck and damping dk coeffi-
cients is analyzed. By inspecting the results visible in Fig-
ure 4, it can be seen that Control masters have larger sta-
bility intervals compared to Seidel masters, both with re-
spect to stiffness:

ρ(Seidel12)< 1, ck ∈ [10−5,0.89]

ρ(Seidel21)< 1, ck ∈ [10−5,0.89]

ρ(Control12)< 1, ck ∈ [10−5,3.59]

ρ(Control21)< 1, ck ∈ [10−5,3.59]

(63)

and damping:

ρ(Seidel12)< 1, dk ∈ [10−5,2.26]

ρ(Seidel21)< 1, dk ∈ [10−5,2.26]

ρ(Control12)< 1, dk ∈ [10−5,105]

ρ(Control21)< 1, dk ∈ [10−5,105]

(64)

7 This was done for simplicity of the exposition. In the work on
stability radii there is a calculation of structured stability radius which
will be a topic for future work.

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

204 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157197

Figure 5. Comparison of the spectral radii (upper plot) and rel-
ative consistencies (lower plot) for different co-simulation mas-
ters with respect to the change of the communication step-size.

5 Optimal Choice of a Co-simulation
Master

There can be multiple objectives defined for a co-
simulation master. Two were defined in the previous
section, the spectral radius (61) and the relative consis-
tency (59):

J1(ΦΦΦ) = ρ(ΦΦΦ)

J2(ΦΦΦ) = δ (ΦΦΦ)
(65)

In order to make an optimal choice of a co-simulation
master with respect to the above objectives, multi-
objective optimization (Kalyanmoy, 2001) should be em-
ployed. Multi-objective optimization is a technique for
finding a non-dominated subset of solutions, i.e. the
Pareto frontier P:

P = {ΦΦΦ ∈S : ¬(∃ΦΦΦother. ΦΦΦ�ΦΦΦother)} (66)

The above definition states that solutions in the Pareto
frontier P are not dominated by any other solution in
the search space S . A solution is dominated by another
one ΦΦΦ � ΦΦΦother if it is worse or equal with respect to all
objectives, and strictly worse with respect to at least one
objective:

ΦΦΦ�ΦΦΦother

m
J1(ΦΦΦ)< J1(ΦΦΦother)∧ J2(ΦΦΦ)6 J2(ΦΦΦother)

∨
J1(ΦΦΦ)6 J1(ΦΦΦother)∧ J2(ΦΦΦ)< J2(ΦΦΦother)

(67)

A multi-objective optimization is useful when objec-
tives are conflicting 8, which seems to be the case in the

8 Otherwise, a minimization of one objective would minimize the
other. In this case a single-objective minimization could be more effi-
cient.

studied problem (Figure 5). The figure presents the com-
parison of two optimization objectives on the search space
defined by four co-simulation masters and the communi-
cation step-size h. The plots allow a choice of a step-size
and a master with the estimation of trade-off. This is a
form of brute-force multi-objective optimization as it sam-
ples all the search space and evaluates the objectives in
each point. After the evaluation, a person is very likely
to put some kind of goal on the first objective and search
for the best value in the second one. This approach, how-
ever, is limited to a few parameters in the search space.
In the case of Figure 5, only the communication-step size
and the master type are varied. Control masters had been
assigned control parameters before the experiment. The
choice of control parameters is described in the rest of this
subsection.

Figure 6 shows the results of brute-force optimization
of Control21 co-simulation masters (Table 1). Unlike the
previous approach, this one plots the Pareto frontier in the
parameters space. The search space is defined as:

S = {Control21|α,h:α ∈ [0,1.1],

h ∈ [10−3,101]}
(68)

The parameter α is sampled uniformly in the search inter-
val, while h is sampled uniformly in the log-scale of the
search interval. The Pareto frontier is shown in the param-
eter space of the co-simulation master, i.e. both left-hand
and right-hand heat-maps are spanned by the communi-
cation step-size h on the y-axis and the controller gain α

on the x-axis. The shade of gray presents the value of an
objective in a heat-map. The orange, yellow, and cyan
mark points are the positions of the Pareto frontier so-
lutions in the search space. The yellow color marks the
Seidel21 masters, while orange color marks the Control21
masters with α 6= 0. From (46), it immediately follows
that a Seidel21 master is a subset of possible Control21
masters, i.e.:

Seidel21 =Control21|α=0 (69)

A closer look at the Pareto frontier reveals that Seidel21
masters (yellow points) dominate the rest of Control21 for
smaller communication step-sizes. The exception is a set
of orange points, Control21 masters at the top of the heat-
maps. These points have smaller values of spectral ra-
dius (left heat-map) which corresponds to robustness to
changes in system parameters (Figure 4). In addition, a
communication step-size can be viewed as both a param-
eter and an objective. The bigger values of the commu-
nication step-size allow less burden for the communica-
tion network and allow more freedom for internal solvers
to choose internal time-steps. In turn, this should proba-
bly decrease the CPU load. This is a rationale to prefer
points with bigger values of communication step-size on
the Pareto frontier. A smaller spectral radius and a big-
ger step-size are the reason to highlight one of the orange

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

DOI Proceedings of the 13th International Modelica Conference 205
10.3384/ecp19157197 March 4-6, 2019, Regensburg, Germany

Figure 6. The Pareto frontier of Control21 co-simulation
is presented in the parameter space (α,h). The yellow
points present Seidel21 masters, while orange points present
the rest of Control21 masters. The cyan point represent
Control21|α=0.6,h=9.11 with objective values (70). The dashed
red line represents a stability margin for the system, i.e.
ρ(ΦΦΦ) = 1.

points as cyan (α = 0.6,h = 9.11):

ρ(Control21|α=0.6,h=9.11) = 0.45
δ (Control21|α=0.6,h=9.11) = 0.78

(70)

This master has been used in previous images to present
responses and objective values of all Control21 masters.

The presentation in Figure 6 is feasible for search
spaces with two real parameters. This is not the case for
Control12 masters which have three parameters α1, α2 and
h. The Pareto frontier can be presented in the objective
space (Figure 7). Again, the Seidel masters (yellow) seem
to dominate other Control masters (orange) on a subset of
the Pareto frontier. Orange points close to the yellow are
also close in the parameter space, but they have α1 > 0.
Again, the subset of Control masters (orange points on the
left) has better stability properties for lower communica-
tion step-sizes. One of these points has been highlighted
by cyan (α1 = 0.59,α2 = 0.36,h = 8.9):

ρ(Control12|α1=0.59,α2=0.36,h=8.9) = 0.41
δ (Control12|α1=0.59,α2=0.36,h=8.9) = 1.1

(71)

This master has been used in the previous images to
present responses and objective values of all Control21
masters.

The methods in this section are brute-force optimiza-
tion techniques. They can easily become unfeasible as
the search space scales poorly with the number of co-
simulation slaves. The calling sequence (17) of co-
simulation slaves is a permutation function, and as such
the number of its configurations is factorial of the number
of co-simulation slaves. However, the goal of this section

Figure 7. The Pareto frontier of Control12 co-simulation
is presented in the objective space (ρ,δ). The yellow
points present Seidel12 masters, while orange points present
the rest of Control12 masters. The cyan point represent
Control12|α1=0.59,α2=0.36,h=8.9 with objective values (71). The
dashed red line represents a stability margin for the system, i.e.
ρ(ΦΦΦ) = 1.

is to demonstrate the use of objectives in choice of a co-
simulation master. The formulation of objectives (65) en-
ables the use of more advanced multi-objective optimiza-
tion algorithms (Kalyanmoy, 2001) which may tackle high
dimensional search spaces.

6 Conclusion and Future Work
This paper introduces relative consistency measure (59)
and robust stability measure (61) of a co-simulation. Both
measures have been used as objectives in multi-objective
optimization (66) in order to increase the efficacy of tun-
ing a co-simulation master.

The relative consistency measure is a worst case de-
fect measurement with respect to unknown internal states
of slaves. The experiments conducted show the global
error follows the similar trend to the proposed consis-
tency measure. This gives a suggestion that the rela-
tive consistency is a good measure to indicate how well
a co-simulation master suites the coupled system it co-
simulates. Since this measure is not dependent on an ini-
tial state, it gives the measure for any possible run of a
linear system. This measure may be applicable for a non-
iterative communication-step size control which may be
one of the topics for future work.

The analysis in this paper has been restricted to se-
quential masters. Jacobi master does parallel updates of
multiple co-simulation slaves which cannot be modeled
with a sequential matrix multiplication. Parallel execu-
tion should be modeled as a single matrix. This matrix
would align equations for doStep functions of multiple co-
simulation slaves. The construction of such matrix should
be a part of future work.

Since practical systems are usually not linear, a robust

Relative Consistency and Robust Stability Measures for Sequential Co-simulation

206 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157197

stability measure is introduced. It is argued that minimiza-
tion of spectral radius (61) can be used to approximate un-
structured stability radius (60). It is experimentally shown
that a co-simulation with a lower spectral radius is more
robust to changes of coupling stiffness and damping in the
two-mass oscillator system. However, the spectral radius
is only an approximation of the unstructured stability ra-
dius. Furthermore, it is not expected that the whole struc-
ture of the co-simulation is uncertain. The parameters of
a co-simulation master are assumed to be known and cer-
tain, while the structured uncertainty should be concen-
trated on parameters of co-simulation slaves. For these
reasons one of the main topics for future research will
be to develop a calculation method of the structured sta-
bility radius (Hinrichsen and Pritchard, 2005) for the co-
simulation.

References
Johan Åkesson, Willi Braun, Petter Lindholm, and Bernhard

Bachmann. Generation of sparse jacobians for the function
mock-up interface 2.0. In Proceedings of the 9th Interna-
tional MODELICA Conference; September 3-5; 2012; Mu-
nich; Germany, pages 185–196. Linköping University Elec-
tronic Press, 2012.

Christian Andersson. Methods and Tools for Co-Simulation
of Dynamic Systems with the Functional Mock-up Interface.
PhD thesis, Lund University, 2016.

Martin Arnold, Christoph Clauß, and Tom Schierz. Error anal-
ysis and error estimates for co-simulation in fmi for model
exchange and co-simulation v2. 0. In Progress in Differential-
Algebraic Equations, pages 107–125. Springer, 2014.

Martin Benedikt, Daniel Watzenig, Josef Zehetner, and Anton
Hofer. NEPCE - A nearly energy-preserving coupling el-
ement for weak-coupled problems and co-simulation, pages
1–12. ., 2013. ISBN 978-84-941407-6-1.

Martin Busch. Zur effizienten Kopplung von Simulationspro-
grammen. kassel university press GmbH, 2012.

Saber N. Elaydi. An Introduction to Difference Equations.
Springer-Verlag, Berlin, Heidelberg, 1996. ISBN 0-387-
94582-2.

WH Enright. Continuous numerical methods for odes with de-
fect control. Journal of Computational and Applied Mathe-
matics, 125(1-2):159–170, 2000.

FMI 2.0. Functional Mock-up Interface for Model Ex-
change and Co-Simulation, Version 2.0. https:
//svn.modelica.org/fmi/branches/
public/specifications/v2.0/FMI_for_
ModelExchange_and_CoSimulation_v2.0.pdf,
2014. Accessed: 2018-10-26.

Sofia Gedda, Christian Andersson, Johan Åkesson, and Ste-
fan Diehl. Derivative-free parameter optimization of func-
tional mock-up units. In Proceedings of the 9th Interna-
tional MODELICA Conference; September 3-5; 2012; Mu-
nich; Germany, pages 819–828. Linköping University Elec-
tronic Press, 2012.

Slaven Glumac. Benchmarkfmus. https://github.com/
sglumac/BenchmarkFMUs, 2017. Accessed: 2018-11-
04.

P. Hartman. Ordinary Differential Equations. Society for
Industrial and Applied Mathematics, second edition, 2002.
doi:10.1137/1.9780898719222. URL https://epubs.
siam.org/doi/abs/10.1137/1.9780898719222.

Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L
Lee, Radu Serban, Dan E Shumaker, and Carol S Woodward.
Sundials: Suite of nonlinear and differential/algebraic equa-
tion solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363–396, 2005.

D. Hinrichsen and N. K. Son. The complex stability radius of
discrete-time systems and symplectic pencils. In Proceedings
of the 28th IEEE Conference on Decision and Control,, pages
2265–2270 vol.3, Dec 1989. doi:10.1109/CDC.1989.70573.

Diederich Hinrichsen and Anthony J Pritchard. Mathematical
systems theory I: modelling, state space analysis, stability
and robustness, volume 48. Springer Berlin, 2005.

John D Hunter. Matplotlib: A 2d graphics environment. Com-
puting in science & engineering, 9(3):90–95, 2007.

Zdzislaw Jackiewicz. General linear methods for ordinary dif-
ferential equations. John Wiley & Sons, 2009.

Deb Kalyanmoy. Multi objective optimization using evolution-
ary algorithms. John Wiley and Sons, 2001.

R. Kübler and W. Schiehlen. Two Methods of Simulator
Coupling. Mathematical and Computer Modelling of Dy-
namical Systems, 6(2):93–113, June 2000. ISSN 1387-3954.
doi:10.1076/1387-3954(200006)6:2;1-M;FT093. URL
http://doi.org/10.1076/1387-3954(200006)
6:2;1-M;FT093.

Peter Lancaster and Miron Tismenetsky. The theory of matrices:
with applications. Elsevier, 1985.

Travis E. Oliphant. Guide to NumPy. CreateSpace Indepen-
dent Publishing Platform, USA, 2nd edition, 2015. ISBN
151730007X, 9781517300074.

Bernhard Schweizer and Daixing Lu. Predictor/corrector
co-simulation approaches for solver coupling with alge-
braic constraints. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 95(9):911–938, 2015.

Bernhard Schweizer, Pu Li, and Daixing Lu. Explicit and
implicit cosimulation methods: Stability and convergence
analysis for different solver coupling approaches. Journal
of Computational and Nonlinear Dynamics, 10(5):051007,
2015.

Georg Stettinger, Martin Horn, Martin Benedikt, and Josef Ze-
hetner. A model-based approach for prediction-based inter-
connection of dynamic systems, pages 3286–3291. ., 2014.
ISBN 978-1-4673-6088-3. doi:10.1109/CDC.2014.7039897.

Energy balance based Verification for Model Based Development

DOI Proceedings of the 13th International Modelica Conference 207
10.3384/ecp19157207 March 4-6, 2019, Regensburg, Germany

Energy balance based Verification for Model Based Development
Sawada, Kenji and Sakura, Mamoru and Kaneko, Osamu and Shin, Seiichi and Matsuda, Isao and Murakami,
Toru

207

Energy balance based Verification for Model Based Development

Kenji Sawada1 Mamoru Sakura2 Osamu Kaneko3 Seiichi Shin4

Isao Matsuda5 Toru Murakami6
1University of Electro-Communications, Japan, {knj.sawada1,mamoru.sakura2,o.kaneko3,seiichi.shin4}@uec.ac.jp

GAIO Technology Co. Ltd., Japan, { matsuda.i5, murakami.t6}@gaio.co.jp

Abstract

In model-based development (MBD), it is necessary to

design a multiple physical model. Integration testing of

such models is not easy because of its cross-sectional

development. In this paper, we propose a new

unit/integration test method “energy balance based

verification” based on the law of energy conservation

for MBD. The key idea is that the law of energy

conservation will hold for no error models. The

proposed method is composed of two diagrams. The

first is a hierarchical diagram considering the type of

energy. The second is an energy flow diagram based on

the hierarchized diagram. Also, we develop model

verification tools. Through the numerical experiments,

we show that the proposed method and verification tools

have the possibility of judging whether the model is

normal or not. In the numerical experiments, we use a

mild hybrid electric vehicle model that is developed via

multiple CAE: MATLAB/Simlink®, MapleSim®, and

IPG-CarMaker®.

Keywords: MBD, Model verification, Multiple CAE

1 Introduction

This paper focuses on a new model verification method

for Model-Based Development (MBD) using cross-

sectional tools. GAIO technology Co. Ltd. (GAIO) have

pushed Model-Centered Development (MCD) which

targets tool developments and services for MATLAB-

based MBD and UML-based MDD (Model Driven

Development) so far. Especially, MCD ver.1.0

concentrates on the controller models whose code is

mainly described by MATLAB/Simulink. The next

generation “MCD ver.2” targets not only the controller

models but also the plant models. For example, MCD

ver.2 targets co-simulation based on the plant model

composed of various simulation tools such as

MATLAB/Simulink, Mathematica, Maple/MapleSim,

IMG-CarMaker and so on. This co-simulation results in

the expansion of test area not only unit tests of Function

Mockup Unit (FMU) but also integration tests of

Functional Mockup Interface (FMI) (Blochwitz,

Torsten, et al. 2012). So, GAIO needs to enter a new

stage of model verification and have to introduce new

test insights.

The accuracy of MBD depends on the accuracy of the

model. Typically, the accuracy of the model is

categorized by two. The first is the correctness of the

program code which realizes the model. The second is

the correcteness of the law of physics which is realized

by the model. The former has been checked by typical

program verification methods including unit tests and

integration tests (Shokry, Hesham, et al. 2009, Rana,

Rakesh, et al. 2013). The latter focuses on that ideal

simulation models realize some physical laws. “The

energy balanced based verification” method (Miyamoto

et al. 2014) checks the energy balance of the model

according to the fact that the law of energy conservation

holds for no error models. That is, if the no error model

has no internal loss energy, the total energy difference

between the inputs and outputs will match the stored

energy. Otherwise, the law of conservation does not

hold. Even if the hybridization and electrification of

automobiles make system structure complexity, the law

of energy conservation itself does not change. This

paper introduces the energy balance based verification

as a new model test concept for MCD ver.2. This is the

collaborative work between GAIO and the University of

Electro-Communications (UEC).

This paper introduces a prototype system that

streamlines the workflow of the energy balance based

verification method and is composed of two verification

tools. The method checks the input-output relation of

each module consisting the model to calculate the

energy quantity. In other words, the model expression

considering the energy relation leads to efficient energy

balance check of the model. Therefore, this paper

proposes a hierarchical diagram and an energy flow

diagram of the model. The former divides and

categorizes the model according to the law of energy

conservation. The category order is system, module,

function, energy. The first verification tool is related to

the hierarchical diagram. The latter expresses the energy

flow relationship between the divided models. The

second verification tool supports the energy balance

based verification via the two diagram. To verify the

validity of the proposed system, we consider the mild

hybrid electric vehicle (MHEV) composed of
MATLAB/Simulink, MapleSim, and IMG-CarMaker.

Energy balance based Verification for Model Based Development

208 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157207

Further, we discuss the detectability of model bug using

the developer tools.

2 Key Idea

2.1 Energy calculation

Energy calculation of the energy balance based

verification is based on the numerical simulation of the

model. We define the simulation time by

𝑇𝑛 = ∆𝑡 ∙ 𝑛 (1)

where ∆𝑡 is the sampling time and 𝑛 is the sampled

number. The simulation solver is the fixed step one. For

example, the rotational kinetic energy is given by

∫ 𝜏𝜔𝑑𝑡
𝑇𝑛

0

 (2)

where torque 𝜏[Nm] and rotational speed 𝜔[rad/sec].
The translational energy is given by

∫ 𝑁𝑣𝑑𝑡
𝑇𝑛

0

 (3)

where power 𝑁[N] and velocity 𝑣[m/sec]. The electric

energy is given by

∫ 𝑉𝐼𝑑𝑡
𝑇𝑛

0

 (4)

where power voltage 𝑉[V] and current 𝐼[A]. The unit

of energy is [J].

2.2 Energy evaluation policy

First, we consider four energy components: input energy,

output energy, loss energy, and stored energy. At the

time 𝑇𝑛, the sum of input energies for the model is

𝐼𝑛 = ∑ 𝑖𝑘𝑛

𝑘=𝑀

𝑘=1

 (5)

where 𝑀 is the number of input energy and 𝑖𝑘𝑛
 is the k-

th entry of input energy at the time 𝑇𝑛. At the time 𝑇𝑛,

the sum of output energies is

𝑂𝑛 = ∑ 𝑜𝑘𝑛

𝑘=𝑀

𝑘=1

 (6)

where 𝑜𝑘𝑛
 is the k-th entry of output energy at the time

𝑇𝑛. At the time 𝑇𝑛, the sum of loss energy is

𝐿𝑛 = ∑ 𝑙𝑘𝑛

𝑘=𝑀

𝑘=1

 (7)

where 𝑙𝑘𝑛
 is the k-th entry of loss energy at the time 𝑇𝑛.

At the time 𝑇𝑛, the sum of stored energies is

𝐶𝑛 = ∑ 𝑐𝑘𝑛

𝑘=𝑀

𝑘=1

 (8)

where 𝑐𝑘𝑛
 is the k-th entry of stored energy at the time

𝑇𝑛 . If the model has an initial stored energy 𝐶𝑜 , the
following energy conservation law

𝐶𝑛 = 𝐶0 + 𝐼𝑛 − 𝐿𝑛 − 𝑂𝑛 (9)

holds. If the simulation solver has the numerical error,

the energy error

 𝑒𝑛 = 𝐶𝑛 − (𝐶0 + 𝐼𝑛 − 𝐿𝑛 − 𝑂𝑛) (10)

is not equal to zero. In other words, if the acceptable

error of the solver ε is guaranteed,

max|𝑒𝑛| < ε (11)

holds for the model following the law of energy

conservation. This is the first energy evaluation policy.

The second policy is the numerical error of the loss

energy. The quantity of the loss energy is positive from

the input-output energy. That is, if the acceptable error

of the solver ε is guaranteed,

min(𝑙1𝑛
) > −𝜀,min(𝑙2𝑛

) > −𝜀,… ,min(𝑙𝑀𝑛
) > −𝜀 (12)

hold for all loss energy components.

The energy balance based verification the correctness

of the model based on (11) and (12).

3 Hierarchical diagram

To calculate (11) and (12) efficiently, we introduce a

hierarchical diagram. The diagram categorizes modules

of the target models according to the following steps:

1. Separate electric systems, mechanical systems, and

composite systems and label them S1, S2, …

2. Separate systems into modules and label them C1,

C2, …

3. Separate modules into functions and label M1, M2,

…

4. Separate functions into energies and label E1, E2,

…

The category order is system, module, function, energy.

Also, the diagram has three kinds of model information.

The first is the energy calculation information in

subsection 2.1. The second is the energy classification

of each function in subsection 2.2. The third is the

relation of connection between functions.

 To show the concrete example of the hierarchical

diagram, we show the MHEV model as shown in Fig. 1.

Figure 1. MHEV model.

Energy balance based Verification for Model Based Development

DOI Proceedings of the 13th International Modelica Conference 209
10.3384/ecp19157207 March 4-6, 2019, Regensburg, Germany

This model is composed of MATLAB/Simlink®,

MapleSim®, and IPG-CarMaker®. We apply step 1 and

step 2 to the model, and we get its hierarchical diagram

as shown in Fig. 2.

Figure 2. Hierarchical diagram of MHEV model

Fig. 3 is a part of the diagram obtained from step. 2 and

step. 4.

Figure 3. Detailed hierarchical diagram

In the diagram, the energy calculation information is

expressed by the function block in Fig. 4.

Figure 4. Relationship between energy elements and

formulas

The energy classification of each function is expressed
by the mark as shown in Fig. 5.

Figure 5. Energy classification in hierarchical

diagram.

We design the diagram by Microsoft Visio®. Along

with this, the relation of connection between functions

is stored by each function block as meta information.

4 Energy flow diagram

The unit test of the energy balanced based verification

checks (11) and (12) for each function. The integration

test of the energy balanced based verification checks

(11) and (12) for multiple functions. The former is

corresponding to the test of FMU, and the latter is

corresponding to the test of FMI. Both tests need the

energy connection information. To carry out unit tests

and integration tests efficiently, we introduce an energy

flow (EF) diagram. The EF diagram visualizes the

energy flow connection between functions and supports

the energy calculations for multiple functions.

4.1 Diagram expression

We use a graph expression composed of place, transition,

and arc in Figs. 6~10. The place is categorized into a

unit test place, a loss place, an integration test place.

Transition shows the testing or not. The arc shows the

direction of the energy between function.

Figure 6. Unit test place

Figure 7. Loss place

Figure 8. Integration test

place

Figure 9. Transition (Non-

testing)

Figure 10.

Transition(Testing)

We focus on C1 of Fig. 11 (deferential gear mode of

MHEV) to show the EF diagram using place, transition,

and arc.

Figure 11. Hierarchy diagram of device C1

Energy balance based Verification for Model Based Development

210 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157207

From Fig. 11, we obtain the energy relation:

𝐸3𝑛 = 𝐸30 + 𝐸1𝑛 − 𝐸2𝑛 − 𝐸4𝑛 (13)

Fig. 12 shows the energy flow transition of device C1.

We see that the energy of the unit place changes from

𝐸30 to 𝐸3𝑛 and the energy of the loss place changes

from 0 to 𝐸2𝑛. That is, we can apply (11) and (12) to

each place as the unit test.

 Figure 12. Energy flow transition of unit test of C1

To consider the integration test for multiple devices, we

use the integration place in Fig. 8. The integration place

connects unit tests as shown in Fig. 13. We consider

transitions t1 and t2 as unit test A against function A,

transitions t3 and t4 as unit test B against function B. p1

and p2 are for (11) and (12), and p4 is for (11) (unit test

B has no loss energy). Place p3 connects function A

with function B for the integration test. After unit tests

A and B are carried out, the integration test checks the

energy value of place p3 using (11).

Figure 13. Energy flow between multiple functions.

4.2 Calculation via EF diagram

The EF diagram supports not only the visualization of

unit and integration tests but also the energy calculation

for (11) and (12). Consider the case of Fig. 13. The

energy relation is given by

[

𝐶𝐴𝑛

0
0

𝐶𝐵𝑛]

=

[

𝐶𝐴0

+ 𝐼𝐴𝑛
− (𝐿𝐴𝑛

+ 𝑂𝐴𝑛
)

𝐿𝐴𝑛

𝑂𝐴𝑛
− 𝐼𝐵𝑛

𝐶𝐵0
+ 𝐼𝐵𝑛

− 𝑂𝐵𝑛]

. (14)

The 1st, 3rd, 4th low of (14) are for equation (11). The 2nd

low of (14) is for equation (12), We can extract (14)

from the EF diagram by introducing the mathematical

graph manipulation. Considering place set 𝑃 =
{𝑝1, 𝑝2, ⋯ , 𝑝𝛼} and transition set 𝑇 = {𝑡1, 𝑡2,⋯ , 𝑡𝛽}, we

introduce the two matrices

𝑩− = [𝑏𝑖,𝑗
−] ∈ ℝ𝛼×𝛽 . (15)

𝑩+ = [𝑏𝑖,𝑗
+] ∈ ℝ𝛼×𝛽 . (16)

𝑏𝑖,𝑗
− denotes the value of energy flow from place 𝑝𝑖 to

transition 𝑡𝑗. 𝑏𝑖,𝑗
+ denotes the value of energy flow from

transition 𝑡𝑗 to place 𝑝𝑖 . In this case, the connection

matrix of the EF diagram is given by

𝑩 = 𝑩+ − 𝑩− ∈ ℝ𝛼×𝛽 . (17)

Also, we denote the energy values of place set 𝑃 =
{𝑝1, 𝑝2, ⋯ , 𝑝𝛼} as marking vector

𝒎𝒏 = [𝑚𝑛(𝑝1) 𝑚𝑛(𝑝2) ⋯ 𝑚𝑛(𝑝𝛼)]T (18)

and we denote the testing or non-testing information of

transition set 𝑇 = {𝑡1, 𝑡2,⋯ , 𝑡𝛽} as the test vector

𝝎𝒏 = [𝜔𝑛(𝑡1) 𝜔𝑛(𝑡2) ⋯ 𝜔𝑛(𝑡𝛽)]T. (19)

We denote 𝒎𝟎 as the initial energy values of place set

𝑃 = {𝑝1, 𝑝2,⋯ , 𝑝𝛼}, we obtain the following relation:

𝒎𝒏 = 𝒎𝟎 + 𝑩 ∙ 𝝎𝒏 (20)

Equation (19) is corresponding to (13). In fact, from Fig,

14, we obtain

𝑩− =

[

0 𝐿𝐴𝑛

+ 𝑂𝐴𝑛
0 0

0 0 0 0
0 0 𝐼𝐵𝑛

0

0 0 0 𝑂𝐵𝑛]

 (21)

𝑩+ =

[

𝐼𝐴𝑛

0 0 0

0 𝐿𝐴𝑛
0 0

0 𝑂𝐴𝑛
0 0

0 0 𝐼𝐵𝑛
0]

 (22)

𝒎𝟎 = [𝐶𝐴0
0 0 𝐶𝐵0]

T (23)

𝒎𝒏 = [𝐶𝐴𝑛
0 0 𝐶𝐵𝑛]T (24)

𝝎𝒏 = [1 1 1 1]T (25)

The matrix allows us to judge which low is for (11) or

(12). If some row has all zero elements, the row is for

the loss place and we apply (12) the corresponding row

of (20). This expression is based on Petri net modeling

(Murata 1989, Peterson 1981).

Energy balance based Verification for Model Based Development

DOI Proceedings of the 13th International Modelica Conference 211
10.3384/ecp19157207 March 4-6, 2019, Regensburg, Germany

5 Numerical verification

The verification procedure based on energy balance is

as follows:

I. Construct the hierarchical diagram of the target

model.

II. Energy calculation via the simulation.

III. Construct the EF diagram based on the hierarchical

diagram.

IV. Construct (11) and (12) based on (20).

V. Carry out the unit and integration tests.

We developed the prototype system automatically

carries out from Step III to Step V: Tool α and Tool 𝛽.

Tool α supports Step III and Tool 𝛽 supports Step IV

and V. We apply the tools to the MHEV model in Fig.

1. Fig. 14 shows the data flow between tools.

Figure 14. Data flow between tools.

In Step I, we construct the hierarchal model using

Microsoft Visio to send XML files to Tool α. Tool α

generates the connection matrix of the EF diagram for

(20) and outputs m file of MATLAB. In Step II, The

model of MATLAB/Simulink and the model of IPG

CarMaker collaboratively via FMI. The simulation data

is stored by mat file of MATLAB. Tool 𝛽 receives m

file and mat file and carries out unit and integration tests

on MATLAB.

5.1 Verification

We consider a verification case where the MHEV model

follows the energy conservation law. In Step II, we need

to embed the energy calculation block in the target

Simulink block as shown in Fig. 15. Fig. 16 shows the

result of Tool 𝛽 . If the model has no error, the tool

outputs that the model follows the law of energy

conservation.

Now, we are developing the auto-generation tool of

the hierarchical diagram from the simulation model. For

example, the Simulink model has XML data structure

and then we can make effective use of XML. In this case,

we embed energy classification information in the tag

data of the Simulink file instead of embedding the

energy calculation block.

Figure 15. Energy calculation using Simulink.

Figure 16. Tool 𝜷 result.

5.2 Bug detection

We consider the detectability of model bug using the

developer tools. The model bugs of this paper are a

mathematical bug and parameter bug. The former is that

the equation expressing the model is wrong. The latter

is that the parameter setting of the model is unrealistic.

We consider the model bug of differential gear in Fig.

11.

 First, we consider a mathematical bag. The following

relation holds

𝐺 ∙ 𝜏𝑖𝑛 = 𝜏𝑜𝑢𝑡 (26)

for gear ratio 𝐺, input torque 𝜏𝑖𝑛 and output torque 𝜏𝑜𝑢𝑡.

Also, we have the relation

𝜔𝑖𝑛 = 𝐺 ∙ 𝜔𝑜𝑢𝑡 (27)

for input rotational speed 𝜔𝑖𝑛 and output rotational

speed 𝜔𝑜𝑢𝑡. Intentionally, we rewrite (27) as

𝐺 ∙ 𝜔𝑖𝑛 = 𝜔𝑜𝑢𝑡 . (28)

This bug causes that the output energy of deferential

gear is bigger than the input energy and the model does

not follow the law of energy conservation. Fig. 17 shows

that the tool detects the model error.

 Figure 17. Tool 𝜷 result for error model.

“BUG_Place” shows the row number of the

connection matrix (17) in which the law of energy

Energy balance based Verification for Model Based Development

212 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157207

conservation does not hold against the acceptable error

of the solver. The corresponding information is also

stored in the connection matrix of the EF diagram

generated by Tool α . Fig. 18 shows the connection

matrix for the MHEV model when m file by Tool α is

carried out on MATLAB. The 8th row of the connection

matrix belongs to C7.

Figure 18. Connection matrix by Tool 𝛂.

Figure 19. Hierarchical diagram focused on S3.

 Fig. 19 shows the diagram focused on S3. We see that

module C7 belongs to S3 and the tool detect the error of

the differential gear.

Second, we consider a parameter bug. The loss torque

𝜏𝑙𝑜𝑠𝑠 of the reduction gear (C2_9 in Fig. 19) satisfies

𝜏𝑙𝑜𝑠𝑠 = 𝑆 ∙ 𝜏𝑖𝑛 . (29)

where 𝑆 is the loss rate and 0 ≤ 𝑆 < 1. The initial value

of MHEV is 0.02. In the bug parameter, we set −0.02.

As a result, tool 𝜷 detected this bug and identified the

error of C7.

5.3 Discussion

 The numerical validation shows that the developed

tools support the energy balance based verification for

multiple CAE and have detectability of model bug.

 On the other hand, we need further discussion about

the guarantee of verification standard. To guarantee the
model accuracy via the tools, we need to guarantee the

accuracy of energy calculation and energy classification

on the hierarchical diagram and the EF diagram.

Also, we need to clarify what kind of model bug the

energy balance based verification can detect. In

subsection 5.2, the tools detected the bug module (C7 in

Fig. 19), but, did not detect the bug function (C2_9 in

Fig. 19). The detection accuracy depends on the

structure of the connection matrix of the EF diagram

generated from the hierarchical diagram, whereas some

information of the latter is deleted in the former. The EF

diagram is based on Petri net. That is, we need to

introduce a Petri net modeling that reflects the

hierarchical diagram. In this case, richer the embedded

information in the hierarchical diagram become, better

detection accuracy the tools have.

Further, we need to consider the simulation patterns

such that the model bugs are revealed

6 Conclusion

This paper focused on MBD with multiple CAE,

proposed a new unit/integration test method based on

the law of energy conservation for MBD. The key idea

is that the law of the energy conservation will hold for

no error MBD models. Also, the paper developed the

two tools supporting the energy balanced based

verification. The proposed method consists of two steps.

The first is a hierarchical model representation

considering the type of energy. The second is an energy

flow diagram based on the hierarchized model. In the

numerical experiments, we used an MHEV model that

is developed via multiple CAE: MATLAB/Simlink®,

MapleSim®, and IPG-CarMaker®. Through the

numerical experiments, we showed that the proposed

method and verification tools have the possibility of

judging whether the model is normal or not. Further, we

discussed the detectability of model bug using the

developed tools and open problems of the energy

balance based verification.

References

Blochwitz, Torsten, et al. "Functional mockup interface 2.0:

The standard for tool independent exchange of simulation

models." Proceedings of the 9th International MODELICA

Conference; September 3-5; 2012; Munich; Germany. No.

076. Linköping University Electronic Press, 2012.

Shokry, Hesham, and Mike Hinchey. "Model-based

verification of embedded software." (2009).

Rana, Rakesh, et al. "Increasing Efficiency of ISO 26262

Verification and Validation by Combining Fault Injection

and Mutation Testing with Model based Development."

ICSOFT. 2013.

Miyamoto, Kentaro, Kenji Sawada, and Seiichi Shin. "Energy

balance based verification for hybrid vehicle models."

Automatic Control Conference (CACS), 2014 CACS

International. IEEE, 2014.

Tadao Murata, Petri nets: Properties, analysis and applications,

Proceedings of the IEEE, Vol.77, No.4, 1989, pp. 541-580.

J. L. Peterson, Petri Net Theory and the Modeling of Systems,

Englewood Cliffs, N. J.: Prentice Hall, 1981.

DOI Proceedings of the 13th International Modelica Conference 213
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 2D: ELECTRICAL POWER 1
Parametrization Of A Simplified Physical Battery Model
Grimm, Alexander and Haumer, Anton

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica
Nannestad, Mads and Bidoggia, Benoit and Zhang, Zhe and Zsurzsan, Tiberiu-Gabriel and Skriver, Kasper

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries
Romero, Alberto and Goldar, Alejandro and Garone, Emanuele

.

214 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Parametrization Of A Simplified Physical Battery Model

DOI Proceedings of the 13th International Modelica Conference 215
10.3384/ecp19157215 March 4-6, 2019, Regensburg, Germany

Parametrization Of A Simplified Physical Battery Model
Grimm, Alexander and Haumer, Anton

215

Parameterization Of A Simplified Physical Battery Model

Grimm Alexander1 Prof. Haumer Anton1

1Ostbayerische Technische Hochschule Regensburg, Germany alexander.grimm@st.oth-regensburg.de,
anton.haumer@oth-regensburg.de

Abstract
The importance of batteries is increasing, especially in the
field of the high power requirement systems like electric
driven vehicles. Mobile energy storage makes it possible
to accelerate with incredible torque, without any accruing
air pollution. Due to the high costs of real components,
it is of great use to simulate battery driven systems before
building them. Transient processes within a cell are highly
dependent on the operating point of the complete system,
which makes it difficult to create equations and model pa-
rameterizations. This paper shows which data is impor-
tant for cell modeling and how to parameterize simplified
physical cell models.
Keywords: simplified battery model, battery parameteri-
zation, physical battery model

1 Introduction
The main target of the master student’s project was to get
a method to generate a simplified model of a lithium ion
cell. In general the physical models of batteries are gener-
ated with electronic elements like resistors, capacitors, or
inductances.
The complexity of battery models can go up to infinity, so
it is necessary to simplify the structure as much as pos-
sible. The simpler models contain a resistor, which rep-
resents the inner resistance of the cell and a resistor con-
nected in parallel with a capacitor, which represents the
capacitive behavior. Because of that, this model can only
recreate the real battery behavior in a few situations and
is also the least accurate one. To generate a more precise
simulation, it is necessary to use more RC-elements (re-
sistance connected in parallel with a capacitance). With
more of these elements, it is possible to fit the Nyquist
plot of batteries much more accurately.

Figure 1. Rising calculation speed versus higher complexity

For high frequencies the impedance goes even induc-
tive, so therefore a inductance should also be considered.

The disadvantage of more elements in the equivalent cir-
cuit is that more information about the cell is needed for
parameterization and the CPU time for calculations is in-
creased.
The most accurate models are completely numeric models
in which all Elements are parametrized with interpolated
tables, which are depending on temperature, SOC (state
of charge) and flowing current. These models need much
more measurement data than the ones with simple con-
centrated elements. All the parameters have to be recalcu-
lated in every state of the battery, which causes an extreme
rise of the calculation time for the simulation. The mea-
surements are very time consuming and expensive, so not
many institutions have access to the necessary informa-
tion and data for this kind of simulation models. That is
the reason why in this paper no such model is discussed
and presented.

2 Characteristic curves

2.1 Open circuit voltage

The open circuit voltage (short OCV) describes the cell
voltage without any load, depending on the state of charge.
With lower SOC the voltage of the cell is lower and vice
versa. Mostly the OCV gets measured between SOC<95%
and SOC>5% , so the cell does not get overloaded, or com-
pletely discharged, because both scenarios would harm the
cell irreversibly. To get the information for the behavior
higher, or lower than the measured values, the graph can
be extrapolated.

Figure 2. OCV of a battery with dis/charging steps (Peter Keil,
p.3)

The OCV calculation is based on a charging and dis-
charging process within the cell, where it gets charged/dis-
charged with constant current impulses. The mean value
out of both curves is the OCV.

Parametrization Of A Simplified Physical Battery Model

216 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157215

Figure 3. Schematic representation of a battery impulse re-
sponse

2.2 Impulse response
The Impulse response shows the dynamic behaviour of the
cell. To measure this specific curve, the battery gets elec-
trically powered with predefined current impulses. It is
possible to read a general time constant out of the graph
for parametrization (Figure 3).

2.3 Electrochemical impedance spectroscopy
The electrochemical impedance spectroscopy (short EIS)
shows the cell impedance depending on the current fre-
quency and temperature. It is currently the most accurate
method to describe the battery impedance behavior, but
also the most elaborate and expensive with regards to the
costs for measurements. Every single graph shows the be-
havior of the impedance for a fixed temperature and SOC.
That means, that the EIS graph is different for every SOC
and temperature.

Figure 4. Schematic representation of an EIS

Figure 4 shows the graph of an EIS, which begins on
the right hand side with f ≈ 0Hz and continue to the left
with rising frequency. It can be divided into four sections,
which show an individual characteristic of the cell. By
low frequencies, the effect of the diffusion of the chemi-
cal ingredients influence the behavior the most. When the
graph rises again, the effect of the double layer capacity,
which is caused by the structure of a lithium ion cell, has
the most impact. The section between the crossing point

with the real part axis and the section for the double layer
capacity shows the influence of the solid electrolyte inter-
face on the impedance. The crossing point represents the
inner resistance of the battery. When the frequency rise
above this point, the battery begins to show inductive val-
ues, which can be simulated by inductances. It is impor-
tant to know in which operating point the simulation will
run mostly, so different equivalent circuits can be chosen
for better results.

3 Parametrisation
There are many different models with different possibil-
ities to parameterize them, but all of them have in com-
mon that they need the open circuit voltage for the ba-
sic voltage supply behavior. The data of the OCV can be
interpolated and used for a voltage supply. In Modelica,
there can be used a signal voltage and a CombiTable2D
element and both are given in the Modelica Standard Li-
brary. The CombiTable2D can read the table of the OCV
and provides the corresponding signal to the signal volt-
age source. If more OCV measurements within different
temperatures are given, it is also possible to interpolate be-
tween the tables and provide a continuous behavior of the
OCV within the temperature range. If the temperature can
be seen as constant and it is precise enough for the indi-
vidual application even data with different temperature, is
not necessary.

Figure 5. Equivalent circuit with inner resistance

The inner resistance can be calculated based on the
voltage drop, which can be seen between the OCV and
the voltage while charging/discharging the cell (figure 2).

Ri =
∆U
Istep

(1)

3.1 Battery model with one RC-Element
There are two options to parameterize this model. It
is possible to use the parameterization with the pulse
response or with the electrochemical impedance spec-
troscopy. To do so with the pulse response is the much
easier one and it does not need very expensive measure-
ment systems like the other method. But like all other
following models, it needs the OCV like the first and
simplest model "Battery model with Ri".
The impulse response of a battery cell shows the inner
resistance with the current and voltage in the first mo-
ments of the impulse. So the value of Ri (inner resistance)

Parametrization Of A Simplified Physical Battery Model

DOI Proceedings of the 13th International Modelica Conference 217
10.3384/ecp19157215 March 4-6, 2019, Regensburg, Germany

can be calculated just by dividing voltage through the
current. With the stationary current, that occurs after a
short time (∆I ≈ 0) the resistance of the RC-element can
be calculated by:

RRC =
U

Istat
−Ri (2)

With the information about RRC and the impulse response,
the capacitance can be calculated with the time constant τ

of the rising current. τ needs to be read out of the impulse
response.

C =
τ

RRC
(3)

The inner Resistance can be again calculated with the
OCV:

Ri =
∆U
Istep

(4)

Figure 6. Equivalent circuit with one RC-Element

3.2 Parametrisation of any Model with the
EIS

For this, the electrochemical impedance spectroscopy
(short EIS = Nyquist plot of a battery) of lithium cells
has to be analysed and evaluated. To use this method
for parametrization correctly, it is important to know in
which frequency band the simulation will run. As said in
2.3 the EIS itself shows the impedance depending on the
frequency of the battery and it can be divided into four
sections, which show the individual characteristic of the
elements of the equivalent circuit.That means, that the in-
dividual segments of the curve can be used to identify the
parameters for the significant elements, which should rep-
resent this characteristic in the equivalent circuit. Every
individual section of the EIS can be fitted with an algo-
rithm and the formula for the impedance for each element.
Therefore optimization tools like the curve fitting toolbox,
optimization toolbox for Matlab and the Solver for Mi-
crosoft Excel can be used. The following example shows
how it is done.
For this example the equivalent circuit with inner resis-
tance and two RC-Elements is chosen. This structure is
a very common model for batteries and it should provide

very high accuracy for low level frequencies (frequencies
in which the battery behavior is not inductive). For the
battery model application in cars, it can be said, that speed
requirement (pedal position) does not change with high
frequencies f ≈ kHz and so doesn’t the current for the
motor with additional loads.

Figure 7. Equivalent circuit with two RC-Elements

To get the parameters for the other elements, it is nec-
essary to know how the impedance for the structure is cal-
culated. With the knowledge about the formula for the
impedance it is possible to use a fitting algorithm to calcu-
late the capacitances for the capacitors and the resistances
for the resistors.

ZG = Ri +ZRC1 +ZRC2 (5)

ZRC1 =
R1

(ωR1C1)2 +1
− jωR2

1C1

(ωR1C1)2 +1
(6)

ZRC2 =
R2

(ωR2C2)2 +1
− jωR2

2C2

(ωR2C2)2 +1
(7)

This leads to the separated real and imaginary part of ZG:

RG = Ri +
R1

(ωR1C1)2 +1
+

R2

(ωR2C2)2 +1
(8)

XG =− jωR2
1C1

(ωR1C1)2 +1
− jωR2

2C2

(ωR2C2)2 +1
(9)

The next part of the parameterization of a battery
model with the EIS is to look up the measurement table
of the EIS and choose the suitable data for the recreation
of the graph. If the model has no inductance included, it
is not possible to simulate inductive behavior. So all data
with positive imaginary part is not suitable for the fitting
and can be ignored.
The next step is to use the formula for the resistance
(eq.:8) and the reactance (eq.:9) and minimize the
deviation of the error squares:

(Rmeasured −Rcalculated)
2 !
= min (10)

(Xmeasured −Xcalculated)
2 !
= min (11)

Parametrization Of A Simplified Physical Battery Model

218 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157215

Now it is time to use the fitting tool to calculate the four re-
maining parameters for the RC-Elements. The tool should
find the minimum of the error squares by changing the pa-
rameters for the RC-Elements. Every solving algorithm
needs well chosen start values for the calculation. There-
fore the resistances should not be higher than realistic val-
ues. The resistances are commonly not higher than one
Ohm for li-ion battery cells. The capacitances are more
difficult to select. Every cell chemistry is different, even
if it also is among li-ion batteries and therefore the capac-
itances vary massively. If there aren’t many informations
about the cells and the start value available, zero Farad can
be a good value for the beginning of the fitting process.
The solving algorithm tries to find the minimum for the
error squares by changing the values of the RC-Elements
and the formulas for the impedance. All of those algo-
rithms are iterative solving methods which search for lo-
cal minimums of the given functions and parameters. With
the wrong start values the results will be false and need to
be evaluated. This needs to be kept in mind.

Figure 8. Fitting result with example measurement data.

Figure 8 shows an example with the resulting
impedances for the given frequencies. The fitting can ap-
proximate the measured graph very closely, which means,
that the behavior of the real cell can be reproduced very
well.

4 Battery Model for long term energy
investigations of electric vehicles

This project "finding a suitable battery model and the pos-
sibility to parametrize it", is based on the previous project
to create a Modelica based simulation library for modeling
and simulation of complete electrically driven vehicles.
To keep it simple and reasonable for a electical physical
model, the following considerations were made.

4.1 Chosen model
After intense research in papers and books the decision
was to take the cell model with inner resistance and two
RC-Elements to get high accuracy and precision for the
simulation. The structure of the RC-Elements can be
seen as the two transition layers of the electrodes and the
inner resistance like shown in figure 10. The two RC-
Elements have to be parametrized differently, because of

the different chemical structure at each represented transi-
tion layer. The Resistors Ri1 and Ri2 represent the electri-
cal resistance of the electrodes themselves. Rel reproduces
the resistance of the electrolyte for the lithium-ions to go
through.

Figure 9. Consideration of the equivalent circuit.

The resistances Ri1, Ri2, Rel in sum result into Ri.

ZG = Ri1 +Ri2 +Rel +ZRC1 +ZRC2 (12)
= Ri +ZRC1 +ZRC2 (13)

The model in the library needs additional elements for
handling all the data and inclusion of the option to use all
resistances for thermal management. An integrator con-
verts the measured current into charge for calculation of
the SOC. The SOC itself needs to be denormalized for the
interpolation table of the OCV and all relevant signals are
combined in the battery bus for a better overview. For a
more realistic behaviour, the self discharge resistance Rsd
is also considered and set by default to 1MΩ.

4.2 Simulation and modelling
Until now, this research project has no real EIS-
measurements of cells from high voltage battery packs
available. So it would make no sense to parameterize an
model example of a car and try to simulate it, because it
cannot be verified with any real measurements. The given
graph in figure 8 at p.4 shows a value for the inner resis-
tance that is way too high. With that data it is not pos-
sible to reproduce driving cycles with high acceleration
and power requirements above ≈ 150kW . Nevertheless
the EMOTH battery model was tested with fictive values
and was completely operational. It has to be kept in mind
that the simulation will abort with a singularity error if
the resistance is to high for the power requirement and the
data for the OCV can only interpolate between the given
data and not be extrapolated. If the temperature is ris-
ing above the maximum given value or falling below the
minim given value, it will abort the simulation.

Parametrization Of A Simplified Physical Battery Model

DOI Proceedings of the 13th International Modelica Conference 219
10.3384/ecp19157215 March 4-6, 2019, Regensburg, Germany

Figure 10. Equivalent circuit of the battery in Dymola.

For testing the functionality and the containing Modelica-
elements, a simpler model was built and tested with differ-
ent temperatures. The OCV was analysed and the results
are shown in figure 11. The table2D interpolation was
set to interpolate with continuous derivatives to smooth
the graph. The parameters for the elements were set to
the values obtained out of the measured EIS. Figure 11

Figure 11. Battery model test for OCV behaviour

shows the structure of the test model. The SOC_ Ramp
changes the SOC from 100% to 10% in 10 seconds with
the fixed and predefined temperature, which is defined in
the temperature block. All equivalent circuit parameters
are summed up in the data record "batteryData". The volt-
age sensor measures the open circuit voltage depending on
the changing SOC.
The graph in figure 12 shows the resulting interpolation
from the example data from figure 8 p.4 for two different
temperatures (T1 = −20◦C and T2 = 59◦C). If there are
real and useful electrochemical impedance spectroscopies
available with different temperatures and state of charges,
the previous discussed models and parametrization meth-

ods should provide very good simulation structures for ac-
curate battery simulations.

Figure 12. Recreated OCV in Dymola with different tempera-
tures

5 Conclusion and outlook
There are many different ways to create a battery model,
but the higher the level of complexity, the more calculation
time and measurements are needed to be performed as ba-
sis for parametrization. Since this is very expensive and
time consuming, the requirement of modeling is to keep
the simulation structures as simple as possible.
In (Peter Keil) it is proven that even the equivalent circuit
with only one RC-element can provide very accurate re-
sults. They used a model build up of one RC-Element and
a predefined load profile for discharging the battery. Be-
tween the simulation and real measurements the difference
was less than two percent, except for the operating points
with a SOC lower than five percent, where the difference
came up to 10%. The choice for the battery model de-
pends on the type of measurements that can be proceeded
and the available calculation power.
The next step is to use the obtained results and combine
them with additional data to create and parametrize a com-
plete model of the electrically driven bus of Regensburg.

References
Peter Fritzson. Principles of object oriented modeling and sim-

ulation with Modelica 3.3. John Wiley and Sons Inc., 2015.
ISBN 978-1-1188-5897-4.

Rodrigo Garcia-ValleJoao A. Pecas Lopes. Electric Vehicle In-
tegration into Modern Power Networks. Springer, New York,
NY, 2013. ISBN 978-1-4614-0134-6.

Wolfgang Mielke. Modellierung von Kennlinien,
Impedanzspektren und thermischem Verhalten einer Lithium-
Eisenphosphat-Batterie. PhD thesis, 2011.

Andreas Jossen Peter Keil. Aufbau und Parametrierung von Bat-
teriemodellen. PhD thesis.

Otto K. Dietleier Peter Kurzweil. Elektrochemische Speicher.
Springer Fachmedien Wiesbaden GmbH, 2015. ISBN 978-3-
658-10899-1.

D. V. Ragone. Review of battery systems for electrically pow-
ered vehicles. 1968.

Jan Philipp Schmidt. Verfahren zur Charakterisierung und Mod-
ellierung von Lithium-Ionen Zellen. PhD thesis, 2013.

Parametrization Of A Simplified Physical Battery Model

220 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157215

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

DOI Proceedings of the 13th International Modelica Conference 221
10.3384/ecp19157221 March 4-6, 2019, Regensburg, Germany

Modeling of transformer-rectifier sets for the energization of electrostatic
precipitators using Modelica
Nannestad, Mads and Bidoggia, Benoit and Zhang, Zhe and Zsurzsan, Tiberiu-Gabriel and Skriver, Kasper

221

Modeling of transformer-rectifier sets for the energization of
electrostatic precipitators using Modelica

Mads Nannestad1,2 Benoit Bidoggia1 Zhe Zhang2 Tiberiu-Gabriel Zsurzsan2 Kasper Skriver1

1FLSmidth A/S, Denmark, bebi@flsmidth.dk
2Department of Electrical Engineering, Technical University of Denmark, Denmark

Abstract
Electrostatic precipitators (ESPs) are important parts of
many industrial plants. They require high-voltage power
supplies. In this paper, transformer/rectifier sets, a particu-
lar type of power supplies for the energization of ESPs, are
presented and modeled using Modelica. The models have
been validated with measurements from existing plants.
Keywords: Modelica, power supply, electrostatic precipita-
tor, ESP

1 Introduction
Industrial plants—like coal-fired power plants and plants
for the production of steel, pulp and paper, and cement—
need to satisfy low and strict emission levels of pollutants
in the emitted flue gases. One method to reduce the emis-
sion of solid pollutants suspended in gas streams is the
use of electrostatic precipitators (ESPs) (Fig. 1). In ESPs,
the particles of pollutants are electrically charged and pass
through a strong electric field. The charged particles mov-
ing within the gas stream are therefore deflected towards
collecting plates, to which they stick (Fig. 2). To create the
ions that are required to charge the particles and to sustain
the required strong electric field, high-voltage power sup-
plies are required. ESPs are normally internally subdivided
in electrically isolated sections, which are independently
energized and controlled. Different topologies of power
supplies which can be used to energize ESPs exist. One of
them, also the most traditional, is called transformer/recti-
fier (T/R) set. T/R sets can be single phase or three phase
(von Stackelberg, 2013). The aim of this paper is to model
open-loop controlled, single- and three-phase T/R sets cou-
pled to ESPs.

To understand the importance of the voltage shape and
voltage level energizing ESPs, the concept of collecting
efficiency η is introduced and defined as

η =
ṁc

ṁi
(1)

where ṁc is the mass flow of collected particles and ṁi
is the mass flow of incoming particles. The efficiency η

depends on different geometrical parameters of the ESP—
like the physical size and the shape of the electrodes and
of the collecting plates—and of different physical param-
eters of the gas stream—like its density, temperature and
velocity.

Figure 1. Example of electrostatic precipitator

Gas stream

Discharge electrodes

Collecting plates

Dust particles

Figure 2. A schematic representation of a portion of an electro-
static precipitator

The influence of the geometrical and physical parame-
ters can be expressed by

η = 1− e−
A
Q ω (2)

where A is the total collecting area, Q is the flow rate of
the gas stream and ω is called particle migration velocity.
Under normal operating conditions, the particle migration
velocity is proportional to the power Pc injected into the
ESP and can be expressed as

ω = k
Pc

A
(3)

where k is a constant that depends on the physical parame-
ters of the particular process (Parker, 1997).

The efficiency η can also be expressed more directly in
electrical terms by

η = 1− ekη vv̂ (4)

where kη is a constant (Bidoggia et al., 2018), and where v
and v̂ are respectively the mean and peak values of the ESP

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

222 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157221

Lc

Lo

Controller

T

D

R1

R2

R3

voGRID

ESP

vo

io

vi

vv

S

Figure 3. Schematic and block diagram of a single-phase T/R
set connected to an electrostatic precipitator (ESP)

voltage. To maximize the collecting efficiency η of an ESP,
the T/R-set controller acts on the firing angle of thyristors
to keep the highest possible mean (v) and peak (v̂) voltage,
typically at the limit of the dielectric breakdown voltage of
the gas flowing through the ESP.

In this paper, after introducing the main components of
single- and three-phase T/R sets (Sec. 2), the Modelica
models which have been built will be described (Sec. 3).
The simulation results and field measurements are pre-
sented and compared in Sec. 4. The conclusions are then
presented in Sec. 5.

2 Energization of ESPs with T/R sets

In this section, the main components of single- and three-
phase T/R sets are presented (Fig. 3 and 4). Because of the
different output voltage they generate, their usage depends
on the particular process of which the ESP is part.

All T/R sets are composed of a step-up transformer (T)
and a full-wave rectifier (D). The positive connection of
the rectifier is connected to ground to obtain a negative
voltage across the ESP. The grid voltage is typically in the
range 400V to 690V and the absolute value of the output
voltage vo can typically be in the range 80kV to 150kV.
The output voltage is measured by the voltage divider made
of R1and R2. The average value of the output current io is
typically in the range 800mA to 2000mA and is measured
by the shunt resistor Ro. Because sparks can occur inside
an ESP under normal operation, an external inductor (Lc) is
inserted to limit the resulting overcurrent; typical per-unit
values for Lc are in the range 30% to 40% (Parker, 1997).
The voltage and current signals, respectively vv and vi are
measured by the controller, which regulates the firing angle
of the thyristors (S) to regulate the power injected to the
ESP. On the output side, the inductor Lo prevents high-
frequency transients created by sparks from entering the
T/R set. Because of the high voltage levels, the transformer
T, the rectifier D, the resistor R1 and the inductors Lo and
Lc are immersed in an oil tank. The oil is also used for
cooling purposes.

Controller

Lc

Lo

T

D

R1

R2

R3

GRID

ESP

vo

io

vi

vv

S

Figure 4. Schematic and block diagram of a three-phase T/R set
connected to an electrostatic precipitator (ESP)

2.1 Single-phase T/R set
The output voltage waveform of single-phase T/R sets
is characterized by a DC component with a superim-
posed relatively large ripple, with a frequency twice
the grid frequency. This type of waveform is typically
used in applications for which the resistivity of the par-
ticulate to filter falls in the medium-resistivity range
(1×107 Ωm to 5×109 Ωm) (Bidoggia et al., 2018).

2.2 Three-phase T/R set
The output voltage waveform of three-phase T/R sets is
characterized by a DC component with a negligible ripple,
with a frequency six times the grid frequency. This type
of waveform is typically used in applications for which
the resistivity of the particulate to filter falls in the low-
resistivity range (< 1×107 Ωm) (Bidoggia et al., 2018).

The transformer is typically connected in a configuration
with delta connection at the primary side and star connec-
tion at the secondary side.

3 Modeling
The Modelica Standard Library and the OpenModelica
Connection Editor (OMEdit) have been used to model both
single- and three phase T/R sets. The availability of inter-
faces between different physical domains makes Modelica
ideal for modeling multiphysical systems like ESPs. For
this work, the following physical domains have been used:
electrical, for the power electronics stage; blocks, for the
open-loop control of the power electronics stage; thermal,
for the calculation of the losses.

In this paper, the model of an ESP has been simplified
and represented by an R-C circuit, where the values of
resistance and capacitance were based on real installations.
With the aim of setting the base for a model as representa-
tive as possible of real systems, the voltage divider and the
current sensor have also been modeled. The voltage divider
is designed to provide a voltage ratio Vn/10V, where Vn
is the nominal output voltage of the T/R set. The current
shunt is designed to provide a current/voltage ratio In/1V,
where In is the nominal output current of the T/R set.

The heating ports of the components from the elec-

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

DOI Proceedings of the 13th International Modelica Conference 223
10.3384/ecp19157221 March 4-6, 2019, Regensburg, Germany

C
=
2
1
0
.e
-9

C
os
in
e
V
o
lta

g
e
1

+
-

ground1

V

v
o
lta

g
e
S
e
n
so
r2

ESPground

R
=
4
5
.e
3

R
o

VV
_d
c

R
=
1
0
0
.e
6

V
D
r2

R
=
1
0
.0
6
e
3

V
D
r3

R
=
1

C
S
r1

A C
S

Ambient

T=298.15

K

C

idealThyristor1

idealThyristor2

Figure 5. Modelica model of a single-phase T/R set connected to an electrostatic precipitator (ESP)

PhaseMeasurement FiringSignal
abs1

abs

10

>

timer1

k=180 / 0.01

gain1

Alpha

k=45

timer2

1.e-3

<

1.e-4

>
and1

and

Figure 6. Submodel of a simple open-loop controller for T/R sets

trical domain with losses—such as diodes, resistors and
thyristors—have been connected to a fixed ambient tem-
perature of 298.15K≈ 25 ◦C.

The values of the parameters used in the models are
provided by FLSmidth and based on real installations; they
are reported in Table 1.

3.1 Single-phase T/R set
The derived model of a single-phase T/R set is shown in
Fig. 5 with its submodels for the controller, the transformer
and the rectifier (Tiller, 2017).

The controller is connected to two ideal thyristors which
are fired by boolean signals (Otter et al., 1999). The sub-
model of the controller is shown in Fig. 6. The controller
detects the zero crossing of the grid voltage, represented
by an ideal voltage source, and then delays the firing of the
thyristors of the diode. The firing delay is given as an angle
(α) in the range 0◦ to 180◦. The firing angle is compared
to the output of the chain of the blocks timer1 and gain1,
which represents the delay from the zero crossing of the
voltage, expressed in degrees. Higher values of α corre-
spond to lower output power. The block timer2 defines
the duration of the firing pulse. Because two anti-parallel
thyristors are present, the firing signal is given every half
period.

The submodel of the full-wave rectifier is shown in

Fig. 7. Because of the high-voltage levels applied to the
rectifier, each diode represents a string of diodes connected
in series. The three different models of diodes available
at the Modelica Standard Library have been investigated
(Clauss et al., 2000):

• HeatingDiode: while testing it with a three-phase
rectifier and with the heating ports enabled, it seemed
to lead to numerical problems;

• Diode2: because the relationship between voltage and
current contains exponential expressions, it is not pos-
sible to extend the parameters of a diode to a string of
diodes by simply manipulating the parameters them-
selves;

• IdealDiode: the model being linear, the parameters
of a string of diodes can be simply derived from the
parameters of a diode and the number of diodes in the
string.

These models do not include the effect of the reverse re-
covery (Denz et al., 2014), which is not a concern for
this application because of the low switching frequency
(50Hz to 180Hz).

The submodel of the single-phase transformer is shown
in Fig. 8 and it is made of the two inductances L1 and Lm,

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

224 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157221

Table 1. Parameters for the models of the single- and three-phase T/R sets

R{1|2|3} L{1|2|3} Lm Re n Ro Co
[mΩ] [mH] [mH] [Ω] [−] [MΩ] [nF]

Single-phase 25 1.8 94 200 1/160 45 210
Three-phase 25 1.8 94 94 1/94 100 100

RectifierHeatport

TransformerInputP

RectifierP

RectifierN

TransformerInputN

th
e
rm

a
lC
o
lle
cto

r1

m
=
4

D
1

D
3

D
2

D
4

Figure 7. Submodel of the single-phase full-wave rectifier of a
T/R set

the two resistances R1 and Re, and an ideal transformer
with voltage ratio n = n1/n2.

InputP OutputP

InputN OutputN

TransformerHeatport

n=1. / 160.

1 2

Transformer

th
e
rm

a
lC

o
lle

cto
r2

m
=

2

L=1800.e-6

L1

R=25.e-3

R1 L=
9

4
.e

-3

Lm

R
=

2
0

0

R
e

Figure 8. Submodel of the single-phase transformer of a T/R set

The inductance Lm represents the magnetizing induc-
tance of the core of the transformer, while the inductance
L1 is defined as

L1 = L1σ +n2L2σ +Lc +n2Lo (5)

where L1σ is the leakage inductances of the primary side,
L2σ is the leakage inductance of the secondary side, Lc is
the inductance of the external short-circuit inductor and Lo
is the inductance of the output inductor.

The resistance Re represents the losses in the core of the
transformer, while the resistance R1 is defined as

R1 = R1w +n2R2w +Rc (6)

where R1w is the resistance of the winding of the primary
side, R2w is the resistance of the winding of the secondary
side, and Rc is the resistance of the external short-circuit
inductor.

3.2 Three-phase T/R set
The derived model of a three-phase T/R set is shown in
Fig. 9 with its submodels for the controller, the transformer
and the rectifier (Tiller, 2017).

The controller model is the same as for a single-phase
T/R set but replicated three times.

The choice of the model for the diodes is the same as for
the single-phase T/R set. The submodel of the rectifier is
shown in Fig. 10.

The submodel of the high voltage transformer is shown
in Fig. 11. The inductances and resistances appearing in
the model are defined similarly to the homologous ones in
the model for the single-phase transformer.

4 Results
In this section, the results of the simulation of the models
described in Sec. 3 and the results measured on existing
plants are presented. Because of the different parameters
and the different nominal values of the simulated and real
systems, the results have been normalized so that the wave-
forms of different systems can be compared.

Fig. 12a presents the primary current for both a single-
and a three-phase T/R sets connected to an ESP and mea-
sured on existing plants. Fig. 12b presents the simulated
primary current for both a single- and three-phase T/R set
connected to an ESP.

Fig. 12c presents the secondary current and secondary
voltage for a single-phase T/R set connected to an ESP and
measured on a real plant. Fig. 12d presents the simulated
secondary current and secondary voltage for a single-phase
T/R set connected to an ESP.

Fig. 12e presents the secondary current and secondary
voltage for a three-phase T/R set connected to an ESP and

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

DOI Proceedings of the 13th International Modelica Conference 225
10.3384/ecp19157221 March 4-6, 2019, Regensburg, Germany

R
=
1
0
0
.e
3

R
o

ground2

si
n
e
V
o
lt
a
g
e
1

+
-

ground5

si
n
e
V
o
lt
a
g
e
2

+
-

si
n
e
V
o
lt
a
g
e
3

+
-

ground6

ground7

V

v
o
lta

g
e
S
e
n
so
r1

V

v
o
lta

g
e
S
e
n
so
r2

V

v
o
lta

g
e
S
e
n
so
r3

C
=
1
0
0
.e
-9

C
1

R
=
1
0
0
.e
6

R
2

R
=
1
0
.0
6
e
3

R
3 V

V
_E
S
P

R
=
1

R
1 A

I_E
S
P

S4

S3

S6

S5

S2

S1

C
C

C

Ambient

T=298.15

K

Figure 9. Modelica model of a three-phase T/R set connected to an electrostatic precipitator (ESP)

R

S

T DC_Negative

DC_Positive

RectifierHeatport

thermalCollector1

m=6

D
1

D
3

D
5

D
2

D
4

D
6

Figure 10. Submodel of the three-phase full-wave rectifier of a
T/R set

L1

L3

L2

R

S

T

DeltaStarHeatport

n=1 / 94

1 2

idealTransformerR

n=1 / 94

1 2

idealTransformerS

n=1 / 94

1 2

idealTransformerT

R
=

9
4

R
e
1

R
=

9
4

R
e
2

R
=

9
4

R
e
3

R=0.25

R_1

L=1.8e-3

L_1

L=1.8e-3

L_2

R=0.25

R_2

L=1.8e-3

L_3

R=0.25

R_3

thermalCollector2

m=6

Figure 11. Submodel of the three-phase transformer of a T/R set

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

226 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157221

measured on a real plant. Fig. 12f presents the simulated
secondary current and secondary voltage for a three-phase
T/R set connected to an ESP. The amplitude of the voltage
ripple is significantly smaller than in the case of the single-
phase T/R set.

For all waveforms, the shape of the simulated waveforms
is in agreement with the shape of the measured waveforms.
The minor differences—in the primary current and in the
secondary voltage and current—between the simulated and
measured results are mostly related to the nature itself of
ESPs. These are loads whose parameters are constantly
changing as a function of the physical parameters of the gas
streams that they are filtering. Thus, also modeling the ESP
itself will be of paramount importance, especially in rela-
tionship with a closed-loop control system. Other minor
differences—like for example in the primary current—are
related to other electrical phenomena, which have not been
taken into consideration yet, like the switching transients
of the thyristors.

5 Conclusions
Electrostatic precipitators (ESPs) are important parts of
many industrial plants and they require high-voltage power
supplies. The goal of the project to which this work be-
longs is to model a complete ESP system. In this paper,
a particular type of power supplies for the energization of
ESPs—transformer/rectifier sets—has been presented and
simple models have been derived using Modelica. The
models have been validated with measurements from ex-
isting plants. However, further work will be required, like
the derivation of the models of the ESP, of closed-loop
controllers and of other topologies of power supplies. The
derivation of a complete thermal model for these power
supplies is planned.

6 Acknowledgment
We thank our colleagues from FLSmidth A/S and DTU,
who provided insight and expertise that greatly assisted the
research.

References
Benoit Bidoggia, Mads Kirk Larsen, Karsten Poulsen, and Kasper

Skriver. Coromax micro-pulse power supplies (mppss) replace
switch-mode power supplies (smpss) at an estonian power
plant. In Proceedings 15th International Conference on ESP
(ICESP), Charlotte, NC, USA, 9–11 October (2018), 2018.

C. Clauss, A. Schneider, T. Leitner, and P. Schwarz. Modelling
of electrical circuits with modelica. In Workshop Modelica,
2000.

Patrick Denz, Thomas Schmitt, and Markus Andres. Behav-
ioral modeling of power semiconductors in modelica. In 10th
International Modelica Conference, 2014.

Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. Model-
ing of mixed continuous/discrete systems in modelica. Tech-
nical report, 1999.

K.R. Parker, editor. Applied electrostatic precipitation. Chapman
and Hall, 1997.

Michael M. Tiller. Modelica by Example — Release v0.5.3-0-
g4c1367c. 2017.

Josef von Stackelberg. The three-phase power supply for low
ripple high voltage in conventional technology. In ICESP XIII,
September 2013, Bangalore, India. Rico-Werk, Toenisvorst,
Germany, 2013.

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

DOI Proceedings of the 13th International Modelica Conference 227
10.3384/ecp19157221 March 4-6, 2019, Regensburg, Germany

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40

-1

-0.5

 0

 0.5

 1

S
in

g
le

-p
h
a
se

 p
ri

m
a
ry

 c
u
rr

e
n
t

[p
u
]

T
h
re

e
-p

h
a
se

 p
ri

m
a
ry

 c
u
rr

e
n
t

[p
u
]

t [ms]

1-phase 3-phase

(a) Measured primary current for a single-phase (base current Ib = 170A)
and a three-phase (base current Ib = 160A) T/R set

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40

-1

-0.5

 0

 0.5

 1

S
in

g
le

-p
h
a
se

 p
ri

m
a
ry

 c
u
rr

e
n
t

[p
u
]

T
h
re

e
-p

h
a
se

 p
ri

m
a
ry

 c
u
rr

e
n
t

[p
u
]

t [ms]

1-phase 3-phase

(b) Simulated primary current for a single-phase (base current Ib = 150A)
and a three-phase (base current Ib = 85A) T/R set

-1

-0.5

 0

 0 10 20 30 40

 0

 0.5

 1

S
e
co

n
d

a
ry

 v
o
lt

a
g

e
 [

p
u
]

-
S

e
co

n
d

a
ry

 c
u
rr

e
n
t

[p
u
]

t [ms]

Voltage Current

(c) Measured secondary voltage (base voltage Ub = 76kV) and current
(base current Ib = 1800mA) for a single-phase T/R set

-1

-0.5

 0

 0 10 20 30 40

 0

 0.5

 1

S
e
co

n
d

a
ry

 v
o
lt

a
g

e
 [

p
u
]

-
S

e
co

n
d

a
ry

 c
u
rr

e
n
t

[p
u
]

t [ms]

Voltage Current

(d) Simulated secondary voltage (base voltage Ub = 51kV) and current
(base current Ib = 2400mA) for a single-phase T/R set

-1

-0.5

 0

 0 10 20 30 40

 0

 0.5

 1

S
e
co

n
d

a
ry

 v
o
lt

a
g

e
 [

p
u
]

-
S

e
co

n
d

a
ry

 c
u
rr

e
n
t

[p
u
]

t [ms]

Voltage Current

(e) Measured secondary voltage (base voltage Ub = 76kV) and current
(base current Ib = 1200mA) for a three-phase T/R set

-1

-0.5

 0

 0 10 20 30 40

 0

 0.5

 1

S
e
co

n
d

a
ry

 v
o
lt

a
g

e
 [

p
u
]

-
S

e
co

n
d

a
ry

 c
u
rr

e
n
t

[p
u
]

t [ms]

Voltage Current

(f) Simulated secondary voltage (base voltage Ub = 51kV) and current
(base current Ib = 800mA) for a three-phase T/R set

Figure 12. Comparison between the main waveforms of measurements and simulation results for single-phase and three-phase T/R
sets

Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica

228 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157221

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

DOI Proceedings of the 13th International Modelica Conference 229
10.3384/ecp19157229 March 4-6, 2019, Regensburg, Germany

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-
ion Batteries
Romero, Alberto and Goldar, Alejandro and Garone, Emanuele

229

A Model Predictive Control Application for a Constrained Fast
Charge of Lithium-ion Batteries

Alberto Romero∗ Alejandro Goldar Emanuele Garone

Service d’Automatique et d’Analyse des Systèmes, Université libre de Bruxelles, Belgium,
{aromerof,agoldard,egarone}@ulb.ac.be

Abstract
The spread of electrical storage devices continues to be
underpinned by the limited charging currents that can be
applied. The limitation arises from the lack of sufficient
high power charging stations, either at home or along
roads and highways, and from the maximum admissible
current that can be applied to the battery before undesir-
able degradation mechanisms are triggered. Accordingly,
most traditional charging protocols limit the charging cur-
rent as a function of the standing state of charge of the bat-
tery. These protocols are designed empirically and restrict
the potential benefit of more flexible charging options.
However, the alternative to traditional protocols must rely
on a more precise knowledge of the operating constraints
and on advanced control techniques to compute online the
best operating plan. This work presents a model predic-
tive control (MPC) application to minimize the charging
time of a lithium-ion battery subject to electrochemical
and thermal constraints. The satisfaction of these con-
straints ensures that the battery degradation is minimized,
or at least mitigated. The programming language Model-
ica and the optimization and simulation framework JMod-
elica.org is used in combination with Python language to
assess the computing time and potential use of MPC and
the developed cell models in commercial batteries.
Keywords: Fast-charge, nonlinear MPC, optimization,
battery aging

1 Introduction
Lithium-based battery cells dominate the spectrum of
electrical storage when it comes to portable electronic/-
electric devices. These cells can withstand thousands of
charge-discharge cycles before degradation makes them
unusable. However, when the batteries are charged at high
rates, the expected life is reduced. In general, the degra-
dation rate depends on the charging current and the cell
temperature. Empirical results show that operation above
40 ◦C can dramatically reduce the life of the cell (Wang
et al., 2011; Ecker et al., 2012). The same results from
operating at low temperatures (below 10◦C).

High charging current increases the voltage of the bat-
tery due to the effect on the cell of the electrochemically
induced overpotentials. This observable effect is a con-

∗Corresponding author

sequence of the ohmic, charge transfer, and diffusion re-
sistances (Gerl et al., 2014). When these exceed certain
thresholds then the side-reactions that cause cell degrada-
tion are triggered.

The overpotentials depend on the current applied I, the
temperature T , and the state of charge (SOC). It is ex-
pected, therefore, that if certain operating constraints de-
fined as a function of these variables are not violated, then
the degradation mechanisms will be ceased or at least
slowed down. How these constraints are identified and
modeled has been covered recently by different authors
(e.g. (Moura et al., 2013; Romagnoli et al., 2017)). It
has been more common, however, to use empirical results
of capacity and power fade (degradation) as a function of
SOC, I and T , to subsequently obtain empirical degrada-
tion expressions by some fitting procedure. The result-
ing expressions can be used in combination with control
schemes to maximize the benefit of utilizing the cells in
the best possible way, often optimal under certain crite-
rion.

In the recent years, Modelica has been chosen by many
research institutions and companies to study the interac-
tion of batteries with other systems such as power-trains,
cooling devices, or power electronics. The component-
oriented programming facilitated by Modelica can be used
to compare multiple configurations in the design stage,
as well as to optimize the size and operation of battery
systems. Several libraries have been developed in the
last years ((Dao and Schmitke, 2015; Uddin and Picarelli,
2014; Gerl et al., 2014; Bouvy et al., 2012; Brembeck and
Wielgos, 2011; Einhorn et al., 2011; Janczyk et al., 2016)),
which have been validated with experimental data. Appli-
cations have focused mostly on hybrids, plug-in hybrids,
and full electric vehicles, with emphasis on fuel econ-
omy (Batteh and Tiller, 2009; Spike et al., 2015), thermal
management (Bouvy et al., 2012), and battery aging (Gerl
et al., 2014). Despite the significant effort, there is still
some room for improvement in the area of constrained
control techniques using Modelica to explicitly account
for electrochemical and thermal operating boundaries.

This paper presents an optimal control strategy to
charge a lithium-ion battery cell subject to electrochem-
ical constraints. The model used to describe the cell dy-
namics and to draw the operational limits is the so-called
Equivalent Hydraulic Model (EHM), which is linear on

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

230 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157229

the two electrochemical states (state of charge and critical
surface concentration), and nonlinear on the output volt-
age. In addition to the electrochemical states, the cell tem-
perature dynamics is also modeled and constrained. The
optimal charging profile is obtained and applied over a re-
ceding horizon following a classical MPC approach, and
is implemented in Python and JModelica.org. The optimal
control strategy is compared with a commercial constant-
current/constant-voltage (CCCV) charging protocol that is
the standard in most applications, illustrating the benefits
of the optimal constrained charging strategy.

The remainder of this work can be summarized as fol-
lows. Section 2 introduces the EHM model and its exten-
sion to include the temperature state. Section 3 describes
the conventional and the optimal charging strategies, as
well as the implementation details. Results and their dis-
cussion are covered in Section 4, followed finally by the
conclusions and future work.

2 Battery modeling and control
This section presents a reduced order model of the battery
cell taken from the literature, as well the description of the
coupled thermal model and two control strategies that are
later compared for battery charging.

2.1 Equivalent Hydraulic Model
The equivalent hydraulic model (EHM) was first proposed
by (Manwell and McGowan, 1993) for lead acid batter-
ies, but it has been recently applied to lithium-ion cells as
a reduced-order electrochemical battery model. Figure 1
depicts the physical meaning of the model states and how
they interact with the flow of lithium ions. The model cap-
tures the dynamics of an idealized two-layer single parti-
cle within which lithium accumulates. The dynamics can
be represented with more traditional two-tank hydraulic
model (?). In continuous-time, this model takes the form

dSOC
dt

=−γI (1)

dCSC
dt

=
g(SOC−CSC)

β (1−β)
− γ

1−β
I (2)

where SOC and CSC are the state of charge and the
critical surface concentration of lithium ions respectively,
I is the applied current in [A ·m−2], and g, β and γ are con-
stant parameters as defined in (Couto and Kinnaert, 2018).
The convention of negative currents for battery charge is
respected here.

The positive electrode dynamics are usually faster than
the negative electrode ones, which motivates the assump-
tion of fast dynamics for the former electrode, i.e.

CSC+ = SOC+

SOC+ = ρSOC+σ
(3)

where ρ and σ are also constant parameters. The output
voltage of the battery is a nonlinear function consisting of

Figure 1. Equivalent hydraulic model and the spherical-solid
particle representation (Couto et al., 2016). u(k), q1 and q2 are,
respectively, the lithium flow, and the bulk and surface lithium
concentration

the open-circuit voltage ∆U , the surface overpotential η±
s

and the film resistance R f given by

V = ∆U +η
+
s −η

−
s −R f γI (4)

where ∆U = f (SOC,CSC) and

η
±
s =C sinh−1

(
θ±√

z(1− z)
I

)
,

where z = CSC+ = ρSOC + σ for the positive compo-
nent and z = CSC for the negative one, and C and θ± are
constant parameters. All parameters and functions of the
EHM are chemistry dependent.

In order to avoid the main side reactions that compro-
mise battery life and its safe operation, the battery over-
potentials should be restricted through constraints. These
constraints are in general nonlinear, which may result
in solution spaces that are nonconvex (Romagnoli et al.,
2017). However, it is possible to convexify the solu-
tion space with more conservative linear constraints of the
form:

I ≥ αiCSC+βi, i = 1, . . . ,nc (5)

where αi and βi are the parameters associated to the
linear approximations of the nonlinear side reaction con-
straints, and nc is the considered number of linear con-
straints. In this work, only two linear approximations are
used to describe the nonconvex solution space.

Besides electrochemical side reactions, there are oper-
ational limits of the electrode materials that need to be re-
spected. Introducing or extracting more Li-ions that the al-
lowed limit SOCmax results in accelerated battery degrada-
tion (Tang et al., 2009; Hausbrand et al., 2015). Finally, a
maximum input current Imax could also be imposed, which
represents a given maximum C-rate, which is a multiple of
the current that charges the battery in 1 hour. If the capac-
ity of the battery is 34 [Ah ·m−2], then a C-rate 1C corre-
sponds to -34 [A ·m−2], 3C to -102 [A ·m−2], and so on.

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

DOI Proceedings of the 13th International Modelica Conference 231
10.3384/ecp19157229 March 4-6, 2019, Regensburg, Germany

These constraints take the following form for the charging
process

SOC ≤ SOCmax, CSC ≤ SOCmax (6)

SOC+ ≥ SOC+
max, CSC+ ≥ SOC+

max (7)
I ≤ Imax (8)

2.2 Thermal Model
The previous reduced-order electrochemical model can be
augmented to include the effect on the cell temperature of
the heat generated when charging or discharging the bat-
tery. The augmented model is nonlinear because the heat
generated depends on the product of voltage and current,
both variables of the system. The first order differential
equation governing the thermal dynamics can be written
as

mcellCp,cell
dTcell

dt
= hA(Tcell −Tamb)+ Q̇gen (9)

where Tcell is the cell temperature, mcell is the cell mass,
Cp,cell the specific heat, h is the overall heat transfer coeffi-
cient (accounting for convection and conduction), A is the
heat exchange area, Tamb is the ambient temperature, and
Q̇gen is the heat generated by the cell.

The thermal model for simulation is based on (Onda
et al., 2003), where the total heat generated is defined as

Q̇gen = I(∆U −V −Tref
d(∆U)

dT
) (10)

where Tref is a reference temperature, and d(∆U)
dT can be

calculated as the entropy change ∆S divided by the Fara-
day constant (F). The value of ∆S is based on a LiNiCoO2
pouch cell (Uddin et al., 2014).

The cell ohmic resistance Rint can also be used to cal-
culate the heat generated as Q̇gen = I2Rint. In this work,
and for the benefit of the predictive controller proposed in
the following section, this expression of the heat is used in
combination with the one-dimensional thermal model of
the battery to approximate the heat exchange process.

Temperature constraints are motivated by the larger ag-
ing rates of batteries at higher temperatures as their lifes-
pan roughly halves for each 13◦C increase in average bat-
tery temperature (Keyser et al., 2017). The resulting upper
constraint can be defined as follows:

Tcell ≤ Tcell,max (11)

A lower bound constraint is not considered in this work,
but it would be necessary should ambient temperatures
drop below 10◦C.

2.3 Standard Charging Protocol
Standard charging protocols such as the constant current-
constant voltage (CCCV) and its variations (Keil and
Jossen, 2016) rely only on voltage measurements to reach

a desired SOC. A typical CCCV protocol consists of a
charge period under constant current (CC), followed by
a constant voltage (CV) stage. The CV stage begins when
a predefined voltage threshold is reached, and terminates
when either a fixed maximum duration time or a minimum
current threshold is achieved. The CV stage can be driven
by a proportional feedback controller which in practice
leads to a progressive reduction of the current as the ref-
erence voltage is reached; this is the approach followed in
the present study.

2.4 Constrained Control
A widely used strategy to cope with constrained control
problems is MPC (Camacho and Bordons, 2004). Model
predictive controllers calculate the future control actions
on the process, u(t), by solving an on-line optimization
problem subject to constraints that can be written as

min
u(t)

∫ tf

t0
(SOC(t)−SOCref)

2dt

s.t. model dynamics
electrochemical constraints
thermal constraints

(12)

The optimization problem (12) minimizes a cost func-
tion that depends on the predicted tracking error (given
a desired reference SOCref) and the control effort. The
former is the difference between the SOC and its refer-
ence. The latter depends on u(t), which is the sequence
of control actions on the system, i.e., the applied current.
The time horizon (tf − t0) is discretized into a finite num-
ber of time steps in which the variables of the problem
are defined. Constraints include the predictions performed
with a simplified battery model, as well as upper and lower
bounds on states, outputs, input, or a combination of these.

3 Case Studies and Implementation
Figure 2 shows the control scheme adopted. The con-
troller, which is either based on the CCCV protocol or
on MPC, can receive information regarding the reference,
outputs and measured disturbances. It is assumed in this
work that the effect of the disturbances is negligible.

Table 1. CCCV controller

Variable Value Units

Iend -0.15 [A ·m−2]
Vthres 4.19 [V]
Vref 4.2 [V]
Kp -5250 [A ·V−1]
Ki 0 [A · (V · s)−1]
∆tsample 1 [s]
∆tsim 0.1 [s]

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

232 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157229

Figure 2. Feedback control loop including different controllers and the plant model.

Regarding the CCCV protocol, the stopping conditions
and setup parameters for the proportional controller used
are shown in Table 1. Iend and Vthres are the termination
current and the voltage threshold respectively. ∆t coin-
cides with the simulation time step, and is the rate at which
the controller is implemented. KP and KI are the propor-
tional and integral coefficients for the PI controller, and
Vref define the voltage reference to calculate the error. In
order to ensure a smooth transition between the CC and
CV stages, the applied current in the later was filtered us-
ing the arithmetic mean of the calculated and a number of
past applied currents (this number is 9 in this work).

Table 2. NMPC controller

Variable Value Units

tf 200 [s]
SOCref 0.665 [-]
ne 20 [-]
ncp 1 [-]
H 200 [s]
∆tMPC 10 [s]
∆tsim 1 [s]
solver IPOPT

The implementation in Modelica of both the plant
model (Appendix I), used for simulation, as well as the
prediction model (Appendix II, including constraints) are
included at the end of the document. Both are based on ex-
perimental data obtained for a commercial LCO batteries
(Turnigy Nano-tech, 160mAh (Turnigy, 2018)). The op-
timal control problem was solved with the programming
language Python and JModelica.org. The latter is an open
source platform for optimization, simulation and analysis
of complex dynamic systems (Link et al., 2015). It in-
terfaces the numerical solver IPOPT and CasADi, which
is an open source symbolic framework for automatic dif-
ferentiation and optimal control (Andersson et al., 2012).
The Python program to compute the MPC problem is also
included in Appendix III. Table 2 shows the settings for
the NMPC algorithm, which is solved using the interior
point method, where ne is the number of finite elements,

Figure 3. Current profiles for CCCV protocols (1C, 3C and 5C).

ncp is the number of collocation points in each element,
H is the control horizon, ∆tMPC is the sampling time and
the length of each time interval for the MPC, ∆tsim is the
simulation timestep.

4 Results
In this section, we present results regarding current, tem-
perature, voltage and critical surface concentration. The
values for the current applied are shown in the units of
the model (I ·m−2), but are also referred to in terms of the
equivalent C-rate.

4.1 CCCV Protocols
The results of the application of three CCCV charge pro-
files with increasing constant current are discussed first.
Figure 3 presents the current profiles, calculated by the
proportional controller and limited by the prescribed CC
current.

As expected, the increase of the CC rate reduces the
charging time: around 4165 s for 1C, 1975 s for 3C, and
1590 s for 5C. These values depend on the battery chem-
istry, the controller setup, and the termination conditions.
Figure 4 shows the consequence of using charging proto-
cols that overlook the existence of an electrochemically
safe operating region. The grey area denotes the combina-
tion of I and CSC where side reactions are triggered.

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

DOI Proceedings of the 13th International Modelica Conference 233
10.3384/ecp19157229 March 4-6, 2019, Regensburg, Germany

Figure 4. Charging trajectories in the I-CSC plane for CCCV
protocols.

Figure 5. Voltage profiles for CCCV protocols (1C, 3C and 5C).

Figures 5 and 6 show the respective results for voltage
and temperature. The first figure illustrates the effect of
the proportional controller, which takes the same parame-
teres for the three CCCVs. Regarding the temperature, as
expected, the maximum temperature achieved varies sig-
nificantly with the current applied. However, an equally
important fact is that the higher the Crate of the CC stage,
the longer the cell’s temperature remain above ambient
temperatures. This means that calendar aging, i.e., the
aging that takes place with zero current conditions and
which depends on the cell temperature, will be higher for
the higher C-rate CCCVs. For 1C CCCV the tempera-
ture increase remains below 5◦C. Given the relationship
between aging, current and temperature, it is not surpris-
ing that most manufacturers recommend the use of low
C-rates for charging (below 1C).

4.2 Nonlinear MPC
In this section, we compare the previous results for 5C
CCCV with the thermally unconstrained (NMPC) and
constrained (NMPC_T) optimal controllers. For the latter,
the maximum temperature allowed (Tmax) is 35◦C. This
choice is arbitrary, but well below the maximum temper-

Figure 6. Temperature profiles for CCCV protocols (1C, 3C and
5C).

Figure 7. Current profiles for the nonlinear controllers and the
5C-CCCV protocol.

ature achieved by the 5C CCCV, and so suitable for il-
lustrating the methodology. In practice, to properly select
the boundary one should have an estimation of its impact
in the battery’s long-term performance, so to measure the
economic gains from setting such a boundary. This issue
is not addressed in the present paper.

Figure 7 shows the current profiles. Regarding the op-
timized profiles, they remain qualitatively close for most
of the charge, except for an interval in which the current
is decreased to enforce the temperature constraints for the
NMPC_T, which slightly increases the charging time.

Figure 8 shows the admissible charging region, now
with the NMPC and the NMPC_T profiles. Both remain
electrochemically feasible throughout the charging pro-
cess but, as a consequence of the temperature constraints,
the NMPC_T departs from the electrochemical convex
hull. In this figure, as well as in Fig. 7, it can be observed
that the NMPC_T resembles a CCCV with boost charge.
This charging protocol can reduce significantly the life of
the cell, as shown by (Keil and Jossen, 2016). In their
work, the authors present experimental results considering
boost current of 5C that fills 40% of the capacity, including

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

234 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157229

Figure 8. Charging trajectories in the I-CSC plane for nonlinear
controllers and 5C-CCCV protocols.

the following intervals: 0%-40%, 10%-50%, 20%-60%.
The first interval results in the highest degradation, which
is explained as a higher cell resistance at low SOC. Nev-
ertheless, these three boost-charge profiles bring the 5C
current into the region of side reactions, similar to what
results with the 5C CCCV in the present paper (Fig. 5).

Finally, results for voltage and temperature are pre-
sented. As anticipated in the previous subsection, the elec-
trochemical constraints limit the rate at which the voltage
approaches the SOC reference. Regarding the tempera-
ture profiles, a ∆T = 4◦C reduction is obtained just by
imposing electrochemical constraints with a further de-
crease when activating the thermal constraints. Taking
into account that aging increases exponentially with tem-
perature, these differences could improve the battery life
at the expense of increasing the charging times. These
are 3520 s for the thermally unconstrained, and 3720 s for
the thermally constrained. It is worth noting that NMPC
is charged up to 80% (SOC = 0.55) in 960 s, while the
NMPC_T is charged up to this SOC in 1500 s. For the
model used, CSC deviates only slightly from the SOC, and
thus the charging times can be obtained comparing I-CSC
and I-t plots.

Solution times when solving the NMPC problem at
each time interval remain close to 0.15 s, while for the
thermally constrained NMPC rise slightly up to 0.20 s. In
any case the total time surpassed 0.3 s. Given the non-
linear controller update rate (10 s), this ensures that in
absence of great disturbances, both controllers can be ap-
plied online, if the tools needed for estimation remain in
the same order of magnitude.

5 Conclusions and Future Work
The fast and safe charge of lithium-ion batteries remains
an open problem. Most charging protocols rely on empir-
ically obtained parameters, and generally result too con-
servative, limiting the flexibility of operation. This work
presents the modeling, simulation and control efforts to
better understand the open challenges. In particular a

Figure 9. Voltage profiles for the nonlinear controllers and the
5C-CCCV protocol.

Figure 10. Temperature profiles for the nonlinear controllers
and the 5C-CCCV protocol.

NMPC scheme was implemented in Python and JModel-
ica.org, which provides an excellent platform to compare
the results of optimization-based control methods with
more traditional charging protocols that rely on relay, pro-
portional, or PI controllers.

It can be concluded that the NMPC solver can be ap-
plied on-line, and that charging time can be reduced com-
pared with CCCV protocols while complying with elec-
trochemical constraints, which will presumably extend the
battery life. However, adding thermal constraints can sig-
nificanly limit the advantage of the optimal controller re-
garding the charging time. Arising from the simultaneous
application of electrochemical and thermal constraints are
boost-charge-like charging strategies, which make possi-
ble to charge up to 80% the battery in less than 30 min.
Ongoing work focuses on time constraints to enforce a
certain level of SOC within a given time, and on an op-
timization scheme to pre-compute electrochemically and
thermal safe CCCV with boost charge.

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

DOI Proceedings of the 13th International Modelica Conference 235
10.3384/ecp19157229 March 4-6, 2019, Regensburg, Germany

References
Joel Andersson, Johan Åkesson, and Moritz Diehl. Casadi: A

symbolic package for automatic differentiation and optimal
control. In Recent advances in algorithmic differentiation,
pages 297–307. Springer, 2012.

John Batteh and Michael Tiller. Implementation of an extended
vehicle model architecture in modelica for hybrid vehicle
modeling: development and applications. In Proceedings
of the 7th International Modelica Conference; Como; Italy;
20-22 September 2009, pages 823–832. Linköping University
Electronic Press, 2009. 043.

Claude Bouvy, Sidney Baltzer, Peter Jeck, Jörg Gißing, Thomas
Lichius, and Lutz Eckstein. Holistic vehicle simulation using
modelica-an application on thermal management and opera-
tion strategy for electrified vehicles. In Proceedings of the
9th International MODELICA Conference; September 3-5;
2012; Munich; Germany, pages 264–270. Linköping Univer-
sity Electronic Press, 2012. 076.

Jonathan Brembeck and Sebastian Wielgos. A real time capa-
ble battery model for electric mobility applications using op-
timal estimation methods. In Proceedings of the 8th Inter-
national Modelica Conference; March 20th-22nd; Technical
Univeristy; Dresden; Germany, pages 398–405. Linköping
University Electronic Press, 2011. 063.

Eduardo F Camacho and Carlos Bordons. Model predictive con-
trol. Advanced textbooks in control and signal processing.
Springer-Verlag, London, 2004.

L. D. Couto, J. Schorsch, M. M. Nicotra, and M. Kinnaert. Soc
and soh estimation for li-ion batteries based on an equivalent
hydraulic model. part i: Soc and surface concentration esti-
mation. In 2016 American Control Conference (ACC), pages
4022–4028, July 2016. doi:10.1109/ACC.2016.7525553.

Luis D Couto and Michel Kinnaert. Partition-based unscented
kalman filter for reconfigurable battery pack state estimation
using an electrochemical model. In 2018 Annual American
Control Conference (ACC), pages 3122–3128. IEEE, 2018.

Thanh-Son Dao and Chad Schmitke. Developing mathemati-
cal models of batteries in modelica for energy storage ap-
plications. In Proceedings of the 11th International Mod-
elica Conference, Versailles, France, September 21-23, 2015,
pages 469–477. Linköping University Electronic Press, 2015.
118.

Madeleine Ecker, Jochen B. Gerschler, Jan Vogel, Stefan Käb-
itz, Friedrich Hust, Philipp Dechent, and Dirk Uwe Sauer.
Development of a lifetime prediction model for lithium-ion
batteries based on extended accelerated aging test data. Jour-
nal of Power Sources, 215:248–257, 2012. ISSN 03787753.
doi:10.1016/j.jpowsour.2012.05.012.

M Einhorn, FV Conte, C Kral, C Niklas, H Popp, and J Fleig.
A modelica library for simulation of electric energy storages.
In Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Germany,
pages 436–445. Linköping University Electronic Press, 2011.
63.

Johannes Gerl, Leonard Janczyk, Imke Krüger, and Nils Mod-
row. A modelica based lithium ion battery model. In Proceed-
ings of the 10 th International Modelica Conference; March
10-12; 2014; Lund; Sweden, pages 335–341. Linköping Uni-
versity Electronic Press, 2014. 096.

R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting,
K. Albe, C. Hess, and W. Jaegermann. Fundamental degra-
dation mechanisms of layered oxide Li-ion battery cathode
materials: Methodology, insights and novel approaches. Ma-
terials Science and Engineering: B, 192:3–25, 2015.

Leonard Janczyk, Klemens Esterle, Stephan Diehl, Michael
Seibt, Arthur Gauthier, and Viry Guillaume. Validation of
a battery management system based on autosar via fmi on a
hil platform. In The First Japanese Modelica Conferences,
May 23-24, Tokyo, Japan, pages 87–94. Linköping Univer-
sity Electronic Press, 2016. 124.

Peter Keil and Andreas Jossen. Charging protocols for lithium-
ion batteries and their impact on cycle life-An experimental
study with different 18650 high-power cells. Journal of En-
ergy Storage, 6:125–141, 2016.

Matthew Keyser et al. Enabling fast charging Battery ther-
mal considerations. Journal of Power Sources, 367:228–236,
2017.

Kilian Link, Leo Gall, Monika Mühlbauer, and Stephanie
Gallardo-Yances. Experience with industrial in-house appli-
cation of fmi. In Proceedings of the 11th International Mod-
elica Conference, Versailles, France, September 21-23, 2015,
pages 17–22. Linköping University Electronic Press, 2015.
118.

James F. Manwell and Jon G. McGowan. Lead acid bat-
tery storage model for hybrid energy systems. So-
lar Energy, 50(5):399 – 405, 1993. ISSN 0038-092X.
doi:https://doi.org/10.1016/0038-092X(93)90060-2.

AB Modelon. Jmodelica. org user guide, verison 2.2, 2018.

Scott J Moura, Nalin A Chaturvedi, and M Krstić. Constraint
management in li-ion batteries: A modified reference gover-
nor approach. In American Control Conference (ACC), 2013,
pages 5332–5337. IEEE, 2013.

Kazuo Onda, Hisashi Kameyama, Takeshi Hanamoto, and Ko-
hei Ito. Experimental study on heat generation behavior of
small lithium-ion secondary batteries. Journal of the Electro-
chemical Society, 150(3):A285–A291, 2003.

R. Romagnoli, L. D. Couto, M. M. Nicotra, M. Kinnaert, and
E. Garone. Computationally-efficient constrained control of
the state-of-charge of a li-ion battery cell. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), pages
1433–1439, Dec 2017.

Jonathan Spike, Johannes Friebe, Chad Schmitke, Christian
Donn, Michael Folie, Valerie Bensch, and Christine Schwarz.
Holistic virtual testing and analysis of a concept hybrid elec-
tric vehicle model. In Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-23,
2015, pages 537–545. Linköping University Electronic Press,
2015. 118.

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

236 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157229

Maureen Tang, Paul Albertus, and John Newman. Two-

Dimensional Modeling of Lithium Deposition during Cell
Charging. Journal of The Electrochemical Society, 156(5):
A390–A399, 2009.

Turnigy, 2018. URL http://www.turnigy.com/
batteries/nano-tech/.

Kotub Uddin and Alessandro Picarelli. Phenomenological li
ion battery modelling in dymola. In Proceedings of the 10
th International Modelica Conference; March 10-12; 2014;
Lund; Sweden, pages 327–334. Linköping University Elec-
tronic Press, 2014. 96.

Kotub Uddin, Alessandro Picarelli, Christopher Lyness, Nigel
Taylor, and James Marco. An acausal Li-ion battery pack
model for automotive applications. Energies, 7(9):5675–
5700, 2014. doi:10.3390/en7095675.

John Wang, Ping Liu, Jocelyn Hicks-Garner, Elena Sher-
man, Souren Soukiazian, Mark Verbrugge, Harshad
Tataria, James Musser, and Peter Finamore. Cycle-life
model for graphite-LiFePO4 cells. Journal of Power
Sources, 196(8):3942–3948, 2011. ISSN 03787753.
doi:10.1016/j.jpowsour.2010.11.134. URL http://dx.
doi.org/10.1016/j.jpowsour.2010.11.134.

Appendix I. Battery plant model

model EHMcell

// Heat transfer problem parameters
parameter Modelica.SIunits.Resistance R =

0.330 "Internal resistance";
parameter

Modelica.SIunits.CoefficientOfHeatTransfer
h = 10 "Heat transfer [W/m2.K]";

parameter Modelica.SIunits.Area A = 4.7
e-4 "Heat transfer area [m2]";

parameter Modelica.SIunits.Mass M =
0.0045 "Cell mass [kg]";

parameter
Modelica.SIunits.SpecificHeatCapacity
Cp = 800 "Cell specific heat [J/kg.K

]";

// Electrochemical parameters
parameter Real gamma = 0.0000054581;
parameter Real g = 0.042653404659871;
parameter Real beta = 0.7;
parameter Real Ccell = 0.16 "Battery

capacity [Ah]";
parameter Real p_oneC = 34 "1C current

flux [A/m2]";
parameter Real p_alpha = 0.5;
parameter Real p_Faraday(unit = "C/mol")

= 96487 "Faraday constant";
parameter Real p_R = 8.314472;
parameter Real p_T_ref = 298.15;
parameter Real p_aFRT = (p_alpha*

p_Faraday)/(p_R*p_T_ref);
parameter Real p_thetap =

0.003753150372049;
parameter Real p_thetan

=0.002390386732068;

parameter Real p_Rf = 0.000846744769459;
parameter Real p_ro = 0.798857289559742;
parameter Real p_sigma =

1.001138873133620;

// Constraint parameters
parameter Real alpha1 = 137.436438945007;
parameter Real alpha2 = 858.977743406295;
parameter Real beta1 = -171.795548681259;
parameter Real beta2 = -532.566200911903;

// The states and variables
Real SOC(start = 0.01) "State of charge";
Real CSC(start = 0.01) "Critical surface

concentration";
Real CSCp(start = 0.01) "CSC

Overpotential positive electrode";
Modelica.SIunits.Temp_C T(start = 25.) "

Battery temperature";
Modelica.SIunits.Voltage Up(start = 0.1)

"Surface overpotential positive
electrode";

Modelica.SIunits.Voltage Un(start = 3.5)
"Surface overpotential negative
electrode";

Modelica.SIunits.Voltage V(start = 3.5) "
Battery voltage";

Modelica.SIunits.MolarEntropy DS "Entropy
change [J/mol.K]";

// The control signal
input Modelica.SIunits.ElectricCurrent I

"Input current flux [A/m2]";

equation
der(SOC) = - gamma * I;
der(CSC) = g/beta/(1-beta) * SOC - g/beta

/(1-beta) * CSC - gamma * I/(1-beta)
;

der(T) = ((-I/(p_oneC/Ccell)*(V - (-Un +
Up) + p_T_ref*DS/p_Faraday)) - h*A*(
T - 25))/M/Cp;

DS = 0.5609*1e+3*(SOC/0.68)^5 -1.3440*1e
+3*(SOC/0.68)^4 + 1.1877*1e+3*(SOC
/0.68)^3 -0.6072*1e+3*(SOC/0.68)^2 +
0.2378*1e+3*(SOC/0.68)^1 -0.0397*1e
+3*(SOC/0.68)^0 ;

CSCp = -p_ro * SOC + p_sigma;
Up = (0.654807602368402*((1-CSCp)

.^3.196972561445755))+ 3.85516954 +
1.247319422*(1-CSCp) -
11.15240126*(1-CSCp).^2 +
42.8184855*(1-CSCp).^3 -
67.71099749*(1-CSCp).^4 +
42.50815332*(1-CSCp).^5 - 6.13244713
e-4*Modelica.Math.exp(-7.657419995*(
CSCp.^115.0));

Un = 8.002296379 + 5.064722977*CSC -
12.57808059*CSC.^(1/2) - 8.632208755
e-4*CSC.^(-1) + 2.176468281e-5*CSC.
^(3/2) - 0.4601573522*
Modelica.Math.exp(15.0*(0.06 - CSC))
- 0.5536351675*Modelica.Math.exp
(-2.432630003*(CSC - 0.92));

V = -Un + Up -(p_Rf*I) - (1/p_aFRT)*(
Modelica.Math.asinh((1*p_thetan*I)/

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

DOI Proceedings of the 13th International Modelica Conference 237
10.3384/ecp19157229 March 4-6, 2019, Regensburg, Germany

sqrt(CSC*(1-CSC)))) + (1/p_aFRT)*(
Modelica.Math.asinh((-1*p_thetap*I)/
sqrt(CSCp*(1-CSCp))));

end EHMcell;

Appendix II. Battery optimization model

optimization EHMTV_Opt (objectiveIntegrand
= (SOC - 0.665)^2,

startTime = 0,
finalTime = 200)

// Heat transfer problem parameters
// ...

// Electrochemical parameters
// ...

// Constraint parameters
// ...

// The states and variables
Real SOC(start = 0.01) "State of charge";
Real CSC(start = 0.01) "Critical surface

concentration";
Real CSCp(start = 0.01) "CSC

Overpotential positive electrode";
Modelica.SIunits.Temp_C T(start = 25.) "

Battery temperature";
Modelica.SIunits.Voltage Up(start = 0.1)

"Surface overpotential positive
electrode";

Modelica.SIunits.Voltage Un(start = 3.5)
"Surface overpotential negative
electrode";

Modelica.SIunits.Voltage V(start = 3.5) "
Battery voltage";

Modelica.SIunits.MolarEntropy DS "Entropy
change [J/mol.K]";

// The control signal
input Modelica.SIunits.ElectricCurrent I

"Input current flux [A/m2]";

equation
// ...
der(T) = (R*(I/(p_oneC/Ccell))^2 - h*A*(T

- 25))/M/Cp;
// ...

constraint
SOC <= 0.665 + 0*0.627319647304968;
CSC <= 0.665 + 0*0.627319647304968;
SOC >= 0.001;
CSC >= 0.001;
I >= alpha1 * CSC + beta1;
I >= alpha2 * CSC + beta2;
I >= -34*5;
I <= 0.;
T <= 300;
V <= 4.5;

end EHMTV_Opt;

Appendix III. Python implementation of the MPC,
based on JModelica.org User Guide (Modelon, 2018)

// Program that demonstrate the native
FMI interface for simulation

// Integration takes place within python

import numpy as N
import pylab as plt
from pymodelica import compile_fmu
from pyfmi.fmi import load_fmu

// Import the function for compilation of
models and the load_fmu method

from pyjmi import
transfer_optimization_problem

// Compile model and load FMU
fmu_name = compile_fmu("EHMcell", "C:\...\

EHMcell_old.mo")
model = load_fmu(fmu_name)

// Transfer the optimization problem to
casidi

// This function transfers the
optimization problem into Python

// and expresses its variables,
equations, etc., using the

// automatic differentiation tool
CasADi.

op = transfer_optimization_problem("
EHMTV_Opt", "C:\...\EHMTV_Opt.mop")

// Optimization options
opts = op.optimize_options()
opts[’n_e’] = 20
opts[’n_cp’] = 1
opts[’solver’] = ’IPOPT’
opts[’expand_to_sx’] = ’NLP’

// Simulation times and model
initialization

Tstart = 0
Tend = 3600+1000
model.time = Tstart
I0 = -1.
I02 = I0
model.set(’I’, I0)
h0 = 10.
model.set(’h’, h0)
model.initialize()

// Data to be stored in the integration
loop

// Get continous States
x = model.continuous_states
// Get the Nominal Values
x_nominal = model.nominal_continuous_states
// Get the Event Indicators
event_ind = model.get_event_indicators()

// Values for the solution
// Retrieve the valureferences for the

values ’SOC’, ’CSC’ and ’T’
states0 = [model.get_variable_valueref(’SOC

’)] + [model.get_variable_valueref(’CSC

A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

238 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157229

’)] + [model.get_variable_valueref(’T’)
]

vol0 = model.get_variable_valueref(’V’)
voltage = [model.get_real(vol0)]
vol = model.get_real(vol0)
t_sol = [Tstart]
sol = [model.get_real(states0)]
I_sol = [I0]

// Initialize integration time and define
the step-size

time = Tstart
Tnext = Tend # Used for time events
dt = 1 # Step-size
Iend = -0.15

// Main integration loop using explicit
Euler method.

// This is the integration loop for
advancing the solution one step at a
time.

// The loop continues until the final
time has been reached or

// if the FMU reported that the
simulation is to be terminated.

count = 0
while time < Tend and not

model.get_event_info().
terminateSimulation:

// Compute the derivative of
theprevious step f(x(n), t(n))

dx = model.get_derivatives()

// Advance
h = min(dt, Tnext - time)
time = time + h

// Set the time
model.time = time

// Set the states at t = time
// Perform the step using x(n+1) = x(

n) + h*f(x(n), t(n)))
x = x + h*dx

// To make sure that the plant
does not feed back infeasible
states

if x[2] >30 and x[2]<31:
x[2]=30

if x[2] > 31:
break

model.continuous_states = x

// Retrieve solutions at t = time for
outputs

// model.get_real, get_integer,
get_boolean, get_string(valueref)

t_sol += [time]
sol += [model.get_real(states0)]
vol = model.get_real(vol0)
voltage += [vol]

if vol > 4.5:
I0 = 0.;
model.set(’I’, I0)

op.set(’SOC0’,float(N.array(sol)[-1,0])
)

op.set(’CSC0’,float(N.array(sol)[-1,1])
)

op.set(’CSCp0’,float(N.array(sol)
[-1,1]))

op.set(’T0’,float(N.array(sol)[-1,2]))

clause = count \% 10
if clause <= 1e-5:

resopt = op.optimize(options = opts
)

Iopt = resopt[’I’]
print Iopt[0]
if count > 100:

I0 = Iopt[0]
else:

I0 = Iopt[0]
model.set(’I’, I0)

I_sol += [I0]
count=count+1
if I0 >= Iend:

break

// Plots...

DOI Proceedings of the 13th International Modelica Conference 239
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 3A: HVAC
Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage
Dhumane, Rohit and Ling, Jiazhen and Aute, Vikrant and Radermacher, Reinhard

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking
Wang, Wenyi and Li, Yaoyu

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions
Li, Zhenning and Qiao, Hongtao and Aute, Vikrant

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment
Qiao, Hongtao and Han, Xu and Nabi, Saleh and Laughman, Christopher

.

240 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

DOI Proceedings of the 13th International Modelica Conference 241
10.3384/ecp19157241 March 4-6, 2019, Regensburg, Germany

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent
Heat Storage
Dhumane, Rohit and Ling, Jiazhen and Aute, Vikrant and Radermacher, Reinhard

241

Modeling Heat Pump Recharge of a Personal Conditioning System

with Latent Heat Storage

Rohit Dhumane Jiazhen Ling Vikrant Aute Reinhard Radermacher

Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College

Park, MD, USA 20742
dhumane@terpmail.umd.edu; {jiazhen,vikrant,raderm}@umd.edu

Abstract
Roving Comforter provides personal cooling in the

range of 150 W using vapor compression cycle (VCC)

up to 4 hours. During this operation, the condenser heat

is stored in a latent heat storage made of phase change

material (PCM). This heat needs to be discharged before

next cooling operation. A heat pump mode is considered

and analyzed for this heat discharge in the present

article. The cycle is modeled using

CEEEModelicaLibrary, which is a commercial

package for complex vapor compression systems.

Equations and assumptions involved in modeling some

of the components is presented. Programming and

modeling decisions for PCM modeling are discussed in

detail. A parametric study is conducted with the heat

pump system model to identify merits and demerits of

operating heat pump cycle at various compressor

RPM’s.

Keywords: Heat Pump, PCM, Latent Storage,
Personal Comfort

1 Introduction

World Wildlife Fund recently reported “We are the first

generation to know we are destroying our planet and the

last one that can do anything about it.” The lifestyle

choices in the modern world are not sustainable and

need a thorough scrutiny.

Space heating and cooling takes up significant

portion of worldwide primary energy consumption. The

current practice of maintaining conditioned space

temperature within a narrow temperature range on the

one hand, does consume a huge amount of energy to

condition the total space in the building, including the

unoccupied space; on the other hand, cannot always

guarantee the comfort of 80% occupants due to the

individual preference (Zhang, Arens and Zhai, 2015).

The temperature range for comfort were developed

based on predictive mean vote or adaptive models and

is not ideal for individual comfort (Kim, Schiavon and

Brager, 2018). Personal conditioning system allow

building temperature set-points to be elevated without

compromising thermal comfort. Space heating and

cooling energy consumption can be reduced to the order

of 10% per °C elevation in temperature set-points of

buildings (Hoyt, Arens and Zhang, 2015).

Portable personal comfort systems have potential to

provide improved thermal comfort, reduced energy

consumption and ways to mitigate demerits of existing

personal comfort systems (Dhumane et al., 2017).

Roving Comforter (RoCo) is being developed to provide

better individual thermal comfort at much lesser energy

consumption. The first prototype (Dhumane et al.,
2019) used paraffin based phase change material for

latent heat storage. For recharge operation, a

thermosiphon operation was used (Dhumane et al.,
2018). The technology can provide annual energy

savings per person up to $130 (Heidarinejad et al.,
2018).

The current prototype (see Figure 1) provides 4 hours

of cooling, but requires slightly more than 6 hours to

discharge heat from the PCM storage by thermosiphon

operation. A heat pump operation can provide faster

recharge than thermosiphon, but consume significantly

higher power. It is necessary to model this operation to

understand it quantitatively and also identify ideal

operating parameters. Modeling this heat pump

operation is the objective of the present article.

Figure 1. Current Prototype of Roving Comforter.

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

242 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157241

2 HEAT PUMP RECHARGE

The schematic of the heat pump operation of RoCo is

shown in Figure 3. The schematic for cooling mode is

shown in Figure 4. The grey portion of the refrigerant

circuit does not have any refrigerant flow. A reversible

four-way valve is used to control the refrigerant flow

direction and switch the operating conditions between

cooling and PCM recharging (solidification). To be

more specific, the four-way valve directs the discharge

refrigerant from the compressor to the PCM HX in the

cooling while directs the discharged refrigerant to the

air-to-refrigerant Condenser (as shown in the figure) in

the PCM recharging. The compressor used in RoCo is

of the variable-speed type and the recharge time may be

controlled by adjusting its RPM. The recharge time can

be reduced with higher RPM but the power consumption

is, as a result of higher RPM, increased. There are two

TXVs in the circuit for heat pump, each protected by a

check valve which ensures only one TXV operates in

each mode. The bulbs of the TXV are connected to

outlet of either the air to refrigerant heat exchanger or

the PCM-HX. During the cooling operation, the outlet

of air to refrigerant heat exchanger (marked as

condenser in Figure 3) is connected to the bulb of TXV,

while the outlet of PCM-HX is connected to the bulb of

the second TXV. This second TXV is operational during

the heat pump operation.

Figure 3. Schematic of Heat Pump Operation.

Figure 2. Model diagram for heat pump recharge

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

DOI Proceedings of the 13th International Modelica Conference 243
10.3384/ecp19157241 March 4-6, 2019, Regensburg, Germany

Figure 4. Schematic of Cooling Operation.

3 MODEL DEVELOPMENT

The model diagram for the heat pump model is shown

in Figure 2. The component models are obtained from

CEEEModelicaLibrary (CML), which has been

discussed in detail in Qiao (2014). The components used

in the present investigation have been updated to stream

connectors (Franke et al., 2009). The modifications for

heat transfer coefficient and pressure drop

characteristics as suggested by Dermont et al. (2016)

have been incorporated. The PCM model is developed

for the present investigation and is discussed in detail.

Other components are described briefly and important

input parameters for each of them are presented in this

section.

3.1 Phase Change Material Storage

The PCM storage used for the prototype involves

graphite enhancement to paraffin based PureTemp 37.

The bulk density of the material is 183 kg/m3. The PCM

storage is cylindrical with diameter = 0.254 m and

height = 0.305 m. Eight 0.0063 m copper tubes are

inserted at a distance of 0.051 m from the outer

diameter, with headers connecting at bottom and the top.

The symmetric location of the refrigerant tubes is

exploited to allow simplification in modeling.

The cross-section of the PCM storage is shown below

in Figure 5. The graphite foam prevents circulation of

liquid PCM during phase change and the control volume

can be modeled as a pure conduction problem. Radial

mode of heat transfer is assumed to be dominant to avoid

discretization along the height of the PCM cylinder. The

symmetric location of the refrigerant tubes allows

further simplification in modeling. Only a single tube is

modeled and the behavior of the entire thermal storage

is captured by scaling the behavior of this single section

by eight. This is done using the Splitter and Mixer

components from CML. The PCM surrounding each

refrigerant tube is in the shape of a 1/8 pie. However,

the control volume is assumed to be cylindrical to allow

modeling as a 1-D conduction problem. This

assumption is shown in Figure 5.

Figure 5. Cross section for modeling PCM.

The energy equation for 1-D cylindrical conduction

with the assumptions mentioned above is shown in

Equation 1. Here ρ is the average of the density of PCM

in solid and liquid phases. The difference between these

two values is less than 10% and this assumption allows

treatment of density as a constant for the differential

equation. Similarly, the thermal conductivity (k) is also

treated constant for both phases. The difference is

negligible in reality since the majority of heat transfer in

graphite enhanced PCM is via graphite.

1h T
kr

t r r r

(1)

The specific enthalpy (h) of the PCM is estimated

using temperature transforming model of Cao and

Faghri (1991). As shown in Equation 2, the specific

enthalpy is written as a function of specific heat capacity

(c), a source term (s) and temperature difference from

the melting point (Tm). The paraffin based PCM

typically melts over a temperature range and this allows

values of specific heat capacity in two-phase region to

be defined (not equal to infinity as in the case of pure

materials like water). Temperature (Tm) is the mid-point

of this temperature glide during phase change. The

specific heat capacity and source terms are calculated

using Equations 3 and 4.

 m
h c T T s (2)

 T-T <- T

 - T T-T T
2 2

 T-T > T

solid

two-phase

liquid

s m

s l

m

l m

c

c

c c H

T

c

(3)

T T-T <- T

T - T T-T T
2

T T-T > T

solid

two-phase
2

liquid

s m

m

s m

s l
s

c

H

c H

c c

(4)

In these equations, H is the latent heat capacity of the

PCM, δT is the temperature glide and cs and cl are solid

phase and liquid phase specific heat capacity values.

Finite volume method is used to model the cylindrical

control volume of the PCM. A staggered grid is adopted

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

244 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157241

with the mass and energy of the PCM assumed to be

concentrated at the center, while the heat fluxes

calculated the boundary. The number of discretization

for the control volume is 5.

Figure 6. Model diagram for discretized PCM control

volume.

The staggered grid is implemented using an

alternating network of
Modelica.Thermal.HeatTransfer.Components.

ThermalConductor and PCMConductor. The

arrangement is shown in Figure 6. Each of these

components may also be created as vector arrays and

connected using for loops for generality. The

connections between these components are made using

HeatPort connector.

3.1.1 Heat Transfer

The ThermalConductor requires an input of thermal

conductance (G). For the first control volume (closest to

the refrigerant tube in the center of cylinder), it can be

calculated using Equation 5.

1 1.5

1

2
2

2

r r
k L

G
r

 (5)

The index i = 1, for the refrigerant tube outer diameter

and for discretization of 5, the outer diameter of PCM

cylinder control volume gets i = 6. The solid lines at the

border of control volume get integer indices 2,3,4 and 5,

while the dotted lines at center have index of 1.5, 2.5

….. 5.5. The thermal conductance between the

refrigerant tube and first control volume is evaluated by

Equation 6.

 2
 2,3,4,5

i

i

k r L
G i

r

 (6)

3.1.2 Heat Storage

The PCMConductor is a lumped control volume for heat

storage. It is analogous to Modelica.Thermal.

HeatTransfer.Components.HeatCapacitor but

for PCM application. Equations 1 to 4 are written in this

component. The melt fraction (λ) is calculated using

Equation 7.

max 0, min 1,
h

H

 (7)

The portion of the code performing this task is shown

below.

 if noEvent(T_star <= deltaT) then
 s = deltaT;
 else
 s = c_s/c_l*deltaT + H/c_l;
 end if;

 T_star = T-T_m;

 if noEvent(T_star < -deltaT) then
 c = c_s;
 elseif noEvent(T_star <= deltaT) then
 c = (c_s + c_l)/2 + H/(2*deltaT);
 else
 c = c_l;
 end if;

 h = c*(T-T_m+s);

 lambda = max(0,min(1,h/H));

 mass*der(h) = port.Q_flow;

3.1.3 Heat Losses

To model heat losses from PCM to the surroundings a

PCM container is modeled. The container is modeled

using a component similar to
Modelica.Fluid.Examples.HeatExchanger.Bas

eClasses.WallConstProps. The heat storage is

calculated using mass for the 1/8th pie. Thermal

resistance for each of the pie is in parallel to each other.

In this case, the total thermal resistance for each of the

pie will be 8 times the thermal resistance of the entire

cylindrical container.

Heat losses by both natural convection and radiation

are calculated using Modelica.Thermal.

HeatTransfer.Components.Convection and
Modelica.Thermal.HeatTransfer.Components.

BodyRadiation. The airside heat transfer coefficient

for natural convection is calculated assuming the

cylinder outer surface is a flat vertical plate where

Churchill and Chu (1975) correlation is applicable. The

heat transfer coefficient is calculated separately using

average values of fluid properties and a fixed value is

provided.

3.2 Splitter and Mixer

These components are useful for modeling symmetric

circuits. The splitter component splits the refrigerant

entering into equal portions, while the mixer merges it
back to the complete value. Heat transfer is calculated at

only one of the symmetric portions and then scaled back

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

DOI Proceedings of the 13th International Modelica Conference 245
10.3384/ecp19157241 March 4-6, 2019, Regensburg, Germany

to the total number of symmetric portions. The

component is assumed to be both isenthalpic as well as

isobaric. The implementation of this component is

shown below. The connections are made using

FlowPort connector from Modelica Standard

Library, with port A for inlet and port B for outlet.

if split then
 port_a.m_flow + nflow*port_b.m_flow = 0;
else
 port_b.m_flow + nflow*port_a.m_flow = 0;
end if;
 port_a.p = port_b.p;

 port_a.h_outflow = inStream(port_b.h_out

flow);
 port_b.h_outflow = inStream(port_a.h_out

flow);

3.3 Thermal Expansion Valve

The thermostatic expansion valve (TXV) is comprised

of two sections: the throttling section, which regulates

the refrigerant mass flow through the valve, and the

sensor bulb section, which monitors the refrigerant

temperature leaving the evaporator and converts the

change in temperature into the change in pressure on the

diaphragm, causing the needle to move upward or

downward. Since the superheat is sensed by the bulb

attached on the suction line, there is a delay between the

sensed superheat and the actual superheat. This delay

occurs due to the thermal inertia of the bulb and the heat

transfer resistance between the substance in the bulb and

the refrigerant flowing in the suction line. The sensor

bulb is modeled as a lumped section in the present

analysis, and its temperature variation with time is given

by

,
b amb b w b

b p b

ab wb

dT

dt

T T T T
m c

R R

 (8)

where 𝑀𝑏 is the mass of the sensor bulb, 𝑐𝑝,𝑏 is the

specific heat, 𝑇𝑏 is the temperature of the bulb, 𝑇𝑤 is the

temperature of the tube wall to which the sensor bulb is

attached, 𝑅𝑎𝑏 is the thermal resistance between the

ambient and the bulb, and 𝑅𝑤𝑏 is the thermal contact

resistance between the tube wall and bulb. Further

details of the TXV model can be found in Qiao et al.

(2012)

3.4 Compressor

The compressor is often treated as a quasi-steady-state

component in transient simulations because the time

scales associated with the variation of the compressor

mass flow rate are very small compared to those

associated with heat exchanger. The compressor is

modeled by using three efficiencies: isentropic

efficiency (ise), volumetric efficiency (vol), and

motor efficiency (motor). Equations 9-11 describe the

model.

,out s in

out in

ise

h h
h h

 (9)

60
vol in d

RPM
m V

(10)

 out in

motor

m h h
W

(11)

Here 𝜌𝑖𝑛 is the density of entering refrigerant vapor,

𝑉𝑑 is the displacement volume, �̇� is the total work done

by the compressor, ℎ𝑜𝑢𝑡 is the refrigerant outlet

enthalpy, ℎ𝑖𝑛 is the refrigerant inlet enthalpy, and ℎ𝑜𝑢𝑡,𝑠
is the refrigerant outlet enthalpy for isentropic

compression.

3.5 Condenser

The condenser is a fin and tube air cooled heat

exchanger component, and is modeled using a segment-

by-segment heat exchanger model (See Figure 7).

Details of this component are presented in Qiao (2014)

and only the assumptions and capabilities are discussed

here.

Figure 7. Schematic for Air Cooled Heat Exchanger.

The model consists of three control volumes: the

refrigerant (green), finned walls (orange), and air stream

(blue). Each of these is linked via HeatPorts and

FluidPorts, from the Modelica Standard

Library.

Tube walls and associated fins are modeled using a

lumped capacitance method. In general, there is a

temperature distribution on the fins. By applying the fin

efficiency, however, one can lump the tube walls and

fins together using one temperature. The axial

conduction along the tube is neglected. Ttube is the

temperature at a node halfway along the thickness (Δd)

of the refrigerant tube. Energy balance for this control

volume leads to Equation 12.

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

246 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157241

 tube

tube tube fin fin r a

dT
m c m c Q Q

dt
 (12)

The locations of HeatPorts A, B, C, and D are

shown in Figure 7. HeatPorts B and C are used to

evaluate the heat transfer within the refrigerant tubing

control volume, while HeatPorts A and D are used for

the airside control volume and refrigerant control

volume, respectively. The thickness of the refrigerant

tube is much smaller than its diameter, enabling

evaluation of wall conduction by Equations 13 and 14

for the airside (Qa) and the refrigerant side (Qr).

2

r C tube

kA
Q T T

d

(13)

2

a tube B

kA
Q T T

d

 (14)

The airside and refrigerant side cooling capacities are

evaluated in their respective control volumes. The outlet

state of the air temperature is evaluated using ɛ-NTU

approach. The refrigerant side contains transient

conservation equations, which are evaluated with

pressure and enthalpy as state variables. Homogenous

void fraction model is used for the current investigation.

However, slip-flow based void fraction models are also

available for analysis involving refrigerant charge.

4 RESULTS AND DISCUSSION

The compressor used for RoCo is of variable speed type.

Increasing the compressor speed will lead to faster

recharge but increased power consumption. Parametric

study is conducted on compressor RPM of 2100, 2600,

3100 and 3600 for the system operation.

All the properties of PCM required for the model are

not available experimentally. As a result, properties of a

PCM with similar graphite concentration from an earlier

study (Dhumane et al., 2018) is used. These properties

are given in Table 1.

Table 1. Properties of PCM used for modeling.

Parameter Value

Bulk Density [kg m-3] 143

Volume Fraction [%] 6.3

Solid Density [kg m-3] 1005

Liquid Density [kg m-3] 930

Specific Heat Capacity (Solid) [J kg-1 K-1] 1997

Specific Heat Capacity (Liquid) [J kg-1 K-1] 2335

Latent Heat [kJ kg-1] 178

Thermal Conductivity [W m-1 K-1] 20.2

The refrigerant used for the current system is R134a.

The values of compressor efficiency are taken from the

validated study of cooling mode (Dhumane et al., 2019).

Nominal values are provided for calculating heat

transfer and pressure drop in heat exchangers. These

values are calculated using correlations available from

literature. Summary of the correlations used for

different phenomena is given in Table 2.

Table 2. Correlation Summary.

Phenomena Heat Transfer Pressure Drop

Refrigerant

boiling
(Shah, 1982)

(Müller-

Steinhagen

and Heck,

1986)

Refrigerant

condensation
(Shah, 2016)

(Müller-

Steinhagen

and Heck,

1986)

Refrigerant single

phase

(Dittus and

Boelter, 1985)

(Blasius,

1913)

Condenser airside
(Wang and

Chi, 2000)
Neglected

Refrigerant tube

heat losses to

ambient by natural

convection

(Churchill

and Chu,

1975)

Neglected

The model is simulated using Dymola 2018 with

Radau-IIa solver, tolerance of 1e-6. Equidistant time

steps option is unchecked from solver settings. The

computer used has Intel Xeon Processor with 3.5 GHz

speed, 16 GB RAM, 64-bit Windows Operating System

and x64 based Processor. The simulation speed for the

system with 3100 RPM is 17.2 seconds. Runtime of

other cases is comparable.

Figure 8. Rate of Solidification at different RPM.

The melt fraction heat pump operation at four

different compressor RPM is shown in Figure 8, while

the power consumption from compressor is shown in

Figure 9. It can be observed that higher RPM leads to

faster recharge, but the power consumption by the

compressor to deliver the high RPM is large. Higher

compressor speed leads to larger refrigerant mass flow

rate and larger rate of heat release from the condenser

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

M
el

t
F

ra
ct

io
n
 [

-]

Time [min]

2100 2600

3100 3600

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

DOI Proceedings of the 13th International Modelica Conference 247
10.3384/ecp19157241 March 4-6, 2019, Regensburg, Germany

during the heat pump operation. Since the time duration

of recharge is different, it is necessary to compare

integrated power consumption during the recharge time

duration.

Figure 9. Compressor Power Consumption at different

RPM.

A fan is also operational during the entire recharge

cycle and so a 7-W power usage needs to be added to

the power consumed by the compressor. This is shown

in Figure 10, with a quadratic fitting trend line. The total

recharge time for different heat pump cycles is plotted

in Figure 11. A quadratic trend line is drawn to

interpolate recharge time for RPM between simulated

cases.

Figure 10. Integrated power consumption by heat pump

operation at different compressor RPM.

From experiment data (Qiao et al., 2018), the COP

for just the cooling operation is obtained to be 4.25, with

754.0 Wh of cooling delivered at energy consumption

of 177.4 Wh. For a complete cycle COP, the energy

consumption of recharge cycle also needs to be added to

the energy consumption during cooling operation. This

is done using Equation 15, where the numerator is the

total cooling capacity during cooling operation and

denominator is the sum of power consumption in

cooling operation and heat pump operation. Subscript

‘c’ stands for cooling operation, ‘r’ for heat pump

operation.

0

0 0

c

c r

t

c

cyc t t

c r

Q dt

COP

W dt W dt

 (15)

Figure 11. Recharge Time with Heat Pump Operation.

Figure 12. System COP with Heat Pump Operation.

Figure 10 illustrates the relationship between

compressor RPM and RoCo charge time. As the

compressor RPM increases from 2100 to 3600, the

vapor compression cycle capacity increases which leads

to a one-hour reduction in recharge time. By examining

the fitted equation, one can conclude that the

relationship is not linear. This can be explained by the

fact that although the refrigerant mass flow rate

increases linearly with RPM, the increase of capacity is

still restricted by the air sink. The higher RPM makes

the heat exchangers undersized, and therefore, the slope

of the curve in Figure 11 becomes smaller as the RPM

increases.

Figure 12 demonstrates the relationship between

compressor RPM and system COP. The COP tells the

system efficiency under various compressor RPM cases.

As previously explained, the higher RPM makes the

heat exchangers undersized and therefore system less

efficient. The reduction in COP worsens as the

compressor rotates faster which can be spotted by the

increased slope of the curve.

0

10

20

30

40

50

60

70

0 50 100 150 200

P
o

w
er

 [
W

]

Time [min]

2100 2600

3100 3600

y = 7E-06x2 - 0.0178x + 193.41

R² = 0.9935
160

180

200

220

240

2000 2500 3000 3500 4000

E
n

er
g

y
 [

W
-h

r]

Compressor RPM [min-1]

y = 2E-07x2 - 0.0018x + 6.3913

R² = 0.9994

0

1

2

3

4

2000 2500 3000 3500 4000

R
ec

h
ar

g
e

T
im

e
[h

r]

Compressor RPM [min-1]

y = -5E-08x2 + 0.0001x + 2.3445

R² = 0.9957

2

2.1

2.2

2.3

2.4

2.5

2000 2500 3000 3500 4000

O
v
er

al
l

C
O

P
 [

-]

Compressor RPM [min-1]

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

248 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157241

The recharge period for the case with 3600 RPM is

55% lesser than that from thermosiphon, which is a

significant improvement. Increase in RPM from 2100 to

3600 results in increased energy consumption of only 30

Wh. So, running the recharge at high RPM is definitely

beneficial. The increase in energy consumption of RoCo

will be in the order of a few hundred Wh, which may be

easily offset from the savings from temperature set point

elevation of building where energy consumption is in

the order of thousand Wh. The model will be validated

with experiment data in future to see how closely it

predicts the heat pump cycle.

5 CONCLUSIONS

A physically based model of the graphite enhanced

PCM is developed and then used in a system simulation

for a reversible heat pump based recharge operation to

investigate its potential benefits. The compressor RPM

is varied to understand the heat pump operation at

different operation conditions. Empirical correlations

are generated to enable evaluation of heat pump

performance based on simulation. The recharge period

from heat pump operation is observed to be 55% lesser

than that from thermosiphon. Heat pump recharge

shows promise and needs experimental investigation.

Acknowledgements

This research was supported by the Advanced Research

Projects Agency - Energy (ARPA-E) under Award DE-

AR0000530 and Center for Environmental Energy

Engineering (CEEE). The authors acknowledge the

support of the team members of the Roving Comforter

Project.

References

Blasius, H. (1913) ‘Das aehnlichkeitsgesetz bei

reibungsvorgängen in flüssigkeiten’, in Mitteilungen über

Forschungsarbeiten auf dem Gebiete des

Ingenieurwesens. Springer, pp. 1–41.

Cao, Y. and Faghri, A. (1991) ‘Performance

characteristics of a thermal energy storage module: a

transient PCM / forced convection conjugate analysis’,

International Journal of Heat and Mass Transfer, 34, pp.

93–101.

Churchill, S. W. and Chu, H. H. S. (1975) ‘Correlating

equations for laminar and turbulent free convection from

a vertical plate’, International Journal of Heat and Mass

Transfer. Elsevier, 18(11), pp. 1323–1329.

Dermont, P., Limperich, D., Windahl, J., Prolss, K.,

Kubler, C., (2016) ‘Advances of Zero Flow Simulation of

Air Conditioning Systems using Modelica’, in The First

Japanese Modelica Conferences, May 23-24, Tokyo,

Japan. Linköping University Electronic Press, pp. 139–

144.

Dhumane, R., Ling, J., Aute, V., Radermacher, R., (2017)

‘Portable personal conditioning systems: Transient

modeling and system analysis’, Applied Energy. Elsevier,

208, pp. 390–401. doi: 10.1016/j.apenergy.2017.10.023.

Dhumane, R., Mallow, A., Qiao, Y., Gluesenkamp, K.R.,

Graham, S., Ling, J., Radermacher, R., (2018)

‘Enhancing the thermosiphon-driven discharge of a latent

heat thermal storage system used in a personal cooling

device’, International Journal of Refrigeration. Elsevier,

88, pp. 599–613.

Dhumane, R., Qiao, Y., Ling, J., Muehlbauer, J., Aute,

V., Hwang, Y., Radermacher, R., (2019) ‘Improving

System Performance of a Personal Conditioning System

integrated with Thermal Storage’, Applied Thermal

Engineering. Elsevier, 147(25 January 2019), pp. 40–51.

Dittus, F. W. and Boelter, L. M. K. (1985) ‘Heat transfer

in automobile radiators of the tubular type’, International

Communications in Heat and Mass Transfer, 12(1), pp.

3–22.

Franke, R., Casella, R., Otter, M., Sielemann, M.,

Elmquvist, H., Mattson, S.E., Olsson, H., (2009) ‘Stream

connectors-an extension of Modelica for device-oriented

modeling of convective transport phenomena’, in

Proceedings of the 7th International Modelica

Conference; Como; Italy; 20-22 September 2009.

Linköping University Electronic Press, pp. 108–121.

Heidarinejad, M., Dalgo, D.A., Mattise, N.W., Srebric, J.,

(2018) ‘Personalized cooling as an energy efficiency

technology for city energy footprint reduction’, Journal of

Cleaner Production. Elsevier, 171, pp. 491–505.

Hoyt, T., Arens, E. and Zhang, H. (2015) ‘Extending air

temperature setpoints: Simulated energy savings and

design considerations for new and retrofit buildings’,

Building and Environment, 88, pp. 89–96. doi:

10.1016/j.buildenv.2014.09.010.

Kim, J., Schiavon, S. and Brager, G. (2018) ‘Personal

comfort models–A new paradigm in thermal comfort for

occupant-centric environmental control’, Building and

Environment. Elsevier, 132, pp. 114–124.

Müller-Steinhagen, H. and Heck, K. (1986) ‘A simple

friction pressure drop correlation for two-phase flow in

pipes’, Chemical Engineering and Processing: Process

Intensification. Elsevier, 20(6), pp. 297–308.

Qiao, H., Xu, X., Aute, V., and Radermacher, R. (2012)

Modelica based transient modeling of a flash tank vapor

injection system and experimental validation. the 14th

International Refrigeration and Air Conditioning

Conferenc. West Lafayette, IN.

Qiao, H. (2014) Transient Modeling of Two Stage and

Variable Refrigerant Flow Vapor Compression Systems

with Frosting and Defrosting. Ph.D. Dissertation,

University of Maryland, College Park

Qiao, Y., Mallow, A., Muehlbauer, J., Hwang, Y., Ling,

J., Aute, V., Radermacher, R., Gluesenkamp, K.R., (2018)

‘Experimental Study on Portable Air-Conditioning

System with Enhanced PCM Condenser’, in 17th

International Refrigeration and Air Conditioning

Conferenc. West Lafayette, IN.

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

DOI Proceedings of the 13th International Modelica Conference 249
10.3384/ecp19157241 March 4-6, 2019, Regensburg, Germany

Shah, M. M. (1982) ‘Chart correlation for saturated

boiling heat transfer: equations and further study’,

ASHRAE Trans.;(United States), 88(CONF-820112-).

Shah, M. M. (2016) ‘Comprehensive correlations for heat

transfer during condensation in conventional and

mini/micro channels in all orientations’, International

journal of refrigeration, 67, pp. 22–41. doi:

10.1016/j.ijrefrig.2016.03.014.

Wang, C.-C. and Chi, K.-Y. (2000) ‘Heat transfer and

friction characteristics of plain fin-and-tube heat

exchangers, part I: new experimental data’, International

Journal of heat and mass transfer, 43(15), pp. 2681–

2691. doi: 10.1016/s0017-9310(99)00332-4.

Zhang, H., Arens, E. and Zhai, Y. (2015) ‘A review of the

corrective power of personal comfort systems in non-

neutral ambient environments’, Building and

Environment, 91, pp. 15–41. doi:

10.1016/j.buildenv.2015.03.013.

Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage

250 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157241

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

DOI Proceedings of the 13th International Modelica Conference 251
10.3384/ecp19157251 March 4-6, 2019, Regensburg, Germany

Real-time optimization of intermediate temperature for a cascade heat pump via
extreme seeking
Wang, Wenyi and Li, Yaoyu

251

Real-time optimization of intermediate temperature for a cascade

heat pump via extreme seeking

Wenyi Wang1 Yaoyu Li1
1Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, U.S.A.

{Wenyi.Wang1, yaoyu.li}@utdallas.edu

Abstract
Improving the energy efficiency of air-source heat pump

(ASHP) has been a critical issue for heating operation in

cold climates. The cascade heat pump system has been

developed as a more advantageous solution over the

single-stage heat pump. However, the increased

complexity of cascade heat pump systems has presented

great challenge for online optimization for the energy

efficiency, as model based control/optimization

methods incur costly modeling and calibration under

different operation and equipment conditions. We

propose to use the extremum seeking control as a model-

free real-time optimization strategy for efficient

operation of cascaded heat pump. The intermediate

temperature setpoint is used as the manipulated input for

maximizing the system efficiency while satisfying the

heating load demand. A Modelica model of an

R134a/410a cascade heat pump is developed, and

control simulations are conducted for validating the

system performance under different ambient conditions.

Keywords: Cascade heat pump, intermediate

temperature, extremum seeking control, real-time

optimization, Modelica.

1 Introduction

Heat pump has been a mature technology for providing

the space or water heating in building operation and

industrial processes. However, the performance of the

single-stage heat pump can be significantly limited

under cold climate operation, which is manifested by

decrease in heating capacity and coefficient of

performance (COP) as well as increase in discharge

temperature. To deal with such challenge, various

techniques have been developed to improve the

performance of heat pump by enabling higher temperate

lift and wider range of ambient temperature, e.g. vapor

injections and cascade configuration (Bertsch and Groll

2008; Park et al. 2015; Arpagaus et al. 2016).

In particular, the cascade heat pump can be a viable

solution to the limitation of single-stage heat pump

(Bansal and Jain 2007). Compared to the single–stage

refrigeration cycle, the cascade cycle has a smaller

compression ratio for each cycle and exhibits a better

compression efficiency (Dopazo et al. 2009; Wang et al.

2009). Then, for the operation of the heat pump system

thus implemented, a significantly higher pressure ratio

can be achieve even under a low ambient temperature,

i.e. resulting in large gap between the condensing

pressure and the evaporating pressure.

There have been intensive efforts on optimizing the

design and operation of cascade system (Jung et al.

2013; Park et al. 2013; Jung et al. 2014). Kim et al.

(2014) conduct experimental and numerical studies on

an air-to-water cascade heat pump with R134a/R410A,

aiming to find the optimal charge amount. Chae et al.

(2015) evaluate the impact of high-temperature cycle

refrigerant charge on the performance of a cascade heat

pump. Kim et al. (2014) experimentally study the effect

of water temperature lift (i.e. the increase of condenser

outlet water temperature from the inlet) on the

performance of a cascade heat pump with R134a/R410A

as the refrigerant. Ma et al. (2018) propose a study for a

high-temperature cascade heat pump, using a near-

zeotropic mixture BY-3 and R245fa as the working

fluids in the low-temperature and high-temperature

cycles, respectively. Experimental results show that the

cascade heat pump system could reach water outlet

temperature of 142°C and the maximum lift of water

temperature could reach 100°C. The pressure ratio in the

high and low-temperature cycle was 3.4 and 3.9,

respectively, with the system COP of 1.72.

Among all the operational parameters for the cascade

system, the intermediate temperature, which is the

evaporating temperature of a high temperature cycle or

the condensing temperature of a low temperature cycle,

is deemed the most important. It has direct impact on the

compression ratio and compressor isentropic efficiency

of each cycle, and thus the COP of the whole system.

Therefore, optimizing the intermediate temperature has

been a primary focus for the cascade refrigeration or

heat pump systems (Lee et al. 2006; Wang et al. 2009;

Bhattacharyya 2008; Dopazo et al. 2009). Park et al.

(2013) develop a thermodynamic model of a cascade

heat pump water heater with R134a and R410A in order

to obtain the optimal intermediate temperature. Their

numerical analysis was later verified experimentally by

Kim et al. (2013).

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

252 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157251

The existing work on experimental and numerical

research has resulted a number of correlations for the

optimal intermediate temperature, as for various system

configurations. However, such models and the optimal

intermediate temperature thus determined are based on

elaborate calibration for specific equipment, ambient

and load conditions. For practical operation, due to the

diverse combinations of operating conditions and

equipment status, the model calibration efforts involved

can be cost prohibitive. Therefore, real-time control or

optimization strategies with least dependency of model

knowledge will be highly beneficial.

In this paper, we propose to use the Extremum

Seeking Control (ESC) to optimize the setpoint of

intermediate temperature (Li et al. 2010; Mu et al. 2015;

Hu et al. 2015). More specifically, the low temperature

cycle (LTC) condensing temperature is taken as the

manipulated input of ESC, while the total power

consumption of the system is the only feedback. As for

the inner loop control, the LTC compressor speed is

used to regulate the intermediate temperature, and the

water outlet temperature is regulated by the high

temperature cycle (HTC) compressor speed.

The remainder of this paper is organized as follows.

The Modelica based dynamic simulation model of the

cascade heat pump system is described in next section.

Section 3 reviews the ESC principle and design

guidelines. Simulation results are presented in Section

4. Section 5 concludes the paper with future work

discussed.

2 Dynamic modeling of a cascade

heat pump water heater

A cascade heat pump consists of two independently

operated single-stage cycles as shown in Fig. 1. The low

temperature cycle (LTC) absorbs the heat through

evaporator from the ambient air and then transfers the

heat to the high temperature cycle (HTC) through an

intermediate heat exchanger which is called the cascade

heat exchanger. Then the refrigerant in the HTC

evaporates in the cascade heat exchanger and then is

compressed before entering the condenser where the

refrigerant rejects the heat to the water. The cascade heat

exchanger works as a condenser for the LTC and

evaporator for the HTC. Compared to a single-stage

system, the cascade system has a smaller compression

ratio and higher compression efficiency for each stage

of compression. In this paper, we adopt the typical

combination of R410a-R134a for both cycles. Among

the most HFC refrigerants, R134a shows a higher

critical temperature that is beneficial for making the

high temperature hot water (Bertsch & Groll 2008).

C
o

m
p

re
ss

o
r

Water

Air

HTC

Condenser

Cascade heat
exchanger

Evaporator

LTC

C
o

m
p

re
ss

o
r

 Valve

 Valve

1

23

4

5

67

8

Figure 1. Schematic of a cascade heat pump water

heater

Based on these analysis, a Modelica based dynamic

simulation model of cascade heat pump is developed

using Dymola (Dassault Systems 2017) and TIL Library

(TLK-Thermo 2017), as shown in Fig. 2.

Figure 2. Dymola layout for a cascade heat pump.

In this model, the cascade heat pump system mainly

consists of two compressors, three heat exchangers and

two-expansion valves. The two compressors for the low

and high temperature cycle are both modelled by the

scroll compressor module in the TIL Library

TIL.VLEFluidComponents.Compressors.ScrollCompre

ssor with different displacements. The evaporator for

the LTC is modeled with the fin-and-tube cross-flow

heat exchanger module TIL.HeatExchangers.

FinAndTube.MoistAirVLEFluid.CrossFlowHX. The

air-side and tube-side convective heat transfer

coefficient air
h and tube

h is calculated by the following

equations:

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

DOI Proceedings of the 13th International Modelica Conference 253
10.3384/ecp19157251 March 4-6, 2019, Regensburg, Germany

0.333

0.333 0.625
4

0.31Pr Re
fin void

air

tube fin

V R
Nu

D A

=

 (1)

0.8 0.4

0.8

1.8
*0.023Re Pr

liquid

tube

hyd

h
N h

λ
=

 (2)

The cascade heat exchanger separates the low

temperature refrigerant and high temperature

refrigerant, and realizes heat transfer between them. The

temperature difference in a cascade heat exchanger is

generally considered the most critical parameter that

affects the system performance. A large temperature

difference in a cascade heat exchanger can lead to

degradation of system performance due to the higher

irreversibility. To reduce the temperature difference for

the cascade heat exchanger, a plate heat exchanger is

adopted, modeled by the TIL.HeatExchangers.

Plate.VLEFluidVLEFluid.ParallelFlowHX module. In

the cascade heat exchanger, the low temperature

refrigerant evaporates and the high temperature

refrigerant condenses. The specific correlation for the

evaporating side and condensing side is as follows:

0.76
0.5 0.4 0.8

0.38

3.8 (1)0.04
0.023Re Pr (1)

()crit

x x
h x

p p

 −
= − +

 (3)

0.5

0.01 1.5 0.6 0.35 2.2

0.5 0.4
2

0.01 0.7 0.67

(1) ((1) 1.9 ())

0.023Re Pr

(1 8(1) ())

liquid

gas

gas liquid

liquid gas

x x x

h

x x

ρ

ρ

α ρ

α ρ

−

−

−

− − +

=

+ + −

 (4)

The condenser of the HTC is also modeled by the same

plate heat exchanger model. The correlation of

refrigerant side is the same as Eq. (4), while the

correlation of the waterside follows

1

2 0.3746
1

0.122Pr* () (*Re sin(2))
3

fluid

wall

Nu
η

ξ ϕ
η

= (5)

The orifice valve module TIL.VLEFluidComponents.

Valves.OrificeValve is used to model the expansion

valve, which can calculates the mass flow rate in

dependency of the pressure drop using the equation of

Bernoulli as follow:

* ()*2flow eff input output inputm A p p ρ= − (6)

The evaporator fan is modeled with a simple fan module

TIL.GasComponents.Fans.SimpleFan, whose operation

can be defined with pressure differential or mass flow

rate. The water pump is modeled with the TIL.Liquid

Components.Pumps.SimplePump module, which is an

affinity-law based pump model. In this study, the mass

flow rate for the air side of the evaporator and the water

side of the condenser are both set as constant.

In this study, the two scroll compressor are both

controlled by the PI controller, the evaporator fan speed

is fixed, so the fan power is constant. The total power is:

total ucomp lcomp fanP P P P= + + (7)

Then the COP of the cascade water heat pump is the

ratio of the heat capacity to the total power:

total

Q
COP

P
= (8)

The system model is developed based on the ZX-

DKFXRS-10II heat pump water heater manufactured by

Zhengxu New Energy Equipment Technology Co., Ltd

in China. The heat capacity is 58.5 kW under the

nominal condition which is defined as: ambient

temperature of −12°C dry bulb and −14°C wet bulb, and

the water outlet temperature of 85°C. The nominal

power consumption is 32.5 kW, the rated volumetric

flow rate for the evaporator fan is 30000 m3/h, and the

refrigerant charges for the LTC and HTC are 17 kg and

19 kg respectively. The steady-state characteristics of

the simulation model have been validated with the lab

testing by the manufacturer, however, the validation

data cannot be disclosed by the time of paper

preparation.

In this model, the minimal total power corresponds to

the maximum COP because of the constant heat capacity

maintained throughout the simulated operation. The

total power is adopted as the only ESC feedback rather

than the COP, because power measurement is relatively

simple and cost-effective while determination of COP

requires several measurements of thermal and fluidic

variables.

3 Extremum seeking control design

ESC deals with the online optimization problem of

finding an optimizing input uopt(t) for the generally

unknown and/or time-varying cost function l(t, u)

(Krstic & Wang 2000; Rotea 2000). The standard

gradient based ESC is illustrated in Fig. 3, in which a

pair of dither-demodulation signals are used along with

high-pass and low-pass filters to extract the gradient

information. Closing the loop with integral controller

can drive the input to optimality provided that the

closed-loop stability is achieved. A typical design

guideline for ESC follows Li et al. (2010):

(1) Perform open-loop step test to estimate the input

dynamic for the input channel.

(2) The dither frequency should be chosen well within

the bandwidth of the input dynamics.

(3) The dither amplitude should be chosen such that the

dithered output has sufficient signal-to-noise ratio at

the dither frequency.

(4) The dither frequency is generally located in the

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

254 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157251

pass band of the high-pass filter and in the stopband

of the low-pass filter.

(5) The dither-demodulation phase difference integral

gain should be chosen to guarantee the asymptotic

stability based on some estimate of the input/output

dynamics and the Hessian of the static map near the

equilibrium.

(6) The integral gain needs to be adjusted to achieve the

desirable transient performance under the selected

dither signal.

Dither signalDemodulation signal

()IF s()OF s (,)y f u t=()HPF s

()LPF s ()K s

1
() sin()d t a tω=

2
() sin()

2

a
d t tω α= +

()n t

()iK ∫ i

Figure 3. Block diagram of extremum seeking control.

In this study, the ESC controller is used to find the

optimal intermediate temperature that can minimize the

total power consumption, which is equivalent to

maximizing the system COP under fixed heating

capacity operation. For the HTC, the water outlet

temperature is regulated by the HTC compressor

capacity with a proportional-integral (PI) controller,

while the superheat of the HTC side of cascade heat

exchanger is regulated by the electronic expansion valve

(EEV) opening with another PI controller. For the LTC,

the evaporator superheat is also regulated by a dedicated

EEV, and the intermediate temperature as defined above

is regulated by the LTC compressor.

For a cascade heat pump operating in a fixed

condition, that means the fixed water inlet and outlet

temperature of the condenser and fixed ambient air

condition (temperature and relative humidity). A higher

low temperature cycle condensing temperature will

result in the higher compressor ratio of low temperature

cycle, meanwhile it will lead to a lower high temperature

cycle compressor ratio because of the fixed heat

capacity. The higher compressor ratio means higher

power consumption. In the contrary, the lower R410A

condenser temperature will results in lower compressor

pressure ratio of low temperature cycle and higher-

pressure ratio of high temperature cycle. So there exists

an optimal R410A condenser temperature which can

make a proper pressure ratio for each cycle, and

therefore the optimal isentropic efficiency of

compressor can be obtained for the each cycle. So in this

condition, the total power consumption will be the

minimal value. So in a realistic variable ambient air

condition, the optimal intermediate temperature changes

in real time.

 For applying the proposed control strategy in the

cascade heat pump to obtain the optimal intermediate

temperature therefore the maximal COP and minimal

total power, we need to estimate the system input

dynamics first in a fixed condition. The hot water inlet

temperature is set to be 55°C, and the outlet temperature

is regulated to 60°C by the high temperature cycle

compressor via a PI controller. The hot water mass flow

rater is set to be 0.72 kg/s so that the total heat capacity

is the system is fixed at around 15 kW. The ambient air

temperature and relative humidity are set to be -7°C and

60% respectively. The air mass flow rate is set to be a

constant at 1.85 kg/s. The main loop superheat is fixed

at 5°C via a PI controller. For estimating the system

dynamics, the simulation is testing under the above

condition and the intermediate temperature is regulating

from 10°C to 20°C, 20°C to 30°C, 30°C to 40°C,

respectively. Based on the simulation results, the

normalized response is shown in Fig. 6 and the input

dynamics is estimated as
2

2 2

0.021ˆ ()
2 0.76 0.021 0.021

IF s
s s

=
+ × × +

 (9)

A dither signal with amplitude of 1°C and frequency of

0.005 Hz is then selected. The high-pass and low-pass

filters are chosen as
2

2 2
()

2 0.8 0.0037 0.0037
HP

s
F s

s s
=

+ × × +
 (10)

2

2 2

0.0032
()

2 0.9 0.0032 0.0032
LPF s

s s
=

+ × × +
 (11)

4 Simulation Study

In this section, the ESC controller designed in the

previous section is evaluated with simulation study

using the cascade heat pump system model described

earlier.

4.1 Simulation under Fixed Condition

The operation scenario is the same as that described

in Section 3. The static map of the total power and COP

to the intermediate temperature is shown in Fig. 4,

where the intermediate temperature ranges from 10°C to

45°C. The total power achieves the minimal value of

5933.8 Watt at the intermediate temperature of 27.5°C.

The COP shows an opposite tendency over the total

power profile, achieving the maximum of 2.54 at the

same intermediate temperature.

10 15 20 25 30 35 40 45

5000

5500

6000

6500

7000

Intermediate Temperature (°C)

T
o

ta
l

P
o

w
e

r
(W

)

10 15 20 25 30 35 40 45
2.2

2.3

2.4

2.5

2.6

Total Power

COP

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

DOI Proceedings of the 13th International Modelica Conference 255
10.3384/ecp19157251 March 4-6, 2019, Regensburg, Germany

Figure 4. Static map of total power and COP in terms

of intermediate temperature for the cascade heat pump.

The simulation results are shown in Fig. 5 and Fig.

6. The initial HTC compressor speed is fixed at 75 Hz,

the LTC compressor speed is fixed at 79 Hz, and the

initial intermediate temperature is set to be 20°C. The

ESC is turned on at 1 hour and converges after about

3000 seconds. Then the optimal intermediate

temperature found by ESC is 29.4°C. Compared to the

optimum from the static map in Fig. 3, the steady-state

error is about 1.6%. The LTC compressor speed is

settled at 90 Hz with the extremum seeking process, and

the HTC compressor speed is adjusted to 59 Hz. The

total power decreases from 6213.05 W to 5933.77 W,

and the COP increases from 2.42 to 2.54, which implies

a 4.9% power saving or COP enhancement. It is

noteworthy that the water outlet temperature is well

stabilized at 60°C with variation less than 0.1°C. The

superheats for HTC and LTC are both stabilized at 5°C.

This means that the proposed ESC strategy can indeed

optimize the system performance by searching for the

optimal intermediate temperature, which will make the

HTC and LTC operating at their optimal compression

ratio. This is achieved by changing the two compressor

speeds. The requirements for load demand satisfaction

and superheat regulation are all met.

Figure 5. ESC simulation results for the cascade heat

pump under fixed ambient temperature.

Figure 6. Performance and inner loop regulation for

ESC simulation of the cascade heat pump under fixed

ambient temperature.

As a further evaluation, the two compressor speeds

are set to start at a different combination of initial

values. As shown in Fig. 7, the LHC compressor starts

at 105 Hz, and for maintaining the heat capacity

requirement, the HTC compressor is decreased to 42 Hz.

The intermediate temperature is then 42°C. The ESC is

also turned on at 1 hour, and converges after about 2000

second. The intermediate temperature found by ESC is

29.6°C, which is consistent with the result from the

above case. The HTC and LTC compressor speeds are

90 Hz and 58 Hz, respectively. Similarly, the total power

and COP are all as same as the previous result. The

performance and inner loop regulation are plotted in Fig.

8.

Figure 7. ESC simulation results for the cascade heat

pump for second case of fixed ambient temperature.

0 1 2 3 4 5 6 7 8
-8

-7

-6

A
m

b
ie

n
t

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7 8
10

20

30

40

In
te

rm
e
d

ia
te

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7 8
70

80

90

100

L
T

C
 C

o
m

p
re

ss
o

r
sp

e
e
d

 (
H

z
)

0 1 2 3 4 5 6 7 8
50

60

70

80

Time (hr)

H
T

C
 C

o
m

p
re

ss
o

r
sp

e
e
d

 (
H

z
)

ESC

Calibrated Optimum

0 1 2 3 4 5 6 7 8
5800

6000

6200

6400

T
o

ta
l

P
o

w
e
r

(W
)

0 1 2 3 4 5 6 7 8
2.4

2.5

2.6

C
O

P

0 1 2 3 4 5 6 7 8
59.9

60

60.1

W
a
te

r
O

u
tl

e
t

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7 8
4.995

5

5.005

Time (hr)

S
u

p
e
rh

e
a
t

(K
)

PI controller Setpoint

PI controller Measurement

HTC Superheat

LTC Superheat

0 1 2 3 4 5 6 7 8
-8

-7

-6

A
m

b
ie

n
t

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7 8
20

30

40

50

In
te

rm
e
d

ia
te

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7 8
80

90

100

110

H
T

C
 C

o
m

p
re

ss
o

r

S
p

e
e
d

 (
H

z
)

0 1 2 3 4 5 6 7 8
40

50

60

Time (hr)

L
T

C
 C

o
m

p
re

ss
o

r
S

p
e
e
d

 (
H

z
)

ESC

Calibrated OPtimum

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

256 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157251

Figure 8. Performance and inner loop regulation for

ESC simulation of the cascade heat pump for second

case of fixed ambient temperature.

4.2. ESC under variable ambient temperature

The proposed ESC strategy is then evaluated for a

staircase ambient temperature profile, as shown in Figs.

9 and 10. The ambient temperature changes from -7°C

to -12°C and then -17°C, each change following a 3600-

second linear ramp. Fig. 9 shows that the intermediate

temperature converges to the respective optimum found

the SQP (sequential quadratic programming) procedure

offered by the Dymola Optimization Library. The

transient time associated with each change of ambient

temperature is also reasonable. Fig. 10 shows the energy

performance as well as the inner loop regulation, and the

results indicate the validity of the ESC search.

Figure 9. ESC simulation results for the cascade heat

pump under staircase profile of ambient temperature.

Figure 10. Performance and inner loop regulation for

ESC simulation of the cascade heat pump under

staircase profile of ambient temperature.

4.3 Simulation under the realistic condition

 The ESC strategy is then evaluated with a realistic

ambient temperature profile, for which a two-input ESC

is designed. Instead of using the intermediate

temperature, the compressor speeds for the LTC and

HTC are used as the manipulated inputs. From the

TMY3 weather data (Buildings.BoundaryConditions.

WeatherData.ReaderTMY3), a one-week ambient

temperature profile of the O’Hare Airport in Chicago is

adopted, which spans January 13 to 20. As shown in the

first subplot of Fig. 11, the ambient temperature ranges

from −14.4°C to 11.8°C.

As benchmark, the simulation is conducted with the

compressor speed fixed at 50 Hz, which is the

manufacturer’s recommended setting. Then the ESC

strategy is simulated. The simulation results for two

compressor speeds, intermediate temperature and COP

are compared in Fig. 11 for the ESC and benchmark

operations. With the ESC strategy, the COP profile is

clearly above that under the benchmark operation

through the whole-week period being simulated. The

largest COP improvement is 15.1% at the maximal

ambient temperature of 11.8°C. The smallest COP

improvement of 1.1% occurs at the ambient temperature

of −12°C, which is exactly the nominal ambient

temperature for the equipment design. This is not

surprising in that the system operation parameters are

optimized for this very condition. The results of heat

capacity, total power and water mass flow rate are

shown in Fig. 12. The water outlet temperature and

superheat are well regulated to their respective

setpoints, which justifies the effectiveness of the system

operation being simulated.

0 1 2 3 4 5 6 7 8
5500

6000

6500

T
o

ta
l

P
o

w
er

 (
W

)

0 1 2 3 4 5 6 7 8
2.3

2.4

2.5

2.6

C
O

P

0 1 2 3 4 5 6 7 8
59.8

59.9

60

60.1

W
a
te

r
O

u
tl

e
t

T
e
m

p
. (

°C
)

0 1 2 3 4 5 6 7 8
4.99

4.995

5

5.005

Time (hr)

S
u

p
er

h
ea

t
(K

)

PI Controller Setpoint

PI Controller Measurement

HTC Superheat

LTC Superheat

0 2 4 6 8 10 12 14 16 18 20 22 24
-20

-15

-10

-5

A
m

b
ie

n
t

T
e
m

p
.
(°

C
)

0 2 4 6 8 10 12 14 16 18 20 22 24
20

30

40

50

In
te

rm
e
d

ia
te

T
e
m

p
.
(°

C
)

0 2 4 6 8 10 12 14 16 18 20 22 24
60

80

100

120

H
T

C
 C

o
m

p
re

ss
o

r
S

p
e
e
d

 (
H

z
)

0 2 4 6 8 10 12 14 16 18 20 22 24
40

50

60

70

Time (hr)

L
T

C
 C

o
m

p
re

ss
o

r
S

p
e
e
d

 (
H

z
)

ESC

SQP

0 5 10 15 20
5000

6000

7000

8000

T
o

ta
l

P
o

w
e
r

(W
)

0 5 10 15 20
2.2

2.4

2.6

C
O

P

0 5 10 15 20
59.9

60

60.1

60.2

W
a
te

r
O

u
tl

e
t

T
e
m

p
.
(°

C
)

0 5 10 15 20
4.995

5

5.005

Time (hr)

S
u

p
e
rh

e
a
t

(K
)

PI Controller Setpoint

PI Controller Measurement

HTC Superheat

LTC Superheat

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

DOI Proceedings of the 13th International Modelica Conference 257
10.3384/ecp19157251 March 4-6, 2019, Regensburg, Germany

Figure 11 – Trajectories of ambient temperature,

compressor speed, intermediate temperature and COP

under the realistic condition.

Figure 12. Trajectories of heat capacity, total power,

water mass flow rate, water outlet temperature and

superheat under the realistic condition.

More simulations are performed under way for

different ambient and load conditions.

5 Conclusion

In this paper, we propose an ESC based model free

real time optimization method for optimizing the

intermediate temperature of cascade heat pump system.

A Modelica dynamic simulation model is developed for

a cascade heat pump water heating system, using

Dymola and TIL Library. Simulations have been

performed under fixed, staircase and realistic ambient

temperature profiles. Simulation results show that the

proposed strategy can converge the operation to pre-

calibrated optimum, which promises great benefit for

practical operation of the cascade heat pumps systems.

Such control strategy requires only power measurement

as feedback, which minimizes the sensor requirement.

Further work is under way to evaluate the proposed

strategy under other operating scenarios.

Acknowledgements

The authors are grateful of TLK-Thermo GmbH for

their permission for access to TIL-Suite products, as

well as their technical help.

References

C. Arpagaus, F. Bless, J. Schiffmann, and S.S. Bertsch, Multi-

temperature heat pumps: A literature review, Int. J. Refrig.

69 (2016) 437-465.

P.K. Bansal, S. Jain, Cascade systems: past, present, and

future, ASHRAE Trans. 113 (2007) 245-252.

S. Bhattacharyya, S. Mukhopadhyay, J. Sarkar, CO2-C3H8

cascade refrigeration-heat pump system: heat exchanger

inventory optimization and its numerical verification, Int. J.

Refrig. 31 (2008) 1207-1213.

S.S. Bertsch, E.A. Groll, Two-stage air-source heat pump for

residential heating and cooling applications in northern US

climates, Int. J. Refrig. 31 (2008) 1282–1292.

J.H. Chae, J.M. Choi, Evaluation of the impacts of high stage

refrigerant charge on cascade heat pump performance,

Renewable Energy 79 (2015) 66-71.

Dassault Systems, Dymola: Multi-Engineering Modeling and

Simulation based on Modelica and FMI, 2017. <

https://www.3ds.com/products-

services/catia/products/dymola >.

J.A. Dopazo, J. Fernández-Seara, J. Sieres and F. J. Uhía,

Theoretical analysis of a CO2–NH3 cascade refrigeration

system for cooling applications at low temperatures, Appl.

Therm. Eng. 29 (2009) 1577–1583.

B. Hu, Y. Li, F. Cao, Z. Xing, Extremum seeking control of

COP optimization for air-source transcritical CO2 heat

pump water heater system, Applied Energy 147 (2015) 361-

372.

H.W. Jung, H. Kang, W.J. Yoon, Y. Kim, Performance

comparison between a single-stage and a cascade multi-

functional heat pump for both air heating and hot water

supply, Int. J. Refrig. 36 (2013) 1431–1441.

H.W. Jung, H. Kang, et al., Performance optimization of a

cascade multifunctional heat pump in various operation

modes, Int. J. Refrig. 42 (2014) 57-68.

D.H. Kim, H.S. Park, M.S. Kim, Optimal temperature

between high and low stage cycles for R134a/R410A

cascade heat pump based water heater system, Exp. Therm.

Fluid Sci. 47 (2013) 172-179.

D.H. Kim, H.S. Park, M.S. Kim, The effect of the refrigerant

charge amount on single and cascade cycle heat pump

systems, Int. J. Refrig. 40 (2014) 254-268.

D.H. Kim, M.S. Kim, The effect of water temperature lift on

the performance of cascade heat pump system, Appl.

Therm. Eng. 67 (2014) 273-282.

Krstić, M., Wang, H. H. 2000. "Stability of extremum seeking

feedback for general nonlinear dynamic systems."

Automatica 36 (4): 595-601.

0 1 2 3 4 5 6 7
-20

-15
-10

-5

0
5

10

15
20

A
m

b
ie

n
t

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7
0

20

40

60

80

C
o

m
p
re

ss
o

r

F
re

q
u
e
n

c
y

 (
H

z
)

0 1 2 3 4 5 6 7
20

30

40

50

60

In
te

rm
e
d

ia
te

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7
1.8

2

2.2

2.4

2.6

Time (Day)

C
O

P

HTC with ESC

LTC with ESC

HTC and LTC without ESC

Without ESC

With ESC

With ESC

Without ESC

0 1 2 3 4 5 6 7
0

5

10
x 10

4

H
e
a
t

C
a
p

a
c
it

y
 (

W
)

0 1 2 3 4 5 6 7
0

2

4

6
x 10

4

T
o

ta
l

P
o

w
e
r

(W
)

0 1 2 3 4 5 6 7
0

2

4

6

W
a
te

r
m

a
ss

fl
o

w
 r

a
te

 (
k

g
/s

)

0 1 2 3 4 5 6 7
84.5

85

85.5

W
a
te

r
o

u
tl

e
t

T
e
m

p
.
(°

C
)

0 1 2 3 4 5 6 7
4.5

5

5.5

Time (hr)

S
u

p
e
rh

e
a
t

(°
C

)

With ESC

Without ESC

With ESC

Without ESC

With ESC

Without ESC

With ESC

Without ESC

HTC with ESC

LTC with ESC

HTC without ESC

LTC without ESC

Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking

258 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157251

T. Lee, C. Liu, T. Chen, Thermodynamic analysis of optimal

condensing temperature of cascade-condenser in CO2/NH3

cascade refrigeration systems, Int. J. Refrig. 29 (2006)

1100–1108.

P. Li, Y. Li, J.E Seem, Efficient operation of air-side

economizer using extremum seeking control, Journal of

Dynamic Systems, Measurement, and Control 132 (2010)

031009.

X. Ma, Y. Zhang, X. Li, et al., Experimental study for a high

efficiency cascade heat pump water heater system using a

new near-zeotropic refrigerant mixture, Appl. Therm. Eng.

138 (2018) 783-794.

B. Mu, Y. Li, J.E Seem, B. Hu, A multivariable Newton-based

extremum seeking control for condenser water loop

optimization of chilled-water plant, Journal of Dynamic

Systems,Measurement, and Control 137 (2015) 111011.

H. Park, D.H. Kim, M.S. Kim, Thermodynamic analysis of

optimal intermediate temperatures in R134aeR410A

cascade refrigeration systems and its experimental

verification, Appl. Therm. Eng. 54 (2013) 319–327.

H. Park, D.H. Kim, M. S. Kim, Performance investigation of

a cascade heat pump water heating system with a quasi-

steady state analysis, Energy 63 (2013) 283-294.

C. Park, H. Lee, Y. Hwang and R. Radermacher, Recent

advances in vapor compression cycle technologies, Int. J.

Refrig. 60 (2015) 118-134.

Rotea, M.A., 2000. Analysis of multivariable extremum

seeking algorithms. In American Control Conference.

Proceedings of the 2000, 433-437, IEEE.

TLK-Thermo GmbH. TIL3.4.2, 2017. <http://www.tlk-

thermo.com/index.php>.

B. Wang, H. Wu, J. Li, Z. Xing, Experimental investigation

on the performance of NH3/CO2 cascade refrigeration

system with twin-screw compressor, Int. J. Refrig. 32

(2009) 1358–1365.

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions

DOI Proceedings of the 13th International Modelica Conference 259
10.3384/ecp19157259 March 4-6, 2019, Regensburg, Germany

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under
Frosting Conditions
Li, Zhenning and Qiao, Hongtao and Aute, Vikrant

259

Tube-fin Heat Exchanger Circuitry Optimization For Improved

Performance Under Frosting Conditions

Zhenning Li1 Hongtao Qiao2 Vikrant Aute3*

1,3 Center for Environmental Energy Engineering, University of Maryland

College Park, MD 20742 USA
2 Mitsubishi Electric Research Labs, 201 Broadway Cambridge, MA 02139 USA

Abstract
Frost accumulation on tube-fin heat exchanger leads to

reduction in evaporator capacity and deteriorates cycle

efficiency. The conventional counter-flow heat

exchanger circuitry has the disadvantage that more frost

tends to accumulate in the first few banks exposed to the

incoming air. This frost concentration makes the air side

flow resistance increase rapidly, thus reduces the air

flow rate and evaporator capacity under constant fan

power. In this paper, a novel integer permutation based

Genetic Algorithm is used to obtain optimal circuitry

design with improved HX performance under frosting

conditions. A dynamic HX model with the capability to

account for non-uniform frost growth on a fan-supplied

coil is used to assess the performance of optimal

circuitry. The case study shows that the proposed

circuitry design approach yields better circuitry with

larger HX capacity, more uniform frost distribution, less

air flow path blockage, and therefore longer evaporator

operation time between defrost operations.

Keywords: Heat Exchanger, Frost Growth, Circuitry

Optimization, Genetic Algorithm

1 Introduction

Tube-fin heat exchangers have wide applications in the

refrigeration and air conditioning industry. They are

used to transfer heat between air and the working fluid

(e.g. refrigerants, water, glycols etc.). One of the major

concerns for the refrigeration and heat pump engineers

is frost formation on outdoor unit since it can lead to

significant reduction on heat exchanger capacity and

cycle efficiency.

Frost will accumulate on the surfaces of evaporator

coil when the coil surface temperature is below the dew

point temperature of incoming air and meanwhile the air

dry bulb temperature is below 0 °C. The process of frost

formation on the surface of an evaporator coil is a result

of two mechanisms: the buildup of small ice particles

that exist in the free air stream and accumulate by

impaction or interception when they contact the

evaporator coil surfaces (Malhammar, 1988) and the

diffusion of water vapor onto cold surfaces due to the

water vapor concentration difference between the air

stream and the frost layer surface (Sanders, 1974).

Formation of frost on a heat exchanger surface results

in reduction on heat transfer rate due to fouling

characteristics of frost development and blockage of air

flow passages through the heat exchanger. Several

techniques have been proposed to reduce the frost

accumulation rate thereby increasing the evaporator

operation time between defrost operations. For example,

(Ogawa et al, 1993) suggested to use variable geometry

tube-fin heat exchangers with different fin geometries

on different tube banks to reduce the heat and mass

transfer rates at the first few banks exposed to incoming

air. However, this geometry modification may be

difficult to realize without adding substantial

complexity in manufacturing process. (Aljuwayhel et al,

2007) developed a heat exchanger frost accumulation

model to simulate the performance of counter-flow and

parallel-flow circuitry evaporators under frosting

conditions. They validated the model by testing the

counter-flow circuitry evaporator. They found that heat

exchanger circuitry can influence the frost distribution

across the evaporator as well as its transient capacity

under frosting conditions. Their study shows good

circuitry design is a convenient and economic way to

reduce the effect of frost accumulation and can provide

longer evaporator operation time before defrosting.

As discussed in (Li et al, 2018), various performance

metrics have been used as objectives for the TFHX

circuitry optimization studies, however, in literature

there is no study which optimizes circuitry with the goal

of improving HX performance under frosting

conditions. This paper presents a tube-fin heat

exchanger circuitry design approach to tackle this

problem.

The remainder of the paper is organized as follows:

section 2 details the circuitry optimization approach and

analyzes the optimization results from a case study.

Section 3 introduces the dynamic HX model with

integrated frosting growth model and then demonstrates

the efficacy of the proposed circuitry design approach

by evaluating the dynamic performance of different

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions

260 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157259

circuitry designs under frosting conditions. Conclusions

are drawn in Section 4.

2 TFHX Circuitry Optimization

2.1 Integer Permutation Based GA

An integer permutation based genetic algorithm (IPGA)

developed by (Li et al, 2018) is used to obtain the

optimal circuitry designs. (Li and Aute, 2018) has

shown that IPGA demonstrates superior capability to

obtain better refrigerant circuitries with lower

computational cost than the other methods in literature.

Meanwhile IPGA can guarantee good manufacturability

of resulting circuitries.

Usually, the dynamic simulation of HX performance

under frosting conditions is computationally expensive,

which means the computational time for a single

simulation can take from a few minutes to several hours.

Assuming one HX evaluation takes a few minutes to

complete, as there will be at least thousands of HX

evaluations in one optimization run, using dynamic HX

model to evaluate HXs generated by the optimizer is not

feasible in the interests of time. This study strives to

tackle this problem by exploring an effective problem

formulation used in steady state HX optimization in

order to generate circuitry designs with desirable

dynamic performance under frosting conditions.

 At the fitness assignment stage of IPGA, a mass flow

based steady state tube-fin heat exchanger model,

CoilDesigner® (Jiang et al, 2006), is used to evaluate

HX performance. This model can account for the

refrigerant maldistribution among different circuits by

iterating on the pressure residual at the outlet of each

circuit.

2.2 Problem Formulation

As explained in previous session, the goal of this study

is to explore a HX performance index which can foresee

its dynamic performance under frosting conditions.

(Qiao et al, 2017) observed that the tubes which the frost

is the most likely to deposit on are the ones close to the

refrigerant inlets with low HX surface temperature. In

contrast, the tubes which the frost is the least likely to

deposit on are the refrigerant outlet tubes where the in-

tube refrigerant flow is superheated. Based on this

finding, Equation (1) shows the problem formulation, in

which to maximize the total length of superheat tube

length is used as the objective. Five constraints are

enforced on this problem. The 1st constraint guarantees

that the optimal design has equal or larger capacity than

the baseline. The 2nd constraint limits that the optimal

circuitry has less refrigerant pressure drop than the

baseline with 1.1 as the relaxation factor. The 3rd

constraint confines the outlet superheat of the entire coil

to be similar with that of the baseline within ±1 K

variation. The last two constraints are manufacturability

constraints. The 4th constraint makes the inlet and the

outlet tubes on the same side of HX. The 5th constraint

avoids long U-bends stretching across more than 2 tube

rows. (Li and Aute, 2018) presents the details of various

constraints and constraint handling techniques in IPGA.

,

Objective: Maximize(total superheat tube length)

 :

 Q Q

 P 1.1 P

 1 1

 Inlets and outlets on the sa

refrigerant refrigerant baseline

baseline

Subject to

Tsat K Tsat Tsat K

me side of HX

 No long U-bend across more than 2 tube rows

 (1)

2.3 Baseline Outdoor Heat Exchanger

An outdoor heat exchanger (Figure 1) from a flash tank

vapor injection cycle (FTVI) is used as the baseline for

circuitry optimization. The steady state heat exchanger

model was validated with measured data for this coil in

previous research project under different operating

conditions (Xu et al, 2013). Figure 2 shows that the heat

exchanger capacity deviations between CoilDesigner®

simulations and experiments are within 6%.

Figure 1. Outdoor unit from FTVI

Figure 2. Experiment tests vs CoilDesigner® simulations

Table 1 lists the structural parameters of the baseline

HX. Table 2 shows the operating conditions used in the

steady state HX simulation. The air side condition is

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000 14000 16000

M
o

d
e

li
n

g
 r

e
s

u
lt

s
 [

k
W

]

Experimental results [kW]

Results

+6%

-6%

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions

DOI Proceedings of the 13th International Modelica Conference 261
10.3384/ecp19157259 March 4-6, 2019, Regensburg, Germany

adopted from (ASHRAE, 2010) frost accumulation test.

Table 3 lists the empirical correlations adopted for the

local heat transfer and pressure drop calculations.

Table 1. Structural Parameters of Baseline Evaporator

Structural Parameters Value

Tube Outer Diameter 7.9 mm

Fins per inch 22 FPI

Fin Type Wavy Herringbone

Tube Length 2.565 m

Vertical Spacing 24.1 mm

Horizontal Spacing 20.9 mm

Number of Tube Banks 2

Number of Tubes Per Bank 32

Table 2. Operating Conditions of Baseline Evaporator

Operating Conditions Value

Refrigerant R410A

Refrigerant Inlet Pressure 636.3 kPa

Refrigerant Inlet Quality 0.19

Refrigerant Mass Flow Rate 0.035 kg/s

Air Volume Flow Rate

(Uniformly Distributed)
2267 ft3/min

Air Pressure 101.325 kPa

Air Temperature 1.7 °C

Air Relative Humidity 82 %

Table 3. Correlations Adopted in HX Simulation

Operating

Mode
Heat Transfer Pressure Drop

Refrigerant

Liquid Phase
Gnielinski, 1976 Blasius, 1907

Refrigerant

Two Phase
Shah, 2017

Müller-

Steinhagen &

Heck, 1986

Refrigerant

Vapor Phase
Gnielinski, 1976 Blasius, 1907

Air Kim et al, 1997 Kim et al, 1997

2.4 Circuitry Optimization Results

For the optimization practice conducted in this case

study, the GA population size is set as 200 and the

number of generations is set as 500. The GA progress

plot (Figure 3) indicates that after 500 generations, the

optimal circuitry yields an increase of total superheat

tube length from 59.69% to 70.63% of the entire HX

tube length.

Figure 3. IPGA optimization progress

Figure 4 shows the optimal circuitry design after 500

generations. A solid line represents a U-bend on the

front end of the heat exchanger, while a dotted line

represents a U-bend on the farther end. Different color

represents different circuits. The red tubes are the inlets,

while the blue ones are outlets.

Figure 4. Optimal heat exchanger circuitry

Table 4 compares the steady state performance of the

baseline and the optimal design. The optimal design has

almost the same capacity as the baseline, while the

refrigerant pressure drop yields a decrease from 59.6

kPa to 55.8 kPa by 6.3%. This is because the optimal

circuitry in Figure 4 has 6 circuits without merging U-

bends. However, the baseline (Figure 1) has six inlets

and three outlets, so in each circuit two streams are

merged into one. The high refrigerant pressure drop in

baseline is induced by the large refrigerant mass flux at

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1st Bank 2nd Bank

Distributor

Air

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions

262 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157259

the downstream of each circuit. Despite the significant

increase of superheat region length, the total outlet

superheat of the baseline and the optimal design only

varies within 1 K, which is good to avoid refrigerant

flooding in compressor. In Table 4, ‘U-bends L1’ and

‘U-bends L2’ indicate the number of U-bends which

stretches across 1 tube row and 2 tube rows respectively.

‘U-bends ≥ L3’ is the number of long U-bends which

stretches more than 2 tube rows. It can be seen that the

optimal circuitry has acceptable manufacturability

without long U-bends.

Table 4. Comparison of Baseline VS Optimal Design

Case Baseline Optimal

Capacity [W] 7502 7514

Refrigerant DP [kPa] 59.6 55.8

Outlet Superheat [K] 10.4 11.3

Superheat length [%] 59.7 70.6

U-bends L1 55 40

U-bends L2 6 18

U-bends ≥ L3 0 0

3 Heat Exchanger Simulation under

Frosting Conditions

3.1 Dynamic HX Model with Non-Uniform Frost

Growth Prediction

In order to evaluate the HX performance under frosting

conditions, a distributed-parameter heat exchanger

model (Qiao et al, 2015) implemented using Modelica

language on Dymola 4.7 (Dassault Systemes, 2014) is

used. This dynamic heat exchanger model is integrated

with a detailed frost growth prediction model (Qiao et

al, 2017) to account for non-uniform frost accumulation

on a fan-supplied coil. The air flow redistribution is

solved by linearizing a system of non-linear air pressure

drop equalization equations. Readers are referred to

original papers for details of the dynamic HX model and

the frost growth model.

It is worth mentioning that this HX model as well as

the frosting growth model were validated with measured

data for the flash tank vapor injection heat pump cycle

as described in section 2.3. Figure 5 shows the

comparison between the dynamic simulation results and

experimental data for this FTVI system in terms of HX

capacity, power consumption and cycle COP. It can be

seen that the HX model with frost growth model

integrated can predict the transients of this system with

reasonable accuracy under frosting conditions.

Figure 5. Frosting experiment tests vs simulations (Qiao et

al, 2017)

3.2 Transient Simulation Results and Discussion

In this section, the baseline and optimal circuitry designs

are simulated for 6000 seconds frosting test. The

adopted operating conditions is the same as those in

Table 2 (ASHRAE, 2010).

Figure 6 compares the HX capacity between the

baseline and optimal design. Both capacities decrease as

frost accumulates on HX surface. However, the capacity

of the baseline decreases faster than the optimal design,

which ultimately yields a 11.6% capacity difference at

the end of 6000s frosting test.

Figure 6. Evaporator capacity transients

Figure 7 shows the transients of the total frost mass

accumulation on HX surface. At the early stage of the

frosting test, the frost mass on the two HXs are very

close. The frost mass starts to show noticeable

difference after 3300s and the difference ends up to be

5.1% at 6000s (4.12 kg frost on the baseline and 3.91 kg

frost on the optimal design).

Figure 7. Frost mass transients

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000

H
X

 C
a

p
a

ci
ty

 [
k

W
]

Time [s]

Baseline Optimal

11.6% Capacity Difference

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000 5000 6000

T
o

ta
l

F
ro

st
 M

a
ss

 o
n

 H
X

 [
k

g
]

Time [s]

Baseline Optimal

5.1% Frost Mass Difference

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions

DOI Proceedings of the 13th International Modelica Conference 263
10.3384/ecp19157259 March 4-6, 2019, Regensburg, Germany

Figure 8 presents the frost mass distribution on each

tube bank of the two HXs. It is evident that the 1st tube

bank of the baseline has much faster frost accumulation

rate. Although the frost growth rate for the 2nd bank of

the baseline is less than the frost growth rate of the 2nd

bank of the optimal design, it doesn’t provide much

benefit for the baseline, because the large amount of

frost on the 1st bank tends to dominate the air flow

resistance of the entire coil. In fact, the slow frost growth

on the 2nd bank attributes to the insufficient air which

can flow through the 1st bank to reach the 2nd bank.

In other words, despite the total frost growth rate on

the two HXs are similar (Figure 7), the bank-wise frost

distribution on the optimal circuitry is more uniform

than that of the baseline (Figure 8).

Figure 8. Frost distribution on different banks

Figure 9 and Figure 10 perform an in-depth

observation on the frost distribution by presenting the

time evolution of the frost thickness on each tube for the

two HXs. It is prominent that the frost thickness on the

tubes at the 1st bank of optimal design (Figure 10, tube

#1 to #32) are much less than that of the baseline (Figure

9, tube #1 to #32). This indicates that in addition to the

uniform bank-wise frost distribution, the optimal design

also yields more uniform frost distribution on each tube.

As listed in Figure 9 and Figure 10, at the end of the test

(6000s), the standard deviation of frost thickness among

all tubes is 0.22 mm for the baseline, while that of the

optimal is only 0.13 mm. This result implies that the

proposed circuitry optimization approach can generate

circuitry design with more uniform frost distribution.

Figure 9. Evolution of per tube frost thickness (baseline)

Figure 10. Evolution of per tube frost thickness (optimal)

Figure 11 shows the transients of the air volume flow

rate during the frost buildup process. It can be seen that

the air flow rate reduction of the baseline coil is

substantially higher than that of the optimal design. The

non-uniform frost distribution results in 16.7% air flow

rate difference at the end of the frosting test. This

reinforces the previous finding that the capacity merit of

the optimal design attributes to the superior

characteristics of the frost accumulation and the

associated effect on the air side pressure drop.

Figure 11. Transients of calculated air volume flow rate

4 Conclusion

This study proposes a novel TFHX circuitry

optimization approach to obtain circuitry design with

improved HX performance under frosting conditions. In

order to verify the efficacy of the proposed approach, a

dynamic HX model integrated with frost growth model

is used to evaluate the performance of baseline and

optimal circuitry designs. The results show that the

optimal circuitry leads to a predicted 11.6% HX

capacity improvement and 5.1% frost mass reduction at

the end of the 6000 seconds frosting test. Although the

actual improvement from the optimal circuitry design

needs to be further validated by manufacturing and

testing the HX, these results demonstrate that the

proposed approach has potential to generate circuitry

designs with larger HX capacity, more uniform frost

distribution and therefore longer evaporator operation

time between defrost operations.

0

0.5

1

1.5

2

2.5

3

3.5

0 1000 2000 3000 4000 5000 6000

F
ro

st
 M

a
ss

 p
er

 H
X

 B
a

n
k

 [
k

g
]

Time [s]

Baseline_1st_Bank

Baseline_2nd_Bank

Optimal_1st_Bank

Optimal_2nd_Bank

Time [s] 1000 2000 3000 4000 5000 6000

Std(Frost Thickness) [mm] 0.12 0.19 0.21 0.21 0.22 0.22

Sum(Total Frost Mass) [kg] 0.78 1.59 2.34 3.01 3.59 4.12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

F
ro

st
 T

h
ic

k
n

es
s

o
n

 E
a

ch
 T

u
b

e
[m

m
]

Tube Number

1000 s 2000 s

3000 s 4000 s

5000 s 6000 s

Time [s] 1000 2000 3000 4000 5000 6000

Std(Frost thickness) [mm] 0.10 0.18 0.18 0.16 0.14 0.13

Sum(Total Frost Mass) [kg] 0.78 1.57 2.35 2.91 3.43 3.91

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

F
ro

st
 T

h
ic

k
n

es
s

o
n

 E
a

ch
 T

u
b

e
[m

m
]

Tube Number

1000 s 2000 s

3000 s 4000 s

5000 s 6000 s

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000

A
ir

F

lo
w

 R
a

te
 [

C
F

M
]

Time [s]

Optimal

Baseline

16.7% Air Flow Rate Difference

Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions

264 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157259

Acknowledgements

This work was supported by the Modeling and

Optimization Consortium at the University of Maryland.

References

Aljuwayhel, N., Reindl, D., Klein, S., and Nellis, G. (2007).

Comparison of parallel-and counter-flow circuiting in an

industrial evaporator under frosting conditions.

International Journal of Refrigeration, 30(8), 1347-1357.

ASHRAE. (2010). Methods of testing for rating seasonal

efficiency of unitary air conditioners and heat pumps.

ANSI/ASHRAE Standard, Atlanta, GA, USA.

Blasius, H. (1907). Grenzschichten in Flüssigkeiten mit

kleiner Reibung: Druck von BG Teubner.

Dassault Systemes (2014). Dymola 7.4.

Gnielinski, V. (1976). New equations for heat and mass

transfer in turbulent pipe and channel flow. Int. Chem. Eng.,

16(2), 359-368.

Jiang, H., Aute, V., and Radermacher, R. (2006).

CoilDesigner: a general-purpose simulation and design tool

for air-to-refrigerant heat exchangers. International Journal

of Refrigeration, 29(4), 601-610.

Kim, N.-H., Yun, J.-H., and Webb, R. (1997). Heat transfer

and friction correlations for wavy plate fin-and-tube heat

exchangers. Journal of Heat Transfer, 119(3), 560-567.

Li, Z. and Aute, V. (2018). Optimization of Heat Exchanger

Flow Paths Using a Novel Integer Permutation Based

Genetic Algorithm. EngOpt 2018 Proceedings of the 6th

International Conference on Engineering Optimization,

Lisboa, Portugal.

Li, Z., Ling, J., and Aute, V. (2018). Tube-fin heat exchanger

circuitry optimization using integer permutation based

genetic algorithm. Paper presented at the 17th International

Refrigeration and Air Conditioning Conference Purdue.

Malhammar, A. (1988). Monitoring frost growth in

evaporators is a complex process. Australian Refrigeration,

Air conditioning and Heat.

Müller-Steinhagen, H. and Heck, K. (1986). A simple friction

pressure drop correlation for two-phase flow in pipes.

Chemical Engineering and Processing: Process

Intensification, 20(6), 297-308.

Ogawa, K., Tanaka, N., and Takeshita, M. (1993).

Performance improvement of plate fin-and-tube heat

exchangers under frosting conditions. Paper presented at

the the 1993 Winter Meeting of ASHRAE Transactions.

Part 1, Chicago, IL, USA, 01/23-27/93.

Qiao, H., Aute, V., and Radermacher, R. (2015). Transient

modeling of a flash tank vapor injection heat pump system–

Part I: Model development. International Journal of

Refrigeration, 49, 169-182.

Qiao, H., Aute, V., and Radermacher, R. (2017). Dynamic

modeling and characteristic analysis of a two-stage vapor

injection heat pump system under frosting conditions.

International Journal of Refrigeration, 84, 181-197.

Sanders, C. T. (1974). The influence of frost formation and

defrosting on the performance of air coolers.

Shah, M. M. (2017). Unified correlation for heat transfer

during boiling in plain mini/micro and conventional

channels. International Journal of Refrigeration, 74, 606-

626. doi:10.1016/j.ijrefrig.2016.11.023

Xu, X., Hwang, Y., and Radermacher, R. (2013). Performance

comparison of R410A and R32 in vapor injection cycles.

International Journal of Refrigeration, 36(3), 892-903.

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

DOI Proceedings of the 13th International Modelica Conference 265
10.3384/ecp19157265 March 4-6, 2019, Regensburg, Germany

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor
Environment
Qiao, Hongtao and Han, Xu and Nabi, Saleh and Laughman, Christopher

265

Coupled Simulation of a Room Air-conditioner

with CFD Models for Indoor Environment

Hongtao Qiao1* Xu Han2 Saleh Nabi1 Christopher R. Laughman1
1Mitsubishi Electric Research Laboratories, USA, {qiao,nabi,laughman}@merl.com

2University of Colorado Boulder, USA, Xu.Han-2@colorado.edu

Abstract
Coupled simulation of building energy systems (BES)

and computation fluid dynamics (CFD) often focuses on

the integration of air handlers with indoor environment,

and does not incorporate vapor compression systems

into the analysis, yielding inaccurate prediction of

building energy consumption. This paper presents a

coupled simulation to explore the pull-down

performance of a room air conditioning system. The

dynamic models of the air-conditioner are constructed

in Modelica, whereas the indoor environment is

simulated in OpenFOAM. Dynamic characteristics will

be compared with different vane angles and airflow

modes. Numerical simulations demonstrate that both

vane angle and airflow mode exhibit pronounced impact

on the pull-down time. Meanwhile, the well-mixed

assumption that most of building energy simulation

programs are built upon exhibits drastically different

dynamic characteristics compared to the detailed CFD

model, suggesting that neglecting non-uniform air flow

and temperature distributions in buildings might lead to

significant errors in control design.

Keywords: Modelica, OpenFOAM, co-simulation,

building energy simulation, vapor compression system

1 Introduction

Buildings account for 40% of the primary energy in the

U.S. and are important sources of CO2 emission.

Currently, roughly half of energy consumption in

buildings is used by spacing heating and cooling. These

end-uses represent significant opportunities to reduce

energy consumption, improve energy security and

reduce CO2 emissions. Therefore, efficiency

improvements in HVAC systems become more enticing

and will play a crucial role in energy revolution.

Due to the multi-scale, highly nonlinear and complex

nature of their dynamic characteristics, design of high

energy-efficient HVAC systems nowadays heavily

relies on computer simulations because they can not

only provide verifiable and robust predictions of system

performance, but also radically accelerate the design,

testing, and specification of these systems by drastically

reducing the number of experimental iterations required.

Meanwhile, model-based design approach is often used

to develop and evaluate advanced control algorithms of

HVAC systems.

The assessment of closed-loop control performance

of HVAC systems often requires an integrated approach

that couples the dynamic models of HAVC system with

building energy simulation programs. Most of these

building simulation programs assume that indoor air is

well mixed in order to simplify the computation.

However, this prevailing assumption fails to simulate

the distribution of temperature, pressure, concentration

in buildings with large space and high heat gain. As a

result, these programs cannot accurately predict

building energy consumption and the closed-loop

performance of HVAC systems. In addition, they cannot

satisfy advanced design requirements, such as personal

cooling/heating in occupied zone and optimal sensor

placement, due to lack of local thermal comfort

information (Zhai et al., 2002).

In contrast with the well-mixed assumption,

computational fluid dynamics (CFD) divides fluid

domain into a large number of small volumes such that

a detailed prediction of airflow and temperature

distributions, thermal comfort and indoor air quality can

be obtained. Consequently, coupling building energy

simulation programs with CFD can be effective to

overcome the deficiencies of stand-alone programs and

achieve better results. In such a way, building

simulations can provide dynamic boundary conditions

to CFD, whereas CFD simulates the airflow dynamics

based on these boundary conditions and then can send

local airflow and temperature information back to

building simulations such that the closed-loop

performance of HVAC systems can be evaluated.

Recently, there is an emerging interest in using fast

fluid dynamics (FFD) for indoor environment

simulation instead of full-scale CFD because of superior

computational speed of FFD (Zuo et al., 2016).

Compared with CFD, however, FFD possesses many

limitations. First of all, FFD does not support

unstructured mesh and thus cannot deal with complex

geometry. Meanwhile, FFD does not have turbulence

flow models, which may yield inaccurate predictions in

airflow dynamics. Moreover, FFD assumes that heat

flow is uniformly injected into space and therefore

cannot handle non-uniform heat source/sink. All these

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

266 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157265

limitations impose great challenges when applying FFD

in indoor environment simulations.

Comprehensive review of the literature regarding the

coupled simulation of building energy systems and the

indoor environment (Tian et al., 2018) indicates that the

previous studies only focused on the integration of air

handler units with indoor environment, whereas none of

these studies ever took into account the dynamics of

vapor compression systems, which are the essential part

of building HVAC systems through which heat is

removed from or added to buildings. Also, they are the

primary energy consumer compared to other auxiliary

components, such as pumps and fans. Without

incorporating vapor compression systems into the

coupled analysis, it is impossible to accurately predict

building energy consumption. Meanwhile, feedback

control design of such systems requires to account for

the complex dynamic characteristics of phase-changing

refrigerant flow, which are affected by air flows inside

buildings. Therefore, it is worthwhile to couple vapor

compression system with indoor environment to explore

the closed-loop dynamic performance of these systems.

Another interesting finding through literature review

is that the reported coupled simulations are all based on

the commercial CFD programs, e.g., Fluent, CFX and

STAR-CD, rather than open-source code. These CFD

programs are extremely expensive and might not be

readily available for everyone. Development and

maintenance of the middleware that couples the

commercial CFD programs with building energy

simulations could be costly and time-consuming since

the source code is not generally accessible. As an open-

source and well recognized CFD engine, OpenFOAM

possesses many advantages compared to the

commercial programs because of unrestricted access to

its source code. Full control on OpenFOAM simulator

makes integration with other programs through

middleware much easier.

To bridge the identified research gap, this paper

attempts to couple the dynamic models of a wall-

mounted split-type air-conditioner with the detailed

CFD model for indoor environment to explore its

closed-loop pull-down performance with different vane

angles and airflow modes. The dynamic models of the

air-conditioner are constructed in Modelica, whereas the

indoor environment is simulated in OpenFOAM.

Therefore, a co-simulation platform that couples

Modelica with OpenFOAM needs to be developed.

Dynamic characteristics will be compared against those

obtained by the well-mixed air model to demonstrate the

effect of non-uniform airflow distribution on the system

performance.

The remainder of the paper is organized as follows.

In Section 2, the coupling mechanisms between

Modelica and OpenFOAM are presented. In Section 3,

we describe the dynamic models for the air-conditioning

system and the models for air flow dynamics. In Section

4, we discuss the influence of the vane angle and airflow

mode on the pull-down performance of the air-

conditioning system. Conclusions from this work are

then summarized in Section 5.

2 Coupling Mechanisms

A middleware interface is required to facilitate data

exchange between individual programs, i.e., Modelica

and OpenFOAM in this study. A quasi-dynamic data

synchronization scheme is used in the coupled

simulation, which means that the received data of

individual programs are discrete with time and remain

unchanged between two successive synchronization

points, and will be only updated when the next

synchronization point is reached. The synchronization

time step needs to be predefined before simulation, and

cannot change during simulation. Please be noted that

both Modelica and OpenFOAM have their respective

integration time steps, which can be either fixed or

adaptive and are usually much smaller than the

synchronization time step.

Zuo et al. (2016) developed a coupled simulation

between FFD and the Modelica Buildings library for the

dynamic ventilation system with stratified air

distribution. In order to make life easier, we decided to

modify their framework so that OpenFOAM can

communicate with Modelica. Therefore, the

implementation on the Modelica side and between

Modelica and middleware requires no modifications.

Different from that Modelica uses external C functions

to exchange data with the middleware, OpenFOAM

uses its built-in externalCoupled function object

which provides a file-based communication interface to

transfer data to and from OpenFOAM (OpenFOAM

Foundation, 2017), as shown in Fig. 1. The data

exchange employs specialized boundary conditions to

provide either uni- or bi-directional models. At start-up,

the externalCoupled function creates a lock file,

i.e., OpenFOAM.lock, to signal the external source,

i.e., middleware in this case, to wait. During the

boundary condition update, boundary values are written

to file, e.g., data.out. The lock file is then removed,

instructing the external source to take control of the

program execution. When ready, the external program

should create the return values to file, e.g., data.in,

and then re-instate the lock file. The

externalCoupled function will then read the return

values, and pass program execution back to

OpenFOAM. The logic of data exchange between

Modelica and OpenFOAM is shown in Fig. 2.

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

DOI Proceedings of the 13th International Modelica Conference 267
10.3384/ecp19157265 March 4-6, 2019, Regensburg, Germany

Figure 1. Coupling between Modelica and OpenFOAM.

Figure 2. Logic of data exchange in co-simulation.

3 Model Development

The studied air-conditioning system consists of two

main parts: the outdoor unit and the indoor unit. The

outdoor unit is installed on or near the wall outside of

the room or space that you wish to cool. The outdoor

unit houses the compressor, condenser, whereas the

indoor unit contains the evaporator, expansion device, a

blower fan and an air filter. Fig. 3 illustrates the

schematic of a typical air-conditioning system.

Figure 3. Schematic of an air-conditioning system.

3.1 Compressor Model

A variable-speed low-side scroll compressor, in which

the motor is cooled by compressed low-pressure suction

refrigerant, was used in this work. Because the

performance map for the compressor has reduced

accuracy when extrapolated beyond the specific ranges

of saturated discharge and suction temperatures over

which it is tabulated, we converted the performance map

into a set of curve-fitted equations to avoid poor

numerical behavior during the simulations.

The volumetric efficiency of this compressor model

is a function of the suction pressure, discharge pressure

and compressor frequency

 2

v 0 1 2 3 41dis suc sucp p p (1)

System

Equations

Modelica

System

Solvers

External C

functions

Customized

I/O

Coupling

Logic

Middleware

Interface

Memory

sharing

File

sharing

CFD

Models

OpenFOAM

CFD

Solvers

External

coupled

function

&

Customized I/O

*.h *.c
*.mo

*.c *.so *.h *.txt

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

268 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157265

where = pdis/psuc, i = ai,1 + ai,2 + ai,32, and = f/fnom.

The power consumed by the compressor is determined

by

 2

1 3 4suc suc
W p V

 (2)

where i = bi,1 + bi,2 + bi,32. In addition, the fraction

of the compressor power absorbed by the refrigeration

is determined by
2

0 1 2 (3)

where i = ci,1 + ci,2 + ci,32. Lastly, the mass flow rate

delivered by the compressor is determined by

v suc dispm f V (4)

and the enthalpy of the discharged refrigerant is

/dis such W m h (5)

3.2 Expansion Valve Model

Linear electronic expansion valves (LEVs) were also

used in the system. A standard orifice-type relationship

between mass flow rate and pressure drop across the

valve was used to describe the system behaviour, in

which the mass flow rate through the valve is

determined by the flow coefficient, the inlet density, and

the pressure difference across the valve

v inm C p (6)

where the flow coefficient Cv is a function of the valve

opening determined by regression based on

experimental data.

3.3 Heat Exchanger Models

The heat exchangers were described by a finite-volume

model of the heat and fluid flow. Each heat exchanger

segment is divided into three sections: the refrigerant

stream, the finned walls, and the air stream. The

refrigerant stream is described by a one-dimensional

flow with fluid properties varying only in the direction

of flow; consequently, these properties are uniform or

averaged at every cross section along the axis of the

channel. Additional assumptions used to simplify the

dynamic models included: (1) the fluid is Newtonian,

(2) axial heat conduction in the direction of refrigerant

flow is ignored, (3) viscous dissipation is neglected, (4)

liquid and vapor are in thermodynamic equilibrium in

each volume in the two-phase region, (5) the potential

energy and kinetic energy of the refrigerant are

neglected, and (6) dynamic pressure waves are of minor

importance and are thus neglected in the momentum

equation (Brasz and Koenig, 1983). The conservation

laws can thus be formulated as follows:

 0A GA
t z

 (7)

 wh A Pq pA
t z t

GhA

 (8)

0w

p
A P

z

 (9)

where average density, average mass flux, average

density-weighted enthalpy, average flow-weighted

enthalpy, and average wall shear stress are defined as

follows, respectively.

1

A

dA
A

 ,
1

A

G udA
A

 ,
1 1

A

h hdA
A

 ,

1 1

A

h uhdA
G A

 ,

1
w w

P

dl
P

 .

For single-phase flow, the refrigerant density can be

presumed to be uniform at each cross sectional area, and

the following relations can be readily obtained

 (10)

h h h (11)

This work relaxed the typical homogeneous flow

assumption of equality between the velocities of vapor

and liquid for control volumes in the two-phase region

to achieve a more realistic refrigerant system mass

inventory for the overall system. This necessitated the

use of the average density and specific enthalpies for

two-phase flow, which are determined by

 1g f (12)

 1 /g g f fh h h
 (13)

 1g fh h x h x (14)

where the void fraction and flow quality are defined as

gA

A
 (15)

g gu
x

G

 (16)

The flow quality x is distinct from the static quality x̂ ,

which is defined as the ratio of mass of vapor to that of

the total mixture,

ˆ

1

g g

g f g f

M
x

M M

 (17)

Hence, the density-weighted enthalpy can be described

using the static quality

 ˆ ˆ1g fh xh x h (18)

The pressures and density-weighted enthalpies of

each control volume are used as the state variables in the

heat exchanger model. Density-weighted enthalpy can

be related to flow-weighted enthalpy via

 ˆ
g f

h h x x h h

 (19)

Note that x and x̂ are both zero for the subcooled

liquid and unity for the superheated vapor, implying that

these two enthalpies should be equal to each other for

single-phase flows. All of the variables in Eq. (19) are

thermodynamic properties, and can be readily calculated

except for the flow quality x.

While this refrigerant-side model was principally

developed for the heat exchangers, it was also used to

describe the behavior of the refrigerant pipes connecting

the components. These pipe models were an important

part of the overall system model because they contained

a significant fraction of the refrigerant in the entire

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

DOI Proceedings of the 13th International Modelica Conference 269
10.3384/ecp19157265 March 4-6, 2019, Regensburg, Germany

system. The main distinction between the pipe models

and the heat exchanger models regards the air-side

models used: the heat exchanger air-side models

describe the effect of the enhanced heat transfer surface,

while the pipe air-side models use natural convection as

the boundary condition.

The model of the air-side of the heat exchanger is

based on the following assumptions: (1) one-

dimensional quasi-steady airflows, (2) negligible heat

conduction in direction of the air flow, (3) the

temperature profile within fins follows the steady-state

profile, allowing the use of heat transfer and combined

heat and mass transfer fin efficiencies, (4) simultaneous

heat and mass transfer follows the Lewis analogy, and

(5) equal temperature of tube wall and fins within each

control volume. Under these assumptions, the governing

equations for the air side describing the energy balances

for the wetted coils are

 , , ,
a

a p a a o t fin o fin w a

dT
m c y A A T T

dy
 (20)

, , w,

min 0,
a

a m o t fin o fin sat a

d
m y A A

dy

 (21)

where w,sat is the humidity ratio of saturated air

evaluated at Tw. The mass transfer coefficient m is

determined by applying the Lewis analogy.

Finally, without considering the axial conduction

along the tube, the energy equation of the tube walls and

associated fins can be written as

 , ,

w

t p t fin p fin r a

dT
M c M c q q

dt
 (22)

r r r w

q A T T (23)

 , , , , ,a a p a a in a out a in a out fg
q m c T T h (24)

3.4 CFD Model

CFD uses numerical simulations to predict the fluid flow

phenomena based on the conservation laws

(conservation of mass, momentum and energy)

governing fluid motion. The general conservation

equation of any quantity is given by

 U D S
t

 (25)

In the equation above, D stands for the diffusion

coefficient, that can be a scalar or a vector and S stands

for any kind of sources or sinks that influence the

quantity . Now we are able to simply derive the mass,

momentum and other conservative equations out of this

by replacing the quantity by the quantity of interest.

The partial differential conservation equations are

more complex than they appear and they are non-linear,

coupled, and difficult to solve. Therefore, discretization

methods, e.g., finite volume method, are used to

approximate the differential equations by a system of

algebraic equations, which can be solved on a computer.

The approximations are applied to small domains in

space and/or time so the numerical solution provides

results in discrete locations in space and time.

4 Case Study

The objective of this numerical study is to explore the

dynamic performance of a wall-mounted split-type air-

conditioner with different vane angles and airflow

modes during pull-down operation. The air conditioning

system used R410A as the working fluid. The

compressor was a low-side scroll compressor with

displacement of 6.8 cm3 and nominal rotational speed of

3500 rpm, and both heat exchangers were louvered fin-

and-tube heat exchangers. The heat exchanger models

were augmented by a set of empirical closure relations

describing the single- and two-phase heat transfer

coefficients and frictional pressure drops for the fluid on

both the refrigerant side and the air-side (Qiao et al.,

2015). The Levy void fraction model (Levy, 1967) was

used to compute the two-phase refrigerant mass

inventory. A tube-by-tube approach was employed for

the heat exchanger analysis, i.e., the performance of

each tube was analyzed separately and each tube was

associated with different refrigerant and air parameters.

Two PI controllers in the air-conditioning system

adjust the EEV opening and compressor speed to

control the suction superheat at 3K and the return air

temperature at 26C, respectively. The values of PI

gains are given in Table 1.

The indoor unit is installed at the center of the wall in

a room with dimensions of 5 5 2.6 m (length width

 height), as shown in Fig. 4. The solver settings and

boundary conditions for the CFD room model are

summarized in Table 2. To reduce the calculation load,

the indoor unit is simplified as a cube with dimensions

of 0.70 0.25 0.30 m (length width height). The

inlet is at the bottom of the indoor unit, while the outlet

is on the top of the indoor unit.

The closed-loop performance of the air-conditioner is

compared with three different vane angles and two

airflow modes. The vane angle is defined as the angle

between the horizontal plane and the up-down flap (Fig.

4). Three vane angles are small (15), medium (45) and

high vane angle (75), respectively. Airflow rate of the

indoor unit is regulated by the speed of the fan in the

unit. The supply air flow rate is 0.08 m3/s and 0.15 m3/s

for low and high fan speeds, respectively. According to

Lee et al. (2017), the air flow rate only changes slightly

when the vane angle varies since the flow resistance of

the up-down flap is very small. In the presented study,

therefore, the same air flow rate is used for the same

airflow mode regardless of vane angles.

Modelica air-conditioner models define the inlet

boundary conditions for the CFD model, i.e., the inlet

air temperature and velocity, while CFD calculates the

outlet air temperature for the Modelica models.

Meanwhile, Modelica models provide the time-average

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

270 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157265

surface temperatures of the side walls and the ceiling,

and CFD calculates the surface heat flux for the

Modelica models. The synchronization time step is 10

sec. The Modelica models are implemented using the

Dymola 2019 simulation environment. The co-

simulation runs on a desktop with an Intel i7-2600

processor with 8 cores and 8 Gb of RAM, and the ratio

of the physical time to the CPU time is approximately

1:3.

Table 1. Gains of PI controllers.

Parameter Value

Kp (Hz/C) of compressor rpm controller 2.0

Ti (sec) of compressor rpm controller 250

Kp (Count/K) of suction SH controller 1.25

Ti (sec) of suction SH controller 66

Table 2. Solver settings and boundary conditions of CFD

room model.

Item Content

Computational

domain

5 5 2.6 m (length

width height)

Turbulence model k-epsilon turbulence model

Time dependent
Transient simulation

(Courant number < 1)

Inlet boundary

condition

externalCoupledTemperature

& externalCoupledVelocity

Outlet boundary

condition

zeroGradient for temperature

and velocity

Side walls &

ceiling

Isothermal condition

(26.85C)

Floor
fixed temperature gradient

(fixed at 356 K/m)

Solver buoyantPimpleFoam

Scheme MUSCL

Figure 4. Wall-mounted air-conditioner in a room.

(a)

(b)

(c)

(d)

Figure 5. Dynamics of air-conditioning system in high

airflow mode.

5m

5m

2.6m

M

M

24

26

28

30

32

34

0 2000 4000 6000 8000

R
e

tu
rn

 a
ir

 T
 [

d
e

g
C

]

Time [sec]

High_15deg
High_45deg
High_75deg
High_MixedAir
Set point

14

16

18

20

22

24

26

28

0 2000 4000 6000 8000

Su
p

p
ly

 a
ir

 T
 [

d
e

g
C

]

Time [sec]

High_15deg

High_45deg

High_75deg

High_MixedAir

20

40

60

80

100

0 2000 4000 6000 8000

C
o

m
p

re
ss

o
r

fr
e

q
u

e
n

cy
 [

H
z]

Time [sec]

High_15deg

High_45deg

High_75deg

High_MixedAir

1

2

3

4

5

0 2000 4000 6000 8000

C
O

P
 [

-]

Time [sec]

High_15deg High_45deg

High_75deg High_MixedAir

Room

Outdoor unit

Indoor unit

vane angle

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

DOI Proceedings of the 13th International Modelica Conference 271
10.3384/ecp19157265 March 4-6, 2019, Regensburg, Germany

(a)

(b)

(c)

(d)

Figure 6. Dynamics of air-conditioning system in low

airflow mode.

Fig. 5 illustrates the dynamic characteristics of return

air temperature (a), supply air temperature (b),

compressor frequency (c) and coefficient of

performance (COP) (d) at different vane angles in the

high airflow mode, respectively. It is evident from Fig.

5a that the vane angle affects the pull-down time, which

is defined as the time required to bring down the

temperature of room air from the initial temperature to

the final desired temperature. The pull-down time for

vane angles of 15, 45 and 75 is 950 sec, 1630 sec and

1300 sec, respectively. When the vane angle is 15, the

jet flow takes the shortest distance to reach the outlet

and entrains the least hot air from the heated floor during

the period, resulting in the fastest pull-down. When the

vane angle is 75, the jet flow takes much longer

distance to reach the outlet and exhibits a prolonged

pull-down time. When the vane angle is 45, the jet flow

reaches the vicinity of the floor center, showing the

strongest mixing effect with the hot air on top of the

heated floor, resulting in the slowest pull-down. Fig. 5b

reveals the transients of supply air temperature and it

can be observed that the supply air temperatures vary

quite differently for different vane angles under the

closed-loop control. Fig. 5c shows the variations of

compressor speed during pull-down operation. Given

that 15 vane angle has the best pull-down performance,

it is straightforward to expect that this vane angle results

in the lowest compressor speed and the highest COP, as

shown in Fig. 5d.

The pull-down transients in the low airflow mode are

given in Fig. 6. The pull-down time of the low airflow

mode is 1030 sec, 1090 sec and 1440 sec for vane angles

of 15, 45 and 75, respectively. In the low airflow

mode, the jet flow from the indoor unit has a low

momentum and is not affected by the buoyancy easily.

Therefore, mixing effect is not as strong as in the high

airflow case. Low and medium angles yield shorter pull-

down time and higher COP than the high vane angle

case because the travelling distance of the jet flow is

shorter.

The pull-down transients using the mixed air room

model (Wetter et al., 2014) are also given in Figs. 5 and

6. Apparently, the mixed air room model leads to much

longer pull-down time and exhibits more damping than

the CFD room model. This is because the mixed air

model ignores the non-uniformity in the temperature

field and assumes the all the heat is picked up by the jet

flow, resulting in the larger load on the compressor and

higher return air temperature as well as longer pull-

down time. This suggests that the well-mixed air model

might not be suited for control design and therefore a

detailed CFD model is more favorable.

Figs. 7 and 8 show the temperature and airflow

distributions of the middle plane M-M of the room when

the return air temperature reaches the set point in the

high and low airflow modes, respectively. The figures

illustrate that air near the inlet has the lowest

24

26

28

30

32

34

0 2000 4000 6000 8000

R
e

tu
rn

 a
ir

 T
 [

d
e

g
C

]

Time [sec]

Low_15deg

Low_45deg

Low_75deg

Low_MixedAir

Set point

8

12

16

20

24

28

0 2000 4000 6000 8000

Su
p

p
ly

 a
ir

 T
 [

d
e

g
C

]

Time [sec]

Low_15deg

Low_45deg

Low_75deg

Low_MixedAir

40

50

60

70

80

90

100

0 2000 4000 6000 8000

C
o

m
p

re
ss

o
r

fr
e

q
u

e
n

cy
 [

H
z]

Time [sec]

Low_15deg

Low_45deg

Low_75deg

Low_MixedAir

0

1

2

3

4

5

0 2000 4000 6000 8000

C
O

P
 [

-]

Time [sec]

Low_15deg Low_45deg

Low_75deg Low_MixedAir

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

272 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157265

temperatures, whereas air near the walls and floor and

has the highest temperatures. The air temperatures

clearly are not uniformly distributed as assumed by the

well-mixed air model.

(a)

(b)

(c)

Figure 7. Temperature and airflow distributions in high

airflow mode: (a) - 15 vane angle; (b) - 45 vane angle;

(c) - 75 vane angle.

(a)

(b)

(c)

Figure 8. Temperature and airflow distributions in low

airflow mode: (a) - 15 vane angle; (b) - 45 vane angle;

(c) - 75 vane angle.

5 Conclusions

This paper demonstrated a coupled simulation of

Modelica and OpenFOAM for the transient modeling of

a wall-mounted split-type room air conditioner during

pull-down operation. The use of coupled simulation

with detailed CFD model for indoor environment

facilitates more accurate exploration of system

dynamics than using the well-mixed air model due to the

inherent non-uniform air flow and temperature

distributions in buildings. Numerical simulations

indicated that the vane angle and airflow mode showed

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

DOI Proceedings of the 13th International Modelica Conference 273
10.3384/ecp19157265 March 4-6, 2019, Regensburg, Germany

pronounced impact on the pull-down performance of

air-conditioning system. Future work will include

explore the effect of location of sensor and heat source

as well as experimental validation.

References

Zhiqiang Zhai, Qingyan Chen, Philip Havesb and Joseph H.
Klems. On Approaches to Couple Energy Simulation and

Computational Fluid Dynamics Programs. Buildings and
Environment, No 37, pp. 857-864, 2002. doi:

/10.1016/S0360-1323(02)00054-9.

Wei Tian, Xu Han, Wangda Zuo and Michael D. Sohn.
Building Energy Simulation Coupled with CFD for Indoor

Environment: A Critical Review and Recent Applications.
Energy and Buildings, No 165, pp. 184-199, 2018. doi:

10.1016/j.enbuild.2018.01.046.

Wangda Zuo, Michael Wetter, Wei Tian, Dan Li, Mingang Jin
and Qingyan Chen. Coupling Indoor Airflow, HVAC,

Control and Building Envelope Heat Transfer in the

Modelica Buildings Library. Building Performance
Simulation, No 9, pp. 366-381. 2016. doi:

10.1080/19401493.2015.1062557.

OpenFOAM Foundation. https://github.com/OpenFOAM/
/OpenFOAM-dev.

Joost J. Brasz and Kenneth Koenig. Numerical methods for
the transient behavior of two-phase flow heat transfer in

evaporators and condensers. Numerical Properties and
Methodologies in Heat Transfer, pp: 461-476, 1983.

Hongtao Qiao, Vikrant Aute and Reinhard Radermacher.
Transient Modeling of a Flash Tank Vapor Injection Heat

Pump System - Part I: Model Development. International
Journal of Refrigeration, No 49, pp.169–182, 2015. doi:

10.1016/j.ijrefrig.2014.06.019.

Salomon Levy. Forced Convection Subcooled Boiling
Prediction of Vapor Volumetric Fraction. International

Journal of Heat and Mass Transfer, No 10, pp: 951-965,
1967. doi: 10.1016/0017-9310(67)90071-3.

Sihwan Lee, Juyoun Lee and Shinsuke Kato. Influence of
Vane Angle on the Effectiveness of Air Conditioning of
Wall-mounted Split-type Air Conditioners in Residential

Buildings. Science and Technology in the Built
Environment, No 23, pp. 761-775. 2017. doi:

10.1080/23744731.2016.1260410.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui and
Xiufeng Pang. Modelica Buildings Library. Building

Performance Simulation, No. 7, pp: 253-270, 2014. doi:
10.1080/19401493.2013.765506.

Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

274 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157265

DOI Proceedings of the 13th International Modelica Conference 275
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 3B: LANGUAGE
Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension
Bürger, Christoff

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia
Fritzson, Peter and Pop, Adrian and Sjölund, Martin and Asghar, Adeel

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language
Thiele, Bernhard and Lie, Bernt and Sjölund, Martin and Fritzson, Peter

Towards a High-Performance Modelica Compiler
Agosta, Giovanni and Baldino, Emanuele and Casella, Francesco and Cherubin, Stefano and Leva, Alberto
and Terraneo, Federico

.

276 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 277
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

Modelica language extensions for practical non-monotonic modelling: on the need
for selective model extension
Bürger, Christoff

277

Modelica language extensions for practical non-monotonic
modelling: on the need for selective model extension

Christoff Bürger1
1 Dassault Systèmes AB, Sweden, Christoff.BUeRGER@3ds.com

Abstract
A Modelica language extension for structural non-
monotonic model variation is presented. It enables
selective model extension: the well-defined refinement
of models by deselecting components and connections
not of interest or inappropriate for a new design. The
need for such variations is explained by the example of
Modelica Synchronous, whose adaptation is suffering
from crosscutting synchronous decompositions that
cannot be anticipated when continuous models are
designed; instead, contradicting model structure has to
be removed when an actual sampling is desired.
Besides synchronous, further applications for selective
model extension are investigated using our prototype
implementation in Dymola.
Keywords: Modelica, model variation, synchronous

1 Introduction
Of key importance for Modelica is model variation
support, enabling simulation of design alternatives and
their step-wise refinement from idealistic prototypes to
physically-detailed solutions. To that end, Modelica
provides many different abstraction and variation
techniques, like model extension, replaceable
components, parameters and component modifications.

Having a strong heritage from object-oriented
programming however, Modelica’s model variation
constructs are monotonic with respect to model
structure because components, connections or
equations can only be added but not removed when
extending models. An unfortunately overlooked
consequence of flatting is however, that such a
structural-monotonic type-strictness, as known from
class inheritance in traditional strongly typed object-
oriented programming languages like Java or C++, is
not required in Modelica. In Modelica, models are
flattened before simulation. Flattening essentially
reduces the design space of a set of models to a fixed
number of instances according to a given
parameterization and replaces the resulting instances
with their corresponding fixed equation system
(Modelica Association, 2017). The difference to
traditional strongly typed object-oriented programming
is striking: all instances are known before runtime,
such that they can be statically constructed. There
exists no runtime control-flow in Modelica that may

cause different instantiations of entities; dynamic
dispatch is not required, ultimately neglecting object-
oriented polymorphism and the type-system
restrictions that typically come with it (Wegner, 1987;
Knudsen 1993)1. As a consequence, Modelica’s current
restriction that sub-models must inherit all components
and connections of their base-models when extending –
that model extension must be monotonic with respect
to model structure – can be dropped.

Leveraging on this observation, the paper presents a
new Modelica-language extension for non-monotonic
modelling: selective model extension. Selective model
extension can be used to exclude components and
connections in a well-defined way from inheritance
when extending models. Its semantic can be fully
understood in terms of model-diagram edits, such that
tools can support a convenient graphical user interface
for structure-wise non-preserving model variation. The
main contribution of selective model extension
therefore is to enable unforeseen structural variability
without requiring deliberately prepared base-models.

The paper starts with an evaluation on the need for
non-monotonic model variation in Modelica (Section
2). To that end, the application of Modelica
Synchronous (Elmqvist et al, 2012; Otter et al, 2012)
to refine continuous models for discrete use-cases is
chosen which requires non-monotonic modeling to
handle the crosscutting clock-partitions of different
synchronous designs. Based on the non-monotonic
modeling requirements elaborated throughout that
discussion, an exact syntax and semantic for selective
model extension is presented (Section 3). A
demonstration of general practical modelling-benefits,
not only for Modelica Synchronous, follows (Section
4). A prototype implementation in Dymola is used on a
sophisticated example taken from the Modelica
Standard Library to show how selective model
extension enables model-development along the lines
of real engineering processes – i.e., in terms of step-
wise model variation and adaptation – avoiding model
variation inconsistencies and artificial intermediate
models without physical meaning.

1Object-oriented languages typically require monotony of inheritance to
ensure the functionality of entities is well-defined for all usage-contexts,
independent of control-flows determining instantiation. If sub-classes
could drop base-class functionality – i.e., inheritance could be non-
monotonic – runtime errors are possible whenever base-class
functionality is called on sub-class objects. Static type-systems enforce
monotonic inheritance to avoid such errors in the first place.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

278 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

2 Motivation: Modelica Synchronous
adaptation challenges

This section motivates the need for non-monotonic
model variation. As a practical problem the potential of
Modelica Synchronous (Elmqvist et al, 2012; Otter et
al, 2012) for existing examples of the Modelica
Standard Library is investigated. The challenge is to
enable use-case driven partial sampling of continuous
systems without having to change them and with
reasonable adaptation workload. As will be shown, the
crosscutting of synchronous decompositions cannot be
handled by monotonic model variation however; a
refinement-based non-monotonic adaptation is
required, giving rational for the selective model
extension proposed in Section 3.

The modelling problems presented in the following
are not Modelica Synchronous specific; they can be
generalized as will be shown in Section 4.

2.1 Synchronous potential of the MSL
The Modelica Standard Library 3.2.2 has about 60
existing continuous example test-models with
controllers whose discrete modelling might be of
interest (cf. Appendix A for the used selection criteria).
A lot of these test-models share the same controller,
maybe differently parameterized. For example, the 35
models of Electrical.PowerConverters.Examples
interesting for synchronous modelling share just five
controllers defined in PowerConverters.ACDC.Control
and PowerConverters.DCDC.Control. The remaining 25
test-models are much more heterogeneous however,
making each a potentially worthwhile candidate for
synchronous adaptation.

2.2 Objective: synchronous adaptation of
continuous models via refinement

To adapt 60 test-models for synchronous is a major
effort, in particular coordinating so many authors from
different engineering domains. Involvement of the
original authors therefore should be minimized and
mostly only be required to ensure that the controllers of
the existing continuous test-models are relevant for
sampling from a domain perspective. After all, the
existing test-models as such – their purely continuous
modelling – are mature and useful.

To that end, sampling of their controllers should be
an independent task, not requiring changing the
original models. Instead, samplings should be
introduced in terms of derived test-models that only
add discrete partitions, i.e., by refinements adding
samples, holds and clocks with respect to the
components of an existing model. Such derived tests-
models would be partially-discrete instances of their
continuous originals, ultimately enabling validation
and investigation of different samplings.

The original test-models would stay unchanged and
cannot be corrupted by synchronous adaptation errors;
their correctness is assured from previous model
reviews and testing. Code duplication and
inconsistencies are avoided and upcoming library
changes eased. Ideally, future changes of a continuous
model are either automatically incorporated in its
derived partially-discrete models (in case the structural
interface between continuous and discrete parts is not
influenced, i.e., there are no new controller inputs or
outputs), or result in translation errors of its derived
partially-discrete models (denoting that the controller
interface changed and samplings must be adapted).

To support such an iterative development process
with seamless and incremental design from a
continuous whole system model to different partially
discrete variations via model-refinement is of uttermost
importance for the success of Modelica Synchronous;
it enables the incorporation and automatic change
propagation of late continuous and discrete design
changes and would be a distinctive Modelica feature
compared to common block diagram based languages
for causal-modelling of controllers.

2.3 Problem: monotony of model extension
To derive a partially-discrete model by sampling parts
of an existing continuous model requires the
introduction of samples, holds, clocks and their
respective connections such that the derived model has
a consistent clock partitioning. Modelica’s existing
model extension via extends is sufficient to add all
required synchronization components. The derived
model can also add the connections combining the
sample and hold operators of the intended discrete
model partitions with the model parts remaining
continuous. The resulting derived model is inconsistent
however, because it comprises all components of the
original continuous model, particularly the old
connections bypassing the sample- and hold-interface
just introduced; clock-partitioning of the derived model
fails due to the structural singularities resulting from
having contradicting sampled and non-sampled
connections. Since model extension via extends can
only add components, modify the value of inherited
components or exchange components deliberately
prepared for variability via replaceable, it is
impossible to fix clock-partitioning errors due to
inherited connections and therefore consistently
incorporate samplings.

2.4 Problem: prescient modelling
To enable sampling via model extension,
parametrization or modification requires deliberate
preparations of model parts that might become subject
to sampling. For example, models could be prepared
for sampling by pushing the parts constituting
controllers into separate models and referencing them

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 279
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

as replaceable components well-suited for modification
or by using conditional declarations instantiating a
continuous or discrete design depending on
parameterization. Such workarounds are in conflict
with our objectives however, as they anticipate specific
samplings before their actual need, implying changes
of the original model when the need for a new specific
sampling actually arises. Deliberate preparations of
models to enable future samplings naturally only
enable the prepared samplings, i.e., specific discrete
use-cases. To anticipate all possible samplings of
continuous model parts that might be of interest in
future discrete use-cases is impractical however.

2.5 Problem: crosscutting synchronous
decompositions

The design of controllers significantly varies
depending on available sensor information (varying
control input signals) and control-task splitting
(varying model parts constituting controllers, for
example due to independent asynchronous control vs.
synchronous cascade-control with different sub- or
super-samplings). Typically, many reasonable
synchronous designs exist, each resulting in a specific
clock partitioning. The clock partitions of different
synchronous designs are likely in conflict however.

Figure 1. Induction machine with voltage controller.

Consider for example the electrical excited
synchronous induction machine of the Modelica
Standard Library presented in Figure 1
(Electrical.Machines.Examples.SynchronousInducti
onMachines.SMEE_Rectifier). Five different
synchronous designs immediately come to mind for its
voltage controller: (1) a fat controller, comprising not
only the gain and PI controller but also filter, (2) a

design with the filter being independent, either as (2.1)
a separate asynchronous sampled system or (2.2) not
sampled at all and (3) a cascade control, with the filter
being (3.1) sub-sampled, in case set point changes are
more critical than filtering the current voltage, or (3.2)
super-sampled, in case the filter implementation
requires higher sample rates than the rest of the
controller. The clock partitions of all five variants are
in mutual conflict although each, in itself, is sound.

Important for our investigation is that Modelica
models already have a dominant decomposition with
respect to their component hierarchy (network of
interconnected hierarchical components); and it is that
very hierarchy in whose terms model variation is
defined using parametrizations, modifications and re-
declarations, whereas model extension always
preserves it. Clock partitioning however is about
decomposing a model according to its differently
clocked parts. Thus, even if a model’s structure is
aligned with some future synchronous design, it will be
in conflict with other designs. Clock partitioning
crosscuts the natural composition of physical systems
as hierarchical component networks2.

2.6 Solution: non-monotonic extension
To incorporate a specific sampling into an existing
model means to modify its component network
according to the sampling’s crosscut, i.e., to change the
model’s structure at the intersection points of clock
partitions and further control-design adaptations.
Intersection points of clock partitions correspond to
connections that must be removed; instead respective
samples and holds are added, connecting the clock
partitions. Control-design adaptations usually
correspond to components that have to be removed
because the new control-design is structural different
duo to changed sensor and actuator usage (for example
the filter and gain of Figure 1 may not be required by a
third party library controller). All such changes are
well-defined by removing connections and components
that are superfluous and replaced by the intended
synchronous design. The required refinement can be
defined as ordinary model extension with parts of the
original model excluded from inheritance, ultimately
enabling structural non-monotonic changes.

3 Selective model extension proposal
This section presents a concrete proposal to enable
non-monotonic modelling in Modelica. The proposed
selective model extension enables the deselection of

2Implementation techniques for system parts cross-cutting a dominant
component hierarchy are subject of aspect-oriented programming
(Kiczales et al, 1997; Tarr 1999). Particularly object-oriented
programming language extensions enabling crosscutting implementation
are well-investigated. The proposed selective model extension can be
seen in that tradition; it is Modelica-specific however, since it depends
on static instantiation via model-flattening as explained in Section 1.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

280 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

connections and components when extending models.
To start with, a simple sampling example sketches the
new language concepts. The definition of actual syntax
and semantic follows.

3.1 Selective model extension example
Consider again the controlled induction machine
presented in Figure 1. Figure 2 presents three different
synchronous control designs for it, implemented in the
following using selective model extension to handle
their structural non-monotonic variation.
(a) Simple sampling scenario: A straightforward
synchronous control design is to just sample the control
components of the original example. To that end, the
connections between voltageSensor and filter,
speedSensor and setPointGain and voltageController
and excitationVoltage have to be replaced with
likewise-connected samples and holds. Using selective
model extension, the implementation of Figure 2 (a) is:

model SMEE_Rectifier_Sampled
extends SMEE_Rectifier;

/* PART 1: Drop “outdated” continuous parts. */
 // Exclude connections from inheritance:
 for each extends
 break connect(voltageSensor.v, filter.u);
 break connect(speedSensor.w,
 setPointGain.u);
 break connect(voltageController.y,
 excitationVoltage.v);
 end for each extends;
/* PART 2: Introduce sampling. */
 // Introduce clock, samples and hold and…
 PeriodicRealClock clock(
 period = 0.001,
 useSolver = true);
 SampleClocked sample_u_m;
 Sample sample_u_s;
 Hold hold_y;
equation
 // …connect them:
 connect(clock.y, sample_u_m.clock);

 connect(voltageSensor.v, sample_u_m.u);
 connect(sample_u_m.y, filter.u);
 connect(speedSensor.w, sample_u_s.u);
 connect(sample_u_s.y, setPointGain.u);
 connect(voltageController.y, hold_y.u);
 connect(hold_y.y, excitationVoltage.v);
end SMEE_Rectifier_Sampled;

The new sampling-related components – the clock,
sample and hold and their connections with inherited
components – are introduced as used to and are subject
to normal Modelica 3.4 semantic (Part 2). Also syntax
and semantic of the extends clause are as used to,
except that the for each extends block modifies the
set of features the extends clause defines to be
inherited (Part 1). Each break connect clause within a
for each extends block removes the respective
connection from the set of features the model inherits.
Note the plural form clauses, implying that for each
extends modifies all extends clauses of a model. In
our case, just the extension from SMEE_Rectifier is
modified, excluding the ingoing connections of filter
and setPointGain and the outgoing connection of
voltageController from inheritance; the deselections
are break connect(voltageSensor.v,filter.u), break
connect(speedSensor.w,setPointGain.u) and break

connect(voltageController.y,excitationVoltage.v).

(b) Off-the-shelf controller scenario: Another
reasonable design is to use an off-the-shelf controller
provided by a specialized library, as shown in Figure 2
(b). To that end, the original control components have
to be replaced. Note the plural; not a single
replaceable component is changed, but the complete
component network constituting the controller.
Assuming the new controller still requires the filtering
of voltage, only voltageController and setPointGain
have to be removed. Using a selective model extension
of scenario (a), the implementation of Figure 2 (b) is:

Figure 2. Three control scenarios for the induction machine of Figure 1 (controller only excerpts).

 (a) simple sampling (b) off-the-shelf controller (c) off-the-shelf dampening-controller

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 281
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

model SMEE_Rectifier_ExternalController
 extends SMEE_Rectifier_Sampled;
// Remove original controller with connections:
 for each extends
 break voltageController;
 break setPointGain;
 end for each extends;
// Introduce the new controller…
 replaceable ExternalController v_controller;
equation
// …and connect it:
 connect(filter.y, v_controller.u_m);
 connect(v_controller.y, hold_y.u);
 connect(sample_u_s.y, v_controller.u_s);
end SMEE_Rectifier_ExternalController;

The original controller and gain are excluded from
inheritance via break voltageController and break
setPointGain. Deselecting a component automatically
deselects all its connections. Thus, the only thing to do
besides deselecting the original control components is
to integrate the new controller reusing the sampling
inherited from scenario (a).

(c) Off-the-shelf dampening-controller scenario:
Finally, an off-the-shelf controller with specialized
dampening of its input voltage can be used as shown in
Figure 2 (c). In that case, the original filter is not
required. The implementation based on scenario (b) is:

model SMEE_Rectifier_DampeningExternalController
 extends SMEE_Rectifier_ExternalController(
 redeclare DampeningController v_controller);
 for each extends
 break filter;
 end for each extends;
equation
 connect(sample_u_m.y, v_controller.u_m);
end SMEE_Rectifier_DampeningExternalController;

Conclusions: Scenarios (a) to (c) demonstrated the
consecutive synchronous adaptation of a continuous
model. Each refinement step required structural non-
monotonic changes in terms of removing superfluous
connections and components inappropriate for a more
sophisticated control design. Using selective model
extension, the respective synchronous adaptations are
possible without changing the original continuous
model, ensuring configuration consistency of the
controlled system when comparing the synchronous
designs one another. Also diagrammatic consistency is
improved; after all, the diagrams of Figure 2 are
derived from Figure 1 by normal extends semantic and
our Dymola implementation of deselections.

3.2 Syntax: selective extension clauses and
inheritance modifications

Selective model extension as presented in Section 3.1
requires rule-additions to Modelica’s context-free
grammar. The changes required are very limited
however. Only an additional alternative for element
(cf. Appendix ”B.2 Grammar“ of the Modelica 3.4
specification) has to be added:

element :
 import-clause |
 extends-clause |

 selective-extension-clause | // new
 [redeclare]
 [final]
 [inner] [outer]
 ((class-definition | component-clause) |
 replaceable (
 class-definition | component-clause)
 [constraining-clause comment])

whereas selective-extension-clause is:

selective-extension-clause :
 for each extends
 { inheritance-modification “;” }
 end for each extends

and inheritance-modification is:

inheritance-modification :
 break connect-clause | // Connection and…
 break IDENT // …component deselection.

with connect-clause and IDENT already well-defined in
the specification. No new keywords are introduced.
The new context-free derivations for each extends,
break connect and break IDENT are syntax errors in
current Modelica. As a consequence, the proposed
selective model extension never changes the semantic
of existing valid Modelica 3.4 models. Models that are
syntactically invalid could theoretically become valid
however, but chances are extremely low3.

3.3 Semantic: terminology, well-formedness
and interpretation

An important criterion of selective model extension is
to ensure applications are meaningful. A selective
extension is meaningful when all its modifications of
the set of inherited elements are unambiguous and
applicable, in which case it is called well-formed.
Selective extensions that are not well-formed are
modelling errors; they are meaningless, i.e., without
unique interpretation defining the result of their
application. The rest of this section defines well-
formedness and interpretation for the proposed syntax.

3.3.1 Terminology
To ease further discussion, we define the following
terms (words embraced by parenthesis are optional,
only improving readability; the term “if X is evident”
denotes “if X is already well-defined by context (i.e.,
specific) or not of particular interest (i.e., generic)”; the
term “derivation” denotes a context-free derivation
according to the syntax specified in Section 3.2):

(a) Context of selective extensions: A selective-
extension-clause derivation S within a model A with
arbitrary many extends clauses E1, … En, that extend

3It is not likely that a syntax error happens to satisfy the proposed
syntax. It is even less likely the respective model will further satisfy the
semantic constraints explained in Section 3.3.2; and, due to deselections,
it is close to impossible that it is valid considering existing Modelica
well-formedness constraints like “referenced components must be
declared” and “the system of equations must be well-defined”.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

282 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

models M1, … Mn respectively, is called a “selective
(model) extension of M1, … Mn”; if M1, … Mn are
evident, just “selective (model) extension”. E1, … En
are called “(local) extends-clauses of A”. S is called
“extends-modification of A”. If A is evident, we just
speak of “local extends-clauses” and “extends-
modification”. We say “S is local to A”, “E1, … En are
local to A”, “E1, … En are local to S” and vice-versa;
and we call an “α local to β” a “(local) α of β” and
vice-versa. We further say “S modifies E1, … En” and
“A selectively extends M1, … Mn with respect to S”. If
M1, … Mn or S are evident, we just say “A selectively
extends”. This terms are called “context of S”; if S is
evident, just “selective extension context”.

(b) Context of deselections: A selective extension S
is a block; its body consists of the inheritance-
modification derivations m1, … mn applied throughout
the derivation of S. Each inheritance-modification
derivation is called a “deselection of S”; if S is evident,
just “deselection”. The set m1, … mn are the
“deselections of S”; if S is evident, just “deselections”.

We distinguish two types of deselection:
(b.1) break connect-clause derivations are called

“connection deselection”
(b.2) break IDENT derivations are called

“component deselection”

If a deselection type is evident, we just say “element”
instead of connection or component.

The subset of connection deselections of the
deselections of S are called “connection deselections of
S”; if S is evident, just “connection deselections”. The
deselections of S that are not connection deselections
are called “component deselections of S”; if S is
evident, just “component deselections”.

The relations defined for S in (a) – like extends-
clauses, extends-modification, modifies etc. – also hold
for the deselections of S. We therefore can speak of the
context of a deselection, defined by the model it is
local to and the local extends clauses it modifies; and it
is true by definition that “deselections are extends-
modifications of their local model and models
selectively extend with respect to their deselections”.

(c) Extent of selective extensions: Let Iextends be the
set of elements the local extends clauses of a model A
define to be inherited; let connection elements be
represented by their respective connect-clause
derivations in Iextends and components by IDENT
derivations, i.e., their name. We call Iextends the
“preselective-extent of A”. Let Dconnection be the set of
connection deselections of A and Dcomponent the set of
component deselections. We call two connections
connect(a1, b1) and connect(a2, b2) “matching” if
either a1 = a2 b1 = b2 or a1 = b2 b1 = a2.

We call an inherited connection ci Iextends “extent
of a (connection) deselection” d = break cd Dconnection
if cd and ci are matching and say “ci is deselected due

to d” and “d deselects ci”; if d is evident we just say “ci
is deselected”, and if ci is evident we just speak of a
“deselected T (connection)” whereas T is the connector
type of ci. If also T is evident, we just speak of a
“deselected connection”.

We call an inherited component ci Iextends “extent
of a (component) deselection” d = break cd Dcomponent
if cd = ci and say “ci is deselected due to d” and “d
deselects ci”; if d is evident we just say “ci is
deselected”, and if ci is evident we just speak of a
“deselected T (component)” whereas T is the
component type of ci. If also T is evident, we just speak
of a “deselected component”.

Let ci be a component deselected due to a
deselection d. We call the set D = ci {c Iextends | c is
connection of ci} the “transitive-extent of d”; if d is
evident, we just speak of a “transitive-extent”. For each
c D \ ci we say “c is indirectly-deselected due to d”;
if d is evident, we just say “c is indirectly-deselected”
and, if c is also evident, we speak of an “indirectly-
deselected connection”. Indirectly-deselected
connections are deselected connections. The transitive-
extent of a connection deselection is just its extent.

We call the union of the transitive-extents of the
deselections of A the “deselective-extent of A”. Let
Ideselected be the deselective-extent of A; we call the set
Iselected = Iextends \ Ideselected “selective-extent of A”; if A is
evident, we just speak of “preselective-”, “deselective-
” and “selective-extent”.

Colloquial usage: Whenever we emphasize the act of
modelling via introducing deselections for an element
or element type E, we use the term “deselection of E”
or “deselecting E”; if E is evident, we just speak of
“deselecting”. Likewise, we speak of “selection of E”
and “selecting E” for removing, or deliberately not
introducing, deselections for E.

3.3.2 Well-formedness
Five well-formedness constraints are proposed for
selective model extension. The following list also gives
a short rational for each constraint:

Constraint (1) Selective model extensions must be
element of a model or block (i.e., the enclosing scope
of a selective-extension-clause must be a class-
definition whose class-prefixes are derived to
model, block, partial model, or partial block; cf.
Appendix B.2.2 of the Modelica 3.4 specification).

Rational: Connector classes are prohibited to use
selective extension because their whole purpose is to
define common interfaces; deselection of connector-
components would essentially make the derived
connectors incompatible. Types are excluded for
similar reasons. Records are excluded to avoid runtime
errors due to instances queried for deselected fields.
Packages are excluded because they are used to define
a modelling environment with well-defined features; to
reduce availability of provided features contradicts

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 283
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

their purpose in the first place. Deselection of function
in- and out-puts is prohibited, because call-sites depend
on the applicability of a function’s interface.

Constraint (2) The extent of deselections is not
empty (i.e., for each deselection exists a local extends
clause that inherits the deselected element).

Rational: Selective extensions should be meaningful,
i.e., each of their deselections should be applicable.
The constraint also makes it impossible to deselect
beforehand, eliminating the risk that sub-models
accidentally miss future base-model improvements.

Constraint (3) Deselected components are not
modified by local extends-clauses.

Rational: Modifying a component and deselecting it
within the same model hints at a modelling error.

Constraint (4) Deselected elements are not final.4

Rational: final is deliberately introduced by
developers to prevent common model-configuration
errors due to further modifications; this naturally
encompasses modifications changing the existence of
final modified components. The constraint also
prevents the reintroduction of deselected final
components as non-finals.

Constraint (5) Models have at most a single
selective extension clause.

Rational: Since selective extension modifies all local
extends-clauses, it makes sense to collect all
deselections of a model within a single for each

extends block. Doing so avoids scattering of
inheritance modifications, ultimately increasing
readability of models.

These constraints can be checked just considering the
set of connections and components inherited due to
local extends-clauses; there is no need to mutually
compare the individual sets. Details, how inherited
elements are defined, particularly if base-models apply
other selective extensions, are not required.

Note that the proposed well-formedness constrains
do not prohibit extending models from reintroducing
components deselected. This is useful to solve
currently non-manageable multiple-inheritance
conflicts due to structural differences of base-models.

No further restrictions regarding the well-
formedness of equations are proposed. Deselection of
connections can result in structural non-singular
equation systems however; likewise deselected
components may result in base-model equations with
unresolved references. The fallback on default equation
well-formedness is important. It ensures the context of
selective extensions is sound; in practice, this means
that the “structural-holes” due to deselections must be

4Constraint (4) does not prohibit the deselection of components
containing final elements, as long as the deselected component itself
is not final.

properly fixed and invalidating base-model changes are
caught. Note that speaking of “structural-holes” is
reasonable, considering deselections are defined with
respect to diagram-wise clearly distinguishable model
parts; selective model extension is about the removal
of interconnected component networks. To accidentally
change model semantic not visible within the diagram
layer, like non-connection equations, is impossible. As
a consequence, deselection can be realized as graphical
edit-operations in the diagram layer of Modelica tools.

3.3.3 Interpretation
Given the terminology of Section 3.3.1 and the well-
formedness constraints of Section 3.3.2, defining an
interpretation for well-formed selective model
extensions is straightforward.

The objective of a selective extension is to exclude
elements from inheritance. To that end, one has to take
care of – colloquial speaking – three kinds of inherited
elements: (1) the elements inherited by a model’s local
extends clauses (i.e., inheritance as used to from
Modelica 3.4), (2) the elements excluded from this set
and (3) the resulting actually inherited elements. With
respect to Section 3.3.1, these sets are the preselective-,
deselective- and selective-extent.

The extent definitions of Section 3.3.1 are
constructive; first, the preselective-extent is derived,
based on it the deselective-extent, finally followed by
the selective-extent. Note that, the extents can be
empty for the definitions to hold. The deselective-
extent of a model without a selective extension is the
empty set; such a model’s selective-extent just is its
preselective. This characteristic significantly limits the
changes required in the existing Modelica specification
to incorporate selective model extension.

In the end, the interpretation of selective model
extension just boils down to the addition of the
terminology introduced in Section 3.3.1 and a single
modification of the Modelica 3.4 specification
regarding the definition of inherited elements; the new
definition is: “the inherited elements of a model are its
selective-extent”.

4 Advanced application scenarios
The applications of selective model extension
presented so far are all in the domain of Modelica
Synchronous. In the following, further applications,
with the focus on general advantages for modelling
from an engineering perspective, are investigated. To
that end, selective extension is used to redesign an
existing example scenario of the Modelica Standard
Library; doing so will reveal implementation-
shortcomings of the example and how non-monotonic
modeling can be used to avoid them. First however,
another important use case for selective model
extension is presented: to adapt whole system models
for further external or component usage.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

284 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

4.1 Component extraction example
Figure 3 presents the well-known coupled clutches
example of the Modelica Standard Library
(Mechanics.Rotational.Examples.CoupledClutches)
and two variations of it. The first variant prepares its
export as Functional Mockup Unit (FMU) that can be
distributed to third parties for simulation in non-
Modelica contexts (Modelica Association, 2014); the
second variant prepares the coupled clutches for usage
as component within further Modelica models. In both
cases, the fixed input stimuli of the original example
must be removed and replaced by respective input
connectors. The normal forces of the clutches just
become real inputs; the in- and outputs of the inertias
depend on usage however.

(a) original coupled clutches

(b) extracted FMU model based on (a)

(c) extracted component model based on (b)

Figure 3. Coupled clutches FMU/component extraction.
For FMU simulation, the input tau for the first inertia
is a torque and the output of the simulation is the
absolute angular velocity w of the fourth inertia J4;
thus, both are just real values. For component usage
however, one would like to stay with the flange
interface of the Modelica Standard Library for the in-
and output of the first and last inertias. Doing so
ensures proper flow-derivation of the cut-torques5.

5Because flow-variables – and therefore Modelica-like automatic flow-
value derivation – are not supported in the FMI 2.0 standard, users of the
FMU-component of Figure 3 (b) have to be careful that torques are
correctly modeled in application contexts of the FMU; in that sense the
FMU-component is less flexible compared to the Modelica-component
of Figure 3 (c). On the other hand, the flow-variables of the flange-
interface are the reason why the Modelica-component is unsuitable for
FMU-export and usage in external simulations.

Both adaptations are straightforward using selective
extensions. For FMU extraction the implementation is

extends …Rotational.Examples.CoupledClutches;
for each extends
 break sin1;break sin2;break step1;break step2;
end for each extends;

accompanied by introducing and connecting the in- and
output normal forces, torque and velocity as shown in
Figure 3 (b). When extracting a component however,
the torque adapter becomes superfluous since a proper
flange input will be provided. In terms of the FMU
model, the respective selective extension is

extends CoupledClutches_FMU;
for each extends
 break torque; break fixed; break tau;
end for each extends;

this time accompanied by introducing and connecting
the in- and output flanges as shown in Figure 3 (c).

In conclusion, selective model extension enables to
extract a component model from a whole system model
and incorporate the usage-interfaces of future
application contexts. Doing so we know the extracted
component is working; after all it comes from a well-
tested, whole system model with proper simulation that
has just been lifted to a component on demand.

4.2 Domain-driven refinement example
Our final selective extension scenario is the step-wise
design of a one cylinder engine, as exemplified by the
Engine1a, Engine1b and Engine1b_analytic models in
package Mechanics.MultiBody.Examples.Loops of the
Modelica Standard Library. The basic idea is to design
a final analytic engine model starting from an idealized
model via one considering the gas force in the cylinder.
Figure 4 summarizes the current solution of the
standard library. There are several problems with it, all
due to the lack of non-monotonic modeling means.

The most obvious inconsistency is that the models
incorporating the cylinder’s gas force (Engine1b and
Engine1b_analytic) do not inherit from the idealized
base model (Engine1a), but from a completely
independent new partial model (Engine1bBase). The
reason can be only understood by an investigation
starting from the final analytic model: it introduces the
jointRPP component, which encapsulates an analytic
solution for original engine components. Thus, the
final solution cannot extend the idealized start-design
because it has to replace parts of the start-design’s
component network with something whose incremental
design is the actual task. Engine1bBase was introduced
to consistently configure at least the common
components of models considering the gas force of the
cylinder. But Engine1bBase is completely artificial: it
cannot be simulated, its components are hanging in the
air and it has nothing in common with the idealized
model that was the original starting point for designing
the engine. Quiet contrary it is the result of an inversed
engineering process, taunting the natural design order.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 285
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

Since Engine1bBase does not extend Engine1a – in
fact cannot – the obvious question is if the idealized
and gas force incorporating models are at least
consistently configured. This is an important issue
because Engine1bBase is a partial model-copy of
Engine1a; it is not obvious if differences are intentional
or just copy-and-paste errors that slipped in throughout
revisions. As it turns out there is a plethora of
configuration differences however. First, the inertias
are configured differently; likewise r of cylPosition is
inconsistent. Second, the a-connector of the piston is
connected with b of the cylinder in Engine1a but with
Rod3.a in Engine1b. But most confusingly, the bearings
B1 and B2 are switched in Engine1b compared to

Engine1a. This is a tricky change to comprehend, since
one of the bearings must break the kinematic-loop of
the multi-body system; and the question is if turning
them was required due to integration or numerical
issues. As far as we can say that is not the case;
Engine1b can be simulated with the bearings turned
back without problems in Dymola. To make confusion
complete, Rod.r and Rod2/Rod1.r are inversed between
Engine1a and Engine1bBase/Engine1b (r = {0, -0.2,
0} vs. {0, 0.2, 0}) and must be turned to be
consistent with the bearings switch. Although the sum
of changes is correct, they are hard to comprehend. The
incremental design of the engine is obscured behind a
wall of model copying and modifications.

Figure 4. One cylinder engine scenario (current standard library solution).

 (a) idealized start-model (Engine1a) (b) artificial gas force base-model (Engine1bBase)

 (c) gas force intermediate-model (Engine1b) (d) analytic final-model (Engine1b_analytic)

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

286 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

The alternative implementation of Engine1b and
Engine1b_analytic based on selective extensions is
much clearer. It is shown in Figure 5. Note the increase
of diagram consistency; one can clearly see how
starting from Engine1a the design is step-wise refined.
The reason is that each design after the idealized start-
model now inherits the diagram of the previous.
Another advantage is that intentional modifications are
evident. Consider for example the selective extension
to implement Engine1b:

extends …MultiBody.Examples.Loops.Engine1a(
 Cylinder(useAxisFlange = true),
 Inertia(
 J = 0.1,
 phi(fixed = true, start = 0.001),
 w(fixed = true, start = 0)),
 cylPosition(r = {0.15,0.55,0}));
for each extends
 break connect(B2.frame_a, Piston.frame_b);
 break connect(B1.frame_b, Rod.frame_b);
 break connect(Rod.frame_a, B2.frame_b);
end for each extends;
// Add Rod3, Rod1 and gasForce and connect them…

The configuration differences to Engine1a can now be
encapsulated in modifications as used to. Also the
implementation of Engine1b_analytic is straight:

extends Engine1b;
for each extends
 break Cylinder;
 break B2; break B1; break Rod1; break Rod3;
end for each extends;
// Add the analytic solution and connect it…

The components comprised by the analytic solution are
just replaced by it. Altogether, the new solution is
much more consistent; changes like the unintended
bearings switch and rod turning cannot just slip in.

As final challenge one could lift the engine to a
component as shown in Section 4.1. Its fixed inertia,
used for “startup”, is problematic however. If used as
component, an external inertia driven by the engine
will be given instead. To that end, the inertia must be

replaced by a flange-connector as shown in Figure 6
(a); the resulting engine component can be combined
with the coupled clutch component of Section 4.1 to a
simple powertrain as shown in Figure 6 (b).

Figure 6. Simple powertrain of engine and clutches.

5 Alternative designs
The proposed selective model extension is just a first
step towards non-monotonic modelling in Modelica. Its
final definition is open for discussion.

First of all, constraint (5) of Section 3.3.2 might be
controversial; instead of a single for each extends
block, several could be permitted. Deselections could
be aligned with the extends clauses they deselect
elements from. For example, the extends clause of
Figure 2 (b) could look like (assuming the cut-off
frequency of the filter has to be modified as well)

extends SMEE_Rectifier_Sampled(
 break voltageController,
 break setPointGain,
 filter(f_cut = 15));

Thus, all modifications and deselections regarding a
base-model could be grouped with the respective

Figure 5. One cylinder engine scenario (proposed selective extension solution).
 (a) Engine1a (existing MSL solution) (b) new Engine1b solution (c) new Engine1b_analytic solution

(a) Engine1b_analytic component (excerpt)

(b) composition of engine component and clutches

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

DOI Proceedings of the 13th International Modelica Conference 287
10.3384/ecp19157277 March 4-6, 2019, Regensburg, Germany

model extension. An advantage of aligning
deselections with extends clauses is, that only elements
of a specific base-model are excluded from inheritance.
Of course, this gives rise to the question of consistency
in case similarly named elements exist in several base-
models; should the deselection of all be enforced or is
it fine to deselect only a subset? The proposed
semantic of for each extends always deselects all
elements sharing a name, such that common base-
model elements are consistently deselected; selection
of a specific namesake requires its deliberate
reintroduction, avoiding otherwise easy to miss indirect
selections (indirect because the actually selected
element is implicitly given by deselecting namesakes).

Another open issue is how fine-grained connections
can be deselected. The definition of “matching” in
Section 3.3.1 (c) is a very simple equivalence test just
comparing the syntactic structure of the component
references selecting the connected elements; the
proposed semantic always deselects the complete
matching connection. Since connectors can be
hierarchical structured, including array elements, one
could imagine more fine-grained deselections to
rearrange parts of a structured base-class connection.
Partial deselections of a structured connection could
for example unlink only certain of its nested array and
component elements. The graphical representation and
editing of such deselections would be problematic
however, since the structure of connections is not
visible in Modelica’s current diagram layer design.

Another limitation of the proposed solution is that
only base-model elements can be deselected, but not
their nested elements. Considering the crosscutting
nature of Modelica Synchronous, qualified deselection
might be very useful for synchronous adaptation. Like
for structured connections however, again
diagrammatic presentation and editing of nested
component deselections would be problematic.

It is worthwhile to note that a relaxation of
replaceable, by assuming all components are
implicitly declared replaceable without type
constraints, is insufficient for many cases handled by
selective model extension. The problem is that
redeclare cannot be used to consistently replace a
network of components, as for example required to
integrate the off-the-shelf induction machine controller
of Figure 2 (b), where several original components
must be removed, including their connections. To
remove components in terms of re-declarations also is
very cumbersome, not to speak of the consequences for
the diagram layer which becomes cluttered with
components representing actually removed and
therefore not existing model parts that – quiet contrary
– should not be shown at all.

Also the idea that all declarations and connections
are implicitly conditional looks unsuitable; the
parametric referencing for enabling and disabling

would be tedious. The proposed selective model
extension comprises this approach, just the other way
around: instead of declaring everything conditional, it
deselects by extension when actually required.

6 Conclusions
Engineering processes are typically not monotonic in
terms that everything of an old design is taken when
developing a new; some parts may be deliberately
excluded and not present in the derived design. In
terms of physics modeling in Modelica, such non-
monotonic model variations are model-extensions with
some original base-model features excluded from
inheritance. Unfortunately, Modelica 3.4 is missing
convenient means for structural non-monotonic
modelling, which is a serious deficit the proposed
selective model extension solves. Using selective
extensions, no copying, changes or deliberate
preparations on models are required to derive well-
defined variants not preserving all of the original
model structure. The presented concepts suffice to
conveniently adapt models – including the examples of
the Modelica Standard Library – for different
synchronous application scenarios. And as shown in
Section 4, selective model extension is also beneficial
for a more natural engineering process with
refinement-based model variation and adaptation.
Artificial intermediate models, without physics
simulation meaning, and system variation
inconsistencies can be avoided; and non-monotonic
interface adaptations required for cross-library
integration incorporated. Particularly the latter will
likely become an important future challenge,
considering the likelihood of interface incompatibilities
between libraries tends to increase with the success of
the Modelica community and respective growing
number of library suppliers. Another promising
application area for selective model extension is model
testing, particularly systematic fault introduction to
simulate non-nominal behavior. The idea is to weave
error sources into existing models, like noise-
components intercepting a connection. Using selective
extensions, the tested models do not have to be
specifically prepared for fault injection; system parts
can just be removed from inheritance and replaced by
faulty – or even mock-up versions using external table-
data – to inject misbehavior and configure the
environment of error scenarios.

Acknowledgements
I am grateful for the help of Hans Olsson with the
implementation of selective model extension in
Dymola; his advices regarding the example scenario of
Section 4 and proof reading have been very valuable. I
also like to thank Hilding Elmqvist for his idea to add
FMU extraction as valuable application case.

Modelica language extensions for practical non-monotonic modelling: on the need for selective model
extension

288 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157277

References
Modelica Association. Modelica® - a unified object-oriented

language for systems modeling: language specification
version 3.4, 2017.

Modelica Association. Functional mock-up interface for
model exchange and co-Simulation, 2014.

Hilding Elmqvist, Martin Otter and Sven Erik Mattson.
Fundamentals of synchronous control in Modelica.
Proceedings of the 9th International Modelica Conference,
2012. doi:10.3384/ecp1207615.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier and John
Irwin. Aspect-oriented programming. Lecture Notes in
Computer Science, 1241:220–242, 1997.
doi:10.1007/BFb0053371.

Jørgen Lindskov Knudsen, Mats Löfgren, Ole Lehrmann
Madsen and Boris Magnusson. Object-oriented
environments: the Mjølner approach, Prentice Hall, 1993.

Martin Otter, Bernhard Thiele and Hilding Elmqvist. A
Library for Synchronous control systems in Modelica.
Proceedings of the 9th International Modelica Conference,
2012. doi:10.3384/ecp1207627.

Antero Taivalsaari. Classes vs. prototypes: some
philosophical and historical observations. Journal of
Object-Oriented Programming, 10(7):44–50, 1997.

Peri Tarr, Harold Ossher, William Harrison and Stanley M.
Sutton. N degrees of separation: multi-dimensional
separation of concerns. Proceedings of the 21st
International Conference on Software Engineering, 1999.
doi:10.1145/302405.302457.

Peter Wegner. Dimensions of object-based language design.
Proceedings of the 2nd conference on Object-Oriented
Programming, Systems, Languages, and Applications,
1987. doi: 10.1145/38765.38823.

7 Appendix A
The following list is a rough estimation of examples of
the Modelica Standard Library 3.2.2 that might be of
interest for synchronous adaptation; about 60 existing
continuous models have been identified. As criteria to
consider a model relevant for synchronous adaptation,
the containment of components modelling a controller
has been chosen; further only examples – i.e., models
extending Modelica.Icons.Example – have been
considered. The potential examples of interest are (the
actual example models are highlighted green):

Blocks
 Examples
 PID_Controller
 NoiseExamples
 ActuatorWithNoise
Electrical
 Machines
 Examples
 AsynchronousInductionMachines
 SwitchYD
 AIMC_Inverter
 AIMC_Conveyor
 AIMC_withLosses
 SynchronousInductionMachines
 SMR_Inverter
 SMPM_Inverter
 SMPM_CurrentSource

 SMPM_VoltageSource
 SMPM_Braking
 SMEE_Generator
 SMEE_LoadDump
 SMEE_Rectifier
 PowerConverters
 Examples
 ACDC
 Rectifier1Pulse
 Thyristor1Pulse_R
 Thyristor1Pulse_R_Characteristic
 RectifierBridge2Pulse
 HalfControlledBridge2Pulse
 ThyristorBridge2Pulse_R
 ThyristorBridge2Pulse_RL
 ThyristorBridge2Pulse_RLV
 ThyristorBridge2Pulse_RLV_Characteristic
 ThyristorBridge2Pulse_DC_Drive
 RectifierCenterTap2Pulse
 ThyristorCenterTap2Pulse_R
 ThyristorCenterTap2Pulse_RL
 ThyristorCenterTap2Pulse_RLV
 ThyristorCenterTap2Pulse_RLV_Characteristic
 RectifierCenterTapmPulse
 ThyristorCenterTapmPulse_R
 ThyristorCenterTapmPulse_RL
 ThyristorCenterTapmPulse_RLV
 ThyristorCenterTapmPulse_RLV_Characteristic
 RectifierBridge2mPulse
 HalfControlledBridge2mPulse
 ThyristorBridge2mPulse_R
 ThyristorBridge2mPulse_RL
 ThyristorBridge2mPulse_RLV
 ThyristorBridge2mPulse_RLV_Characteristic
 ThyristorBridge2mPulse_DC_Drive
 RectifierCenterTap2mPulse
 ThyristorCenterTap2mPulse_R
 ThyristorCenterTap2mPulse_RL
 ThyristorCenterTap2mPulse_RLV
 ThyristorCenterTap2mPulse_RLV_Characteristic
 DCAC
 SinglePhaseTwoLevel
 SinglePhaseTwoLevel_R
 SinglePhaseTwoLevel_RL
 MultiPhaseTwoLevel
 MultiPhaseTwoLevel_R
 MultiPhaseTwoLevel_RL
 DCDC
 ChopperStepDown
 ChopperStepDown_R
 ChopperStepDown_RL
 HBridge
 HBridge_R
 HBridge_RL
 HBridge_DC_Drive
Magnetic
 QuasiStatic
 FundamentalWave
 Examples
 BasicMachines
 InductionMachines
 IMC_Inverter
 SynchronousMachines
 SMPM_CurrentSource
 SMR_CurrentSource
Mechanics
 MultiBody
 Examples
 Systems
 RobotR3
 oneAxis
 fullRobot
Fluid
 Examples
 PumpingSystem
 DrumBoiler
 DrumBoiler
 ControlledTankSystem
 ControlledTanks
 AST_BatchPlant
 BatchPlant_StandardWater
 TraceSubstances
 RoomCO2WithControls
Thermal
 HeatTransfer
 Examples
 ControlledTemperature

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 289
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia
Fritzson, Peter and Pop, Adrian and Sjölund, Martin and Asghar, Adeel

289

MetaModelica – A Symbolic-Numeric Modelica Language
 and Comparison to Julia

Peter Fritzson Adrian Pop Martin Sjölund Adeel Asghar
PELAB – Programming Environment Lab, Dept. of Computer and Information Science

Linköping University, SE-581 83 Linköping, Sweden
{peter.fritzson,adrian.pop,martin.sjolund,adeel.asghar}@liu.se

Abstract
The need for integrating system modeling with
advanced tool capabilities is becoming increasingly
pronounced. For example, a set of simulation
experiments may give rise to new data that are used to
systematically construct a series of new models, e.g. for
further simulation and design optimization. Such
combined symbolic-numeric capabilities have been
pioneered by dynamically typed interpreted languages
such as Lisp and Mathematica. Such capabilities are also
relevant for advanced modeling and simulation
applications but lacking in the standard Modelica
language. Therefore, this is a topic of long-running
design discussions in the Modelica Design group. One
contribution in this direction is MetaModelica, that has
been developed to extend Modelica with symbolic
operations and advanced data structures, while
preserving safe engineering practices through static type
checking and a compilation-based efficient
implementation. Another recent effort is Modia,
implemented using the Julia macro mechanism, making
it dynamically typed but also adding new capabilities.
The Julia language has appeared rather recently and has
expanded into a large and fast-growing ecosystem. It is
dynamically typed, provides both symbolic and numeric
operations, advanced data structures, and has a just-in-
time compilation-based efficient implementation.
Despite independent developments there are
surprisingly many similarities between Julia and
MetaModelica. This paper presents MetaModelica and
its environment as a large case study, together with a
short comparison to Julia. Since Julia may be important
for the future Modelica, some integration options
between Modelica tools and Julia are also discussed,
including a possible approach for implementing
MetaModelica (and OpenModelica) in Julia.
Keywords: Modelica, MetaModelica, symbolic, Julia,
meta-programming, language, compilation

1 Introduction
Advanced development of today's complex products
requires integrated environments and equation-based
object-oriented declarative languages such as Modelica
(Fritzson, 2014; Modelica Association, 2017) for

modeling and simulation. Such combined symbolic-
numeric capabilities and advanced data structures have
been pioneered by dynamically typed interpreted
languages such as Lisp (Steel, 1993) and Mathematica
(Wolfram, 2003), but are also relevant for modeling and
simulation applications. Therefore, this is a topic of
design discussions in the Modelica Design group
regarding the future Modelica, and has also motivated
the development of MetaModelica (Fritzson et al 2005;
Pop et al, 2006, Fritzson et al, 2011) and Modia
(Elmqvist et al, 2016; Elmqvist et al 2017);

1.1 Motivation and Design Goals
At the time when the MetaModelica effort was started,
MetaModelica 1.0 (Fritzson et al 2005), there was no
existing efficiently compiled language that combined
strong numeric and symbolic capabilities. Our vision
was to extend Modelica in that direction via
MetaModelica, in a backwards compatible way,
supporting the Modelica design goals of safe
engineering practices through static type checking, and
explicitly declared types for increased model readability
and efficient compilation. In the longer term the goal
was an efficient interactive environment based on
incremental compilation or just-in-time compilation
(Section 8.4).

However, in the meantime the rather young language
Julia (Bezanson et al 2017; Julialang 2018) has matured,
(Julia 1.0 was released in August 2018), with similar
design goals of an efficiently compiled interactive
symbolic-numeric language. However, also with the
goals of dynamic typing and automatic interfacing with
libraries in other languages, and no special requirement
of integrating with the Modelica modeling language.

The design of MetaModelica has been mostly
influenced by Modelica, Standard ML (Milner et al,
1997) and RML (Pettersson 1989), whereas Julia has
been more influenced by dynamic languages such as
Lisp and Mathematica.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

290 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

The advent of Julia has changed the situation, as
pointed out by (Elmqvist et al, 2016). Julia is a very
capable and efficient symbolic-numeric language
available with a rapidly growing ecosystem and set of
libraries. Thus, it seems likely that Julia will influence
the future of Modelica. The Modia prototype in Julia
demonstrates several advantages but lacks support for
safe engineering practices via static type checking. In
Section 8 we briefly discuss ways of integrating
Modelica tools with Julia without losing the Modelica
static type checking.

A further discussion of related work is available in
Section 10.

In the following, when we mention MetaModelica,
we usually also include Modelica, since MetaModelica
is an extension of Modelica.

1.2 Contributions
The contributions of this paper are not about inventing
new language constructs. The introduced constructs
have already been well proven in several other
languages. Similar statements have been made
regarding the Julia language. However, in the context of
Modelica there are contributions on integrating such
constructs into the Modelica language including the
Modelica type system in a backwards compatible way.

Another contribution is the comparison of Julia and
MetaModelica, showing many similarities and how
Julia-like features have been integrated into the
Modelica language via MetaModelica.

There are also contributions in the form of the very
large case study of implementing the OpenModelica
compiler in MetaModelica in an efficient way, and using
the language and the associated developed environment
(Figure 1, Section 8) for this large effort. Large case
studies are valuable from a scientific point of view since
it is often the case that results from investigations of
small toy problems may not be true when problem sizes
are scaled up.

1.3 Paper Organization
This paper is organized as follows.

Section 2 compares basic properties of MetaModelica
and Julia. Sections 3 and 4 introduces uniontypes, tree
and list data structures. Section 5 presents pattern
matching including a symbolic example. Section 7
discusses compiler performance.

Section 8 presents the new OMEdit-based
development environment for MetaModelica 3.0 and
gives a comparison to the Eclipse-based MDT plug-in

Section 9 discuses integration of Modelica tools with
Julia, whereas Section 10 presents related work and
makes a short comparison to functional languages and
languages such as Julia and Python. Finally, Section 11
gives conclusions and future work.

Figure 1. The integrated MetaModelica OMEdit-based development environment in debugging mode. Left: the package
browser. Top: the active stack frames (including C routines) and breakpoints. Middle: text editing and breakpoint setting.
Right: the local variables browser. The user can switch to modeling mode which has both textual and graphical editing.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 291
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

2 Some Properties of MetaModelica

and Julia
We start by briefly summarizing and comparing some
basic properties of MetaModelica and Julia.

2.1 Syntax
The syntax of the MetaModelica extension of Modelica
is strongly influenced by Modelica, and to a lesser extent
by Standard ML and C++. The Julia syntax is more
influenced by languages like Python. Both are
influenced by Matlab. The Julia syntax is more concise
whereas the MetaModelica syntax is more verbose and
descriptive, with more keywords.

2.2 Type System and Dynamic/Static Typing
MetaModelica/Modelica is structurally typed with some
nominal typing parts, whereas Julia has a completely
nominal type system. Thus, in Julia, concrete types may
not be subtypes of each other. Both languages have
concrete and abstract types, and parameterized types.

MetaModelica is a statically typed language; there
are rules for determining the type of every expression in
the program. Conversely, Julia is dynamically typed,
types are properties of data values, and are dynamically
created at runtime and implied by the way data flows
through the program during execution. In static
languages expressions have types, in dynamic languages
values have types.

However, Julia has a rather sophisticated language
for describing types, and it is possible to annotate
expressions with types. For example, in Julia, z::T is
an assertion that z is a value of type T; if that is true,
z::T evaluates to the value of z, otherwise an error is
raised. Type annotations in function signatures are
slightly different: instead of asserting the type of an
existing value, they indicate that the function only
applies if the corresponding argument is of the indicated
type.

To summarize, MetaModelica/Modelica is static,
structural, and parametric, whereas Julia is dynamic,
nominal, and parametric.

2.3 Multiple Dispatch and Overloading
Overloading of an operator or function means that in the
presence of multiple implementations/definitions the
definition with matching argument types is selected.

For some reason Julia has chosen to change from the
well-established overloading terminology to instead use
the term multiple dispatch. The new term might be more
descriptive, but this change may cause some initial
confusion for users. There is some arguing that dynamic
selection is a reason for the new term, but one could
instead talk about dynamic overloading.

MetaModelica provides user-defined overloading of
both functions and operators, whereas standard
Modelica only provides operator overloading. In both

cases the selection is made at compile time based on
statically available types of argument expressions. In
Julia, the selection is done either at compile-time if the
type can be inferred by the compiler, or at run-time
based on runtime type tags of argument values.

3 Tree Data Structures
What are the needs for data structures and operations for
symbolic (meta-programming) capabilities? One of the
most common examples of programs that manipulate
and produce other programs are compilers, which
translate programs in some language into the same or
another language. A small symbolic manipulation
example is presented in Section 5.3.

The most common data type representation for
programs in compilers are tree structures, and typical
operations are transformations of such trees into trees
during the translation process. Lists are a special case of
tree data types but are typically given special support in
many symbolic programming languages.

Tree data types have two interesting properties:
 Uniontype – a tree data type is typically the union

of a number of node types, each representing a tree
node.

 Recursive type – the children of a tree node may a
type which is the tree data type itself.

Below we describe the MetaModelica uniontype
language extension, give some examples of its usage,
and briefly compare to Julia.

3.1 Uniontypes

The uniontype MetaModelica construct is a restricted
class that can be viewed as the union of the record
classes it contains. The keyword uniontype is
followed by the name of the uniontype, in the example
below called Exp

A record type belonging to a uniontype is called a
union member record.

This example shows a small expression tree using
uniontype Exp containing six different node types
represented as Modelica record types, which must be
declared within the scope of the union type. The
uniontype restricted class construct has been
extensively used in a Modelica context.
uniontype Exp
 record RCONST Real rval; end RCONST;
 record INTconst Integer exp1; end INTconst;
 record ADDop Exp exp1; Exp exp2; end ADDop;
 record SUBop Exp exp1; Exp exp2; end SUBop;
 record MULop Exp exp1; Exp exp2; end MULop;
 record DIVop Exp exp1; Exp exp2; end DIVop;
 record NEGop Exp exp1; end NEGop;
end Exp;

The uniontype class grammar is as follows:
class_prefixes :
[partial]

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

292 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

(class | model | [operator] record |
block | [expandable] connector
| type | package | [(pure | impure)] [
operator] function | operator | uniontype)

The uniontype construct is used by functional languages
such as OCAML, Standard ML, Haskell, etc. In several
of these languages the uniontype construct is called
datatype.

Uniontypes are also very common in Julia. However,
in Julia the uniontypes are constructed dynamically at
run-time since they are properties of values, not of
expressions. Uniontypes in Julia can also be named and
explicitly defined using the Union keyword:
IntOrString = Union{Int,AbstractString}

3.2 Main Properties of Uniontypes
The MetaModelica uniontype construct is a restricted
class with the following main properties:
 Uniontype elements can be record declarations,

replaceable type declarations declared using
keywords replaceable type, only allowed to be used
for type parameterization of the member records
(and function(s)) and not to introduce uniontype
member records. A record type declared within a
uniontype is called a uniontype member record.

 Uniontypes can be recursive, i.e., reference
themselves. That is the case in the above Exp
example, where Exp is referenced inside its member
record types.

 The typing rules for a uniontype are similar to
operator records, i.e., nominal typing comparing
type names. To check subtyping, (currently type
identity) of two uniontypes, it is tested whether they
belong to a subtype with the same name.

 Uniontypes can be parameterized by other types,
using replaceable, similar to other restricted classes
in Modelica.

 Inheritance, extends, between uniontypes is
currently not allowed. The reason is that all issues
for efficient implementation of such a feature are
not yet resolved.

 Inheritance between member records is allowed e.g.
record ADDop2 = ADDop; or using the long form:
record ADDop2 extends ADDop; … end ADDop2

 Uniontypes provides a type-safe mechanism for
variant records.

3.3 Calling Member Record Constructors
A uniontype member record constructor can be called
using function syntax similar to standard record
constructors, where the uniontype name is prefixed to
the member record name to disambiguate:
UnionTName.MemberRecord()

If the union type is imported into a scope, the uniontype
name prefix is not needed, for example:

import UnionTName.*;
MemberRecord()

For example, to construct the small expression tree of
Figure 2 below using the above Exp uniontype without
importing, the following would be needed:
Exp.ADDop(Exp.RCONST(12), Exp.MULop(
Exp.RCONST(5), Exp.RCONST(13)))

If importing of Exp into the current scope is used, the
expression becomes more concise:
import Exp.*;
ADDop(RCONST(12), MULop(RCONST(5),
RCONST(13)))

3.4 A Small Expression Tree Example
A small expression tree, of the expression 12+5*13, is
depicted in Figure 2.
Using the Exp record constructors ADDop, MULop,
RCONST, this tree can be constructed by the expression
ADDop(RCONST(12), MULop(RCONST(5), RCONST(13)))

Figure 2. Abstract syntax tree of the expression 12+5*13.

3.5 Supertype Any

The predefined type Any is a supertype of any other
MetaModelica type, i.e., all other MetaModelica types
are subtypes of Any.

Since all other types are subtypes of Any, by using
Any in a replaceable type declaration, it is possible to
avoid any constraints and provide full flexibility in
using any type as a type parameter in the following
replaceable type declaration:
replaceable type TypeParam = Any
 constrainedby Any;

This is equivalent to the following, since the default type
is used as constraining type if that is missing:
replaceable type TypeParam = Any;

The type Any is also present in Julia, with the same
semantics that it is a supertype of all other types.

3.6 Predefined Uniontype Option for
Optional Values

The predefined MetaModelica Option uniontype
provides a type-safe way of representing the common
situation where a data item is optionally present in a data
structure.

The constructor NONE() is used to represent the case
where the optional data item is not present, whereas the
constructor SOME() is used when the data item is
present in the data structure.

ADDop

MULopRCONST

RCONST RCONST 12

5 13

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 293
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

The following is a definition of the parameterized

Option uniontype with a type parameter:
uniontype Option

 replaceable type TypeParam = Any
 constrainedby Any;

 record NONE
 end NONE;

 record SOME
 TypeParam elem;
 end SOME;

end Option;

For example, a StringOption type and a function
using it are defined:
uniontype StringOption = Option(redeclare
 TypeParam=String);
function stringOrDefault
 input StringOption strOpt;
 input String default;
 output String str;
algorithm
 str := match strOpt
 case Option.SOME(str) then str;
 else default;
 end match;
end stringOrDefault;

Calling the function a few times:
stringOrDefault(Option.NONE(),"default")
 "default"

stringOrDefault(Option.SOME("string"),
 "default")
"string"

A similar predefined facility is available in Julia.
Declaring a function argument or a record field as
having the type Union{T, Nothing} allows setting it
either to a value of type T, or to nothing to indicate that
there is no value.

3.7 Parameterized Union Types
Parameterized union types with opaque type parameters
are available. This means that only minimal information
about the type parameter is needed.

There is also support for redeclare in cases where
only information about sorting order needs to be
available about the type used as type parameter. For
example, this sorting order is provided by the type Key
given by the function keyCompare in the
AvlSetString package available in the
OpenModelica utility library.
package AvlSetString
 import BaseAvlSet;
 extends BaseAvlSet;

 redeclare type Key = String;

 redeclare function extends keyStr
 algorithm
 outString := inKey;
 end keyStr;

 redeclare function extends keyCompare
 algorithm
 outResult :=

 stringCompare(inKey1, inKey2);
 end keyCompare;

end AvlSetString;

4 Lists and Tuples
List and tuple data types are common in many languages
used for meta-programming and symbolic
programming, and are available in both MetaModelica
and Julia.

4.1 Lists
The following MetaModelica operations allows creation
of lists and addition of new elements in front of lists in
a declarative way, i.e., such lists are immutable.
Extracting elements is done through pattern-matching in
match-expressions.
 list – list(el1,el2,el3, ...) creates a list

of elements of identical type. Examples: list()is
the empty list, list(2,3,4) is a list of integers.

 :: – the :: operator in the expression
element::lst adds an element in front of the list
lst and returns the resulting list.

The types of lists and list variables can be specified as
follows:
 list – list<type-expr> using angle-bracket

notation is a list type constructor, e.g.:
 type RealList = list<Real>;

 Direct declaration of a variable rlist that denotes
a list of real numbers:

 list<Real> rlist;
A list type is a parametrized uniontype; the Option type
is also such a type. The only addition is the :: operator.

Lists are available in Julia with about the same
semantics and similar but slightly different syntax.

4.2 Tuples
Tuples can be viewed as instances of anonymous
records. The syntax is a parenthesized list. The same
syntax is used in extended Modelica presented here and
is in fact already present in standard Modelica as a
receiver of values for functions returning multiple
results.
 An example of a tuple literal: (a,b,"cc")
 A tuple with a single element can be created using

the tuple constructor instead of the short-hand
parentheses notation: tuple(a)

 A tuple can be seen as being returned from a
function with multiple results in standard Modelica:
 (x,y,z) := foo(var, 2, 3, 5);

 Access of field values in tuples can be achieved via
pattern-matching, e.g. the following will extract the
three field values from a tuple value:
 (x,y,z) := tuplevalue

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

294 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

The main reason to introduce tuples is for convenience
of notation. You can use them directly without explicit
declaration. Tuples using this syntax are already present
in the major functional programming languages.

A tuple will of course also have a type. When tuple
variable types are needed, they can for example be
declared using the following notation:
type VarBND = tuple<Ident, Integer>;

or directly in a declaration of a variable bnd:
tuple<Ident, Integer> bnd;

Tuples are also available in Julia, with the same syntax
(parenthesized list) and semantics. Tuple types can also
be defined explicitly in Julia using the Tuple keyword:
 Tuple{Ident,Int}

5 Match Expressions for Processing
Complex Data

Matching on instances of structured data types such as
trees is one of the central facilities in symbolic
processing languages. The matching provided by the
match-expression construct is very close to similar
facilities in many functional languages but is also related
to switch statements in C or Java. Match-expressions
have two important advantages over traditional switch
statements e.g. available in languages such as C or Java:
 A match-expression can appear in any of the three

Modelica contexts: expressions, statements, or in
equations.

 The selection in the case branches is based on
pattern matching, which reduces to equality testing
or switch in simple cases but is much more powerful
in the general case.

Regarding allowed patterns used in match-expressions
they are defined by the pattern language, see Section 5.2.
For example, constants can be patterns, e.g., "one",
384, RequirementStatus.violated. Constructors
with or without pattern variables can be patterns. The
wildcard pattern _ (underscore) matches anything.

A very simple example of a match-expression is the
following code fragment, which returns a number
corresponding to a given input string. The pattern
matching is very simple – just compare the string value
of s with one of the constant pattern strings "one",
"two" or "three", and if none of these matches return
0 since the wildcard pattern _ matches anything.
 String s;
 Real x;
algorithm
 x := match s
 case "one" then 1;
 case "two" then 2;
 case "three" then 3;
 case _ then 0;
 end match;

Alternatively, an else-branch, else 0;, can be used
instead of the last wildcard pattern case _ then 0:

Another, more useful example, but still trivial since it
only shows constants, is a match expression converting
an enumeration value to a Boolean value:
type RequirementStatus =
 enumeration(violated, undecided, satisfied);

function RequirementStatusToBoolean
 input RequirementStatus r;
 input Boolean undecided = false;
 output Boolean b;
algorithm
 b = match r
 case RequirementStatus.violated then false;
 case RequirementStatus.undecided then
 undecided;
 case RequirementStatus.satisfied then true;
 end match;
end RequirementStatusToBoolean;

The match expression in the above conversion function
gives the same result as the following if-expression, but
can be compiled more efficiently (Section 5) and is
easier to follow:
 b = if r == RequirementStatus.violated
 then false
 elseif r == RequirementStatus.undecided
 then undecided
 else true;

The general syntactic structure of match-expressions
starting with the match keyword is indicated by the
syntax outline below. The else-branch is optional and is
identical to a case _ branch. Local equation sections
contain equations, local algorithm sections contain
statements. The syntax outline:
match <match-value-expr> <opt-local-decl>
 ...
 case <pat-expr>
 [equation | algorithm]
 <opt-equations-or-statements>
 then <expr>;
 ...
 case <pat-expr>
 [equation | algorithm]
 <opt-equations-or-statements>
 ...
 else
 [equation | algorithm]
 <opt-equations-or-statements>

end match;

A slightly more advanced usage of match-expressions
compared to the above trivial cases is in a small
expression evaluator, the function eval. Here we use
as-binding of the result of a match to x, and standard
Modelica dot-notation to access values, e.g. x.rval or
x.exp2. The constructor pattern notation with empty
parentheses, e.g., ADDop(), means matching with
arbitrary arguments to that constructor.
function eval
 input Exp inExpression;
 output Real result;
 import Exp.*;
algorithm
 result := match x as inExpression
 case RCONST() then x.rval;

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 295
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

 case ADDop() then eval(x.exp1)+eval(x.exp2);
 case SUBop() then eval(x.exp1)-eval(x.exp2);
 case MULop() then eval(x.exp1)*eval(x.exp2);
 case DIVop() then eval(x.exp1)/eval(x.exp2);
 case NEGop() then –eval(x.exp);
 end match;
end eval;

Without the import Exp.* clause, constructors
would need the Exp prefix, e.g. Exp.RCONST(),
Exp.ADDop.Regarding Julia, there are several third-
party libraries available for pattern matching is available
with a semantics very close to the abovementioned
match expression construct. Match.jl (Squire 2013) and
Rematch.jl (RelationalAI 2018) use the following
syntax:
@match item begin
 pattern1 => result1
 pattern2, if cond end => result2
 pattern3 || pattern4 => result3
 _ => default_result
End

To make its semantics even closer to MetaModelica
match we included the Rematch.jl Julia package in our
prototype MetaModelica.jl compatibility layer and
enhanced it to also include named pattern matching
(Section 5.1) and matchcontinue semantics (pattern
matching with exception handling, see Fritzson et. al
2011 for details). To implement match and
matchcontinue semantics requires only 350 lines of
Julia code. See also Section 9.

5.1 Named Pattern Matching with Pattern
Variables vs Positional Matching

Named pattern matching uses named association to
match/bind pattern variables to values of corresponding
named arguments (e.g., record field names) of
constructors.

This notation is more verbose than that for positional
pattern matching but has the advantages that it is more
robust against model changes such as constructor
argument order, invention and maintenance of pattern
variable names is avoided, and usually increased
readability since the argument names are visible,
especially if there are many arguments.

This example is of an ADDop named pattern
mentioning field names exp1 and exp2 with pattern
variables e1 and e2 which become bound to values
during matching.

Named pattern matching is possible, i.e., the position
of the pattern variable does not matter, only the field
name (below exp1 or exp2) which it is associated to:
case ADDop(exp1=e1,exp2=e2)
 then eval(e1) + eval(e2);

In positional pattern matching this case would appear as
follows. It is more concise but dependent on argument
order:
case ADDop(e1,e2) then eval(e1)+eval(e2);

5.2 Pattern Expressions
Pattern expressions are used in match expressions and
can have the following forms:
 Patterns can contain literal constants of strings,

integers, real numbers, Booleans, enumeration
values, e.g. "string", 555, 3.14, true, false,
Sizes.medium.

 Patterns can contain the _ wildcard which matches
one item of anything.

 A pattern can be a pattern variable, i.e., an identifier,
which can appear as an argument to a constructor,
and which matches one item of anything.

 A pattern variable need not be declared. Its type is
inferred using simple type inferencing, e.g. from the
corresponding formal parameter type when it
appears as an argument to a record constructor.

 A pattern variable is automatically introduced into
the local scope, e.g. a case-clause, where the
variable is first mentioned. Therefore, it shadows
variables with the same name in outer scopes.

 A pattern variable is bound to the value it matches
during pattern matching.

 The same pattern variable may occur at most once
in the main part of the pattern expression, i.e.,
excluding the optional guard part.

 Patterns can contain calls to record constructor
functions, not to other kinds of functions except
constructors such as the array constructor array(),
the array function cat(), the list() constructor or
the tuple() constructor.

 Positional and/or named argument constructor call
syntax can be used in patterns containing
constructors, e.g., the positional call FOO(1,_,2),
is allowed; a named argument call version, e.g.,
FOO(field1=1,field3=2), or
FOO(field1=1,field3=myvar), where myvar
is a pattern variable, is also allowed. Moreover, you
can mix positional and named arguments in the call
pattern, with positional arguments first:
FOO(1,field3=myvar).

 A constructor pattern NAME(…) can have an
unspecified argument list denoted by an empty
argument list as in FOO(). This matches the
corresponding constructor, here FOO, with arbitrary
(zero or more) arguments.

 A constructor pattern NAME(…) is interpreted as
implicitly filling unspecified argument patterns _ at
the end of the argument list until it matches the
declared number of arguments of the constructor; in
the case of array(…) matching arbitrary (zero or
more) arguments after the specified arguments. For
example, a constructor R with three members x, y,
z, would fit all of the following patterns: R(),
R(v1), R(v1,v2), R(v1,v2,v3).

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

296 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

 Patterns can contain curly-brace array constructors,

which match exactly those elements mentioned,
e.g., {}, {3,5}, {3,5,_}, {3,5,6}, {a,5}. The array
pattern {} matches an empty array value.

 Patterns can contain the as binding operator, [e.g.
state1 as FOO(env,…).

 Patterns may optionally have guards, i.e.,
conditional expressions that are evaluated at run-
time and are part of the pattern condition, i.e., if the
whole matching fails including the guard, the match
may try another pattern if present. Example: case
REAL() guard x.value > 0 then x.value.

 Currently the MetaModelica pattern language does
not support explicit and/or combinations of patterns,
e.g. pattern1 and pattern2, pattern1 or
pattern2 whereas the Rematch.jl code was
influenced by Scala and does support this. The and-
mechanism can be achieved by embedding two or
more patterns in a list of patterns, e.g. {pattern1,
pattern2}, whereas the or-mechanism can be
achieved by having two case-rules, e.g., case
pattern1 …; case pattern2 … .

Some pattern examples:
"a" // constant literal string pattern
33 // constant literal Integer pattern
3.14 // constant literal Real pattern
false // constant literal Boolean pattern
true // constant literal Boolean pattern
p // pattern variable pattern, name p
Sizes.medium // literal enumeration pattern
ADDop() // constructor pattern with zero
 // or more arbitrary arguments
ADDop(3) // constructor pattern, first is 3,
 // followed by arbitrary args
ADDop(_,_) // constructor pattern with 2 or
 // more arbitrary arguments
ADDop(p,_) // constructor pattern with 2 or
 // more arbitrary arguments, the first
 // argument bound to pattern variable p
(_,_) // tuple pattern with 2 arguments
list(_,_) // list pattern with >=2 arguments
x :: rest // list pattern where x matches the
 // first element and rest the rest of the list
array(_) // array pattern with one or more
 // arbitrary arguments
array(3,4) // array pattern with the first
 // two elements being 3 and 4,
cat(1, {head}, rest) // Pattern which matches
 // both the head (first element) and
 // the rest (remaining elements) of an array
array()// array pattern, >= zero arguments
{_,_} // array pattern, exactly two elements
{_,55} // array pattern; two elements, 2nd 55
{44} // array pattern; one element being 44
{} // array pattern, zero elements
{33,_} // array pattern, two elements, 1st 33
{_,33,_,44} // array pattern with four
 // elements, the 2nd is 33, 4th is 44

Syntax rule:
pattern : expression

The pattern expression syntax is a subset of the general
expression syntax. This is checked by semantics rules.
The syntax looks slightly different in the Rematch.jl

package, but all of the semantics are supported (and has
some additional semantics as well).

5.3 Symbolic Differentiation Example
Symbolic differentiation of expressions is a symbolic
operation that transforms expressions into differentiated
expressions.
uniontype Exp
 record RCONST Real e1; end RCONST;
 record ADD Exp e1; Exp e2; end ADD;
 record SUB Exp e1; Exp e2; end SUB;
 record MUL Exp e1; Exp e2; end MUL;
 record DIV Exp e1; Exp e2; end DIV;
 record NEG Exp e1; end NEG;
 record IDENT String name; end IDENT;
 record CALL Exp id; Exp[:]args;end CALL;
 record AND Exp e1; Exp e2; end AND;
 record OR Exp e1; Exp e2; end OR;
 record LESS Exp e1; Exp e2; end LESS;
 record GREATER Exp e1;Exp e2;end GREATER;
end Exp;

An example function df performs symbolic
differentiation of the expression expr with respect to
the variable time, returning a differentiated expression.

As previously mentioned, in the patterns _ is a
reserved word that can be used as a placeholder instead
of a pattern variable when the particular value in that
place is not needed later as a variable value. The as-
construct is used to bind the additional identifier to the
matched value of the relevant expression.

In the following example the _ is used as a
placeholder of any argument in one of the patterns,
CALL(IDENT("sin"),{_}). This is a function call to
sin with the argument list being an array of exactly one
element {_}. The example also uses constructors with
empty parentheses like ADD() to match for zero or more
arguments with any contents.

The following well-known derivative rules are
represented in the match-expression code:

 The time-derivative of a constant RCONST() is zero.
 The time-derivative of the time variable is one.
 The time-derivative of a time dependent variable id

is der(id) but is zero if the variable is not time
dependent, i.e., not in the list tv/timevars.

 The time-derivative of the sum add(x.e1,x.e2)
of two expressions is the sum of the expression
derivatives.

 The time-derivative of sin(x) is cos(x)*x’ if x is a
function of time, and x’ its time derivative.

Some operators have been excluded in the df example
below:
function df "Symbolic differentiation of
expression with respect to time"
 input Exp expr;
 input String[:] tv;
 output Exp diffexpr;
 import Exp.*;

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 297
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

algorithm
 diffexpr := match x as expr
 // der of constant
 case RCONST() then RCONST(0.0);
 // der of a variable
 case IDENT() then
 if x.id == "time" then RCONST(1.0)
 // der of time variable
 else if member(x.id,tv)
 // der of any variable id
 then CALL(IDENT("der"),{x.id})
 else RCONST(0.0);

 // (x.e1 + x.e2)’ => x.e1’ + x.e2’
 case ADD() then
 ADD(df(x.e1,tv), df(x.e2,tv));
 case SUB()then
 SUB(df(x.e1,tv), df(x.e2,tv));
 // (x.e1*x.e2)’ => x.e1’*x.e2+x.e1*x.e2’
 case MUL() then
 PLUS(MUL(df(x.e1,tv),x.e2),
 MUL(x.e1, df(x.e2,tv);));

 case DIV()then
 DIV(SUB(MUL(df(x.e1,tv),x.e2),
 MUL(x.e1,df(x.e2,tv))),
 MUL(x.e2,x.e2));

 case NEG() then NEG(df(x.e1,tv);
 // sin(x.e1)’ => cos(x.e1) * x.e1’
 case CALL(IDENT("sin"),{_}) then
 MUL(CALL(IDENT("cos"),{x.e2[1]}),
 df(x.e2[1],tv)); //first elem from e2

 case AND() then
 AND(df(x.e1,tv), df(x.e2,tv));
 case OR() then
 OR(df(x.e1,tv), df(x.e2,tv));

 case LESS() then
 LESS(df(x.e1,tv), df(x.e2,tv));
 case GREATER() then
 GREATER(df(x.e1,tv), df(x.e2,tv));
 // etc...
 end match;
end df;

6 Exception Handling
The available MetaModelica exception handling
construct has the following structure:
 try
 // Perform something which might fail
 else
 // Perform something different
 end try;

This is used extensively in many of the existing
MetaModelica applications. There is also a function
fail(), which can be called to create a failure that can
be caught by the next level exception handler, typically
after emitting an error message.

Julia has a very similar exception handling
mechanism, with a try – catch statement and a throw
call to create exceptions, but additionally has named
exceptions and the finally clause.

7 Compiler Size and Performance
The OpenModelica compiler is a very large application
implemented in MetaModelica 3.0. The sizes of the

main parts are shown in Table 1. It is also bootstrapped,
i.e., it compiles itself (Sjölund et al, 2014).

Moreover, the new OpenModelica compiler frontend,
(Pop, et al, 2019) using the new facilities of
MetaModelica 3.0, has a flattening speed of between
one and two orders of magnitude faster than the previous
compiler frontend.

Table 1. Sizes of OpenModelica compiler phases, lines of
code, including several code generators.

Compiler Phase Lines

BackEnd (from flat Modelica to sorted
equation systems) 106299

FrontEnd (up to flat Modelica) 152059
Intermediate representation for code
generation 17368

Code generators (generated code) 356889

Code generators (template source code) 8957
Code generators template language compiler
& runtime 14586

OpenModelica scripting environment 35460

Utility modules 31050

Total size (excl. generated code) 412869

The compilation speed for two example models is
indicated in Table 2.

Table 2. Compilation speed of the OpenModelica
compiler implemented in MetaModelica 3.0 for some
models, using a standard desktop computer.

Example model and size Compile time (s)

Hummod, 29145 equations 239 s

Engine V6 (analytic), 9016 eqs 26 s

8 New Development Environment
As previously mentioned, the new integrated OMEdit-
based development environment supports algorithmic
code development in MetaModelica 3.0 or Modelica
3.4, or equation-based Modelica 3.4 model
development. There are four simulation arrow buttons
visible in Figure 3, from the left: standard simulation,
simulation with the transformational debugger for
equation models, simulation with the algorithmic code
debugger, and simulation with 3D graphic animation.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

298 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

Figure 3. OMEdit with graphical view of an electrical
model, as well as its four simulation+debug buttons.

8.1 Why Develop a New Environment
What was the motivation for developing a new version
of the integrated environment since the Eclipse-based
MDT-plugin was already available? There are basically
two reasons:
 Ease of use. Users and developers asked for a more

integrated tool, instead of needing to install the
rather complex Eclipse tool for textual model
debugging and MetaModelica development.

 Performance. Several developers were dissatisfied
with the Eclipse plugin since they felt it was too
slow, even though it provided useful functionality.
By contrast, the new OMEdit environment is very
fast, also for large applications.

8.2 Browsing and Debugging
The OMEdit-based development environment supports
browsing and searching of MetaModelica packages just
as the MDT Eclipse plugin. Debugging, including
setting breakpoints, stepping, conditional breakpoints,
attaching the debugger to an already running process,
etc., is supported. A new feature is the ability to also
show C function calls in the stack trace. See Figure 4,
Figure 5, and Figure 6.

Figure 4. OMEdit during MetaModelica development.
See also Figure 1 for more details.

Figure 5. The function call stack trace browser showing
Modelica and MetaModelica function calls at the top, C
functions at the bottom.

Figure 6. The local variables browser. Both standard
Modelica data and MetaModelica data such as trees and
lists are shown.

8.3 Separate Compilation
An efficient separate compilation mechanism for
algorithmic MetaModelica or Modelica code is
available, which is used routinely by the OpenModelica
compiler developers to achieve rather fast turnaround
time since more than two years. The compiler itself is a
large application consisting of more than 250 packages,
which is why separate compilation is quite important.
Separate compilation of equation models is a separate
topic not covered here, and is partly available using the
FMI interface. The algorithmic code separate
compilation mechanism works as follows:

A restriction has been introduced that all top-level
packages are encapsulated and all dependencies of a
module must be marked by an import statement. This
improves performance in subsequent steps.

An additional useful restriction is that any public
function, constant, or type may only refer to other public
elements. By introducing this restriction, it is possible to
create an interface file for each package that strips out
protected elements and algorithm sections. Everything
that remains in the resulting file is part of the interface,
and loading each and every file (e.g., of the 250 OMC
files) in the interface takes less than 0.6 seconds on a
standard laptop.

For performance, a distinction between protected and
public import elements in Modelica has been
introduced. When calculating the list of interface files

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 299
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

that a package depends on, we must start with all the
import elements in the package that is going to be
compiled. For each of these packages, add the public
imports to the list of packages that are going to be loaded
(and do this recursively if any of those packages contain
public imports). This is the list of all interfaces needed
to calculate all types used in functions of the package
that is going to be compiled. This set is substantially
smaller than loading every single interface file.

Thus, to compile a package, the interface
dependencies and the main file is loaded. For each
function in the package, perform instantiation of that
function and send it to the code generator. Compile each
of those files with a C compiler and perform linking of
the total application.

The total time including linking when updating a file
without changing its public interface is 4.5 seconds for
typical file (about 6000 lines of MetaModelica) or about
8 seconds for a large file (about 13000 lines). The tests
were performed using an Intel Core i7 3820 @3.60GHz.
There were about 250 packages in the OpenModelica
compiler application used for the measurements.

Regarding Julia, the LLVM just-in-time compiler
produces code directly into a binary image in memory.
The disadvantage is that compilation is eventually
repeated when code is loaded. However, there are some
facilities for saving precompiled code to avoid
recompilation.

8.4 Just-in-Time and Incremental
Compilation

Julia uses LLVM for just-in-time compilation which
combines performance with flexibility and interactivity.
MetaModelica is currently compiled to C-code that is
compiled either using the GNU C compiler or the
LLVM Clang compiler. Instead, by directly generating
LLVM compatible binary code it would be possible to
get faster compilation and also to utilize the just-in-time
capabilities of LLVM. Thus, recently we have made
prototyping efforts for adapting the OpenModelica
compiler backend intermediate representation (IR) to an
LLVM compatible form (Andersson and Eriksson,
2018) and to interface it to the LLVM just-in-time
compiler (Tinnerholm, 2019). In this way it is possible
to obtain just-in-time capabilities with the associated
flexibility without dependence on the Julia run-time.
Additionally, there is an earlier prototype incremental
compilation functionality in OpenModelica (Klinghed
and Jansson, 2008).

9 Integration with Julia in Modelica
Environments

As previously mentioned, Julia provides a powerful
environment and a rapidly growing set of libraries for
computational applications. Thus, some kind of
integration with Julia seems relevant for many Modelica

tools. We have identified a few levels of integration
between a Modelica tool and Julia, from less to more
integration:
 Level 1. Using Julia as a scripting language and

making an API available for calling the Modelica
tool from Julia. This have benefits of making
Modelica model simulation and analysis available
from Julia, e.g. for applications such as model-based
control system design, e.g., (Thiele et al, 2019). Such
an integration has recently been made available via
the OMJulia subsystem (Lie et al, 2019) in
OpenModelica

 Level 2a. Introducing an external function
declaration facility for Julia functions. The benefits
include making Julia functions available to Modelica
modelers.

 Level 2b. Generating Julia code from the Modelica
tool, i.e., adding another target language in addition
to the typical C / C++. The benefits include Julia
functions available to Modelica modelers as external
functions and leverage some Julia run-time system
functions for supporting the tool implementation.

 Level 3. Using Julia as the implementation language
for the Modelica tool. This has the advantage of
making the powerful Julia language and ecosystem
available for tool implementation supporting both
numeric and symbolic operations, and with rich
libraries.

Regarding Level 3, two approaches are language
embedding, i.e., embedding a Modelica-like language
subset into the Julia language, or complete
implementation from scratch in order to preserve all
Modelica semantics.

Language embedding is a quick approach and has
been chosen, e.g., by the Modia effort and is discussed
in more detail in Section 10. As mentioned, an important
disadvantage of such an approach is the loss of the static
type checking and safe engineering practices which has
been a strong guiding principle of Modelica language
design. However, it might be possible to develop a static
type system with static type checking for a subset of
Julia. Most Julia code will not pass such a type checker,
but for code that passes, this may solve the problem of
safe engineering practice that is lacking for dynamic
languages Some work in that direction is mentioned in
(Chung et al, 2016) where a static type checker for a
very small subset of Julia has been developed.

Regarding the other approach, implementation from
scratch, a quicker approach is automatic
translation/porting of code if the existing Modelica tool
implementation language is close enough to Julia. Given
the strong similarities between MetaModelica and Julia,
it might be possible to auto-translate most of the
OpenModelica compiler to Julia and thereby obtain a
fully compliant Modelica compiler with static type
checking implemented in Julia. As a first step, a

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

300 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

compatibility package for MetaModelica in Julia has
been developed by us, including named pattern
matching that was missing. One issue that was
discovered is that recursive uniontypes that can be
directly defined in MetaModelica are not possible in
Julia. However, a solution was found by first declaring
an abstract type of the uniontype which then can be
referred to in the member structs. Another related issue
is that Julia constants and types are declared in the order
of the file, whereas in MetaModelica order does not
matter. This either requires moving some MetaModelica
code around if a very simple MetaModelica to Julia
translator was implemented. Other than this,
OpenModelica depends on a lot on external C code,
which is expected to be the bulk of work to translate the
entire compiler to Julia.

Performance is of great importance to OpenModelica
but the MetaModelica compiler is primarily a high-level
compiler and does not optimize many low-level
operations due to maintenance issues of such code. Julia
has a different approach where the language was
designed to allow for high-performance code. An initial
test showed that the Julia garbage collector is twice as
fast as the Boehm garbage collector used in
OpenModelica. And while the OpenModelica LLVM
just-in-time compiler (Tinnerholm, 2019) is not feature-
complete, it shows that LLVM just-in-time compilation
such as Julia’s could bring great performance benefits.
If OpenModelica was ported to Julia and Modelica
functions would be translated to the internal Julia AST,
OpenModelica could gain performance by removing the
interpreter and replacing it with running native code.

Further investigations of MetaModelica in Julia will
follow, especially with regard to performance.

10 Related Work
OCaml (Minsky, et al, 2013) and Standard ML (Milner
et al, 1997) are from the ML family of programming
languages. These languages are similar to
MetaModelica in that they both use very similar
language constructs, statically strong typing and type
inference. One major difference is that all variables in
MetaModelica have a specific type while in ML each
expression has a most general type. MetaModelica can
generate error messages that are easier to understand
because type inference only has to be performed when
calling a polymorphic function. However, this design
choice also results in more local variable declarations
since all temporary variables need to be declared. This
is both positive (one documents what type one expects a
variable should have) and negative (one ends up with a
number of local variable declarations).

Another group of languages with similar constructs
and pattern matching are the dynamically typed
languages Lisp, Mathematica, Python, and Julia. Of
these, only Julia currently seem to have good enough
performance for efficient implementation of core

compiler modules. Such dynamic typing is popular for
prototyping but is negative from the correctness point of
view since certain bugs may remain undetected for a
long time and require exhaustive testing for detection.
Some languages, like Lisp and Julia, provide meta-
programming macros with Quote and Unquote
constructs. This enables the use of concrete syntax
fragments in meta-programming which may be slightly
easier to use that the abstract syntax-oriented approach
by the ML languages and MetaModelica, but on the
other hand may be less efficiently compilable.

Several authors have used language embedding in a
host language for implementing equation-based
languages instead of designing a new language such as
Modelica or MetaModelica. In this way the concrete and
abstract syntax as well as parts of the implementation of
the host language can be re-used. On the negative side,
one is constrained by the host language regarding
expressivity, semantics, and tool facilities (e.g. specific
support for small-footprint embedded system code
generation recently developed for OpenModelica).
Giorgidze and Henrik Nilsson (2011) used this to embed
an equation-based language in a functional language,
and also used its JIT-compilation facilities for
dynamically structure changing models. Erik Frisk
(2017) used it for a simple diagnosis equation-based
language embedded in Matlab and Python, using the
available symbolic toolboxes. Hilding Elmqvist et al
(2016) used language embedding of the Modia language
prototype into Julia, using meta-programming macros,
and also using its JIT-compilation for investigating
structure changing models.

11 Conclusions
We have presented the MetaModelica 3.0 language for
Modelica-style meta-programming together with its
new OMEdit-based development environment. We have
also done a short comparison to Julia and conclude that
there are many similarities between MetaModelica and
Julia. The current OpenModelica environment is the
first Modelica environment that integrates meta-
programming as well as graphical and textual modeling
support and debugging in the same tool. The
development environment provides efficient separate
compilation with short turn-around time also for
applications of several hundred thousand lines of code.
Several facilities from the MDT Eclipse plug-in such as
go to definition, type, and signature display, are planned
to be made available in the new environment. A more
efficient compiler frontend is almost completed, as well
as a more powerful interface to the OpenModelica code
generators. Moreover, further investigation of possible
porting of MetaModelica to Julia is planned, which
would make possible a Julia-based OpenModelica
implementation.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

DOI Proceedings of the 13th International Modelica Conference 301
10.3384/ecp19157289 March 4-6, 2019, Regensburg, Germany

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENPROD, MODRIO, OPENCPS, and EMPHYSIS
projects, and in the Vinnova RTISIM project. Support
from the Swedish Government has been received from
the ELLIIT project, as well as from the European Union
in the H2020 INTO-CPS project. The OpenModelica
development is supported by the Open Source Modelica
Consortium.

References
Patrik Andersson and Simon Eriksson. Efficient IR for the

OpenModelica Compiler. Maser Thesis report, Linköping
University, 202018 | LIU-IDA/LITH-EX-A--2018/001—
SE, October 2018.

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus
and Kaj Nyström. Meta Programming and Function
Overloading in OpenModelica. In Proceedings of the 3rd
International Modelica Conference, Linköping, Sweden,
Nov 2003.

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter
Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,
and Wladimir Schamai. An Open Source Modelica Graphic
Editor Integrated with Electronic Notebooks and Interactive
Simulation. In Proc. of the 8th International Modelica
Conference 2011, pp. 739–747. Dresden, Germany,
March.20-22, 2011.

Modelica Association. Modelica: A Unified Object-oriented
Language for Physical Systems Modeling, Language
Specification Version 3.4. May 2017. URL
http://www.modelica.org/

Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral Shah.
Julia: A Fresh Approach to Numerical Computing. SIAM
Review, Vol. 59, No. 1, pp. 65-98., 2017.
http://julialang.org/publications/julia-fresh-approach-
BEKS.pdf; see also: http://julialang.org/

Julialang. Julia Language Documentation, Release 1.02
Accessed November 14, 2018. www.julialang.org

David Broman and Jeremy Siek J. G. (2012): Modelyze: a
Gradually Typed Host Language for Embedding Equation-
Based Modeling Languages, University of California at
Berkeley, No. UCB/EECS-2012-173, 2012.
www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-
2012-173.html.

Benjamin Chung, Paley Li, and Jan Vitek. Static Typing
Without Static Types – Typing Inheritance from the Bottom
Up. In Proc. of 1th Workshop on New Object-Oriented
Languages (NOOL) 2016, In conjunction with ACM
SIGPLAN SPLASH Conference, Amsterdam, The
Netherlands, October 31, 2017:
http://www.it.uu.se/workshop/nool16/nool16-paper4.pdf

Hilding Elmqvist, Toivo Henningsson, and Martin Otter.
Innovations for Future Modelica. In Proc. of Modelica
Conference 2017, Prague, May 15-17, 2017.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter.
System Modeling and Programming in a Unified
Environment based on Julia. In Proc of ISoLA 2016, (Eds)
T. Margaria and B. Steffen, Part II, LNCS 9953, pp. 198-
217, Oct. 10-14, 2016.

Erik Frisk, Mattias Krysander, and Daniel Jung. A Toolbox
for Analysis and Design of Model Based Diagnosis Systems
for Large Scale Models. IFAC World Congress. Toulouse,
France, 2017. https://faultdiagnosistoolbox.github.io/
DOI: https://doi.org/10.1016/j.ifacol.2017.08.504

Fritzson Peter, Adrian Pop, and Peter Aronsson. Towards
Comprehensive Meta-Modeling and Meta-Programming
Capabilities in Modelica. In Proceedings of the 4th
International Modelica Conference, Hamburg, Germany,
March 7-8, 2005

Peter Fritzson, Adrian Pop, and Martin Sjölund. Towards
Modelica 4 Meta-Programming and Language Modeling
with MetaModelica 2.0. Technical reports in Computer and
Information Science, No 10, Linköping University
Electronic Press. February 2011. URL
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68361

Peter Fritzson. Principles of Object Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
1250 pages. ISBN 9781-118-859124, Wiley IEEE Press,
2014.

Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard
Bachmann, Willi Braun, Robert Braun, Lena Buffoni,
Francesco Casella, Rodrigo Castro, Alejandro Danós,
Rüdiger Franke, Mahder Gebremedhin, Bernt Lie, Alachew
Mengist, Kannan Moudgalya, Lennart Ochel, Arunkumar
Palanisamy, Wladimir Schamai, Martin Sjölund, Bernhard
Thiele, Volker Waurich, Per Östlund. The OpenModelica
Integrated Modeling, Simulation, and Optimization
Environment. In Proceedings of the 1st American Modelica
Conference, Cambridge, MA, USA, October, 8-10, 2018.
Published by LIU Electronic Press, www.ep.liu.se

George Giorgidze and Henrik Nilsson. Mixed-level
Embedding and JIT Compilation for an Iteratively Staged
DSL. In Julio Mariño, editor, Proceedings of the 19th
Workshop on Functional and (Constraint) Logic
Programming (WFLP 2010), volume 6559 of Lecture Notes
in Computer Science, pages 48-65, Springer-Verlag, 2011.
http://www.cs.nott.ac.uk/~psznhn/Publications/wflp2010-
lncs.pdf

Paul Hudak. The Haskell School of Expression. Cambridge
University Press, 2000.

Kim Jansson and Joel Klinghed. Incremental compilation and
dynamic loading of functions in OpenModelica. Master's
thesis, Linköping University, IDA, June 2008.
URN: urn:nbn:se:liu:diva-12329

Bernt Lie, Arunkumar Palanisamy, Alachew Mengist, Lena
Buffoni, Martin Sjölund, Adeel Asghar, Adrian Pop, and
Peter Fritzson. OMJulia: An OpenModelica API for Julia-
Modelica Interaction. In Proc. of the 13th Int. Modelica
Conference, Regensburg, Germany, March 4-6, 2019.

Robin Milner, Mads Tofte, R. Harper, and D. MacQueen, The
Definition of Standard ML. MIT Press, Cambridge, MA,
USA, 1997.

Yaron Minsky, Anil Madhavepeddy, and Jason Hickey. Real
World OCaml. O'Reilly, 2013.

Martin Otter and Hilding Elmqvist. Transformation of
Differential Algebraic Array Equations to Index One Form.
In Proc. Modelica Conference, Prague, May 15-17, 2017.

MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia

302 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157289

Mikael Pettersson, Compiling Natural Semantics. Lecture

Notes in Computer Science (LNCS). Vol. 1549. 1999,
Springer Verlag.

Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson,
Francesco Casella. Integrated Debugging of Modelica
Models. Modeling, Identication, and Control, Vol 35, No 2,
pp. 93-107, DOI: http://dx.doi.org/10.4173/mic.2014.2.3,
ISSN 1890-1328, Aug 2014.

Adrian Pop, Peter Fritzson, Andreas Remar, Elmir Jagudin,
and David Akhvlediani. OpenModelica Development
Environment with Eclipse Integration for Browsing,
Modeling, and Debugging. In Proceedings of the 5th
International Modelica Conference (Modelica'2006),
Vienna, Austria, Sept. 4-5, 2006.

Adrian Pop and Peter Fritzson, MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. In D. Lightfoot and C. Szyperski, editors,
Modular Programming Languages, Vol. 4228 of Lecture
Notes in Computer Science, pages 211/229. Springer Berlin
/ Heidelberg, 2006. DOI:10.1007/11860990_14.

Adrian Pop. Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages. Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1183, June 5, 2008.

Adrian Pop, Per Östlund, Francesco Casella, Martin Sjölund,
Rüdiger Franke. A New OpenModelica Compiler High
Performance Frontend. In Proc. of the 13th Int. Modelica
Conference, Regensburg, Germany, March 4-6, 2019.

RelationalAI. Julia pattern matching Rematch.jl package,
2018. https://github.com/RelationalAI-oss/Rematch.jl.
Accessed Sept. 2018.

Peter van Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, 2004.

Tim Sheard. Accomplishments and Research Challenges in
Meta-Programming. Lecture Notes in Computer Science,
2196:2–.., 2001.

Tom Short. Sims - A Julia package for equation-based
modeling and simulations. https://github.com/tshort/Sims.jl
2012.

Martin Sjölund, Peter Fritzson and Adrian Pop. Bootstrapping
a Compiler for an Equation-Based Object-Oriented
Language. DOI: 10.4173/mic.2014.1.1. Modeling,
Identification and Control, Vol 35, No 1, pp 1-19, 2014.

Martin Sjölund. Tools and Methods for Analysis, Debugging,
and Performance Improvement of Equation-Based Models.
Ph.D. Thesis. Linköping Studies in Science and
Technology, Dissertation No. 1664, June 1, 2015.

Kevin Squire. Julia pattern matching Match.jl package, 2013.
https://github.com/kmsquire/Match.jl. Accessed Sept 2018.

Rickard Stallman, R. Pesch, S. Shebs, et al. Debugging with
GDB. Free Software Foundation, 2014. URL
http://www.gnu.org/software/gdb/documentation/.

Guy Steel and Rickard Gabriel. The Evolution of Lisp. In The
second ACM SIGPLAN conference on History of
programming languages, HOPLII. ACM, New York, NY,
USA, pages 231{270, 1993. doi:10.1145/154766.155373

Bernt Lie, Arunkumar Palanisamy, Alachew Mengist, Lena
Buffoni, Martin Sjölund, Adeel Asghar, Adrian Pop, and
Peter Fritzson. OMJulia: An OpenModelica API for Julia-

Modelica Interaction. In Proc. of the 13th Int. Modelica
Conference, Regensburg, Germany, March 4-6, 2019.

John Tinnerholm. An LLVM backend for the OpenModelica
Compiler. Master Thesis LIU-IDA/LITH-EX-A--
2019/001--SE, Dept. Computer and Information Science,
Linköping University, January 2019.

Stephen Wolfram. The Mathematica Book, 5th Ed. Wolfram
Media, Inc, 2003.

Dirk Zimmer. Equation-Based Modeling of Variable
Structure Systems. PhD Dissertation, ETH Zürich.
http://ecollection.library.ethz.ch/eserv/eth:1512/eth-1512-
02.pdf

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 303
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration
with the Julia Language
Thiele, Bernhard and Lie, Bernt and Sjölund, Martin and Pop, Adrian and Fritzson, Peter

303

Controller Design for a Magnetic Levitation Kit using
OpenModelica’s Integration with the Julia Language

Bernhard Thiele1 Bernt Lie2 Martin Sjölund3 Adrian Pop3 Peter Fritzson3

1Institute of System Dynamics and Control, DLR, Germany, bernhard.thiele@dlr.de
2University of South-Eastern Norway, bernt.lie@usn.no

3PELAB, Linköping University, Sweden, {martin.sjolund,adrian.pop,peter.fritzson}@liu.se

Abstract
This paper presents a practical application of computer
aided control systems design using a new OpenModelica
API (OMJulia) which allows to conveniently operate on
Modelica models from the Julia language. Julia is a rather
young language (Julia 1.0 was released in August 2018)
designed to address the needs of numerical analysis and
computational science, in particular it already has decent
support for the control community. The magnetic levita-
tion application at hand demonstrates how control system
design can benefit from a suitable integration between Ju-
lia and Modelica. It is based on a commercially avail-
able control education kit in which the original controller
is replaced by our own digital controller developed in this
work. There exists an accompanying but independent pa-
per which introduces the complete OMJulia API.
Keywords: OpenModelica, OMJulia, control, magnetic
levitation, Arduino, Julia, Modelica

1 Introduction
Modelica is a well established language for modeling
complex technical systems supported by several conve-
nient and powerful modeling and simulation environ-
ments. Distinguishing language characteristics are the fo-
cus on declarative system descriptions using mathemati-
cal equations and a specific approach to object orientation
which allows encapsulating component behavior (given
by data + equations) into reusable units which can be con-
nected by suitable constraints (connect equations) to build
complex systems from manageable building blocks, see
e.g., (Modelica Association, 2017; Fritzson, 2015).

However, for many numerical analysis tasks an impera-
tive language is well suited and suggests itself. Indeed,
the most prevalent software for computer aided control
systems design on the market, MATLAB/Simulink1, has
two parts: MATLAB, a numerical computing environment
built around the imperative MATLAB scripting language,
and Simulink, a primarily graphical block diagram lan-
guage which is tightly coupled to MATLAB, for modeling
and simulation.

Although the Modelica language also has an imperative
part for writing algorithms, its support in tools as scripting

1The MathWorks, https://mathworks.com.

language has so far remained limited and rather tool spe-
cific. Consequently, no rich ecosystem for typical numer-
ical computing tasks like data analysis and advanced data
visualization was developed within the community. There
are notable exceptions like the LinearSystems library for
linear system analysis and controller design (Baur et al.,
2009). However, as of the latest release of the library
(Modelica_LinearSystems2 v2.3.42) full support of the li-
brary is still limited to the Dymola3 tool.

OpenModelica4, similarly to other Modelica tools, pro-
vides interfaces to dedicated scripting languages which
provide the desired advanced scripting support, inclusive
a rich ecosystem for numerical analysis and advanced vi-
sualization. Based on OMPython (Ganeson, 2012; Gane-
son et al., 2012) an API was developed for simple opera-
tion on Modelica models from within Python (Lie et al.,
2016). However, in the meantime the rather young lan-
guage Julia5 has matured (Julia 1.0 was released in Au-
gust 2018) and has attracted a growing user base in the
scientific computing community. The Julia language was
originally designed to address the needs of numerical anal-
ysis and computational science, in particular it already has
decent support for the control community. This motivated
the development of OMJulia, an API for interacting with
Modelica models from the Julia language. The OMJulia
API is described in detail in an accompanying but inde-
pendent paper (Lie et al., 2019).

The goal of this paper is to demonstrate the interac-
tion between Julia and Modelica models using one of the
most popular applications in control education: A mag-
netic levitation system; see, e.g., (Yoon and Moon, 2016;
Lilienkamp and Lundberg, 2004; Craig et al., 1988; Wong,
1986). The intention is to present available tool support
using a tangible example, it is not in the scope of the pa-
per to propose and validate a controller that improves on
existing designs.

2Modelica_LinearSystems2 library, https://github.com/
modelica/Modelica_LinearSystems2.

3Dassault Systèmes, https://www.3ds.com.
4Open Source Modelica Consortium (OSMC), https://www.

openmodelica.org.
5Julia language, https://julialang.org.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

304 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

2 Digital Control for a Magnetic Levi-

tation Kit
Magnetic levitation is a popular application for teaching
control theory. A levitating object which apparently de-
fies the law of gravity is an attractive gadget and the un-
derlying physics (unstable plant dynamics) convincingly
demonstrate the importance of feedback control. The ap-
plication is based on a commercially available electromag-
netic levitation kit6 from Zeltom which is targeted at ed-
ucational applications. The fully assembled unit is shown
in Figure 1. The vertical position of the levitating magnet

Figure 1. Zeltom’s electromagnetic levitation kit.

is measured using a linear Hall effect sensor which is di-
rectly attached below the electromagnet. The kit includes
a black box microcontroller for controlling the current in
the electromagnet.

The goal is to replace Zeltom’s controller by our own
design.

3 Plant Model
A behavioral model describing the dynamics of the phys-
ical system is provided in a technical report by Zeltom
(Zeltom LLC, 2009). A schematic diagram of the system
is shown in Figure 2, where v is the voltage across the
electromagnet, i is the current flowing through the elec-
tromagnet, R is the resistance and L the inductance of the
electromagnet, e is the voltage across the Hall effect sen-
sor, d is the distance between the Hall sensor and the levi-
tating magnet, m is the mass of the levitating magnet, and
f is the force on the levitating magnet generated by the
electromagnet.

The nonlinear dynamic equations as described in (Zel-
tom LLC, 2009) are reproduced below.

6Zeltom Electromagnetic Levitation System, http://zeltom.
com/product/magneticlevitation.

X

+

-
v

+

-
e

d

mg

f

i

L

R

Figure 2. Schematic of the magnetic levitation system.

Approximated force from the electromagnet on the levi-
tating magnet:

f = k
i

d4 , (1)

approximated voltage across the Hall effect sensor:

e = α +β
1
d2 + γi, (2)

Newton’s second law:

m
d2d
d t2 = mg− f , (3)

Kirchhoff’s voltage Law:

v = Ri+L
di
d t

, (4)

where k is a geometry dependent constant, α , β , γ are
constants that depend on the Hall sensor and the geome-
try, and g is the standard gravity constant. The system’s
parameters are listed in Table 1; the values are from (Zel-
tom LLC, 2009) and from own measurements.

Table 1. System parameters.

Parameter Value Unit

k 17.31 ·10−9 kg ·m5/A · s2

α 2.44 V
β 1.12 ·10−4 V ·m2

γ 0.26 V/A
R 2.41 Ω

L 15.03 ·10−3 H
m 3.02 ·10−3 kg

Letting v be the control input and e be the measured out-
put, these nonlinear equations can be readily transcribed
into a Modelica model (condensed for saving space):

model MagLevNL
parameter Real R=2.41, L=15.03e-3,

m=3.02e-3, k=17.31e-9, alpha=2.44,
beta=1.12e-4, gamma=0.26;

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 305
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

input Real v;
output Real e;
Real i, d, d_der, f;
constant Real g=9.81;

equation
f = k*i/d^4;
e = alpha + beta/d^2 + gamma*i;
der(d) = d_der;
m*der(d_der) = m*g - f;
v = R*i + L*der(i);

end MagLevNL;

For the purpose of controller design it is typically nec-
essary to work with a linearized version of the plant dy-
namics. The goal for the magnetic levitation system is to
design a controller which stabilizes the plant in an equi-
librium position. Therefore, the system needs to be lin-
earized around an equilibrium position of the nonlinear
plant. Hence, the first step is to determine an equilibrium
position. It would be convenient to have a direct OMJulia
API function for this task, similar to

mlNL = OMJulia.OMCSession()
mlNL.ModelicaSystem("MagLevNL.mo",

"MagLevNL")
state_e, u_e, y_e =

mlNL.findEquilibrium(["d=0.02",
"d_der=0"])

where findEquilibrium(..) would search for an
equilibrium position under constraints that can be set as
function arguments. The function would return the value
of the state variables, as well as the value of the inputs and
outputs at the equilibrium position. Here, an equilibrium
is sought under the constraints that the levitating magnet,
levitates at a distance of 2cm below the sensor.

Unfortunately, such a function is not (yet) available in
OMJulia7. However, it is possible to modify the Model-
ica model and impose the equilibrium constraints within a
steady-state initialization problem as shown in the listing
below. Notice that input v was turned into a parame-
ter with unknown value (fixed=false) which has the
effect that the value is determined during initialization8.
This is needed since in Modelica a variable which is de-
clared as input is treated as a known, which would result
in an overspecified initialization problem below. In order
to search for the (unknown) voltage input at which the
system stays at an equilibrium with the prescribed con-
straints the Modelica tool needs to treat the voltage input
as an unknown.

model MagLevNL_SteadyState
parameter Real R=2.41, L=15.03e-3,

m=3.02e-3, k=17.31e-9, alpha=2.44,
beta=1.12e-4, gamma=0.26;

7Tools like Wolfram Mathematica (Wolfram Research) or Maple
(MapleSoft) support functions for finding local equilibrium points of
nonlinear systems. For example Wolfram Mathematica 11.3 introduced
a function named “FindSystemModelEquilibrium” which works with
(imported) Modelica models and provides respective functionality.

8Alternatively, it is possible to declare v as
“Real v(start=0.5, fixed=false)” and add an equa-
tion “der(v) = 0”.

parameter Real d0 = 0.02 "Prescribed
equilibrium position";

parameter Real v(start=0.5, fixed=false)
"Unknown equilibrium voltage across
the electromagnet";

output Real e;
Real i, d, d_der, f;
constant Real g=9.81;

equation
f = k*i/d^4;
e = alpha + beta*1/d^2 + gamma*i;
der(d) = d_der;
m*der(d_der) = m*g - f;
v = R*i + L*der(i);

initial equation
d = d0;
der(d) = 0;
der(d_der) = 0;
der(i) = 0;

end MagLevNL_SteadyState;

With this model the OMJulia API can be used to re-
trieve the plant’s values at the equilibrium position and
use them for linearizing the plant at this equilibrium posi-
tion. Since the OMJulia API does not (yet) allow to con-
veniently set start values, the following small modification
to the MagLevNL model is introduced, in order to set the
start values as parameters:
model MagLevNL
// ... same as previously
parameter Real i0, d0, d_der0;
Real i(start=i0,fixed=true),

d(start=d0,fixed=true),
d_der(start=d_der0,fixed=true), f;

// ... same as previously
end MagLevNL;

Using this modified model the OMJulia API allows to
retrieve the linearized representation of the plant model as
shown in the listing below.
mlNLe = OMJulia.OMCSession()
mlNLe.ModelicaSystem(

"MagLevNL_SteadyState.mo",
"MagLevNL_SteadyState")

mlNLe.setParameters(["d0=0.02"])
mlNLe.simulate()
sol = mlNLe.getSolutions(["v", "i", "d",

"d_der"])
v_e = sol[1][1] # input v at equilibrium
i_e = sol[2][1] # state i at equilibrium
d_e = sol[3][1] # must be equal to d0
d_der_e = sol[4][1] # must be 0

mlNL = OMJulia.OMCSession()
mlNL.ModelicaSystem("MagLevNL.mo",

"MagLevNL")
mlNL.setInputs(["v=$v_e"])
mlNL.setParameters(["i0=$i_e", "d0=$d_e",

"d_der0=$d_der_e"])
A,B,C,D = mlNL.linearize()

The final call to the linearize() function retrieves a
tuple of 2D arrays (matrices) which encode the linearized
model in a state space representation (ẋ = Ax + Bu,y =
Cx + Du). The values can be easily inspected, e.g., by

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

306 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

printing them to the console window (number of digits
truncated for readability):

julia> println("v_e=$v_e, i_e=$i_e,
e_e=$e_e")$

v_e=0.66, i_e=0.27, e_e=2.79
julia> println("A=$A\nB=$B\nC=$C\nD=$D")
A=[0.0 1.0 0.0; 1962.0 0.0 -35.8237; 0.0

0.0 -160.346]
B=[0.0; 0.0; 66.5336]
C=[-28.0 0.0 0.26]
D=[0.0]

4 Control Design
The Julia ecosystem provides various packages which can
support a control design process. The OMJulia bridge to
OpenModelica allows to combine the strength of those
packages with the powerful modeling and simulation in-
frastructure of a Modelica tool. This section will demon-
strate some possibilities.

The magnetic levitation system is open-loop unstable,
which can be quickly checked using the ControlSystems.jl
package9. Function mlLin=ss(A, B, C, D) creates
a state-space model from the previously retrieved matri-
ces of the linearized magnetic levitation model. Function
pole(mlLin) returns its poles.

julia> using ControlSystems
julia> mlLin = ss(A,B,C,D)
julia> pole(mlLin)
3-element Array{Float64,1}:

44.294469180700204 -44.2944691807002
-160.346

It is known that a PD controller is capable of stabiliz-
ing a magnetic levitation system. Indeed, Yoon and Moon
have shown in (Yoon and Moon, 2016) that the system at
hand can be stabilized by a simple PD analog controller.
A particular challenge in respect to stabilizing a magnetic
levitation system is designing a reasonable robust con-
troller. A measure for the robustness of a design is the
sensitivity function S, which describes the transfer func-
tion from an external disturbance to the process output.
Lower values of |S| suggest further attenuation of the ex-
ternal disturbance (hence, lower is better). The following
paragraphs briefly introduces the Julia code used for sen-
sitivity analysis of the controlled system.

A PD controller is described by the transfer function

CPD(s) = Kp(Tds+1), (5)

where Kp is the proportional gain, and Td is the deriva-
tive time parameter. The listing below uses the construct
s = tf("s") to create a continuous-time transfer func-
tion s, which enables a convenient notation for creating
transfer functions using standard mathematical operators
like PD = Kp*(Td*s + 1).

9ControlSystems.jl, https://github.com/
JuliaControl/ControlSystems.jl.

The plant’s state space representation from above can
be converted into a transfer function representation G(s)
using function tf(..), e.g., G = tf(mlLin). Using
the plant’s transfer function G(s), the open-loop transfer
function is given by a serial connection of controller and
plant,

PPDol(s) =CPD(s)G(s), (6)

which can be achieved using the series(..) function
in Julia. The sensitivity function is then given by

S(s) =
1

1+PPDol(s)
. (7)

Since poles are not canceled automatically, the function
minreal(..)10 is used to obtain a minimal transfer
function representation.

Function bodeplot(..) is used for plotting the
magnitude of the sensitivity function. Using the Julia In-
teract.jl package11 together with functions from Control-
Systems.jl allows for interactive plots in which the con-
troller’s parameters can be tuned experimentally. The
Interact package provides means to create small GUIs
in Julia based on web technology. It defines the macro
@manipulate which sets up sliders for varying the pa-
rameters within the specified range.

using Interact
s = tf("s")
@manipulate for Kp=3:.5:20, Td=0.01:.01:0.1
PD = Kp*(Td*s + 1)
mlLinPDol = series(PD,tf(mlLin))
mlLinPDSensitivity =

minreal(1/(1+mlLinPDol))
bodeplot(mlLinPDSensitivity,

plotphase=false, yscale=:identity,
yticks=0:0.1:2, title="Sensitivity")

end

Evaluating the above code in an IJulia/Jupyter session
gives a result as depicted in Figure 3. The two sliders at
the top allow to change the PD controller’s parameters.
When the parameters are changed, the plot is immediately
updated.

5 Nonlinear Closed-Loop Model
After an acceptable design (based on the linearized model)
has been found, the controller can be tested and further
tuned by plugging it into the nonlinear Modelica model.

In the present example the PD controller can be easily
transcribed into Modelica code and can be added appropri-
ately to the MagLevNL model in order to close the loop
between controller and plant. Let the resulting model be
named “MagLevNLPD” (the complete listing is given in
Appendix A).

10Function minreal(..) creates a minimal transfer function rep-
resentation by canceling pole-zero pairs.

11Interact.jl, https://github.com/JuliaGizmos/
Interact.jl.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 307
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

Figure 3. Interactive sensitivity plot for the magnetic levitation
system in which the controller parameters can be varied using
sliders.

Combining OMJulia with the Interact package allows
to quickly create small GUIs for interactive experimenta-
tion with a Modelica model. The Julia code below cre-
ates sliders for varying the controller parameters, as well
as to vary the initial distance d0 of the levitating magnet.
Since the controller is designed for keeping an equilib-
rium position at d = 0.02m, it is interesting to explore
how the closed system behaves for small displacements,
where d0 6= 0.02m.

using OMJulia, Plots, Interact
mlNLPD = OMJulia.OMCSession()
mlNLPD.ModelicaSystem("MagLevNLPD.mo",

"MagLevNLPD")
@manipulate for Kp=7:0.5:23,

Td=0.01:0.01:0.1, d0=0.015:0.0002:0.025
mlNLPD.setParameters(["Kp=$Kp",

"Td=$Td", "d0=$d0"])
mlNLPD.simulate()
sol = mlNLPD.getSolutions(["time", "d",

"v"])
time, d, v = sol[1], sol[2], sol[3]
p1 = plot(time, d, label="",

xlabel="time [s]", ylabel="d [m]")
p2 = plot(time, v, label="",

xlabel="time [s]", ylabel="v [V]")
plot(p1, p2, layout=(1,2))

end

Figure 4 shows a screenshot of the resulting GUI when
evaluating the above code in an IJulia/Jupyter session. The
start value of d is set to d0 = 18mm, hence two millimeters
closer to the electromagnet than the set reference distance
of 20 millimeters. The left plot shows how the distance d
starts at the prescribed start value and is regulated to the
reference distance of 20 millimeters. The right plot shows
the voltage v (the actuating variable) that the controller
sets to the electromagnetic actuator. Notice that the volt-
age remains in reasonable limits (no actuator saturation).
However, further exploration (using the same controller
parameters) showed that the closed loop stabilization for
the nonlinear model fails quickly when choosing start val-

Figure 4. Simple interactive GUI with sliders for setting param-
eters of the closed-loop nonlinear magnetic levitation Modelica
model using the OMJulia interface. Changing a slider will im-
mediatly trigger a new simulation and update the plots.

ues d0 which are greater than the reference distance of 20
millimeters.

6 Digital Control
For a practical implementation of the presented PD con-
troller, the derivative “D” part is first approximated by
a “DT1” element before the controller is discretized in a
second step. Finally, hardware characteristics of the tar-
get controller are considered in a nonlinear closed-loop,
sampled-data model.

The “D” part can be approximated by sTd ≈ sTd
1+sTd/Nd

,
where Nd limits the gain at high frequencies (typically:
3 ≤ Nd ≤ 20). Therefore, the structure of the controller
becomes

CPDT1(s) = KP

(
Tds

Td
Nd

s+1
+1

)
. (8)

6.1 Discrete-Time Approximation
Using backward differences for approximation, transfer
function (8) can be transformed into a pulse-transfer func-
tion by substituting s by s′ using the formula

s′ =
z−1

zh
, (9)

where h is the sampling period and z is the Z-transform
variable, resulting in the pulse-transfer function

CPDT1(z) = Kp

(
TdNd(z−1)

(Td +Ndh)z−Td
+1
)
. (10)

The pulse-transfer function can be readily transformed
into a recurrance relation which directly translates into
Modelica code. The listing below shows a condensed ver-
sion of the discretized controller using Modelica’s clocked
synchronous language elements.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

308 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

block Controller
parameter Real Kp=15, Td=0.05, Nd=5,

h=0.0005, v_e=0.66, e_e=2.79;
input Real du_set "Setpoint delta

voltage (=0 for d=>0.02)";
input Real e "Measured voltage across

the Hall effect sensor";
output Real v "Output voltage to the

electromagnet";
protected
Real Dpart(start=0), de_e, du(start=0),

dy, ad, bd;
equation
// Measured delta voltage at OP
de_e = e - e_e;
// input to PD(T1) control law
du = du_set - de_e;

// Control law
ad = Td/((Td + Nd*h));
bd = Td*Nd/(Td + Nd*h);
Dpart = ad * previous(Dpart) + bd * (du

- previous(du));
dy = Kp*(du + Dpart);

// Output voltage to electromagnet
v = dy + v_e;

end Controller;

6.2 Target Hardware
The popular Arduino Uno board12 is used as implemen-
tation hardware for the control algorithm. It is based on
the Microchip ATmega328P microcontroller, has six ana-
log inputs supporting 10-bit analog-to-digital conversion
(ADC) for input voltages between zero and five volts, and
14 digital input/output pins of which six can be used as
pulse-wide modulation (PWM) outputs. The frequency of
the PWM outputs is configurable and a simple interface
exists in which the PWM duty cycle can be set with a res-
olution of 8-bit.

In our application the voltage across the Hall effect sen-
sor is read using one of the analog inputs. The voltage
to the electromagnet is set by a PWM output driving a
MOSFET which is connected to a DC voltage regulator
fed from an external power supply. A breadboard is used
for the implementation of the supporting electronics (see
Figure 8).

6.3 Sampled-Data Model
A model of the closed-loop, sampled-data system can be
built conveniently with the help of the Synchronous li-
brary (Otter et al., 2012). Figure 5 shows a diagram
view in which the nonlinear continuous-time magnetic
levitation plant model is connected to the discrete-time
(clocked) controller model using sample and hold blocks
from the Synchronous library. The controller is activated
by a periodic clock with a sampling period of 500 µs. The
upper controller input specifies the setpoint of the con-
troller. The setpoint is 0V for the equilibrium position

12Arduino, https://arduino.cc.

magLevNL

periodicClock1

0.0005 s

control

h=0.0005 s 0.0

hold1

1/1

sample2

sample1
assignClock1

0

du_set

Figure 5. Closed-loop magnetic levitation system with clocked
controller model.

for which the controller is designed (i.e., in the presented
design the levitating object is at d = de = 0.02m, the Hall
effect sensor output is e = ee = 2.79V). Modifying the
setpoint allows to influence the position of the levitating
magnet.

The utilized sample and hold blocks allow modeling
additional real-world effects like noise, quantization ef-
fects of digital-analog and analog-digital conversions, sen-
sor and actuator limitations, and computational delays.
In the displayed model the sample and hold blocks are
parametrized so that they reflect the capabilities of the tar-
get hardware as described in Section 6.2. The measure-
ment variable e is limited between 0V ≤ e ≤ 5V using
10-bit quantization. The actuating variable v is limited be-
tween 0V≤ v≤ 1.3V using 8-bit quantization.

Simulating the sampled-data model given above us-
ing the same scenario as for the nonlinear continuous-
time model in Section 5 reveals a severe control degra-
dation for the considered digital controller. Further simu-
lation experiments reveal that this is mainly due to ADC
quantization effects of the Hall effect sensor output. Fig-
ure 6 shows results plots13 for simulating with different
ADC settings, while the other settings, e.g., computa-
tional delay of one sampling period and 8-bit quantiza-
tion of the actuating variable, are unchanged. The upper
plot shows the distance d of the levitating object. The
two lower plots show the sampled and quantized Hall sen-
sor output e (= sample1.y) and the quantized actuat-
ing variable v (= hold1.y) in a narrow time window
(t ∈ [4.00s,4.03s]).

Although the levitating object can be stabilized in all
simulated cases, it shows persisting oscillations for the
case of an ADC with 10-bit resolution over the range
[0V,5V]. For this setting, the actuating variable exhibits
large, high frequency oscillations. Increasing the quanti-
zation resolution mitigates this adverse effect and restores

13 Apart from using OMJulia for controlling the complete simulation
(as shown in Section 5), it is also possible to use the Julia CSV package
for simply importing an OpenModelica (CSV-) result file into Julia for
postprocessing. For example, plotting variable magLevNL.d from a
CSV-result file can be achieved by:
using Plots, CSV
r = CSV.read("myresultfile.csv")
plot(r[Symbol("time")], r[Symbol("magLevNL.d"]))

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 309
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

0 1 2 3 4 5
time [s]

0.0190

0.0195

0.0200

0.0205

0.0210

m
ag

Le
vN

L.
d

[m
] ADC 10-bit resolution in [0 V, 5 V]

ADC 10-bit resolution in [2.5 V, 3.5 V]
ADC 16-bit resolution in [0 V, 5 V]

4.00 4.01 4.02 4.03
time [s]

2.780

2.785

2.790

2.795

sa
m

pl
e1

.y
 [V

]

4.00 4.01 4.02 4.03
time [s]

0.0
0.2
0.4
0.6
0.8
1.0
1.2

ho
ld

1.
y

[V
]

Figure 6. Simulation results of the sampled-data model for dif-
ferent ADC quantization settings and an initial distance d0 =
0.019m.

a behaviour which is closer to the continuous-time con-
troller. Besides increasing the ADC resolution (e.g., to 16-
bit), the simulation results suggest that a 10-bit ADC reso-
lution is fine, if it is available within the (smaller) relevant
operating range of the sensor, e.g., [2.5V,3.5V]. This can
be achieved by using a suitable signal conditioning circuit
for mapping the signal’s operating range to the full-scale
voltage range of the ADC.

6.4 Real-Time Target Code
In a first approach, the Modelica code for the demonstra-
tor presented in Section 7 was hand translated to C in or-
der to compile and upload it to Arduino. This is rather
straightforward, since the control algorithm is short and
the Arduino environment is easy to use.

However, particularly for more complex models, it
would be beneficial to automatically generate the target
code, instead of manually converting the controller mod-
els to compact C code. This is quicker and less error prone
than manual translation. One big challenge is to produce
target code that fits into very small foot-print platforms.

For these reasons we have developed an experimental
version of an embedded target simple code generator14

for OpenModelica aimed at very restricted platforms such
as the Atmel AVR 8-bit microcontrollers. The regular C-
code generator creates huge data structures and contains
much debugging information while the run-time system
contains many numerical solvers and is around 6MB in
size (of which 0.5MB is textual strings for error mes-
sages). This regular C-code is intended to run on powerful
desktop CPUs where the code size does not matter much
and it proved difficult to try to strip out unnecessary code
when targeting embedded systems. The largest of the 8-
bit AVR processor MCUs (Micro Controller Units) have
16kB SRAM. One of the smaller ones (ATmega328P; Ar-

14The embedded code generation target for Open-
Modelica can be activated by passing the option
--simCodeTarget=ExperimentalEmbeddedC to the OMC.

duino Uno) has 2kB SRAM.
The embedded target code generator was designed to

generate code for constructs that are easy to compile.
For example, it does not support arrays, strongly con-
nected components, or initialization, but still works fine
for many models since the OpenModelica compiler will
convert many complex constructs into simpler ones dur-
ing the compilation process, e.g., make array equations
into scalar equations. Instead of having a big run-time
system that is linked in (as is the case for the regular code
generator), the code generator will generate the needed
C-functions corresponding to the Modelica and run-time
functions called.

As can be seen from Table 2, the experiment was so
far successful. The regular stripped-down code generator

Table 2. Code generator comparison. Regular vs Simple.

Regular stripped-down
source-code FMU tar-
geting 8-bit AVR pro-
cessor

Simple code genera-
tor targeting 8-bit AVR
processor

Minimal model
(0 equations)

43kB flash memory,
23kB variables (RAM)

130B flash memory,
0B variables (RAM)

Target sys-
tem including
controller

68kB flash memory,
25kB variables (RAM)

3350B flash memory,
169B variables (RAM)

with almost everything stripped out except the main sim-
ulation loop (it includes no solvers or numerical routines
except the used ones) already reduces the code foot-print
significantly compared to the standard desktop version.
However, it is still too large for very small foot-print plat-
forms like the Arduino Uno. The simple code generator
allows a further reduction in size which makes it suitable
for very small foot-print platforms.

The clocked controller model from Figure 5 needs to
be adapted in order to be suited as input to the experi-
mental embedded target code generator. The embedded
target code generator in the development branch for the
upcoming OpenModelica v1.14 release does not yet sup-
port the synchronous clocked language elements, nor does
it support when-equations for modeling sampled systems.
As a workaround the clocked controller equations can be
rewritten as an algorithm and placed into an algorithm sec-
tion. In the generated code this algorithm section is called
periodically using a base rate which can be specified dur-
ing translation15.

Figure 7 shows the input model for the code genera-
tor. The model uses blocks for interfacing to hardware
facilities of the Arduino Uno like ADC or PWM units.
These hardware interface blocks are available in the Mod-
elica_DeviceDrivers library (Thiele et al., 2017). The
model assumes that a signal conditioning circuit is used
for mapping the Hall effect sensor voltage around the op-

15For example, when using OpenModelica’s scripting interface the
base period can be specified by providing the stepSize argument to
the translateModel(..) function.

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

310 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

Back-calculation of conditioned Hall effect sensor
voltage using slightly tuned parameters.

Conversion of desired electromagnet voltage to PWM input signalArduino board configuration

control

h=0.0005 s

AVR
ATmega328P

pwm

PWM Timer1
{TimerNumber.A}

adc

ADC A0
0..5 [V]

realToInteger

R I
limiter

uMax=v_max k=255/v_max

gain

Real-time:
mcu.desiredFrequency Hz

signalOffset

k=2.43
ee

+
+1

+1

k=0.22

gain1

0.0

du_set

Figure 7. The input model for the code generator consisting of
the control algorithm and hardware related blocks.

erating point to the full-scale voltage range of the ADC.
Notice that the parameters for back-calculation of the con-
ditioned Hall effect sensor signal deviate slightly from the
theoretical values (k = 2.5 for the signal offset and k = 0.2
for the signal gain). This is the result of tuning the pa-
rameters for the actual demonstrator with its (non-ideal)
supporting electronics.

Most of the parameters in the hardware interface blocks
are at their default values. However, several interesting
parameter settings are not visible on the diagram layer.
The microcontroller block is set to the ATmega328P plat-
form and its internal parameter desiredPeriod is set
to 0.0005s. The real-time block is configured to use
Timer0 for the real-time synchronization. The PWM
block is configured to use Timer1 with a prescaler value
of “1/8”.

7 Demonstrator

Figure 8 shows a setup in which Zeltom’s controller has
been replaced by an Arduino Uno and supporting elec-
tronics.

It was possible to stabilize the levitating mass for sev-
eral minutes at a time using the presented controller and
the experimental hardware setup with a 10-bit ADC res-
olution in the range of [0V,5V], but the magnet showed
clearly visible oscillations around the equilibrium position
and was very sensitive to disturbances, e.g, a tiny push
against the table would destabilize the mass instantly. Mo-
tivated from the simulation results in Figure 6, a signal
conditioning circuit based on Texas Instrument’s INA333
instrumentation amplifier was developed to map the oper-
ating range [2.5V,3.5V] of the Hall effect sensor signal to
the full-scale voltage range of the ADC. As suggested by
the simulation results, this attenuated the oscillation and
lead to a greatly improved robustness in maintaining the
equilibrium position.

Figure 8. Arduino controlled electromagnetic levitation system.

8 Conclusion
The paper shows how computer aided control system de-
sign based on Modelica models can benefit from the new
OpenModelica OMJulia API which allows joint interac-
tion between the Modelica and Julia ecosystems. For prac-
tical illustration a complete magnetic levitation applica-
tion is presented with sufficient details so that the exam-
ple can be readily reproduced, e.g., in the context of a lab
session in control education.

While Modelica excels in modeling and simulation of
complex technical systems, Julia can provide the numeri-
cal analysis, optimization and advanced visualization ca-
pabilities, including specialized packages for control engi-
neering. Simple web technology based GUIs can be cre-
ated in Julia in just a few lines of code, which allows inter-
active experimentation with Modelica simulation models
giving immediate feedback to the user, e.g., by updating
key performance plots. The magnetic levitation applica-
tion aims at illustrating how a carefully designed API has
the potential to leverage attractive synergies between the
two languages.

Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENCPS and EMPHYSIS projects, and in the Vinnova
RTISIM project. Support from the Swedish Government
has been received from the ELLIIT project. The Open-
Modelica development is supported by the Open Source
Modelica Consortium.

References
Marcus Baur, Martin Otter, and Bernhard Thiele. Modelica Li-

braries for Linear Control Systems. In Francesco Casella,
editor, 7th Int. Modelica Conference, Como, Italy, September
2009. doi:10.3384/ecp09430068.

Kevin Craig, Thomas Kurfess, and Mark Nagurka. Magenetic

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

DOI Proceedings of the 13th International Modelica Conference 311
10.3384/ecp19157303 March 4-6, 2019, Regensburg, Germany

levitation testbed for controls eduction. In Proceedings of the
ASME Dynamic Systems and Control Division, volume 64,
1988.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley-IEEE Press, Piscataway, NJ, second edition, 2015.
ISBN 978-1-118-85912-4.

Anand Ganeson. Design and Implementation of a User Friendly
OpenModelica - Python interface. Master’s thesis, Linköping
University, 2012.

Anand Ganeson, Peter Fritzson, Olena Rogovchenko, Adeel.
Asghar, Martin Sjölund, and Andreas Pfeiffer. An Open-
Modelica Python Interface and its Use in PySimulator.
In Martin Otter and Dirk Zimmer, editors, 9th Int. Mod-
elica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp12076537.

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena Buf-
foni, Arunkumar Palanisamy, Martin Sjölund, Adeel Asghar,
Adrian Pop, and Peter Fritzson. API for Accessing Open-
Modelica Models from Python. In Proceedings of EuroSim
2016, Oulu, Finland, September 2016.

Bernt Lie, Arunkumar Palanisamy, Alachew Mengist, Lena Buf-
foni, Martin Sjölund, Adeel Asghar, Adrian Pop, and Pe-
ter Fritzson. OMJulia: An OpenModelica API for Julia-
Modelica Interaction. In Anton Haumer, editor, 13th Int.
Modelica Conference, Regensburg, Germany, March 2019.

Katie A. Lilienkamp and Kent Lundberg. Low-cost mag-
netic levitation project kits for teaching feedback system
design. In Proceedings of the 2004 American Control
Conference, volume 2, pages 1308–1313 vol.2, June 2004.
doi:10.23919/ACC.2004.1386755.

Modelica Association. Modelica - A Unified Object-Oriented
Language for Systems Modeling - Version 3.4. Stan-
dard Specification, April 2017. URL http://www.
modelica.org/.

Martin Otter, Bernhard Thiele, and Hilding Elmqvist. A Li-
brary for Synchronous Control Systems in Modelica. In
Martin Otter and Dirk Zimmer, editors, 9th Int. Mod-
elica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp1207627.

Bernhard Thiele, Thomas Beutlich, Volker Waurich, Martin
Sjölund, and Tobias Bellmann. Towards a Standard-Conform,
Platform-Generic and Feature-Rich Modelica Device Drivers
Library. In Jiří Kofránek and Francesco Casella, editors,
12th Int. Modelica Conference, Prague, Czech Republic, May
2017. doi:10.3384/ecp17132713.

T. H. Wong. Design of a Magnetic Levitation Control Sys-
tem - An Undergraduate Project. IEEE Transactions on
Education, E-29(4):196–200, Nov 1986. ISSN 0018-9359.
doi:10.1109/TE.1986.5570565.

Myung-Gon Yoon and Jung-Ho Moon. A Simple Analog Con-
troller for a Magnetic Levitation Kit. International Journal
of Engineering Research & Technology (IJERT), 5(3):94–97,
March 2016.

Zeltom LLC. Electromagnetic Levitation System - Mathemat-
ical Model, June 2009. URL http://zeltom.com/
documents/emls_md.pdf.

A Listing of the Nonlinear Closed-
Loop MagLev Model

The complete listing of the nonlinear closed-loop Model-
ica model used in Section 5.

model MagLevNLPD
// Parameters MagLev
parameter Real R=2.41, L=15.03e-3,

m=3.02e-3, k=17.31e-9, alpha=2.44,
beta=1.12e-4, gamma=0.26;

// Equilibrium point (values actually
depend on parameters above!)

parameter Real v_e=0.659957,
e_e=2.791198;

// Setting initial conditions to values
at equilibrium point

parameter Real d0=0.02, d_der0=0,
i0=0.273841;

// Variables MagLev
Real d(start=d0, fixed=true),

d_der(start=d_der0, fixed=true),
i(start=i0, fixed=true), v, f, e;

constant Real g=9.81;
// Parameters PD
parameter Real Kp=15, Td=0.05;
parameter Real du_set=0 "Desired

setpoint OP delta voltage of PD
controller";

// Variables PD
Real u,y;

equation
u = du_set - (e - e_e) "Input to the PD

controller (negative feedback loop)";
y = Kp*(u + Td*der(u)) "Ideal PD

controller";
v = y + v_e "Controller output to the

plant";
// Nonlinear MagLev plant equations
f = k*i/d^4 "(1) force applied by the

electromagnet on the levitating
magnet";

e = alpha + beta*1/d^2 + gamma*i "(2)
voltage across the Hall effect
sensor";

der(d) = d_der;
m*der(d_der) = m*g - f "(3) Newton’s

second law that";
v = R*i + L*der(i) "(4) Kirchhoff’s

voltage law";
end MagLevNLPD;

Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language

312 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157303

Towards a High-Performance Modelica Compiler

DOI Proceedings of the 13th International Modelica Conference 313
10.3384/ecp19157313 March 4-6, 2019, Regensburg, Germany

Towards a High-Performance Modelica Compiler
Agosta, Giovanni and Baldino, Emanuele and Casella, Francesco and Cherubin, Stefano and Leva, Alberto
and Terraneo, Federico

313

Towards a High-Performance Modelica Compiler

Giovanni Agosta1 Emanuele Baldino1 Francesco Casella1 Stefano Cherubin1 Alberto Leva1

Federico Terraneo1

1DEIB, Politecnico di Milano, Italy, given_name.family_name@polimi.it

Abstract
The use of Modelica as a modelling and simulation lan-
guage is progressively replacing hand-tuned simulation
code written in traditional imperative programming lan-
guages. This adoption is fuelled by the availability of
libraries to target different application domains, as well
as optimizations in Modelica implementations that allow
to address larger problems. However, the effort required
to extend existing Modelica implementations to support
large scale models may not be economically sustainable
by the Modelica community. To overcome this barrier, we
believe a perspective change is required. Instead of devel-
oping, maintaining and optimizing a dedicated codebase,
we propose to develop a Modelica implementation by re-
lying on the LLVM state-of-the-art compiler framework.
Although this approach will require a higher initial devel-
opment effort, we believe that it will lead to significantly
improved performance as well as lower overall cost. The
paper discusses a possible roadmap for such a develop-
ment, and presents a very early prototype implementation
that exploits array structures by avoiding scalar expansion
during the code generation process.
Keywords: Modelica Tools, Large-scale model simulation,
Compilers, LLVM

1 Introduction
The high-level, declarative nature of the Modelica lan-
guage has secured it a widespread adoption across indus-
try and academia alike, bringing DAE-based modeling to
many fields where custom simulation codebases had to be
developed and maintained.

The performance of mainstream Modelica tools when
handling large models has recently improved, mainly
thanks to the introduction of sparse solvers (see,
e.g. (Braun et al., 2017)). However, for systems approach-
ing or exceeding the one-million equation target the code
generation time is unacceptably large, as well as the mem-
ory footprint of the generated simulation code, which also
has an impact on simulation speed due to CPU cache
misses. Efficient simulation of large scale systems, with
hundred of thousands to millions of equations, can to-
day only be done with an acceptable compilation and exe-
cution performance through hand-written and hand-tuned
simulation code. Large-scale models are typical of – and
increasingly common in – a variety of relevant application
fields: smart grids (Vialle et al., 2017) where there is the

need to simulate the stability of an electrical network, de-
tailed thermal simulations (Leva et al., 2016) that require
to partition physical objects in a large number of finite vol-
umes, coarse-scale fluid dynamics models for simulation
studies targeted to energy efficiency (Bonvini and Leva,
2011). Several more examples could be reported that we
omit for brevity.

In crafting hand-written simulation codes optimized to
scale to millions of equations, the human designer follows
an integrated approach, by coordinating optimizations that
are specific of the simulation domain (such as exploiting
sparsity in the model, causalization and tearing) and op-
timizations specific of the computer architecture domain
(such as loop optimizations, cache optimizations, vector-
ization and parallelization).

Although the need to extend existing Modelica im-
plementations to support large models is recognized by
the Modelica community (Frenkel et al., 2011; Casella,
2015), significant effort is still required to effectively sup-
port large-scale systems. Existing Modelica toolchains
are mainly targeted at medium-sized models, and there-
fore perform heavy structural analysis optimization passes
along the translation process. These operations scale
poorly for large-scale system. Furthermore, the C-code
generation phase does not take into account architectural
optimizations, and simply generates unoptimized C code.
This approach passes the burden of optimization to the C
compiler, to the detriment to both the overall translation
efficiency and runtime performance.

A major issue concerning the generation of C code (or
any other imperative language, for that matter) is that
it is structurally impossible to make the compiler aware
of structural properties of the code that could allow fur-
ther optimizations. Such properties are an obvious conse-
quence of the structural properties of the Modelica code.
They can only be preserved by skipping the generation of
an intermediate imperative code and by using an interme-
diate representation instead. One such property, for ex-
ample, is guaranteeing the absence of pointer aliasing. A
C compiler could in principle infer some of such prop-
erties from the generated C code, but there is no guar-
antee that such inference is complete and a lot of time
would be wasted recovering information that was already
known in the beginning. Moreover, existing Modelica
workflows lose additional information during the flatten-
ing phase, such as arrays and looping constructs, and as a
consequence the generated C code does not exploit exist-

Towards a High-Performance Modelica Compiler

314 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157313

ing CPU architectures effectively.

Significant performance improvements of Modelica
tools could thus be achieved if an integrated approach
is adopted, where high-level information from the Mod-
elica source, instead of being transferred to an imper-
ative language compiler, is used directly to produce
architecture-optimized machine code, effectively resulting
in a Modelica-to-binary-code workflow.

Summarizing, in this paper we argue that to scale the
Modelica language to large-scale problems, a change of
perspective is required, where a Modelica compiler –
not just a translator – can perform model-specific and
architectural-specific optimizations in an integrated way.
Our proposal aims at improving the code generation pro-
cess without any impact on the Modelica syntax and se-
mantics. Thus, being fully compatible with existing Mod-
elica models and libraries. However, our vision involves
the re-design of portions of the existing compilation-
related language specifications – e.g. the flattening.

We argue that to achieve this result in a cost-effective
way, and without redesigning from scratch a complex code
generation infrastructure and porting it to existing and fu-
ture CPU architectures, said Modelica compiler has to be
integrated in an existing compiler framework. For this
reason, we propose to design a Modelica compiler inte-
grated in LLVM (Lattner and Adve, 2004), which is a state
of the art compiler framework, designed with the explicit
goals of modularity and extensibility. The authors form an
inter-disciplinary research group within the Dipartimento
di Elettronica, Informazione e Bioingegneria of Politec-
nico di Milano, which includes strong competences in the
areas of Modelica and object-oriented modelling and sim-
ulation, Computer Architectures, and Compiler Design.

This on-going work is today at a very early stage of de-
velopment. The main goal of this paper is thus to present
this group’s vision and roadmap, as well as to present
some initial results of a very early prototype.

This paper is organized as follows. Section 2 summa-
rizes the state of the art of the support of large-scale mod-
els in Modelica tools. Section 3 shows a motivating exam-
ple for the proposal, while Section 4 presents in detail our
roadmap toward the development of a highly optimized
Modelica compiler for large-scale systems. Section 5 il-
lustrates the activities we carried out so far, and finally
Section 6 ends the paper with some concluding remarks.

2 State of The Art
We now briefly describes the state of the art in order to
motivate the presented research. Section 2.1 looks at the
matter from the Modelica side, evidencing in particular
some emerging application domains that require a techno-
logical evolution on the part of Modelica tools. Section 2.2
conversely takes the compiler technology standpoint, in a
view to sketching out how recent developments in that do-
main could help realize the mentioned evolution.

2.1 The Modelica Side
As discussed in (Casella, 2015), the architecture of cur-
rent mainstream Modelica tools was designed with indi-
vidual systems in mind: one robot (possibly two coop-
erating robots), one hybrid car, one power plant, one air
conditioning system, etc., which could be handled by ex-
panding the system model all the way down to its scalar
equations, performing optimization on them, and eventu-
ally generating code to solve them with ODE solvers us-
ing dense matrix algebra. In fact, the very same Modelica
Language specification (The Modelica Association, 2017)
describes the flattening process with reference to individ-
ual scalar variables.

Unfortunately, this approach does not scale well when
large-scale systems and systems of systems are modelled.
The potential application domains include power gener-
ation and transmission systems, smart grids, smart dis-
trict heating systems with heat pumps (possibly integrated
with smart grids), simulation of large fleets of interact-
ing autonomous cars, building energy management simu-
lation (BEMS), and all kinds of future internet-of-things
and cyber-physical systems, whose behaviour is the re-
sults of the interaction of a large number of physical en-
tities, interacting through a communication network and
controlled by centralized and distributed control systems.

The availability of high-quality, open-source, general-
purpose sparse solvers such as IDA, Kinsol, and KLU
has recently triggered an effort to include support of
sparse solvers in Modelica tools, as well as alternative ap-
proaches to the simulation of Modelica models that do not
rely on the causalization of the system equations but use
direct DAE solvers once the system has been symbolically
brought to index 1, see (Braun et al., 2017). However, the
structural analysis of the system equations, and the conse-
quent code generation, is still carried out on a fully flat-
tened and expanded system.

Some work has been carried out in the past on meth-
ods to carry out the structural analysis of the system while
keeping repetitive structures such as arrays of variables
and loop equations as atomic entities, see (Arzt et al.,
2014), possibly also considering issues such as CPU cache
misses in the generated code, see (Schuchart et al., 2015).
(Zimmer, 2009) proposed methods to exploit the object-
oriented structure of large system models, rather than go-
ing through full flattening of the equations, in order to
come up with more efficient code generation strategies.
Unfortunately, all these attempts have remained confined
to the stage of concept or prototype implementation, but
never made it into mainstream Modelica compiler tech-
nology.

2.2 The Compiler Technology Side
Compiler technology, while being from several points of
view a mature research field, is still evolving. Modern
compilers are very costly to develop, ranging in the tens
to hundreds of person-years to reach full maturity when

Towards a High-Performance Modelica Compiler

DOI Proceedings of the 13th International Modelica Conference 315
10.3384/ecp19157313 March 4-6, 2019, Regensburg, Germany

starting from scratch 1. As a result, the ability to trans-
late to and from multiple source and target languages is a
highly desirable feature, as it allows to pool resources in
the development of the large portion of a compiler that is
neither target-dependent nor source-dependent.

Since many compiler transformations are fairly general
(e.g., loop transformations (Bacon et al., 1994; Grosser
et al., 2011) such a loop unrolling or loop tiling apply in
the same way to all loops with the same induction vari-
able evolution), re-implementing them for a new language
is unlikely to provide any beneficial effect, and is instead
likely to cost additional time in development, optimiza-
tion, and bug fixing. Actually, the benefits of pooling de-
velopment resources in this manner are so massive that it
is preferrable to abstract some target and language prop-
erties (e.g., the size of C integer types for a given target
machine) into codified data structures in order to max-
imise the fraction of the compilation that can be han-
dled by otherwise target-independent, source-independent
tools. Thus, a modern compiler is usually implemented
on top of a compiler framework, a collection of libraries
for manipulating and storing an intermediate representa-
tion, that is a set of data structures that are semantically
equivalent to the original program.

As a result of this trend, the GNU Compiler Collection
(GCC) dominated the compiler market for decades. How-
ever, advanced software does not always age well, and
adding more and more optimisation passes forced GCC
to stretch the limits of its original design, for instance
by adding multiple intermediate representations to supple-
ment the original RTL, which was deemed too low-level
to allow certain optimisations.

Nowadays, the industry is increasingly supporting the
LLVM compiler framework (Lattner and Adve, 2004) as
a more streamlined and modern alternative, leveraging a
single, low-level intermediate representation, but capital-
ising an improved ability to perform loop transformations
on lower lever representations. Thanks to the support from
multiple large companies such as Google, Apple, Arm,
and Sony, LLVM was able to catch up a 20+ years devel-
opment gap, reaching a position of industry standard in a
mere decade from its introduction in 2004. As anticipated
and better detailed in Section 4 later on, we propose to de-
velop a Modelica compiler based on LLVM. This choice
will in our opinion entail advantages as for both simula-
tion code efficiency and compiler maintainability.

Regarding efficiency, some optimizations were already
mentioned, namely operating under the guarantee of no
pointer aliasing. Others are for example loop optimiza-
tions, on which some words are spent later on. In addition,
not going through an imperative language allows the com-
piler to preserve the non-ordered character of the model

1See https://news.ycombinator.com/item?id=
16469218 for the development cost of GCC and related tools by
Cygnus, estimated in 250 M$ over 10 years by founder D. Henkel-
Wallace, and http://www.ace.nl/compiler/cosy.html for
the development cost of CoSy, estimated in 200 person/years.

(equations in Modelica) as opposite to the ordered nature
e.g. of C vectors. When vectors are created to host vari-
ables in current mainstream Modelica tools, the order in
which these occupy a vector is chosen without any con-
science of the consequences on the final machine code.
For example, on two different architectures, the same vec-
tor order can result in very different cache management ef-
ficiencies. A C compiler is inherently incapable of swap-
ping two elements in a vector, as this would alter the se-
mantics of the C program. The same operation however
does not alter the semantics of the model, for which the
order of variables in vectors is irrelevant.

Coming to the creation and maintenance of the envis-
aged compiler, a distinctive feature of this research is that
LLVM-based compiler development mostly concerns im-
perative languages, while Modelica is declarative. De-
spite the problems that will surely be encountered, adopt-
ing the LLVM framework is keen to produce benefits also
from this viewpoint. When considering a highly spe-
cialized declarative language such as Modelica, one may
come to the wrong conclusion that the majority of trans-
formations required by the code generation process will
be strictly language-dependent, and thus to be developed
from scratch. In fact, this is actually not the case, as most
of the primitives that are provided in an optimized way by
the LLVM framework can readily be used in the Modelica
context. For example, the well-known equation-variable
matching phase of the code generation process starting
from Modelica models corresponds to a graph manipu-
lation problem for which LLVM provides the basic data
structures (nodes, arcs). In fact, it turns outs that the
standard matching algorithm is already implemented ef-
ficiently in LLVM 2, because it represents the basic foun-
dation of other types of data-flow analysis, so it can be
readily re-used.

3 Motivating Example
As a motivating example for our research, in this section
we show and briefly comment an experiment that was per-
formed to understand the current scalability gap between
Modelica toolchains and optimized handwritten code.

Consider the Modelica benchmark code in Listing 1.
The code represents a simple 1D thermal model, describ-
ing thermal conduction in a solid copper wire divided in
nx sections of equal length. Just as in the ScalableTest-
Suite (Casella, 2015), this model can be simulated with a
progressively large nx, to observe the scalability of a Mod-
elica toolchain.

The model was tested with a number of equations rang-
ing from 10 to 1 million, using OpenModelica 1.13.0 and
Dymola 2018. In both toolchains, an explicit Euler inte-
gration algorithm was used. The platform used to run the
experiments is a NUMA node with two Intel Xeon E5-
2630 V3 CPUs (@3.2 GHz), and 128 GB of DDR4 mem-

2See http://llvm.org/doxygen/SCCIterator_8h_
source.html

Towards a High-Performance Modelica Compiler

316 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157313

Listing 1. Thermal conduction benchmark.

model Thermal1D
parameter Integer nx = 1000;
parameter Real area = 0.0005^2*3.14;//m^2
parameter Real nlength = 0.1; //m
parameter Real conductivity = 401; //W/m.K
parameter Real specheatcap = 385; //J/Kg.K
parameter Real density = 8960; //Kg/m^3
parameter Real Thi = 400+273.15; //K
parameter Real Tlo = 20+273.15; //K
parameter Real g =
conductivity * area / nlength;

parameter Real c =
specheatcap * density * area * nlength;

Real T[nx];
initial equation
for x in 1 : nx loop
T[x] = Tlo;

end for;
equation
c * der(T[1]) = g * (T[2] - T[1])

+ 2*g * (Thi - T[1]);
c * der(T[nx]) = g * (T[nx-1] - T[nx])

+ 2*g * (Tlo - T[nx]);
for x in 2 : nx-1 loop
c * der(T[x]) = g * (T[x-1] - T[x])

+ g * (T[x+1] - T[x]);
end for;

annotation(experiment(StartTime = 0,
StopTime = 100000, Tolerance = 1e-6,

Interval = 20));
end Thermal1D;

ory (@1866 MHz) on a dual channel memory configura-
tion. The operating system is Ubuntu 16.04 with version
4.4.0 of the Linux kernel. The compiler used is CLANG
version 3.8.0 for OpenModelica, and GCC 7.3.0 for Dy-
mola. The model was also manually translated in opti-
mized C++ code, using an explicit Euler integration algo-
rithm, exploiting the sparsity in the model, and preserving
the contained loop constructs. The optimized version can
be found in Listing 2.

Tables 1-3 show the results. The simulation column re-
ports only the time for the integration of the differential
equations, excluding initialization time and the time re-
quired to save results to disk. The binary code size column
is only the part of the executable file containing assembly
instructions (the .text section), in order to not take into ac-
count other metadata such as debug symbols that could be
present in the executable. The source code size column is
the sum of the size of all C and header files produced by
the translator.

From the tables, two main facts can be noted. First,
the current generation of Modelica translators is, at least
in this simple example, around two orders of magnitude
slower than hand-tuned code. Second, the tables evidence
the effects of the loss of model structure in current Model-
ica translators. The flattening of looping constructs results
in a source and binary code size that grows linearly with

Listing 2. Optimized C++ implementation.

#include <cstdio>
#include <cstring>
#include <string>
#include <chrono>
#include <algorithm>

using namespace std::chrono;

// #define PRINT

int main(int argc, char *argv[])
{

if(argc<2) return 1;
int N = std::stoi(argv[1]);
const int Nsteps = 5000;
const double h = 20.0;
const double g = 0.00314785;
const double c = 0.2707936;
const double Thi = 400.0 + 273.15;
const double Tlo = 20.0 + 273.15;
double *x=new double[N];
double *xo=new double[N];
for(int i = 0; i < N; i++) xo[i] = Tlo;
FILE *fh=fopen("log.csv","w");

auto a = steady_clock::now();
for(int j = 0; j < Nsteps; j++)
{

x[0] = (1.0-3.0*g*h/c) * xo[0]
+ g*h/c * xo[1]
+ 2.0*g*h/c*Thi;

for(int i = 1; i < N-1; i++)
x[i] = g*h/c * xo[i-1]

+ (1.0-2.0*g*h/c) * xo[i]
+ g*h/c * xo[i+1];

x[N-1] = (1.0-3.0*g*h/c) * xo[N-1]
+ g*h/c * xo[N-2]
+ 2.0*g*h/c*Tlo;

std::swap(x,xo);
#ifdef PRINT
for(int i = 0; i < N; i++)

fprintf(fh,"%e,",xo[i]);
fprintf(fh,"\n");
#endif //PRINT

}
auto b = steady_clock::now();
auto e = duration_cast<

duration<double>>(b-a)
.count();

printf("Simulation time %f\n",e);
fclose(fh);
delete[] x;
delete[] xo;

}

respect to the number of equations in the system, while
this does not happen in the handwritten code. As a smaller
code size translates to better cache locality, this difference
can at least partially explain the improved simulation per-
formance of hand tuned code.

However, there is no theoretical reason why an opti-
mizing Modelica compiler could not generate as efficient

Towards a High-Performance Modelica Compiler

DOI Proceedings of the 13th International Modelica Conference 317
10.3384/ecp19157313 March 4-6, 2019, Regensburg, Germany

Table 1. OpenModelica Thermal1D simulation time, binary and
source code size

Equations Simulation Binary Source
10 40 ms 34.6 KByte 46.1 KByte

100 43 ms 101 KByte 183 KByte
1000 331 ms 775 KByte 1.55 MByte

10000 2.49 s 7.37 MByte 15.6 MByte
100000 69.0 s 73.7 MByte 160 MByte

1000000 Stopped after 2 hours

Table 2. Dymola Thermal1D simulation time, binary and source
code size

Equations Simulation Binary Source
10 37.6 ms 193 KByte 8665 Byte

100 49.1 ms 238 KByte 53.7 KByte
1000 274 ms 690 KByte 527 KByte

10000 2.64 s 5.17 MByte 5.35 MByte
100000 61.9 s 50.9 MByte 55.7 MByte

1000000 Stopped after 2 hours

Table 3. Handwritten C++ Thermal1D simulation time, binary
and source code size

Equations Simulation Binary Source
10 46 µs 4922 Byte 1258 Byte

100 257 µs 4922 Byte 1258 Byte
1000 3.72 ms 4922 Byte 1258 Byte

10000 34.2 ms 4922 Byte 1258 Byte
100000 401 ms 4922 Byte 1258 Byte

1000000 3.62 s 4922 Byte 1258 Byte

code as the handwritten one—a remark that in our opinion
motivates our research path.

Finally, it is also worth noticing that the time required
by the Modelica translators to produce the C code and
compile it can significantly exceed the simulation time.
Considering the 100000 equations benchmark, OpenMod-
elica took 55 minutes, while Dymola took 4 minutes and
20 seconds. Furthermore, the 1 million equations bench-
mark was stopped for both Dymola and OpenModelica
after two hours, and the simulation had not yet started.
Compiling the handwritten C++ code took only 183ms, as
the code size is independent on the model size, although a
fair comparison cannot be made due to the time required
to manually translate the Modelica code to C++.

4 Roadmap
Given the considerations laid out so far, it is the authors’
opinion that producing highly optimized binary code from
a Modelica model is possible. The process we envision
first translates the Modelica code into an LLVM intermedi-
ate representation (LLVM-IR), and then turns that directly
into architecture-optimized machine code. Such an ap-
proach exploits all the structural information and metadata
that comes from the original Modelica model to the fullest
extent.

We also believe that, given the functionality offered by
the LLVM framework, this objective can be achieved with
an effort that will be abundantly rewarded in terms of ef-
ficiency, scalability and, last but not least, maintainability.
The performance of the LLVM framework will further im-
prove over time thanks to the efforts of the very active
community working on it, which is much wider than the
community of Modelica tool developers.

The roadmap laid out here is based on three main as-
sumptions:

• in the future there will be a growing interest in the
simulation of large-scale, modular Modelica models
of ever-increasing size;

• such large-scale models are built by connecting a
very large number of instances of a relatively small
number of models, which only differ by the numeri-
cal values of their parameters – this is possibly (but
not necessarily!) done via arrays of variables and
models;

• virtually all modular models are characterized by lo-
cal interaction, i.e., most (if not all) the components
in the system interact with a small number of neigh-
bours only, which means that the corresponding DAE
system has a very high degree of sparsity and O(N)
non-zero entries in the incidence matrix, N being the
number of instantiated models.

The Modelica compiler we are aiming to build will ex-
ploit these features to achieve highly efficient and opti-
mized simulation code generation and execution. This will
be obtained by working on two lines of development, Line
A and Line B, which are orthogonal and can be carried out
simultaneously. Line B is partitioned into two subsequent
phases, as shown in Figure 1.

A

B1 B2

time

Figure 1. The development of our proposed compiler will fol-
low two lines, Line A (compiler backend) and Line B (compiler
frontend), partitioned into Phase B1 and Phase B2.

4.1 Line A
Line A focuses on the improvement of the Modelica com-
piler backend by directly integrating with the LLVM com-
piler framework. The Modelica code will be translated
directly into an LLVM-IR, which retains all the structural
information that can be extracted from the original Mod-
elica code. This will allow the generation of machine code
which is optimized thanks to this information, as well as
all the available information about the target hardware ar-
chitecture.

Towards a High-Performance Modelica Compiler

318 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157313

The traditional intermediate C (or C++) code genera-

tion will thus be skipped, drastically reducing the code
generation time while at the same time allowing more op-
timizations to be performed faster.

4.2 Line B
Line B focuses on the Modelica compiler frontend, which
extends from the Modelica source code parsing to the the
transformation of the DAE equations in a form that can be
passed to a DAE solver.

4.2.1 Phase B1

The traditional Modelica code generation toolchains are
based on the complete flattening of the object-oriented
features and on the expansion of arrays and unrolling of
for loops. In fact, the very same Modelica Language
Specification is written with this assumption in mind.

The goal of this line is to preserve arrays, for loops,
and in general the object-oriented structure of the models
as much as possible, in order to factor out common be-
haviour (= equations) in large-scale models. Thus it is
possible to achieve much faster code generation, a much
smaller memory fooprint, and hence much faster code
execution thanks to the vastly reduced chances of cache
misses, among other optimizations sought after in Line A.
Of course the generated code should eventually lead to the
solution of a system of equations which is equivalent to the
one that would be obtained by applying the full flattening
and expansion mentioned in the Modelica Specification.

The main idea is that the machine-code function to
compute the residuals of DAE (and their directional
derivatives) in an object which is instantiated many times
in the system should only be generated once and then
called many times using different inputs and outputs cor-
responding to the specific variables of each instance.

The concept should be then extended to cover hybrid
systems, involving the equations in when clauses, the
clocked equations and the zero-crossing functions which
are also repeated many times in the large-scale model. The
very nice feature of this approach is that the code genera-
tion time and the generated machine code footprint scales
as O(1) for a large system with N components.

This approach requires the use of direct sparse DAE
solvers, such as IDA, which avoids the need of causal-
ization and allows to preserve an N:1 mapping (possibly
with some optimizations such as alias elimination) be-
tween each equation in for loops or model arrays and
the corresponding function computing the residual of the
equation in the DAE system. This would not possible if
the system were causalized, turning it into a set of ODEs,
because in general the causalization destroys such N:1 cor-
respondence, depending on the specific causality relation-
ships in the overall system model.

In fact, such an N:1 mapping can be applied to the vast
majority of the DAE equations a typical large-scale system
model. However, a small set of equations remains that
needs a special handling, that will be carried out following

the traditional approach for simplicity.
The first sub-set in this set of equations is given by

the equations corresponding to flow variables in connec-
tion sets. Assuming there are no redundant connec-
tion statements in a connection set, a statement such as
connect(a,b) can be directly mapped into the equa-
tions 0 = a.vn f − b.vn f with an N:1 mapping only for the
non-flow variables vn f . The equations for flow variables,
instead, can only be generated once the connection sets
have been computed, a task that can only be performed
by analyzing the fully assembled system; only one flow
equation per connection set is eventually generated.

The second sub-set is given by the auxiliary equations
needed to generate the results of inStream() operators.
Also in this case it is necessary to analyze the connection
sets of the full system model, since the expression of the
results of the inStream() operator depends on the car-
dinality of the set and on the min attribute of the flow
variables of each involved connector.

The third sub-set involves DAE systems of index
greater than one. If the system is known a-priori to have
index one, as it is e.g. the case of phasor-based power
generation and transmission system models, then this set
is empty and there is no need of further processing. The
a-priori assumption of structural index one could be de-
clared by a suitable annotation of the model. Otherwise
it is necessary to flatten and expand the system model all
the way down to scalar components, run the matching al-
gorithm and in case of failure due to structural high index,
run Pantelides’ algorithm, which will identify algebraic
constraint equations between variables that appear differ-
entiated in the model, differentiate them and add them to
the original set of DAEs. The dummy-derivatives algo-
rithm will also require to select the state set (statically or
dynamically), and to demote some derivatives to dummy
derivatives, hence a provision must be made to identify
as dummy derivatives some elements of un-expanded ar-
rays of derivatives, that are handled by the O(1) efficient
code described above. Eventually, the DAE solver will
be passed the residuals and Jacobian of a reduced-order
index-1 system.

Note that in Phase B1 we still need to expand all non
index-1 systems, as in the current state-of-the-art Model-
ica compilers. We postpone the exploitation of optimiza-
tion opportunities for higher-index system to the B2 phase.
This milestone partitioning allows us to reach a working
compiler in shorter time by prioritizing the optimization
of index-1 systems.

Summing up, a straightforward implementation of the
tool requires to fully flatten and expand the model to scalar
components, build the connection sets on it, and then run
the standard structural analysis algorithms on it. Note that
this fully expanded model will not be used directly for
code generation, but only to perform structural analysis.
The actual code generation process will start from an un-
expanded version of the model, in order to achieve O(1)
performance as much as possible.

Towards a High-Performance Modelica Compiler

DOI Proceedings of the 13th International Modelica Conference 319
10.3384/ecp19157313 March 4-6, 2019, Regensburg, Germany

This processing phase on the fully expanded model re-

quires O(N) time, so it doesn’t scale as well as the gener-
ation of equations that have an N:1 mapping, which scales
as O(1) as discussed above. However, experience carried
out by some of the authors with the OpenModelica com-
piler shows clearly that the time and memory resources
involved in these specific phases of the processing of a
fully flattened model are a tiny fraction (5–10% at most)
of the total. Hence, a performance improvement of at least
one order of magnitude is expected by following this ap-
proach, compared to the traditional approach of running
all the code generation phases on the fully flattened sys-
tem.

As to the runtime performance of the executable sim-
ulation code, it has to be noted that the cardinality of the
additional set of equations that need to be generated from
the fully expanded model (connection equations for flow
variables, equations defining inStream() outputs and
equations differentiated by Pantelides’ algorithm) is again
a very tiny fraction (a few percentage point at most) of
the total number of equations of the system. This means
that the penalty on the runtime performance and memory
footprint of these equations not being handled in an array-
and object-oriented-structure-preserving way will be very
small, compared to what happens when a traditional full
flattening and expansion approach is followed.

4.2.2 Phase B2

Once the development of Phase B1 is complete, it would
be possible to focus on the modularization of the struc-
tural analysis algorithms. The current state-of-the-art ap-
proaches work only on scalar variables. In this phase, a
generalized versions of such algorithms will be designed,
which can handle entire arrays and sets of equations from
for loops, or from arrays of models as individual E and
V nodes.

On one hand, this modularization would further im-
prove the performance and the scalability of the tool. On
the other hand, developing such generalized algorithms
that work efficiently in all cases could turn out to be quite
a hard task. Therefore, the ratio between the development
effort and the performance gains is probably going to be
much less spectacular than the one that can be achieved
by completing Phase B1. It is the authors’ opinion that
this kind of optimization is worth considering only after
the optimizations described in Phase B1 have been fully
exploited.

5 On-Going Work
Since the second half of 2018, we started the implementa-
tion of a compiler prototype to materialize the effort dis-
cussed in Section 4. The development of such prototype
is being addressed in a master’s thesis work that aims at
demonstrating the benefits of the efficient exploitation of
arrays and equation loops. Due to time and resource limi-
tations, the current prototype is still in a very preliminary
state.

The focus of this thesis work is avoiding the generation
of redundant code that is obtained when the conventional
flattening-based approach based is followed. At the mo-
ment authors are writing, our prototype is limited to the
handling of flat models with no object-oriented structures.
Structural analysis is still not implemented, so that only
the dense version of the IDA DAE solver can be used.
Last, but not least, the direct LLVM-IR code generation
is not yet in place, and the prototype still generates C code
that is then compiled by clang into executable code.

As a consequence, the performance of our compiler
prototype on large-scale models is still very far from the
objectives stated in the roadmap. That said, our proto-
type can handle simple Modelica models with arrays and
for loops, producing correct simulation results. The im-
provements currently supported by our prototype lie in the
code generation stage. We aim at the preservation of the
data- and code-structures concepts as they are written in
the Modelica source code. In particular, we avoid to per-
form the vector expansion whenever it is possible. Thus,
we generate a residual function that features loops over
variables. Our compiler generates a compact code that
better exploits instruction locality with respect to the code
generated by OpenModelica.

Another improvement over the OpenModelica code
generation consists in the reduced modularity of the resid-
ual function. OpenModelica generates a single C function
for each equation to be described. This approach is fairly
convenient for debugging purposes, as it allows to trace
the effects of the single equation from the source code to
the executable binary. However, it implies a non-trivial
overhead due to function call instructions at runtime, and
this overhead is not paid back through code reuse, as these
functions are only called once. We reduce this overhead
during the code generation stage in two ways. The first
optimization is a direct consequence of the loop preserva-
tion: whenever there is an equation within a loop body,
we reuse the same code at each iteration of the loop. The
second optimization consists in the inlining of functions,
to be performed before the code generation. Instead of
generating an independent C function and respective call
instructions to invoke it, we directly place the code of that
function in the residual function. This second optimiza-
tion can be performed at almost zero cost during the code
generation stage, as opposed to later forcing the compiler
to analyze the emitted code as a whole.

Although preliminary results on small dense systems
supported by our prototype are promising, actual di-
rect performance comparisons on meaningful test cases
against mainstream Modelica translators will become sig-
nificant as soon as the support for the sparse version of the
IDA solver is implemented. This effort and the replace-
ment of the intermediate C code generation pass with the
LLVM-IR one are planned to be carried out in 2019.

Towards a High-Performance Modelica Compiler

320 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157313

6 Conclusions
In this paper, we are proposing to realise a Modelica com-
piler based on a compiler framework, namely LLVM. The
presented research is carried out by a group at the Politec-
nico di Milano, putting together knowledge and experi-
ence about Modelica and its use for a wide variety of ap-
plications, about computer architectures, and about com-
piler science and technology.

We have motivated our proposal based on current trends
observed in the problems that Modelica models need to
address, with particular (yet not exclusive) reference to
large-scale systems.

We have argued that not passing through the generation
of source code in an imperative language can yield im-
provements in terms of wider optimization possibilities,
as the semantics of a language like C inherently causes
a loss of information about the semantics of the original
model, that could be exploited to tailor the code to its tar-
get architecture.

We have also noticed that the huge effort spent, and the
vast community involved in compiler frameworks, quite
certainly entail future benefits in terms of compiler stan-
dardization and maintainability.

We have shown a motivating example to support our
statements, defined a roadmap for future activities, and
briefly described what we carried out so far.

We hope that this paper fosters a discussion in the Mod-
elica community, and that our proposal can be a basis for
a future generation of efficient, architecturally flexible and
easily maintainable Modelica compilers.

References
Matthias Arzt, Volker Waurich, and Jörg Wensch. Towards uti-

lizing repeating structures for constant time compilation of
large Modelica models. In David Broman and Peter Pepper,
editors, Proceedings of the 6th International Workshop on
Equation-Based Object-Oriented Modeling Languages and
Tools, pages 35–38, Berlin, Germany, Oct 10 2014. ACM.
ISBN 978-1-4503-2953-8. doi:10.1145/2666202.2666207.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Com-
piler transformations for high-performance computing. ACM
Comput. Surv., 26(4):345–420, December 1994. ISSN 0360-
0300. doi:10.1145/197405.197406. URL http://doi.
acm.org/10.1145/197405.197406.

M. Bonvini and A. Leva. Object-oriented sub-zonal modelling
for efficient energy-related building simulation. Mathemat-
ical and Computer Modelling of Dynamical Systems, 17(6):
543–559, 2011. doi:10.1080/13873954.2011.592143.

W. Braun, F. Casella, and B. Bachmann. Solving large-scale
Modelica models: new approaches and experimental results
using OpenModelica. In Proc. 12th International Modelica
Conference, pages 557–563, Prague, Czech Republic, 2017.
doi:10.3384/ecp17132557.

F. Casella. Simulation of large-scale models in Modelica: State
of the art and future perspectives. In Proc. 11th International

Modelica Conference, pages 459–468, Versailles, France,
2015. doi:10.3384/ecp15118459.

J. Frenkel, C. Schubert, G. Kunze, P. Fritzson, M. Sjölund,
and A. Pop. Towards a benchmark suite for Modelica com-
pilers: Large models. In Proc. 8th International Model-
ica Conference, pages 143–152, Dresden, Germany, 2011.
doi:10.3384/ecp11063143.

Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Sim-
bürger, Armin Größlinger, and Louis-Noël Pouchet. Polly-
polyhedral optimization in llvm. In Proceedings of the First
International Workshop on Polyhedral Compilation Tech-
niques (IMPACT), volume 2011, page 1, 2011.

C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proc.
2004 International Symposium on Code Generation and
Optimization, pages 75–86, Palo Alto, CA, USA, 2004.
doi:10.1109/cgo.2004.1281665.

A. Leva, F. Terraneo, and W. Fornaciari. Event-based control as
an enabler for high power density processors. In Proc. 2nd
International Conference on Event-based Control, Commu-
nication, and Signal Processing, pages 1–8, Krakow, Poland,
2016. doi:10.1109/EBCCSP.2016.7605253.

Joseph Schuchart, Volker Waurich, Martin Flehmig, Marcus
Walther, Wolfgang E. Nagel, and Ines Gubsch. Exploiting re-
peated structures and vectorization in modelica. In Proc. 11th
International Modelica Conference, pages 265–272, Ver-
sailles, France, Sep 21–23 2015. doi:10.3384/ecp15118265.

The Modelica Association. Modelica - A unified object-
oriented language for physical systems modeling -
Language specification version 3.4. Online, 4 2017.
URL https://www.modelica.org/documents/
ModelicaSpec34.pdf.

S. Vialle, J.P. Tavella, D. Cherifa, R. Corniglion, M. Caujolle,
and V. Reinbold. Scaling FMI-CS based multi-simulation be-
yond thousand FMUs on Infiniband cluster. In Proc. 12th
International Modelica Conference, pages 673–682, Prague,
Czech Republic, 2017. doi:10.13140/RG.2.2.14481.63847.

D. Zimmer. Module-preserving compilation of Modelica mod-
els. In Proc. 7th International Modelica Conference, pages
880–889, Como, Italy, 2009. doi:10.3384/ecp09430028.

DOI Proceedings of the 13th International Modelica Conference 321
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 3C: MECHANICS & TRANSPORT
Overview on the DLR RailwayDynamics Library
Heckmann, Andreas and Ehret, Marc and Grether, Gustav and Keck, Alexander and Lüdicke, Daniel and
Schwarz, Christoph

Using Baumgarte's Method for Index Reduction in Modelica
Bortoff, Scott

Modeling of Rotating Shaft with Partial Rubbing
Ishibashi, Tatsuro and Kawai, Tadao

Aspects of Train Systems Simulation
Kuhn, Martin and Ji, Yang and Wang, Bo and Li, Xiang and Liu, Bohui and Sha, Feng and Gan, Dunwen and
Gao, Feng

.

322 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Overview on the DLR RailwayDynamics Library

DOI Proceedings of the 13th International Modelica Conference 323
10.3384/ecp19157323 March 4-6, 2019, Regensburg, Germany

Overview on the DLR RailwayDynamics Library
Heckmann, Andreas and Ehret, Marc and Grether, Gustav and Keck, Alexander and Lüdicke, Daniel and
Schwarz, Christoph

323

Overview of the DLR RailwayDynamics Library

Andreas Heckmann1 Marc Ehret1 Gustav Grether1 Alexander Keck1 Daniel Lüdicke1

Christoph Schwarz1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
andreas.heckmann@dlr.de

Abstract
The newly released commercial DLR RailwayDynamics
Library is intended to support the design, optimization and
control development as well as hardware- and software-in-
the-loop testing of railway vehicles mainly on the system
level. To this aim, it provides the capability to consider ve-
hicle dynamics issues such as traction, comfort and safety
in multi-domain engineering tasks by preparation of vehi-
cle, track, wheel-rail contact models and roller rig scenar-
ios on different levels of detail.

Exploiting several precursor papers on specific railway
modeling topics, their models have been collected and re-
organized in order to propose a sound modeling frame-
work dedicated to railway dynamics.

The paper gives an overview on particular concepts and
ideas of the library, presents several application examples
and discusses two approaches to organize multi-domain
modeling.
Keywords: railway vehicle dynamics, wheel-rail contact,
multi-domain vehicle modeling

1 Introduction
1.1 Background
A high level of safety and comfort as well as sustainabil-
ity and protection of natural resources are high-level ob-
jectives of the DLR-internal, long-term research project
Next Generation Train (NGT) and compiled to vehicle dy-
namics, suspension design, running gear development and
active guidance control as associated tasks of the DLR In-
stitute of System Dynamics and Control (SR).

Despite the significance of hardware testing, modeling,
simulation and optimization remain the dominating tools
in research efforts on safety enhancements, function up-
grades, comfort improvement and reduction of wear, en-
ergy consumption and life-cycle costs. These tools offer
the opportunity to examine and evolve new technical con-
cepts in early design phases without implementation risks
and by comparable low costs. Moreover, the use of Mod-
elica is in particular attractive since it provides the capa-
bility to cover multi-domain engineering tasks in one con-
sistent simulation environment, cf. (Carrarini et al., 2010).

Hence, it is not surprising that there already exists a
slew of Modelica publications that report on NGT and co-
operation project results in railway engineering such as

on energy flows in electric railway networks (Heckmann
and Streit, 2012), on wheel-rail contact (Heckmann et al.,
2014a), running gear (Schwarz et al., 2015) and pneumatic
brake system modeling (Ehret, 2018) and on crosswind
stability assessment (Heckmann and Grether, 2017).

1.2 Objectives
The idea of the present paper is to gather those models
and experiences from the work quoted above, organize
and propose a modeling framework dedicated to railway
dynamics and running gear design. This includes the con-
sideration of the nonlinear wheel-rail contact in normal
and in tangential direction in view of the wheel and rail
profile geometry.

Besides analyzing classical vehicle dynamics topics
such as traction, comfort and safety, the capability to
work on multi-domain engineering tasks is a specific fo-
cus of the RailwayDynamics Library. In fact, railway
vehicles also employ multiphysical subsystems such as
pneumatic friction brakes and air suspensions, electrical
engines to provide propulsion and to regenerate energy,
Diesel-electric or Diesel-hydraulic drive trains and so on.

With this background, the commercial DLR Railway-
Dynamics Library is supposed to support holistic system
design, optimization and hardware or software in-the-loop
testing by provision of vehicle dynamics models that may
be scaled and adapted with respect to the required model-
ing level.

An overview on the library structure is given in the fol-
lowing section. Some particularities of railway modeling
are presented in Section 3, while Section 4 contains elabo-
rate example applications. Section 5 is a discussion on dif-
ferent approaches for multi-domain modeling. Section 6
concludes the paper and gives an outlook.

2 Overview
2.1 Library Structure
Figure 1 presents the main subpackages of the library.
Each major subpackage and its models are addition-
ally marked by using different fundamental icon colors,
namely light grey, light green, light red or light blue.

The General subpackage contains multi-purpose mod-
els for all kind of analysis in the context of railway dynam-
ics and also covers the operation of test rigs. It includes
lateral, longitudinal, vertical, roll, pitch and yaw dynam-

Overview on the DLR RailwayDynamics Library

324 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157323

Figure 1. Structure of the RailwayDynamics Library

ics which may be investigated for comfort, traction, safety
purposes among others.

The Vertical subpackage gathers specific models with
vertical degrees of freedom, only, which could be used for
preliminary surveys on vibration comfort and the associ-
ated lay-out of suspensions.

The Longitudinal subpackage is intended to be used
to study traction and braking maneuvers of trains, which
explicitly requires to consider the longitudinal motion of
railway vehicles and the associated rotational motion of
wheels or wheelsets, respectively.

The Crosswind subpackage is tailored for quasistatic
crosswind stability analysis according to Sec. 5.4.3 in (EN
14067-6: 2010).

Generally speaking, models from the Vertical, Longitu-
dinal or Crosswind subpackage are specializations and are
supposed to replace models from the General subpackage
in order to focus on more specific analysis goals and bal-
ance the computational resources according to the needs
on hand.

2.2 Vehicle Substructuring
The example vehicle model dedicated to one single car in
Figure 2 gathers submodels to represent

• the railroad base as an aggregation of track joints and
track panels to be further explained in Section 3.2
and Section 3.3,

• two running gears, which include wheelsets, bogie
frames, primary and secondary suspensions,

• and the carbody.

Figure 2. Structure of vehicle model

The vehicle model composition in Figure 2 serves as a
template and is employed throughout the complete library.
Each submodel may be replaced by another submodel that
stems from the same partial base class.

Four flange with bearing connectors from the Modelica
Standard Library (MSL) and its Multibody subpackage,
respectively, allow for the application of traction torques
from the outside to be transferred to the wheelsets and, as
an option supported at the bogie frame.

Two multibody frame connectors called rear and front
buffer enable the connection to leading of traveling cars.

The vehicle dynamics bus here transmits one signal
which is the longitudinal velocity of the car.

Data on masses, fundamental geometry, primary and
secondary suspensions are collected by one data record,
to be further explained in the following section.

2.3 Data Concept
The collection of fundamental vehicle data in one record
and their propagation to submodels is useful to retain con-
trol and a clear view on the parametrization of the model.
However, almost each vehicle requires different data and
needs a particular record structure since e.g. the options to
design railway suspensions are numerous.

Therefore, it appears useful to declare the Data record
locally as a specifically tailored encapsulated record as
follows:
model Locomotive
import RGV=

RailwayDynamics.General.Vehicles;
encapsulated record Data

extends RGV.partialVehicleData;
...

end Data;
parameter Data data;
...

end Locomotive;

Overview on the DLR RailwayDynamics Library

DOI Proceedings of the 13th International Modelica Conference 325
10.3384/ecp19157323 March 4-6, 2019, Regensburg, Germany

The submodels of the vehicle here called Locomotive

are supposed to refer to the above declared record in the
following way:

model LocomotiveBogie
import RGS=

RailwayDynamics.General.Subsystems;
extends RGS.RunningGear.Bogie(

redeclare Locomotive.Data data)
...

end LocomotiveBogie;

3 Railway Modeling Particularities
In order to introduce the particularites of the RailwayDy-
namics Library, Figure 3 shows a simple scenario, namely
a single wheelset running along curved track.

3.1 Track
The track instance is mandatory for every model which
uses the RailwayDynamics Library except the later on pre-
sented roller rig environment. It contains information on
some global parameters using the Modelica inner / outer
mechanism and defines

• the path as a function of the path length parameter
s, i.e. the 3D curve rrr = rrr(s), the vehicle is intended
to move along, and the collateral frame, whose unit
basis vectors are ttt = ttt(s), nnn = nnn(s) and bbb = bbb(s),

• the rails, which are symmetrically aligned along the
path and

• the irregulartities that specify local deviations or dis-
turbances of the idealized path and rail definition.

The 3D curve of the path is described by supporting
points, which are interpolated by B-Splines in a suffi-
ciently smooth manner. Together with the superelevation
or roll angle φ(s), the supporting points are read from a

Figure 3. Diagram layer of a wheelset on a curved track model

file, to which a string parameter of the track component
refers. The orientation of the collateral frame then results
from the following definitions:

ttt(s) =
rrr,s
|rrr,s|

with (),s :=
∂ ()

∂ s
,

nnn(s) =

1 0 0
0 cosφ(s) sinφ(s)
0 −sinφ(s) cosφ(s)

(aaa×ttt) ,

bbb(s) = ttt×nnn ,

(1)

where the auxiliary unit vector aaa is a user defined param-
eter. Its introduction is needed to overcome the shortcom-
ings of the Frenet frame definition, which refers to ttt ,s in
order to specify nnn and results in a zero vector for straight
line paths, cf. (Weber, 1990).

In the animation in Figure 4 the path progress is delin-
eated as a transparent red band. The red frame presents
the local triad at the instantaneous position. Whenever the
terms longitudinal, lateral and vertical are used in the con-
text of this library, they refer to this local coordinate sys-
tem that moves along the predefined track path. The lon-
gitudinal direction hereby is specified by ttt, i.e. tangential
to the instantaneous track position, and the vertical axis
referring to bbb is pointing downwards as usual in railway
dynamics.

The position and orientation of the two rail reference
frames are given relative to the path by three parameters:
gauge, gaugeOffset and inclination, for which usual val-
ues are 1/20 or 1/40.

The irregularities implemented so far are random real-
izations of disturbances with specified spectral properties.
The user may select four different geometrical types of ir-
regularities (vertical, lateral, crosslevel and gauge) from
a number of predefined spectra that are taken from rail-
way vehicle textbooks or papers, e.g. (Frederich, 1984) or
(Haigermoser et al., 2015).

3.2 Track Joint
Recall the prismatic joint from the MSL-Multibody sub-
package that specifies one mechanical degree of freedom

Figure 4. Animation of a wheelset on a curved track model

Overview on the DLR RailwayDynamics Library

326 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157323

Figure 5. Excerpts from the menu to specify parameters of the elastic Contact model.

or two states, which represent the capability to move along
a straight line. In the same manner, the track Joint defines
one mechanical degree of freedom, but now refers to the
track instance and presents the capability to move along
the 3D path rrr. The two associated states are s j = s j(t) and
v j = v j(t), i.e. the instantaneous position along the path
and its time derivative.

The local frame specified by ttt, nnn and bbb uniquely as-
signs an orientation to each instantaneous position on
the 3D track path and a given translational track speed
v j = v j(t) corresponds to a specific angular velocity ωωω j =
ωωω j(v j(t),rrr(s j)).

The railroad base in Figure 2 contains five track Joint
components to represent the longitudinal degrees of free-
dom of the four wheelsets and the carbody.

3.3 Track Panel

As visualized in the animation in Figure 4, the track panel
presents two rail stubs and one sleeper that are assumed to
move in longitudinal direction associated to the wheelset.
This is a quite common model simplification in railway
dynamics in order to avoid the representation of the rail
and the subgrade structure as a distributed system with
many degrees of freedom and high computational de-
mands. The flexibility of the rail road may then be in-
troduced by modeling the track panel as a discrete spring-
damper-mass system, which is parametrized on the basis
of shaker measurements (Chaar and Berg, 2006). Thus,
the mutual influence of neighbouring track panels through
the rails and the subgrade is neglected.

Since the vehicle model considers four wheelsets, the
railroad base in Figure 2 contains four track panel compo-
nents, which are connected using vectors of MSL Multi-
body frames.

3.4 Wheelset
The wheelset model reproduces interia properties and con-
tains two prismatic joints to enable lateral and vertical mo-
tion and three revolute joints to allow for roll, yaw and rev-
olute motion. These five degrees of freedom complement
the longitudinal motion already covered by the attached
track Joint.

3.5 Wheel-Rail Contact
The wheel-rail contact component, which here is elas-
tic Contact, is to be connected to the wheelset multibody
frame that is located at the axle bearing position and the
rail profile reference frame of the track panel. Figure 5
shows the General dialog menu tab, where wheel radius,
Young’s modulus, Poisson number and a side flag have to
be specified.

The Normal Contact tab in Figure 5 specifies

• the smoothing parameter α , which is associated to
a proposal of Arnold et al. to even profile curvature
jumps, see (Arnold and Netter, 1998) or (Heckmann
et al., 2014a),

• a contact damping parameter d,

• a parameter p0 that helps to regularize the Hertzian
contact algorithm, see (Heckmann and Grether,
2017),

• a vector sss of lateral positions that samples the wheel
contour in a number of discrete points,

• a reference to the wheel and rail profile geometry in
the following manner:

import RailwayDynamics.General.Contact;

Overview on the DLR RailwayDynamics Library

DOI Proceedings of the 13th International Modelica Conference 327
10.3384/ecp19157323 March 4-6, 2019, Regensburg, Germany

replaceable package wheelProfile=

Contact.Profile.S1002
constrainedby

Contact.Profile.partialProfile;
replaceable package railProfile=

Contact.Profile.UIC60
constrainedby

Contact.Profile.partialProfile;

These two profile packages may be replaced by the user,
so that other standard or even measured profiles may be
introduced, as long as the following base class is inherited:

partial package partialProfile "Specifies
base class to introduce the geometry of
arbitrary wheel or rail profiles"

replaceable function evalProfile =
partialEvalProfile;

partial function partialEvalProfile
"Function to evaluate wheel or rail

profile"
import SI = Modelica.SIunits;
input Real s[sSize]
"Lateral positions, where profile

height is to be returned";
input SI.Radius r0 "Nominal wheel

radius (=0 for rail)";
input Integer sSize
"Number of positions and dimension of

input and output vectors";
output Real F[3,sSize]
"Profile height and its 1st and 2nd

derivative";
end partialEvalProfile;

end partialProfile;

The Tangential Contact tab allows for

• switching between linear and nonlinear tangential
contact evaluation,

• refering to a replaceable function to evaluate the non-
linear contact and may be user-defined as well,

• specifying parameters associated to the predefined
nonlinear contact formulation according to Polach,
see (Polach, 2005) or (Heckmann et al., 2014a).

In order to replace the ElasticContact in Figure 3,
a Constraint contact model as described in (Heckmann
et al., 2014a) and a Simplified contact component, which
considers the wheel to present a conical profile that runs
along a sharp edge rail are available in the library. The
Normal Contact tab for this alternative contact models
slightly differs to what is described above.

In addition, contact model classes to represent the
rolling contact of a wheel to a roller as given in roller
rigs are available in die subpackage RailwayDynam-
ics.General.Contact. All contact models implemented so
far consider the wheel and rail profile to touch each other
at just one single point and exploit the usual assumptions
in multibody vehicle modeling collected in Table 1 of
(Heckmann et al., 2014a).

4 Example Applications
4.1 Traction
The goal of traction analysis is to calculate the acceler-
ation and resulting in-train forces as well as longitudinal
oscillations of coupled vehicles during traction and brak-
ing maneuvers. These are important investigations regard-
ing safety, longitudinal comfort, fatigue of components,
train control, vehicle stability and energy considerations,
cf. (Spiryagin et al., 2014).

In Figure 6 an industrial scaled train model consisting
of a locomotive and 4 cars is pictured. The vehicles are
connected by coupling elements. The model is used to
simulate the acceleration and deceleration phase of the
train driven by the locomotive and to estimate the result-
ing in-train forces. A simple control unit sets the torques
of the wheelsets of the locomotive in order to reach the
target velocity.

In order to minimize the computational effort for this
kind of simulations the Longitudinal subpackage offers
models with a reduced number of lateral and vertical de-
grees of freedom. The train model in Figure 6 consists
of models from the General subpackage (car1, grey) and
from the Longitudinal subpackage to be distinguished by
their light green icon fill color (locomotive and car2,3,4).
In the longitudinal vehicle models the relative motions be-
tween carbody and bogie as well as between bogie and
wheelset, except for the rotation of the wheelset, are ne-
glected and therefore no suspension elements between
these bodies are applied. Furthermore, the excitation
caused by track irregularities is ignored. However, the ve-
hicle model moves along the 3-D path defined by the track
model and is therefore affected by downhill-slope forces
and resistance forces caused by curvature of the track. The
calculated velocity of the locomotive and the resulting in-
train forces acting in coupler1 are shown in Figure 7 (as-
sembly1). One can observe peaks of the coupler forces
caused by the impact of the cars on each other at the be-
ginning of the acceleration and brake phases.

In order to compare the simulation results and the com-
putational effort using models from the different subpack-

Figure 6. Mixed model built up of locomotive and cars from the
General and the Longitudinal subpackage to simulate traction
and braking maneuver (assembly1)

Overview on the DLR RailwayDynamics Library

328 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157323

assembly CPU-second / second number of states
assembly1 6.65 157
assembly2 0.08 51
assembly3 69.50 605

Table 1. Table comparing computational effort and time states
of three different model assemblies

ages, two more assemblies of the introduced train are built
up and simulated. In assembly2 all vehicle models of the
train are from the Longitudinal subpackage and in assem-
bly3 all vehicle models are from the General subpack-
age. Figure 7 compares the simulation results of the three
different model assemblies. It illustrates that the simu-
lated vehicle speed and the peaks of the simulated coupler
forces of all three model assemblies coincide.

A comparison of the computation time per simulated
second and the number of continuous time states is shown
in Table 1. The train model built up from the Longitudinal
subpackage only (assembly2) leads to a simulation model
with 51 states that computes the results within 8 s. The
replacement of car1 by a model from the General sub-
package, as shown in Figure 6 (assembly 1), leads to 157
states and a computation time of 665 s. The computation
of assembly2 using models from the General subpackage
only takes 6950 s and uses 605 states.

This example demonstrates that the Longitudinal sub-
package provides suitable models which are capable to
analyze the longitudinal dynamics of trains by requiring
only a fraction of the computational effort compared to
a simulation of the train considering the entire vehicle dy-
namics. Furthermore, the models of this subpackage allow
the analysis of very long trains, such as freight trains with
up to 200 cars, with reasonable computational effort.

However, it is important to be aware of the limited
scope of simulations using models of the Longitudinal
subpackage. Due to the reduced number of degrees of

Figure 7. Comparison of simulation results of models from the
Longitudinal subpackage and the General subpackage

freedom certain dynamics, such as pitch, yaw and roll of
the bogie and carbody cannot be simulated. Thus, the sim-
ulation of scenarios in which this behavior might influence
traction or braking of vehicles need to be carried out by us-
ing models that take these dynamics into account. A po-
tential scenario is the reduction of traction or brake forces
induced by pitching of the bogie which in turn decreases
the normal contact forces between wheel and rail and in
consequence the maximum transferable traction force.

The replacement strategy in Figure 6 also allows for
mixed scenarios e.g. with one vehicle model from the
General subpackage surrounded by several ones from the
Longitudinal subpackage. The General model then pro-
vides a detailed insight, while the Longitudinal models are
mainly intended to introduce the interaction with neigh-
boring cars.

4.2 Comfort
As all technical components rails are non-ideal systems
and exhibit irregularities, which induce vehicle vibrations.
These track excitations are characterized by distance fre-
quency components in power density spectra (PSD). In the
RailwayDynamics Library the usual PSDs of ERRI and
Frederich as well as own PSDs can be defined. Usual pas-
senger trains therefore use two-level suspensions to reduce
vibrations of the carbody to meet ride comfort targets. The
lay-out of these suspensions is a significant engineering
task, which can be done by simulation using full vehicle
models from the General subpackage.

However in early design phases, it is a common as-
sumption that the ride comfort is dominated only by verti-
cal vibrations. This premise opens the opportunity to sim-
plify vehicle models and reduce their computational needs
in order to facilitate optimization studies. To this aim, the
Vertical subpackage of the RailwayDynamics Library pro-
vides quarter and half vehicle models.

The example model of a quarter vehicle in Figure 8 con-
sists of a track panel, a bogie and a car body model. The

Figure 8. Vertical quarter vehicle model

Overview on the DLR RailwayDynamics Library

DOI Proceedings of the 13th International Modelica Conference 329
10.3384/ecp19157323 March 4-6, 2019, Regensburg, Germany

position of the vehicle on the track is determined by an
external input to the translational flange connector, since
the longitudinal dynamics is neglected.

As mentionend in Section 3.3 the track panel is pre-
sented as a discrete sleeper mass, supported by a spring-
damper system. The position of the rails follows the mo-
tion of the track panel, to which predefined irregularities
are superimposed, cf. Section 3.1. The wheel-rail contact
model here is simplified to a spring-damper system. The
primary suspension that connects wheel and bogie mass
and the secondary suspension between bogie and carbody
mass are also spring-damper models with one vertical de-
gree of freedom, each.

Several calculation methods can be used to express the
human comfort perception of a rail vehicle in a perfor-
mance index. The evaluation of the vibration comfort of
a rail vehicle is defined in the (EN 12299: 2009) stan-
dard. The average comfort is expressed with the NMV
value, where the acceleration measurement is reshaped by
various frequency filters, so that the NMV number quantita-
tively expresses the human sensation of vibration comfort.
To be more specific, values NMV < 1.5 are characterized
as very comfortable while values NMV ≥ 4.5 are assessed
to be very uncomfortable.

In a first application example, an AVMZ-wagon, see
(Iwnicki, 1998) runs at 120 km/h on a track with excita-
tion. The vertical vibration comfort NMV z is determined on
the basis of a full-vehicle model from General subpackage
and a quarter vehicle model shown in Figure 8.

The track irregularities are characterized by a cus-
tomized polynomial with input parameters ai and bi:

S(Ω) =
b0 +b2Ω2

a0 +a2Ω2 +a4Ω4 +a6Ω6 , f =
Ω

2π

[
1
m

]
. (2)

Figure 9 shows the PSD S(f) of the customized exci-
tation as polynomial (blue) that is compared to two PSDs
from literature called ERRI high and ERRI low (Bergan-
der and Kunnes, 1993). For verification purposes, the
customized irregularities were additionally measured from
the simulation results and their PSD was reconstituted in
cyan in Figure 9. As indicated by the signal drop at the

Figure 9. Comparison of track irregularities defined by power
spectral densities (PSD)

edges of the reconstituted PSD, the customized excitation
has been limited to 0.02≤ f ≤ 0.5 [1/m] by user input.

The vibration comfort of the full vehicle model is differ-
ent along the carbody due to the contribution of its pitch
motion to the local accelerations. While it is best in the
middle, it is worst at the vehicle ends. The simulated vi-
bration comfort of the quarter vehicle model shows an av-
erage comfort of the full-vehicle model. Reviewing the
number of states in Table 2, it has to be taken into account
that the various frequency filters according to (EN 12299:
2009) introduce 31 states into both model assemblies. The
following table compares the simulation results of the two
vehicle models:

Vehicle Model states CPU-s/s NMV z
full vehicle 171 9.08 0.43 ... 0.83

quarter vehicle 40 1.58 0.63

Table 2. Table comparing computational effort and time states
of two different model assemblies

4.3 Roller Rig
The use of test rigs for railway research and development
is widely spread in industry as well as at research insti-
tutes, see e.g. (Jaschinski et al., 1999). Even if test rigs
cannot entirely replace track tests, in early design phases a
test rig provides essential benefits, like cost effectiveness,
repeatable testing conditions and an extended set of mea-
surement equipment. To support this testing process the
General subpackage contains all necessary components
including specific contact models for the wheel-roller con-
tact to build up a suitable simulation environment.

An animation of a model of a single wheelset on a roller
rig is shown in Figure 11, to which Figure 10 presents the
diagram layer. The so-called uFrame in green in Figure 11

Figure 10. Diagram layer of a roller rig with one wheelset

Overview on the DLR RailwayDynamics Library

330 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157323

Figure 11. Animation of a roller rig with one wheelset

imitates the bogie while the aFrame in red represents the
carbody in a simplified way.

If longitudinal investigations are of interest, the test rig
can be extended by brake units and traction motors, re-
spectively, to validate for example new wheel slide pro-
tection and anti-skid algorithms.

Besides the longitudinal analysis the roller rig environ-
ment can be used to evaluate the lateral dynamics, what
is exemplarily presented in Figure 12. The two pictures
result from a test rig simulation with a lateral force exci-
tation (blue line in the upper plot) on the uFrame. The
red line denotes the resulting force in the primary spring,
which clearly shows the interdependence of the higher fre-
quency wheel-roller contact forces.

In the lower plot the lateral displacements of the
wheelset (green) and the uFrame (black) are illustrated
and the typical hunting motion can be recognized espe-
cially by the wheelset behavior. The difference between
these two signals is the relative deviation of the primary
spring. In the end, this scenario allows to verify or even
optimize the dynamic stability of the wheelset e.g. under
a crosswind disturbance or an other lateral influence.

Figure 12. Simulation results of a laterally excited wheelset on
the roller rig

4.4 Crosswind Stability

Figure 13. Diagram layer of the quasistatic crosswind model
according to EN 14067-6

Crosswind stability addresses the risk that vehicles run-
ning on high speed are prone to overturning, if high cross-
winds occur. The assessment of this risk is part of the
vehicle acceptance procedure, regulated by (TSI HS RST
2008) and (EN 14067-6: 2010). One of several assessment
scenarios defined in these references refers to a simpli-
fied five-mass model, which is therefore predefined in the
RailwayDynamics Library. Figure 13 shows the diagram
layer of this quasistatic model. The reader is referred to
(Heckmann and Grether, 2017), where a detailed discus-
sion on the crosswind stability issue and further modeling
approaches are given.

5 Multi-domain Modeling
5.1 The VehicleInterfaces Library reloaded
As already mentioned in Section 1.2, the RailwayDynam-
ics Library is intended to facilitate the multi-domain mod-
eling of railway vehicles. Therefore, the present paper
makes the attempt to initiate a discussion on the appropri-
ate organization of multi-domain railway vehicle models.
The multi-domain railway model in Figure 14 is inspired

Figure 14. First option to organize multi-domain modeling

Overview on the DLR RailwayDynamics Library

DOI Proceedings of the 13th International Modelica Conference 331
10.3384/ecp19157323 March 4-6, 2019, Regensburg, Germany

Figure 15. Alternative option to organize multi-domain modeling from (Carrarini et al., 2010)

by a corresponding activity in the automotive field that led
to the definition of the VehicleInterfaces library (Dempsey
et al., 2006).

There, the issues on railway vehicle dynamics are pre-
sented by one submodel depicted by one icon. Addi-
tional submodels cover propulsion systems, power train
and brake modeling and introduce control algorithms. Fol-
lowing this scheme, it is easy to replace submodels e.g. in
order to adapt their detail level. External supplier compa-
nies may provide submodels of their domain and the in-
terconnection of the submodels may be organized on the
model top level.

However, railway vehicles actually are train sets, where
several cars are connected at buffers. Each single car is a
multiphysical system on its own. Therefore, the scheme
in Figure 14 actually presents an aggregation of single-
domain train sets, one vehicle dynamics train set, one train
set of propulsion systems, one for brakes, etc. A vector
of flange with bearing connectors propagates traction or
braking torques to the wheelsets, cf. Figure 2.

5.2 Alternative Approach
Figure 15 originates from a former project proposal for
auxiliary systems in trains. There, each car is a multi-

domain model with (electric) traction, air supply, mechan-
ical and brake subsystem. The component view of the air
supply subsystem is shown in Figure 15 as well. The list
of optional subsystems may be further extended, e.g. to
consider the energy supply of air conditioning subsystems
or the control of door systems.

A newly specified multi-domain buffer connector was
defined that connects single cars, e.g. by connecting the
pneumatic line of the leading car with the pneumatic line
of the trailing one and so on.

This approach is assumed to rely on a more elaborate
specification of all stakeholders such as OEMs and sup-
pliers on interfacing and multilevel modeling organiza-
tion compared to the proposal in Section 5.1. The multi-
domain overhead an engineer has to keep in view while
working on his or her single-domain task might be larger.
The authors of the present paper are curious where a dis-
cussion on this issue may lead to.

6 Summary and Outlook
This paper presents the newly released DLR RailwayDy-
namics Library, which is intended to provide a sound mod-
eling framework dedicated to vehicle dynamics and run-
ning gear design. The consideration of vehicle dynamics

Overview on the DLR RailwayDynamics Library

332 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157323

issues in multi-domain engineering tasks is a specific fo-
cus of the RailwayDynamics Library.

Already initiated and future applications of the library
concern the synthesis of advanced observer and control
lay-outs, (Schwarz et al., 2018), (Heckmann et al., 2016),
and multidisciplinary simulation tasks such as the interac-
tion of running dynamics and drive train, the systems en-
gineering of pneumatic brake systems (Ehret, 2018) and
research on advanced system design and assessment sce-
narios in order to ensure the crosswind stability of railway
vehicles, cf. (Heckmann et al., 2014b).

Acknowledgment
A very early version of the subpackage of the RailwayDy-
namics Library that is specialized to crosswind stability
was implemented by Dr. Antonio Carrarini during his pe-
riod of employment at DLR.

References
M. Arnold and H. Netter. Approximation of contact geometry

in the dynamical simulation of wheel-rail. Mathematical and
Computer Modelling of Dynamical Systems, 4(2):162–184,
1998.

B. Bergander and W. Kunnes. ERRI B176/DT 290: B176/3
Benchmark Problem, Results and Assessment. Technical re-
port, European Rail Research Institute, 1993.

A. Carrarini, A. Heckmann, I. Kaiser, B. Kurzeck, J.L.R̃eyes
Pérez, and L. Valente. Multidisciplinary applications of
multibody simulation to railway vehicle engineering. In
IMSD 2010, 2010. URL https://elib.dlr.de/
64436/.

N. Chaar and M. Berg. Simulation of vehicle–track interac-
tion with flexible wheelsets, moving track models and field
tests. Vehicle System Dynamics, 44(sup1):921–931, 2006.
doi:10.1080/00423110600907667.

M. Dempsey, M. Gäfvert, P. Harman, C. Kral, M. Otter, and
P. Treffinger. Coordinated automotive libraries for vehicle
system modelling. In Proceedings of the 5th International
Modelica Conference, Vienna, pages 33–41, 2006.

M. Ehret. Modelca library for the systems engineering of rail-
way brakes. In Proceedings of the American Modelica Con-
ference 2018, 2018.

EN 12299: 2009. Railway Applications -Ride comfort for pas-
sengers - measurement and evaluation, 2009.

EN 14067-6: 2010. Railway Applications -Aerodynamics- Re-
quirements and test procedures for crosswind assessment.,
2010.

F. Frederich. Die Gleislage aus fahrzeugtechnischer Sicht. ZEV–
Glasers Annalen, pages 108–1984, 1984.

A. Haigermoser, B. Luber, J. Rauh, and G. Gräfe. Road
and track irregularities: measurement, assessment and sim-
ulation. Vehicle System Dynamics, 53(7):878–957, 2015.
doi:10.1080/00423114.2015.1037312.

A. Heckmann and G. Grether. The DLR RailwayDynamics Li-
brary: the Crosswind Stability Problem. In Proceedings of
the 12th International Modelica Conference, pages 623–631,
2017. doi:10.3384/ecp17132623.

A. Heckmann and S. Streit. The modeling of energy flows
in railway networks using xml-infrastructure data. In Pro-
ceedings of the 9th International Modelica Conference, pages
125–132, 2012. doi:10.3384/ecp12076125.

A. Heckmann, A. Keck, I. Kaiser, and B. Kurzeck. The
Foundation of the DLR RailwayDynamics Library: the
Wheel-Rail-Contact. In Proceedings of the 10th In-
ternational Modelica Conference, pages 465–475, 2014a.
doi:10.3384/ECP14096465.

A. Heckmann, B. Kurzeck, T. Bünte, and S. Loose. Consid-
erations on active control of crosswind stability of railway
vehicles. Vehicle System Dynamics, 52(6):759–775, 2014b.
doi:10.1080/00423114.2014.901539.

A. Heckmann, C. Schwarz, T. Bünte, A. Keck, and J. Brembeck.
Control development for the scaled experimental railway run-
ning gear of DLR. In 24th Symposium of the International As-
sociation for Vehicle System Dynamics (IAVSD 2015). CRC
Press, 2016.

S. Iwnicki. The Manchester Benchmarks for rail simulators - an
introduction. Vehicle System Dynamics, 29(sup1):717–722,
1998. doi:10.1080/00423119808969598.

A. Jaschinski, H. Chollet, S. Iwnicki, A. Wickens, and J.
Würzen. The application of roller rigs to railway vehicle dy-
namics. Vehicle System Dynamics, 31(5-6):345–392, 1999.

O. Polach. Creep forces in simulations of traction vehicles
running on adhesion limit. Wear, 258(7):992–1000, 2005.
doi:10.1016/j.wear.2004.03.046.

C. Schwarz, A. Heckmann, and A. Keck. Different models
of a scaled experimental running gear for the DLR Rail-
wayDynamics Library. In Proceedings of the 11th In-
ternational Modelica Conference, pages 441–447, 2015.
doi:10.3384/ecp15118441.

C. Schwarz, J. Brembeck, and B. Heckmann. Dynamics ob-
server for the longitudinal behavior of a wheelset on a roller
rig. Proceedings of the Institution of Mechanical Engineers,
Part F: Journal of Rail and Rapid Transit, 2018. submitted
for publication.

M. Spiryagin, C. Cole, Y.Q. Sun, M. McClanachan, V. Spirya-
gin, and T. McSweeney. Design and simulation of rail vehi-
cles. CRC Press, 2014. doi:10.1201/b17029.

TSI HS RST 2008. 2008/232/EC: Commission Decision of 21
February 2008 concerning a technical specification for in-
teroperability relating to the rolling stock sub-system of the
trans-european high-speed rail system, 2008.

W. Weber. Die Gleisbogenachse als räumliches Kurvenstück.
ETR, 39(1/2):79 – 81, 1990.

Using Baumgarte's Method for Index Reduction in Modelica

DOI Proceedings of the 13th International Modelica Conference 333
10.3384/ecp19157333 March 4-6, 2019, Regensburg, Germany

Using Baumgarte's Method for Index Reduction in Modelica
Bortoff, Scott

333

Using Baumgarte’s Method for Index Reduction in Modelica

Scott A. Bortoff1

1Mitsubishi Electric Research Laboratories, Cambridge, MA, USA, bortoff@merl.com

Abstract
We show by example how Baumgarte’s method can be
used in a Modelica model to reduce the differential alge-
braic equation index prior to compilation. This has advan-
tages for some constrained mechanical systems especially
those with closed-chain kinematics, including improved
initialization and enabling model-based control system de-
sign. We derive models for a simple pendulum, a delta
robot and for elevator cable sway as case studies. The
models are used for simulation and also for dynamic anal-
ysis and to design and realize feedback controllers.
Keywords: DAE, index reduction, robotics, control

1 Introduction
Modeling and simulation of some types of constrained
mechanical systems, such as closed kinematic chains, can
be challenging in the Modelica language. One reason is
because component-oriented modeling for such systems
results in a set of high-index differential algebraic equa-
tions (DAEs). Modelica compliers, such as Dymola, use
the method of “dummy derivatives” (Mattsson and Söder-
lind, 1993; Bachmann, 2006; Cellier, 2006) to reduce the
index for very good and fundamental reasons. However,
for closed chains it has some disadvantages, and there are
other methods (Bauchau and Laulusa, 2007), which have
advantages especially for consistent initialization and use
cases beside simulation, such as control system design.

In this paper we show, by example, how Baumgarte’s
method of index reduction (Baumgarte, 1972, 1983) can
be used in Modelica to reduce the index of a constrained
mechanical system prior to compilation. Our primary ex-
ample is a delta robot, for which we derive a singularity-
free, index 1 DAE. No automatic index reduction is done
at compile time, and no dynamic state selection is required
at simulation time. We find that the method is amenable
to Modelica’s object oriented modeling paradigm, and re-
sults in simulation code that can be, at least anecdotally,
faster. We construct several components of a feedback
controller directly from the index-1 system model, and
show how consistent initial conditions can be computed in
this formulation. We provide a second example, elevator
cable sway, in which the method is vital to simulation and
feedback control system design. Interestingly, the method
can model certain types of time-varying constraints such
as loss-of contact or constraint breaking.

Baumgarte’s method should be considered as a viable
alternative - not a general replacement - to the automatic

index reduction algorithms that are built into Modelica
compilers. It is appropriate for certain situations in which
these algorithms either fail to reduce the index, or re-
sult in complex and therefore slow, simulation code. The
method has been criticized in the numerical analysis lit-
erature (Bauchau and Laulusa, 2007), primarily because
selection of values for its parameters, described later, is
problem-dependent, and because it results in a system of
equations that is of dimension larger than the number of
degrees of freedom in the problem. As a result, a simu-
lation can “drift,” meaning that the algebraic constraint is
not enforced exactly during a simulation. For some use
cases, this could be disastrous and the method should not
be used. However, for our applications, we find these criti-
cisms to be inconsequential. The method’s two parameters
are easy to tune, and the drift is on the order of the solver
tolerance, so it can be reduced by reducing the solver tol-
erance. The drift vanishes when the mechanical system is
at rest.

2 Toy Pendulum Example
Consider the equations of motion of a simple pendulum
expressed in Cartesian coordinates,

ẋ1 = v1 (1a)
ẋ2 = v2 (1b)

Mv̇1 =−2x1λ (1c)
Mv̇2 =−2x2λ −g (1d)

0 = h(x) = x2
1 + x2

2−L2 (1e)

where M is the pendulum bob mass, L is the rod length,
g is the acceleration due to gravity, x = [x1 x2]

T is the
position in Cartesian coordinates of the pendulum bob,
v = [v1 v2]

T is the velocity, and λ is the Lagrange multi-
plier which corresponds to the tension in the rod required
to maintain the constraint h(x) = 0 in (1e). System (1) is
an index-3 DAE in variables x, v and λ . Modelica code
for the pendulum is (Fritzon, 2015)

Bob

Figure 1. Pendulum.

Using Baumgarte's Method for Index Reduction in Modelica

334 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157333

der(x1) = v1;
der(x2) = v2;
M * der(v1) = -2.0 * x1 * lambda;
M * der(v2) = -2.0 * x2 * lambda - M * g;
h = x1^2 + x2^2 - L^2;
h = 0.0;

When this is compiled by Dymola, for example, the index
is reduced using the method of “dummy derivatives,” re-
sulting in a system with two differential states and three
algebraic states. However, for any single choice of dif-
ferential states, there exists a kinematic configuration in
which the solver Jacobian becomes singular. This means
that at least two representations are required to cover the
complete configuration space, and the solver switches be-
tween them. Figure 2 shows the Message window after
compiling this model, indicating that two sets of two dy-
namics states were selected.

Figure 2. Message Window showing two sets of two dynamic
states for the method of “dummy derivatives.”

Baumgarte’s method replaces (1e) with a linear combi-
nation of its first two derivatives,

h′′(x,v,λ)+α1h′(x,v)+α0h(x) = 0 , (2)

where αi > 0 for i = 0,1, and s2 +α1s+α0 is Hurwitz
(all roots in the open left-half plane). Values for αi are
tuned depending on the specific problem. Large values
have smaller drift, but result in a stiff system. We find
that placing the roots at locations that are on the order of
the system time constant is sufficient. The resulting sys-
tem (1a)-(1d) and (2) is an index-1 DAE that has the same
solution as (1), which is shown below, and can be numer-
ically integrated with an index-1 solver such as DASSL.
Modelica code for the pendulum reduced via Baumgarte’s
method is

der(x1) = v1;
der(x2) = v2;
M * der(v1) = -2.0 * x1 * lambda;
M * der(v2) = -2.0 * x2 * lambda - M * g;

h0 = x1^2 + x2^2 - L^2;
h1 = der(h0);
h2 = der(h1);
0.0 = h2 + alpha1 * h1 + alpha0 * h0;

where we take advantage of Modelica’s automatic differ-
entiation. Figure 3 shows the message window for Baum-
garte’s method. We see that four static states are selected.

Figure 3. Message Window showing one set of four dynamic
states for Baumgarte’s method.

Simulation of this model is about 5x faster than the first
system for the same simulation parameters, but it is less
accurate. Figure 4 shows the constraint h(x) for a portion
of the simulation. Baumgarte’s method drifts away from
h(x) = 0 by an amount on the same order as the solver
tolerance (1e-4). On the other hand, the method of dummy
derivative implicitly enforces h(x) = 0 for all time, which
is one reason why it is used in compilers.

Figure 4. Constraint h(x) for the pendulum example, Baum-
garte’s method.

It is useful to understand the geometric structure of
the index-1 system (1a)-(1d) and (2). Define z0 = h(x)
and z1 = h′(x,v). Following (Isidori, 1989), define ξ =
[z0 z1]

T ∈R2 to be the “linear” part. Then there exist coor-
dinates η ∈R2 which are functions of x and v (after elimi-
nating λ through algebraic manipulation) so that (1a)-(1d)
and (2) can be written locally in so-called Zero Dynamics

Using Baumgarte's Method for Index Reduction in Modelica

DOI Proceedings of the 13th International Modelica Conference 335
10.3384/ecp19157333 March 4-6, 2019, Regensburg, Germany

Normal Form (Isidori, 1989),

η̇ = f (η ,ξ) (3a)

ξ̇ = Aξ , (3b)

where the two eigenvalues of A are located at the roots of

s2 +α1s+α0 = 0, (4)

and the two-dimensional zero dynamics

η̇ = f (η ,0) (5)

are the dynamics of the pendulum. In other words, we
simulate a four-dimensional system with state [x v]T ∈R4,
but there is an attractive two-dimensional manifold in R4,
defined by ξ = 0, on which the pendulum dynamics exist
and evolve according to (5). The ξ -dynamics are expo-
nentially stable, and once they converge to 0, do not affect
x or v. This has two important implications. First, we
may initialize the system at a state [x0 v0]

T ∈ R4 nearby
ξ = 0, and the state it will converge exponentially to the
constraint manifold ξ = 0. This can be useful to compute
consistent initial conditions by starting with an inconsis-
tent initial condition and simulating the system until the
exponentially stable part has converged. Second, if we lin-
earize (1a)-(1b) and (2), we expect two pole-zero cancella-
tions at the roots to (4). In a control design situation, these
modes are exponentially stable, and are uncontrollable
and unobservable, and may therefore be removed with a
Hankel-norm model truncation (Skogestad and Postleth-
waite, 2005) because their corresponding Hankel singular
value is zero. The resulting reduced-order model is two-
dimensional (because we started with a system of dimen-
sion four, and removed the two modes) and is equivalent
to a linearization obtained otherwise, e.g., if we reduced
the index using the method of dummy derivatives and then
linearized it.

2.1 Breaking Pendulum
One advantage that Baumgarte’s method offers is simula-
tion of breaking constraints, which is an example of multi-
mode modeling (Elmqvist et al., 2017). Consider the situ-
ation in which the pendulum rod will fracture if its tension
exceeds a threshold. This situation is difficult to model
using conventional methods, because the index changes
from 3 to 0 when the rod breaks. It can be modeled with
Baumgarte’s method because the number of equations and
variables remains constant before and after the break.

der(x1) = x3;
der(x2) = x4;
M * der(x3) = rhsX;
M * der(x4) = rhsY;
if lambda < lambdaMax then
rhsX = -2.0 * x1 * lambda;
rhsY = -2.0 * x2 * lambda - M * g;
0.0 = h2 + alpha1 * h1 + alpha0 * h0;

else
rhsX = 0.0;

rhsY = -M * g;
lambda = lambdaMax + epsilon;

end if;
h0 = x1^2 + x2^2 - L^2;
h1 = der(h0);
h2 = der(h1);

(Note that the value of lambda should be zero after the
break, but we set it to an arbitrary lambdaMax+epsilon
to avoid switching back after the break.) Figure 5 shows
the result of a simulation.

Figure 5. Simulation of breaking pendulum, in (x,y)-
coordinates (top), and the Lagrange multiplier (bottom) .

3 Delta Robot Model
Next we use the same method to derive a model of a delta
robot (Clavel, 1990) pictured in Figure 6, consisting of
three symmetric arms constrained kinematically by uni-
versal joints at the end effector. Each arm consists of a
proximal link, rigidly attached to a servomotor shaft at the
proximal end, and a pair of parallel distal links that are at-
tached to the proximal link via a pair of universal joints.
The six distal links are attached to the end effector by uni-
versal joints such that the pair of arm distal links remain
parallel, and the orientation of the end effector is invariant.

Delta robots are closed-chain mechanisms. Unlike the
kinematics of serial chain robots (Spong and Vidyasagar,
2004), the forward kinematics of the delta robot (the
function from actuated joint angles to the location of
the end effector) cannot be expressed analytically (Mer-
let and Gosselin, 2008), making formulation of dynamic
(and inverse dynamic) equations of motion more difficult
(Guglielmetti, 1994; St. and C., 2003; Merlet and Gos-
selin, 2008; Brinker et al., 2015).

We derive the robot dynamics as in (Bortoff, 2018) first
by defining the dynamics for each independent arm, as-
suming it is unconstrained, and then adding the holonomic
coupling constraint representing the end effector. The
resulting index-3 DAE is stabilized using Baumgarte’s
method, giving an index-1 DAE.

Using Baumgarte's Method for Index Reduction in Modelica

336 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157333

Proximal	
Link	1

Distal	Link	1

Distal	Link	3

Proximal	
Link	3

Distal	
Link	2

Base

End	Effector

x3

x1

x2

Figure 6. Delta robot.

Proximal
Link

Distal
Link

Gravity
Direction

End	
Effector

Base

y3 = l0 � l3 + l1 cos q1 + l2 cos q2

x3 = l2 sin q2 sin q3

x1

x2

x3

xc3

z3 = l1 sin q1 + l2 sin q2 cos q3

�1

�2

�3

Figure 7. Delta robot arm coordinates with end effector location
xc3 indicated.

3.1 Arm Dynamics

In deriving the dynamics of each arm, we can lump to-
gether the two distal links into a single effective link. Re-
ferring to Figures 6-7 in which the fixed “world” frame has
axes labeled [x1,x2,x3], let φ = [φ1,φ2,φ3]

T be the general-
ized angular position for the arm, defined as follows. The
servomotor angle is φ1, which is the rotation of the prox-
imal link about the x1-axis, measured with respect to the
x2-axis. The universal joint position is represented with
φ2 representing the rotation about the x1-axis measured
with respect to the x2-axis, and φ3 representing the rota-
tion about the x2-axis measured with respect to the x2−x3
plane. Note that, in these coordinates, the universal joint
has a singularity at φ2 = 0. However, this is outside the
range of motion of the robot once the three arms are kine-
matically constrained by the end effector.

Assuming that the distal links are thin rods, i.e., neglect-
ing the inertia of the distal link about its longitudinal axis,
the kinetic energy of each arm, including 1/3 the mass of

Proximal	Link	1

Distal	Link	1

Distal	
Link	3

Distal
Link	2

Proximal
Link	2

End	
Effector

l0

Arm	1

Arm	2

Arm	3

Base

Proximal	
Link	3

x1

x2x3

xc3

q13

q23

q33

Figure 8. Delta robot coordinates, bottom view, looking up.

the end effector, is

T (φ , φ̇) =
1
2

m1ẋT
c1ẋc1 +

1
2

m2ẋT
c2ẋc2 +

1
6

m3ẋT
c3ẋc3

+
1
2

J1φ̇
2
1 +

1
2

J2
(
sin(φ2)

2
φ̇

2
3 + φ̇

2
2
)
, (6)

where the position of the center of mass of the proximal
link is

xc1 =

 0.0
lc1 cos(φ1)
lc1 sin(φ1)

 , (7)

the position of the center of mass of the distal link is

xc2 =

 lc2 sin(φ2)sin(φ3)
l1 cos(φ1)+ lc2 cos(φ2)

l1 sin(φ1)+ lc2 sin(φ2)cos(φ3)

 , (8)

the position of the center of mass of the end effector is

xc3 = ψ(φ) :=

 l2 sin(φ2)sin(φ3)
l0− l3 + l1 cos(φ1)+ l2 cos(φ2)
l1 sin(φ1)+ l2 sin(φ2)cos(φ3),

 , (9)

the velocities ẋc1, ẋc2 and ẋc3 are computed by the chain
rule to be functions of φ , φ̇ and the parameters are listed in
Table 1. Note that the forward kinematics of the arm are
defined as ψ(φ) in (9). The gravitational potential energy
of each arm is

V (φ) = −g((lc1m1 + l1(m2 +m3/3))sin(φ1)

+(lc2m2 + l2m3/3)sin(φ2)cos(φ3) , (10)

where gravity points along the positive x3 axis and 1/3 of
the mass of the end effector is included in each arm. The
Lagrangian

L(φ , φ̇) = T (φ , φ̇)−V (φ) (11)

is used to define the arm equations of motion with La-
grange’s equation,

d
dt

∂L
∂ φ̇
− ∂L

∂φ
= bu, (12)

Using Baumgarte's Method for Index Reduction in Modelica

DOI Proceedings of the 13th International Modelica Conference 337
10.3384/ecp19157333 March 4-6, 2019, Regensburg, Germany

Table 1. Delta robot parameter definitions.

Symbol Description (Units)
l0 Base radius (m)
l1 Length of proximal link (m)
l2 Length of distal link (m)
l3 Width of end effector (m)
lc1 Distance to proximal link center of mass (m)
lc2 Distance to distal link center of mass (m)
m1 Mass of proximal link (kg)
m2 Mass of distal mass (kg)
m3 Mass of end effector (kg)
J1 Rotational inertia, proximal link (kg ·m2)
J2 Rotational inertia, distal link (kg ·m2)

giving
m(φ)φ̈ + c(φ , φ̇)+g(φ) = bu, (13)

where m is the 3× 3 inertia matrix, c is the 3× 1 vector
of Coriolis and centripetal torques, g is the 3× 1 vector
of torques due to gravity, b = [1,0,0]T and u is the ser-
vomotor torque. Expressions for m, c and g are given in
Appendix 1.

3.2 Robot Lagrangian Dynamics
Each of the three arms is identical except for a 120◦ ro-
tation about the z-axis. To represent the dynamics of the
full robot, we sum the unconstrained Lagrangians for each
arm (11), and augment the result with the holonomic con-
straints that equate the xc3 positions of the end effectors of
each arm (9) in the world coordinates. Lagrange’s equa-
tion gives the constrained dynamical equations.

Referring to Figure 8, define qi ∈ R3 for 1 ≤ i ≤ 3, to
be the generalized angular position of each of the three
arms, replacing the φ -notation used in Section 3.1. Define
q = [q1,q2,q3]

T ∈ R9 and the unconstrained Lagrangian
as

Lu(q, q̇) = L(q1, q̇1)+L(q2, q̇2)+L(q3, q̇3),

and form the augmented robot Lagrangian as

La(q, q̇) = Lu(q, q̇)+λ
T h(q), (14)

where the constraint h(q) : R9→ R6 is

h(q) =
[

ψ(q1)−Rz(2π/3) ·ψ(q2)
ψ(q1)−Rz(−2π/3) ·ψ(q3)

]
, (15)

the rotation matrix

Rz(θ) =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , (16)

ψ is defined in (9), and λ ∈ R6 is a vector of Lagrange
multipliers. Then the Lagrangian equations of motion for
the robot are

d
dt

∂La

∂ q̇
− ∂La

∂q
= λ

T H(q)+Bu (17)

h(q) = 0, (18)

where

H(q) =
∂h(q)

∂q
.

Defining v = q̇, (17)-(18) can be written as a set of 24
first-order DAEs of Index 3 (Brenan et al., 1996; Kunkel
and Mehrmann, 2006), in the variables q∈R9, v∈R9 and
λ ∈ R6,

q̇ = v (19)
M(q)v̇+C(q,v)+G(q) = λ

T H(q)+Bu (20)
h(q) = 0, (21)

where

M(q) = diag(m(q1),m(q2),m(q3)) ∈ R9×9,

C(q,v) = diag(c(q1,v1),c(q2,v2),c(q3,v3)) ∈ R9,

G(q) = diag(g(q1),g(q2),g(q3)) ∈ R9,

B = diag(b,b,b) ∈ R9×3.

Equations (19) - (21) are a complete dynamic model of the
delta robot, but index reduction is necessary for simulation
and application of modern control theory.

3.3 Robot Hamiltonian Dynamics
For some applications such as port-Hamiltonian analysis
(van der Schaft, 2013) it is useful to have a Hamiltonian
model of the robot. This is derived in similar fashion by
defining the momentum vector p ∈ R9 and the Hamilto-
nian H = T +V for each arm, augmenting the constraint
(15) by the Lagrange multiplier λ and solving the Hamil-
tonian equations, resulting in

M(q)q̇ = p (22)

ṗ =
1
2

v
∂M(q)

∂q
v−G(q)+Bu+HT (q)λ (23)

h(q) = 0, (24)

where the partial derivatives of M need to be computed
symbolically. This formulation has about the same com-
putational complexity as (19)-(21), results in similar nu-
merical solutions using the same type of solver, but could
be used with a symplectic solver for speedup.

3.4 Index Reduction
Following the same approach from Section 2, the con-
straint (21) is replaced with a linear combination of its first
two derivatives with respect to time. Define

z0 = h(q) (25)

z1 = ż0 =
∂H(q)

∂q
q̇ (26)

z2 = ż1 = Ḣ(q)q̇+H(q)M−1(q)
(
λ

T H(q)
+Bu−C(q, q̇)−G(q)) , (27)

and replace (21) or (24) with

z2 +α1z1 +α0z0 = 0, (28)

Using Baumgarte's Method for Index Reduction in Modelica

338 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157333

where s2 +α1s+α0 is a Hurwitz polynomial (all roots in
the open left-half plane). The model (19)-(20) and (28) or
(22)-(23) and (28), is an index 1 DAE with 18 differential
equations, 6 algebraic equations and 24 states q, v and λ ,
or q, p and λ , respectively.

It is interesting to express the dynamics in Zero Dynam-
ics Normal Form, as we did for the pendulum. Following
(Isidori, 1989), we define ξ = [z0 z1]

T ∈R12 to be the “lin-
ear” part. Then there exist coordinates η ∈ R6 which are
functions of q, v and u (after algebraically eliminating λ)
so that (19)-(20) and (28) can be written locally in Zero
Dynamics Normal Form (Isidori, 1989),

η̇ = f (η ,ξ ,u) (29a)

ξ̇ = Aξ , (29b)

where the 12 eigenvalues of A are located at the roots of
(28), and the 6-dimensional zero dynamics

η̇ = f (η ,0,u) (30)

are the dynamics of the robot. In other words, there is
a 6-dimensional manifold defined by ξ = 0 on which the
robot dynamics exist and evolve according to (30). The
ξ -dynamics are exponentially stable, are not controllable
from u, and once they converge to 0, do not affect q or v.
This means that if we linearize (19)-(20) and (28), we ex-
pect to see 12 poles and zeros at the roots to (28), and these
dynamics are neither controllable nor observable. They
are easily removed using a Hankel-norm model truncation.
The resulting reduced-order model is six dimensional and
equivalent to a linearization obtained otherwise.

In practice, expressions for z1 and z2 in (26)-(27) are
computed automatically using the der(·) operator. Also,
because the model is an index 1 DAE (instead of an in-
dex 0 ODE), it is not necessary to compute the inverse of
the inertia matrix for either the Lagrangian or Hamiltonian
formulations. Further, it is not necessary to compute η or
f in (29a)-(29b). Deriving these expressions is done to
understand the geometric structure and properties.

The primary disadvantages of Baumgarte’s method are
that 24 equations in 24 variables are produced, instead of
the minimal six (although λ can be removed by algebraic
manipulation, leaving 18 implicit first-order differential
equations in 18 differential variables), and that numerical
solutions to (19)-(20) and (28) will drift off the constraint
manifold h = 0 when the system is in motion. However,
for this application we find the drift to be small, is com-
putable for monitoring purposes, and controllable in the
sense that it is reduced by reducing the solver tolerance.
Moreover, simulation times for (19)-(20) and (28) are an
order-of-magnitude faster than the model that results from
index reduction by the dummy derivative method, despite
the fact that we require three times more equations and
dynamic states, due to the simplicity of the equations.

Figure 9. Screenshot of the Modelica deltaRobot library (left)
and an a gravity-compensating PID feedback controller (right),
showing the use of forward and inverse kinematics, gravity com-
pensation and PID. The library contains models of the kinemat-
ics at the lowest level, arms, and robots at its highest level. We
also have a package of controller components and a growing li-
brary of tasks, such as assembling Lego.

4 Modelica Library
We have created a Modelica library including models of
the delta robot, various control algorithms that are de-
rived from the model, and assembly tasks such as stacking
blocks and assembling Lego bricks. A screen shot of the
library is shown in Figure 9. For the delta robot models,
the library is organized as a hierarchy, with partial models
of the kinetics and parameters at the lowest level, extended
into full models of the arms at the intermediate level, and
models of the full robot at the highest level. We provide
partial code listings of these components in the Appendix.
At a higher level, multiple robots can be declared, and
constraints among them defined in a manner analogous to
what we have done for the arms. This allows for analysis
of cooperative control using the same mathematics and ap-
proach. We remark that this is difficult using the Modelica
standard library, because constraint forces acting on dif-
ferent parts of the end effector, for example, are difficult
to introduce. The Lagrangian approach provides a natu-
ral way for additional constraint forces to be introduced,
making this formulation more natural and effective when
developing force and assembly control algorithms.

In the subsections that follow, we describe some of the
control system blocks that we have constructed from the
DAE model, each of which is realized as a functions using
algorithm blocks.

4.1 Forward Kinematics
The forward kinematics function takes as input the three
joint measurements at the servos and computes the other
six joint angles (which are unactuated and unmeasured),

Using Baumgarte's Method for Index Reduction in Modelica

DOI Proceedings of the 13th International Modelica Conference 339
10.3384/ecp19157333 March 4-6, 2019, Regensburg, Germany

and the location of the end effector in world coordinates.
The robot Jacobian is also computed. The forward kine-
matics are one-to-one but not onto, and defined implicitly
by (15), which needs to be solved numerically. Specif-
ically, partition q into measured and unmeasured states
by defining y = [q11,q21,q31]

T to represent the measured
joint angles, and x = [q12,q13,q22,q23,q32,q33]

T to repre-
sent the unmeasured joint angles, and rearrange the vari-
ables of h so that (15) can be written

h(x,y) = 0. (31)

This is solved for x using Newton’s method

∂h
∂x

(xk,y) · (xk+1− xk) =−h(xk,y), (32)

which typically converges to 7 decimal places of accuracy
in 2-3 iterations since it can be initialized close to its solu-
tion in a real-time application. Each iteration requires the
solution to a 6-dimensional set of linear equations. With
the solution (x,y), the end effector location is computed
using ψ in (9), and the robot Jacobian is also computed.

4.2 Inverse Kinematics
The inverse kinematics takes as input a location of the end
effector w ∈ R3 and computes values for the joint angles
q ∈ R9. This is not one-to-one: there is not a unique so-
lution for all values of w. The inverse kinematics defined
implicitly by the nine equations

ψ(qi)−w = 0 (33)

for i = 1,2,3. This is solved using Newton’s method with
some logic for choosing the desirable solutions. Each
Newton iteration involves computing the solution to three
3-dimensional linear systems of equations, making the
complexity less than the forward kinematics.

4.3 Gravity Compensation
One popular control scheme is to cancel the effect of grav-
ity on the manipulator with an inner loop, and then close
an outer feedback loop with a PD or PID compensator.
The gravity compensating feedback is computed as the so-
lution to the 9-dimensional set of linear equations[

u
λ

]
· [B HT (q)] = G(q), (34)

where in any real-time application q is computed via the
forward kinematics from the joint measurements y. A
closed-loop model including a delta robot, gravity com-
pensation and using forward and inverse kinematics is
shown in Figure 9.

4.4 Feedback Linearization
A feedback linearizing control law can be defined as fol-
lows. Let

w1 = ψ(q1) (35)

denote the location of the end effector. Symbolically dif-
ferentiate this twice

w2 = ẇ1 = dψ(q1)v1 (36)
ẇ2 = ˙dψ(q1)v1 +dψ(q1)v̇1. (37)

Solving (20) for v̇ and substituting the result into (37)
gives

ẇ2 = α(q)+β (q) ·u
from which the control law

u =
1

β (q)
(−α(q)− k1w1− k2w2 +wr)

renders the system linear from wr to w1. Expressions for
α and β can be computed automatically. They require in-
version of the 9×9 inertia matrix M, which is not difficult
because it is block diagonal.

5 Linear Control Design and Analysis
The model (19)-(20), (28) and control functions described
in the previous section, realized in the deltaRobot Model-
ica library, enable dynamic analysis and model-based de-
sign of new control algorithms for various tasks related to
pick-and-place and robotic assembly. Here we show some
results of an example dynamic analysis. We compute the
linearization of the delta robot using values for parame-
ters that are measured from a delta robot in our labora-
tory, at the equilibria qi1 = 0rad, meaning that the proxi-
mal links are all horizontal. A pole-zero plot is shown in
Figure 10. First, notice that there are 12 pole-zero can-
cellations at s = −5 corresponding to the dynamics of
(29a), as expected. These do not affect the input-output
behavior and can be eliminated from the linear system
by a Hankel norm truncation. Perhaps surprisingly, this
configuration is open-loop unstable. Note that this con-
figurations is well within the reachable workspace. (The
unstable root crosses into the right-half plane at an angle
of approximately qi1 = 22◦, for our robot.) This kind of
instability is a common characteristic of robotic manipu-
lators, and has important consequences. For example, sta-
bilizing feedback gains have lower limits (Skogestad and
Postlethwaite, 2005). In some applications such as fine
force control, it is common practice to reduce feedback
gains to maintain stability during contact. But the lower
bound means that this practice has has limits, which are
not obvious without a model-based analysis.

6 Elevator Cable Sway
Modeling elevator cable sway is another example where
we have applied Baumgarte’s method. The system is di-
agrammed in Figure 11. The traveling cable, which sup-
plies power and signals to the car, is attached to the bot-
tom of the car at one end, and the inside of the elevator
shaft at the other. The cable experiences horizontal mo-
tion (“sway”) when the car moves or when the building

Using Baumgarte's Method for Index Reduction in Modelica

340 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157333

Figure 10. Pole-zero plot of the delta robot in equilibrium with
q1 = 0rad for the three proximal links. There are 12 pole-zero
pairs at s =−5 corresponding to the dynamics of (28). The plot
shows four poles at approximately s =−2± j, one at s =−6.5,
and an unstable pole at s = 5.2.

sways due to wind or earthquake. Because it can be dam-
aged by striking the wall, we design a feedback controller
attenuate the cable sway by moving the car.

The system can be modeled as a constrained chain of
rigid links with springs and dampers between each link
(Tomaszewski and Pieranski, 2005),

q̇ = v (38a)

M(q)v̇+C(q)v2 +Dv+G(q)

+Kq+a(q)r̈x +b(q)r̈y = λHT (q) (38b)
h(q) = 0 (38c)

where

h(q) =
[

x̄−∑
N
k=1 l sin(qk) ȳ−∑

N
k=1 cos(qk)

]T
, (39)

q ∈ RN is the vector of link angles, v ∈ RN is the vector
of angular velocities, M, C, D, K and G are the inertia,
centripetal, damping and gravity matrices, respectively, r̈x
and r̈y are the x and y acceleration of the frame marked
“O,” respectively, λ ∈ R2 is the Lagrange multiplier vec-
tor, h = 0 represents the constraint of the chain attached to
the wall at locations x̄ and ȳ, and N is the number of links,
typically N = 100.

Equation (38) is a DAE of index 3, and we reduce the
index exactly as we did earlier, replacing the constraint h
with a linear combination of its first two derivatives. The
resulting index-1 model is then used for simulation and
feedback control design. The details are omitted for space
reasons, and we present the results of one particular feed-
back controller which takes as input a single measurement
of horizontal cable displacement, filters the measurement
through a lead compensator which is designed using a fre-
quency response computed from the model, and applies
the output to the car motion controller. In Figure 12 we

Link 1

Link 2

Link N

Link N-1

Link N-2

y

O
rx

ry

Time-Varying
Boundary
Conditions

q2

q1

qn�2

qn

qn�1

x̄

ȳ

2 Constraints

Shaft
Wall

CAR

Figure 11. Elevator Cable Sway.

see the horizontal displacement of the car due to building
sway that is caused by an earthquake, when the controller
is off. This causes the cable to sway. In Figure 13, the
feedback controller is engaged 50s after the earthquake
begins, and moves the car up and down for a period of
300s, attenuating the cable sway by 75%.

We remark that a model of an open chain is elementary
to construct from the Modelica Standard Library (MSL)
and has been used for benchmarking (Casella, 2015).
However, we have not been successful in modeling the
constrained chain using the MSL, because the index re-
duction fails for large values of N. Even if it did com-
pile, consistent initialization would be a challenge. On
the other hand, using Baumgarte’s method, we are able to
compile models with N > 200 and can initialize the DAE
using the procedure outlined in Section 2.

7 Conclusion
In this paper we show how Baumgarte’s method of in-
dex reduction can be used in a Modelica model of a
constrained mechanical systems. The method reduces
the model index prior to compilation, so that the model
does not undergo automatic index reduction by the com-
piler. Baumgarte’s method has some advantages over the
“dummy derivative” method that is integrated into Model-
ica compilers for some models. It may be easier to com-
pute consistent initial conditions, the derived models can
be used directly to derive model-based control algorithms,
and simulations may run faster. On the other hand, the
method does not enforce constraints exactly, and drift oc-
curs during simulations. We find, however, that this drift is
not consequential for our mechatronic applications, and in

Using Baumgarte's Method for Index Reduction in Modelica

DOI Proceedings of the 13th International Modelica Conference 341
10.3384/ecp19157333 March 4-6, 2019, Regensburg, Germany

Time (s)
0 100 200 300 400 500 600

D
is

pl
ac

em
en

t (
m

)

-0.2

-0.1

0

0.1

0.2
Car X-Disiplacement

Time (s)
0 100 200 300 400 500 600

D
is

pl
ac

em
en

t (
m

)

-1

-0.5

0

0.5

1
Car Y-Disiplacement

Time (s)
0 100 200 300 400 500 600

D
is

pl
ac

em
en

t (
m

)

-2

-1

0

1

2
Cable Disiplacement

Figure 12. Car x (top) and y (middle) motion, and elevator cable
sway (bottom) due to earthquake.

Time (s)
0 100 200 300 400 500 600

D
is

pl
ac

em
en

t (
m

)

-0.2

-0.1

0

0.1

0.2
Car X-Disiplacement

Time (s)
0 100 200 300 400 500 600

D
is

pl
ac

em
en

t (
m

)

-2

-1

0

1

2
Car Y-Disiplacement

Time (s)
0 100 200 300 400 500 600

D
is

pl
ac

em
en

t (
m

)

-2

-1

0

1

2
Cable Disiplacement

ON OFF

75% Reduction

Figure 13. Car x (top) and y (middle) motion, under feedback
control, and elevator cable sway (bottom) during earthquake.

fact the method allows for compilation and simulation of
some models that otherwise cannot compile and initialize.
We believe the method may find successful application in
other domains, particularly for problems in which consis-
tent initial conditions are difficult to compute.

A Delta Robot Modelica Model
The Delta robot arm kinematics are defined in the follow-
ing partial Modelica model.

partial model deltaArmKinematics
deltaArmParameters p; // Parameters
Real q[3],psi[3],dpsi[3,3];

equation
psi[1]=p.L2*sin(q[2])*sin(q[3]);
psi[2]=p.L3-p.L0+p.L1*cos(q[1])...
+p.L2*cos(q[2]);

psi[3]=p.L1*sin(q[1])+...
p.L2*sin(q[2])*cos(q[3]);

// Gradient of end effector location ...

dpsi[1,1]=0.0;
dpsi[1,2]=p.L2*cos(q[2])*sin(q[3]);
dpsi[1,3]=p.L2*sin(q[2])*cos(q[3]);
dpsi[2,1]=-p.L1*sin(q[1]);
dpsi[2,2]=-p.L2*sin(q[2]);
dpsi[2,3]=0.0;
dpsi[3,1]=p.L1*cos(q[1]);
dpsi[3,2]=p.L2*cos(q[2])*cos(q[3]);
dpsi[3,3]=-p.L2*sin(q[2])*sin(q[3]);

end deltaArmKinematics;

Arm dynamics are defined extending the kinematics
model. These expressions are computed in Mathemat-
ica and exported via scripts, automatically generating the
Modelica code.

model deltaRobotArmLagrange
extends deltaArmKinematics;
Real v[3], tau[3];
protected
Real M[3,3],C[6,3],G[3];
equation
// Inertia Matrix...
m[1,1]=p.J1+p.LC1^2*M1+p.L1^2*(p.M2+p.M3);
m[1,2]=p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*(cos(q[1])*cos(q[2])*cos(q[3])...
+sin(q[1])*sin(q[2]));

m[1,3]=-p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[1])*sin(q[2])*sin(q[3]);
m[2,1]=m[1,2];
m[2,2]=p.J2+p.M2*p.LC2^2+p.M3*L2^2;
m[2,3]=0.0;
m[3,1]=m[1,3];
m[3,2]=0.0;
m[3,3]=(p.J2+p.M2*p.LC2^2+p.M3*p.L2^2)*sin(

q[2])^2;
// Centripetal and Coriolis vectors...
c[1,1]=0.0;
c[1,2]=p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*(cos(q[1])*sin(q[2])-cos(q[2])*cos(q[3])*
sin(q[1]));

c[1,3]=p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*sin(q[1])*sin(q[2])*sin(q[3]);
c[2,1]=p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*(cos(q[2])*sin(q[1])-cos(q[1])*cos(q[3])*
sin(q[2]));

c[2,2]=0.0; c[2,3]=0.0;
c[3,1]=-(p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[3])*cos(q[1])*sin(q[2]));
c[3,2]=-(p.J2+p.LC2^2*p.M2+p.L2^2*p.M3)....

*cos(q[2])*sin(q[2]);
c[3,3]=0.0; c[4,1]=0.0;
c[4,2]=0.0; c[4,3]=0.0;
c[5,1]=-2.0*p.L1*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[1])*cos(q[2])*sin(q[3]);
c[5,2]=0.0;
c[5,3]=(p.J2+p.LC2^2*p.M2+p.L2^2*p.M3)*sin

(2*q[2]);
c[6,1]=0.0; c[6,2]=0.0; c[6,3]=0.0;
// Gravity vector...
G[1]=-p.g*(p.LC1*p.M1+p.L1*(p.M2+p.M3))...

*cos(q[1]);
G[2]=-p.g*(p.LC2*p.M2+p.L2*p.M3)...

*cos(q[2])*cos(q[3]);
G[3]= p.g*(p.LC2*p.M2+p.L2*p.M3)...

*sin(q[2])*sin(q[3]);
// Arm Dynamics...

Using Baumgarte's Method for Index Reduction in Modelica

342 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157333

der(q) = v;
m*der(v)+c[1,:]*v[1]^2+c[2,:]*v[2]^2...
+c[3,:]*v[3]^2+c[4,:]*v[1]*v[2]...
+c[5,:]*v[2]*v[3]+c[6,:]*v[1]*v[3]...
+G+p.DAMPING.*v = tau;

end deltaRobotArmLagrange;

Below is the Lagrangian robot model. The Hamiltonian
version is similar. Note that the derivatives of h are com-
puted automatically.
model deltaRobotLagrange
Arms.deltaRobotArmLagrange arm1,arm2,arm3;
Real lambda[6];
Real h0[6],h1[6],h2[6];
Input Real u[3];
parameter Real POLE=5.0;
constant Real Rot2[3,3] = Utilities.RotZ

(2.0*PI/3.0);
constant Real Rot3[3,3] = Utilities.RotZ

(-2.0*PI/3.0);
constant Real B[3] = {1, 0, 0};
equation
// tau = H^T(q) * lambda...
arm1.tau=transpose(arm1.dpsi)*lambda[1:3]
+transpose(arm1.dpsi)*lambda[4:6]+B*u[1];

arm2.tau=-transpose(Rot2*arm2.dpsi)*...
lambda[1:3]+B*u[2];

arm3.tau=-transpose(Rot3*arm3.dpsi)*...
lambda[4:6]+B*u[3];

// Baumgarte’s method of index reduction...
h0=cat(1,arm1.psi-Rot2*arm2.psi,...
arm1.ps -Rot3*arm3.psi);

h1=der(h0);
h2=der(h1);
zeros(6)=h2+2.0*POLE*h1+POLE^2*h0;
end deltaRobotLagrange;

We remark that the index-3 model can be constructed
by replacing the last line with
h0=zeros(6);

which will compile in Dymola using the “dummy deriva-
tive” method for index reduction. The result is two sets of
DAEs with some switching logic.

References
Bernhard Bachmann. Mathematical aspects of object-oriented

modeling and simulation. In Proceedings of the 5th Interna-
tional Modelica Conference, 2006.

Olivier A. Bauchau and André Laulusa. Review of contempo-
rary approaches for constraint enforcement in multibody sys-
tems. Journal of Computational and Nonlinear Dynamics,
2007.

J. W. Baumgarte. Stabilization of constraints and integrals of
motion in dynamic systems. Computer Methods in Applied
Mechanics and Engineering, 1:1–16, 1972.

J. W. Baumgarte. A new method of stabilization for holonomic
constraints. ASME Journal of Applied Mechanics, 50:869–
870, 1983.

Scott A. Bortoff. Object-oriented modeling and control of delta
robots. In IEEE Conference on Control Technology and Ap-
plications, pages 251–258, 2018.

K. E. Brenan, S. L. Cambell, and L. R. Petzold. Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. SIAM, 1996.

J. Brinker, B. Corves, and M. Wahle. A comparative study of in-
verse dynamics based on clavel’s delta robot. In Proceedings
of the 14th IFToMM World Congress, Oct. 2015.

Francesco Casella. Simulation of large-scale models in model-
ica: State of the art and future perspectives. In Proceedings of
the 11th International Modelica Conference, pages 459–468,
2015.

Francois E. Cellier. Continuous System Simulation. Springer,
2006.

Francois E. Cellier and Jurden Greifeneder. Continuous System
Modeling. Springer, 1991.

R. Clavel. Device for the movement and positioning of an ele-
ment in space. U.S. Patent 4, 976, 582, Dec. 11 1990.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter. Inno-
vations for future modelica. In Proceedings of the 12th Inter-
national Modelica Conference, pages 693–702, 2017.

Peter Fritzon. Principles of Object Oriented Modeling and Sim-
ulation with Modelica 3.3: A Cyber-Physical Approach. Wi-
ley, 2015.

Philippe Guglielmetti. Model-Based Control of Fast Parallel
Robots: A Global Approach in Operational Space. PhD the-
sis, Ecole Polytechnique Federale de Lausanne, 1994.

Alberto Isidori. Nonlinear Control Systems. Springer-Verlag,
1989.

Peter Kunkel and Volker Mehrmann. Differential-Algebraic
Equations: Analysis and Numerical Solution. European
Mathematical Society, 2006.

Sven Erik Mattsson and Gustaf Söderlind. Index reduction
in differential algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3), 1993.

Jean-Pierre Merlet and Clement Gosselin. Springer Hand-
book of Robotics, chapter Parallel Mechanisms and Robots.
Springer, 2008.

Sigurd Skogestad and Ian Postlethwaite. Multivariable Feed-
back Control: Analysis and Design. Wiley, 2005.

M. M. Spong and M. Vidyasagar. Robot Dynamics and Control.
Wiley, 2004.

Staicu St. and Carp-Ciocardia D. C. Dynamic analysis of
clavel’s delta parallel robot. In Proceedings of the 2003 In-
ternational Conference on Robotics and Automation, pages
4116–4121, 2003.

Waldemar Tomaszewski and Piotr Pieranski. Dynamics of ropes
and chains: 1. the fall of the folded chain. New Journal of
Physics, 7(45), 2005.

A.J. van der Schaft. Surveys in Differential-Algebraic Equations
I, chapter Port-Hamiltonian Differential-Algebraic Systems,
pages 173–226. Springer, 2013.

Modeling of Rotating Shaft with Partial Rubbing

DOI Proceedings of the 13th International Modelica Conference 343
10.3384/ecp19157343 March 4-6, 2019, Regensburg, Germany

Modeling of Rotating Shaft with Partial Rubbing
Ishibashi, Tatsuro and Kawai, Tadao

343

 Modeling of Rotating Shaft with Partial Rubbing

Tatsuro Ishibashi1 Tadao Kawai2
1Meidensha Corporation, Japan, ishibashi-tat@mb.meidensha.co.jp

2Department of Mechanical & Physical Engineering, Osaka City University, Japan,
kawai@osaka-cu.ac.jp

Abstract
We have created the rotating machinery library to carry
out analytical investigations for diagnosis by transfer
matrix method in Modelica. In this paper, rubbing
components for partial rub are implemented in our
rotating machinery library. In this research, the model in
which the rotor come into contact from a non-contact
state by a pulsating external force is analyzed. The
relationship between the contact configurations and the
generation of various kinds of vibration is investigated.
We validated the rubbing model in one side contact case
with a rotor kit. By simulation, we reproduced the time
history, the orbit and the full spectrum characteristics of
the rotating shaft measured by the experiment precisely.
Keywords: Rotor Dynamics, Rubbing, Contact, Friction,
Subharmonics

1 Introduction
To improve efficiency in rotating machinery, the
clearance between rotors and casings has become
smaller and smaller. However, it increases risk of
rubbing i.e. contact between rotating and stationary
elements of a machine. It is mainly resulted from the
mass unbalance, turbine or compressor blade failure,
defective bearing, or rotor misalignment. The rub-
impacting vibration of a rotor system shows a very
complicated phenomenon including not only the
periodic motion but also the quasi-periodic and chaotic
motions. When the rub-impact happens, the partial rub
arises at first. During a whole period, the rub and impact
interactions occur between rotors and stators (i.e.
casings) once or fewer times. Gradual deterioration of
the partial rub will lead to the full rub, and then the
vibration will affect the normal operation of the
machines negatively. Thus, the rubbing phenomenon is
one of the main malfunctions in rotating machines and
causes the breakdown of machines.

Because of serious damage of rubbing, many
researchers have studied this problem from different
aspects (Ehrich, 1966; Beatty, 1985; Choi and Noah,
1987). Much attention has been given to the nonlinear
dynamics of the rub-impacting rotor system. A contact
force of rubbing between a rotor and a casing has been
modeled as a piecewise linear spring and damper model.

The relationship between the contact configurations and
the generation of various kinds of vibration, such as
"collision type synchronous vibration", "sub harmonic
vibration", etc. has been studied, both theoretically and
experimentally (Watanabe et al, 2004; Watanabe et al,
2005).

We have created the rotating machinery library by
transfer matrix method in Modelica (Ishibashi et al,
2017). By transfer matrix method, the rotating shaft is
decomposed into rotors, shafts, journals, couplings,
housings and supports. The 5 DOF rotor dynamics
model components have common faults of rotating
machinery systems such as static and dynamic
unbalance, shaft bending, and faulty bearing. Basic
components are reusable, and their parameters can be
simply modified. Even if it is not a Jeffcott (i.e.
symmetrical) rotor system, this library makes it easy to
analyze dynamics of rotating machinery. The objective
of creating this library is to carry out analytical
investigations in order to gain some insight into the
diagnostics of rotating machinery.
Many papers have been written regarding modeling

contact phenomena in the Modelica language. The
contact models can be roughly classified into two types,
collision of multibody objects and contact of gears. The
former is handled in the following papers. A solution
based on a collision handling software called Solid was
described in (Otter et al, 2005). The paper
(Oestersötebier et al, 2014) introduced non-central
contact blocks in which the contact surfaces were
defined. (Hofmann et al, 2014) discussed the use of the
Bullet Physics Library.

The latter is handled in the following papers. One work
is (van der Linden, 2012) where the 3 DOF elastic gear
contact model was implemented in the Planar
Mechanics library. A much more detailed approach was
taken by (Kosenko and Gusev, 2011) and further
improved in (Kosenko and Gusev, 2012), where the
forces between gears were modelled with high detail in
a Modelica environment. (Dahl et al, 2017) integrated
the gear contact model in the MultiBody library from the
Modelica Standard library.

In this paper, rubbing components for partial rub are
implemented in our rotating machinery library. Rubbing

Modeling of Rotating Shaft with Partial Rubbing

344 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157343

Figure 1. Type of Rubbing. (a) One side contact case. (b)
Annular contact case.
components in the one side contact case and the annular
contact case are created for analyzing the several contact
configurations respectively.

In the analysis of rubbing, models in which the rotor
come into contact with the casing due to unbalance or
models in which rotor is already contacting with the
casing at rest are usually analyzed. However, in this
research, the model in which the rotor come into contact
from a non-contact state by an external force due to earth
quake or flow-induced vibration is analyzed. The
relationship between the contact configurations and the
generation of various kinds of vibration is investigated.
We validated the rubbing model in one side contact case
with a rotor kit. By simulation, we reproduced the time
history, the orbit and the full spectrum characteristics of
the rotating shaft measured by the experiment precisely.

2 Rubbing Forces and Equations
This section describes the modeling of the rubbing force
between the rotor and the casing. In Figure 1, schematic
overviews of the rotor and the casing in rubbing are
shown. The two contact configurations, one side and
annular contact cases for translational motion are treated.
The rubbing force consists of the radial contact force
(blue arrow in Figure 1) and the tangential friction force
(red arrow in Figure 1).
Contact stress theory is used for the contact force

model. The contact force between the rotor and the
casing is modeled as a piecewise linear spring and
damper model. The friction force is modeled by
multiplying the contact spring force by the friction
coefficient. Although there is a model for using the
coefficient of restitution for contact, since the contact
time becomes infinitely small, it is not suitable for
handling the frictional force which is calculated by
multiplying the contact spring force by the friction
coefficient at the time of contact.

The contact spring force 𝐹𝐹s and the damping force 𝐹𝐹d
and the friction force 𝐹𝐹f are written as follows.

𝐹𝐹s(𝑟𝑟) = �𝐾𝐾(𝑟𝑟 − 𝐶𝐶𝑅𝑅) if 𝑟𝑟 > 𝐶𝐶𝑅𝑅
0 if 𝑟𝑟 ≤ 𝐶𝐶𝑅𝑅

 (1)

𝐹𝐹d(𝑣𝑣𝑟𝑟) = � 𝑑𝑑𝑣𝑣𝑟𝑟 if 𝑟𝑟 > 𝐶𝐶𝑅𝑅
 0 if 𝑟𝑟 ≤ 𝐶𝐶𝑅𝑅 (2)

𝐹𝐹f = 𝜇𝜇�𝑣𝑣𝜙𝜙�𝐹𝐹s(𝑟𝑟) (3)

Here,
𝐶𝐶𝑅𝑅: Clearance,
𝐾𝐾: Contact spring constant,
𝑑𝑑: Contact damping constant,
𝜇𝜇: Friction coefficient.
Thus the rubbing force in one side contact at the angle 𝜃𝜃
of the rectangular components 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 are written as
follows.

𝐹𝐹𝑥𝑥 = �𝐹𝐹s(𝑟𝑟) + 𝐹𝐹𝑑𝑑(𝑣𝑣𝑟𝑟)�cos𝜃𝜃 − 𝜇𝜇𝐹𝐹s(𝑟𝑟)sin𝜃𝜃
𝐹𝐹𝑦𝑦 = �𝐹𝐹s(𝑟𝑟) + 𝐹𝐹𝑑𝑑(𝑣𝑣𝑟𝑟)�sin𝜃𝜃 + 𝜇𝜇𝐹𝐹s(𝑟𝑟)cos𝜃𝜃 (4)

Here, (𝑟𝑟,𝜙𝜙) is the relative rotor position against the
casing in the polar coordinates and �𝑣𝑣𝑟𝑟 ,𝑣𝑣𝜙𝜙� is the
relative velocity.

𝑟𝑟 = �(𝑥𝑥𝑅𝑅 − 𝑥𝑥𝐶𝐶 + 𝛿𝛿𝑥𝑥)2 + �𝑦𝑦𝑅𝑅 − 𝑦𝑦𝐶𝐶 + 𝛿𝛿𝑦𝑦�
2 cos(𝜙𝜙 − 𝜃𝜃) (5)

𝜙𝜙 = tan−1
𝑦𝑦𝑅𝑅 − 𝑦𝑦𝐶𝐶
𝑥𝑥𝑅𝑅 − 𝑥𝑥𝐶𝐶

 (6)

𝑣𝑣𝑟𝑟 = �̇�𝑟 (7)
𝑣𝑣𝜙𝜙 = −(𝑥𝑥�̇�𝑅 − 𝑥𝑥�̇�𝐶)sin𝜃𝜃 + (𝑦𝑦�̇�𝑅 − 𝑦𝑦�̇�𝐶)cos𝜃𝜃 + 𝑅𝑅𝑅𝑅 (8)

Here,
�𝛿𝛿𝑥𝑥 ,𝛿𝛿𝑦𝑦�: The rotor offset against the casing,
(𝑥𝑥𝑅𝑅 , 𝑦𝑦𝑅𝑅): Center of the rotor,
(𝑥𝑥𝐶𝐶 , 𝑦𝑦𝐶𝐶): Center of the casing,
𝑅𝑅: Rotor radius,
𝑅𝑅: Rotating speed.
In the annular contact case, 𝜙𝜙 = 𝜃𝜃 holds in Equation 4,
5 and 8.

To estimate the contact spring constant, the Hertzian
Contact Theory between two cylinders with parallel
axes is used (Inagaki et al, 2005). The indentation depth
𝑟𝑟 − 𝐶𝐶𝑅𝑅 is related to the contact force 𝐹𝐹c as follows.

(𝑟𝑟 − 𝐶𝐶𝑅𝑅) =
2𝐹𝐹c(𝑘𝑘0 + 𝑘𝑘1)

𝜋𝜋𝐿𝐿
�1.8864 + log �

𝐿𝐿
2𝑏𝑏
�� (9)

𝑘𝑘𝑖𝑖 =
1− 𝜈𝜈𝑖𝑖2

𝐸𝐸𝑖𝑖
(𝑖𝑖 = 0,1) (10)

𝑏𝑏 = �2𝐹𝐹(𝑘𝑘0 + 𝑘𝑘1)𝑅𝑅
𝜋𝜋𝜋𝜋

 (11)

1
𝑅𝑅

=
1
𝑅𝑅0

+
1
𝑅𝑅1

 (12)

Here,
𝜈𝜈𝑖𝑖: Poisson ratio of the cylinder,
𝐸𝐸𝑖𝑖: Young’s modulus of the cylinder,
𝑅𝑅𝑖𝑖: Radius of the cylinder,
𝐿𝐿: Length of the cylinder.
The contact spring constant is estimated by linearizing
the contact force 𝐹𝐹c against the indentation depth 𝑟𝑟 − 𝐶𝐶𝑅𝑅.
The contact damping constant is estimated so that the

loss for one contact is equivalent to that calculated from
the coefficient of restitution. The coefficient of
restitution 𝑒𝑒 is defined by the following equation,

𝑒𝑒 = −
𝑣𝑣1
𝑣𝑣0

 (13)

Modeling of Rotating Shaft with Partial Rubbing

DOI Proceedings of the 13th International Modelica Conference 345
10.3384/ecp19157343 March 4-6, 2019, Regensburg, Germany

Here, 𝑣𝑣1 is the vertical velocity of the rotor immediately
after contact with the casing surface, 𝑣𝑣0 is the velocity
immediately before contact.
Assuming that the rotor motion in contact follows the
damped harmonic oscillator, the following relationship
holds.

𝑣𝑣1 = 𝑣𝑣0𝑒𝑒𝑥𝑥𝑒𝑒

⎝

⎛−
𝜋𝜋𝜋𝜋

�1 − 𝜋𝜋2 ⎠

⎞ (14)

𝜋𝜋 =
𝑑𝑑

2𝜋𝜋√𝑚𝑚𝐾𝐾
 (15)

Here,
𝜋𝜋: Damping ratio,
𝑚𝑚: Rotor mass.
From Equation 13, 14 and 15, the contact damping
constant 𝑑𝑑 is given by the function of the coefficient of
restitution 𝑒𝑒 as follows

𝑑𝑑 = �
2�log 𝑒𝑒�

2
𝑚𝑚𝐾𝐾

𝜋𝜋2 + �log 𝑒𝑒�
2 (16)

It is possible to determine the coefficient of restitution
by an experiment or the other more detailed analysis
(Jackson et al, 2009).

3 Modelica Implementation
The presented rubbing force models must be supplied by
constraints in the transverse direction x, y and rotating
angle direction. Our Rotating Machinery library is used
to supply these constraints (Ishibashi et al, 2017). The
presented rubbing models are implemented in our
rotating machinery library. The basic flange of this
library has 5 DOF (degree of freedom), consisting of 4
DOF (two dimensional deflections and slopes) for
transverse vibration of the rotor system and 1 DOF
(rotating angle) for torsional vibration, neglecting axial
vibration. Features like unbalanced rotors, flexible
beams (shaft), supports, springs and dampers are all
represented. The library is used to create the total
rotating machinery system.

The rubbing force components in the one side contact
case and the annular contact case are implemented
respectively. The rubbing force components are
implemented with two connectors, each with 5 DOF.
Since the above rubbing force models has the only 3
DOF, the moments are set as zero. These connectors are
the connections to the rotor and the casing.

The contact spring and damping force are implemented
by the same method as that of
Modelica.Mechanics.Translational.Componen
ts.ElastoGap. In order to calculate the friction force
without further discontinuous events, the continuously
differentiable friction model which decreases the
simulation speed (Makkar et al, 2005) is used. The
implementation is done by the same method as the

Idealized Contact library (Oestersötebier et al, 2014).
The following function of the relative velocity 𝑣𝑣𝜙𝜙 to
approximate the friction coefficient of the characteristic
Stribeck curve is implemented.

𝜇𝜇�𝑣𝑣𝜙𝜙� = 𝛾𝛾1 �tanh�𝛾𝛾2𝑣𝑣𝜙𝜙� − tanh�𝛾𝛾3𝑣𝑣𝜙𝜙��
+ 𝛾𝛾4tanh�𝛾𝛾5𝑣𝑣𝜙𝜙�+ 𝛾𝛾6𝑣𝑣𝜙𝜙

(17)

Here,
𝛾𝛾𝑖𝑖(𝑖𝑖 = 1, 2,⋯ , 6): Non-physical constants.

In Figure 2 the icons of the rubbing force components
in the one side contact case and the annular contact case
are shown. No inertias or constraints are included in the
model.

Using our Rotating Machinery library, it is possible to
create rotating machinery systems. A simple rotating
machinery system with casing is easily generated. Here,
we treat a Jeffcott rotor system in partial rubbing with
the casing as a test case in Figure 3. The model
parameters are set to simulate the rotor kit shown in
Figure 14. The lowest eigen frequency 𝜀𝜀𝐿𝐿 of the shaft
bending mode in the model is 30 Hz. The casing mass,
stiffness and damping are the same as the rub screw in
Figure 14. Also, the contact spring and damping
constant and friction coefficient in the rubbing
component are the same as the rub screw shown in
Figure 14. Only the casing position of the model in the
direction of rotating shaft axis is different from the
model shown in Figure 18.

Figure 2. Modelica Icons for rubbing components. (a) One
side contact case. (b) Annular contact case.

Figure 3. Modelica model of a Jeffcott rotor system having
partial rubbing with the casing.

(a) (b)

Modeling of Rotating Shaft with Partial Rubbing

346 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157343

In this model (Figure 3), the whole rotor system
including the casing position is symmetrical. In the
model, the rubbing component (Figure 2) is defined as
described in this paper, all other components are from
our rotating machinery library.

4 Simulation Results
In this section, using the model (Figure 3) and rubbing
components (Figure 2), the generation of various kinds
of vibration at high speed rotating speed due to partial
rubbing is investigated by simulations.

4.1 Rubbing vibration
Dymola is used for the simulations. Since the model
contains many events, single-step solver “Radau” is
used for simulation.

Simulation is done at the constant rotating speed 𝑅𝑅
over 1.5 times the speed of the critical speed 𝜀𝜀𝐿𝐿 . The
simulation that the rotating shaft is whirling with smaller
amplitude than the clearance is done. By applying a
pulsating external force, the partial rubbing vibration is
induced (Figure 4). A pulsating external force is applied
when the gap between the rotor and the casing become
the smallest.

As a result, although the rotor whirling of unbalance is
smaller than the clearance, the rotor keeps in contact
with the case after the contact due to a pulsating external
force under some conditions despite the same pulsating
external force amplitude (Figure 4). However, the
vibration converges and returns to a non-contact state
under another conditions (Figure 5). To investigate this
kind of vibration, batch simulation of sweeping rotating
speed and the eccentricity of static unbalance in Rotor is
done by python interface.

Figure 4. Rubbing vibration occurs and continues.

Figure 5. Rubbing vibration does not occur.

4.2 One side contact case
Figure 6 shows the domain of the rubbing vibration
occurrence in the one side contact case. The model
(Figure 3) replacing the rubbing component in the
annular contact case with that in the one side contact
case is simulated. The contact angle 𝜃𝜃 = π/2 and the
clearance 𝐶𝐶𝑅𝑅 = 1 mm are set in the rubbing component.
The rubbing (i.e. contact) vibration occurs and continues
in the region with a plot in Figure 6. The vibration
converges immediately after the contact, and returns to
a non-contact state in the region without a plot in Figure
6. Figure 7 shows the rubbing vibration behavior in the
one side contact case. From the left figure, the Rotor
displacement in Y direction, orbit and full spectrum are
shown. The full spectrum is obtained from the half
spectrums of each X and Y displacement by the
procedure written in the paper (Goldman and
Muszynska, 1999). The unbalance amplitude before
contact in Figure 7 is set as around 0.1 against the
clearance. Due to the translation mode of the rotating
shaft, Rotor unbalance amplitude is larger in the low
rotating speed range.

In the high rotating speed range over the first critical
speed 𝜀𝜀𝐿𝐿 , the 1/n (n: integer) sub harmonic rubbing
vibration continues in the region shown in Figure 6.
These vibration occurs in higher speed of n integer
multiple of the eigen frequency 𝜀𝜀𝐿𝐿 . As the unbalance
increases, the 1/n sub harmonic vibration occurs in
higher rotating speed. As the integer n becomes larger,
the 1/n sub harmonic rubbing vibration occurs from
smaller unbalance region. The domain of the rubbing
vibration occurrence shows a gap. In the gap where
rubbing vibration is unlikely to occur, the casing is more
than clearance away and moving away from the rotor.

Figure 6. The domain of the rubbing vibration occurrence

in the one side contact case.

Modeling of Rotating Shaft with Partial Rubbing

DOI Proceedings of the 13th International Modelica Conference 347
10.3384/ecp19157343 March 4-6, 2019, Regensburg, Germany

Figure 7. Vibration behavior in the one side contact case.

Modeling of Rotating Shaft with Partial Rubbing

348 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157343

4.3 Both side contact case
Figure 9 shows the domain of the rubbing vibration
occurrence in the both side contact case. Figure 8 shows
the rubbing vibration behavior. The model adding the
one side rubbing component and the casing on the other
side is simulated. The two casings have the same mass,
spring and damping constant as each other. Also, the
two one side rubbing components have the same
parameters values such as the contact spring and
damping constant and friction coefficient as each other.
The contact angle 𝜃𝜃 = −π/2 and the clearance 𝐶𝐶𝑅𝑅 =
1 mm are set in the other rubbing component.

In this case, the synchronous with rotating speed and
1/n sub harmonic vibration occurs. The sub harmonic
rubbing vibration just occurs in the region of moderately
small unbalance. As the unbalance gets larger,
synchronous vibration occurs in the region of wide
rotating speed range. This violent vibration is regarded
as a kind of collision type self-excited vibration. In the
both side contact case, only the odd number sub
harmonic vibration occurs. Since the rotor orbit of the
even number sub harmonic vibration is basically
asymmetrical with respect to the origin, there is no
solution where there are two casings located on both
sides of the rotor under the same condition (see Figure
7 and Figure 8). However, if there is a difference
between the two casings, the rotor sometimes contacts
with the casings only at one side.

Figure 9. The domain of the rubbing vibration occurrence
in the both side contact case.

Figure 8. Vibration behavior in the both side contact case.

Modeling of Rotating Shaft with Partial Rubbing

DOI Proceedings of the 13th International Modelica Conference 349
10.3384/ecp19157343 March 4-6, 2019, Regensburg, Germany

4.4 Annular contact case
Figure 11 shows the domain of the rubbing vibration
occurrence in the annular contact without offset. The
model (Figure 3) is simulated. Figure 10 shows the
rubbing vibration behavior. The contact spring constant
in the rubbing component is calculated by considering
the difference in the curvature. In this case, two kinds of
collision type self-excited synchronous vibration with
rotating speed occurs. One is the circle rotor orbit and
the other is the oval rotor orbit shown in Figure 10. In
the low rotating speed range, synchronous circle rotor
orbit vibration occurs. In the high rotating speed range,
synchronous oval rotor orbit vibration occurs from the
small unbalance region. From the rotor orbit in Figure
10, the rotor collides with the casing several times per
one whirling period.

Figure 12 shows the domain of contact vibration in the
annular contact case with offset. Figure 13 shows the
rubbing vibration behavior. The model (Figure 3) with
the rotor offset �𝛿𝛿𝑥𝑥 ,𝛿𝛿𝑦𝑦�=(0, 𝐶𝐶𝑅𝑅/4) against the casing
in the rubbing component is simulated. In comparison
with the domain without the offset, the synchronous
circle rotor orbit vibration occurs in the wider rotating
speed range toward high rotating speed. In addition to
the synchronous vibration in the annular contact case
without the offset, the sub harmonic and the other kind
of the synchronous circle rotor orbit vibration occur.
The sub harmonic vibration occurs in the slightly higher
rotating speed of the n integer multiple of the eigen
frequency 𝜀𝜀𝐿𝐿.

Although there was a small difference between our
simulation results and the previous papers (Watanabe et

al, 2004; Watanabe et al, 2005) due to the differences
of the parameters amplitudes in the rubbing component,
the relationship between the contact configurations and
the generation of various kinds of vibration obtained in
this paper showed the same trend as those papers.

Figure 11. The domain of the rubbing vibration occurrence
in the annular contact case without the offset.

Figure 12. The domain of the rubbing vibration occurrence
in the annular contact case with the offset.

Figure 10. Vibration behavior in the annular contact case without the offset.

Modeling of Rotating Shaft with Partial Rubbing

350 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157343

5 Model Validation
5.1 Experiment
To validate our models, we used the rotor kit (RK 4
Rotor Kit GE Bently Nevada) shown in Figure 14. The
rotating shaft was supported by the solid lubricated
bearings covered by the rubber. The rotating shaft was
measured by two proximitors arranged in orthogonal
directions. The data sampling time of the proximitors for
recording was 1 ms.

To make it easier for analyzing the experimental result,
the Jeffcott rotor system was investigated for the
experiment. One side contact condition was established
by adjusting the rub screw made of brass and applying a
pulsating external force to the rotating shaft.

From the preliminary impulse and rotating speed ramp
response experiment, the first critical speed 𝜀𝜀𝐿𝐿 (the
lowest eigen frequency of the shaft bending mode) of
this rotating shaft system was around 30 rps. By rotating
at 70 rps (over twice the first critical speed) and applying
a pulsating external force, the rubbing condition was
established.

Figure 15 shows the time history of the rotating shaft
in the both horizontal and vertical direction under
rubbing condition. Figure 16 shows the orbit of the
rotating shaft. Figure 17 shows the full spectrum
analysis of the rotating shaft time history. The procedure
for obtaining the full spectrum from the half spectrums
of each proximity probe was followed by the paper
(Goldman and Muszynska, 1999). The 1/2 sub harmonic
rubbing vibration was observed.

Figure 13. Vibration behavior in the annular contact case with the offset.

Modeling of Rotating Shaft with Partial Rubbing

DOI Proceedings of the 13th International Modelica Conference 351
10.3384/ecp19157343 March 4-6, 2019, Regensburg, Germany

Figure 14. The rotor kit.

Figure 15. The time history of the experiment under
rubbing condition at the rotating speed of 70 rps.

Figure 16. The orbit of the experiment under rubbing
condition at the rotating speed of 70 rps.

Figure 17. The full spectrum analysis of the experiment
under rubbing condition at the rotating speed of 70 rps.

5.2 Simulation

Figure 18. Modelica model for the rotor kit.

Figure 19. The time history of the simulation under
rubbing condition at the rotating speed of 70 rps.

Figure 20. The orbit of the simulation under rubbing
condition at the rotating speed of 70 rps.

Figure 21. The full spectrum analysis of the simulation
under rubbing condition at the rotating speed of 70 rps.

Rub Screw

Proximitor

Rotor Motor
X

Modeling of Rotating Shaft with Partial Rubbing

352 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157343

To carry out the analytical investigation of the
experimental result, we built the Modelica model
corresponding to the rotor kit based on our library
shown in Figure 18. The parameters such as the bearing
stiffness and damping, the residual bow (the bend of
shaft) and the rotor static unbalance of the model were
calibrated to match the preliminary experiments by the
same method of the previous paper (Ishibashi et al,
2017). The rub screw stiffness and damping were
estimated by the preliminary impulse test. The contact
spring constant in the rubbing component were
estimated by Equation 9. The contact damping constant
were estimated by Equation 16 using the approximate
value of the coefficient of the restitution (Jackson et al,
2009). The friction coefficient was estimated from the
value reported in the paper (Watanabe et al, 2004).
 Figure 19 - Figure 21 show the results under rubbing
condition. By simulation, we reproduced the time
history, the orbit and the full spectrum characteristics of
the rotating shaft measured by the experiment precisely.

6 Conclusions
In this paper, the rubbing component models in the one
side contact case and the annular contact case are
presented to describe the partial rub. Using our rotating
machinery library, it is possible to model a rotating
machinery system with partial rubbing.

Examples of a Jeffcott rotor system with the different
contact configuration were investigated by simulation.
The relationship between the contact configurations and
the generation of various kinds of vibration such as
"collision type synchronous vibration", "sub harmonic
vibration", etc. obtained by simulation showed the same
trend as the previous papers (Watanabe et al, 2004;
Watanabe et al, 2005).

We validated our model with partial rubbing in the one
side contact case with a rotor kit. By simulation, we
reproduced the time history, the orbit and the full
spectrum characteristics of the rotating shaft measured
by the experiment precisely.

The presented models make it possible to carry out
analytical investigations of the partial rub in order to
gain some insight into the diagnostics of rotating
machinery.

References
R. F. Beatty. Differentiating rotor response due to radial

rubbing. Journal of Vibration and Acoustics. 107(2): 151-
160, 1985. doi:10.1115/1.3269238.

Yeon-Sun Choi and Sherif T. Noah. Nonlinear Steady-State
Response of a Rotor-Support System. Journal of Vibration,
Acoustics, Stress and Reliability in Design. 109 (4), 225-
261, 1987. doi:10.1115/1.3269429.

Markus Dahl, Håkan Wettergren and Henrik Tidefelt.
Modelica Spur Gears with Hertzian Contact Forces.
Proceedings of the 12th International Modelica Conference,
2017. doi:10.3384/ecp17132755.

Fredric F. Ehrich. Subharmonic vibrations of rotors in bearing
clearance, ASME Paper 66-MS-1, 1966.

Paul Goldman and Agnes Muszynska. Application of full
spectrum to rotating machinery diagnostics. Orbit First
Quarter, pp. 17-21, 1999.

Andreas Hofmann, Lars Mikelsons, Ines Gubsch, and
Christian Schubert. Simulating Collisions within the
Modelica MultiBody Library. Proceedings of the 10th
International Modelica Conference, 2014. doi:
10.3384/ecp14096949.

Mizuho Inagaki, Yukio Ishida and Akimasa Hayashi.
Nonlinear Resonances and Self-Excited Oscillations of a
Rotor due to Radial Clearance and Impact in Bearings.
Trans. JSME, C 71, pp. 2113-2118, 2005 (in Japanese). doi:
10.1299/kikaic.71.2113.

Tatsuro Ishibashi, Han Bing and Tadao Kawai. Rotating
Machinery Library for Diagnosis. Proceedings of the 12th
International Modelica Conference, 2017.
doi:10.3384/ecp17132381.

Robert L. Jackson, Itzhak Green and Dan B. Marghitu.
Predicting the coefficient of restitution of impacting elastic-
perfectly plastic spheres. Nonlinear Dyn, 60: 217-229, 2010.
doi: 10.1007/s11071-009-9591-z.

Ivan Kosenko and Il’ya Gusev. Implementation of the spur
involute gear model on modelica. Proceedings of the 8th
International Modelica Conference, 2011. URL
https://www.modelica.org/events/modelica2011/Proceeding
s/pages/papers/13_3_ID_117_a_fv.pdf.

Ivan Kosenko and Ilya Gusev. Revised and improved
implementation of the spur involute gear dynamical model.
Proceedings of the 9th International Modelica Conference,
2012. doi:10.3384/ecp12076311.

C. Makkar, W. E. Dixon, W. G. Sawyer, and G. Hu. A New
Continuously Differentiable Friction Model for Control
Systems Design. Proceedings of the 2005 IEEE/ASME
International Conference on Advanced
IntelligentMechatronics, Monterey CA, July, 2005.

Felix Oestersötebier, Peng Wang and Ansgar Trächtler. A
Modelica Contact Library for Idealized Simulation of
Independently Defined Contact Surfaces. Proceedings of
the 10th International Modelica Conference, 2014. doi:
10.3384/ecp14096929.

Martin Otter, Hilding Elmqvist, and José Díaz López.
Collision Handling for the Modelica MultiBody Library.
Proceedings of the 4th International Modelica Conference,
2005. URL http://elib.dlr.de/12299/1/otter2005-modelica-
collision.pdf

F.L.J. van der Linden. Modelling of elastic gearboxes using a
generalized gear contact model. Proceedings of the 9th
International Modelica Conference, 2012.
doi:10.3384/ecp12076303.

Yusuke Watanabe, Takuzo Iwatsubo and Keizo Awa. Study
of Rotor Vibration due to the Rubbing against Casing.
Trans. JSME, C 70, pp. 2181–2187, 2004 (in Japanese).
doi: 10.1299/kikaic.70.2181.

Yusuke Watanabe, Takuzo Iwatsubo and Keizo Awa. Study
of Rotor Vibration due to the Rubbing against Casing.
Trans. JSME, C 71, pp. 1421–1428, 2005 (in Japanese).
doi: 10.1299/kikaic.71.1421.

Aspects of Train Systems Simulation

DOI Proceedings of the 13th International Modelica Conference 353
10.3384/ecp19157353 March 4-6, 2019, Regensburg, Germany

Aspects of Train Systems Simulation
Kuhn, Martin and Ji, Yang and Wang, Bo and Li, Xiang and Liu, Bohui and Sha, Feng and Gan, Dunwen and
Gao, Feng

353

Aspects of Train Systems Simulation

Martin R. Kuhn1 Yang Ji2 Bo Wang2 Xiang Li2 Bohui Liu2 Feng Sha2 Dunwen Gan3 Feng Gao3

1Yuanda SimTek GmbH, Germany, martin.kuhn@yuandasimtek.de
2SimTek CO, China, {yang.ji ,bo.wang, li.xiang, bohui.liu, feng.sha}

@cnydsimtek.com
3BEIJING ZONGHENG ELECTRO-MECHANICAL TECHNOLOGY DEVELOPMENT CO,

{gandunwen,gaofeng} @zemt.cn

Abstract
This paper present needs and implementations for
system modeling of high speed trains with focus on the
Beijing-Zhangjiakou Intercity Railway. Different
scenarios are proposed which are relevant in systems
design. The implementation with Modelica is discussed
and demonstrated for the rail-wheel contact and
mechanical, logical, electrical and thermal systems.

Keywords: High speed train, systems, electrical,
mechanical, thermal, rail-wheel contact, single phase,
traction

1 Motivation

1.1 The Chinese high speed trains system

Chinese Railway High-speed (CRH) was first
introduced in 2007 and was developed further with
operating speeds of 250-300 km/h. The train system
was able to significantly reduce the further growth of
air traffic. Even for long distances as Beijing-Shanghai
with 1077 km the travelers are attracted by scheduled
travel times of 288 minutes in relation to 135 minutes
by airplane. Assuming 60 minutes additional journey
time for the train respectively 150 minutes to the
outlying airports the ratio shrinks to 348 minutes to
285. In addition the train service is operated roughly
every 5 minutes with prices around 85% of the air
ticket.
The Chinese high speed train program follows the
principle of Electric Multiple Units (EMU), where the
train consists of self-propelled carriages with no
separate locomotive and traction motors incorporated
within a number of the carriages. The same concept
applies for example for the French AGV, Italian
Pendolino, Japanese Shinkansen or German ICE 3.
Beijing-Zhangjiakou Intercity railway, as a supporting
project of the Beijing 2022 Olympic and Paralympic
Winter Games, is the first high-speed train with an
operational speed of 350 km/h and automatic driving.
It will operate in an alpine and windy region where it
will reduce the commuting time between Beijing and
Zhangjiakou to an hour. Assembly of the EMUs is
planned by end of 2018 and the adaption and test
verification shall be completed in the first half of 2019.

ZEMT is one of the core partners in the new
development. The company identified a further need
for model-based system design, optimization, fault
analysis and diagnosis. Train systems simulation is a
well known application of Modelica (Belmon and Liu,
2011; Dumont and Maurer, 2012; Franke and
Wiesmann, 2014; Heckmann et al., 2014; Frilli et al.,
2016). Therefore, SimTek has been commissioned to
develop a Modelica-based train systems library for
further virtual testing and verification of the Beijing-
Zhangjiakou high-speed train. This paper presents
typical scenarios which are relevant in systems design.
The implementation of the library with Modelica is
discussed and demonstrated for the rail-wheel contact
and mechanical, logical, electrical and thermal
systems, with special attention to the rail-wheel contact
and electrical power off-take. The models are partly
generic and do not necessarily reflect the real system
layout.

1.2 Applications for simulation

The following list provides typical applications for
simulation based studies:

 Vehicle energy consumption estimation for
systems and supply network optimization
◦ Estimation of the energy consumption of

all subsystems
◦ Energy consumption of air-conditioning

and auxiliary system
◦ Energy consumption in different climate

and weather environments and roads
 Electric grid harmonic estimation for topology

and filter selection
◦ Estimate the harmonics according to

industrial standards
 Traction system thermal capacity estimation

for cooling system layout and control of power
reduction
◦ Cooling models
◦ Simplification and parameter estimation

of fluid models involving heat exchange
◦ Simplification and parameter estimation

of models of the detailed electric power
switching with thermal effect

Aspects of Train Systems Simulation

354 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157353

◦ Simplification and parameter estimation

of models of the coupled power electrics
and dynamic thermal model

 Driven cars stability estimation
◦ Lateral dynamics analysis
◦ Vertical dynamics analysis

2 Modeling

2.1 Overview on libraries

The modeling for the ZEMT Project of the virtual
EMU is structured into four libraries, which will be
commercialized. Their layout is shown in Figure 1.
This paper is focused on the unique feature of train
modeling with the introduction of the mechanical
modeling and thermalfluid modeling in the
TrainDynamics Library, and the control logics
modeling and electrical traction modeling in
TractionSystemLibrary.
The TrainDynamicsLibrary supports the following
models：

• Dynamic multi-body models of coach body
and bogie

• Dynamic wheel/rail contact model.
• Thermal management, simple air conditioning

and cooling unit of traction system, including
motor cooling unit, converter cooling unit and
transformer cooling unit.

• Water management, i.e., water supply and
drainage system

• Passenger model, including weight,
temperature, O2 consumption, water
consumption

• Environment model, including temperature,
pressure, humidity and wind resistance

• Path model, including 2 kinds of x-y-z
coordinates and x-z-R（bend road）.

The usage and contents of the TrainDynamicsLibrary:
 Analyze the stability of the train during

hunting movement,
 Analyze the stability of the train while passing

the winding railway line,
 Estimation and analysis of the energy

consumption of the train.
ElectricTractionLibrary provide the dynamic models of
electric traction system and control system.
Subsystems include:

 Communication models,
 Signal system models,
 networks models,
 System integration and model in loop.

2.2 Train Dynamics Modeling

2.2.1 Implementation

The mechanical structure of the EMU can be modeled
by the simplified five elements model whose topology
is shown in Figure 2. It includes:

• Coach body
• Bogie
• Wheel-sets
• The secondary suspension

◦ air spring model
◦ anti-roll var model
◦ vertical damper
◦ lateral damper
◦ yaw damper

• The primary suspension

Aspects of Train Systems Simulation

DOI Proceedings of the 13th International Modelica Conference 355
10.3384/ecp19157353 March 4-6, 2019, Regensburg, Germany

◦ spring damper.

All the design parameters and the characteristic curve
of the suspension are based on identified test data. For
example, the lateral damper characteristic is shown in
Figure 3.

The contact model is the most difficult part of the
vehicle dynamics analysis. For automobiles, it’s the
adhesion forces to ensure the continuous motion. For
aircraft, it’s the air forces due to the contact between
wing and air to guarantee the flight. The forces along
motion direction and the perpendicular direction should
be considered in the contact model. In a small range of
the contact angle, the friction forces F in lateral
direction is linear to the contact angle α , and its

maximum is linear to the vertical load (Masao, 2008).
This is shown in the left of Figure 4.
As for the trains, the linearity range of the contact
angle is smaller and the curvature is more complex
than for cars, as shown in the right of Figure 4.
For the EMU study, the integrated train energy
consumption needs to be analyzed and controlled in
real-time, where the simulation speed is more critical
than the accuracy. In (Heckmann et al., 2014) an
algorithm for fast calculation of wheel-rail forces with
Modelica was proposed. Here, an alternative very fast
approach is demonstrated. The local coordinates of the
model are depicted in Figure 5 (Masao, 2008). In the
six degrees of freedom of the train wheel set, the
motion along z axis and rotation around x axis are
constrained by the rail. Only 2D planar motion is
allowed, which is the forward/backward movement in
x direction, left/right movement in y direction, rotation
around z direction (ψ) and 1D rotation around y axis
(θ). Considering the suspension of the train, the forces
applied on the wheels by the train body are assumed to
be one-dimensional in direction of z axis. This means a
combination of 2D and 1D model was built, in use of
the PlanarMechanics library (Zimmer, 2012).

The transformation between the local (x ,y ,ψ) and
global reference system (X , Y,ψ) is performed by
equations (1) and (2).

[
Ẋ
Ẏ
ψ̇]=[

cosψ −sinψ 0
sinψ cosψ 0

0 0 1][
ẋ
ẏ
ψ̇] (1)

[
Ẍ
Ÿ
φ̈]=[

cosψ −sinψ 0
sinψ cosψ 0

0 0 1][
ẍ− ẏ ψ̇
ÿ+ ẋ ψ̇

ψ̈] (2)

From the view of contact geometry, the wheel-rail
shape is simplified to a cone to avoid massive
nonlinear computation in which case both the slip
forces and side forces are still considered in the model,
as shown in Figure 6 (Masao, 2008).

Aspects of Train Systems Simulation

356 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157353

Figure 6. Wheels model.

The velocity in the moving coordinate system is given
by:

[
ẋ
ẏ
ψ̇]=[

V
0

2γ d
l
] (3)

Where γ is the angle of the cone wheel, d is the
distance between the center of the wheel and the center
of the rail (d=−Y), l is the distance between wheels
and V is the speed in x -direction in local
coordinates. When considering only the kinematics, as
shown in equation (2) and (3)：

Ÿ=Vcosψ ψ̇ ≈ Vψ̇=
−2Vγ

l
Y (4)

This indicates that the assumption is able to model the
hunting behavior of the lateral vibration of the wheel-
rail with the frequency of √2 Vγ /l.
Considering the adhesion and curve influence in the
running direction, according to (Masao, 2008) the
equation of the train dynamics in the moving
coordinate system can be unified by equation (5):

[
m 0 0
0 m 0
0 0 I][

ẍ
ÿ
ψ̈]+

1
V [

0 0 0
0 2c22 0

0 0 1
2

c
11

l2][ẋ
ẏ
ψ̇]

+[
0 0 0
0 0 −2c22

0 2c11
lγ
d

0][x
y
ψ]=[

Fx−f

Fy+m (
V2

R
−

gh
l
)

Mz
]

(5)

Where c11 and c22 are the constants of Kaller contact
theory, h is the height difference of outer side and inner
side of the curves. m is the equivalent mass obtained
through the gravity calculation in the interface.
Fx , Fy , Mz are the friction forces and torques due to

the adhesion which can be calculated by the slip rate.
Assuming the slip rate is s and its component in x and
y direction is sx ,sy, with the self rotation ψ :

[
Fx

Fy

Mz
]=f⋅[

sx

sy
ψ] (6)

With the radius of the wheel R and inertia I, the
relationship between slip rate s and the traction/braking
forces is given by equation (7) and (8).

s={
R θ̇−V

R θ̇
∀Traction

R θ̇−V
V

∀Brake
(7)

R I θ̈=Ftraction+Fbrake (8)

The relationship between vehicle dynamics of the train
and traction/braking forces can be obtained based on
the equation (6). For even faster calculation, the library
implements the simplification of (Polach, 2000) of
equation (6). An approach assuming an ellipsoidal
contact area is used, with semi-axes a, b and normal
stress distribution according to Hertz to calculate the
rail-wheel forces, as shown in Figure 7 (Polach, 2000).

As a further simplification, a constant ellipse area is
assumed. The maximum tangential stress τ is:

τ=f⋅σ (9)

where f is the coefficient of friction and σ is the
normal stress. f is assumed constant in the contact
area. The method assumes a linear displacement
between the leading point A to the trailing point C. At
first, the contact area sticks firmly and the
displacement is caused by the material creepage (area
of adhesion). The tangential stress τ acts against the
creep and grows linearly with the distance from the
leading edge. If τ reaches the maximum value in the
adhesion area, the relative movement of the contact
area appears. This part is called area of slip.
Based on the theory, the relationship of the slip s and
adhesion force is gotten.

Figure 7. Assumption of the rail-wheel contact.

area of
slip

area of
adhesion x

y

A B C

x

normal
stress σ

tangential
stress τ

b
a

direction
of motion

Aspects of Train Systems Simulation

DOI Proceedings of the 13th International Modelica Conference 357
10.3384/ecp19157353 March 4-6, 2019, Regensburg, Germany

2.2.2 Validation

The wheel-rail contact model based on Modelica is
built according to the theory mentioned in section
2.2.1. The parameters and coefficient of friction f is
assumed constant in the model as shown in Figure 8.

Figure 8. The parameters in the rail-wheel contact model.

The model was validated against the data in (Polach,
2000). The model proposed in this paper uses the same
theory but adds the framework to multi-body
simulation. The bluish continuous trajectories of the
creep displacements s x , xy and spins ψ in the first
three sub-figures of Figure 9 were applied to the
model. The set of red dots 0..9 indicate the
measurement values of (Polach, 2000). The other sub-
figures show the resulting creep forces. The plots
demonstrate that the Modelica model is in congruency
with the paper results and proofs that the model can be
used for the contact calculation.

0 1 2 3 4 5 6 7 8 9 10
0

0

0

0

0

0

0.01

s_x s_x_meas

0 1 2 3 4 5 6 7 8 9 10

-0.01

0

0

0

0

0

0.01

0.01

s_y s_y_meas

0 1 2 3 4 5 6 7 8 9 10-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

psi psi_meas

0 1 2 3 4 5 6 7 8 9 10

-30000
-25000
-20000
-15000
-10000
-5000

0
5000

10000

F_x F_x_meas

0 1 2 3 4 5 6 7 8 9 10

-30000

-20000

-10000

0

10000

20000

30000

F_y F_y_meas

Figure 9: Validation of creep displacement and creep
forces (x-axis: data points (discrete)/time (continuous)).

2.2.3 Outcome:

The following tasks can be implemented based on the
mechanical models:
• Simulate the threshold of the lateral hunting

fluctuation under the irregular rail or external
forces, and the stability when passing through the
curves.

• Simulate the damping effect in vertical direction
of the train for human comfort evaluation.

• Simulate the energy consumption of the integrated
train along the rail.

2.3 Thermal Fluid Modeling

When estimating energy consumption of the train,
besides the auxiliary power consumption such as
lighting, two critical factors of thermal and water
management (i.e., A/C, water supply and drainage
system) should be considered.
The purpose of thermal management is to control the
cabin temperature in a proper range for the passengers’
comfort and control the temperature of traction system
to ensure the normal operation. Water management is
to ensure the water supply and drainage in the cabin
and washroom.
Based on the purpose to evaluate the energy
consumption of the integrated train and the model level
the behavioral model of the thermal and fluid models
were built without considering the complex shapes of
the flow machinery and pipelines. Only the dynamic
equivalent model was used to analyze the model
behavior.

Aspects of Train Systems Simulation

358 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157353

2.3.1 Implementation

The main cooling types of the thermal management of
the trains are air cooling and liquid plus air cooling.
Compared to the thermal management system of
automobiles, the biggest difference is that with the
increase of the running speed, the demanded pressure
difference increases, the flow decreases which may
lead to the equipment being broken due to overheat in
severe conditions. So it is critical to control the air
conditioning system and cooling system according to
the running speed.
The traction converter is liquid cooled, where the
model consists of 4 cold plates, a pump and a cooling
tank. The cooling medium is ethanol plus water.
The traction transformer is cooled through forced air
cooling mixed with oil cooling. The cooling unit
circulates the oil from the transformer to the oil cooling
device by a pump where the heat is scattered by a fan.
The traction motors are cooled by forced air with one
air inlet and two air exhausts whose air volume should
coincide as good as possible.
The HVAC system of the train is mainly based on
ventilation, which does not involve two phase flow. It
provides cold air in summer and warm air in winter, as
shown in Figure 10.

Water supply is added by further models where the
dynamic behavior of the car may be influenced by the
mass distribution.

2.3.2 Demonstration

CoolingLib was used to design cooling units, such as
converter cooling unit, transformer cooling unit, and
motor cooling unit. Figures 11 to 13 show the models
and validation results (textual): the medium of the
traction converters is water-glycol mixture solution, the
medium of the transformer is 45# transformer oil.
Passenger comfort was evaluated by the
HumanComfortLib by XRG Simulation GmbH. The

air conditioning and water supply system models were
validated according to the passenger flow.

2.3.3 Outcome:

The thermal fluid model can be used to implement the
following work:
• Simulate the cooling effect of the traction system

and calculate the thermal capacity of the traction
system.

• Simulate the air conditioning effect of the train for
the human comfort evaluation

• Simulate the energy consumption of the auxiliary
system in air conditioning system and water
supply and drainage system to evaluate the energy
consumption of the integrated train.

Validation ：

Q_loss=30kW
Q_loss_calculation=28kW

Relative error = 0.067<0.1,OK!

~ =

systemSettings

fixedTemperature

T=50 °C

K

coldPlate4

coldPlate1 coldPlate2

coldPlate3

fan

ju
n

ct
io

n

ju
n

ct
io

n
1

sp
lit

ju
n

ct
io

n
3

sp
lit

2

spl it1

pump

heatExchanger

inverterCoolingUnitData

heatport1 heatport2

heatport3 heatport4

Figure 11. Traction converter cooling unit and
Validation.

Aspects of Train Systems Simulation

DOI Proceedings of the 13th International Modelica Conference 359
10.3384/ecp19157353 March 4-6, 2019, Regensburg, Germany

Validation ：

Q_loss = 276.5kW
Q_loss_calculation = 290.3kW

Relative error = 0.049 <0.1,OK!

systemSettings

fixedTemperature

T=150 °C

K

pipe

1

p
u
m

p

heatExchanger

fan

boundary

p,T

transformerCoolingUnitData

reservoir

fan1

port_a

Figure 12. Transformer cooling unit and Validation.

Validation ：

Q_loss=34.45kW
Q_loss_calculation=36.07kW

Relative error = 0.047<0.1,OK!

MotorCoolingUnit systemSettings

fixedTemperature

T=157 °C

K

boundary

p,T
split

fan

p
ip

e
2

1

pipe1

1

motorCoolingUnitData

port_a

Figure 13. Motor cooling unit and Validation.

2.4 Traction System and Control Logics

The traction control and the control logics are closely
linked and can be found in the figures presented in this
chapter. The train control logic is of enormous
relevance for industrial application and at the same
time of limited scientific interest. For the sake of
completeness, however, it should also be mentioned
here.

2.4.1 Overview

Figure 14 shows an overview of the EMU structure.
Each train consists of 8 cars where the rear 4 cars are
mirror-inverted identical to the front part. Two trains
can be coupled to a total number of 16 cars.
In nominal operation each half of a train is electrically
independent and draws the power via the pantograph
(T03/T06) from the power supply line. The circuit is
grounded via the wheels and the railway. The power is
transformed in the car with the pantograph to a lower
voltage which is fed to the neighboring cars
(M02/M04, M05/M07). Only those are driven cars
with motors where the power is converted in these cars
by traction current converters. The cars with the train
conductor’s cabins contain the auxiliary current
converters and batteries and battery chargers.

Figure 14. Schematic diagram of traction system.

2.4.2 Implementation

The electrical system is shown in Figure 18 (some
elements are hidden for better clarity). The model
shows the electrical system of the train with cars 1-8.
Mechanics are simulated by the element (9). The train
is fed by the catenary. The impedance of the line and
the railway (1) has substantial effects on the power
quality to the line and maximum power off-take from
the line. Considerations on the impedances can be
found in (Hill et al., 1989; Allenbach, 2014). For the
Chinese High Speed Railway the following parameters
were assumed from literature:

Source voltage: 25kV

Net frequency: 50Hz

Series Resistance : 0.09Ω/m

T01 T03M02 M04

Auxiliary current converter,battery &
battery charger

T08T06 M07M05

Transformer
Traction current converter

Trailing axis

Driven axis

Aspects of Train Systems Simulation

360 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157353

Series Inductance: 0.669μ H /m

Parallel Capacitance 7nF /m

Parallel Conductance 18μ S /m

Typical distance to
power station

14.7km

Modelling does not take into account a dynamic
change of the length but is implemented by
Modelica.Electrical.Analog.Lines.Oline.
While the pantograph (2) is one of the most complex
mechanical elements due to the high-speed operation,
the Modelica model is limited to a resistance and
sensors for net voltage and transferred current.
The voltage is transformed to a lower voltage level of
around 2000 Volts by the transformers (4). The correct
estimation of losses and harmonics demands a
simulation with magnetic hysteresis effect. The
Modelica.Magnetic library (Ziske and Bödrich, 2012)
offers accurate and fast methods while the choice of
magnetic core material is very limited. The transformer
parameterization is crucial for the correct estimation of
harmonics. Parameters may come from detailed design
or hardware tests.
Number (3) is the power conversion system including
AC to DC bi-directional converters, intermediate
voltage circuit, current converter and traction motors.
(5) to (9) are control logics: (5) communication models
, e.g. passing neutral phase information, (6) the driver’s
commands, (7) the Central Control Unit of the train,
(8) the Traction Control Unit with one TCU per driven
car.
The traction system is shown in detail in Figure 19. For
this train, the AC input voltage (left) is converted into
an DC intermediate voltage and inverted to AC voltage
by (20) to feed the parallel traction motors. The input
converter should be able to convert the AC voltage
passively into a lower DC voltage if no traction but
only auxiliary power is needed, boost the AC voltage
to a higher intermediate DC level or feed regenerated
power back to the network when braking. This four-
quadrant converter needs to be Power Factor
Correcting (PFC) for good power quality in the supply
line without interaction of trains, losses by reactive
power or radiated harmonic noise.
Figure 15 shows two typical converter topologies. The
converter with Neutral Point Clamped (NPC) has the
benefit that all transistors only have to resist to half the
DC voltage. In the last years new IGBTs were
developed which are rated for the higher voltage level
which enables the second type of converter: the
interleaved boost converter. For both converters,
transformer leakage inductance can be used as the
boost inductances L1/L2 respectively L3 to L6 . Due
to the redundancy and other benefits, the interleaved
converter was implemented in the library (Figure 19:

11,12, with precharge 10 and control 13).
Considerations on the efficiency and rating of both
topologies can be found in (Bellini et al., 2002) and
(Musavi et al., 2010).
Typically the switching frequency is selected low to
prevent switching losses. If the switching frequency is
below 11 times the natural time constant of the input
impedance, then simple current controls may fail
(Freyberger, 2002). The library offers an advanced
control concept, including a reliable phase detection
and control in dq system.

Bi-directional PFC boost converter with NPC inverter

Bi-directional PFC interleaved boost converter

Figure 15. Boost converter topologies.

For both types of boost converters, the control aims to
preserve power quality on the AC side V in by
drawing power from V DC at double net frequency.
The ripple can be attenuated by a tuned filter (14) of
first or second order. The intermediate voltage is
stabilized by capacitors (15). Power is drawn from the
auxiliary system (17) or the traction inverter (19). Each
traction converter feeds four induction motors
connected in parallel. (16) and (18) are overvoltage
protection and braking resistor.

2.4.3 Demonstration

The electrical model is demonstrated by a study of the
net side power quality. The input current of one
transformer feeding two conversion/traction units shall
be investigated at nominal load (e.g. car 2-4). For
better efficiency, the traction system is simulated by a
more simple controlled power load.
Results are shown in Figures 16 and 17. The former
one shows the currents on the transformer’s secondary
windings which are disturbed by pulse-width-
modulation (PWM), where the currents combine to a
smooth current in the primary windings. Figure 17
shows the load profile and transient of the actively

V in

tuned
filterL1

L2

CDC (
V DC

2)

V DC

load

CDC (
V DC

2)

VDC

2

V in

load

CDC

tuned
filter

L3/4

L5/6

VDC

Aspects of Train Systems Simulation

DOI Proceedings of the 13th International Modelica Conference 361
10.3384/ecp19157353 March 4-6, 2019, Regensburg, Germany

controlled DC intermediate voltage and AC input
currents at two impedance values reflecting 14.7km

and 0.5km to the power station. The THD is well
below the limit of the industrial standard.

2.4.4 Outcome:

All tasks which are listed above rely on the electrical
models and control models. Detailed electrical models
are utilized for

• sizing of electrical components for stability,
power quality and rating, like inverter bridges,
transformers, passive components,

• detailed sizing of heat dissipation in
connection with simplified cooling system,

• validation of simplified models.
Simplified non-fast-switching models are used for

 Vehicle energy consumption estimation in
conjunction with simple vehicle dynamics and
power systems

 Traction system thermal capacity estimation
for cooling system layout and control of power
reduction

3 Conclusion and future work
In this paper, needs and implementations for system
modeling of high speed trains with focus on the
Beijing-Zhangjiakou Intercity Railway were shown.
The models cover all relevant domains and tests and
optimization for the real train system will be performed
with it in the near future.

Acknowledgment

The authors gratefully acknowledge ZEMT for their
help of providing the system information and test data.
SIMTEK also cooperated with ZEMT on the control
and health monitoring of the braking system.

Bibliography

Allenbach, J.-M. (2014). Eisenbahntechnik (German).
Available
https://documents.epfl.ch/groups/t/tr/traction/www/docum
ents/ZusammET.pdf.

Bellini, A., Bifaretti, S., and Constantini, S. (2002). High
power factor converters for single-phase AC traction
drives. In WIT Transactions on The Built Environment 61.

Belmon, L., and Liu, C. (2011). High-speed train
pneumatic braking system with wheel-slide protection
device: A modelling application from system design to
HIL testing. In Proceedings of the 8th International
Modelica Conference; March 20th-22nd; Technical
Univeristy; Dresden; Germany, p. 549-556.

Dumont, E., and Maurer, W. (2012). DyMoRail: A
Modelica Library for modelling railway buffers. In
Proceedings of the 9th International MODELICA
Conference; September 3-5; 2012; Munich; Germany, p.
691-696.

2.91 2.92 2.93 2.94

-1000

0

1000

M02/1 M02/2 M04/1 M04/2

2.91 2.92 2.93 2.94

-200

0

200

vertical: Current [A] horizontal: time [s]

T03 transformer primary

THD: 0.0297292

Figure 16. Harmonic test of current drawn by one
transformer. Top: Currents of each interleaved
converter. Bottom: transformer input current and THD.

1 2 3
0E0

1E6

2E6

vertical: Power [W] horizontal: time [s]

load power

1 2 3
2000

3000

4000

vertical: Voltage [V] horizontal: time [s]

Vset @Impedance 0.5km @distance 14.7km

2.84 2.88 2.92 2.96
-400

0

400

vertical: Current [A] horizontal: time [s]

@Impedance 0.5km @Impedance 14,7km

Figure 17. Harmonic test of current drawn by one
transformer. Top: Load profile. Middle: Trajectory of
controlled DC intermediate voltage @ distance 0.5km
and 14.7km to power source. Bottom: Current shape for
distance 0.5km and 14.7km.

Aspects of Train Systems Simulation

362 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157353

Franke, R., and Wiesmann, H. (2014). Flexible modeling of

electrical power systems--the Modelica PowerSystems
library. In Proceedings of the 10 th International
Modelica Conference; March 10-12; 2014; Lund; Sweden,
p. 515-522.

Freyberger, F. (2002). Leittechnik: Grundlagen,
Komponenten, Systeme; Projektierung, Steuerung und
Regelung, Signal-, Bussysteme, Aktoren, Sensoren
(German). Pflaum.

Frilli, A., Meli, E., Nocciolini, D., Pugi, L., and Rindi, A.
(2016). Energetic optimization of regenerative braking
for high speed railway systems. In Energy Conversion
and Management 129, p. 200-215.

Heckmann, A., Keck, A., Kaiser, I., and Kurzeck, B. (2014).
The foundation of the dlr railwaydynamics library: the
wheel-rail-contact. In Proceedings of the 10 th
International Modelica Conference; March 10-12; 2014;
Lund; Sweden, p. 465-475.

Hill, R., Carpenter, D., and Tasar, T. (1989). Railway track
admittance, earth-leakage effects and track circuit
operation. In Railroad Conference, 1989. Proceedings.,

Technical Papers Presented at the 1989 IEEE/ASME
Joint, p. 55-62.

Masao, N. (2008). Vehicle system dynamics and control
(orig: Japanese, ISBN 978-4-8425-9901-4). The Japan
Society of Mechanical Engineers.

Musavi, F., Eberle, W., and Dunford, W.G. (2010).
Efficiency evaluation of single-phase solutions for AC-
DC PFC boost converters for plug-in-hybrid electric
vehicle battery chargers. In Vehicle Power and
Propulsion Conference (VPPC), 2010 IEEE, p. 1-6.

Polach, O. (2000). A fast wheel-rail forces calculation
computer code. In Vehicle System Dynamics 33, p. 728-
739.

Zimmer, D. (2012). A planar mechanical library for
teaching modelica. In Proceedings of the 9th
International MODELICA Conference; September 3-5;
2012; Munich; Germany, p. 681-690.

Ziske, J., and Bödrich, T. (2012). Magnetic hysteresis
models for modelica. In Proceedings of the 9th
International MODELICA Conference; September 3-5;
2012; Munich; Germany, p. 151-158.

DOI Proceedings of the 13th International Modelica Conference 363
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 3D: NEW APPLICATIONS
Modeling Supply and Demand in Modelica
Tiller, Michael

Modelica Modelling of an Ammonia Stripper
Redford, John and Bisinella, Ana and Saut, Jean-Philippe and Robert, Jacques and Albuquerque, Maria and
Merland, Jean-Pierre and Ghidaglia, Jean-Michel

Algorithms for Component-Based 3D Modeling
Neumayr, Andrea and Otter, Martin

Model visualization for e-learning, Kidney simulator for medical students
Šilar, Jan and Ježek, Filip and Mládek, Arnošt and Polák, David and Kofránek, Jiří

.

364 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Modeling Supply and Demand in Modelica

DOI Proceedings of the 13th International Modelica Conference 365
10.3384/ecp19157365 March 4-6, 2019, Regensburg, Germany

Modeling Supply and Demand in Modelica
Tiller, Michael

365

Modeling Supply and Demand in Modelica

Michael M. Tiller1

1michael.tiller@gmail.com

Abstract
This paper demonstrates using component oriented mod-
eling and acausal semantics to create a basic library of be-
havioral components to model supply and demand. The
models presented are each steady state models. While
some examples include shifting economic conditions that
cause the equilibrium points to change during the simula-
tion, none of the models feature dynamic states. The main
purpose of this paper is to demonstrate to people unfamil-
iar with Modelica (Modelica Association 2017) how Mod-
elica can be used to model non-engineering systems and
how it makes such modeling faster, easier and less error-
prone compared to other approaches (e.g., using spread-
sheets).
Keywords: Modelica, economics, supply and demand

1 Introduction
Modelica was designed from the outset to be domain neu-
tral. The hope was that the foundations of Modelica were
sufficiently complete that it could not only be used to
model the wide range of engineering related systems that
the designers were familiar with but that it was univer-
sal enough to model nearly any system from any domain,
even those unfamiliar to the language designers. The wide
range of domains that Modelica has been applied to over
the last 20 years is a testament to the success of these de-
sign goals.

As I hope to demonstrate in this paper, the acausal se-
mantics in Modelica are not only useful for describing the
familiar conservation laws present across engineering do-
mains. These semantics can be utilized whenever there
is a need to ensure a proper accounting of many differ-
ent quantities. In this particular case, we will focus on the
movement of goods passing from producers to consumers.

In this paper, we will introduce the economic concepts
of supply and demand. These concepts are often discussed
only in qualitative terms. But if you characterize supply
and demand quantitatively, you can use the features of
Modelica to create a library of components models that
can model not just sources of supply (production) and de-
mand (consumers) but also model other economic effects
such as taxation, complementary goods, exchange rates,
etc.

The goal of this paper is not to provide a comprehen-
sive collection of quantitative models of economic ac-
tors and effects. Instead, this paper attempts to achieve
two primary goals. First, to demonstrate the applicabil-

ity of Modelica to yet another domain. In this case, the
non-engineering related subset of economics that involves
modeling of supply and demand. The other goal of the
paper is to describe the models in such a way that some-
one familiar with economics but unfamiliar with Model-
ica will appreciate how Modelica works and how it could
be useful in the field of economics to create trusted and
reusable libraries of components that are capable of per-
forming all the necessary bookkeeping required for supply
and demand systems and solve the underlying non-linear
systems of equations better than other approaches (e.g.,
using spreadsheets).

There are a number of online books (Taylor 2018;
Hutchinson 2016; Posner and Tayari 2018) that cover the
topics in this paper in much greater depth and I would en-
courage the reader to seek out these books to learn more
about these topics from experts. Furthermore, there have
been previous articles that used Modelica to model eco-
nomic effects (Zimmer and Schlabe 2012; Casella, Mi-
ragliotta, and Uglietti 2005). However, these papers fo-
cused on specific types of markets and used slightly dif-
ferent approaches.

2 Mathematics of Supply and De-
mand

Before we discuss the details of the Modelica implemen-
tation, it will be useful to provide a basic discussion of the
topic of supply and demand curves, how they are charac-
terized and how we can use them to arrive at a supplied
price and supplied volume.

Both supply and demand curves are expressed with
price as the dependent variable and sales volume as the
independent variable. This choice is unintuitive because
price is the thing that is most controllable here and vol-
ume is simply a consequence of the chosen price. Nev-
ertheless, this is the way supply and demand curves are
typically represented and so this paper follows that con-
vention as well.

2.1 Supply
As mentioned previously, the supply curve shows price
as a function of sales volume. The curve visualizes what
the per unit price would be for a given sales volume. A
very simple supply curve is shown by the blue line in Fig-
ure 4. One important characteristic of a supply curve is
that it generally has a positive derivative. At first, this
seems counter-intuitive because most producers actually

Modeling Supply and Demand in Modelica

366 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157365

discount their products if customers are willing to buy
more of the product. But this is related to pricing strategy
and is contingent on being able to scale up production.

But supply curves are generally based on availability of
limited resources (e.g., Uber’s "surge pricing"). As such,
as demand for a limited resource goes up, the price that a
producer can command will go up. In the long run, the
market may compensate by increasing production which,
in turn, increases overall supply and lowers prices. But
this is an example of how the supply curve itself adapts to
market conditions over time.

Another reason for the supply curve to have a positive
derivative is related to accessibility of raw materials. Even
if the amount of the raw material doesn’t have a finite
limit, it may be the case that there are multiple sources
of the raw material and that some are more expensive than
others. In such a case, the shape of the supply curve is a
reflection of the fact that the initial sales will rely on eas-
ily accessible (i.e., cheaper) sources while larger sales will
require less accessible (i.e., more expensive) sources.

2.2 Demand
While supply curves represent the availability of a given
good, the demand curve represents how much consumers
are willing to pay for a good. A very simple demand
curve is shown by the red line in Figure 4. Unlike the
supply curve, the demand curve generally has a negative
first derivative. The simplest way to understand this is
to think about a demand curve as a histogram. Imagine
the consumer who values this good the most. They define
the maximum possible price (i.e., the y-intercept on de-
mand curve). If producers offer that product at that price,
they can expect to sell only to the wealthiest or most en-
thusiastic consumers. However, if producers reduce their
price, they can expect to attract even more buyers. As they
continue to lower the price, they can reasonably expect to
continue to attract more buyers. In this sense, the demand
curve is a histogram showing how much consumers are
willing to pay.

3 Interfaces
3.1 Connector
The cornerstone of any Modelica library is the
connector definitions. This is because the
connectors define the way in which components
interact. So it is necessary to carefully design the
connectors so they can represent all potential
interactions.

In the case of modeling supply and demand, there are
two fundamental quantities we are concerned with. The
first is the price of goods. We will talk about how price
impacts the behavior of both producers and consumers
shortly. But for now, all we need to recognize is that price
motivates transactions to occur.

The other fundamental quantity is volume of sales. This
represents the number of goods either produced or con-

sumed (by producers and consumers, respectively). Our
systems will be formulated such that all goods must be
accounted for. This means that all goods produced have
to go somewhere. It might be into a warehouse, it might
be purchased by a consumer, it might be transported to a
geographically remote market. But it must be accounted
for.

As such, the volume of sales will be the flow variable
in our system. In this way, the acausal semantics of Mod-
elica, normally used to account for conserved quantities
in engineering domains, will ensure our constraint that all
goods are accounted for. Since the volume of sales is the
flow variable, we will adopt the price as our across/po-
tential variable.

Before we define the connector, let us first introduce
two types:
type Price = Real(min=0, quantity="Price");
type SalesVolume = Real(quantity="Units");

With these two types defined, we can now define our
connector as follows:
connector Market "Market interaction"
Types.Price price(start=10);
flow Types.SalesVolume volume;

end Market;

We establish a min and start value on the Price
type to assist solvers in finding solutions for non-linear
systems. The min attribute informs the solvers that nega-
tive values are not viable solutions. The start attribute
provides an initial guess which helps the solver locate a
solution and/or choose between multiple solutions. In the
Market connector, we chose the rather arbitary value of
10 as an initial guess just to provide a positive initial guess.
In specific models, thise start attribute can be overri-
den to provide a better problem specific initial guess. The
non-linear solvers will also need good initial guesses for
volume, but we cannot provide min and start val-
ues here because the sign will depend on the nature of
the component so we will instead add those attributes on
variables whose sign is known.

3.2 Partial Models
Our connector is defined in the Interfaces sub-
package along with a few useful partial models.

3.2.1 Producer
The first of these partial models is a Producer model.
The idea behind the Producer model is to define some
protected variables associated with and employing the
sign convention of a producer. Specifically, the normal
Modelica sign convention is that flow of a conserved quan-
tity (in this case, goods) is positive when flowing into a
component. In the case of a producer, goods are always
flowing out. As such, the volume field on the connector
is always negative. However, the supply curve volume is
always positive. For this reason, within the Producer
model we define a local variable, volume, which repre-
sents the independent variable on the supply curve (i.e.,

Modeling Supply and Demand in Modelica

DOI Proceedings of the 13th International Modelica Conference 367
10.3384/ecp19157365 March 4-6, 2019, Regensburg, Germany

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Volume

0

10

20

30

40

50

60

70

80

Pr
ice

Supply

Figure 1. Sample S-parameterized Supply Curve

normally positive) and map that to the volume field on
the connector, i.e.,

partial model Producer "Goods producer"
Types.SalesVolume volume;
Types.Price price;
Interfaces.Market market(volume(start

=-10));
protected
Real s(start=-1);

equation
if (s<0) then
price = market.price;
volume = -s;

else
price = market.price-s;
volume = 0;

end if;
market.volume = -volume;

end Producer;

The first thing to notice in this model is the fact that it
doesn’t just define variables for price and volume but
also a variable named s. Internally, the supply curve is not
strictly represented as price as a function of volume.
Instead, both price and volume are represented in
terms of s. The resulting supply curve (parameterized in
terms of s) is shown in Figure 1.

Doing the parameterization in this way allows us to de-
fine multiple potential prices for a given volume. This
allows us to handle the case where the lowest possible
production price is still above the highest price that con-
sumers are willing to pay. Using this parameterization,
we extend the supply curve to indicate that no goods will
be produced (volume=0) for all prices below the lowest
possible production costs. This allows us to solve for a
supplied price and supplied volume in the case where a
producer (or consumer) is priced out of the market.

3.2.2 Consumer

The Consumer model is very similar to the Producer
model. It doesn’t actually need to perform the sign

0 1 2 3 4 5
Volume

10

15

20

25

30

35

40

45

50

Pr
ice

Demand

Figure 2. Sample S-parameterized Demand Curve

change on volume but it does implement a similar s-
parameterization of the demand curve except that in the
case of the demand curve the s parameter extends the
price upward rather than downward as shown in Figure 2.

partial model Consumer "Goods consumer"
extends Curve;
Types.SalesVolume volume;
Types.Price price;
Interfaces.Market market;

protected
Real s(start=1) "Volume or price gap";

equation
if (s<0) then

price = market.price + s;
volume = 0;

else
market.price = price;
volume = s;

end if;
market.volume = volume;

end Consumer;

4 Supply and Demand
With the connectors and partial models defined, we
can start defining various models for both supply and de-
mand.

4.1 Linear Models
Many explanations of supply and demand use linear sup-
ply and demand curves to describe how to arrive at the
supplied price and volume. So we’ll start with such mod-
els and then transition into more realistic models of supply
and demand shortly.

Consider a market where the highest price a consumer
is willing to pay would be $12. But for every $1 that we
reduce the cost of the good, we find 20 more customer. Let
us further assume that the producer of these goods must
charge at least $10 and for every $1 increase in price, 5
more goods can be supplied.

Modeling Supply and Demand in Modelica

368 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157365

The supply curve would then be represented by:

ps(v) = ps
0 +β ∗ v = 10+0.2∗ v

where β represents how much the production price would
increase with each additional unit of goods produced. In
the same way, the demand curve would be represented by:

pd(v) = pd
0 −α ∗ v = 12−0.05∗ v

where α represents how much the price would have to be
reduced in order to sell each additional unit of goods.

These two curves are shown as the blue and red lines,
respectively, in Figure 4. We want to find a combination
of price and volume that are consistent with both the sup-
ply curve and the demand curve. In fact, what we are
looking for is the intersection of these two curves. This
is a price/volume point that satisfies both the consumers
and the producer. As we can see in Figure 4, the price
for goods at this point is called the supplied price and the
volume of goods sold in that scenario is the supplied vol-
ume. The supplied volume is the volume, vs, at which the
price on the supply curve matched the price on the demand
curve. In other words,

ps(vs) = pd(vs)

Note that because of the connection semantics of Mod-
elica, this equation is automatically generated whenver we
connect the Market connector of the consumer and the
producers. This equation combined with the "conserva-
tion equation" generator by the connector which, in the
case of a system containing only a consumer an producer
as the effect of setting the volume values used by both
to be equal, means that for this use case we can trivially
determine that the supplied volume must be:

pd
0 − ps

0
α +β

=
12−10

0.2+0.05
=

2
0.25

= 8

Plugging this supplied value in the supply (or demand)
curve tells us that the supplied price must, therefore, be
10+ 0.2 ∗ 8 or $11.6. To model this in Modelica, we can
create the following two models to represent the supply
and demand curves respectively:

model LinearProducer
"Production with a minimum price and

linear price increase"
extends Interfaces.Producer;
parameter Types.Price min_price "Minimum

price to produce";
parameter Types.PriceSensitivity beta "

Price increase as a function of
volume";

equation
price = min_price + beta*volume;

end LinearProducer;

model LinearConsumer "Linear distribution
of consumers"

extends Interfaces.Consumer;

Figure 3. LinearMarket model

parameter Types.Price max_price "The
largest amount any consumer is
willing to pay for this good";

parameter Types.PriceSensitivity alpha "
Rate of price drop as volume
increases";

equation
price = max_price - alpha*volume;

end LinearConsumer;

With these two models in hand, we can create a system
market model in Modelica as follows:

model LinearMarket
"Market where consumer and producer have

linear relationships"

Components.LinearConsumer consumer(
max_price=12, alpha=0.05);

Components.LinearProducer producer(
min_price=10, beta=0.2);

Components.MarketAnalysis market;
equation
connect(market.producers, producer.market

);
connect(market.consumers, consumer.market

);
end LinearMarket;

A diagram of our system model is shown in Figure 3.
Note that to solve for the supplied price and supplied de-
mand all we need to do is connect the Market connec-
tor of the consumer and the producer. But for this model
we have introduced a special "intermediary" called the
MarketAnalysismodel in the center between the con-
sumer and producer. This MarketAnalysis model en-
forces a market equilibrium condition (just as if we had
directly connected the consumer to the producer) but only
at the start of the simulation. This means that the price that
the consumer is willing to pay has to match the price that
the producer is willing to charge. Furthermore, the vol-
ume of goods that the producer produces must be equal to
the volume of goods that consumers consume.

This solution is found at the start of the simulation.
From that point (and over the following 1 second of simu-
lation time), the MarketAnalysis model perturbs the
system into non-equilibrium states. As a result of this pro-
cess, it is possible to visualize the supply and demand
curves parametrically. The results of the Modelica sim-
ulation are shown in Figure 4.

4.2 Exponential Models
Linear models work well to explain the concept of supply
and demand as well as the idea of supplied price and sup-
plied volume because it is straightforward to find a closed

Modeling Supply and Demand in Modelica

DOI Proceedings of the 13th International Modelica Conference 369
10.3384/ecp19157365 March 4-6, 2019, Regensburg, Germany

2 4 6 8 10 12 14
Volume

10.5

11.0

11.5

12.0

12.5

13.0

Pr
ice

Consumer (demand)
Producer (supply)
Supplied Price

Figure 4. Simulation results for LinearMarket

form solution for two intersecting lines. But linear mod-
els are problematic because they don’t make much sense.
Very quickly the lines cross the axes and leave the first
quadrant. For example, once the demand line crosses the
x axis, the price goes negative. This reflects a situation
where producers would have to pay consumers to take
their products. While there are markets where this effect
could be seen, it isn’t a normal situation and you would
generally have to have supplied many, many consumers at
positive prices before this is likely to happen (something
not usually reflected by a linear demand curve). Simi-
lar problems occur when the supply curve leaves the first
quadrant.

A more realistic model is an exponential model. As
with the linear models, this model also defines a price
point on both the supply and demand curve associated
with a sales volume of zero (i.e., ps

0 and pd
0). But instead

of assuming a linear relationship, we introduce parameters
representing an exponential price decay or growth.

Let’s start with the demand curve. The equation for an
exponential demand curve would be:

pd(v) = pd
0e−kdv

As before, pd
0 represents the maximum that consumers

would be willing to pay. But with this model of demand,
that price falls off exponentially with volume. An impor-
tant characteristic of such a demand curve is that it never
drops below zero. In other words, as the price approaches
zero, the potential volume of sales approaches infinity.

The Modelica code for this model is:

model ExponentialConsumer "Exponential
distribution of consumers"

extends Interfaces.Consumer;
parameter Types.Price max_price "The

largest amount any consumer is
willing to pay for this good";

parameter Real decay(min=0) "Exponential
decay rate as a function of volume";

equation

Figure 5. Exponential curves for consumer and producer

price = max_price*exp(-decay*volume);
end ExponentialConsumer;

The supply curve is slightly different. It is characterized
by the following equation:

ps(v) = pd
0eksv

Again we see pd
0 , the minimum price that goods can

be produced for. But now instead of a linear increase in
price with respect to sales volume, we see an exponential
curve. Whereas the demand curve tapers off with volume,
the supply curve grows exponentially because as more and
more of a finite resource is consumed, the cost of the re-
source sores.

In Modelica, this model can be expressed as:

model ExponentialProducer "Exponential
pricing curve"

extends Interfaces.Producer;
parameter Types.Price min_price "Price at

zero volume";
parameter Real growth(min=0) "Exponential

growth rate as a function of volume"
;

equation
price = min_price*exp(growth*volume);

end ExponentialProducer;

We can combine an exponential models of supply and
demand to create a simple system model as shown in the
following Modelica model:

model ExponentialMarket
"Market where consumer and producer have

exponential relationships"

Components.MarketAnalysis market(minScale
=1, maxScale=2.5);

Components.ExponentialConsumer consumer(
max_price=12, decay=0.04);

Components.ExponentialProducer producer(
min_price=10, growth=0.06);

equation
connect(consumer.market, market.consumers

);
connect(market.producers, producer.market

);
end ExponentialMarket;

The diagram for this model is shown in Figure 5. Sim-
ulating this model we get the results shown by the thick
lines in Figure 6. Note the slight curvature of the lines
vs. the linear model. The curvature would be more pro-
nounced if we considered a wider range of sales volumes.

Modeling Supply and Demand in Modelica

370 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157365

0 1 2 3 4 5 6
Volume

10

11

12

13

14

Pr
ice

Consumer (demand)
Producer (supply)
Supplied Price
Producer (supply) w/ Tax
Supplied Price w/ Tax

Figure 6. Simulation results for ExponentialMarket

Tax Rate: tax_rate

Figure 7. Adding taxation to ExponentialMarket

5 Scenarios
With these exponential models in place, a variety of in-
teresting scenarios open up because we have the build-
ing blocks necessary to start modeling real markets. Be-
cause we have graphical component models we can now
compose these scenarios simply by dragging and dropping
these consumer and producer models down into a diagram
and combining them with various other economic factors.

5.1 Taxation
A very simple adjustment we can make to the mar-
ket is to introduce a tax and see how that impacts
the supply and demand. In our previous example,
ExponentialMarket, the supplied price was $11.16
and the supplied volume was 1.82. Now let us revise the
model to include a model of taxation. The taxation model
itself can be implemented as follows:

model Tax
"Model a tax (increasing effective price

to consumers)"
parameter Types.TaxRate taxRate;
output Types.Price taxRevenue;
Interfaces.Market consumers;
Interfaces.Market producers;

equation
consumers.price = producers.price*(1+

taxRate);
taxRevenue = producers.price*taxRate*

producers.volume;
consumers.volume+producers.volume = 0;

end Tax;

Add this to our overall system, we then get:

model ExponentialMarketWithTaxes

"Market where consumer and producer have
exponential relationships"

Components.MarketAnalysis market(minScale
=1, maxScale=2.5);

Components.ExponentialConsumer consumer(
max_price=12, decay=0.04);

Components.ExponentialProducer producer(
min_price=10, growth=0.06);

Effects.Tax tax(taxRate=0.06);
equation
connect(consumer.market, market.consumers

);
connect(tax.producers, producer.market);
connect(tax.consumers, market.producers);

end ExponentialMarketWithTaxes;

The diagram for this model is shown in Figure 7. Run-
ning this model, which includes the same supply and de-
mand curves, we find that the supplied price has risen from
$11.16 to $11.42 and the supplied volume has dropped
from 1.82 to 1.24.

In the untaxed case, the consumers paid $20.30 for the
goods and all that revenue went to the producers. In the
taxed case, consumer spending dropped to $14.17 and, of
that, only $13.36 went to the producer. The remaining
$0.81 was collected as tax revenue. Note that this seems
like a dramatic effect for a 6% sales tax. But please note
that the supply and demand curves are completely arbi-
trary in this example.

5.2 Raw vs. Finished Goods
The next example involves manufacturing. Specifically,
we have producers of two different raw materials and
those are then manufactured into a finished good which
is sold to consumers. This example demonstrates the con-
cept of complementary goods. Two goods are comple-
mentary if demand for one drives of demand for the other
because purchasers of one may want (or require) the other
good as well.

In order to model our manufacturing system, we must
introduce the following model of the Manufacturer:

model Manufacturer "Combines two types of
goods to form a third"

parameter Real markup;
Interfaces.Market production;
Interfaces.Market supply_A;
Interfaces.Market supply_B;

equation
supply_A.volume + production.volume = 0;
supply_B.volume + production.volume = 0;
production.price = (supply_A.price+

supply_B.price)*(1+markup);
end Manufacturer;

This model acts as both a consumer and a producer. For
each good it produces (to the production market), it
consumes one good from supply_A and another from
supply_B. In addition, the price that it offers its finished
goods for is the price it must pay for the two raw goods
plus some percentage markup.

Modeling Supply and Demand in Modelica

DOI Proceedings of the 13th International Modelica Conference 371
10.3384/ecp19157365 March 4-6, 2019, Regensburg, Germany

Figure 8. SupplyChain model

The final system model, shown in Figure 8, is expressed
in Modelica as follows:

model SupplyChain "Model of manufacturing
supply chain"

Components.Manufacturer manufacturer(
markup=0);

Components.MarketAnalysis market;
Components.ExponentialConsumer consumer(

max_price=12, decay=0.04);
Components.ExponentialProducer producer_A

(growth=0.06, min_price=4);
Components.ExponentialProducer producer_B

(growth=0.06, min_price=6);
equation
connect(market.producers,

manufacturer.production);
connect(consumer.market, market.consumers

);
connect(producer_A.market,

manufacturer.supply_A);
connect(producer_B.market,

manufacturer.supply_B);
end SupplyChain;

For this case, the supplied price for the finished goods
is $11.59 at a supplied volume of 0.87.

5.3 Competition for Resources
We can add an interesting twist to the previous model if
we add additional consumers for one of the raw materials.
This will drive up demand for that good and, as a conse-
quence, increase the price for that particular raw material.
Because our goods are complementary, the manufacturing
process requires both and the price of the finished goods
should rise as a result of the competition for the raw ma-
terials.

In this case, we do not need any new models. As seen
in Figure 9, we can simply extend the SupplyChain
model with another consumer for one of the raw materials,
e.g.,

model ResourceCompetition
extends SupplyChain;
Components.ExponentialConsumer

raw_consumer(decay=0.04, max_price=5)
;

equation
connect(raw_consumer.market,

producer_A.market);

Figure 9. Adding competition for raw materials

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Volume

10.5

11.0

11.5

12.0

12.5

13.0

Pr
ice

Consumer (demand)
Producer (supply)
Supplied Price
Producer (supply) w/Competition
Supplied Price w/Competition

Figure 10. Comparison with and without resource competition

end ResourceCompetition;

We can see from the results, indicated by the thin lines
in Figure 10, that the supplied price of the finished mate-
rials has risen to $11.82 and the supplied volume has been
reduced to 0.37 because of this competition for the raw
materials.

5.4 International Trade
One final example involves international trade. In this
model, shown in Figure 11, we have two distinct con-
sumers and producers. Each is located in their own ge-
ographical region. Left alone, each consumer would trade
only with the producer in their own geographical region.
But if we add the ability to ship goods between the ge-
ographies (with the associated transportation costs), then
we create a global market. But there are other factors that
impact global trade besides just transportation costs. Tar-
iffs may be in place to limit the amount of global trade.
Furthermore, currency exchange rates will also affect the
price of goods.

For our final example, we include all these effects and
the resulting Modelica model is:

Modeling Supply and Demand in Modelica

372 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157365

$

fluctuations

freqHz=1

Figure 11. Model of international trade

model InternationalTrade
Components.ExponentialProducer

foreign_producer(min_price=40, growth
=0.01);

Components.ExponentialConsumer
foreign_consumer(max_price=55, decay
=0.001);

Components.ExponentialConsumer
domestic_consumer(max_price=80, decay
=0.003);

Components.ExponentialProducer
domestic_producer(min_price=50,
growth=0.02);

Components.Trade trade(tariff_AB=0.05);
Modelica.Blocks.Sources.Sine fluctuations

(
amplitude=0.05, freqHz=1, startTime

=0.5,
offset=1.2) "Fluctuation of currency

exchange rates";
Components.Shipping shipping(

shipping_cost=1);
equation
connect(foreign_consumer.market,

foreign_producer.market);
connect(domestic_consumer.market,

domestic_producer.market);
connect(trade.market_B,

domestic_producer.market);
connect(fluctuations.y, trade.xrate);
connect(shipping.remote, trade.market_A);
connect(shipping.local,

foreign_producer.market);

1.20 1.21 1.22 1.23 1.24 1.25

55

60

65

70

Pr
ice

Foreign Price
Domestic Price

1.20 1.21 1.22 1.23 1.24 1.25
Exchange Rate

10

20

30

40

Vo
lu

m
e

Foreign Production
Domestic Production
Foreign Consumption
Domestic Consumption

Figure 12. Price and Volume vs. Exchange Rate

end InternationalTrade;

In this case, the shipping model adds $1 to the cost of
any good that moves between the markets. Similarly, the
trade block handles the currency conversion and im-
poses a tariff of 5% on goods moving from the foreign
market (top) to domestic market (bottom).

In this particular model, there is no
MarketAnalysis block. Instead, the system is
always in equilibrium. However, there is a time varying
component to this model because the curreny rate fluc-
tuates. This gives us a chance to see how the currency
rate influences both consumers and producers in both
geographies.

Figure 12 shows how consumers and producers respond
to changes in exchange rate. Specifically, what we see is
that as the exchange rate increases, the prices in the "do-
mestic region" (at the bottom of Figure 11) rise. As a re-
sult, we can see that while domestic production rises only
slightly and foreign production drops slightly (the blue
lines in bottom plot of Figure 12), consumption of goods
domestically drops while there is a corresponding rise in
consumption by foreign consumers. In other words, as the
exchange rate rises, the foreign produced goods become
less attractive to the domestic market. Since fewer foreign
goods are being shipped away from their home market,
the effective demand drops and so does the price in the
foreign markets which triggers foreign consumers to pur-
chase more.

6 Future Directions
There are a number of additional effects it would have
been interesting to model but time and space constraints
prevented a deeper study of the topic. In particular, we
did not look into market dynamics. There are no states in
these models. While some conditions may change (e.g.,
the exchange rate in the last example), the solutions are
still strictly algebraic.

Modeling Supply and Demand in Modelica

DOI Proceedings of the 13th International Modelica Conference 373
10.3384/ecp19157365 March 4-6, 2019, Regensburg, Germany

One could imagine adding dynamics in several ways.

First, the output of producers could respond (with some
lag) to increasing demand and the potential to increase
revenue through higher volumes of sales (at cheaper mar-
ket prices). Furthermore, we haven’t examined the impact
of stockpiling of resources when prices are relatively low
for the purpose of reselling them when they are higher.

These models point out a few limitations in Modelica as
well. The first is that we might accidentally mix different
goods with an erroneous connection. It would be useful
if we could somehow parameterize the various models in
terms of the underlying types of goods so that a consumer
of light bulbs couldn’t accidentally be connected to a pro-
ducer of turbine blades. It isn’t clear how to formulate
these models so that such mistakes could be statically de-
tected. One approach would be to establish the type of
good as a parameter on the Market connector. How-
ever, this approach would require setting these parameter
values all over the place unless we adopted an approach
similar to how fluid models leverage media models.

Another limitation is related to how supply and demand
curves are expressed. Currently, these curves are instan-
tiated once by each consumer and producer model. How-
ever, initial attempts to model market segmentation (e.g.,
different classes of consumers with different price sensi-
tivities) suggested the potential value of being able to ex-
port these curves so that other models could instantiate
them for their own purposes. The closest physical analogy
would be how some vehicle dynamics libraries express the
elevation of a road surface such that each tire of the ve-
hicle can independently query the road for its elevation.
Such capabilities might allow the calculation of economic
metrics like deadweight loss, etc.

Finally, more complex economic models will almost
certainly require the need to express constraints and ob-
jectives along the lines of what is expressed in Modelica
extensions like Optimica (Åkesson 2008). With such ex-
pressiveness a Modelica compiler may compile such eco-
nomic models into general optimization problems or per-
haps specialized linear programs.

7 Conclusion
In conclusion, this paper discusses how to formulate typ-
ical supply and demand curves as reusable component
models. These component models can then be connected
together to simulate the behavior of a market. Model-
ica semantics ensure that each entity in the market uses a
consistent price and that all goods are properly accounted
for. Additional components have be defined to model the
effects of taxation, transportation, tariffs, manufacturing,
etc.

Although the models here are not meant to be a
complete or rigorous approach to modeling supply and
demand systems, hopefully the discussions here will
provide a reasonable starting point for further devel-
opment. Furthermore, the content of this paper could

assist those intereste in economic models but unfamiliar
with Modelica in creating economic models in Model-
ica. The models described in this paper are provided
under an MIT open source license and can be found at
https://github.com/mtiller/EconomicsLibrary.

References
Åkesson, Johan (2008). “Optimica - An Extension of

Modelica Supporting Dynamic Optimization”. In: Pro-
ceedings of the Modelica Conference, 2008. URL:
https : / / www . modelica . org / events /
modelica2008 / Proceedings / sessions /
session1b3.pdf.

Casella, Francesco, Giovanni Miragliotta, and Luigi
Uglietti (2005). “Analysis of Supply Chain Dynam-
ics through Object Oriented Simulation”. In: DOI:
https://doi.org/10.1007/3-7908-1636-
1_30.

Hutchinson, Emma (2016). Principles of Microeconomics.
OpenStax College. URL: https://pressbooks.
bccampus.ca/uvicecon103/.

Modelica Association (2017). Modelica – A Uni-
fied Object-Oriented Language for Systems Model-
ing. Language Specification Version 3.4. Tech. rep.
Linköping: Modelica Association. URL: https :
/ / www . modelica . org / documents /
ModelicaSpec34.pdf.

Posner, Barry and Farid Tayari (2018). Introduction to En-
ergy and Earth Sciences Economics. Penn State. URL:
https : / / www . e - education . psu . edu /
ebf200.

Taylor, Timothy (2018). Principles of Economics. Open-
Stax College. DOI: 10.24926/8668.1601. URL:
https://doi.org/10.24926/8668.1601.

Zimmer, Dirk and Daniel Schlabe (2012). “Implementa-
tion of a Modelica Library for Energy Management
based on Economic Models”. In: Proceedings of the 9th
International Modelica Conference, pp. 133–142. DOI:
10.3384/ecp12076133. URL: http://www.
ep.liu.se/ecp/076/012/ecp12076012.
pdf.

Modeling Supply and Demand in Modelica

374 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157365

Modelica Modelling of an Ammonia Stripper

DOI Proceedings of the 13th International Modelica Conference 375
10.3384/ecp19157375 March 4-6, 2019, Regensburg, Germany

Modelica Modelling of an Ammonia Stripper
Redford, John and Bisinella, Ana and Saut, Jean-Philippe and Robert, Jacques and Albuquerque, Maria and
Merland, Jean-Pierre and Ghidaglia, Jean-Michel

375

Modelica Modelling of an Ammonia Stripper

J.A. Redford1 A.B. Bisinella De Faria2 J.-P. Saut1 J. Robert2 M. Albuquerque2 J.-P. Merland2

J.-M. Ghidaglia3

1Eurobios SCB, 61 av. du Président Wilson, Cachan, France. jredford@eurobios.com
2Veolia Recherche & Innovation, Chemin de la Digue, Maisons-Laffitte, France.

3CMLA, ENS Paris Saclay, 61 av. du Président Wilson, Cachan, France.

Abstract
This work presents a Modelica model for an ammonia
stripper that is used to process waste (digestate) from a
biogas production unit. The model includes the chemi-
cal balance equations between species in the liquid and
gas, and includes the exchanges between both phases and
the energy consumption of the unit. Results show the ex-
pected behaviour with an increasing pH with time, with
further validation and calibration being necessary once ex-
perimental results are available. This is a novel use of
Modelica designed to expand the library of processes that
are simulated using this approach.
Keywords: nutrients recovery, chemical reactions, process
engineering, environment

1 Introduction
Today, the balance between the requirement for a resource
and its availability has changed. This has led to a paradigm
shift from resource consumption that is followed by a
waste production to a use-and-recover approach, which
converts the waste into a product. However, in order to
reduce environmental impact and increase nutrient recy-
cling there is a growing demand for predictive tools that
might help to better manage these processes and close the
recycling loop.

In this context, anaerobic digestion has been studied
over the last decades and is known today as a process that
allows recovery of large amounts of energy by producing
biogas. However, the residual flow of the digested prod-
uct, known as a digestate, needs to be valorized in order
to fully capitalize on the nutrient recycling, in addition to
the conventional energetic valorization. The digestate has,
among other nutrients, large amounts of nitrogen that can
be used as fertilizers on agricultural land. Traditionally,
the residual nitrogen is treated (by nitrification and deni-
trification for instance) without the aim of recovering the
nitrogen. However, as resource recovery is gaining inter-
est, several technologies are available today that valorize
the nitrogen in the digestate, in order to produce an envi-
ronmental, legislative and cost friendly byproducts.

Among the most used technologies, one may cite am-
monia stripping, struvite precipitation and membrane pro-
cesses. Struvite (NH4MgPO4 · 6H2O) is a slow-release
fertilizer, however its nitrogen concentration is limited

and the precipitation is triggered by magnesium, which
demands the addition of chemical products. Concern-
ing membrane processes, pretreatment techniques are re-
quired in order to increase the membrane lifetime. There-
fore, ammonia stripping is a low cost technique that al-
lows recovery of nitrogen from a liquid phase to a gas
phase, and then via an acid scrubber it is possible to re-
cover a nitrogen salt, such as the ammonium sulphate salt
(NH4)2SO4.

The objective of this study is to develop a model
capable of predicting nitrogen removal from a digestate
and how this is impacted by variation of the main
influencing operational parameters. When calibrated,
this model can be used to predict stripping performance,
envisage other process configurations, optimize recovery
and estimate operational costs. In order to be easily used
in different contexts, the developed model should include
the possibility to simulate both mass and energy balances,
along with the kinetics of the physico-chemical and
liquid to gas transfer reactions involved in the process.
It is also important to have the capacity for expansion
in order to allow future enrichment by experimental
results, as well as the use of the module, both in-situ and
in a larger context of plant-wide modelling approach.

1.1 Process engineering using Modelica
The use of Modelica in chemical process engineering is
developing quickly. While Jain et al. (2017) state that
‘OpenModelica . . . lacks good chemical engineering sup-
port’, much work is under way to correct this. Marx-
Schubach and Schmitz (2017) have created a library and
model for an absorber used in a carbon capture process.
Åkesson et al. (2011) model carbon capture, which in-
volves stripping. They include chemistry for a system of
equations along with calculation of equilibrium equations.
Comparison is made with experimental results. Baharev
and Neumaier (2012) aim to create the foundations of a
general purpose library for chemical process modelling.
Joos et al. (2009) model several chemical processes (ab-
sorption, adsorption and rectification). Küssel et al. (2009)
model rotary kilns (i.e. combustion) and make compar-
isons with computational fluid dynamics (CFD) simula-
tions. Both approaches showing good correspondence,
but Modelica is less computationally demanding, which

Modelica Modelling of an Ammonia Stripper

376 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157375

means that the authors’ aims for real time operation in
control loop is realistic. Cellier and Greifeneder (2009)
carried out simulations of basic reactions to demonstrate
the use of Modelica for simulation of chemical reaction
systems in an object-oriented physically inspired manner.

Windahl et al. (2015) develop a library of thermody-
namic properties and give an air separation column with
multiple stages as a test case. CAP-OPEN (Computer-
Aided Process Engineering-OPEN) is used and there is
strong interest in the interface structure linking Model-
ica and external libraries. Tummescheit and Eborn (2002)
add support to ‘ThermoFluid’ for chemical reactions and
membrane diffusion.

De Canete et al. (2013) use Modelica for simulation of
distillation columns. They have accounted for the column
trays with multiple stacked trays. This work is aimed at
developing a control system with an Neurofuzzy network
approach.

Concerning ammonia stripping, Vaneeckhaute et al.
(2018) recently published a generic nutrient recovery
model (NRM) library that is mainly coded in Modelica
and based on detailed chemical solution speciation and re-
action kinetics for nitrogen recovery.

2 The Model
A simplified model for an ammonia bubble stripper is now
presented. Figure 1 shows the basic configuration of the
simplified stripper along with the inputs, outputs and the
processes under consideration. Digestate enters the strip-
per with a given flowrate and initial composition. Air is
added at the base of the stripper with a given temperature
and relative humidity. At the top, the result is a stripped
gas containing air, water and ammonia. The liquid output
is the digestate with reduced TAN (total ammonia nitro-
gen). Heat is lost from the liquid through warming of the
gas and the liquid to gas water mass transfer (evaporation).
Hence, heating is required to maintain the digestate at the
correct temperature and this represents one of the running
costs of the stripper unit.

With respect to the gas phase, the stripper is split into
slices that are stacked vertically. The liquid phase is as-
sumed to be fully mixed and is represented as a single en-
tity. As the gas bubbles rise they will gradually strip the
ammonia from the liquid phase.

2.1 Chemical equations
In Figure 2 the model inputs are in red and the outputs
are in blue. The internal processes are in green, where the
mass balances include NH3(aq) , NH+

4 , HCO−3 , CO2−
3 ,

CO2(aq) , Norg , H2O , H+ and OH− species for the liq-
uid phase, NH3, CO2and H2O species in the gas phase.
The energy balance includes water vaporisation and air
heating. In order to model this process we must con-
sider the chemical equilibrium between the TAN and DIC
(dissolved inorganic carbon) species, the mass transfer of
NH3, CO2and H2O between liquid and gas, and an en-
ergy balance. The dynamics in the column depend on time

(for both liquid and gas concentrations) and column height
(gas concentration), meaning that the stripping column has
to be discretised spatially and temporally.

2.1.1 Modelling pH and species concentrations
In the liquid phase three conjugate acid-base pairs are con-
sidered here; NH3(aq) /NH+

4 , HCO−3 /CO2−
3 and HCO−3

/CO2(aq) . Initially focusing on nitrogen species, two reac-
tions might be written as follows

NH3 +H+→ NH+
4 , (1)

with reaction rate ka (kinetic constant of association), and

NH+
4 → NH3 +H+ , (2)

with a reaction rate kd (kinetic constant of dissociation).
Therefore, for the association, it is possible to relate the
species concentrations with

d[NH+
4]

dt
= ka[NH3][H+] , (3)

and for the dissociation

−d[NH+
4]

dt
= kd [NH+

4] . (4)

The absolute association rate equals dissociation, thus

ka[NH3][H+] =kd [NH+
4] , (5)

[NH3][H+]/[NH+
4] =

kd

ka
= Ka , (6)

where Ka is the acid dissociation constant. Similarly,
equations for chemical equilibrium might be arranged for
NH+

4 , for example, as “Association - Dissociation”, giv-
ing

Chemical rateNH+
4
=−kd [NH+

4]+ (ka[NH3][H+]) . (7)

Gas containing air, ammonia & water

Air

Digestate
from biogas
production

Processed
digestate

Figure 1. Stripping column exchanges.

Modelica Modelling of an Ammonia Stripper

DOI Proceedings of the 13th International Modelica Conference 377
10.3384/ecp19157375 March 4-6, 2019, Regensburg, Germany

This same approach can be applied to the other chemi-
cal reactions. Values for Ka are found from the LLNL1

database in the form of − logKa. These values might also
be expressed as pKa, which represents − logKa. (Note
that, − log[H+] = pH.)

Using the pKa and pH definition equations, the liquid
NH3 fraction, which will be partially transferred to the gas
in the transfer step, can be calculated using

fNH3 =
10

pH−pKa,NH+
4 /NH3

10
pH−pKa,NH+

4 /NH3 +1
. (8)

Therefore, from TAN, the ammonia concentration in liq-
uid is given by

CNH3 = fNH3TAN , (9)

and by definition,

fNH+
4
= 1− fNH3 . (10)

The same classical approach can be applied to find the
DIC composition, which will not be given here to save
space. The values of ka and kd depend on the kinetics
and can be obtained experimentally. However, the kinetic
rate constants are fixed at high values to ensure that the
species present in the system almost instantaneously reach
chemical equilibrium. This approach was proposed by
Lizarralde et al. (2015).

2.1.2 Gas transfer

At time t the liquid concentrations will be constant across
all the column slices, i.e. completely mixed, and the
gas concentration will change with height/slice. As with
the real process, equilibrium between aqueous and bubble
gaseous phases is not reached by top of column, mean-
ing that the bubbles will leave the stripper without being

1Lawrence Livermore National Laboratory

Stripped gas char.

Air char.

Dig. In char. Dig. Out char.

+Energy loss

+ Operational
params.

H

h

S
0

S
1

S
H/h-1

Mass bal.
- Liq. = f(t)
- Gas = f(t,z)

Energy bal.
 = f(t)

Figure 2. Stripping column schematic.

saturated in NH3. The mass transfer from the liquid to
each gas slice is calculated using the mass transfer rate
described in Matter-Müller et al. (1981). For NH3

MNH3,liquid to gas = kL,NH3aVL(CNH3,liq−C∗NH3
) . (11)

The gas bubbles are not perfectly spherical, and they
will also coalesce and turbulence will cause them to break
up. So, it is not possible to calculate the transfer area a.
Also, a real digestate contains a significant concentration
of suspended solids and other ionic species, which makes
deriving a value of mass transfer coefficient kL difficult.
Instead, a global value of kLaNH3 is found experimentally,
hence

MNH3,liquid to gas = kLaNH3VL(CNH3,liq−CNH3∗) . (12)

Considering liquid gas transfer, Henry’s law describes
relationship between gas concentration (expressed by its
partial pressure in atm) and the saturation liquid concen-
tration C∗liq. For instance, in the case of NH3

NH3(aq)↔ NH3(g) with

Ke,NH3(25◦C) =[NH3(g)]/[NH3(aq)]

=0.016atm/(mol/kg) ,

(13)

with [NH3(g)] expressed as a partial pressure of NH3.
Also, from Matter-Müller et al. (1981)

C∗liq =Cg/Hcc , (14)

where Hcc is Henry’s dimensionless constant. 1/Hbp val-
ues are available in atm/(mol/kg) units and conversion to
a dimensionless constant can be obtained using

Hbp ≈Hcp/ρH2O , (15)
Hcc =HcpRT , (16)

where ρH2O is the solvent density (kg/m3), R is the uni-
versal gas constant (8.206×105 m3 atm/(K mol), T is the
temperature (K) and Hcp is given in mol/(m3 atm).

The mass balance equations for all species in both liq-
uid and gas phases can be found from chemical equi-
libria and liquid/gas transfer equations. For any liquid
species, HA, present in the column and supposing that
HA↔ H++A− , the mass balance can be written as

dMHA,liquid

dt
= mHA,in,dig−mHA,out,dig

+ka,HA

(
KaCHA(t)−CH+(t)CA−(t)

)
VL

−
∫

mHA,gasdh .

(17)

The last term is neglected if species does not have liquid/-
gas transfer and it is the integrated amount of the trans-
ferred species over the column height that needs to be con-
sidered in the liquid mass balance.

Modelica Modelling of an Ammonia Stripper

378 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157375

Liquid

Q
dig,in

 Q
dig,out

Q
gas,out

Q
gas,in

NH
3
, HCO

3

-, H
2
O

∫m
HA,gas

dh

N
S

i g
a

s slice
s

C
HA,liq

Figure 3. Proposed model structure

For HA gas species, the mass balance for any slice Si is

dMHA,gas

dt
=mHA,in,gas|Si −mHA, out, gas|Si

+(kLaS(CHA,liq(t)−C∗HA(t,h))Vsi) .
(18)

For slice Si, the volume tends to zero (sufficiently small
slices), thus the previous equation becomes

dMHA,gas

dt
=−dMHA(t,h)

+(kLaS(CHA,liq(t)−C∗HA(t,h))Adh) .
(19)

2.1.3 Energy balances

A simple approach is used for the energy balance calcu-
lation. The input air flow is considered to change quickly
enough to the temperature of the column that it is instan-
taneous. The gas will also be instantaneously saturated
by water (with respect to the new gas temperature) and
thus, the mass of evaporated water can be calculated for
the whole column.

Finally, the energy lost by the column when evaporating
the water (in the output gas) can be calculated using the
water vaporization enthalpy and the energy necessary to
heat the air input from ambient temperature to the column
temperature.

3 Construction of Modelica model

3.1 Compilation of model equations

Figure 3 shows how the liquid and gas are to be linked
in the model. The NH3 species calculation progresses as
follows. Given the liquid pH, pKa and TAN, fNH3 , fNH+

4
and then CNH3 , CNH+

4
can be calculated from (8), (9) and

(10).

The initial concentrations are calculated using

[NH3(aq)]0 = fNH3TAN0/MMTAN (20)
[NH4]0 = fNH4TAN0/MMTAN (21)

Norg =TKN−TAN (22)

[HCO−3]0 = fHCO−3
DIC0 (23)

[CO2−
3]0 = fCO2−

3
DIC0 (24)

[CO2(aq)]0 = fCO2(aq)DIC0 (25)

where mass fractions are found from equations (8), (10)
and similar for DIC, and the molecular mass of TAN is
14g/mol. TKN is Total Kjeldahl Nitrogen. DIC0 is taken
as 360mol/m3. The initial concentrations of hydrogen ion
and hydroxide are

[H+]0 =10−pH0 (26)

[OH−]0 =Ka,OH−/H+/[H+]0 (27)

This step is only needed to find the initial concentration
of each species, and then the time dependent concentra-
tions are found by resolution of the system of conserva-
tion equations. The concentration of H+ is known during
simulation meaning that pH is also known.

Equations (17) and (19) are solved for liquid and gas,
respectively. The digestate inflow is assumed to be the
same as the initial composition; pH0, TAN0, DIC0, TKN0.
Then we can calculate

mNH3,in,dig = Qdig,inCNH3,0 , (28)

while the digestate outflow has the same composition as
the tank, hence

mNH,out,dig = Qdig,outCNH3(t) . (29)

Qdig,out is the inflow minus the amount of evaporated wa-
ter, which can be calculated independently of other equa-
tions as proposed at the end of this section

Qdig,out = Qdig,in−mH2O/ρH2O(aq) . (30)

In equation (17), mass transfers resulting from the change
in concentration caused by changes in equilibrium are in
the term

ka(KaCNH+
4
(t)− (CH+(t)CNH3)VL) . (31)

We need to make the gas calculation to find
∫

mHA,gasdh
using equation (19) for each slice (note that it is easier to
use equation (18) as the slices have a finite thickness, i.e.
not tending towards zero). For each slice

dMNH3,gas

dt
=mNH3,in,gas|Si

−mNH3,out,gas|Si +mNH3,lg|Si ,
(32)

Modelica Modelling of an Ammonia Stripper

DOI Proceedings of the 13th International Modelica Conference 379
10.3384/ecp19157375 March 4-6, 2019, Regensburg, Germany

Figure 4. Mass transfers in and out of each gas slice.

where the liquid to gas transfer is mNH3,lg|Si =
kLaNH3(CNH3,liq(t)−C∗NH3

(t)|Si)VSi and the mass transfers
in and out of each gas slice are summarized in Figure 4.
The bottom slice has

mNH3, in, gas = QairCNH3, gas,N0 = 0 , (33)

and for subsequent slices, the inter-slice mass flow rate for
the NH3 species is

mNH3, in, gas|Si = mNH3, out, gas|Si−1 . (34)

The liquid concentration CNH3, liq is known from earlier
calculations and the saturation concentration is calculated
from

C∗NH3
=CNH3, gas|Si/Hcc

NH3
, (35)

where Hcc
NH3

= ρH2OHbp
NH3

RTL and ρH2O = 103 kg/m3, R =

8.206× 10−5 m3 atm / (K mol) and 1/Hbp
NH3

= 0.016
atm/(mol/kg). The liquid temperature TL is chosen by the
user, where 45◦C is used in the demonstration shown later.

In order to calculate mNH3,out,gas|Si in equation (32), the
gas passing out of the slice is taken to have the same
concentration as found in the slice, which is possible be-
cause the slices are sufficiently small. Hence Cg,Si =
MNH3,gas/(ρairVSi) and we can then say

mNH3,out,gas|Si =Cg,SiρairQair . (36)

The system is solved simultaneously for t and h, and for
each dM/dt (or V dC/dt), where the only unknown vari-
able in each equation is the concentration of the com-
ponent itself or another component that also has its own
dM/dt. Thus the number of equations and unknowns are
the same, meaning that Modelica can now be used to find
MNH3,gas(t) for each slice, for a given initial MNH3,gas(0).

The total mass transfer of NH3 from liquid to gas is
calculated by summing across the slices∫

mHA,gasdh = ∑
Si

mNH3,lg|Si , (37)

which can then be used in (17). Equation (17) will apply
to NH3, CO2−

3 , HCO−3 H2O, H+, NH+
4 , Norg, and so on.

The calculation given above applies to reactions including
HCO−3 , while all other HA species are the same apart from
not having the liquid to gas mass transfer term at the end
of (17).

The liquid species equations are too large to be repro-
duced here, but they have the form

dMHA

dt
= mHA,in−mHA,out

+ka,HB/HA

(
Ka,HB/HA[HB]− [H+][HA]

)
VL

−
∫

mHA,gasdh ,

(38)

with the last term only included if there is liquid to gas
mass transfer.

In the case of Norg the reaction only goes in one direc-
tion (to NH+

4) and is controlled by kammonification (it should
be easy to add saturation/inhibition coefficients later on).
kammonification has to be calibrated later when experimental
data is available, but it can be set, for the moment, as a low
value.

It is assumed that CH2O → 1 because water is the sol-
vent, and so it will not appear in the reaction equations
(except for water evaporation). Values for pKa, and Ka are
given by the formulas as a function of temperature.

The equations used for the gas phases of CO2 and NH3
are then calculated. The calculations of C∗ for the gas
phase species in a slice are made using

C∗NH3g =CNH3g/(ρH2ORHbp
NH3gTL) , (39)

C∗CO2g =CCO2g/(ρH2ORHbp
CO2gTL) . (40)

with the mass transfer rate to each slice from the liquid

(mlg,NH3g)sl =kLaNH3VL,sl(CNH3l−C∗NH3g) , (41)

(mlg,CO2g)sl =kLaCO2VL,sl(CHCO3 −C∗CO2g) , (42)

and note the use of CHCO3 in (42).
We must calculate concentrations in the gas and for that

it is necessary to have a gas volume per slice as we are
working with the amount of substance (moles), hence

CNH3g =
MNH3g

ρairVL,slαgas
, (43)

CCO2g =
MCO2g

ρairVL,slαgas
. (44)

Note, αgas is the gas volume fraction of liquid, which is
needed if we would like to know the concentration relative
to gas volume (moles of NH3g / m3 of gas).

The out-flowing molecular masses from a slice for each
species are

(mNH3g,out)sl =(CNH3g)slmair, (45)
(mCO2g,out)sl =(CCO2g)slmair, (46)

where the slices are connected by making

(mNH3g,in)sl =(mNH3g,out)sl−1, (47)
(mCO2g,in)sl =(mCO2g,out)sl−1. (48)

Modelica Modelling of an Ammonia Stripper

380 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157375

Hence, the rate of change in moles of substance for each
gas species in a slice is

dMNH3g

dt
=mlg,NH3g +mNH3g,in−mNH3g,out , (49)

dMCO2g

dt
=mlg,CO2g +mCO2g,in−mCO2g,out , (50)

assuming that the H2O immediately saturates the gas at
the gas inflow temperature (ambient temperature). The gas
will first be heated to achieve the column temperature and
then an amount of water will be evaporated.

The rate of water mass evaporation can be calculated
with

mH2O = Qair25◦Cρair25◦C(XT −X25◦C) (51)

where mH2O is the rate of evaporation in kg water/h,
Qair 25◦C is the volumetric flowrate of air at 25◦C in m3/h,
ρair 25◦C is the density of air at 25◦C in kg/m3, XT is the ab-
solute humidity of water at the working liquid temperature
TL in kg water/kg “dry” air, X25◦C is the absolute humidity
of water at the inlet air temperature in kg water/kg “dry”
air.

The saturation pressure (in Pa) depends only on the air
temperature (in ◦C) and is calculated using the Magnus
formula

p∗H2O = 611.23exp
(

17.5043T
T +242.2

)
, (52)

where * denotes saturation. Partial pressure is calculated
using pH2O = RH p∗H2O, where RH is the relative humidity.
The effect of humidity is seen in equations (53) and (51);
in the case of XT we have 100% RH because the air is
instantaneously saturated, and for X25◦C we have 60% RH.

The absolute humidity in “dry” air X (kg water/kg “dry”
air) is found with

X =
pH2O

Ptot− pH2O

18
28.84

, (53)

and the air density depends only on temperature (in ◦C)
and can be calculated with

ρair = 1.292
273.25

273.15+T
pH2O

Ptot
, (54)

The rate of energy consumed by the system for water
evaporation, in kJ/h, is then calculated by

Fevap = mH2O∆Hvap water , (55)

where ∆Hvap water is the enthalpy of vaporization of water
calculated using the correlation

∆Hvap water =
−0.0439TL +45.084

0.018
. (56)

Note, this equation has TL in ◦C and ∆H with units J/kg.
The air temperature is raised to the liquid temperature,
meaning that

Fair = QairCp,airρair(TL−TG) . (57)

The temperature of the bubble stripper is maintained by a
heater and Fevap +Fair is the power consumed.

3.2 Modelica implementation
The stripper model contains the definition of several
smaller submodels (Figure 5). Liquid, gas and evaporated
water have their own models. The gas phase is spatially
1D-discretised, as shown for the model in Section 2. This
discretisation is achieved through the use of a 1D array of
Slice models, with each slice being an elementary volume
cell. Figure 5 shows the different connectors used to link
the submodels.

The model is meant to be one component in a larger
set or library, so the limit conditions are not defined in
the stripper component, but are instead defined in external
components (Figure 6).

Species are declared using the enumeration class type,
e.g. species in the liquid phase

type LSpecies = enumeration(NH3l, NH4,
Norg, HCO3, CO32, CO2l, Hp, OH);

constant LSpecies NH3l = LSpecies.NH3l;
constant LSpecies NH4 = LSpecies.NH4;
constant LSpecies Norg = LSpecies.Norg;
constant LSpecies HCO3 = LSpecies.HCO3;
constant LSpecies CO32 = LSpecies.CO32;
constant LSpecies CO2l = LSpecies.CO2l;
constant LSpecies Hp = LSpecies.Hp;
constant LSpecies OH = LSpecies.OH;

Then balance equations, such as

dMNH3,liquid

dt
= mNH3,in,dig−mNH3,out,dig

+ka,NH4

(
KaCNH4(t)−CH+(t)CNH3(t)

)
VL

−
∫

mNH3,gasdh ,

(58)

(see Eq. (17)), are easily written in Modelica code as

der(Ml[NH3l]) = mdig[NH3l] + mdigout[NH3l]
+ kaNH4 * (KaNH4(liqGas.TL) * CL[NH4]

- CL[Hp] * CL[NH3l]) * VL +
liqGas.mlgtot[NH3lg];

given that we have previously defined2

AmountSubstance Ml[LSpecies] "molar mass
of each liquid species";

SI.MolarFlowRate mdig[LSpecies] "molar
mass inflow rate of digestate of each
species";

SI.MolarFlowRate mdigout[LSpecies] "molar
mass outflow rate of digestate of
each species";

AcidAssConst kaNH4 "acid association
constant";

SI.Concentration CL[LSpecies] "liquid
concentration of each species";

SI.Volume VL "liquid volume";

with function KaNH4 and a connector LiqGas of type
LiquidGas (Figure 5). Note that there are differences

2Units prefixed with SI are from package Modelica.SIunits. The
other ones are custom units.

Modelica Modelling of an Ammonia Stripper

DOI Proceedings of the 13th International Modelica Conference 381
10.3384/ecp19157375 March 4-6, 2019, Regensburg, Germany

liquid in

liquid out

air in

gas out

Port

Liquid+Gas

Liquid

Air

H20Gas

Connector type Variables Species

Figure 5. Stripper hierarchical model as implemented in Modelica. The stack of slices defines the spatial discretisation of the gas
phase. The number of slices can be varied, with four being represented in the this figure. The connections between the slices are
created automatically inside a for loop. The table lists the different connectors used in the stripper model, with their variables.
Some of the variables are arrays (e.g. concentration in Port). Each element of an array is related to a chemical species in the
right-hand column of the table.

Gas Sink

gasIn

Air
Q = 0.0083 m3/s
 T = 298.15 K
 RH = 60%

airOut

Qdig = 8.3e-06 m3/s

Digestate
source

liquidOut

liquidInlet

stripper

liqIn

liqOut

airIn

gasOut

Liquid

Sink

Figure 6. Modelica stripper model connected to other models to
specify limit conditions.

in the signs before the flow rate variables. In Modelica
models, the flow variables are signed3 so that the outflow
variables are added in the Modelica equations.

4 Results
The trend for the change in pH found by the simulation
(Figure 7) is similar to that observed in experiment, but
time scales differ. It will be necessary to make careful
studies to find good values for all parameters before reli-
able predictions can be made.

5 Conclusion
A simple model for an ammonia stripper has been created
using Modelica, which is a further demonstration of the
use of Modelica in process engineering applications for
problems including chemical reactions. The correct trend
has been shown by results with increasing pH with time.
There is now a need for experimental data to further val-
idate and calibrate the model. Depending on the compar-
ison with experiment, improvement can be made by con-
sidering the high ionic strength of the digestate, where the
concentration needs to be corrected using activity coeffi-
cients. Compressor and pump calculations could also be

3Positive if the corresponding entity enters the component, negative
if it leaves.

Modelica Modelling of an Ammonia Stripper

382 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157375

0 2 4 6 8 10
8

9

10

11

time [h]

p
H

Figure 7. Change in pH with time.

made.

References
Johan Åkesson, R Faber, CD Laird, K Prölss, H Tummescheit,

S Velut, and Y Zhu. Models of a post-combustion absorp-
tion unit for simulation; optimization and non-linear model
predictive control schemes. In Proceedings of the 8th Inter-
national Modelica Conference; March 20th-22nd; Technical
Univeristy; Dresden; Germany, number 063, pages 64–74.
Linköping University Electronic Press, 2011.

Ali Baharev and Arnold Neumaier. Chemical process modeling
in modelica. In Proceedings of the 9th International MODEL-
ICA Conference; September 3-5; 2012; Munich; Germany,
number 76, pages 955–962. Linköping University Electronic
Press, 2012.

François E Cellier and Jürgen Greifeneder. Modeling chemical
reactions in modelica by use of chemo-bonds. In Proceed-
ings of the 7th International Modelica Conference; Como;
Italy; 20-22 September 2009, number 043, pages 142–150.
Linköping University Electronic Press, 2009.

J Fernandez De Canete, Alfonso Garcia-Cerezo, Inmaculada
García-Moral, P Del Saz, and Ernesto Ochoa. Object-
oriented approach applied to anfis modeling and control of
a distillation column. Expert Systems with Applications, 40
(14):5648–5660, 2013.

Rahul Jain, Kannan M Moudgalya, Peter Fritzson, and Adrian
Pop. Development of a thermodynamic engine in openmod-
elica. In Proceedings of the 12th International Modelica Con-
ference, Prague, Czech Republic, May 15-17, 2017, num-
ber 132, pages 89–99. Linköping University Electronic Press,
2017.

Andreas Joos, Karin Dietl, and Gerhard Schmitz. Thermal sep-
aration: An approach for a modelica library for absorption;
adsorption and rectification. In Proceedings of the 7th Inter-
national Modelica Conference; Como; Italy; 20-22 Septem-
ber 2009, number 043, pages 804–813. Linköping University
Electronic Press, 2009.

Uwe Küssel, Dirk Abel, Matthias Schumacher, and Martin
Weng. Modeling of rotary kilns and application to limestone

calcination. In Proceedings of the 7th International Model-
ica Conference; Como; Italy; 20-22 September 2009, number
043, pages 814–822. Linköping University Electronic Press,
2009.

I Lizarralde, T Fernández-Arévalo, C Brouckaert, P Vanrol-
leghem, DS Ikumi, GA Ekama, E Ayesa, and P Grau. A new
general methodology for incorporating physico-chemical
transformations into multi-phase wastewater treatment pro-
cess models. Water research, 74:239–256, 2015.

Thomas Marx-Schubach and Gerhard Schmitz. Optimizing the
start-up process of post-combustion capture plants by vary-
ing the solvent flow rate. In Proceedings of the 12th Interna-
tional Modelica Conference, Prague, Czech Republic, May
15-17, 2017, number 132, pages 121–130. Linköping Uni-
versity Electronic Press, 2017.

Christine Matter-Müller, Willi Gujer, Walter Giger, and Werner
Stumm. Non-biological elimination mechanisms in a biolog-
ical sewage treatment plant. In Water Pollution Research and
Development, pages 299–314. Elsevier, 1981.

Hubertus Tummescheit and Jonas Eborn. Chemical reaction
modeling with thermofluid/mf and multiflash. In Proceed-
ings of the 2th Modelica Conference, 2002.

C. Vaneeckhaute, F.H.A. Claeys, F.M.G. Tack, E. Meers, E. Be-
lia, and P.A. Vanrolleghem. Development, implementation,
and validation of a generic nutrient recovery model (nrm) li-
brary. Environmental Modelling & Software, 99:170 – 209,
2018.

Johan Windahl, Katrin Prölss, Maarten Bosmans, Huber-
tus Tummescheit, Eli van Es, and Awin Sewgobind.
Multicomponentmultiphase-a framework for thermodynamic
properties in modelica. In Proceedings of the 11th Interna-
tional Modelica Conference, Versailles, France, September
21-23, 2015, number 118, pages 653–662. Linköping Uni-
versity Electronic Press, 2015.

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 383
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

Algorithms for Component-Based 3D Modeling
Neumayr, Andrea and Otter, Martin

383

Algorithms for Component-Based 3D Modeling

Andrea Neumayr1 Martin Otter1

1DLR, Institute of System Dynamics and Control, Germany, {andrea.neumayr,martin.otter}@dlr.de

Abstract
The experimental modeling environment Modia3D is used
to test and evaluate ideas to model and simulate larger and
more complex 3-dimensional systems than is possible with
a pure equation-based modeling system such as current
Modelica. The goal is to closely combine equation-based
modeling with component-based 3D modeling as used in
modern game engines. In this article some key algorithms
are discussed that have been developed for Modia3D. The
overall objective is to utilize the results for the design of
the next Modelica language generation.
Keywords: Modelica, Modia, Modia3D, Julia, DAE,
equation-based modeling, component-based modeling,
multi-body, collision handling

1 Introduction
The Modelica standard library1 supports the modeling of 3-
dimensional multi-body systems with its sub-library Mod-
elica.Mechanics.MultiBody (Otter et al., 2003). There have
been several attempts to improve this library with regards
to visualization, collision handling or support of larger
models, for example (Otter et al., 2005; Höger et al., 2012;
Hofmann et al., 2014; Elmqvist et al., 2015; Bardaro et al.,
2017). Over the years it was recognized that this is hard be-
cause the technology of current Modelica has some natural
limitations:

• No modern data structures, like dictionaries or trees,
or objects with member functions are supported in
Modelica, but they are standard in high level program-
ming languages and are needed to model for example
3D meshes or collision detection algorithms. Then,
the only choice is to interface external programs with
Modelica models: Developing such algorithms from
scratch in, say, C++, and then interface to Modelica
is too much effort.
Using existing code is hard either, because only par-
tial, incompatible solutions are available. For exam-
ple, it would be nice to interface the Bullet Physics
SDK2 to Modelica to get a state-of-the-art collision
handling package. However, this engine determines
only the penetration depth of colliding bodies, but for
variable-step solvers in offline simulation also zero-
crossing functions for DAE-solvers are needed that
require the Euclidean distance between non-colliding

1https://github.com/modelica/ModelicaStandardLibrary
2https://github.com/bulletphysics/bullet3

shapes as well (Neumayr and Otter, 2017). Visualiza-
tion, collision handling, mass properties calculations
require geometric information. Integrating such dif-
ferent description forms in Modelica is hard due to
the missing modern data structures. Whenever such
packages are integrated, shapes need a unique identifi-
cation, but this feature is hard to provide in Modelica.

• Modelica tools typically support only generic sym-
bolic transformation algorithms. It is hard or impos-
sible to utilize algorithms which are specialized for
a particular model class, for example to remove re-
dundant equations of nonlinear-equation systems due
to kinematic loops, to compute a common mass and
center of mass of rigidly connected bodies and use
it in the simulation, or to use an O(n) multi-body al-
gorithm. In Modelica, a user would have to use a
pre-processor that generates Modelica code, see e.g.
(Elmqvist et al., 2009).

• Since Modelica compilers typically expand the mod-
els for the symbolic engine, the same equation is
analyzed many times. For example if a mechanical
system has 100 bodies, then the equations of a body
are present 100 times in the generated code. C or C++
compilers are not designed to handle huge code parts
in a good way. Therefore, there are natural limita-
tions on the model size. For fluid models there are
some solutions available, where code for a component
is generated only once and reused many times, e.g.
(Sahlin and Grozman, 2003). For multi-body systems
such solutions might be possible, but yet need to be
developed.

The article Component-Based 3D Modeling of Dynamic
Systems (Neumayr and Otter, 2018) starts an approach to
cope with the underlying inherent issues. The basic idea is
to combine 3D modeling techniques closely with equation-
based modeling à la Modelica within one high level pro-
gramming environment. Modia3 (Elmqvist et al., 2016,
2017) is used for the equation-based modeling. It is imple-
mented with the Julia programming language4 (Bezanson
et al., 2017). Julia allows to program numerical algorithms
conveniently on a high level. It supports modern data struc-
tures, multiple dispatch, metaprogramming, has a just-in-
time-compiler and has excellent performance benchmarks
relative to C.

3https://github.com/ModiaSim/Modia.jl
4https://julialang.org

Algorithms for Component-Based 3D Modeling

384 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

Modia utilizes Julias metaprogramming features to in-

tegrate an equation-based modeling language with a pro-
gramming language (e.g. a Modia model can be stored
in a dictionary that in turn is inquired in another Modia
model to select and use a submodel from this dictionary).
Modia3D5 is designed to model 3D systems, initially only
mechanical systems, but it shall be expanded into other
domains in the future. It is implemented in Julia and uti-
lizes ideas of multi-body programs and game engines. In
the near future, Modia and Modia3D shall be closely in-
tegrated, e.g. using a Modia3D model in Modia or using
Modia models in Modia3D. Up to now, Modia3D is im-
plemented for functionality and not tuned for efficiency.
Therefore, there are no benchmarks yet and in particular no
comparison with Modelica models. For animation the free
community edition as well as the professional edition6 of
the DLR Visualization library7 (Bellmann, 2009; Hellerer
et al., 2014) are used. The overall goal is to apply the
results of the Modia/Modia3D prototyping into the design
of the next Modelica language generation.

The user’s view of Modia3D was introduced in (Neu-
mayr and Otter, 2018) to show the very flexible definition
of 3D systems. In this article, several key algorithms are
discussed which have been developed for the Modia3D
prototype.

2 Component-Based 3D Modeling
Modia3D has two design patterns: the component-based
and the hierarchical structure. The ideas for component-
based structuring are from modern game engines, such as
Unity or Unreal Engine, which have a component-based
design. In the context of game engines a coordinate system
is located in 3D and has a container with optional com-
ponents (in Unity such an object is called GameObject8,
in Unreal Engine it is named Actor9, and in Three.js it is
called Object3D10). Each of these components has optional
properties such as geometry, visualization, dynamics, colli-
sion properties, light, camera, sound, etc., see for example
(Nystrom, 2014)11. This is a very flexible way to define
many optional components and variants and treat them
in a modular way. In this paper, this very special design
of the generic component-based design pattern is called
component-based 3D modeling. The Julia programming
language is particularly suited for this programming pat-
tern. In Section 2 a brief overview to component-based 3D
modeling and the features used in this paper is given.

Hierarchical structuring for grouping, aggregating and
defining 3D objects is performed with the Modia3D macro

5https://github.com/ModiaSim/Modia3D.jl
6https://visualization.ltx.de/
7http://www.systemcontrolinnovationlab.de/the-dlr-visualization-

library/
8https://docs.unity3d.com/Manual/GameObjects.html
9https://docs.unrealengine.com/en-us/Engine/Components

10https://threejs.org/docs/index.html#api/core/Object3D
11http://gameprogrammingpatterns.com/component.html

@assembly. A Julia macro is a metaprogramming12 lan-
guage element and starts with @. It generates an abstract
syntax tree (AST) of Julia code which is automatically com-
piled and executed at the line where the macro is called.
For further information, see (Neumayr and Otter, 2018).

Object3D

In Modia3D, component-based 3D modeling is performed
with so-called Object3D objects. An Object3D consists
of a 3D coordinate system that has optional associated
properties collected in the data container. Furthermore,
an Object3D stores connections to other Object3Ds, via
joint, force, or sensor elements (see Figures 2, 1). The code-
snippet13 of the following Julia constructor call14 creates a
new Object3D object obj:

1 obj = Object3D(parent,data,r=[0,0,0],
2 R=eye(3),fixed=true)

Each obj can be defined relative to a parent Object3D,
with the position vector r and the rotation matrix R. It is
rigidly connected to its parent if fixed=true, and it
can move freely if fixed=false. The initial position
and rotation matrix is defined with r, R. An Object3D is
said to be a reference Object3D, if no parentObject3D is
given. The 14 Object3Ds of Figure 2 demonstrate different
properties and are used below to explain a core algorithm.

Figure 1. Object3D defined relatively to its parent.

Joint Object

Two Object3Ds can be connected via a joint. In Figure 2
there are several joints, one joint is e.g. between obj2 and
obj4.

3 joint1 = Revolute(obj2,obj4;axis=3)

A reference to the revolute joint is stored in obj4. In case
the joint introduces a kinematic loop, it is replaced inter-
nally by a cut-joint (in Figure 2 this happens e.g. with the
joint between obj5 and obj13). A cut-joint is referenced
by the two Object3Ds that are constrained by it.

12https://docs.julialang.org/en/stable/manual/metaprogramming/
13For better reference every code-snippet is marked with a unique line

number on the left-hand side.
14When calling a Julia function, all optional keyword arguments

(name-value pairs) can be given in any order. They are set after the
positional arguments (here: parent and data).

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 385
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

root

obj1

joint

cut-joint

mass

collide

visible

force element
obj3

obj2

obj4

obj5

obj9

obj10

obj6

obj8

obj7

obj13

superObject2

superObject3

superObject5

superObject6

superObject4

fE

cJ

obj11

obj12

superObject1

Figure 2. 14 Object3Ds with different properties like they are allowed to collide, can have a mass, are visible and/or can have a
force element, are grouped into six rigidly attached general super-objects disjunct via joints and cut-joints.

obj1 | obj2 | obj3
obj4

obj6 | obj7
obj9

obj13

[3, 4]

[5, 6]

[6]

obj1 | obj3

obj7 | obj8

obj1 | obj2 | obj3
obj4

obj6 | obj7 | obj8
obj9 | obj11
obj12 | obj13

obj10

[2]

[3]

[4]

[5]

[6]

noCPairs

super-objects collection

obj11

obj12

collision-super-object mass-super-object force-super-object visualization-super-object
indices of
super-objects

canCollide hasMass canCollide ||
hasJoint ||
hasForceElement

isVisible &&
!hasJoint && !canCollide &&
!hasMass && !hasCutJoint &&
!hasForceElementallVisuElements = [obj2 | obj4 | obj7 | obj10 | obj11 | obj12]

forceElements = [fE]
cutJoints = [cJ]

[1]

Figure 3. A super-object collection holds four different super-objects types for collision, mass, force computation, and visualization.

Force Object

Two Object3Ds can be connected via a force element. In
Figure 2 there is a force element between obj11 and
obj8.

4 spring = Spring(obj11,obj8;c = 1e3)

A force element is referenced by the two Object3Ds on
which it is acting.

Geometry Object

A geometry, such as a sphere, box, cylinder, or a mesh can
be defined and associated with an Object3D. For example,
a sphere is associated with obj4 in Figure 2.

5 sphere1 = Object3D(obj4,Sphere(0.9),
6 r=[0,0,0.8])

Visualization Object

Visualization objects are an interface to the DLR Visu-
alization library (Bellmann, 2009; Hellerer et al., 2014).
For defining the visualization properties a Material ob-
ject has to be associated to a geometry object, or spe-
cial visualization objects can be used (for example a
CoordinateSystem). The following constructor call
generates a new Material object and associates it to a
sphere geometry.

7 vmat = Material(color=[0,0,255],
8 wireframe=false,transparency=0.5,
9 shininess=0.7,reflectslights=true)
10 sphere2 = Object3D(obj12,
11 Sphere(0.9,material=vmat),
12 r=[0,0,0.8])

Algorithms for Component-Based 3D Modeling

386 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

A geometry object is only visualized if a visualization
material is defined for the object.

MassProperties Object
A MassProperties object can be associated with an
Object3D to define mass, center-of-mass and inertia tensor
with respect to this Object3D. There are various options to
define mass properties, for example defining them explic-
itly (with or without a geometry) or computing them from
the volume of a geometry object and of a given density.

Collision Object
The geometry of the associated Object3D takes place in
collision handling if a contact response characteristics is
defined via an AbstractContactMaterial object.
For example, an elastic response characteristic with a linear
spring and damper is defined with ContactMaterial-
Elastic().

3 Collision Handling
Collision detection in Modia3D is based on the Minkowski
Portal Refinement algorithm (MPR-algorithm) (Snethen,
2008), which computes the shortest penetration depth of
two convex shapes/convex hulls. The MPR-algorithm is
much simpler to implement and has less numerical prob-
lems than the often used GJK/EPA-standard algorithms
(Gilbert et al., 1988; Bergen, 2003), because it only works
with triangles and not with tetrahedrons.

A Modia3D model is mathematically defined as a
Differential-Algebraic-Equation system (DAE) with xxx =
xxx(t) and a regular Jacobian JJJ (1c):

000 =

[
fff d(ẋxx,xxx, t,zi > 0)
fff c(xxx, t,zi > 0)

]
(a)

zzz = fff z(xxx, t) (b)
JJJ =

∂ fff d

∂ ẋxx
∂ fff c

∂xxx

 (c) (1)

Therefore, (1a) is an index 1 DAE and (1b) defines zero-
crossing functions zzz(t). To speed up the simulation and
to improve the robustness of the integration, Modia3D
uses the distances between convex shapes as zero-crossing
functions zi(t) (1b).

In the original version of the MPR-algorithm (Snethen,
2008) only penetration depths are determined. In Modia3D
improvements of the MPR-algorithm are utilized that have
been proposed in (Kenwright, 2015; Neumayr and Otter,
2017), in particular to compute the distances of shapes that
are not in contact and treating special collision situations
properly.

In Modia3D collision handling of n potentially colliding
shapes is performed in the following (mostly standard)
way:

1. Broad Phase
The shapes are approximated by bounding volumes
where potential collisions can be very cheaply deter-
mined resulting in O(n2) cheap tests. When using
special data structures (such as octrees or kd-trees),

it is possible to reduce the number of cheap tests to
O(n log(n)).

2. Narrow Phase
For the potentially colliding shape pairs as identified
in the broad phase, the signed distances are computed
with the improved MPR-algorithm (Neumayr and Ot-
ter, 2017).

3. Response Calculation
If two shapes are penetrated, a force and/or torque is
applied at the contact point, such as a spring - damper
force element, depending on the penetration depth.

The broad phase in Modia3D uses AABBs (= Axis Aligned
Bounding Boxes) (see e.g. (Bergen, 2003)). Each AABB
approximates one shape and only if the AABBs are inter-
secting, the distance between these two possibly colliding
shape pairs is calculated in the narrow phase. A preprocess-
ing of the tree-structure is executed to reduce the number
of possible collision pairs to npp before the broad phase is
processed. This leads to npp ≤ O(n2) tests. There are two
preprocessing rules:

1. Rigidly attached shapes cannot collide with each
other.

2. Shapes connected by a joint cannot collide with each
other if the joint specific option canCollide is set
to false (the default setting).

4 Object Preprocessing
In this section a central preprocessing step of Modia3D is
explained. The goal is to evaluate efficiently many objects
of different kinds during integration.

For example, the position and orientation of a visual-
ization object should only be computed when needed (at
communication points), and not in every model evaluation.
Furthermore, if mass properties are associated with rigidly
connected Object3Ds (two or more), then the resultant
mass properties of all these objects is computed once in
the preprocessing step (note, such an operation is hard to
automatically perform with a Modelica multi-body model).

Figure 2 presents an example of a Modia3D model, and
the connected objects are given. The goal is to generate the
data structure that is shown in Figure 3. Afterwards, the
usage of this data structure for an efficient evaluation of
the model during integration is explained.

4.1 Super-Objects
Rigidly connected Object3Ds are grouped together into so-
called super-objects. Super-objects are disjunct via joints.
Without any further assumptions, the grouping of the 14
Object3Ds of Figure 2 leads to six general super-objects
(Figure 4). Figure 5 also shows these six super-objects
connected via joints/cut-joints. The super-objects 2,3,4
and 6 are forming a kinematic loop. This kinematic loop
is detected and the joint between super-object 3 and 6 is

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 387
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

obj1 | obj2 | obj3
obj4 | obj5
obj6 | obj7 | obj8
obj9 | obj10 | obj11

[1]

[2]

[3]

[4]

[5]

super-objects

obj12 | obj13[6]

root

Figure 4. Six general super-objects.

su
pe
rO
bj
2

s
u
p
e
r
O
b
j
4superObj5

su
pe
rO
bj
3

superObj6

joint

cut-joint

superOb
j1

Figure 5. Six super-objects are connected via joints/cut-joints.

internally replaced by a cut-joint. Object3Ds can have sev-
eral properties that are collected in different super-object
data structures.

4.1.1 Super-Objects Collection
In the super-objects collection all information about dif-
ferent super-object types is stored, for example super-
objects for collision handling, mass and force com-
putation as well as visualization. The super-objects
collection of the above mentioned example (Figure 2)
with its different super-objects is shown in Figure 3.
For each of the super-object types, there is a function
assignObj(obj,superObjType) to store a refer-
ence of the object in the corresponding data structure
identified by superObjType. A super-object collec-
tion has 3 additional containers: allVisuElements
stores every Object3D which has visualization properties,
all force elements and all cut-joints are stored respectively
in forceElements and cutJoints (see Figure 3).

4.1.2 Super-Objects for Collision Handling
A geometry associated with an Object3D takes place in
collision handling, in case a contact material is defined (see
Section 2) and hence it gets assigned to a collision-super-
object (lines 13 - 17).

13 function assignObj(obj::Object3D,
14 superObjType::SuperObjCollision)
15 if canCollide(obj)
16 push!(superObjType.superObj, obj)
17 end; end

All Object3Ds within one collision-super-object are rigidly
connected, so they cannot collide with respect to each other
and therefore they already fulfill the first preprocessing
rule (see Section 3). To fulfill also the second preprocess-
ing rule, all collision-super-objects which are disjunct by
a joint/cut-joint are not allowed to collide either (if op-
tion canCollide = false). Therefore, the indices

of collision-super-objects which are not allowed to col-
lide, are stored in a collision-list called no collision pairs
(= noCPairs). For example superObject2 is not al-
lowed to collide with superObject3 and vice versa (see
Figures 2, 3, 5). It is sufficient to store this relation only
once for the first executed super-object. This leads to the
corresponding noCPairs container for collision-super-
objects (see Figure 3).

4.1.3 Super-Objects for Mass Computation
In case mass properties are defined for an Object3D it gets
assigned to a mass-super-object (lines 18 - 22). In a later
step, a resultant mass, center-of-mass and inertia tensor is
computed for all mass properties of one mass-super-object.

18 function assignObj(obj::Object3D,
19 superObjType::SuperObjMass)
20 if hasMass(obj)
21 push!(superObjType.superObj, obj)
22 end; end

4.1.4 Super-Objects for Force Computation
All Object3Ds which are allowed to collide, or have a joint,
or a force element are stored in a force-super-object (lines
23 - 28). For these Object3Ds kinematic laws (positions,
translation matrices, etc.) and especially forces need to be
re-calculated in each solver step.

23 function assignObj(obj::Object3D,
24 superObjType::SuperObjForce)
25 if (canCollide(obj) || hasJoint(obj) ||
26 hasForceElement(obj))
27 push!(superObjType.superObj, obj)
28 end; end

4.1.5 Super-Objects for Visualization
Object3Ds within a visualization-super-object are exclu-
sively for visualization (lines 29 - 36). The positions and
rotation matrices only need to be calculated at communica-
tion points with the visualization engine.

29 function assignObj(obj::Object3D,
30 superObjType::SuperObjVisu)
31 if (isVisible(obj) && !hasJoint(obj) &&
32 !hasMass(obj) && !canCollide(obj) &&
33 !hasForceElement(obj) &&
34 !hasCutJoint(obj))
35 push!(superObjType.superObj, obj)
36 end; end

4.2 Algorithm for Constructing Super-
Objects

The goal of this section is to introduce an algorithm to
detect and group rigidly attached super-objects. This al-
gorithm is based on a depth-first search algorithm (DFS)
(Tarjan, 1972; Hopcroft and Tarjan, 1974). The depth-first
search as well as the augmented version takes O(n) time.

4.2.1 Depth-First Search Algorithm
The depth-first search algorithm explores each branch as
far as possible to its leaves-level, afterwards it is stepping
back (see Figure 6). This procedure uses a stack and is

Algorithms for Component-Based 3D Modeling

388 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

A

B C

D E F

Figure 6. Example of a DFS.

executed until the stack is empty and hence every node
has been visited exactly once. Below a Julia pseudo code
is shown (lines 37 - 45). The DFS-algorithm works with
a Last In First Out - stack (LIFO). Therefore, append!
(line 44) inserts all children of an obj at the end of the
stack and pop! (line 42) returns the last item. All nodes
are stored in the above described order and a depth-first
search of the example in Figure 6 would lead to result
= [A,B,D,E,C,F].

37 stack = []
38 result = []
39 function DFS(root)
40 push!(stack,root)
41 while length(stack) > 0
42 obj = pop!(stack)
43 push!(result,obj)
44 append!(stack,obj.children)
45 end; end

4.2.2 Augmented Depth-First Search Algorithm
The augmented depth-first search is based on the idea of
the depth-first search algorithm (Section 4.2.1). Below,
a Julia pseudo code of the augmented depth-first search
is presented (lines 54 - 79). It creates a super-object
collection which holds all described super-object types.
The assignment of each Object3D takes place in function
assignAll(...) (lines 66, 71).

Every Object3D, except one, has a parent object and all
Object3Ds and their associated properties are connected
together and build up a tree, see Figure 2. The Object3D
without a parent is treated as the world object and it is the
root of the tree. The world object is not allowed to have
any additional properties, except for visualization. In case
any other Object3D has no parent an error occurs. Since
the Object3Ds form a tree, the root of every super-object
is an Object3D that is connected via a joint or it can move
freely with respect to its parent. This parent is located on a
different super-object.

The augmented DFS-algorithm works with a stack-like
buffer and a stack.

buffer Whenever the root of a new super-object is found,
it is pushed on the buffer. The index of an element
in the buffer is also the index of the super-object.
Therefore, the maximally reached length of the buffer
is equal to the total amount of general super-objects.
Additionally, variable actPos holds the index of the
super-object that is currently processed. When the
processing of a super-object is finished, this variable
is incremented by one as long as there are elements
on the buffer.

stack Starting from the root of a super-object, all Ob-
ject3Ds for this super-object are inspected with the
help of this stack. Whenever a boundary (an Object3D
with a joint or a freely moving Object3D) is reached,
this Object3D is pushed on the buffer (and not on the
stack). All Object3Ds of the super-object have been
inspected in depth-first order (see Figure 4), if the
stack is empty.

The properties of a super-object are stored in the following
structure:

46 mutable struct SuperObjs
47 superObjCollision::SuperObjCollision
48 superObjMass::SuperObjMass
49 superObjForce::SuperObjForce
50 superObjVisu::SuperObjVisu
51 noCPair::Array{Int64,1}
52 ...
53 end

Hereby, every essential property of an Object3D is an ele-
ment of this struct (such as superObjMass which holds
all Object3Ds that have a mass) of the corresponding super-
objects.

The top-level part of the algorithm:

54 stack = []
55 buffer = []
56 coll = SuperObjCollection()
57 augmentDFS!(root_obj)

initializes the stack, the buffer and the super-object collec-
tion and then calls function augmentedDFS! with the
root of the Object3D tree (= the topmost parent Object3D
of the root level assembly) as input argument. The details
of function augmentedDFS! are given below:

58 function augmentedDFS!(root::Object3D)
59 push!(buffer, root)
60 actPos = 1
61 nPos = 1
62 while actPos <= nPos
63 superObj = SuperObjs()
64 obj = buffer[actPos]
65 if obj != root
66 assignAll(superObj,obj)
67 end
68 fillStackOrBuffer!(superobj,obj)
69 while length(stack) > 0
70 objChild = pop!(stack)
71 assignAll(superObj,objChild)
72 fillStackOrBuffer!(superObj,objChild)
73 end
74 safeSuperObjsToCollection(coll,superObj)
75 nPos = length(buffer)
76 actPos += 1
77 end
78 addIndicesOfCutJointsToSuperObj(coll)
79 end

First, the root Object3D is pushed on the buffer and the
current element of the buffer actPos is set to one. After-
wards all elements of the buffer are inspected. For every
element of the buffer a depth-first search is performed. All

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 389
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

Object3Ds are pushed on the stack that are rigidly con-
nected with their parents. Otherwise, it is pushed on the
buffer. This decision is made with function fillStack-
OrBuffer!:

80 function fillStackOrBuffer!(superObj,obj)
81 for child in obj.children
82 if isNotRoot(child)
83 if isNotFixed(child)
84 push!(buffer,child)
85 if !child.joint.canCollide
86 push!(superObj.noCPair,length(buffer))
87 end
88 else
89 push!(stack,child)
90 end; end; end; end

For each element of the SuperObjs data structure (lines
46 - 53) the assignAll function:

91 function assignAll(superObj,obj)
92 for val in fieldnames(typeof(superObj))
93 assignObj(getfield(superObj,val), obj)
94 end
95 end

calls the assignObj function to store the Object3D in the
particular specialized super-object. The right assignObj
function is chosen via multiple dispatch of the Julia pro-
gramming language, see Section 4.1.

4.3 Algorithms for Using Super-Objects
In this section, the usage of the generated data structure is
shortly sketched for an efficient evaluation during integra-
tion.

4.3.1 Usage of Collision-Super-Objects
The MPR-algorithm computes the distance between
two shapes in the narrow phase narrowPhase_MPR
(line 111) if their AABBs are intersecting in the broad
phase broadPhase_checkAABB (line 110). All Ob-
ject3Ds (line 104) of the actual super-object (line 102)
are allowed to collide with all Object3Ds (line 109) of
the subsequent super-object (line 107). In case the actual
super-object is not allowed to collide with the subsequent
super-object, the index of the subsequent super-object is
stored in noCPairs (see Figure 3 and Section 4.1.2).

96 # counter
97 # is: actual super-object
98 # js: subsequent super-object
99 # i: Object3D of is_th super-object
100 # j: Object3D of js_th super-object

101 for is = 1:length(collSuperObjs)
102 actSuperObj = collSuperObjs[is]
103 for i = 1:length(actSuperObj)
104 actObj = actSuperObj[i]
105 for js = is+1:length(collSuperObjs)
106 if !(js in noCPairs[is])
107 nextSuperObj = collSuperObjs[js]
108 for j = 1:length(nextSuperObj)
109 nextObj = nextSuperObj[j]
110 if broadPhase_checkAABB(actObj,nextObj)
111 narrowPhase_MPR(actObj,nextObj)
112 end; end; end; end; end; end

4.3.2 Usage of Mass-Super-Objects
If there are two or more Object3Ds with mass-properties in
a super-object, the resultant mass, inertia tensor and center
of mass is computed and a new Object3D is constructed at
the center-of-mass location. The previous mass-properties
objects are removed.

4.3.3 Usage of Force- and Visualization-Super-
Objects

In general, the Object3Ds on a super-object form a tree.
This tree is reconstructed so that every Object3D has the
root of the super-object as parent, in order to avoid un-
necessary coordinate transformations during integration.
All Object3Ds with exception of the Object3Ds that are
only used for visualization, are stored in an Object3D vec-
tor Object3DEvaluation in depth-first order. Dur-
ing integration, the absolute position, rotation, velocity,
angular velocity, acceleration, angular acceleration of all
Object3Ds are computed at every model evaluation by
traversing this vector from index 1 up to its last index and
computing the absolute quantities of an Object3D with its
relative quantities and the absolute quantities of its parent
Object3D. Furthermore, the forces and torques due to the
acceleration/angular acceleration of the mass properties
Object3Ds from section 4.3.3 are computed and stored in
the respective Object3D, as well as the forces and torques
of all forceElements and of all contact force elements.
Afterwards, vector Object3DEvaluation is traversed
from its last index down to index 1 and the resultant force
and torque at an Object3D is transformed and summed to
the force and torque of its parent Object3D. Finally, the
projection of the forces/torques at all joints into the non-
constrained motion of the respective joint results in the
residues f̄ff 2 of equation (7).

The handling of the cut-joints is a bit more involved (to
compute the residues f̄ff 3, f̄ff 4) and is not further elaborated
here. The absolute position and rotation of the Object3Ds
that have only visualization-objects need to be computed
only at communication points. This calculation is a simple
extension of the approach sketched above.

5 Simulation
Once the preprocessing steps are finished, the model
is transformed to DAE form (1) as sketched in sec-
tion 4.3.3 and solved with Sundials IDA (Hindmarsh et al.,
2005, 2015) that uses a variable-step, variable-order BDF-
integration (Backward Differentiation Formula) method.
The transformation of a multi-body system with kinematic
loops (for an example see figure 7) to the form (1) is
sketched in (Otter and Elmqvist, 2017) and shortly repeated
here:

Starting point are the equations of motion of a multi-
body system, see, e.g. (Arnold, 2016):

q̇qq = vvv
MMM(qqq, t)v̇vv+GGGT (qqq, t)λλλ = hhh(qqq,vvv, t)

000 = ggg(qqq, t)
(2)

Algorithms for Component-Based 3D Modeling

390 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

Figure 7. Modia3D model of a multi-body system with a kine-
matic loop.

where qqq are the generalized coordinates (here: joint coor-
dinates, such as a revolute angle), vvv are the generalized
velocities, λλλ are the generalized forces/torques in the cut-
joints, MMM = MMMT is the positive definite mass matrix, ggg
are the kinematic constraint equations of the cut-joints on

position level, GGG=
∂ggg
∂qqq

are the partial derivatives of the con-

straints equations with respect to qqq and has full row rank.
This DAE has index 3 and gives rise to numerical problems
when integrating it directly. Instead, with the method of
(Gear et al., 1985; Gear, 1988) it can be transformed to the
following index 1 form, see (Otter and Elmqvist, 2017):

000 = q̇qq− vvv+GGGT (qqq, t)µ̇µµ int
000 = MMM(qqq, t)v̇vv+GGGT (qqq, t)λ̇λλ int −hhh(qqq,vvv, t)
000 = ggg(qqq, t)
000 = GGG(qqq, t)vvv+ggg(1)(qqq, t)

(3)

where (a) the derivative of the constraint equations 000 =
ggg(qqq, t) are added as new equations, (b) new unknowns µ̇µµ int
are introduced that are used for stabilizing the DAE and
(c) the generalized constraint forces λλλ are replaced by λ̇λλ int
the derivatives of its integral. The question is how these
equations can be constructed by Modia3D:

IDA and other DAE integrators assume that the DAE is
mathematically described as:

000 = fff (ẏyy(t),yyy(t), t) (4)

For the solution, the following Jacobian is computed numer-
ically (ch is a step-size dependent variable that is provided
by the integrator):

JJJ =
∂ fff
∂yyy

+ ch ·
∂ fff
∂ ẏyy

(5)

This Jacobian can be automatically generated by IDA, but
is optionally also provided by Modia3D (to experiment
with sparse Jacobians).

One problem is that the new term GGGT (qqq, t)µ̇µµ int does not
appear in the equations of motions and should be "some-
how" constructed. The DAE variables yyy of the IDA inter-

face are defined as:

yyy =

yyy1
yyy2
yyy3
yyy4

=

qqq
vvv
λλλ int
µµµ int

 (6)

Hereby qqq are the generalized coordinates of the joints in the
tree of the super-objects (for example an angle of a revolute
joint), vvv are the generalized velocities of these joints (for
example the angular velocity of a revolute joint), λλλ int is the
integral of the generalized cut-forces in the cut-joints (for
example the cut-forces of a spherical cut-joint) and µµµ int
does not appear in the model.

In a first step the residues of the model equations are
computed in the following form (note that yyy, ẏyy are provided
by the IDA integrator as input arguments to the model):

f̄ff =

f̄ff 1
f̄ff 2
f̄ff 3
f̄ff 4

=

ẏyy1 − yyy2
MMMẏyy2 +GGGT ẏyy3 −hhh(yyy1,yyy2, t)
ggg(yyy1, t)
GGG(yyy1, t)yyy2 +ggg(1)(yyy1, t)

 (7)

Hereby, f̄ff 1 is directly computed from the input arguments,
f̄ff 2 are the generalized forces of the joints in the super-
object tree (for example the projection of the cut-torque
in a revolute joint to its axis of rotation, see section 4.3.3),
f̄ff 3 are the generalized kinematic closure conditions of
the cut-joints on position level and f̄ff 4 are the generalized
kinematic closure conditions of the cut-joints on velocity
level.

From time to time (so not in every step) the integrator
requires a Jacobian (5). First, the part of the Jacobian
is computed numerically where µ̇µµ int is not yet taken into
account (using (7)):

J̄JJ =
∂ f̄ff
∂yyy

+ ch ·
∂ f̄ff
∂ ẏyy

(8)

It can be noted that matrix GGG is part of this Jacobian (the
rows of this Jacobian with respect to f̄ff 4 and the columns
with respect to yyy2):

GGG =
∂ f̄ff 4

∂yyy2
= J̄JJ42 (9)

It is now possible to compute the Jacobian (5) as required
by IDA:

JJJ = J̄JJ+

000 000 000 ch · J̄JJ

T
42

000 000 000 000
000 000 000 000
000 000 000 000

 (10)

Furthermore, in every model evaluation also the residues
(4) can be calculated as required by IDA:

fff = f̄ff +

J̄JJT

42 · yyy4
000
000
000

 (11)

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 391
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

Since the Jacobian (5) is not computed in every integra-
tor step, J̄JJT

42 · yyy4 need not be identical to GGGT (qqq, t)µ̇µµ int be-
cause J̄JJT

42 is potentially computed at a previous time instant.
However, this is uncritical because the method of Gear to
stabilize the DAE only requires that matrix GGG · J̄JJT

42 must
be regular (see for example (Otter and Elmqvist, 2017):
the derivation after eq. (13) shows that µ̇µµ int = 000). In the
unlikely situation that this approximation of the stabilizing
term looses rank, the integrator will most likely detect a
problem with its variable step-size control and will force a
new computation of the Jacobian, that will solve the issue.

6 Relation to other Work
Modern games use physics engines, like Havok or PhysX
for collision detection and rigid body simulations (Gregory,
2014). Physics engines of games work with fixed-step size
solvers and are interactive real-time simulations. Modia3D
simulates the system with variable-step size solver because
the target of its initial version is offline simulation. There-
fore, there are natural differences between the implemen-
tation approaches, for example in a physics engine the
position and orientation of visual objects need to be com-
puted in every model evaluation, whereas in Modia3D this
is only needed at communication points (if the visual ob-
ject does not take place in collision handling). To improve
efficiency, this is specially handled in Modia3D.

Game engines typically use a scene graph15 (Gregory,
2014) to describe the representation of the 3D objects. Of-
ten this is a tree data structure where all operations applied
on a node effect all children nodes. Changes to nodes
might be material data, such as the color of objects, or
3D transformations. Usually, closed kinematic loops are
not supported by game engines or are approximated with
various techniques. Therefore, a scene graph with a tree
data structure is sufficient.

In Modia3D kinematic loops are inherently supported
and therefore a pure tree data structure does not reflect
the system. From a users point of view a 3D system is a
graph with loops. It seems therefore not useful to apply,
say, a color to a node and define that this color holds for all
children, because the children might be part of a loop that
includes the node. Instead in Modia3D, an object such as a
material object might be defined once and then references
to this object might be used in the various nodes. For
practical reasons, the graph is represented internally as a
tree with additional information for the closing conditions
of kinematic loops. However, this is hidden from the user
and the user should not know in which way an internal tree
is constructed (this might even change with a new version).

The Modelica MultiBody library (Otter et al., 2003) was
implemented in 2003 and since this time only minor im-
provements have been made. The design is made in a rigid
way by defining a few part types, such as BodyShape
or BodyBox, to represent a fixed setup for a part with a

15https://en.wikipedia.org/wiki/Scene_graph

geometry, mass properties computed from this geometry
and a fixed set of frame connectors. This design is far
away from the flexibility of the Modia3D library where
various geometries, including base shapes and meshes, can
be defined and used in various ways for visualization, mass
properties computation, collision handling. Systems with
kinematic loops can be defined with the Modelica Multi-
Body library, but it was not possible to make this fully
automatic so that the user just defines the system as it is.
Instead, practically the user has to define somehow the
cut-joints or assembly-joints for a kinematic loop and also
has usually to explicitly define the states in a loop with
the StateSelect attribute, because otherwise the sim-
ulation becomes much too slow due to the dynamic state
selection.

7 Conclusion
In this article some newly developed algorithms have been
described that are used by the Modia3D prototype to con-
struct a model that can be efficiently evaluated in a simu-
lation with a variable-step solver. Due to its architecture
that is inspired by game engines, Modia3D allows a very
flexible way to build-up dynamic models of 3D-mechanical
systems and to model collisions. Contrary to games, the
main target of the package design are variable-step solvers
with step-size control. Modia3D is still an early prototype
and several important parts are under development, espe-
cially the integration with Modia is missing. Furthermore,
the code was currently mainly developed for its function-
ality and is not yet tuned for efficiency. For these reasons,
benchmarks about the simulation efficiency have not yet
been performed.

References
M. Arnold. DAE aspects of multibody systems. Technical report,

Martin-Luther-Universität Halle-Wittenberg, Institut für Math-
ematik, April 2016. URL http://sim.mathematik.uni-halle.de/
reports/sources/2016/01-2016.pdf.

G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Using
Modelica for advanced Multi-Body modelling in 3D graphical
robotic simulators. In J. Kofranek and F. Casella, editors,
Proc. of the 12th International Modelica Conference. LiU
Electronic Press, May 2017. URL http://www.ep.liu.se/ecp/
132/097/ecp17132887.pdf.

T. Bellmann. Interactive Simulations and advanced Visualiza-
tion with Modelica. In Francesco Casella, editor, Proc. of
the 7th International Modelica Conference. LiU Electronic
Press, Sept. 2009. URL http://www.ep.liu.se/ecp/043/062/
ecp09430056.pdf.

G.v.d. Bergen. Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann Publishers, 2003.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A
Fresh Approach to Numerical Computing. SIAM Review, 59
(1):65–98, 2017.

Algorithms for Component-Based 3D Modeling

392 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

H. Elmqvist, S. E. Mattsson, and C. Chapuis. Redundancies in

Multibody Systems and Automatic Coupling of CATIA and
Modelica. In Proceedings of the 7th International Modelica
Conference; Como; Italy; 20-22 September 2009, pages 551–
560. Linköping University Electronic Press, 2009. URL http:
//www.ep.liu.se/ecp/043/063/ecp09430113.pdf.

H. Elmqvist, A. Goteman, V. Roxling, and T. Ghandriz. Generic
Modelica Framework for MultiBody Contacts and Discrete
Element Method. In Peter Fritzson and Hilding Elmqvist,
editors, Proc. of the 11th International Modelica Conference.
LiU Electronic Press, Sept. 2015. URL http://www.ep.liu.se/
ecp/118/046/ecp15118427.pdf.

H. Elmqvist, T. Henningsson, and M. Otter. Systems Model-
ing and Programming in a Unified Environment based on
Julia. In Proc. of ISoLA Conference. Springer, Oct. 2016.
doi:10.1007/978-3-319-47169-3_15.

H. Elmqvist, T. Henningsson, and M. Otter. Innovations for
Future Modelica. In J. Kofranek and F. Casella, editors, Proc.
of the 12th International Modelica Conference. LiU Electronic
Press, May 2017. URL http://www.ep.liu.se/ecp/132/076/
ecp17132693.pdf.

C. W. Gear. Differential-algebraic equation index transformations.
SIAM J. Sci. Stat. Comput., 9(1):39 – 47, 1988.

C. W. Gear, G.K. Gupta, and B. Leimkuhler. Automatic integra-
tion of euler–lagrange equations with constraints. J. Comp.
Appl. Math., 12-13:77 – 90, 1985.

E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A Fast
Procedure for Computing the Distance Between Com-
plex Objects in Three-Dimensional Space. IEEE Jour-
nal of Robotics and Automation, 4(2):193–203, 1988.
URL https://graphics.stanford.edu/courses/cs448b-00-winter/
papers/gilbert.pdf.

J. Gregory. Game engine architecture. AK Peters/CRC Press,
2014.

M. Hellerer, T. Bellmann, and F. Schlegel. The DLR Visual-
ization Library - Recent development and applications. In
Hubertus Tummescheit and Karl-Erik Arzen, editors, Proc. of
the 10th International Modelica Conference. LiU Electronic
Press, March 2014. URL http://www.ep.liu.se/ecp/096/094/
ecp14096094.pdf.

C. Höger, A. Mehlhase, C. Nytsch-Geusen, K. Isakovic, and
R. Kubiak. Modelica3D - Platform Independent Simulation
Visualization. In M. Otter and D. Zimmer, editors, Proc. of
the 9th International Modelica Conference, Sept. 2012. URL
http://www.ep.liu.se/ecp/076/049/ecp12076049.pdf.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban,
D.E. Shumaker, and C.S. Woodward. SUNDIALS: Suite
of Nonlinear and Differential/Algebraic Equation Solvers.
ACM Transactions on Mathematical Software, 31(3):363–396,
September 2005.

A.C. Hindmarsh, R. Serban, and A. Collier. User Documenta-
tion for IDA v2.8.2. Technical Report UCRL-SM-208112,
Lawrence Livermore National Laboratory, 2015.

A. Hofmann, L. Mikelsons, I. Gubsch, and C. Schubert. Simu-
lating Collisions within the Modelica MultiBody Library. In
Hubertus Tummescheit and Karl-Erik Arzen, editors, Proc. of
the 10th International Modelica Conference. LiU Electronic
Press, March 2014. URL http://www.ep.liu.se/ecp/096/099/
ecp14096099.pdf.

J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of
the ACM (JACM), 21(4):549–568, 1974.

B. Kenwright. Generic Convex Collision Detection
using Support Mapping. Technical report, 2015.
URL https://www.semanticscholar.org/paper/Generic-
Convex-Collision-Detection-using-Support-Kenwright/
4f0f2d95375db7cfdbfaa345847418789d8cb970.

A. Neumayr and M. Otter. Collision Handling with Variable-step
Integrators. In Proceedings of the 8th International Workshop
on Equation-Based Object-Oriented Modeling Languages
and Tools, EOOLT’17, pages 9–18. ACM, 2017. URL https:
//modiasim.github.io/Modia3D.jl/resources/documentation/
CollisionHandling_Neumayr_Otter_2017.pdf.

A. Neumayr and M. Otter. Component-Based 3D Modeling
of Dynamic Systems. In M. Tiller, H. Tummescheit, and
L. Vanfretti, editors, Proceedings of the American Modelica
Conference, Oct. 2018. URL https://elib.dlr.de/124126/1/
2018_Modelica_Modia3D.pdf.

R. Nystrom. Game Programming Patterns. Genever Benning,
2014. URL http://gameprogrammingpatterns.com/.

M. Otter and H. Elmqvist. Transformation of Differential Alge-
braic Array Equations to Index One Form. In J. Kofranek and
F. Casella, editors, Proc. of the 12th International Modelica
Conference, May 2017. URL http://www.ep.liu.se/ecp/132/
064/ecp17132565.pdf.

M. Otter, H. Elmqvist, and S. E. Mattsson. The New
Modelica MultiBody Library. In P. Fritzson, edi-
tor, Proc. of the 3rd International Modelica Confer-
ence, Nov. 2003. URL https://www.modelica.org/events/
Conference2003/papers/h37_Otter_multibody.pdf.

M. Otter, H. Elmqvist, and J. Diaz Lopez. Collision Handling for
the Modelica MultiBody Library. In Gerhard Schmitz, editor,
Proc. of the 4th International Modelica Conference, March
2005. URL https://modelica.org/events/Conference2005/
online_proceedings/Session1/Session1a4.pdf.

P. Sahlin and P. Grozman. IDA Simulation Environment - a
tool for Modelica based end-user application deployment.
In P. Fritzson, editor, Proc. of the 3rd International Mod-
elica Conference, Nov. 2003. URL https://www.modelica.org/
events/Conference2003/papers/h33_Sahlin.pdf.

G. Snethen. Xenocollide: Complex collision made simple. In
Scott Jacobs, editor, Game Programming Gems 7, pages 165–
178. Charles River Media, 2008.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 393
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

Model visualization for e-learning, Kidney simulator for medical students
Šilar, Jan and Ježek, Filip and Mládek, Arnošt and Polák, David and Kofránek, Jiří

393

Model visualization for e-learning
Kidney simulator for medical students

 Jan Šilar1	 Filip	Ježek1,2	 Arnošt	Mládek1	 	David	Polák1	 	Jiří	Kofránek1

1Institute	of	Pathological	physiology,	First	Faculty	of	Medicine,	Charles	University,	Prague,	Czech	republic,	
{jan.silar, filip.jezek, arnost.mladek, david.polak, jiri.kofranek}@lf1.cuni.cz

2Department	of	Cybernetics,	Faculty	of	Electrical	Engineering,	Czech	Technical	University	in	Prague,	Czech	Republic

Abstract
The	present	paper	introduces	a		recently	developed	tool	
for	 building	web-based	 simulators	 called	Bodylight.js.
Simulators	are	applications	composed	of	a	mathematical	
model	and	a	graphical	user	interface	that	allows	the	user	
to	easily	interact	with	the	model	and	visualize	the	results.	
A	modelica	model	is	first	exported	to	FMI	with	sources,	
transcompiled	 into	 JavaScript	 and	WebAssembly	 and	
connected	to	a	GUI,	comprised	of	graphical	animations	
created	 in	Adobe	Animate	 and	 elements	 that	 allow	 to	
control	the	input	model	such	as	sliders,	buttons,	etc.	

A	 physiological	 e-learning	 application	 explaining	
the	function	of	a	nephron	–	the	basic	functional	unit	of	
kidneys	–	is	presented	later	as	a	use-case.	The	model	was	
developed	primarily	as	a	teaching	aid	for	use	in	courses	
of	physiology	for	medical	students	at	our	university.

Purpose	 of	 this	 work	 is	 to	 describe	 the	 new	
Bodylight.js	tool	and	to	prove	its	usability	by	building	
the	medium-complex	e-learning	kidney	simulator.	The	
simulator	 helps	medical	 students	 to	 better	 understand	
renal	function	at	the	very	basic	level.
Keywords: Modelica, JavaScript, WebAssembly,
web technologies, physiology, kidney, e-learning

1 Introduction
Mathematical	 models	 are	 powerful	 tools	 for	 gaining	
insight	 into	 the	 systems	 under	 study.	 It	 is	 sometimes	
feasible	to	experiment	with	a	human	body	directly.	For	
example	a	man	can	drink	a	lot	of	water	and,	due	to	the	
enhanced	 urine	 production,	 has	 to	 urinate	 sooner.	But	
this	is	just	an	outer	behavior	of	the	system.	It	is	not	so	
easy	 to	 grasp	 the	 underlying	 mechanisms:	 how	 was	
the	swallowed	water	absorbed	 into	 the	 intestine	blood	
vessels?	Why	 the	 blood	 did	 not	 get	 diluted?	 Further,	
how	 is	 the	primary	urine	produced?	Here	models	 and	
simulation	applications	may	help	us	to	comprehend	the	
underlying	mechanisms.	Functional	models	are	already	
being	used	in	medical	education	(Kofranek	et al, 2011)
(namely	 in	 physiology	 and	 pathophysiology).	 But	 we	
believe	that	the	benefits	are	still	widely	underestimated	
and	 that	 	 illustrative	models	 should	 be	 used	 regularly	
in	lectures	and	practical	classes.

Our	 ultimate	 goal	 is	 to	 produce	 simulation	
applications	for	teaching	physiology	that	both	look	and	

behave	 like	 the	 simulated	 system	 so	 that	 they	 are	 as	
much	understandable	as	possible.	We	need	a	modeling	
tool,	graphical	animation	tool	and	tool	to	connect	both	
the	model	and	the	animation	together.

In	 physiological	 modeling,	 a	 number	 of	 modeling	
tools are used –	 e.g.	 Mathworks	 Matlab/Simulink,	
CellML,	JSim,	OpenModelica	etc	–	and	each	one	requires	
installation	and	at	least	some	familiarization	with	the	tool	
to	be	able	to	run	the	models.	Some	tools	even	require	a	
(very	expensive)	commercial	license.	To	overcome	this,	
a	 standalone	 simulator	 is	 required,	 preferably	without	
the	need	of	installing	anything.	Web-based	technologies	
do	 offer	 a	 convenient	 solution	 (Kofránek	 et al, 2009)
and	allow	the	simulator	applications	to	be	accessed	as	
simply	as	the	rest	of	the	contemporary	world-wide	web.

However,	 development	 of	 a	 simulator	 is	 often	
a	 demanding	 task.	 Some	 effort	 has	 been	 put	 into	
development	 of	 web-based	 simulators,	 e.g.	 the	
proprietary	 Modelica.university	 (Tiller	 and	 Winkler,	
2017)	or	the	Bodylight	framework	(Ježek	et al, 2013),
based	 on	 the	 discontinued	 (Smith,	 2015)	 Microsoft	
Silverlight.	

Some	 researchers	 (e.g.	 (Christ	 and	 Thews,	 2016;	
Kulhánek	et al,	 2013;	Zhang,	 2001)	 and	 a	 number	 of	
others)	aimed	at	a	client-server	simulation.	Such	solution	
relies	on	a	server	which	performs	the	computation	and	
client	 only	 receives	 the	 resulting	 data.	 Based	 on	 user	
input,	the	client	asks	for	a	new	set	of	data.	The	second	
possible	 approach	 is	 fully	 client-side,	 in	 which	 the	
client	is	responsible	for	both	the	computation	and	user	
interaction	see	Figure	1.

The	client-side	concept	is	initially	more	demanding	
task,	 as	 the	whole	 calculation	 has	 to	 be	 performed	 in	
a	 web-enabled	 language,	 i.e.	 JavaScript,	 it	 however	
offers	 some	 advantages.	 Especially	 for	 educational	
purposes,	 the	 server	 does	 not	 have	 to	 bear	 entire	
classroom’s	 computational	 load	 at	 the	 same	 time.	
The	 requirement	 of	 a	 smooth	 visualization,	 including	
continuous	simulation	graphing,	movement	of	animated	
components	and	prompt	interaction	therefore	prefers	the	
client-side	 approach.	Although	 the	 usage	of	 a	modern	
cloud	 technologies	with	scalable	computational	power	
and	 decentralized	 geographical	 location	would	 reduce	
the	 client-server	 lag	 to	 satisfying	 levels,	 the	 price	 of	
the	 infrastructure	 is	 substantially	higher	 and	 scales	up	

Model visualization for e-learning, Kidney simulator for medical students

394 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

with	 any	 new	 user.	 Of	 course,	 very	 computationally	
demanding	 simulators	 are	 not	 meant	 to	 be	 client-
simulated,	but	 those	are	out	of	 scope	of	 the	discussed	
physiological	models.

As	of	2018,	no	open	web-based	simulator	platform	
which	 is	 capable	 of	 running	 complex	 equation-based	
models	 exists.	 Our	 aim	 is	 to	 develop	 a	 client-side	
simulator	 technology,	 based	 on	 the	 chosen	 Modelica	
language	 and	 a	 simulator-producing	 toolchain.	 This	
technology	has	been	named	Bodylight.js

2 Methods
Our	 group	 (Kofranek’s	 group)	 develops	 medical	
e-learning	simulators	since	1996.	We	have	focused	on	
web-based	 simulators	 since	 2012	 (Ježek	 et al, 2012).
After	designing	a	set	of	simulators	(a	sample	is	shown	
on	Figure	2),	based	on	the	custom	Bodylight	framework,	
built	on	a	Microsoft	Silverlight	web	technology	(Ježek	
et al,	 2013),	 the	 core	 Silverlight	 platform	 has	 been	
discontinued	 (Smith,	 2015).	Lessons	 learned	– do not
rely	on	proprietary	platforms.	

2.1 The Bodylight.js build process
The	effort	has	been	recently	restarted,	and	consequently	
the	approach	has	been	based	on	open	standards:

• Modelica	 language	 for	 modeling	 (Fritzson	 and	
Engelson,	1998)

• Functional	Mockup	Interface	for	model	simulation
• HTML5	+	JavaScript	for	model	presentation	and	

interaction
Driven	 by	 industrial	 needs	 to	 share	 and	 co-simulate	
models	of	various	 languages	and	 tools,	 the	Functional	
Mockup	Interface	(FMI)	(Blochwitz	et al,	2012)	emerged	
as	an	open	standard.	Developed	and	maintained	by	the	
Modelica	association	(Lund,	Sweden),	it	quickly	gained	
wide	support	from	tool	vendors.	

As	of	September	2018,	110	tools	are	capable	of	either	
FMI	 export,	 import	 or	 both	 (Modelica	 Association,	
2017).

In	first	stage	of	our	work-flow	the	model	is	exported	
as	FMU	for	Co-simulation	version	2.0	including	source	
code.	The	advantage	of	using	FMI	is	the	standardization,	
which	 ensures	 further	 compatibility	 of	 export	 from	
multiple	tools	and	their	future	versions.

The	 task	 is	 to	 get	 the	 FMU	 into	 JavaScript,	 so	
it	 can	 run	 in	 the	 browser.	 As	 shown	 in	 Figure	 3,	
the	 FMU	 can	 contain	 source	 code	 of	 both	 the	model	
and	 the	 solver.	 The	 C	 code	 could	 be	 then	 translated	
to	 JavaScript	 using	 Emscripten	 (Zakai,	 2011).	 The	
Emscripten	translation	offers	two	targets:	ASM.JS	and	
WebAssembly	(or	WASM).	Asm.js	is	a	turing-complete	
subset	of	the	JavaScript	language,	used	as	a	compilation	
target.	 WebAssembly	 is	 currently	 a	 more	 effective	
binary	version	of	Asm.js,	but	 it	 is	designed	to	“Define

Figure 1. Client	server	and	Client	only	architectures.

Figure 2. 	The	simulator	of	simple	circulation,	built	using	
the	Silverlight	technology	(Tribula	et al, 2013).

Figure 3. Content	of	FMU	can	vary,	depending	on	usage	
(simplified).	

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 395
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

In	 fact,	 the	 simulator	 integration	 could	 be	 simplified	
to	a	bare	minimum	–	all	inputs	are	already	known	and	
prepared,	 thus	 it	 is	 only	 necessary	 to	 interconnect	 the	
controls	and	graphical	components	with	the	model	inputs	
and	 outputs.	 And	 that	 could	 be	 mostly	 automatized.	
Therefore,	 to	 make	 the	 simulator	 development	 more	
efficient,	 a	 special	 helper	 composer	 tool	 has	 been	
developed.

The	composer	allows	to	upload	the	FMU,	manage	the	
model	 settings,	upload	animations	and	other	graphical	
components,	 insert	 graphs	 and	 HTML	 controls,	 and	
interconnect	it	all	together	and	then	export	a	standalone	
HTML5	application.

3 Applications
The	Simple	Circulation	 simulator	 implemented	earlier	
in	 Silverlight	 (Figure	 2)	 was	 already	 reimplemented1
using	the	new	technology.	

Another	 new	 simulator	 on	 iron	 regulation2	 was	
implemented,	see	Figure	6.	Here,	we	have	implemented	
a	 mathematical	 model	 of	 systemic	 iron	 regulation	
based	 on	 the	 work	 of	 Enculescu	 et	 al.	 (Enculescu	
et al,	 2017).	 The	 model	 incorporates	 	 dynamics	 of	
organ	iron	pools	as	well	as	regulation	by	the	hepcidin/
ferroportin	 system.	 The	 model	 was	 calibrated	 and	
validated	 with	 time-resolved	 measurements	 of	 iron	
responses	in	mice	challenged	with	dietary	iron	overload	
and/or	 inflammation.	 The	 model	 demonstrates	 that	
inflammation	 mainly	 reduces	 the	 amount	 of	 iron	 in	
the	 bloodstream	 by	 reducing	 intracellular	 ferroportin	
transcription,	and	not	by	hepcidin-dependent	ferroportin	
protein	 destabilization.	 In	 contrast,	 ferroportin	
regulation	 by	 hepcidin	 is	 the	 predominant	mechanism	
of	iron	homeostasis	 in	response	to	changing	iron	diets	
for	a	big	range	of	dietary	iron	contents.

3.1 Nephron simulator
A	 nephron	 simulator3	 was	 implemented	 recently.	
Nephron	 is	 the	 structural	 and	 functional	 unit	 of	 the	

1	at	www.physiome.cz/apps/SimpleCirculation/
2	at	www.physiome.cz/apps/IronMetabolism
3	at		www.physiome.cz/apps/Nephron/

a portable, size- and load-time-efficient binary	 format	
to serve as a compilation target which can	be	compiled	
to	 execute	 at	 native	 speed	 by	 taking	 advantage	 of	
common	 hardware	 capabilities	 available	 on	 a	 wide	
range	 of	 platforms,	 including	 mobile	 and	 IoT”	
(WebAssembly	 High-Level	 Goals	 –	 WebAssembly,	
n.d.).	 The	 model	 compilation	 to	 a	 binary	 format	
effectively	obfuscates	 the	model	 code,	 so	 this	method	
is	 suitable	 for	 proprietary	 or	 undisclosable	models	 as	
well.	The	translated	FMU	code	is	then	linked	to	model	
controls	 (such	 as	 start,	 stop,	 parameters	 input	 etc),	
graphs	and	animated	components.

For	educational	purposes	especially	in	non-technical	
fields,	the	value	of	a	graph	alone	is	usually	not	enough.	
Simulators	 should	 provide	 rich	 content,	 including	
images	 and	 animations	 controlled	 by	 the	 model’s	
output.	Thus,	 the	 animation	 components	 are	 designed	
and	animated	in	Adobe	Animate	and	then	exported	as	an	
HTML	component,	exposing	their	animation	time-lines	
as	Javascript	functions,	which	are	linked	to	the	model.	
The	 animations	 time-lines	 could	 be	 nested,	 so	 it	 is	
possible	to	animate	e.g.	width	and	height	of	a	component	
independently,	but	the	animations	have	to	be	stackable,	
that	 is	 they	 are	 not	 truly	 independent.	 The	 whole	
web-simulator	build	process	is	visualised	in	Figure	4.

2.2 The Bodylight.js Composer
As	 illustrated	 by	 Figure	 5,	 the	 development	 of	 an	
educational	 simulator	 is	 a	 multi-disciplinary	 task	
(Kofránek	et al,	2009):

• The	 domain	 expert	 (teacher)	 sets	 the	 simulator	
objectives	and	designs	a	simulation	scenario

• The	modeler	develops	and	implements	
the	mathematical	model

• The	graphic	designer	draws	and	animates	
the	components	and	prepares	the	layout

• The	integrator	composes	the	simulator	together.

Figure 4. FMU	build	process.	The	FMU	is	exported	and	
the	packaged	sources	are	translated	into	the	JavaScript	to	
enable	web-simulation.

Figure 5. Simulator	design	and	build	process	scheme.

Model visualization for e-learning, Kidney simulator for medical students

396 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

Anatomically	 a	 kidney	 is	 composed	 of	 two	 layers:	
an	outer	 layer	named	cortex	and	an	 inner	 layer	called	
medulla.	 The	 medulla	 contains	 multiple	 cone-shaped	
lobes,	known	as	medullary	pyramids.	The	urine	drains	
into	 the	 renal	 pelvis,	 which	 is	 the	 initial	 part	 of	 the	
ureter.	The	hilum	of	the	kidney	is	the	site	of	entry	and	
exit	for	renal	artery,	renal	vein,	and	ureter.

There	are	two	types	of	nephrons	(Figure	7)	differing	
in	 length	 and	 urine	 concentration	 capacity:	 short	
cortical	(70	–	80%)	and	long	juxtamedullary	(20	–	30%)	
nephrons,	 in	 total	 there	 is	 about	one	million	nephrons	
in	 each	kidney.	The	nephrons	begin	 in	 the	 cortex;	 the	
tubules	 descend	 down	 to	 the	 medulla,	 then	 make	 a	
U-turn	 and	 return	 to	 the	 cortex	 before	 draining	 into	
the	 collecting	duct.	The	 collecting	ducts	 then	descend	
towards	the	renal	pelvis	and	empty	the	final	urine	into	
the	ureter.
Each	nephron	has	the	following	parts	(Figure	8):

1. Glomerulus	and	Bowman’s	capsule	(Figure	9).
2. Proximal	tubule.
3. Loop	of	Henle	(descending	and	ascending	parts).
4.	 Distal	convoluted	tubule.
5.	 Collecting	duct.

Throughout	 the	 length	 of	 the	 nephron,	 peritubular	
capillaries	 lie	 adjacent	 to	 all	 segments	 of	 the	 tubule	

kidney.	 In	 the	 following	 text	 we	 explain	 some	 of	
the	 kidney’s	 main	 functions	 and	 present	 the	 model	
behind	 the	 simulation	 application.	 Finally	 we	 present	
the	 application	 itself,	 which	 is	 composed	 of	 several	
consecutive	 simulation	 screens,	 and	 discuss	 how	 it	 is	
used	to	clarify	physiological	processes.

3.1.1 Basic kidney functions

The	 urinary	 system	 is	 comprised	 of	 two	 kidneys	
connected	 via	 ureters	 to	 the	 urinary	 bladder,	 and	 an	
urethra.	 The	 kidneys	 produce	 urine	 containing	 excess	
water,	electrolytes	and	body	waste	products.	The	urine	
then	 flows	 down	 the	 ureter	 into	 the	 bladder	 where	 it	
is	 temporarily	 stored.	 The	 bladder	 is	 then	 reflexively	
emptied	via	the	urethra.

The	 kidney	 has	 many	 important	 homeostatic,	
hormonal,	 and	metabolic	 functions	making	 its	 (patho)
physiology	 very	 complex	 and	 difficult	 for	 medical	
students	to	comprehend.	To	mention	several	of	these:

1. The	water	balance	and	electrolyte	homeostasis.
2. The	regulation	of	acid-base	balance.
3. Excretion	of	metabolic	waste	products,	especially	

the	toxic	nitrogenous	compounds	and	xenobiotics.
4.	 Production	 of	 	 renin	 enzyme	 for	 arterial	 blood	

pressure	 control	 and	 erythropoietin,	 which	
stimulates	 red	 blood	 cell	 production	 in	 the	 red	
bone	marrow.

5.	 Conversion	of	vitamin	D	into	an	active	form	for	
the	regulation	of	calcium	balance.

Figure 6. Iron	 regulation.	The	 present	 screen	 shows	 the	
basic	 iron	 metabolism	 in	 duodenal	 cells.	 The	 dashed	
lines	 symbolize	 iron	 transfer	 between	 cell	 compartments	
and	 blood	 stream.	 It	 is	 possible	 to	 regulate	 food	 iron	
income	as	well	as	blood	transfusion	and	loss.	Further	it	is	
possible	to	initiate	an	inflammation	process	via	injection	of	
lipopolysacharide	(LPS)	into	to	blood	vessels.

Figure 7. Kidney	anatomy

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 397
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

small	solutes	passes	into	the	Bowman’s	capsule.	The	size	
of	 the	filtration	slits	 restricts	 the	 large	molecules	 from	
being	filtered	out	the	plasma	(such	as	protein	albumin/
globuline)	and	cells	(such	as	erytrocytes	or	leucocytes).

The	 process	 of	 the	 glomerular	 filtration	 is	 often	
called	renal	ultrafiltration.	The	force	of	the	hydrostatic	
pressure	 in	 the	 glomerulus	 (the	 force	 of	 the	 pressure	
exerted	 from	 the	 pressure	 of	 the	 blood	 vessel	 itself)	
is	 the	 driving	 force	 that	 pushes	 the	 filtrate	 out	 of	 the	
capillaries.

The	osmotic	pressure	 (the	pulling	 force	exerted	by	
the	 albumins)	 works	 against	 the	 greater	 force	 of	 the	
hydrostatic	 pressure,	 and	 the	 difference	 between	 the	
two	determines	the	effective	filtration	pressure	and	the	
glomerular	filtration	rate	(GFR),	along	with	a	few	other	
factors.	

GFR	 is	 physiologically	 kept	 constant	 for	 a	 wide	
interval	 of	 arterial	 pressure.	 The	 hydrostatic	 pressure	
can	 also	 be	 controlled	 by	 widening	 (vasodilation)	 or	
narrowing	 (vasoconstriction)	 the	 afferent	 and	 efferent	
arterioles..	 The	 glomerulus	 model	 was	 implemented	
from	scratch.	It	utilizes	the	hydraulic	domain	(connector	
composed	 of	 pressure	 and	 flow	 VolumeFlowRate
variables)	 of	 PhysioLibrary.	 The	model	 is	 analogy	 of	
electrical	voltage	divider.	The	model	represents	all	the	
glomeruli	 contained	 in	 pair	 of	 kidneys,	 e.g.	 the	 flows	
in	the	model	are	summed	up	over	all	nephrons.

Resistance	 of	 the	 glomerular	 capillary	 wall	
is	 modeled	 with	 the	 filterResistance	 component.	
Afferent	 and	 efferent	 arterioles	 are	modelled	with	 the	
afferentResistance and efferentResistance	 components.	
The	two	resistances	are	variable	and	affect		the	pressure	
on	 input	 of	 filterResistance	 and	 thus	 flow	 through	 it	
(which	is	GFR).	The	osmotic	pressure	is	included	simply	
by	 adding	 two	 extra	 pressure	 columns	 (osmoticBlood
and osmoticUrine) around filterResistance	component.

and	 help	 to	 maintain	 the	 dynamic	 stationary	 state.	
The	capillaries	 	originate	from	the	efferent	glomerular	
arteriole	and	remove	the	water	and	solutes	excreted	by	
the	tubules.

The	present	application	focuses	on	the	urine	production	in	
terms	of	water	and	sodium	ion	(Na+)	only.	Prospectively	
we	intend	to	extend	the	model	by	including	more	solutes	
and	kidney	processes	in	future.

3.1.2 Physiology and models

There	are	two	separate	models	used	in	the	application.	
One	for	 the	glomerulus	simulator	(Figure	10)	and	one	
for	the	other	(nephron	tubules)		simulators	(Figure	11).	
Both	glomerulus	and	nephron	tubule	models	utilize	the	
PhysioLibrary	 (Matejak	 and	 Kofranek,	 2015),	 which	
was	also	developed	within	our	group.	The	models	are	
considered	to	be	in	the	steady	state	and	the	model	does	
not	take	temporal	evolution	into	account.

Glomerulus

Blood	 enters	 the	 afferent	 arteriole	 and	 flows	 into	 the	
glomerular	 cluster	 of	 intertwined	 capillaries	 buried	
within	 the	 Bowman’s	 capsule.	 The	 blood	 leaves	 the	
glomerulus	through	the	efferent	arteriole.	

The	wall	of	the	glomerular	capillaries	is	penetrated	
with	many	microscopic	slits	through	which	the	fluid	and	

Figure 8. Nephron

Figure 10. Glomerulus	model,	analogy	of	electrical	voltage	
divider:	afferent	and	efferent	 resistances	control	pressure	
on	the	left	connector	of	filter	resistance.	Osmotic	pressure	
is	modeled	by	pressure	columns.

Figure 9. Glomerulus

Model visualization for e-learning, Kidney simulator for medical students

398 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

Tubules

The	 nephron	 tubule	 model	 utilizes	 the	 osmotic	
domain	 (connector	 composed	 of	 Concentration and
flow	VolumeFlowRate variables)	of	the	PhysioLibrary.	It	
is	implemented	according	to	(Hoppensteadt	and	Peskin,	
1992),	 but	 there	 are	 several	 changes	 and	 extensions.	
It	 is	basically	a	system	of	ODE	in	a	space	coordinate.	
This	 coordinate	 is	 manually	 discretized	 so	 that	 fields	
are	 replaced	with	 arrays	 and	 derivatives	with	 forward	
differences.	The	model	is	composed	of	several	tubules	
components/classes.	 All	 tubule	 models	 extend	 from	
common	general	tubule	with	this	equations:

where Q is	filtrate	volumetric	flow	[m3s-1]	 through	the	
tubule,	 o	 is	osmolarity	of	 the	filtrate	 [mOsm	L-1], fH2O
water	 volumetric	 flow	 through	 the	 tubule	 wall	 in	 the	
outer	direction	per	unit	 length	 [m2s-1] and fNa similarly	
the	Na	molar	flow	through	the	tubule	wall	in	the	outer	
direction	 per	 unit	 length.[mmol	 s-1m-1].	The	 particular	
tubules	differ	with	the	equations	for	fH2O and fNa according	
to	the	tubule	function.

Proximal tubule

The	 proximal	 tubule	 is	 the	 major	 resorptive	 segment	
of	 the	 nephron	 and	 accounts	 for	 resorption	 of	 nearly	
two-thirds	of	all	filtered	water	and	sodium.	The	water	
is	 reabsorbed	 along	with	 all	 the	 dissolved	 sodium,	 so	
that	the	filtrate	osmolarity	is	preserved.	The	additional	
equations	in	this	component	are

where	kH2O	is	chosen	so	that	⅔	of	water	is	reabsorbed	in	
the	proximal	tubule	under	the	normal	GFR.	oin	is	input	
osmolarity	of	the	proximal	tubule.

Figure 11. Nephron	model	is	composed	of	UnlimitedVolume	
source	as	a	simplified	glomerulus	and	a	sequence	of	tubules	
(proximal	 tubule,	 descending	 loop	 of	 Henle,	 ascending	
loop	of	Henle,	distal	tubule,	collecting	duct)

Descending Loop of Henle

The	 descending	 Loop	 of	 Henle	 displays	 a	 high	
permeability	 to	water	but	 is	virtually	 impermeable	 for	
sodium.	 The	 osmolarity	 of	 medulla	 surrounding	 the	
tubule	 rises	 from	 300	 near	 the	 cortical	 layer	 down	 to	
1200	mOsm/l	deep	in	medullary	layer.	The	water	leaves	
passively	the	tubule	so	that	the	osmolarity	in	the	tubule	
equalizes	 with	 osmolarity	 of	 the	 ambient	 medulla.	
Approximately	20%	of	water	is	reabsorbed	here.
Additional	equations	are

where	omed	is	an	array.	Its	value	rises	linearly	with	the	
index	to	model	the	medulla	osmolarity	gradient.

Ascending Loop of Henle

The	 ascending	 loop	 of	 Henle	 accounts	 for	 resorption	
of	nearly	a	quarter	of	 the	filtered	load	of	sodium.	It	 is	
virtually	impermeable	to	water.	Given	the	large	amount	
of	solute	resorption	that	occurs	in	the	absence	of	water	
resorption,	 the	 tubular	 fluid	 becomes	 progressively	
dilute	 as	 it	 travels	 through	 the	 ascending	 loop.	 This	
feature	is	why	this	segment	is	frequently	referred	to	as	
the	“Diluting	Segment”	of	the	nephron.	The	resorption	
is	 active	 and	 consumes	 energy	 in	 form	 of	ATP.	 This	
enables	 lower	 osmolarity	 in	 the	 duct	 compared	 to	
surrounding	medula,	but	the	difference	can’t	be	higher	
than	 200	mOsm/l.	The	 osmolarity	 drops	 down	 to	 100	
mOsm/l	in	the	duct.	The	equations	are

where	 kNa	 is	 chosen	 to	 meet	 the	 osmolarity	 100	
mOsm/L	 at	 the	 outflow	 of	 the	 loop	 of	 Henle	 under	
normal	condition.	The	limiter	function	ensures	that	the	
osmolarity	 difference	 does	 not	 exceed	 200	 mOsm/L	
namely	at	decreased	GFR.

Distal tubule and collecting duct
The	distal	tubule	and	the	collecting	ducts	represent	the	
final	functional	segment	of	the	nephron	after	which	any	
remaining	tubular	fluid	is	excreted	as	the	final	urine.	By	
this	segment,	 the	vast	majority	of	solutes	and	water	 is	
resorbed	 and	 thus	 the	 late	 distal	 tubule	 and	 collecting	
ducts	are	responsible	only	for	a	small	 fraction	of	 total	
resorption.	However,	this	represents	the	major	locus	of	
regulated	 tubular	 resorption	 and	 given	 the	 enormous	
quantities	of	glomerular	filtration	that	occur	per	minute,	
even	small	changes	 in	resorption	rates	at	 this	segment	
can	have	enormous	impacts	on	the	composition	of	 the	
body’s	extracellular	fluid.	

The	distal	tubules	of	several	nephrons	empties	into	
one	shared	collecting	duct.	

The	distal	tubule	and	collecting	duct	system	is	under	

(1)

(2)

(3)

(4)

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 399
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

the	 tubules	with	 the	half-circle	measures	and	turbines,	
flow	through	the	vessel	walls	with	width	of	the	dashed	
moving	arrows.	This	visualized	sensors	are	used	also	in	
all	other	parts	of	the	application.

Student	can	change	resistance	of	afferent	and	efferent	
arteriole	 and	 thus	 control	 the	 hydrostatic	 pressure	 in	
glomerular	capillaries	and	GFR.	Mean	arterial	pressure	
(pressure	 at	 afferent	 arteriole	 entry)	 may	 be	 also	
modified.	The	filtration	resistance	may	be	controlled	as	
well	 to	 simulate	certain	 renal	pathologies.	The	goal	 is	
to	explain	how	the	glomerulus	maintains	constant	GFR	
despite	changing	arterial	pressure	by	means	of	changing	
afferent	and	efferent	arteriole	resistance.

Proximal tubule

Proximal	 tubule	 is	 shown	 on	 Figure	 13.	 The	 number	
inside	 the	 tubule	depicts	 the	osmolarity	of	 the	filtrate.	
GFR	 may	 be	 controlled.	 Decrease	 of	 flow	 may	 be	
observed	on	the	flow	measures	whereas	the	osmolarity	
is maintained.

Loop of Henle

Loop	of	Henle	 is	shown	on	Figure	14.	Ascending	and	
descending	 tubules	 of	 Loop	 of	 henle	 are	 together	 on	
one	 screen.	Student	 can	 control	 the	GFR	and	observe	
changes	in	reabsorption	rates,	flow	and	osmolarity.	The	
sodium	 transport	 limiter	 is	 applied	 in	 the	 ascending	
section	so	the	osmolarity	never	drops	below	100mOsm/l	
at	the	outflow.

the	control	of	antidiuretic	hormone	(ADH).	When	ADH
is	 present,	 the	 tubules	 becomes	 permeable	 to	 water.	
The	 high	 osmotic	 pressure	 in	 the	 medulla	 (generated	
by	the	counter-current	multiplier	system/loop	of	Henle)	
then	 passively	 draws	 out	 water	 from	 the	 tubules	 to	
medulla	and	blood	vessels	drain	it	away.	Than	the	final	
urine	osmolarity	is	about	1200	mOsm/l	and	as	much	as	
possible	water	is	retained	in	body.		

With	 no	 ADH,	 tubule	 walls	 are	 impermeable	 to	
water,	no	water	 is	 reabsorbed.	The	urine	osmolarity	 is	
100	mOsm/l	(as	it	leaves	ascending	loop	of	Henle)	and	
the	body	loses	water	rapidly.

The	 equations	 of	 both	 distal	 tubule	 and	 collecting	
duct	are

Where	ADH ϵ (0,1)	and	qH2O	is	constant.

3.1.3 The simulators

The	simulator	is	composed	of	several	screens,	each	for	a	
section	of	the	nephron.	All	screens	contain	besides	others	
sliders	 to	 control	 some	 model	 parameters	 and	 plots	
visualising	usually	flow	and	osmolarity	along	 tubules.	
But	these	are	not	shown	on	the	following	screenshots.

Glomerulus
Figure	12	depicts	the	glomerulus	screen.	Pressures	are	
depicted	with	 the	 liquid-column	gauge,	 flows	 through	

Figure 12. Top:	Bowman’s	capsule	(yellow),	afferent	and	
efferent	 arterioles.	Red	 arrows	 symbolize	 the	blood	flow	
direction,	yellow	arrow	represents	urine	flow	direction.	For	
each	part	of	glomerulus	both	the	hydrostatic	and	osmotic	
pressure	 is	 calculated.	 The	 difference	 between	 the	 total	
effective	 pressure	 in	 capillaries	 and	 in	 the	 Bowman’s	
capsule	drives	the	net	filtration	flow.	

Figure 13. Diagram	of	the	proximal	loop.	The	red	arrows	
show	the	direction	of	 the	urine	flow.	Along	 the	proximal	
tubule	 sodium	 ions	 and	 water	 molecules	 are	 reabsorbed	
across	the	cellular	boundary.

(4)

(5)

Model visualization for e-learning, Kidney simulator for medical students

400 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

Distal tubule and collecting duct

Figure	15	depicts	the	distal	tubule	and	collecting	duct.	
The	amount	of	ADH	may	be	controlled	by	the	student.	
Higher	 permeability	 of	 the	 tubule	 wall	 for	 water	 is	
represented	by	widening	of	the	blue	water	channels.	The	
goal	 is	 to	 explain	 how	ADH	 affects	 the	 reabsorption:	
With	 no	ADH,	 there	 is	 no	 reabsorption.	 Filtrate	 goes	
through	 unaffected.	Urine	 production	 rate	 is	 high	 and	
its	 osmolarity	 is	 low.	With	 full	ADH	 so	 much	 water	
is	 reabsorbed	 that	 the	 urine	 osmolarity	 equalizes	with	
osmolarity	 of	 the	 surrounding	 medulla.	 Only	 small	
amount	of	highly	osmotic	urine	is	produced.

Complete nephron

Figure	 16	 shows	 a	 complete	 nephron.	 All	 the	
information	from	previous	screens	is	recapitulated	here.	
For	simplicity	the	GFR	is	controlled	directly	instead	of	
controlling	afferent	and	efferent	arteriole	 resistance	as	
it	was	in	the	glomerulus	section.	ADH	is	controlled	as	
well.

4 Discussion and conclusion
New	 framework	 Bodylight.js	 for	 building	 web-based	
simulators	was	presented.	Bodylight.js	will	be	available	
for	public	use,	but	 it	 is	 still	under	heavy	development	
and	 not	 ready	 for	 widespread	 deployment.	 We	
encourage	 interested	parties	 to	contact	us	and	we	will	
gladly	provide	access	and	documentation.	We	welcome	
any	feedback	and	code	contributions	others	can	provide.
The	 Bodylight.js	 was	 already	 used	 to	 compose	 three	
teaching	simulators	and	proved	to	be	really	useful.	One	
of	 them,	 the	Nephron	 simulator	was	 presented	within	
this	 paper.	 This	 simulator	 will	 be	 used	 in	 physiology	
lectures	 at	 our	 faculty	 and	will	 be	 updated	 according	
to	 the	 feedback	 from	 teachers	 and	 students	 alike.	
Physiological	model	for	this	simulator	was	developed	as	

Figure 14. Loop	 of	 Henle.	 Red	 arrows	 show	 the	 urine	
flow	direction.	Water	molecules	passively	leave	the	urine	
making	 it	 more	 concentrated	 from	 physiological	 300	
mosm/l	 down	 to	 1200	mosm/l	 in	 the	 descending	 tubule.	
The	 blue	 dashed	 arrows	 indicate	 the	 amount	 of	 water	
molecules	transfer	from	tubulus	along	its	osmotic	gradient.	
The	 ascending	 tubule	 is	 virtually	 impermeable	 to	 water	
molecules	while	sodium	ions	are	actively	pumped	outside	
the	tubulus.	The	width	of	 the	purple	arrows	indicates	the	
amount	of	the	sodium	reabsorption.

Figure 15. Distal	tubule	and	collecting	duct	represent	the	
last	two	segments	of	a	nephron.	The	distal	tubule	and	the	
collecting	duct	are	permeable	for	water	molecules,	however,	
the	 net	 flow	 across	 the	 tubule	wall	 is	 endocrinologically	
regulated	via	ADH.	As	a	result	the	body	is	able	to	fine	tune	
the	urine	osmolarity	according	to	the	circumstances.	

Model visualization for e-learning, Kidney simulator for medical students

DOI Proceedings of the 13th International Modelica Conference 401
10.3384/ecp19157393 March 4-6, 2019, Regensburg, Germany

well.	Results	of	the	model	were	checked	by	physiologists	
and	are	approximately	correct,	enough	for	the	teaching	
purposes.	We	plan	to	add	a	follow-up	simulator	including	
more	solutes	and	additional	regulation	mechanisms.	
We	have	built	an	extensive	library	of	simulators	with	the	
previous,	now	defunct,	Silverlight	technology,	covering	
large	 portions	 of	 physiological	 systems.	We	hope	 that	
by	 relying	 on	 standardized	 web	 technologies	 we	 can	
provide	a	plethora	of	new	and	future-proof	web	based	
teaching	applications.

Acknowledgement
This	work	was	supported	by	the	TRIO	MPO	FV20628,	
SVV260371,	PROGRESS	Q26	grants	and	the	Creative	
Connections	 s.r.o..	 We	 thank	 Martin	 Brož	 for	 the	
artwork.

References
Blochwitz	T,	Otter	M,	Akesson	J,	et	al.	 (2012)	Functional	
mockup	 interface	 2.0:	 The	 standard	 for	 tool	 independent	
exchange	of	simulation	models.	In:	Proceedings of the 9th
International MODELICA Conference;	 September	 3–5;	
2012;	 Munich;	 Germany,	 2012,	 pp.	 173–184.	 Linköping	
University	Electronic	Press.	Available	at:	http://www.ep.liu.
se/ecp_article/index.en.aspx?issue=076%20;article=017.

Christ	 A	 and	 Thews	 O	 (2016)	 Using	 numeric	 simulation	
in	 an	 online	 e-learning	 environment	 to	 teach	 functional	
physiological	contexts.	Computer methods and programs in
biomedicine	127:	15–23.	DOI:	10.1016/j.cmpb.2016.01.012.

Enculescu	M,	Metzendorf	C,	Sparla	R,	et	al.	(2017)	Modelling	
Systemic	 Iron	 Regulation	 during	 Dietary	 Iron	 Overload	
and	 Acute	 Inflammation:	 Role	 of	 Hepcidin-Independent	
Mechanisms.	PLoS computational biology	13(1):	e1005322.	
DOI:	10.1371/journal.pcbi.1005322.

Fritzson	P	and	Engelson	V	(1998)	Modelica—A	unified	object-
oriented	language	for	system	modeling	and	simulation.	In:	
European Conference on Object-Oriented Programming,
1998,	 pp.	 67–90.	 Springer.	 Available	 at:	 https://link.
springer.com/chapter/10.1007/BFb0054087.

Hoppensteadt	 FC	 and	 Peskin	 CS	 (1992)	 Mathematics in
Medicine and the Life Sciences.	DOI:	10.1007/978-1-4757-
4131-5.

Ježek	F,	Privitzer	P,	Mateják	M,	et	al.	(2012)	Demonstration	
of	the	Risk	of	Fixed	Ejection	Volume	in	Ventricular	Assist	
Devices	 in	 Small	 Patients	 Using	Web	 Simulator.	 In:	 5th
European Conference of the International Federation for
Medical and Biological Engineering,	 2012,	 pp.	 489–492.	
Springer	 Berlin	 Heidelberg.	 DOI:	 10.1007/978-3-642-
23508-5_127.

Ježek	F,	Tribula	M,	Kolman	J,	et	al.	(2013)	Sada	výukových	
simulátorů	 –	 výsledky	 vývoje	 frameworku	 bodylight.	
MEDSOFT 2013: sborník příspěvků:	38–48.	Available	at:	
http://www.medvik.cz/link/bmc13015203.

Kofránek	J,	Privitzer	P,	Matoušek	S,	et	al.	(2009)	Schola	Ludus	
in	Modern	Garment:	Use	 of	Web	Multimedia	 Simulation	
in	 Biomedical	 Teaching.	 IFAC Proceedings Volumes
42(12).	Elsevier:	413–418.	DOI:	10.3182/20090812-3-DK-
2006.0087.

Kofranek	 J,	Matousek	S,	Rusz	 J,	 et	 al.	 (2011)	The	Atlas	of	
Physiology	 and	 Pathophysiology:	Web-based	 multimedia	
enabled	 interactive	 simulations.	 Computer methods and
programs in biomedicine	104(2):	143–153.	DOI:	10.1016/j.
cmpb.2010.12.007.

Kulhánek	 T,	 Mateják	 M,	 Šilar	 J,	 et	 al.	 (2013)	 Hybridní	
architektura	 pro	 webové	 simulátory.	 MEDSOFT 2013:
sborník příspěvků:	 115–121.	 Available	 at:	 http://www.
medvik.cz/link/bmc13015212.

Matejak	M	and	Kofranek	J	(2015)	Physiomodel	–	an	integrative	
physiology	 in	 Modelica.	 Conference proceedings: ...
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Conference	 2015:	 1464–
1467.	DOI:	10.1109/EMBC.2015.7318646.

Modelica	 Association	 (2017)	 Tools	 |	 Functional	 Mock-
up	 Interface.	 Available	 at:	 http://fmi-standard.org/tools/	
(accessed	21	July	2017).

Figure 16. Screen	 of	 the	 whole	 nephron	 model,	 i.e.	
glomerulus,	 proximal	 tubule,	 descending	 and	 ascending	
loop	of	Henle,	 distal	 tubule	 and	 collecting	duct.	Besides	
others,	the	mass	flow	rate	of	excreted	Na	is	displayed.

Model visualization for e-learning, Kidney simulator for medical students

402 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157393

 Smith	 J	 (2015)	 Moving	 to	 HTML5	 Premium	 Media	 –
Microsoft	 Edge	 Dev	 Blog.	 Available	 at:	 https://blogs.
windows.com/msedgedev/2015/07/02/moving-to-html5-
premium-media/	(accessed	27	August	2018).

Tiller	 MM	 and	 Winkler	 D	 (2017)	 modelica.university:	 A	
Platform	for	Interactive	Modelica	Content.	In:	Proceedings
of the 12th International Modelica Conference, Prague,
Czech Republic,	 May	 15–17,	 2017,	 4	 July	 2017,	 pp.	
725–734.	 Linköping	 Electronic	 Conference	 Proceedings.	
Linköping	 University	 Electronic	 Press.	 DOI:	 10.3384/
ecp17132725.

Tribula	M,	Ježek	F,	Privitzer	P,	et	al.	(2013)	Webový	výukový	
simulátor	 krevního	 oběhu.	 MEDSOFT 2013: sborník
příspěvků:	 197–204.	 Available	 at:	 http://www.medvik.cz/
link/bmc13015231.

WebAssembly	 High-Level	 Goals	 –	 WebAssembly	 (n.d.).	
Available	 at:	 https://webassembly.org/docs/high-level-
goals/	(accessed	24	September	2018).

Zakai	 A	 (2011)	 Emscripten:	 An	 LLVM-to-JavaScript	
Compiler.	 In:	 Proceedings of the ACM International
Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion,	 New	
York,	NY,	USA,	2011,	pp.	301–312.	OOPSLA	’11.	ACM.	
DOI:	10.1145/2048147.2048224.

Zhang	 S	 (2001)	 An IIOP architecture for Web-enabled
physiological models.	 Massachusetts	 Institute	 of	
Technology.

DOI Proceedings of the 13th International Modelica Conference 403
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 4A: POWER & ENERGY 3
Platform for Microgrid Design and Operation
Windahl, Johan and Runvik, Håkan and Velut, Stephane

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables
Bode, Carsten and Schmitz, Gerhard

Model-Based Controls Development and Implementation for a Hydroelectric Power System
Nguyen, Anh and Batteh, John

.

404 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Platform for Microgrid Design and Operation

DOI Proceedings of the 13th International Modelica Conference 405
10.3384/ecp19157405 March 4-6, 2019, Regensburg, Germany

Platform for Microgrid Design and Operation
Windahl, Johan and Runvik, Håkan and Velut, Stephane

405

Platform for Microgrid Design and Operation

Johan Windahl1 Håkan Runvik1 Stéphane Velut1
1Modelon, Sweden, {johan.windahl,hakan.runvik,stephane.velut}@modelon.com

Abstract
This paper describes the development and requirement

specification of a platform for design and operation of

microgrids.

The goal is to have a flexible platform based on

open standards that can be used to efficiently solve

current and future engineering problems for distributed

energy sources and storage systems. By basing it on a

unified architecture, collaboration and efficient work

flows are enabled.

In this work we investigate the requirements on the

model and on the tool side. We also demonstrate how

an energy storage system can be designed to reduce the

maximum peak power and how it can be operated in

the most economic efficient way, taking into

consideration constraints and limitations of the system.

This work is based on Modelon’s web-based

modeling and simulation platform and its Modelica

library Microgrid.

Keywords: simulation, optimization, peak shaving,

battery storage, energy management, economic
dispatch

1 Introduction

Environmental considerations and increasing

awareness of infrastructure sensitivity have led to

reconsiderations of how energy systems should be best

configured. The current highly centralized systems

which were developed for large production units such

as nuclear and fossil power plants are not suitable for

renewable, intermittent and distributed energy sources

such as wind and solar (Fathima and Palanisamy,

2015). This motivates the use of microgrids, which are

specifically developed for this kind of heterogenous

energy production.

A microgrid is a group of interconnected energy

sources, loads and storage devices that can operate

both connected with the surrounding electricity grid

and disconnected in islanding mode. It has the potential

to offer increased self-sufficiency and reliability at low

cost and reduced environmental impact (Eto et al,

2018). Microgrids typically include smaller production

units such as photovoltaic arrays, wind turbines,

microturbines and generators (combustion engines) as

well as storage devices such as flywheels and batteries.

Their comparably smaller investment cost makes them

attractive to install in remote areas and their capacity

for reducing transmission congestion makes them

interesting for energy suppliers (Venkatraman and

Khaitan, 2015).

2 Background

The challenges of microgrid design and operation are

attracting considerable research interest. A survey of

these, including islanding transitions, power quality

improvements and economic optimization can be

found in (Venkatraman and Khaitan, 2015).

Optimization is an important tool in this regard.

(Fathima and Palanisamy, 2015) contains an overview

of the different optimization problems considered in

the current research, and the methods and tools used to

solve them.

A review of previous work reveals that although

there are plenty of methods and tools developed to

solve specific problems in this domain, there is no

unified tool-chain capable of handling all the relevant

problems in both design and operation. Common tools

used for microgrid optimization and simulation today

include HOMER (HOMER Energy, 2018) and PSCAD

(Manitoba Hydro International 2018). HOMER

(Hybrid Optimization of Multiple Energy Resources) is

a commercial tool originally developed by the National

Renewable Energy Laboratory (NREL), that can be

used for optimization of the system configuration,

component sizing and grid operation. PSCAD is a

time-domain based power system simulation tool,

which can be applied for microgrid configurations.

Tools such as these are quite specialized, lacking the

needed flexibility of a complete solution, such as

• changing fidelity levels in the system

representation

• introducing highly customized component

models in specialized systems

• customizing optimization formulations for

specific needs

• combining the physical domains such as

thermal, electrical, mechanical to describe

future heterogeneous cyber-physical systems

Alternative, highly customized implementations based

on more generic tools such as GAMS (General

Algebraic Modeling System) (GAMS, 2018) also exist,
but the work required to setup such systems makes

them impractical for the common user.

Platform for Microgrid Design and Operation

406 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157405

A Modelica-based solution is a good candidate for

filling this gap, enabling a flexible and user-friendly

framework for the design and operation task. Previous

microgrid solutions based on Modelica include (Du et

al, 2014), where two optimization problems for a

Modelica microgrid model are solved using Matlab and

FMI-toolbox. In (Kehl et al, 2017), a heterogeneous

modeling process is proposed, where Modelica models

are coupled with Simulink for control design.

Additional work focusing only on the Modelica

modeling also exist, such as (Roy et al, 2014) and

(Enerbäck and Nalin Nilsson, 2013). None of these

present a platform for modeling, simulation and

optimization, enabling the user to solve many of the

problems of microgrid design and operation with one

tool. Presenting the development and requirements of

such a tool is the goal of this paper.

2.1 Design and operation

Design and operation are different types of engineering

tasks that typically occur at different places in time

using different types of tools of various fidelity levels

and time scales. But the design and operation are

tightly coupled and would benefit from a unified tool-

chain. As an example, a design that requires an

aggressive use of the energy storage system may

shorten the life-time and lead to a higher total cost

compared to a different design. Another example is

peak reduction, a design that cannot reduce the peak

power may lead to higher costs. In (Fathima and

Palanisamy, 2015), the challenges encountered in this

regard are divided into generation, control and

distribution side optimization problems. Generation

side problems consider system design and component

sizing, control side problems describe phenomena such

as voltage and frequency control and the distribution

side considers scheduling and dispatching. The

performance indicators and optimization objectives are

typically based on economic, environmental or

reliability considerations (Luna-Rubio et al, 2012).

Typical problem formulations are:

1. Which system configuration has the lowest

capex and opex cost, for a given load profile

and ambient conditions.

2. What is the optimal component sizing under

certain reliability requirements.

3. What is the optimal economic dispatch, taking

electricity, fuel, maintenance and aging costs

into account.

Only a subset of the possible questions can be

answered by one single tool, but by providing a

flexible framework that can be used by multiple user

types, the potential impact is maximized.

3 Requirements

A challenge with designing a model-based framework

that should empower different user personas

performing various tasks and analyses is the variety of

aspects and requirements to consider. Requirements

cover the range from model fidelity level, interface

design and numerical robustness to user-friendly work-

flows, application interface and integration of input

data such as solar irradiation and economy parameters.

Here we will look closer into the technical aspects of

analysis that are required and the kind of model fidelity

that needs to be supported.

3.1 Analyses

A framework that should support both design and

operation needs to cover various types of analyses.

System design focuses on the overall system

behavior. It requires support of:

• Sizing of components

• Configuration evaluation

• System evaluation

Operation covers a wide area from energy management

where energy producers and storage should be used in

an optimal way, to grid robustness assuring a stable

grid that meets grid code requirements.

For operation we identity following basic analysis

types that a tool should support:

• Economic dispatch

• Control design

“Economic dispatch is the short-term determination of
the optimal output of a number of electricity

generation facilities, to meet the system load, at the

lowest possible cost, subject to transmission and
operational constraints” (Wikipedia – Economic

Dispatch, 2018).

3.2 Technology

The technology needs to be able to support the

analyses described in chapter 3.1. In the center there is

a model with the right fidelity level to accurately

describe the system.

The different analysis types correspond to different

computational execution tasks which also set

requirements on the tool. The following tasks needs to

be supported:

• Simulation

• Multi-simulation

• Optimization

Besides simulation, which is a basic requirement for

analyzing the system behavior and to support control

design, multi-simulation is required to quickly evaluate
configurations. Parallelization of simulations is not a

hard requirement but will improve the performance and

Platform for Microgrid Design and Operation

DOI Proceedings of the 13th International Modelica Conference 407
10.3384/ecp19157405 March 4-6, 2019, Regensburg, Germany

user experience. Multi-simulation is also needed to

perform sensitivity analysis in the presence of

uncertainty related to weather or load forecast.

Optimization is required for component sizing and

to solve the economic dispatch problem.

3.2.1 Model

Component sizing and control design have different

requirements on complexity and time scale of interest.

See Figure 1 for an overview of dynamic phenomena

and their corresponding time range in an electrical

system.

A disadvantage of using a higher complexity level

than required is that it results in larger simulation times

and potentially also numerical robustness issues.

Another issue is that a higher model complexity often

has a more detailed parameterization that increases the

barrier to get started.

Figure 1 Time ranges of dynamic phenomena. (Sauer et.

al, 1997)

One strength of Modelica is the support of generic data

types that makes it possible to define a replaceable

architecture, where a user can switch the complexity

level. Examples of work that take advantage of this in

the electrical domain are a multi-level library for

electrical machines (Giangrande, et al, 2014) and an

electric power library that covers arbitrary phases and

transforms in one generic framework (Franke and

Wiesmann, 2014).

In the different analyses, we categorize model

requirements in following two groups:

1. System design and energy management. Time

scale of interest from minutes to hours where a

simulation case can cover a whole year. Here

the main interest is energy flows including

production, consumption and storage. Detailed

electrical behavior is not of interest with an

assumption of a balanced grid that neglects

fast electrical transients.

2. Grid robustness. Time scale of interest from

milli-second to minutes where a typical

simulation may be a few seconds to a few

minutes. The main interest is transient

electrical behavior with a focus on grid

frequency and voltage stability.

For use case 1, it should be possible to efficiently apply

optimization. This requires that the model equations

are at least twice continuously differentiable (Nocedel

and Wright, 2006)

3.2.2 Interface

Modelica models are typically implemented to describe

physical properties such as geometry and its

corresponding fundamental physical equations, see.

e.g. Modelica Standard Library (Modelica Libraries,

2018).

But for models to be used for system design

decisions which often include economic aspects,

economic information also needs to be included.

Examples of economic data are nominal lifetime,

capital cost and maintenance cost and interval. This

information could be provided in e.g. a Modelica

record.

Boundary conditions and input data of importance

are:

• Weather data for renewable producers

• Electric load defining the consumption

• Fuel and electricity prices

It would be beneficial to have an interface that handles

this type of location-dependent data in a user-friendly

way, e.g. by integration with a web-map such as

Google maps or Bing.

3.3 Collaboration

A general requirement for model-based development

that is also true for micro-grid application is the ability

to easily share models and results. Different tasks are

typically done by people with different roles. Examples

include managers that want to supervise an ongoing

new design, and sales personnel that want to find a

suitable configuration for a customer by simulating

various configurations and present the most

appropriate one.

Figure 2 Illustration of a model centric collaboration

approach.

Platform for Microgrid Design and Operation

408 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157405

Various tasks require different levels of model

abstraction and exposure of model information. A sale

person may not need to know about the details of

Modelica or numerical integration algorithms. Instead

he or she may only require an accessible and easy to

use interface where a sub-set of all parameters and

outputs is shown.

4 Computational Platform

In this chapter we present our framework for the design

and operation of micro-grids.

The solution consists of several parts to meet the wide

variety of needs and requirements. In the center of the

framework is a Microgrid Modelica library and a web

modeling and simulation platform from Modelon,

including the Optimica Compiler Toolkit for model

simulation and optimization.

The following artefacts define the micro-grid

framework:

• Modelica models are used to describe the

behavior of the components and include data

structures with economic data

• Optimica, an extension of Modelica (Åkesson,

2008), is used to formulate optimization

problems

• Python scripts are used for optimization

workflows and post processing

• HTML and JavaScript are used to create a

customizable end-user interface

• FMI is used for deployment.

4.1 Software and Tools

A web-platform matches well with the requirements in

chapter 3. It offers an accessible solution that supports

a model centric collaboration approach. The web

interface makes it possible to create various abstraction

levels for a model. This is used to fulfill the different

simulation needs of e.g. engineering teams and sales

organization.

Figure 3 Simulation web-interface with integration of

Bing map into Modelon’s web-based modeling and

simulation platform web-API.

Another aspect of a web simulation platform is

scalability, where simulations can be distributed and

executed on the cloud.

Modelon’s new web-based modeling and simulation

platform builds on open standards. An overview of the

architecture is seen in Figure 4. The platform has

support for various open formats and programming

languages that have been used to create a framework

that empowers the user. The following concepts have

been used:

1. View - with views it is possible to add a

visualization layer above the model. The

separation makes it possible to create

custom views targeting different users using

a single model.

2. Custom function – using a custom function

a python-based workflow can be associated

with a model, see Figure 5. In this work it

has been used to integrate dynamic

optimization in a user-friendly way into the

tool.

3. Web-API. A web simulation interface has

been used to create a customizable end-user

interface targeting sales personnel needing

an easy-to use simulation tool, see Figure 3.

Platform for Microgrid Design and Operation

DOI Proceedings of the 13th International Modelica Conference 409
10.3384/ecp19157405 March 4-6, 2019, Regensburg, Germany

Figure 4 Simplified architecture overview of Modelon’s

web-based modeling and simulation platform.

4.1.1 Optimization framework

Optimization capabilities are important for many

design and operation challenges, as highlighted in the

previous analysis. Our solution tightly integrates the

optimization formulation with the model formulation

using the Modelica extension Optimica. Optimica

enables the user to define the objective function,

constraints and the optimization time horizon in an

optimization class, which incorporates the Modelica

models via extension or instantiation. The dynamic

optimization capabilities of the Optimica Compiler

Toolkit are used to solve the dynamic optimization

problems defined in this way. The problems are

symbolically transformed and transcribed into

nonlinear programs (NLP) through direct collocation

(Magnusson & Åkesson 2015). These are solved using

IPOPT (Wächter and Biegler 2006).

Figure 5 Custom parameter interface in Modelon’s web-

based modeling and simulation platform. The user

interface is automatically created based on input

definitions in a Python file.

4.2 Model

Microgrid is a Modelica library developed by

Modelon. It contains the basic components needed for

building models aimed at evaluation and optimization

of micro-grid configurations. The different components

will be described in the following section.

4.2.1 Microgrid components

• Weather: Periodic solar insolation model.

• Photovoltaics: Calculates the generated power

from solar insolation, based on rated capacity

and efficiency.

• Battery: The battery model is defined by

parameters for capacity, minimal and maximal

state of charge and a maximal charge and

discharge rate. A DC-connector is used for the

charging and discharging.

• Grid: Ideal grid model, providing the

electricity needed to balance the micro-grid

through an AC-connector, at user-defined

voltage.

• Diesel generator: Provides power to the

micro-grid through an AC-connector, based on

an input signal. The corresponding fuel

consumption is calculated from a fuel curve

defined by an intercept coefficient and a slope.

• Load: AC electric power consumption defined

by input signal.

• Transformer and inverters: Efficiency based

models changing voltage or current type.

• Micro-grid manager: Component containing

replaceable control models determining the

control strategy for the battery and the diesel

generator. By connecting it to external

sources, it supports using the micro-grid in

optimization.

Figure 6 Microgrid Modelica library in Modelon’s web-

based modeling and simulation platform.

5 Use cases

Two different use cases are considered; peak shaving

and economic dispatch. The same Modelica model of

the micro-grid is used in both cases, a setup with all

components is listed in Section 4.2.1.

The Modelica model is extended to Optimica
models, which define optimization problems

corresponding to the two use cases. They are

Platform for Microgrid Design and Operation

410 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157405

determined by choosing different degrees of freedom

and objectives in the optimization formulations. The

optimization horizon of 7 days is divided into hourly

samples in the economic dispatch and 30-minute

samples in the peak shaving case.

The same electric load profile is used in both cases.

It contains one week of electricity consumption data

with a sampling time of 15 minutes. Simplified

trajectories are used to represent the electricity price

and insolation, but real data could be used for these

too, by importing from a file in the same way.

Figure 7 Illustration of optimization workflow. Running a

custom function starts the execution of a Python script

that compiles and optimizes a Modelica model. The result

is automatically plotted and returned to the tool.

5.1 Peak shaving

Peak shaving is a method to reduce economic cost by

limiting power consumption during high loads. In the

modelled micro-grid, the battery is used to decrease the

electricity demand from the grid. For this reason, a

user-defined maximum constraint on the grid power is

imposed on the system, reducing the maximum power

peaks. The optimal operation of the micro-grid system

is determined under this constraint, assuming constant

diesel generator load and penalizing deviations from

nominal state of charge for the battery. The battery size

is in particular a degree of freedom in the optimization

formulation and the derived size is the main result of

the use case.

5.1.1 Optimization formulation

The optimization formulation is defined as the

minimization of the following cost function:

𝐶𝑚𝑎𝑥+∫ 𝛼(𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓)
2

𝑡

0

+ 𝛽 ∙ 𝑑𝑄𝑏𝑎𝑡𝑡𝑒𝑟𝑦
2 𝑑𝑡

Where 𝐶𝑚𝑎𝑥 is the battery capacity, 𝑆𝑂𝐶 is the state of

charge, 𝑆𝑂𝐶𝑟𝑒𝑓 the nominal state of charge and

𝑑𝑄𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the battery charge control signal. 𝛼 and 𝛽

are constants determining the relative cost of the terms.

The control signal is penalized to avoid unreasonably

fast control action. The degrees of freedom are the

battery size and the battery charge/discharge profile.

5.1.2 Results

Optimization results are displayed in Figure 8. The

peak shaving of the grid load is displayed in the upper

plot, for each period of high production the grid load is

limited. The battery size can be seen in the middle plot,

it has been chosen as small as possible without

violating the prescribed state of charge limits.

Figure 8 Results of peak shaving optimization.

5.2 Economic dispatch

The economic dispatch use case solves the problem of

finding the optimal operation of the units in the micro-

grid system, taking variations in load, electricity cost

and solar irradiance into account. The main result is the

operation mode of the battery and diesel generator and

the resulting economic cost.

5.2.1 Optimization formulation

The following integral is minimized, taking economic

costs and control signal changes into account:

∫ 𝑝𝑓𝑢𝑒𝑙 ∙ 𝐹𝑓𝑢𝑒𝑙 + 𝑝𝑒𝑙 ∙ 𝑃𝑒𝑙 + 𝛼 ∙ 𝑑𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
2

𝑡

0

+ 𝛽

∙ 𝑑𝑄𝑏𝑎𝑡𝑡𝑒𝑟𝑦
2 𝑑𝑡

Where 𝑝𝑓𝑢𝑒𝑙 and 𝑝𝑒𝑙 are the diesel fuel and grid

electricity prices, respectively, 𝐹𝑓𝑢𝑒𝑙 is the diesel

consumption, 𝑃𝑒𝑙 is the grid electricity usage, and 𝛼

and 𝛽 determine the penalties for the generator load

and battery charge control signals.

5.2.2 Results

The results from the economic dispatch experiment can

be seen in Figure 9. The battery usage and the diesel

generator load follow the variations in the electricity

price, so that grid electricity consumption is minimized

during the price peaks.

Platform for Microgrid Design and Operation

DOI Proceedings of the 13th International Modelica Conference 411
10.3384/ecp19157405 March 4-6, 2019, Regensburg, Germany

Figure 9 Result of economic dispatch.

6 Conclusions

In this paper we have presented a unified platform for

microgrid design and operation with the scope to

efficiently solve todays and future engineering

problems for distributed energy sources and storage

systems. We also investigated the requirements from a

model and tool perspective with a focus on both

technology and user interface. The framework is based

on the open standards Modelica, Python, HTML and

JavaScript and is built around Modelon’s new web-

based modeling and simulation platform. The use case

demonstrated successfully that the framework can be

used to solve peak shaving and economic dispatch

optimization problems.

A major benefit with a Modelica based platform is

the openness and flexibility, where it’s possible to

define an architecture with different fidelity levels that

can be used for various types of execution and analysis

types.

Future work will focus on adding additional

components such as wind power and defining a

flexibility architecture for 3-phase AC systems. Other

focus areas are improving the fidelity level of already

existing components and adding aging effects of

batteries in the optimization problem.

References

Wenbo Du, Humberto E. Garcia and Christiaan J. J. Paredis.

An Optimization Framework for Dynamic Hybrid Energy

Systems. 10th International Modelica 2014 Conference.

Lund, Sweden.

Jonas Enerbäck and Oscar Nalin Nilsson. Modelling and

Simulation of Smart grids using Dymola/Modelica.

Division of Industrial Electrical Engineering and

Automation Faculty of Engineering, Lund University,

2013

Joseph H. Eto, Robert Lasseter, David Klapp, Amrit Khalsa,

Ben Schenkman, Mahesh Illindala and Surya Baktiono.

The CERTS Microgrid Concept, as Demonstrated at the

CERTS/AEP Microgrid Test Bed, Energy Analysis and

Environmental Impacts Division Lawrence Berkeley

National Laboratory, 2018

A. Hina Fathima and K. Palanisamy. Optimization in

microgrids with hybrid energy systems – A review.

Renewable and Sustainable Energy Reviews, 45, 431-446,

2015

Rüdiger Franke and Hansjürg Wiesmann. Flexible modeling

of electrical power systems – the Modelica PowerSystems

library. 10th International Modelica 2014 Conference.

Lund, Sweden.

GAMS (2018). URL https://www.gams.com/

Paulo Giangrande, Christopher Hill, Chris Gerada and Serhiy

Bozhko. Multi-Level Library of Electrical Machines for

Aerospace Applications. 10th International Modelica 2014

Conference. Lund, Sweden.

Homer Energy (2018). URL https://www.homerenergy.com/

Pierre Emanuel Kehl, Raja Rehan Khalid and Georg Frey.

Heterogeneous Modeling: A Need to Model Future Energy

Systems. Power and Energy Student Summit 2017

Ricardo Luna-Rubio, Mario Trejo-Perea, Damián Vargas

Vázq and José Ríos-Morena. Optimal sizing of renewable

hybrid energy systems. A review of methodologies. Solar

Energy 86, Issue 4:1077-1088, 2012

Fredrik Magnusson and Johan Åkesson. Dynamic

optimization in JModelica.org. Processes, 3(2):471–496,

2015

Manitoba Hydro International (2018). URL

https://hvdc.ca/pscad/

Modelica Association Libraries. Available at

https://www.modelica.org/libraries, accessed 2018-11-19.

Jorge Nocedel and Stephen J. Wright (2006). Numerical

Optimization. New York, NY: Springer New York.

Juan Van Roy, Robbe Salenbien and Johan Driesen.

Modelica Library for Building and Low-Voltage Electrical

AC and DC Grid Modeling. 10th International Modelica

2014 Conference. Lund, Sweden.

Peter W. Sauer, M. A. Pai. and Joe H. Chow. (1997). Power

System Dynamics and Stability, John Wiley & Sons Inc.

Ramakrishnan Venkatraman and Siddharta Kumar Khaitan.

A Survey of Techniques for Designing and Managing

Microgrids. IEEE Power & Energy Society General

Meeting, 2015

Wikipedia contributors. (2018, August 28). Economic

dispatch. In Wikipedia, The Free Encyclopedia. Retrieved

13:51, November 12, 2018, from

https://en.wikipedia.org/w/index.php?title=Economic_disp

atch&oldid=856915225

Andreas Wächter and Lorenz T. Biegler. On the

implementation of a primal-dual interior point filter line

Platform for Microgrid Design and Operation

412 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157405

search algorithm for large-scale nonlinear programming.

Mathematical Programming, 106:25–57, 2006.

Johan Åkesson. (2008). Optimica - An Extension of

Modelica Supporting Dynamic Optimization. Proceedings

of the 8th International Modelica 2008 Conference.

Bielefeld, Germany.

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

DOI Proceedings of the 13th International Modelica Conference 413
10.3384/ecp19157413 March 4-6, 2019, Regensburg, Germany

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated
Energy System with 100 % Renewables
Bode, Carsten and Schmitz, Gerhard

413

Influence of Excess Power Utilization in Power-to-Heat Units on an
Integrated Energy System with 100 % Renewables

Carsten Bode Gerhard Schmitz

Institute of Engineering Thermodynamics, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg,
Germany, {c.bode,schmitz}@tuhh.de

Abstract
This paper presents the effect which the utilization of ex-
cess power in Power-to-Heat units has on an energy sys-
tem which is fully supplied by renewables. For this, a
possible future German integrated energy system consis-
ting of the power, heat and gas sectors is modeled using
the TransiEnt Library in Modelica R©. The first system
contains electric energy storage units, Power-to-Gas as
well as Gas-to-Power plants and hot water storage units
as energy storage technologies. The heat supply does not
use excess power, and an option to curtail renewable po-
wer generation is added. The system costs are optimized
by using simplified models in MATLAB R© and designed
in Modelica afterwards to include the dynamic effects. In
a second system, excess power can also be used in existing
electric heat pumps and in a third system as well in exis-
ting electric heating rods installed in the hot water storage
tanks instead of curtailing renewable energy generation.
This reduces the component sizes and thus the cost of the
system because only control has to be added to enable this
behavior.
Keywords: Integrated Energy System, 100% Renewables,
Power-to-Heat, Energy System Analysis

1 Introduction
To reduce the effects of climate change, the United Na-
tions have created the Paris Agreement (United Nations,
2015). This is a big challenge because CO2 emissions
have to be decreased to a minimum which can only be
achieved by massive integration of renewable energies in
all energy sectors. Because the most promising renewable
energies produce electricity directly, e.g. photovoltaics or
wind turbines (International Energy Agency, 2016), and
to use good storage capacities in the other sectors, sector
coupling will become inevitable.

Many studies have been conducted in recent years, ex-
amining how future integrated energy systems may be de-
signed, e.g. Benndorf et al. (2014); Gerhardt et al. (2015);
Henning and Palzer (2015); Nitsch et al. (2012); Pape et al.
(2014); Teske et al. (2015). In most cases, those studies
are conducted with simplified models. Most commonly,
quasi-stationary models are optimized over a whole year
in time steps of one hour using Mixed Integer Linear Pro-
gramming (MILP) to find the most cost-efficient configu-

ration of an energy system. Those models neglect dyna-
mic effects, e.g. time constants of storage units or rapid
changes which occur faster than the time resolution of the
models.

Therefore, the search for a cost-efficient configuration
of a future integrated energy system consisting of the po-
wer, heat and gas sectors was conducted using simplified
quasi-stationary models first and then detailed, dynamic
models for the exact system design in Bode and Schmitz
(2018). This work has been extended by adding more de-
tail to enable the examination of the influence which the
utilization of excess power in Power-to-Heat (PtH) units
has on the overall system.

One option to implement dynamic models is the pro-
gramming language Modelica (Modelica Association,
2018) which enables equation-based and object-oriented
model development. Due to this approach, physical equa-
tions can be written directly in the code and good reusabi-
lity as well as simple maintenance are guaranteed.

2 Previous Work
In Bode and Schmitz (2018), renewable energy production
and end use energy demand curves are generated for the
future energy system of Germany including the power,
heat and gas sectors for a year when those sectors will be
fully supplied by renewables. End use of heat includes low
temperature heat whereas the end use of gas contains high
temperature heat and non-energetic use of gas. Genera-
tion and consumption are matched using different electric
energy storage technologies (lithium-ion battery, pumped
hydro storage or adiabatic compressed air energy storage),
Power-to-Gas units (electrolyzer and methanation unit),
gas storage volumes, Gas-to-Power units (gas turbine or
combined cycle gas turbine), heat producers (solar ther-
mal collector, electric heat pump, gas heat pump, gas boi-
ler) and hot water storage units; see Table 1 and Figure 1.
Energy transmission is assumed to be ideal.

The different storage and conversion technologies are
charged and discharged in a given order, e.g. PHS, LIB,
PtG, CCGT. So in the case of negative residual load, if
the PHS unit is fully charged or is already operating at
maximum power, the LIB will be charged and so on.

This integrated energy system is implemented in two
different ways: First, as a dynamic model, using de-
tailed, dynamic models from the open-source TransiEnt

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

414 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157413

Figure 1. Overall system with energy flows between all components examined by Bode and Schmitz (2018). Curtailment (in grey)
is added in this work.

Table 1. Abbreviations of components in the system

Component Abbreviation

Lithium-ion battery LIB
Pumped hydro storage PHS
Adiabatic compressed air
energy storage A-CAES
Power-to-Gas unit (electrolyzer
and methanation unit) PtG
Gas-to-Power unit GtP
Gas turbine GT
Combined cycle gas turbine CCGT

Library (Hamburg University of Technology, 2018; An-
dresen et al., 2015) and models under development, which
are implemented in Modelica in the simulation environ-
ment Dymola (Dassault Systèmes, 2018). Second, as
a simplified model using quasi-stationary equations in
MATLAB (MathWorks, 2018a) to guarantee low compu-
ting times to be able to compare a lot of system configura-
tions in regard to cost. However, due to the high level of
detail, the heating system is included in this system using
gas or electricity demand curves taken from detailed Mo-
delica simulations.

To find the best system configuration, first, the heating
system is simulated to create the electricity and gas de-
mand curves for the heat supply. Second, the simplified
models are used to simulate a wide variety of combina-
tions of the storage and conversion technologies with dif-
ferent sizes. It is ensured that all storage units have the
same state of charge (SOC) at the beginning and at the end
of the year and that all demands are met. Third, the most
promising configurations are again designed in Modelica
and at last compared regarding the cost.

3 Approach
First, a cost-efficient system configuration has to be
found. This is achieved by applying the optimization algo-
rithm patternsearch from the MATLAB Optimiza-
tion Toolbox (MathWorks, 2018b) on the simplified MAT-
LAB model of Bode and Schmitz (2018) with 15 min time
steps to which the ability to curtail renewable energy gene-
ration is added. In the former configuration of the system,
all produced renewable electric energy has to be consumed
by the consumers or storage units as not to waste energy.
With this strategy, the PtG capacity is designed for the
peak load which occurs only once per year. Adding cur-
tailment leads to higher operation hours of the plants and
thus to lower specific cost.

The heat, which is not generated by solar thermal col-
lectors, is supplied by an electric heat pump in combina-
tion with an electric boiler and an electric heating rod in-
stalled in the hot water storage. Gas heat pumps and gas
boilers were excluded because they were not cost-efficient
and the potential of excess power utilization is the high-
est in the electrically driven heat producers. The heating
system is implemented in the MATLAB model by using
electricity demand curves from the heating system mo-
deled in Modelica.

Different combinations of storage technologies and
charging orders are tested based on the results of Bode and
Schmitz (2018) and optimization runs are started from se-
veral starting points to find different local minima. In a
multi-dimensional numerical optimization one can never
be sure if the found minimum is the global minimum or
just a local one. So, the best minimum found is used and
assumed to be the global minimum. As Henning and Pal-
zer (2015) state, there are a lot of different solutions with
only slightly differing cost. Also, the results are highly
dependent on a lot of assumptions, especially prices in the
far future, so the used result here is just a possible, but
likely solution.

Second, this solution is designed by simulating the de-

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

DOI Proceedings of the 13th International Modelica Conference 415
10.3384/ecp19157413 March 4-6, 2019, Regensburg, Germany

tailed Modelica system model (System 1, S1) over a whole
year. The renewable, PtG and GtP nominal power are
changed iteratively to ensure the same SOC of all storage
units at the end as at the beginning of the year while
keeping the electric energy storage sizes and maximum
curtailment power constant.

Third, excess power utilization in PtH units is imple-
mented in the detailed models in Modelica. So, energy,
which would otherwise be curtailed, i.e. wasted, is used
directly in electric heat pumps (S2) or additionally in elec-
tric heating rods in the hot water storage tanks (S3). This
way, heat generation is shifted to times with a lot of re-
newable generation. These systems are designed as well
using the Modelica system models under the same condi-
tions as S1 but keeping the maximum of the sum of cur-
tailed power and used excess power in the heating system
constant.

All simulations are conducted with the Dymola solver
Radau IIa and a tolerance of 10−6.

4 Models
The existing models of Bode and Schmitz (2018), i.e.
quasi-stationary MATLAB and dynamic Modelica mo-
dels, are extended by adding curtailment. In the Modelica
models, the heating system is also modeled in more detail
to enable a better quantification of the use of excess power
in the PtH units.

4.1 Curtailment
Instead of actually reducing the power production of re-
newables in case of an overproduction, this excess power
is consumed by a curtailment model. This way, it can be
included in the existing storage technology structure in the
models. The curtailment model has a maximum power, an
infinite power gradient and an infinite energy capacity.

4.2 Heating System
The considered heating system, which is modeled in Mo-
delica, is shown in Figure 2. With this model, a power
consumption curve is created which is used by the sim-
plified MATLAB model as well as S1 as a demand curve.
In S2 and S3, the heating system model is included in the
overall system model to enable direct coupling; see Fi-
gure 1.

4.2.1 Solar Collector

In the formerly used solar collector model, the water,
which absorbs the solar radiation, is modeled using the
TILMedia Library (TLK-Thermo GmbH and Institut für
Thermodynamik, Technische Universität Braunschweig,
2018). In reality, usually a water-glycol mixture is used to
avoid freezing but due to the unavailability of open-source
media data for this medium in the TILMedia Library, pure
water is used. At low ambient temperatures, low water
temperatures are reached, which leads to freezing, and
thus to warnings from the used media data. The freezing

Table 2. Positions of the inlets, outlets and the electric heating
rod in the hot water storage, measured from the bottom (Reckna-
gel et al., 2017)

Component Height in m

Electric heat pump inlet 1.7
oulet 1.2

Solar collector inlet 0.8
oulet 0.3

Electric heating rod 1.0
Space heating inlet 1.0

oulet 1.8
Hot water and process heat inlet 0.0

oulet 2.0

does not influence the model results, because at those ti-
mes, the solar radiation is so low that no heat is produced,
but the simulation is slowed down due to the output of
those warnings. Therefore, a simple water model is imple-
mented, using constant density ρ = 989.9kg/m2 and spe-
cific heat capacity cW = 4184J/(kgK) based on the fluid
model TILMedia_SplineWater between 10 ◦C and 75 ◦C
at 1 bar. The specific enthalpy h is calculated using the ca-
loric state equation with the temperature T and reference
point 0 at T0 = 273.15K with h0 = 59.65J/kg.

h = cW(T −T0)+h0 (1)

4.2.2 Hot Water Storage

To model the hot water storage in a more realistic way,
the existing model is extended, making it possible to add
more ports in different heights. This way, for instance, the
solar collector can feed the hot water into the lower part of
the storage while the electric heat pump charges the upper
part; see Figure 2. The heights used from Recknagel et al.
(2017) are given in Table 2.

An electric heating rod is also added to the storage
which works like the existing electric boiler model. Be-
cause of this, the electric heat pump does not have to be
designed for the maximum heating capacity which only
occurs once in a few years. Due to much lower specific
cost of the electric heating rod, which is assumed to be the
same as for the electric boiler (70e/kWth (Elsner et al.,
2015)), the cost of the whole system can be reduced.

4.2.3 Consumer Side

To simplify the control structure and speed up the simula-
tions, the consumer models are simplified.

First, the consumers model is combined with the pump
model. The necessary mass flow rate is calculated using
the specific enthalpy calculated by the TILMedia fluid mo-
del at the outlet using the desired temperature, the specific
enthalpy at the inlet and the consumed heat flow rate. With
this model, the controller for the pump can be left out. Ad-
ditionally, the back-mixing valve with its controller can be
omitted as long as it is ensured that the temperature in the

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

416 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157413

Figure 2. Considered heating system with modeled water flows.

corresponding control volume of the hot water storage is
always above the current supply temperature defined by
the heating curve. This is guaranteed by the control of the
heat producer.

Second, on the process heat and hot water consumer’s
side, the electric boiler can be added to the combined
pump-consumer model using the same principle as descri-
bed above with a desired electric boiler outlet temperature
of 60 ◦C. The temperature after the consumer is assumed
to be 10 ◦C.

All these simplifications have been validated against the
more detailed models to ensure correct behavior.

4.2.4 Electric Heat Pump

The electric heat pump model is also combined with the
pump model as it is done for the consumers but more equa-
tions have to be added to ensure useful behavior. If the
specific enthalpy at the inlet overshoots the desired speci-
fic enthalpy at the outlet, the mass flow is set to zero and
the specific enthalpy is just passed through to the outlet.
This way, the electric heat pump does not overheat. In
addition, the mass flow rate can be limited to avoid high
peaks.

For this model, a validation against the detailed models
has been conducted as well.

4.2.5 Heating System Control

Proportional (P) controllers are favored over PI or PID
controllers in general for control due to higher simulation
speed and negligible control errors. The model LimPID
from the ClaRa library (Hamburg University of Techno-
logy et al., 2018; Brunnemann et al., 2012) is modified and
used, leaving out the smooth activation feature because it
was found to be unsuitable in some cases.

The control of the pump for the solar collector is chan-
ged to make it more realistic to work in matched-flow ope-
ration. Volume flows between 8 and 40 l/(m2 h) with tem-
peratures between 75 ◦C and 90 ◦C are used (Späte and La-
dener, 2011). To implement this behavior, a P controller
is used. To avoid chattering, a hysteresis is implemented,
which turns the pump on if the inlet temperature is 5 K

above the temperature in the solar collector and turns it
off again if the temperature difference is below 2 K. Mini-
mum on and off times of 1 h each are also added to limit
the switching events.

The control of the electric heat pump is modified to en-
able the use of excess power. The existing P controller,
which is responsible for the normal operation of the heat
pump, has a set value of 0.5 K above the maximum sup-
ply temperature for space heating of 45 ◦C (the minimum
supply temperature is 35 ◦C) and measures the top tempe-
rature of the storage. For the excess power utilization, a
second P controller is added with the same set value as the
first controller but the measured value is the temperature
of the fifth out of ten control volumes (counted from the
top). The output is limited to the available excess power
and added to the output of the first controller and again
limited by the nominal power of the heat pump.

To control the electric heating rod in the hot water
storage in normal operation, i.e. without the use of excess
power, a controller is turned on when the ambient tempe-
rature is below the bivalence point or if the temperature at
the top of the storage is 0.5 K below the desired value. Its
set and measured values are the same as for the heat pump
controller.

If excess power should be used in the electric heating
rod in the hot water storage as well, a second controller is
added here, similar to the heat pump controller. The set
temperature is 75 ◦C to increase the storage capacity. The
output is limited by the remaining excess power, added to
the output of the first controller and limited to the maxi-
mum power of the heating rod.

The required electric base load for the heat supply is
calculated by the sum of the outputs of the first controller
of the electric heat pump and the electric heating rod, re-
spectively. The additional power used is the used excess
power.

To avoid a direct influence of the base load on the ex-
cess power which is fed to all the storage technologies, a
first order block is set after the heating system. The use
of excess power directly decreases the base load which
would instantly increase the excess power. This would

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

DOI Proceedings of the 13th International Modelica Conference 417
10.3384/ecp19157413 March 4-6, 2019, Regensburg, Germany

Table 3. Mathematical and numerical properties of the different
systems.

S1 S2 S3

No. of equations 2645 4294 4395
No. of nontrivial equations 1946 3253 3348
No. of differentiated variables 73 86 86
No. of time states 49 62 62
Biggest nonlinear system of
equations before manipulation 10 23 27
Biggest nonlinear system of
equations after manipulation 1 3 3
No. of event iterations 6015 20550 23809
CPU time in h 0.47 1.72 12.44

influence all storage technologies and slow down the si-
mulation. A small time constant of 60 s is sufficient and
does not distort the results.

4.2.6 Design of Components

The electric heat pump and electric heating rod in the
hot water storage tank were sized for a bivalent operation
(Recknagel et al., 2017). This means that the electric heat
pump should be able to supply all the heat at the bivalence
point which was chosen to be −5 ◦C according to Reckna-
gel et al. (2017). The standard ambient temperature was
calculated using a weighted average of the standard am-
bient temperatures from DIN EN 12831 (DIN Deutsches
Institut für Normung e.V., 2008) of the six biggest Ger-
man metropolitan regions according to IKM (2018) which
results in −12.40 ◦C. Using the standard load profile ap-
proach from BDEW et al. (2016), daily mean values of
the heat demand at standard ambient temperature and at
the bivalence temperature are calculated. With an assu-
med efficiency of the hot water storage of 99 %, the elec-
tric heat pump and the electric heating rod should have
nominal heat flow rates of 137.6 GWth and 31.04 GWth
respectively. The maximum mass flow of the pump for
the electric heat pump is assumed to be 3 ·106 kg/s.

The electric boiler, which increases the temperature of
the water for the hot water and process heat demand, is
designed so that the highest occurring heat flow rate in
that year can be supplied.

The area of the solar collector is chosen to produce the
desired heat according to Bode and Schmitz (2018) and
the volume of the hot water storage is calculated using a
specific value of 0.075 m3/m2 (Recknagel et al., 2017).

4.3 Mathematical and Numerical Properties
The different systems vary strongly in their mathemati-
cal and numerical properties as is shown in Table 3. The
CPU times were measured on a 64 bit cluster with Intel R©

Xeon R© E5-2650 v3 CPUs with 2.30 GHz. Even though
the number of equations and number of event iterations
only increase slightly from S2 to S3, the CPU time rises
by factor 7.2.

Jan Mar May Jul Sep Nov
Time 2015

0

20

40

60

80

100

120

D
ai

ly
 m

ea
n

he
at

 f
lo

w
 r

at
e

in
 G

W
th

Space heating
Hot water
Process heat

Figure 3. Heat demand curves of the different applications
(daily mean values).

Jan Mar May Jul Sep Nov
Time 2015

0

20

40

60

80

100

120
D

ai
ly

 m
ea

n
he

at
 f

lo
w

 r
at

e
in

 G
W

th
Solar thermal
El. heat pump
El. heating rod
El. boiler

Figure 4. Heat supply curves of the different heat producers
(daily mean values).

5 Results

5.1 Design Results without Excess Power Uti-
lization (S1)

For the heating system, the design process returned a no-
minal power of the electric boiler of 10.62 GWth, a solar
thermal collector area of 200.6 ·106 m2 and a hot water
storage volume of 15.04 ·106 m3 which leads to a specific
solar heat production of 423.8 kWh/m2. In Figures 3 and
4, the heat demand and heat supply curves are shown. The
electric heating rod is used only from February 3rd to 7th
because then low ambient temperatures are reached.

The best configuration that was found by the opti-
mizer in MATLAB is where a pumped hydro storage
(187.6 TJ, 8.60 GWel) and a lithium-ion battery (284.3 TJ,
54.58 GWel) are charged in this order and Power-to-Gas
in combination with combined cycle gas turbines is used.
The remaining power is curtailed. The results are listed in
Table 4.

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

418 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157413

Table 4. Results of the different systems.

S1 S2 S3

Renewable electric
power in GWel 513.7 510.5 505.4
Electrolyzer power in
GWel 136.5 135.3 135.2
Gas-to-Power power in
GWel 120.4 119.8 119.8
Gas storage in 106 kg 4315 4285 4315
Maximum curtailed
power in GWel 152.3 152.3 121.0
Curtailed energy in
TWhel 30.51 28.76 12.61
Electricity consumption
of the heating system in
TWhel
- Electric heat pump 119.87 120.18 117.05
- Electric heating rod 0.25 0.27 17.99
- Electric boiler 59.24 58.69 55.13
Seasonal performance
factor of the heating
system 2.804 2.807 2.644
Solar thermal generation
in TWhth 85.00 84.79 82.70
Annuity in bil.e 111.03 110.67 110.37

5.2 Proof of Concept of Excess Power Utiliza-
tion

In Figure 5, curves from a winter day are shown to visu-
alize the function of the system with excess power utili-
zation in the electric heat pump and the electric heating
rod (S3). Over the day, only low solar thermal genera-
tion occurs and the electric heat pump supplies most of
the heat demand. At 05:45 AM, excess power is available
and completely utilized by the electric heat pump whe-
reas from 11:30 AM the residual load cannot be consu-
med completely because the storage top temperature has
reached the supply temperature of the electric heat pump
and the electric heating rod is at maximum capacity which
results in a noticeable temperature increase in the middle
of the storage.

In Figure 6, a summer day with a significant solar heat
production is shown. Because of the high temperatures in
the storage due to previous sunny days, the excess power
is only partly used and the rest is curtailed: In the begin-
ning (8:00 AM), it is used in the electric heat pump and
from 8:25 AM on in the electric heating rod because the
temperature is too high for the heat pump. The short mi-
nimum in the available excess power at 11:30 AM results
from a charging process in the lithium-ion battery.

5.3 Results with Excess Power Utilization (S2
and S3)

When excess power is used in the electric heat pump (S2),
the system becomes more efficient; see Table 4. The elec-
tric heat pump consumes just slightly more electric energy
(0.31 TWhel, i.e. 0.26 %) but this small shift in the de-
mand leads to a noticeable decrease in required renewable
electric power (−3.23 GWel) as well as the Power-to-Gas,
Gas-to-Power and gas storage units and thus a cost de-
crease of 0.33 %. Because the electric heat pump slightly
increases the average temperature at the top of the storage,
the electric boiler produces less heat which results in a
small increase in the seasonal performance factor of the
whole heating system from 2.804 to 2.807 but the solar
thermal generation also drops by 0.25 %.

The decrease in the gas-related component sizes and
cost continues when excess power is also used in the elec-
tric heating rod in the hot water storage (S3). In this case,
the electric heat pump consumes less electric energy be-
cause the heat from the electric heating rod partly replaces
heat which would otherwise have been produced by the
electric heat pump. This results in a strong decrease in the
seasonal performance factor to 2.644 as well as the solar
thermal generation by 2.70 % compared to S1.

The maximum curtailed power and energy both sink
significantly by 20.58 % and 58.65 %, respectively, com-
pared to the reference case (S1), which leads to the obser-
ved increase in system efficiency and decrease in cost by
0.60 %. Of course, this value depends highly on the cost
assumptions for the components but there can be no case
in which the cost would rise because, due to the excess
power utilization, only certain component sizes decrease
but none increase significantly.

6 Conclusion

The existing models from Bode and Schmitz (2018) are
extended, adding curtailment and more detail in the hea-
ting system. The combination of quasi-stationary MAT-
LAB models and dynamic Modelica models allows for a
good balance of speed and accuracy to investigate the in-
fluence of excess power utilization in electric heat pumps
and electric heating rods. The reusability of the Modelica
models enables the user to quickly build complex energy
system models for dynamic simulation.

Starting at a cost-optimal point (S1), excess power
usage in the electric heat pump (S2) and additionally in
the electric heating rod (S3) is implemented. The results
show that the cost can be reduced from S1 to S2 by 0.33 %
and from S1 to S3 by 0.60 %. Those are small values but
only the control structure of the heating system has to be
changed to enable the system to move the heat generation
to times of high renewable energy generation. This way,
the system becomes more cost and energy efficient.

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

DOI Proceedings of the 13th International Modelica Conference 419
10.3384/ecp19157413 March 4-6, 2019, Regensburg, Germany

10-Jan 12 AM 10-Jan 6 AM 10-Jan 12 PM 10-Jan 6 PM 11-Jan 12 AM 11-Jan 6 AM
45.4

45.6

45.8

46
T

em
pe

ra
tu

re
in

 °
C

Top (first) volume

10-Jan 12 AM 10-Jan 6 AM 10-Jan 12 PM 10-Jan 6 PM 11-Jan 12 AM 11-Jan 6 AM

20

25

30

35

T
em

pe
ra

tu
re

in
 °

C

Sixth volume

10-Jan 12 AM 10-Jan 6 AM 10-Jan 12 PM 10-Jan 6 PM 11-Jan 12 AM 11-Jan 6 AM
0

50

100

150

H
ea

t f
lo

w
 r

at
e

in
 G

W
th

Electric heat pump
Electric heating rod
Solar thermal
Demand

10-Jan 12 AM 10-Jan 6 AM 10-Jan 12 PM 10-Jan 6 PM 11-Jan 12 AM 11-Jan 6 AM
Time

0

20

40

60

E
le

ct
ric

 e
xc

es
s

po
w

er
 in

 G
W

el

Available
Used

Figure 5. Curves of storage temperatures, heat flow rates and electric excess power in the heating system on a winter day in S3.

02-Jul 12 AM 02-Jul 6 AM 02-Jul 12 PM 02-Jul 6 PM 03-Jul 12 AM 03-Jul 6 AM

60

70

80

T
em

pe
ra

tu
re

in
 °

C

Top (first) volume

02-Jul 12 AM 02-Jul 6 AM 02-Jul 12 PM 02-Jul 6 PM 03-Jul 12 AM 03-Jul 6 AM

40

60

80

T
em

pe
ra

tu
re

in
 °

C

Sixth volume

02-Jul 12 AM 02-Jul 6 AM 02-Jul 12 PM 02-Jul 6 PM 03-Jul 12 AM 03-Jul 6 AM
0

50

100

H
ea

t f
lo

w
 r

at
e

in
 G

W
th

Electric heat pump
Electric heating rod
Solar thermal
Demand

02-Jul 12 AM 02-Jul 6 AM 02-Jul 12 PM 02-Jul 6 PM 03-Jul 12 AM 03-Jul 6 AM
Time

0

20

40

60

80

E
le

ct
ric

 e
xc

es
s

po
w

er
 in

 G
W

el

Available
Used

Figure 6. Curves of storage temperatures, heat flow rates and electric excess power in the heating system on a summer day in S3.

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

420 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157413

Acknowledgements
The authors greatly acknowledge the funding from the
German Federal Ministry of Economic Affairs and Energy
for the project "ResiliEntEE - Resilienz gekoppelter Ener-
gienetze mit hohem Anteil Erneuerbarer Energien" (Resi-
lientEE - Resilience of integrated energy networks with
a high share of renewable energies, project number:
03ET4048).

References
Lisa Andresen, Pascal Dubucq, Ricardo Peniche, Günter Acker-

mann, Alfons Kather, and Gerhard Schmitz. Status of the
TransiEnt Library: Transient simulation of coupled energy
networks with high share of renewable energy. In Procee-
dings of the 11th International Modelica Conference, pages
695–705, Versailles, 2015. doi:10.3384/ecp15118695.

BDEW, VKU, and GEODE. BDEW / VKU / GEODE- Leit-
faden. Abwicklung von Standardlastprofilen Gas. Technical
report, Berlin, 2016.

Rosemarie Benndorf, Maja Bernicke, Andreas Bertram, Wolf-
gang Butz, Folke Dettling, Johannes Drotleff, Corinna Elsner,
Eric Fee, Christopher Gabler, Christine Galander, Yvonne
Hargita, Reinhard Herbener, Tim Hermann, Fabian Jäger,
Judith Kanthak, Hermann Kessler, Yvonne Koch, David
Kuntze, Martin Lambrecht, Christian Lehmann, Harry Leh-
mann, Sandra Leuthold, Benjamin Lünenbürger, Insa Lütke-
hus, Kerstin Martens, Felix Müller, Klaus Müschen, Diana
Nissler, Sebastian Plickert, Katja Purr, Almut Reichart, Jens
Reichel, Hanno Salecker, Sven Schneider, Jens Schuberth,
Dietrich Schulz, Marlene Sieck, Ulla Strenge, Bärbel Wes-
termann, Kathrin Werner, Christine Winde, Dietmar Wunder-
lich, and Brigitte Zietlow. Treibhausgasneutrales Deutsch-
land im Jahr 2050 (Climate Change 07/2014). Technical re-
port, Dessau-Roßlau, 2014.

Carsten Bode and Gerhard Schmitz. Dynamic Simulation
and Comparison of Different Configurations for a Coupled
Energy System with 100 % Renewables. Energy Procedia,
155:412–430, 2018.

Johannes Brunnemann, Friedrich Gottelt, Kai Wellner, Ala
Renz, André Thüring, Volker Roeder, Christoph Hasenbein,
Christian Schulze, Gerhard Schmitz, and Jörg Eiden. Sta-
tus of ClaRaCCS : Modelling and Simulation of Coal-Fired
Power Plants with CO2 Capture. In Proceedings of the 9th
International Modelica Conference, pages 609–618, Munich,
2012. doi:10.3384/ecp12076609.

Dassault Systèmes. Dymola 2019 - Dynamic Modeling
Laboratory, 2018. URL https://www.3ds.com/
products-services/catia/products/dymola/.

DIN Deutsches Institut für Normung e.V. DIN EN 12831 Bei-
blatt 1:2008-07, Heizsysteme in Gebäuden - Verfahren zur
Berechnung der Norm-Heizlast - Nationaler Anhang NA,
2008.

Peter Elsner, Manfred Fischedick, Dirk Uwe Sauer, Berit Erlach,
and Benedikt Lunz. Flexibilitätskonzepte für die Stromver-
sorgung 2050. Technologien - Szenarien - Systemzusammen-

hänge (Analyse aus der Schriftenreihe Energiesysteme der
Zukunft). Technical report, München, 2015.

Norman Gerhardt, Fabian Sandau, Angela Scholz, Henning
Hahn, Patrick Schumacher, Christina Sager, Fabian Bergk,
Claudia Kämper, Wolfram Knörr, Jan Kräck, Udo Lam-
brecht, Oliver Antoni, Johannes Hilpert, Katharina Merkel,
and Thorsten Müller. Interaktion EE-Strom, Wärme und Ver-
kehr. Technical report, Kassel, Heidelberg, Würzburg, 2015.

Hamburg University of Technology. TransiEnt Library, 2018.
URL https://www.tuhh.de/transient-ee/en/.

Hamburg University of Technology, TLK-Thermo GmbH, and
XRG Simulation GmbH. ClaRa 1.3.0, 2018. URL https:
//claralib.com/.

Hans-Martin Henning and Andreas Palzer. Was kostet die Ener-
giewende? Wege zur Transformation des deutschen Ener-
giesystems bis 2050. Technical report, Freiburg, 2015.

IKM. Initiativkreis Europäische Metropolregionen
in Deutschland, 2018. URL http://www.
deutsche-metropolregionen.org/.

International Energy Agency. World Energy Outlook 2016.
Technical report, Paris, 2016.

MathWorks. MATLAB 2018b, 2018a. URL https://www.
mathworks.com/products/matlab.html.

MathWorks. MATLAB Optimization Toolbox 8.1, 2018b.
URL https://www.mathworks.com/products/
optimization.html.

Modelica Association. Modelica and the Modelica Association,
2018. URL https://www.modelica.org/.

Joachim Nitsch, Thomas Pregger, Tobias Naegler, Dominik
Heide, Diego Luca de Tena, Franz Trieb, Yvonne Scholz,
Norman Gerhardt, Michael Sterner, Tobias Trost, Amany
von Oehsen, Rainer Schwinn, Carsten Pape, Henning Hahn,
and Bernd Wenzel. Langfristszenarien und Strategien für
den Ausbau der Erneuerbaren Energien in Deutschland bei
Berücksichtigung der Entwicklung in Europa und global.
Schlussbericht. Technical report, Stuttgart, Kassel, Teltow,
2012.

Carsten Pape, Norman Gerhardt, Philipp Härtel, Angela Scholz,
Rainer Schwinn, Tim Drees, Andreas Maaz, Jens Sprey,
Christopher Breuer, Albert Moser, Frank Sailer, Simon Reu-
ter, and Thorsten Müller. Roadmap Speicher. Speicherbedarf
für erneuerbare Energien - Speicheralternativen - Speicher-
anreiz - Überwindung rechtlicher Hemmnisse. Endbericht.
Technical report, Kassel, Aachen, Würzburg, 2014.

Hermann Recknagel, Otto Ginsberg, Kurt Gehrenbeck, Eber-
hard Sprenger, Winfried Hönmann, Ernst-Rudolf Schramek,
and Karl-Josef Albers (editors). Taschenbuch für Heizung
und Klimatechnik. DIV Deutscher Industrieverlag GmbH,
München, 78th edition, 2017.

Frank Späte and Heinz Ladener. Solaranlagen. Handbuch der
thermischen Solarenergienutzung. ökobuch Verlag, Staufen
bei Freiburg, 11th edition, 2011.

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

DOI Proceedings of the 13th International Modelica Conference 421
10.3384/ecp19157413 March 4-6, 2019, Regensburg, Germany

Sven Teske, Steve Sawyer, Oliver Schäfer, Thomas Pregger,

Sonja Simon, Tobias Naegler, Stephan Schmid, Doruk Özde-
mir, Johannes Pagenkopf, Florian Kleiner, Jay Rutovitz, Elsa
Dominish, Jenni Downes, Thomas Ackermann, Tom Brown,
Simon Boxer, Ricardo Baitelo, and Larissa A. Rodrigues.
energy [R]evolution. A Sustainable World Energy Outlook
2015. Technical report, Amsterdam, Brussels, 2015.

TLK-Thermo GmbH and Institut für Thermodynamik,
Technische Universität Braunschweig. TILMedia 1.3.0
ClaRa, 2018. URL https://www.tlk-thermo.
com/index.php/en/software-products/
tilmedia-suite.

United Nations. Paris Agreement, 2015.

Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 %
Renewables

422 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157413

Model-Based Controls Development and Implementation for a Hydroelectric Power System

DOI Proceedings of the 13th International Modelica Conference 423
10.3384/ecp19157423 March 4-6, 2019, Regensburg, Germany

Model-Based Controls Development and Implementation for a Hydroelectric
Power System
Nguyen, Anh and Batteh, John

423

Model-Based Controls Development and Implementation for a
Hydroelectric Power System

Anh Nguyen1 John Batteh2
1Modelon Inc., USA, {anh.nguyen,john.batteh}@modelon.com

Abstract
This paper describes the model-based control system
development for a hydroelectric power plant to ensure
water level control and mitigate spillage risk. The
modeling of both the flume system and prototype
controls is described. The integrated model is run over
a suite of tests to verify the calibration of the control
strategy. Results from the plant commissioning are
compared with the virtual tests. The model proved
capable of accurate predictions of the waterway
dynamics, and the model-based calibration was
successfully verified on the actual plant.

Keywords: hydro power, control systems; hydraulics

1 Introduction
Hydroelectric power plants can experience long
lifecycles with plants often operating for decades. With
years of historical data, it is not uncommon for plants
to operate based on manual operator control. In an
effort to improve power dispatch and uptime, optimize
revenue, extend plant life, and improve reliability and
safety, modern control solutions can be deployed and
retrofit to existing plants at significant benefit. Model-
based controls development is a critical element for
any plant control modernization effort.

Hydro Power Library (Modelon AB, 2018) provides
a framework for modeling and simulation of hydro
power plant operation and control. The library
provides a complete environment for modeling the
plant system including the hydraulics, waterway
dynamics, plant turbine and electrical, and associated
controls including both dynamic and steady state
operation. A model of the Sundsbarm hydro power
plant in Seljorn, Norway was built using a previous
version of the library to simulate and identify the
reasons for power production variation at the plant
including the development of a linearized model and a
model predictive control (MPC) approach to optimize
plant operation (Winkler et al, 2011). The library has
been used to simulate a number of on and off-design
operating conditions for the Fossárvirkjun power
station in northern Iceland (Magnúsdóttir and Winkler,
2017) including a detailed electrical system modeled
with Electric Power Library.

This paper describes the model-based development
of a control strategy for a hydro power plant to ensure

appropriate water level control for environmental
impact due to spillage risk. Due to US security
concerns for critical power infrastructure, the plant
must remain anonymous with some sensitive data
obscured. The paper will provide an overview of the
waterway system model including model calibration.
The control strategy is prototyped and integrated with
the waterway system model. A virtual test suite is
executed for model-based calibration and verification
of the control strategy. Results from the model are
then compared with data obtained from commissioning
and testing on the actual plant. The model-based
approach proved capable of predicting the waterway
dynamics and for model-based calibration and
verification of the control strategy.

2 Flume System Modeling
This section describes the physical model of the flume
system. The model is assembled using Hydro Power
Library (Modelon AB, 2018) along with some custom
components. The full hydraulic system model is
introduced and then individual components are
described in more detail along with the calibration
performed based on available data from the waterway
prior to commissioning.

2.1 Full System Model
Figure 1 shows the full hydraulic system model
starting from the intake of the flume system and ending
at the turbine inlet. The model includes the following
components:

• Intake gate with control

• Upper flume system with rectangular geometry

• Lower flume system with trapezoidal geometry

• Flume at spillway for increased resolution at
critical area for spillage

• Basin and forebay reservoirs

• Penstock with valve control

• Visualizers for flow rate, water elevation, and
volume at various locations in the flume system

• Visualizer component to show invert elevation,
water elevation, and max elevation throughout the
flume system

Model-Based Controls Development and Implementation for a Hydroelectric Power System

424 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157423

Individual components are discussed in more detail in
the following sections.

2.2 Intake Gate
The intake gate is modeled as a linear valve with the
gate velocity as an input as shown in Figure 2. The
valve velocity is integrated to provide a valve lift. The
valve is characterized based on an estimate of the gate
position at maximum flow.

Figure 2. Intake gate model

2.3 Flumes and Spillway
The upper and lower flumes and spillway are modeled
as reservoirs with varying elevation, width, cross
section shape, and maximum height along the
discretized length of the flume. The flumes are
discretized models with combinations of volumes with
open channel flow between adjacent volumes. The

upper flume is rectangular shape and the lower flume is
trapezoidal. The spillway is modeled as a separate
component to allow increased resolution in the area
that is most important for spill control. The upper
flume is discretized into 80 segments while the lower
flume and spillway include roughly 10 segments as
they are significantly shorter.

Hydro Power Library provides models for friction in
open and closed channel flow but allows flexibility for
custom models to be implemented. For this work, a
custom friction model was implemented and integrated
into the reservoir model. The friction model is based
on the standard Manning equation with the Kutter
roughness coefficient (Sellin, 1970). The roughness
coefficient for concrete ranges from 0.01 to 0.015.

Since the focus of the controls development is
avoidance of spill, it is critical that the flume system
flows correctly at different depths. Unfortunately no
detailed information was available prior to
commissioning for the flow of the overall system.
However, operator setpoint data was available for the
upper flume depth as a function of flowrate. A model
of the upper flume was used to calibrate the roughness
coefficient for the friction model as shown in Figure 3.
The results from the calibrated model are shown in
Figure 4 and compared with the setpoint data. Given
that no additional flow information was available, the
same coefficient was then used for the lower flume and
the spillway.

Figure 1. Flume system model including visualizers

Model-Based Controls Development and Implementation for a Hydroelectric Power System

DOI Proceedings of the 13th International Modelica Conference 425
10.3384/ecp19157423 March 4-6, 2019, Regensburg, Germany

Figure 3. Calibration model for upper flume

Figure 4. Calibration of upper flume friction based on
operator setpoint data

2.4 Reservoirs
The reservoirs for the basin and forebay are based on
the open volume component in Hydro Power Library.
The open volume component contains conservation of
mass and energy equations for a variable volume. The
open volume component in the library allows geometry
specification as shown in Figure 5. However, the
reservoirs in the flume system do not map to a simple
geometry specification as the reservoir geometry for
the actual flume system is highly irregular due to
topological variations of the geography. Thus, a
custom component was created to allow a flexible
specification of the depth and volume relationship as a
table.

The data for the basin and forebay are shown in
Figure 6. Using this table-based representation for the
depth and volume relationship calculated from the
actual reservoir geography, the model can accurately
reflect the detailed, irregular geometry for reservoir
capacity and depth without requiring a complicated
geometric implementation.

Figure 5. Base open volume component geometry
specification in Hydro Power Library

Figure 6. Reservoir depth-volume characterization

2.5 Penstock with Valve
The penstock that leads to the turbine inlet is connected
to the forebay reservoir. The penstock valve is a linear
valve that is characterized to deliver the maximum
plant flow at a flow command of 1. Figure 7 shows the
model used to characterize the penstock valve. This
model includes the forebay at a specified height and
then the penstock with a specified downstream
pressure at the outlet. Based on the location of the
penstock connection to the forebay, the hydrostatic
pressure drives the flow in the penstock. The results
from running the valve at the maximum flow command
are shown in the visualizers in Figure 7.

Figure 7. Test case for penstock valve characterization

Model-Based Controls Development and Implementation for a Hydroelectric Power System

426 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157423

2.6 Flume System Visualization
When simulating the flume system, results for water
depth, flowrate, pressures, etc. at any location in the
flume system are readily available. Figure 8 shows
typical results from a flow rate step test. The time for a
flow disturbance to travel downstream in the flume
system is clearly shown by the delays in the elevation
response at different locations along the waterway.

While these local results are valuable, they can be
difficult to interpret to get a good overall picture of the
spatial distribution of the water in the flume system,
including waves. Thus, a custom component was
developed to aggregate the information from the
individual flume system components and visualize the
entire flume system using the diagram layer animation
features in Dymola (Dassault Systemes, 2018).

Figure 9 shows an example of the visualization of
the flume system for a large change in inlet flow. The
flow change begins from a steady state condition
around t=320min. The visualization shows the invert
elevation of the system (blue), maximum height of the
system (green), and dynamic water elevation (red). The
effect of the flow change is clearly seen progressing
down the flume system, including wave behavior at
different parts of the flume. When animated in
Dymola, the visualization provides an animation of the
flume system as a function of time and is critical for
understanding the dynamics of the system and
assessing the water depths relative to the spill limits.
The combination of the detailed traces at a specific
location as shown in Figure 8 and the overall
visualization of the entire flume system as shown in
Figure 9 provide a more complete view of the
waterway dynamics.

Figure 8. Results from flow rate step test

Figure 9. Flume system visualization for a large change
in inlet flow at t=321 min, t=326.67 min, t=335 min, and
t=350 min

3 Controls Development and
Integration

For this plant system, there is concern for the
environmental impact of any potential spill. Thus, the
focus of the controls modernization is system control
for spill. The control algorithm receives the forebay
level as input and actuates the penstock valve. The
actual discrete control algorithm is implemented in the
model as in the hardware PLC logic and with the same
calibration values. Due to confidentiality reasons, the
actual control algorithm cannot be shown nor can the
calibration values.

Figure 10 shows the aggregate penstock control
block. This block includes several different control
modes including open loop control, continuous control,
and the actual discrete control implemented in the
block controller1. The reason for this controller
structure is to allow different operating modes for the
system including:

• Open loop for manual operation

• Continuous control for computational efficiency in
establishing test conditions for the simulation

• Steady state detection

• Discrete control algorithm under development
 Since the controller can operate in various modes, it
is important that the transfer to the actual discrete
controller occurs without disturbance to the penstock
command. Thus, bumpless transfer is implemented as
in the actual controller to ensure smooth transitions.

Model-Based Controls Development and Implementation for a Hydroelectric Power System

DOI Proceedings of the 13th International Modelica Conference 427
10.3384/ecp19157423 March 4-6, 2019, Regensburg, Germany

Figure 10. Penstock control including open loop,
continuous control, and discrete control with switching

Figure 11 shows the model of the flume system with

the integrated penstock control and gate control
elements. This model is extended from the base flume
system model in Figure 1 and simply adds the control
elements. The gate control is simply for actuation of
the intake system for testing purposes. The gate
controller specifies the maximum gate opening velocity
until the desired flowrate is achieved and then holds
the gate position.

4 Virtual Controls Verification
The integrated model in Figure 11 serves as the test
bench for the virtual controls development, calibration,

and verification. This section describes and gives
results from a virtual test plan that was conducted prior
to the commissioning of the controls integration on the
plant hardware. The virtual test plan was developed to
prove out the physical model and calibrate the
proprietary control algorithm. Though formal controls
methods are certainly applicable to ensure controller
stability, the calibration of the control algorithm was
performed via execution of the virtual test plan with a
focus on operating conditions that pose the most severe
spillage risk and were also planned for execution in the
plant commissioning.

4.1 Flow Steps with Fixed Valve
To test the overall system response, a series of flow
step tests were conducted as follows:

• Run to steady state at initial flowrate and system
level using continuous control for efficiency

• Initiate flow step but with fixed penstock command
from initial flowrate (i.e. no controller)

• Observe system response

 Figure 12 shows the system response to a flow step

change but with relatively low flows. As the flowrate
increases, the elevation increases since the valve
command is fixed at the steady state value from the
initial flowrate conditions. Figure 13 shows the system
response to a flow step change but with a step from
low to high flow. Under this condition, the system
elevation increases rapidly because the valve command
is fixed at the value for a much lower flow. The
simulation is stopped due to the excessive level.

Figure 11. Flume system model with integrated penstock control and gate control

Model-Based Controls Development and Implementation for a Hydroelectric Power System

428 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157423

 For these tests and many of the subsequent tests,

continuous level control is used to run the system to
steady state at specified initial conditions. This control
is simply to get the system to a desired initial state, and
continuous control is used for computational
efficiency. It should be noted that this control is
completely separate from the actual discrete controls
being prototyped and is only used to set the initial
system state for testing purposes. Furthermore, no
significant effort was spent calibrating the continuous
control given its purpose to help initialize the system
for dynamic testing. The continuous control can be
used to simulate the system to a steady state and then
hold the valve command to simulate manual control of
the system.

Figure 12. System response to flow step change, low
flows

Figure 13. System response to flow step change, step to
high flow

4.2 Level Setpoint Steps
A series of tests for controller stability were conducted
as follows:

• At a specified flowrate, run to steady state at a
specified system level using continuous control for
efficiency

• Engage discrete controller and initiate a change in
the system level setpoint

• Observe system and controller response

These tests were conducted at different flowrates and
for both step up and step down in system level.
Standard controller design metrics such as overshoot,
undershoot, and settling time were used to calibrate the
controller. Figure 14 shows results from a test with a
step down in level control setpoint at both high and
low flowrates. When the level setpoint change is
initiated, the controller smoothly opens the penstock
valve until the desired level is achieved and then
ultimately returns to the initial opening since the
flowrate is held constant in these tests. At the higher
flowrate, the response is slower as the penstock
command is saturated at maximum opening.

 Figure 14. System response to level step down at low
and high flows

 Figure 15 shows results from a test with a step up in
level control setpoint at low, medium, and high
flowrates. When the level setpoint changes, the
penstock valve closes to increase the system level.

Model-Based Controls Development and Implementation for a Hydroelectric Power System

DOI Proceedings of the 13th International Modelica Conference 429
10.3384/ecp19157423 March 4-6, 2019, Regensburg, Germany

Once the desired level is achieved, the valve command
opens again to allow the system to flow at the new
system level. At the lowest flow command, the
penstock valve actually closes completely before
opening again.

 Figure 15. System response to level step up at low,
medium, and high flows

4.3 Oscillation Tests
When there is a significant elevation difference
between reservoirs, there is the potential for flow to
oscillate between the reservoirs. A series of oscillation
tests were performed to ensure that the controller did
not cause the system to become unstable under this
scenario. The tests were conducted as follows:

• At a high flowrate, run to steady state at a specified
system level

• Switch off flow at intake to induce a level
difference between reservoirs

• Engage active level control to observe interaction
between active level control and level oscillations

 Figure 16 shows results from the tests. When the
flow at the flume intake turns off, the basin reservoir
sees a drop in water elevation first. There is oscillating
flow that exists between the two reservoirs as
evidenced by the level oscillations. With active level
control, the controller quickly closes the penstock
valve to maintain the system level. The oscillating
flow between the reservoirs eventually damps out, and
there does not seem to be any adverse impact of the

active level control on the oscillations. Though
stability considerations are best evaluated via formal
controls methods, these time domain test are useful for
validating the controls performance.

Figure 16. System response to oscillation test with active
level control

4.4 Max Flow Step Tests
The highest risk of spilling occurs when the system
experiences the maximum step from lowest flow to
highest flow when the system level is high. To
simulate this worst case condition, the following test
was conducted:

• Run system to steady condition at very low
flow and high system level with manual
control

• Step to maximum inlet flow keeping manual
control

• Observe controller and system response to
flow increase

 Figure 17 shows the response to the max flow step
test. In this scenario, the controller as calibrated is able
to arrest the system level and ensure that no spilling
occurs. Figure 18 shows some sensitivity results to
limits in the controller for the same flow step. With a
low limit on the controller, the maximum elevation
increases as expected.
 These max flow tests were critical for the evaluation
of the controller calibration and provided model-based
verification of the controller under extreme conditions.
As described in Section 5, plant commissioning
conducted with the calibration developed from the
virtual tests showed similar results.

Model-Based Controls Development and Implementation for a Hydroelectric Power System

430 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157423

Figure 17. System response to max flow step test at high
level

Figure 18. System response to max flow step test at high
level, varying controller limits

 Similar tests were also conducted at low system
levels. The test scenario is as follows:

• Run system to steady condition at very high
flow and low system level with manual control

• Step to very low inlet flow keeping manual
control

• Observe controller and system response to
flow decrease

 Figure 19 shows results from this test. The
controller is able to control the system level
appropriately. Notice the long time constant required
to increase the system level due to the very low inlet

flow. Even with the penstock valve completely closed,
it takes time to increase the system level due to the low
intake flow. As expected, the system exhibits different
time constants when subjected to flow steps up and
down given the underlying volume dynamics required
to change the system elevation.

Figure 19. System response to min flow step test at low
level

5 Plant Commissioning
After the model-based calibration and verification of
the controller on the virtual test suite, the controller
was commissioned on the plant. The controller as
implemented in PLC logic for the plant level control is
identical to that implemented in Modelica. A
comprehensive test plan was executed as part of the
commissioning to ensure signal integrity, controller
response, actuator bandwidth and response, etc. over a
wide range of operating conditions.
 Selected results from the commissioning are shown
below. The model-based calibration developed during
the analytic work was successfully validated in the
commissioning work. Only minor changes were
required to handle some signal conditioning issues
which were not anticipated and not simulated.
Otherwise, the results predicted by the simulations
were confirmed in the commissioning.

Figure 20 shows results from a step up test during
the commissioning. The commissioning data is
provided at 5 minute intervals. The intake setpoint is
representative of the intake system flow. The system
level response compares favorably to the similar test
shown in Figure 17-Figure 18. The tests are not
identical as they start at different initial levels.
However, the response of the system level in terms of
time constants and profile compare well. The
calibration developed in the model proved capable of
managing the spillage risk as commissioned on the
plant.

Model-Based Controls Development and Implementation for a Hydroelectric Power System

DOI Proceedings of the 13th International Modelica Conference 431
10.3384/ecp19157423 March 4-6, 2019, Regensburg, Germany

Figure 20. System response to max flow step test during
commissioning

Figure 21 shows results from a step down test
during the commissioning. Similar characteristics are
seen when compared with the step down test in Figure
19 though the tests are not identical since the
commissioning step down test starts from a high level
while the simulations started from a low level. The
simulations take much longer to respond due to the
different starting level as the penstock command
saturates.

 Figure 21. System response to min flow step test during
commissioning

Based on the results from the commissioning,
several different actions to improve the overall model-
based controls development process were identified:

• Any flow data available when building the
model is critical as it allows verification of the
system response early in the development
process

• Simulating not just the overall system
response but also any dynamics in the sensor
system will provide better input signals for the
model-based calibration and potentially
reduce/eliminate onsite calibration work for a
more robust virtual calibration process

• Steady state initialization of the system model
would reduce the time spent waiting for the
system to reach steady state and avoid the
extra logic in the controller to control the test
conditions

6 Summary
This paper describes the model-based control system
development for a hydroelectric power plant to ensure
water level control and mitigate spillage risk. The
paper gives an overview of the work to develop a
waterway system model with Hydro Power Library and
associated controls. The control algorithm was
prototyped in the model, and a model-based calibration
process was used to verify the algorithm and
calibration over a virtual test suite.

Following the analytic work, the controller was
commissioned on the plant and successfully verified
based on a set of commissioning tests. The algorithm
prototyped in Modelica is identical to the PLC logic
implementation used on the plant. Results from the
model compare favorably to the commissioning tests
with only minor changes required to the calibration due
to unanticipated signal conditioning issues. Overall,
the model-based approach proved capable of predicting
the waterway dynamics and for model-based
calibration of the control strategy. Future work could
include additional calibration of the model based on the
commissioning data and adding capability to the model
to capture the sensor system dynamics and thus enable
an even more robust analytic calibration process.
Formal controls methods, including a linearized model,
to ensure controller stability are also considered as
potential future work.

References
Dassault Systemes, Velizy, France (2018) Dymola 2018.

https://www.3ds.com/products-
services/catia/products/dymola

Magnúsdóttir, A. and Winkler, D., “Modelling of a Hydro
Power Station in an Island Operation”, Proceedings of the
12th International Modelica Conference, May 15-17, 2017.
Prague, Czech Republic.

Modelon AB, Lund, Sweden. (2018). Hydro Power Library.
http://www.modelon.com/products/modelon-library-
suite/hydro-power-library/

Sellin, R., Flow in Channels, Gordan and Breach Science
Publishers, New York, 1970.

Winkler, D., Thoresen, H., Andreassen, I., Perera, M., and
Sharefi, B., “Modelling and Optimisation of Deviation in
Hydro Power Production”, Proceedings of the 8th
International Modelica Conference, March 20-22, 2011.
Dresden, Germany.

Model-Based Controls Development and Implementation for a Hydroelectric Power System

432 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157423

DOI Proceedings of the 13th International Modelica Conference 433
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 4B: AUTOMOTIVE 2
Fault Insertion for Controller Calibration in a Range of Engine Models
Gillot, Romain and Picarelli, Alessandro and Dempsey, Mike

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS
Schröder, Nikolas and Lenord, Oliver and Lange, Ralph

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics
Kolesnikov, Artem and Tretsiak, Dzmitry and Cameron, Morgan

.

434 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Fault Insertion for Controller Calibration in a Range of Engine Models

DOI Proceedings of the 13th International Modelica Conference 435
10.3384/ecp19157435 March 4-6, 2019, Regensburg, Germany

Fault Insertion for Controller Calibration in a Range of Engine Models
Gillot, Romain and Picarelli, Alessandro and Dempsey, Mike

435

Fault Insertion for Controller Calibration in a Range of Engine
Models

Romain Gillot* Alessandro Picarelli* Mike Dempsey*
*Claytex Services Ltd, Edmund House, Rugby Road, Leamington Spa, CV32 6EL

{romain.gillot, alessandro.picarelli, mike.dempsey}@claytex.com

Abstract
This paper investigates the response of the Engine
Control Unit (ECU) in relation to abnormal engine
operation. Four different faults are introduced in a
physical engine model at random times during
simulation to observe the effects on the model results
and system behaviour. It is then shown that the sensors
used throughout the engine model are capable of
detecting any type of fault using signals for quantities
that would be measurable in a real engine. Finally, the
soft ECU switches to emergency/limpo home operation
and limits the engine performance to help prevent what
could be mechanical damage in a real engine.

Keywords: engine, fault, ECU, detection

1 Introduction
Predictive modelling is becoming increasingly popular
to dimension or calibrate systems prior to the prototype
stage. If current models are capable of representing the
behaviour of physical systems very accurately, they
often only model the system’s expected behaviour.
Some particular tasks like Engine Control Unit (ECU)
calibration require the model to also operate in
undesired states to ensure that the controller detects the
faults and acts accordingly (OBD diagnostics).

The aim of this paper is to introduce a range of faults
in a multidomain/multi-physics engine model to
demonstrate that it is capable of detecting and
identifying these faults and of taking measures to limit
their effect and/or to prevent further damage to the
system.

The faults modelled are a leak in the air path of a
turbocharged four-cylinder engine, a clogged injector in
a naturally aspirated four-cylinder engine, a stretched
timing chain in a naturally aspirated four-cylinder
engine and a short-circuit in the TPS (Throttle Position
Sensor) of a throttle body in a naturally aspirated four-
cylinder engine.

The reason why we have chosen to focus on these
faults in particular is because they allow to test
components from all the domains involved in an engine
model. Moreover, these are all faults commonly
encountered in a real engine and ones that the ECU
needs to be able to detect.

2 Presentation of the engine models

2.1 Crank-angle resolved

The engines used in this study come from the VeSyMA
– Engines library developed by Claytex. They are all
crank-angle resolved engine models with varying
features and levels of detail depending on the area of
interest.

Figure 1. Crank-angle resolved engine model from
VeSyMA – Engines.

The engine in Figure 1 is one of the most detailed
versions available in the library [1] built referencing [2]
and [3] mainly.
Some parameterisation adjustments have been made
when necessary and simplifications when possible.
The mechanical systems can be reduced to 1-
dimensional models (air leak, clogged injector, faulty
throttle). The stretched timing chain example needs 3-
dimensional mechanics since in the 1D one there is no
mechanical link between the crankshaft and the cylinder
head.
The surrogate model has been enabled (air leak,
stretched timing belt, faulty throttle). The surrogate
model is a subsystem that measures a set of physical
quantities in cylinder 1 (intake air flow rate, cylinder
pressure, etc.) and uses these values to drive ideal
sources/actuators that are substituted to the physical

Fault Insertion for Controller Calibration in a Range of Engine Models

436 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157435

fluid-based model in all the other engine cylinders. This
helps to improve the model performance. The clogged
injector example, however, needs all 3 cylinders to be
enabled to allow for comparing their respective results
and the variation in cylinder-to-cylinder performance.

2.2 ECU (Engine Control Unit)

The ECU is particularly important in this study since it
is the subsystem that must be able to detect the faults
and to react in relation to them.

Figure 2. Engine Control Unit.Left-hand side modules
from top to bottom: torque demand controller, after-
treatment devices controller, engine mode controller,
turbocharger controller. Right-hand side modules, from
top to bottom: throttle controller, injection controller,
ignition controller, valvetrain controller.

Figure 2 shows the software version of an ECU. It is
used to validate the engine model before using the real
ECU and doing Hardware-in-the-Loop testing. It must
rely entirely on information collected by the engine
sensors to detect a fault, like a real ECU would do.
It mostly uses PIDs and functions to control the engine
actuators.

3 The faults

3.1 Pneumatic – air leak

A leak is introduced downstream of the intercooler and
upstream of the throttle body.

It is modelled as an orifice connected to an infinite
boundary at atmospheric pressure in parallel of the main
air path.

Figure 3. Air leak model with controllable orifice to
ambient.

In Figure 3, port_a (blue) is connected to the intercooler
outlet and port_b (white) is connected to the throttle
inlet, in series. The valve discharge coefficient is entered
in the time table, zero meaning no leak. This allows for
the leakage to start at any moment. An external leak
trigger can also be used.

3.2 Hydraulic – clogged injector

The injectors are modelled as ideal mass flow sources.

Figure 4. Injector model with optional fuel rail fluid port
(filled blue round connector at top of diagram).

Two mass flow sources are used to separate the fuel path
from the air path. The quantity of fuel to inject is
calculated as the product of the nominal mass flow rate
that the injector is capable of delivering by the injection
pulse triggered by the ECU. This is the amount of fuel
that the upper mass flow source in Figure 4 will remove
(hence the negative gain) from the fuel line. The lower
mass flow source will “inject” the same quantity into the
combustion chamber.
The faulty injector is modelled in a similar way but the
nominal mass flow the injector can deliver is determined
by a time varying table. It is then possible to inject any
fraction of what the injector should normally inject at
any time.

Fault Insertion for Controller Calibration in a Range of Engine Models

DOI Proceedings of the 13th International Modelica Conference 437
10.3384/ecp19157435 March 4-6, 2019, Regensburg, Germany

3.3 Mechanical – stretched timing chain

In this model the timing chain is essentially an ideal gear
ratio (ratio = 0.5, see Figure 5) located between the
crankshaft and the camshaft flanges.

Figure 5. Timing chain module using ideal ratios with an
angular offset to account for chain stretch.

The stretched timing chain module in Figure 5 is used to
introduce a controlled degree of freedom between the
crankshaft and the camshaft(s) angular.
In this case, we add an offset angle (between the
crankshaft and the camshaft flanges) by means of a
position actuator (see Figure 6). The chain is therefore
still rigid but is stretched by a few millimetres.

Figure 6. Compliance in the timing chain.

3.4 Electrical – short-circuit in the throttle
board/wrong sensor measurement

The throttle body is a valve with varying discharge
coefficient based on the plate opening angle (see 1 in
Figure 7).

Figure 7. Throttle body with control board (1: pressure
drop model, 2: mechanical system with potentiometer-
based angle sensor, 3: electric board).

The throttle control board generates a current signal to
drive the opening of the throttle plate (see section 4.4 for
more info).

The throttle position sensor (Figure 8) uses a
potentiometer to deliver a voltage as a function of the
throttle opening angle.

Figure 8. Throttle position sensor (1: potentiometer 1st
track, 2: potentiometer 2nd track).

Fault Insertion for Controller Calibration in a Range of Engine Models

438 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157435

A second potentiometer is used to provide a valid value
in case the first one fails and delivers half the voltage of
the other one. Comparing these two voltages is another
way of detecting a failure. The short-circuit is induced
in the TPS by means of a switch breaking the electrical
circuit.

4 Failure detection and simulation results

4.1 Air leak

We run our engine coupled to a fixed inertia with wide-
open throttle for 10s.
A leak corresponding to an orifice with a diameter of
0.04 m is introduced at t=2.5s. The leak diameter has
been chosen rather large in order to see significant and
short-term effects on the engine.

We compare the boost pressure from the plenum
pressure sensor to the values mapped during normal
operation. If they fall below a threshold, the leak is
detected, and limp mode is activated which limits
throttle opening to a small value.

Figure 9. Plenum pressure, normalised throttle opening
and engine speed under normal operation (blue) and with
a leak (red).

We can see in Figure 9 that plenum pressure drops
slightly when the leak starts. When it goes below the
threshold at t=5.75s, limp mode gets activated and the
maximum allowed normalised throttle opening is
limited to 0.05 (i.e. 4.5 deg). Limiting throttle opening
allows to keep engine torque below a certain threshold
to prevent further damage. The value of this threshold
depends on the engine manufacturer and type.

4.2 Clogged injector

The quantity of fuel injected by one of the injectors is
limited for a few engine cycles to 25% of what the other
injectors deliver.

The misfire detection monitor, which comprises of a
set of logic blocks, compares the maximum crankshaft
acceleration during every cycle to a value corresponding
to normal operation based on an inferred torque for the
set of given operating conditions. If a misfire is detected
in the same cylinder during two consecutive cycles (can
be changed to any number of consecutive cycles), it is
considered a fault and the engine malfunction light goes
on and limp mode gets activated. The detection monitor
is not active during fast transients when the cylinder
pressure varies a lot from one engine cycle to the next,
like during aggressive tip-ins or tip-outs for example.

Figure 10: Injector fuel flow rate, cylinder pressure,
crankshaft acceleration and number of consecutive
misfires.

At about 5.5s, when the injector starts to inject less fuel
than it should, the peak pressure in the cylinder
decreases by more than 50%. This has a direct effect on
crankshaft acceleration (see subplot 3 in Figure 10
above). During the three consecutive cycles in which
cylinder one misfires, we can observe irregularities on
the crankshaft acceleration curve in figure 9 (at about
t=5.5s, t=6.5s and t=7.5s).
 The acceleration of the crankshaft is computed
from the crankshaft speed which is calculated from its
angular position. The crankshaft angle is given by a
crankshaft position sensor, this is then the physical
quantity that will help the ECU to detect the abnormal
behaviour.

Fault Insertion for Controller Calibration in a Range of Engine Models

DOI Proceedings of the 13th International Modelica Conference 439
10.3384/ecp19157435 March 4-6, 2019, Regensburg, Germany

4.3 Stretched timing chain

The timing chain is allowed to stretch by a few
millimetres causing a slight desynchronisation between
the opening of the intake and exhaust valves and the
pistons positions.

The ECU detects a mismatch between the angle given
by the crankshaft and the camshaft position sensors.

Figure 11: Pressure trace in cylinder 1 with an ideal chain
(blue) and a stretched chain (red).

After a few cycles, the peak pressure reaches 88.4 bar
when the chain is not stretched and the valve timing is
ideal. It only reaches 84.4 bar (4.5% drop) when the
chain is stretched by 5 degrees. The pressure trace for
cylinder 1 is plotted in Figure 11. Cylinder 1 has been
chosen arbitrarily but the results would be the same in
all the other cylinders. The reduction in cylinder
pressure is due to a larger valve overlap that causes the
combustion chamber to not fill in with air as much as it
could. The fuel injection module in the ECU maintains
the air-fuel-ratio to 14.67 which means that less fuel gets
injected leading to a lower power output.
The reduction in cylinder pressure compared to the
expected value for a given engine speed and throttle
opening is a way for the ECU to detect the fault.
Combined with a mismatch in readings from the
crankshaft and camshaft position sensors, it allows to
identify the cause of the problem.

4.4 Faulty throttle body

A short-circuit is introduced during the simulation.
When the driver presses the accelerator pedal, the

pedal position sensor (which is similar to the throttle
position sensor in Figure 8) transmits a normalised angle
signal to the ECU and reads a voltage using a
potentiometer. Depending on the engine operating
conditions, the ECU will determine the correct throttle
opening. To this throttle opening angle corresponds a
voltage (volts) that the throttle position sensor will
compare to the value the accelerator pedal position
sensor measured.

Figure 12: Comparison of the voltages from both
channels of the throttle pedal position sensor and throttle
position sensor. The bottom plot is throttle opening.

A short-circuit is introduced at time=5s in the second
channel of the TPS which causes the voltage in the
second channel to drop to 0. At this time, the ECU goes
in to safety mode and the electrical current to the throttle
plate spindle magnet is cut to zero which effectively
corresponds to a fast idle setting for the throttle plate.

5 Conclusion and future work
Faults have been introduced in a crank-angle resolved
engine model. The results before and after the faults
occur have been presented to highlight their impact on
the engine behaviour.

It has been demonstrated that the soft ECU can detect
them relying solely on the information coming from the
sensors and that the engine model can therefore be used
for controller calibration tasks.

The next steps are to export this engine model as an
FMU to a real-time platform and to test it with a real
ECU. To do so, we would have to make further
simplifications to the model for it to achieve real-time
performance.

6 Bibliographic References
[1] Dempsey M. Picarelli A. Investigating the MultiBody
Dynamics of the Complete Powertrain System. Como, Italy:
Proceedings 7 th Modelica Conference, 2009.
[2] Heywood, B. Internal Combustion Engine Fundamentals
McGraw-Hill.
[3] Robert Bosch Gmbh Gasoline Engine Management
Bentley Publishers 2006.

Fault Insertion for Controller Calibration in a Range of Engine Models

440 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157435

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 441
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS
Schröder, Nikolas and Lenord, Oliver and Lange, Ralph

441

Enhanced Motion Control of a Self-Driving Vehicle Using
Modelica, FMI and ROS

Nikolas Schröder1 Oliver Lenord2 Ralph Lange2

1Institute of Flight Mechanics and Control, University of Stuttgart, Germany,
lrt86824@stud.uni-stuttgart.de

2Robert Bosch GmbH, Germany, {oliver.lenord, ralph.lange}@de.bosch.com

Abstract
This paper presents a new planar wheel model with bore
friction, a control strategy to avoid locking conditions
of floor vehicles with caster wheels, and the new FMI-
Adapter software package, which connects the Functional
Mock-up Interface (FMI) standard with the Robot Oper-
ating System (ROS). It is demonstrated how this tech-
nology enables a convenient model-based control design
workflow. The approach is applied to the ActiveShuttle,
a self-driving vehicle (SDV) for industrial logistics. Af-
ter modeling the wheel friction characteristics of the Ac-
tiveShuttle, a feed forward controller to avoid high friction
torques at the caster wheels in critical operation scenar-
ios is designed and validated by model-in-the-loop sim-
ulations. The control function is exported as Functional
Mock-up Unit (FMU) for co-simulation. With help of
the FMI-Adapter package, the FMU is integrated as ROS
node into the service-oriented robot control architecture,
enhancing the existing motion controller. The functional-
ity and performance is tested and successfully verified on
the ActiveShuttle Dev Kit prototype.
Keywords: Modelica, FMI, ROS, Autonomous Systems,
Robotics, Model-based Control, SDV, Caster Wheels

1 Introduction
A relevant application area of autonomous robotics is the
industrial logistics. In the last years, a number of elabo-
rate algorithms for task scheduling, coordination and path
planning for fleets of self-driving vehicles (SDVs) in such
applications have been proposed (Imlauer et al., 2016;
Pecora et al., 2018). Prerequisite to apply these strate-
gies is a reliable vehicle motion control. Trajectories com-
manded by the planner need to be properly executed by the
drive platform to ensure that the goals of the mission are
met in time and space. Safety and security margins have
to be met, undesired interference due to deviations from
the planned track need to be avoided, and at all times the
vehicle must remain maneuverable.

Model-based control design is a well established ap-
proach to design and apply motion control strategies.
Model-in-the-loop (MiL) simulations allow to validate
and test the control design early on. Optimized controllers
can be designed that take the physical properties and sys-

tem dynamics into account (Thümmel et al., 2005).

In this work a common problem of motion platforms
with differential drive and caster wheels is elaborated. By
applying a model-based control design approach the relia-
bility of the motion controller is significantly improved by
the so called Path Filter introduced in Section 3.

The path filter module is realized as ROS node (see sec-
tion 1.2) to allow the seamless integration into the service
oriented software architecture ROS that is used on the tar-
get application ActiveShuttle DevKit. The widely used de-
velopment environment for model-based control, Matlab
Simulink, does provide a dedicated toolbox for ROS (The
MathWorks). In this paper an alternative approach is ap-
plied aiming to leverage the benefits of the physical mod-
eling language Modelica and the rich Modelica libraries
such as the Modelica Standard Library (MSL) for the de-
sign, verification and validation of the path filter. For this
purpose the free PlanarMechanics library (PML) (Zim-
mer, 2014) is extended and used to build up a plant model
of the Active Shuttle DevKit (see section 2).

In order to enable a generic and efficient control de-
sign process, the integration of the path filter control
function into ROS is facilitated through the Functional
Mock-up Interface (FMI) (Modelica Association Project
"FMI", 2014). Related approaches for such integration
aim at simulation use cases only: The Modelica-ROS
Bridge (Swaminathan) allows to integrate the Modelica
language and corresponding tools with ROS by a TCP/IP-
based bridge, implemented by the ROS_Bridge package
for Modelica and a relay node from the ROS model-
ica_bridge package. A similar mechanism based on Unix
IPC sockets has been proposed to integrate Modelica with
the Gazebo simulator, which is used heavily by the ROS
community to simulate robots in 3D environments (Bar-
daro et al., 2017). The gazebo-fmi project (Traversaro
et al.) provides a plug-in to import FMUs in Gazebo.

With the new FMI-Adapter for ROS introduced in Sec-
tion 4, a very generic mechanism is provided to integrate
control functions into ROS. An export of the path filter
block as FMU (Functional Mock-up Unit) allowed the
straightforward integration into the ROS architecture and
finally its application and test, as described in Section 5,
on the Active Shuttle DevKit.

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

442 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

1.1 Use Case: ActiveShuttle
The ActiveShuttle (AS) is a self driving vehicle (SDV) for
logistic services on the shop floor. A prototypical small
batch series named ActiveShuttle DevKit operates at sev-
eral Bosch plants in Germany. The missions carried out by
the AS are bring and pick-up services of stacked container
boxes on moving dollies.

The routes between the pick-up and drop-off locations
are planned based on a map continuously updated by a si-
multaneous localization and mapping (SLAM) algorithm
(Durrant-Whyte and Bailey, 2006). In order to make the
motion of the SDVs predictable for the workers, the routes
are restricted to be composed of straight segments only.
Turns are restricted to be performed as turns on the spot
after standstill only. Thus, the basic motion patterns are:

• Follow a straight line segment.
• Stop and turn on the spot.
• Stop and move in reverse direction.

The AS DevKit is actuated by a differential drive. Two
caster wheels are positioned in the front and two in the
rear. The chassis design ensures that all six wheels remain
in contact to the ground while crossing sills or other un-
even grounds.

𝐼𝐶𝐶

𝑥

𝑦

+
𝑧

𝑣𝐴𝑆

𝐿𝐷 𝑅𝐷

𝑎𝑠𝑥

𝑂𝑟𝑖𝑔𝑖𝑛

𝜑𝐶,𝐿𝐹

𝜑𝐶,𝑅𝐹

𝜑𝐶,𝑅𝐵
𝜑𝐶,𝐿𝐵

𝜋

𝜋

2
−
𝜋

2

0

𝜑

𝜔𝐴𝑆

𝜔𝑤ℎ𝑒𝑒𝑙,𝑅𝐹

𝑎𝑠𝑦

𝑔𝑎𝑢𝑔𝑒

𝐿𝐹 = 𝐿𝑒𝑓𝑡 𝐹𝑟𝑜𝑛𝑡

𝑅𝐵 = 𝑅𝑖𝑔ℎ𝑡 𝐵𝑎𝑐𝑘

Figure 1. Active Shuttle coordinate system definition, sign con-
vention and nomenclature.

The reference coordinate system of the SDV is fixed to
the middle frame and located in between the driven wheel
axes when standing on flat ground. Given that the vehicle
is operated in the plane only, the motion state of the AS
can be described by equation 1 with the longitudinal ve-
locity vAS and the angular velocity ω perpendicular to the
moving plane.

xxxAS =

(
vAS
ωAS

)
=

(
ASvx,AS

ASωz,AS

)
(1)

During operation it has to be ensured that the above de-
scribed motion patterns can be executed in an arbitrary se-
quence. A critical condition occurs in the transitions from

moving straight to turning and vice versa. In these tran-
sitions the desired motion state of the AS is inconsistent
with the actual motion state of the caster wheels given by
equation 2, with the ωC,i describing the angular velocity
of the i-th caster wheel w.r.t. its spinning axis and ϕC,i
describing the orientation relative to the vehicle w.r.t. the
vertical axis. The caster wheels’ rotational axes are not
aligned with the instantaneous center of curvature (ICC)
of the SDV, located at the center of the reference frame:

xxxC,i =

(
ωC,i
ϕC,i

)
=

(
CAωy,C,i

ASϕC,i

)
(2)

Due to the fact that the vehicle is at standstill when the
turn is initiated, the maximum bore friction torque has to
be overcome in addition to the inertial forces. Projecting
the friction torque at the i-th caster wheel onto the point of
contact of the driven wheels with the radii from the ICC
to the driven wheel rDW and caster wheel rCW , reveals that
due to rDW = gauge/2 < rCW,i a significant share of the
available traction force at the driven wheels is assigned to
the bore torque of the caster wheels:

FDW =
rCW,i

rDW · rtrail
·Tbore (3)

If under full load the required driving torque exceeds the
maximum motor torque, the SDV is not able to follow the
commanded trajectory. Hence, avoiding the risk of this
critical state by reducing the impact of the bore friction
has been identified as significant contribution to make the
operation of SDVs with differential drives more reliable.

1.2 Robot Operating System
The Robot Operating System (ROS) (Quigley et al., 2009)
has been used for the development of the AS DevKit.
ROS can be considered as a framework and middleware
for robotic systems. It also provides a rich set of devel-
opment tools and basic functional capabilities for percep-
tion, control, planning and manipulation. In the last ten
years, a huge open-source community has grown around
this project, which provides numerous software packages
for all aspects of robotics (www.ros.org/browse/).

ROS uses a service-oriented architecture with publish-
subscribe and request-response communication methods.
It even allows to integrate new components dynamically
at run-time. ROS supports most prevalent programming
languages, particularly including C++, Python, Java, C#,
JavaScript, and Ruby. These features facilitate the integra-
tion of new technologies with ROS.

2 Physical Model of the SDV
2.1 Model Requirements and Architecture
Based on the use case described in Section 1.1, the fol-
lowing physical effects have been identified that need to
be represented by a physical model of the SDV:

• Planar motions of the SDV relative to a fixed ground
and related inertial forces.

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 443
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

• Normal forces at the driven and caster wheels con-

sidering the chassis kinematics and mass.
• Limited traction of the driven wheels considering the

maximum wheel slip.
• Bore friction torque at the caster wheels with stiction.
• Limited drive torque defined by the motor character-

istics.

Due to the usage as plant model for MiL simulations with
slow accelerations and limited maneuvers, the following
simplifying assumptions have been applied:

• No real time requirements.
• No inertial torque along the longitudinal axis.
• Neglect the inertial torque along the lateral axis.

Aiming to keep the physical model as simple and generic
as possible the PlanarMechanics Library (PML) (Zim-
mer, 2014) has been chosen as basis for the mechanical
model. The library provides all elements required to de-
scribe a planar multibody system and provides a set of ba-
sic tire models referred to as WheelJoint that have been
adopted as described in Subsection 2.2. To enable a sim-
ple reuse of these basic tire models for the described class
of differential drive vehicles, additional components have
been developed combining the wheel joints with compo-
nents from the Modelica Standard Library (MSL).

In a separate SelfDrivingVehicles library the ex-
tended PLM has bee utilized to build up packages for
specific applications such as the AS DevKit and others.
The corresponding System package contains models that
describe the connections between the driven wheels and
caster wheels as well as a block to calculate the normal
forces of the wheels dependent on the actual orientation.

The Controller package contains models of common
control concepts applicable to any differential drive vehi-
cle such as motion profiles described in vehicle coordi-
nates and their mapping to command values for the left
and right drive as well as implementations of the Path Fil-
ter introduced in Section 3.

This architecture allows to separate the application spe-
cific properties from common concepts of differential
drive vehicles. Models of new applications can be created
with little effort.

2.2 Wheel Models for Differential Drive
Driven Wheel. The wheel itself is modeled with a
SlipBasedWheelJoint (PML) and a 1D-rotational In-
ertia component (MSL). The frame_a connector of the
SlipBasedJoint interfaces the driven wheel subsystem
with the main structure of the vehicle model. The Iner-
tia component is actuated by a Torque signal.

Caster Wheel. Figure 2 shows a schematic illustration
of a swivel caster wheel. The fork contains a bearing
which allows the wheel to swivel relative to the structure
it is mounted on. The bearing is modeled with a Revo-
lute joint (PML). Its frame_a connector interfaces the

𝑡𝑟𝑎𝑖𝑙

swivel axis

fork

Figure 2. Nomenclature of a caster wheel.

subsystem with the main structure of the vehicle model.
A RelAngleSensor (MSL) measures the current caster
wheel orientation and provides it as RealOutput. The
fork is modeled with a FixedTranslation component
(PML) with the length l = trail that connects the Revo-
lute with the wheel joint. As specified in Section 2.1,
the wheel joint of the caster wheel is required to consider
bore friction. Bore friction is a friction torque that coun-
teracts a wheel’s rotational movement around its vertical
axis. As depicted in figure 3, bore torque is denoted with
Tbore and is opposed to the acting torque Tz and the an-
gular velocity ωz. In the following, we first describe a
bore friction characteristic that was proposed by (Zimmer
and Otter, 2010). Thereafter, we propose an alternative
approach that better suits our model requirements and ex-
plain how the IdealWheelJoint is extended to allow its
correct implementation.

𝑥 𝑦

𝑧

𝑣𝑙𝑜𝑛𝑔

𝐹𝑁

𝑙𝐶𝑃

𝑤𝐶𝑃

𝜔𝑤ℎ𝑒𝑒𝑙

𝜔𝑧

𝑇𝑧
𝑇𝑏𝑜𝑟𝑒

𝑃𝑉𝐶𝑃

C𝑜𝑛𝑡𝑎𝑐𝑡 𝑃𝑎𝑡𝑐ℎ

Figure 3. Tire road contact.

Equation 4 shows the proposal by (Zimmer and Otter,
2010).

|Tbore|=

|Tbore,max| ·

|λbore|
λbore,lim

if |ωz| · srep < λbore,lim · |ωwheel | · r
|Tbore,max| else

(4)

Similar to (Rill, 2007), they state that the friction torque
Tbore is proportional to the bore slip λbore. Here, bore slip
describes the ratio between the representative slip velocity
ωz · srep of the tires contact patch and the wheels linear
velocity ωwheel · r.

|λbore|=
|ωz| · srep

|ωwheel | · r
(5)

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

444 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

Within the contact patch, srep is the distance between the
virtual contact point (PVCP) and an infinitesimal element
which is representative for the distances of all infinitesi-
mal elements. It results when integrating over the contact
patch.

srep =
1√
12

√
l2
cp +w2

cp (6)

The bore torque is limited to

|Tbore,max|= FN ·µbore · srep. (7)

Here, µbore denotes the friction coefficient between tire
and road, FN the wheel contact force that acts on PVCP (cf.
figure 3). The limiting parameter in equation 4 is the bore
slip limit λbore,lim > 0 that determines at which bore slip
value the maximum bore torque is reached. Due to the fact
that the actual bore slip λbore is not defined for ωwheel = 0
(cf. equation 5), the condition λbore < λbore,lim in equation
4 is expressed such that division by zero is avoided.

Figure 4 shows a visualization of equation 4. When
|ωz|= |ωwheel |= 0, the acting torque |Tz| has to overcome
the stiction torque |Tbore,stic|= |Tbore,max|. As long as |Tz|<
|Tbore,stic|, the caster wheel is caught in a locking condition
and cannot change its orientation around its vertical axis.

Tbore,stic

Figure 4. Bore friction characteristic (Zimmer and Otter, 2010).

In a first modeling approach equation 4 has been im-
plemented by a regularized s-shaped characteristic as it
is used in the SlipBasedWheelJoint. However, sim-
ulations revealed that a vehicle at standstill actuated by
a constant driving torque that is considerably smaller than
the expected break-off torque |Tbore,stic| at the single caster
wheels, would still start moving over the course of a few
seconds. This undesired effect can be explained by using
a continuous function to avoid the discontinuity which re-
quires |ωz| > 0 rad/s when |Tbore| > 0. Even though the
s-shaped characteristic can be tuned such that ωz is com-
parably small when reaching |Tbore| = Tbore,max, still it is
just a matter of time until the growing share of the acting
forces pointing in the longitudinal direction of the caster
wheels accelerate ωwheel which leads to rapidly decreasing
bore friction.

In order to properly capture the locking behavior and
despite loosing real time capabilites by introducing events,
the model equation 4 was implemented with help of

the hybrid friction formulation used in the MSL Bear-
ingFriction model. However, it was found that this
second approach is still not sufficient. Due to the fact that
the friction characteristic (cf. figure 4) drops quickly from
Tbore,max to zero for ωwheel 6= 0, very small deviations of
∆ ≈ 10−3 rad/s allow the wheel to brake free. Hence, the
behavior of the AS DevKit cannot be replicated with the
bore friction characteristic introduced in equation 4.

In order to avoid the undesired effect described above,
an alternative approach is presented in the following. In
contrast to the previous model the new friction character-
istic, shown in figure 5, has a linear slope w.r.t. ωwheel
near zero, such that small deviations do not take effect.
This leads to the following formulation of the bore torque:

|Tbore|=

(|Tbore,max|− |Tbore,stic|) ·

|λbore|
λbore,lim

+ |Tbore,stic|

if |ωz| · srep < λbore,lim · |ωwheel | · r
|Tbore,max| else

(8)
with Tbore,stic defined as

|Tbore,stic|= max(0, |Tbore,max|− kstic · |ωwheel |). (9)

For kstic→ ∞, equation 8 tends to equation 4.

Tbore,stic

Figure 5. Alternative bore friction characteristic.

In order to implement equation 8, the new model Ide-
alWheelJointBore combines concepts of the Ideal-
WheelJoint (PML) and the BearingFriction (MSL)
model. This allows to represent the locking condition ex-
plicitly as discrete state to assure that Tbore =−Tz as long
as |Tz| < |Tbore,stic| (while ωz = 0). The BearingFric-
tion component is extended with a RealInput to pro-
vide the current wheel contact force FN . As the Bear-
ing Friction component requires the exact torque Tz
that is applied to the wheel, the wheel joint is addition-
ally extended with a rotational SpringDamper compo-
nent (MSL). This allows to dynamically resolve the dis-
tribution of the overall driving torque to the caster wheels
despite a statically over-determined system when multiple
caster wheels are connected to the same frame.

Calculation of the wheel contact forces. This subsys-
tem provides a mathematical model for the calculation of
the wheel contact forces. It is a simplified static approach

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 445
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

that takes the current caster wheel orientations into ac-
count. However, the lateral dynamics of the AS, which
have an influence on the wheel contact forces when accel-
erating or decelerating, are neglected due to rather small
accelerations compared to gravity.

2.3 Verification of the ActiveShuttle Model
The verification of the AS simulation model focusses on
the plausible replication of the observered behavior of the
caster wheels and motion of the vehicle body, especially
w.r.t. to the critical operation scenarios (cf. section 2.1).
This is considerd sufficient in order to prove the path filter
concept in Section 3.2. Therefore the model is not vali-
dated against measurements of the real system.

Turn on the spot. Figure 6 shows the simulation results
for a desired clock-wise (CW) turn on the spot with two
different masses. With mAS = 150 kg, the AS is capable to
initiate the turn and overcome |Tbore,stic|= |Tbore,max| at all
four caster wheels. However, at maximum payload (total
mass mAS = 250 kg), it is caught in a locking condition.
Hence, ωAS remains zero. Since |Tbore,max| is remarkably
higher in the fully loaded case, the drives of the AS are
not strong enough to overcome the stiction torques at the
caster wheels.

Figure 6. CW turn on the spot with mAS = 150 kg (left) and
mAS = 250 kg (right). Dashed lines represent desired motion,
solid lines the simulated motion. All caster wheels with µbore =
0.6, kstic = 1 and λbore,lim = 1.

Flipping caster wheels. Figure 7 shows the simulation
results for a desired transition from driving straight for-
ward to straight backwards. Due to the prior motion seg-
ment, all caster wheel orientations are 0 rad when vAS,des
is reversed to −0.3 m/s. It can be noticed that the caster
wheels are not changing their orientation by half a turn
to π rad instantly. Instead the caster wheel’s orientations
start to flip randomly after about t = 9 s. This reflects the
behavior to be observed at the real vehicle.

3 Design of the Path Filter
In this section a feed-forward controller is described that
ensures that the AS continues its motion in the direction of
the current caster wheel orientations before it is smoothly
transferred in the direction of the desired orientations.

3.1 Control Architecture and Model
Figure 8 depicts the architecture of the path filter. Here,
the index (.)C is representative for one of the four caster

φ
C
,i
ra
d

Figure 7. Random caster wheel flip with mAS = 250 kg. Top:
cf. figure 6. Bottom: Simulated caster wheel orientations. Black
and magenta lines represent back and front caster wheels, resp.
Dashed and solid lines represent right and left side, resp. All
caster wheels with µbore = 0.6, kstic = 1 and λbore,lim = 1.

wheels. Moreover, ωC is equivalent to ωC,wheel .

Get desired

caster wheel state

Get filtered

AS state

Get filtered fil

caster wheel state

param:𝜔𝑚𝑎𝑥

𝒙𝐴𝑆,𝑑𝑒𝑠 𝒙𝐶,𝑑𝑒𝑠 𝒙𝐶,𝑓𝑖𝑙 𝒙𝐴𝑆,𝑓𝑖𝑙

ෝ𝒙𝐶Estimate caster

wheel state

param: 𝑇𝜔 , 𝑇𝜑; init: ෝ𝒙𝐶,𝑖𝑛𝑖𝑡
𝒙𝐶,𝑓𝑖𝑙

Figure 8. Architecture of the path filter feed-forward controller

Get desired caster wheel state The path tracker of the
motion control architecture commands the desired motion
in the AS state representation. However, the path filter al-
gorithm requires this information in the caster wheel state
representation. Therefore, the geometric correlation be-
tween the two state representations is taken into account in
order to provide a transformation. Hence, the subsystem
requires the wheel radius and the position of the swivel
axis of one representative caster wheel as parameters.

Estimate current caster wheel state We assume that
all filtered states can be realized by the AS without en-
countering a locking condition or other external influences
that keep it from reaching the commanded state. Conse-
quently, it is taken for granted that the actual caster wheel
state xxxC is transferred into xxxC, f il with a certain delay. Here,
the delay is caused by the inertia of the AS. Hence, we cal-
culate the estimate x̂xxC with two first order hold elements.
The two time constants Tϕ and Tω can be tuned to match
the AS dynamics.

Get filtered caster wheel state The actual filter algo-
rithm calculates first the deviation between the desired and
estimated caster wheel orientation. Equation 10 makes
use of the modulo function in order to assure that ∆ϕC ∈
[−π;π] rad. This ensures that the AS takes the shortest
path to its desired state.

∆ϕC = mod(ϕC,des− ϕ̂C +π,2π)−π (10)

Equation 11 states the calculation scheme for the filtered
caster wheel orientation. Here, the factor k determines
which proportion of ∆ϕC can be overcome in one calcu-
lation cycle.

ϕC, f il = ϕ̂C + k ·∆ϕC (11)

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

446 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

According to Equation 12, k is defined to grow propor-

tionally with the estimated caster wheel speed ω̂C. Its defi-
nition is based on the idea that the faster a wheel is rolling,
the easier it can be turned (cf. equation 4 and 5).

k = min(1, | ω̂C

ωmax
|) (12)

When the caster wheels are rolling very slowly (ω̂C ≈ 0
rad/s), the AS is forced to start moving in the direction
of its current orientation ϕ̂C. Once the caster wheels
have picked up some speed, their orientations change with
|ωC,z|> 0. In other words, the path filter describes a trajec-
tory in the bore friction characteristics of the caster wheels
that avoids the peak friction torques (cf. figure 5). ωmax
represents the slope of k. Small values reduce the time ∆t
that is necessary to transfer between estimated and desired
state, but at the same time describe a trajectory in the bore
friction characteristic that encounters higher bore torques.
Hence, the choice of ωmax can be seen as a trade-off be-
tween transfer time and effort.

Get filtered AS state This subsystem represents the in-
verse of the first subsystem. It provides a transformation
from the filtered caster wheel state to the filtered AS state.
Here, it is important to provide the parameters of the caster
wheel that was used with the first subsystem.

3.2 Path Filter Verification
In this section, we examine the path filter behavior with
the help of two test setups. In both cases the path fil-
ter is set up with respect to the right front caster wheel
(C,RF) and fed with a desired motion profile that includes
the typical operation scenarios (cf. section 1.1). The "stan-
dalone" test case examines the input output behavior of the
path filter, while the second "MIL" simulation includes the
AS model as system plant and aims to show its impact on
the physical behavior of the AS.

forward - CW

turn on the

spot

forward -

forward

CW turn on

the spot -

forward

forward -

backward

Figure 9. Standalone simulation of the path filter with ωmax =
100 rad/s and Tϕ = Tω = 0.01 s. Dashed lines represent the
desired motion, solid lines the filtered motion. For better scaling,
the single motion scenarios are plotted separately.

The plots of the standalone simulation depicted in
figure 9 show the path filter input (xxxAS,des) and output

(xxxAS, f il). Here, the four motion scenarios are simulated
in one sequence. Between each scenario, the AS is fully
stopped. The plot on the top left reveals that xxxAS,des =
xxxAS, f il for the first motion segment. Here, the desired
caster wheel orientation for driving straight forward is
equal to the orientation that the estimation subsystem was
initialized with (cf. figure 8).

ϕC,RF,des = ϕ̂C,RF,init = 0 (13)

Consequently, ∆ϕC,RF remains zero during the first mo-
tion scenario and the filtered state is set to the desired state
(cf. equation 11 and 10). For all other motion segments,
the behavior of the path filter can be nicely seen. The
commanded state xAS, f il makes the AS continue its prior
motion before it smoothly passes into the desired state.
When changing from driving straight forward to backward
(bottom right plot), an angular velocity component is con-
sciously induced by the path filter and avoids the random
caster wheel flip.

w/o path filter path filter active

Figure 10. MIL simulation for a CW turn on the spot. The AS
was driving straight forward prior to that. Top row: dashed lines
represent the desired motion, solid lines the simulated motion of
the AS model. Bottom row: green lines represent the left drive,
blue lines the right drive. Path filter parameters: cf. figure 9. AS
model parameters: mAS = 250 kg, TLD/RD,max = ±8 Nm, caster
wheels as in figure 6.

Figure 10 shows the MIL simulation results for a CW
turn on the spot. As motivated in Section 3, the path filter
is able to avoid the locking condition that occurs in the
setup without path filter.

4 FMI in ROS Control Architecture
In this section, we first describe relevant mechanisms and
features of ROS, before we provide details on the FMI-
Adapter package. Thereafter, we explain the integration
of the Path Filter FMU with the ROS-based navigation ar-
chitecture of the AS DevKit.

4.1 ROS Concepts
ROS uses a service-oriented architecture based on two
common middleware mechanisms: publish-subscribe and

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 447
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

request-response. Next, we briefly describe relevant ROS
concepts:

Nodes. A software component is named node in ROS.
Each node runs as a separate (Linux) process. Yet, a node
may be instantiated multiple times, e.g., to run the same
motor driver node twice for the two motors of a differ-
ential drive. To be able to distinguish two running node
instances of the same executable, ROS provides a hierar-
chical naming scheme.

Topics. A topic is a typed and named n-to-m communi-
cation channel. Any node may open a publisher on a topic
and publish (i.e. send) a message on it. This message is
delivered to all nodes that have subscribed to that topic.
The type of messages on a topic is defined by the first pub-
lisher. The std_msgs package of ROS provides message
types for all primitive data types (i.e., bool, char, int, float,
etc.). The packages sensor_msgs and geometry_msgs
provide message types for common sensor data (e.g., laser
scans, camera images, inertial measurements) and geo-
metric primitives (e.g., points, poses, transformations), re-
spectively. An interface definition language (IDL) allows
to define application-specific messages types.

Services and actions. Using the same IDL and nam-
ing concept, services implement a typed request-response
mechanism. Actions are a mechanism for long-running
services, where the client may preempt the request.

Topics, services and actions are implemented with TCP/IP
or UDP/IP. Therefore, the nodes can be distributed easily
to different machines.

ROS master. The master is a dedicated process that pro-
vides a registration and lookup for nodes, topics, services
and actions.

Parameter server. The parameter server provides a
shared dictionary of typed key-value pairs, following the
node naming scheme.

Launch files. A launch file is an XML-based specifica-
tion to start a whole (sub-)system consisting of multiple
nodes with corresponding parameterization. The specifi-
cation language also allows to rename topics and services
to connect nodes that have been developed independently.

Time and clock. ROS represents time by two 32 bit val-
ues (seconds and nanoseconds) since the epoch. In normal
operation, the computer’s clock is used as time source.
Yet, ROS also allows a simulated clock with varying rate.

Packages. They are used to logically organize the soft-
ware in ROS. A package may contain one or more nodes,
a third-party library, a set of message types, launch files,
etc. A package may specify dependencies to other pack-
ages, which are used for the build and installation process.

Callbacks and spin thread. Inside a node, each sub-
scription, service server, and action server is associated
with a callback function. Incoming messages are pushed

to a first-in-first-out queue, which is processed sequen-
tially by the spin thread by calling the corresponding call-
back function with the message data. ROS also allows to
multiple callback queues and spin threads inside a node.

Timers. In addition to these communication-related
events, a node may define timers to invoke certain func-
tions periodically through the spin-thread mechanisms.

4.2 FMI-Adapter for ROS
The new fmi_adapter is a ROS package implemented in
C++ for wrapping co-simulation FMUs according to the
FMI standard 2.0 into ROS nodes. The package documen-
tation is provided at wiki.ros.org/fmi_adapter
and the source code can be downloaded at github.
com/boschresearch/fmi_adapter/. An early
version for ROS 2 can be found at github.com/
boschresearch/fmi_adapter_ros2/.

The fmi_adapter package aims at providing the most
important functions of the FMI 2.0 Co-Simulation inter-
face (Modelica Association Project "FMI", 2014) mapped
to ROS concepts/types as depicted in the following table:

FMI ROS
input variable subscription
output variable publisher
state variable no explicit counterpart
parameter initialization parameter server
simulation time ROS clock - offset
communication step-size timer

It is intended neither to implement the whole FMI 2.0 in-
terface nor to provide the rich set of introspection func-
tions as for example FMI Library (JModelica.org, 2012)
or FMI4cpp (SFI Offshore Mechatronics Research Cen-
tre, 2018). For advanced use-cases, ROS developers are
referred to such libraries. Internally, fmi_adapter is based
on the FMI Library, but the specific types are hidden from
the developer.

The fmi_adapter package can be used, both, as a stand-
alone ROS node and as a library.

Node use. The fmi_adapter package provides a ROS
node, which takes the file path of an FMU as parame-
ter fmu_path and creates subscribers and publishers with
message type std_msgs::Float64 for the input and
output variables of the FMU, respectively. Next, it queries
the ROS parameter server with the names of all variables
and parameters of the FMU. For each name being found,
the corresponding variable or rather parameter is initial-
ized with the value being retrieved from the parameter
server. Finally, the initialization mode of the FMU is ex-
ited and the node runs/simulates the FMU with a user-
definable update period according to the ROS clock – un-
til the node is shutdown. The following line gives an ad-
vanced example for invoking this node:
rosrun fmi_adapter node \

_fmu_path:=./TransportDelay.fmu \

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

448 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

_step_size:=0.001 _d:=0.5 \
__name:=nodeB \
/nodeB/u:=/nodeA/angle

In this example, the FMU implements a simple transport
delay with real-valued input u, output y and delay param-
eter d.1 In this invocation, the step-size is set to 1ms,
the delay is set to 0.5s, the node’s name is set to nodeB
and the input x is connected to the topic /nodeA/angle.
Hence, the values of /nodeA/angle will be published on
/nodeB/y with a delay of 0.5s, sampled at 1kHz.

Library use. The fmi_adapter package also provides a
shared library which gives much more control about the
integration of an FMU in a ROS node. Most important,
it allows to decompose complex ROS message types and
to map the individual fields to the primitive-typed input
variables of an FMU. Also, it enables the use of multiple
FMUs inside a ROS node. Finally, it provides some basic
functions to introspect a given FMU, e.g., to query the
variable names depending on their causality.

For this purpose, the fmi_adapter library provides a
C++ class fmi_adapter::FMIAdapter, which wraps a
single FMU whose file path is passed as constructor ar-
gument (cf. Figure 11). On such an instance the default
experiment step-size can be queried (by getDefault-
ExperimentStep), the names of the input variables, out-
put variables, and parameters can be retrieved (by get-
InputVariableNames, etc.), and initial values can be
set (by setInitialValue and initializeFromROS-
Parameters).

The end of the initialization phase is marked using
exitInitializationMode. Now, inputs can be set
programmatically per variable using setInputValue
and the FMU simulation can be advanced with two func-
tions doStep and doStepsUntil. Output values can be
retrieved with getOutputValue. For input values, the
FMIAdapter class allows to pass timestamped values and
thus even to specify a trajectory, where the user can de-
cide whether the input values are interpolated linearly or
considered as a step function. This feature facilitates to
translate between different sampling/sensor rates.

Implementation details. Several subtle details had to
be considered in the mapping between FMI and ROS con-
cepts. The most important is the representation of time.
ROS represents time in seconds and nanoseconds since the
epoch whereas FMI uses a floating-point-based represen-
tation. The latter loses precision for large values. Also,
an FMU may specify a specific start time, typically zero.
Therefore, exitInitializationMode expects a ROS
timestamp. This timestamp is used as offset between the
ROS time and FMU time in all future function calls.

Another subtle difference is that FMI supports various
characters in the variable names that are not allowed in pa-
rameter or topic names in ROS. We introduced a function
rosifyName to replace these characters by underscores.

1ROS does not support physical unit specifications but assumes that
all values are defined in the International System of Units (SI).

Finally, the FMU has to include a binary for Linux. The
export of such FMUs is supported by various commercial
and open-source modeling tools.

4.3 Integration of the Path Filter FMU
Drive commands are represented as TwistStamped mes-
sages (from the geometry_msgs package) in the ROS-
based navigation architecture of the AS DevKit. The
twist.linear.x field represents the lateral velocity and
the twist.angular.z field the rotational velocity. This
is a very common representation in ROS for velocity com-
mands for differential wheeled robots.

In the navigation stack of the AS DevKit these mes-
sages are sent from the path tracker node to the engine
driver node on a topic named /velDes. The former node
implements a controller to follow the given path from the
global path planner; the latter node translates the lateral
and rotational velocity to motor commands for the left
drive motor and right drive motor.

We integrated the Path Filter FMU in a new node
named PathFilter between those two nodes using the
fmi_adapter library. This new node consists of one func-
tion main only, with just 25 lines of code. On receiving a
TwistStamped message on the topic /velDes, it feeds
the Path Filter FMU with the values of twist.linear.x
and twist.angular.z using setInputValue and runs
the FMU up to the current time. Then, it reads the
resulting output values from the FMU, creates a new
TwistStamped message and publishes it on a new topic
/velDesFil.

To integrate the PathFilter node in the existing
architecture, only two lines in the corresponding ROS
launch file had to be changed: A new line for the Path-
Filter node had to be added and the input topic for the
engine driver node had to be changed to /velDesFil.

5 Application and Test
In this section, we describe the application of the ROS ar-
chitecture with the newly integrated PathFilter node to
an AS DevKit. In a series of field tests it was the moti-
vation to gather data that supports the results of the MIL
simulations in Section 3.2 and further verifies that the path
filter reaches its objectives (cf. section 3).

5.1 Test Setup
In contrast to the adaption of the launch file that was de-
scribed in Section 4.3, we operated the Active Shuttle
DevKit in manual mode. Here, the PathTracker node
is deactivated and the desired motion is published to the
/velDes topic by a node that is interfaced with a joy-
stick. The desired motion profile included the following
segments:
• straight forward → stop → CW turn on the spot →

stop → straight forward → stop → straight back-
wards→ stop→ straight forward

The profile was driven several times with different path fil-
ter parameter variations including one reference case with-

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

DOI Proceedings of the 13th International Modelica Conference 449
10.3384/ecp19157441 March 4-6, 2019, Regensburg, Germany

Figure 11. Architecture diagram from fmi_adapter package, illustrating library use

out path filter. The AS DevKit was loaded with 150 kg
which sums up to an overall weight of mAS ≈ 200 kg. The
relevant topics /velDes , /velDesFil and /engine-
datawere recorded with the rosbag tool. The latter topic
holds the messages with the measured motor speeds and
currents. The measured AS state xxxAS,m results from nLD,m,
nRD,m and the AS kinematics. In order to verify that the
path filter is solving the operational issue of randomly flip-
ping caster wheels, xxxAS,m is examined in combination with
video recordings.

5.2 Test Results
Figure 12 shows a detailed view on the CW turn on the
spot. Here, the measured motor currents of a reference
case with no path filter are compared with a filtered case.

The time span where the motor currents of the reference
case have reached a peak value of ±≈ 18 A can be inter-
preted as the moment when the caster wheels are abruptly
changing into their desired states xxxC,i,des. Here, the coun-
teracting bore torque is abruptly vanishing and a signif-
icant drop in the motor currents can be observed. This
drop results in an oscillation of the motor currents which
lasts for a couple of seconds until it is damped.

The intended effect of the path filter can be nicely seen
between t = 15.4 s and t = 16 s. The motor currents
necessary to induce the turn on the spot are considerably
reduced compared to the reference case. The path filter
forces the AS to continue driving in the direction of the
current caster wheel orientations first. Hence, the motor
currents are first rising with a positive slope before the
right motor current is dropping below zero. This acceler-
ates the caster wheel speeds before the turn is initiated and
reduces the bore friction. Moreover, we observe that the
drop in the motor currents and the resulting oscillation are
significantly mitigated.

Figure 13 shows a detailed view of the change from
driving backward to forward. As it was elaborated in Sec-
tion 3 the path filter intends to avoid the random caster
wheel flip. We observe that the path filter forces the AS
to keep driving backwards for a split of a second before it
consciously induces an angular velocity component which
triggers the orientation change of the caster wheels. Even

Figure 12. Measured motor currents for initiating a CW turn on
the spot. The AS (mAS ≈ 200 kg) was driving forward prior to
that. Dashed lines represent the results w/o path filter, solid lines
the results with ωmax = 100 rad/s and Tϕ = Tω = 0.01 s. Red and
blue lines represent the left and right drive, resp.

though the actual caster wheel orientations can not be
measured we assume that the strategy works out. xxxAS,m is
following xxxAS, f il and xxxAS,m is significantly different from
zero between t = 46 s and t = 49 s. Our assumption was
verified through video recordings which clearly show that
the caster wheels are turning instantaneously after the mo-
tion is started.

Figure 13. Desired, filtered and measured AS state for chang-
ing the driving direction. The AS was driving backwards prior
to that. Dashed lines represent the desired motion, solid lines
the filtered and measured motion. Path filter parameters and AS
mass as in figure 12.

6 Conclusions and Outlook
In this paper a new model for wheels with bore friction
has been presented. This model is suitable to describe
the impact of bore stiction and allows to replicate criti-

Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS

450 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157441

cal locking conditions of differential drive vehicles with
caster wheels. Based on the developed wheel model a
vehicle model of the AS DevKit has been developed and
used to design and validate the so-called Path Filter.

Using the new FMI-Adapter the PathFilter has been
successfully integrated into a ROS control architecture
and deployed to the AS DevKit. This way it has been
demonstrated that FMI is a viable and attractive approach
for an integrated end-to-end workflow from model-based
control design to software integration for robotic applica-
tions and service oriented architectures. The open source
fmi_adapter package enables users to wrap an FMU into a
ROS node without deeper understanding of the FMI inter-
nals. The development process is drastically reduced with
respect to time, effort and complexity.

The Path Filter has a significant positive impact on the
handling qualities of the AS. It significantly reduces the
effort necessary to perform movements that require the
caster wheels to be turned on the spot. Moreover, it damps
oscillations in the motor currents caused by the abrupt re-
lease of the counteracting bore torque. The path filter re-
duces the jerk which increases the durability of hardware
components, eases the handling of fragile goods and im-
proves the stability of shaky loads. Most important, the
risk of getting stuck in a lock condition is drastically re-
duced. The Path Filter has been designed as self-contained
function that can be retrofitted into existing control archi-
tecture between motion planer and motion controller.

The demonstrated application uses a micro processor as
target and the deployed software was not subject to certi-
fied development processes. In the future work it needs to
be ensured that the code within an FMU satisfies require-
ments of safety critical software and is optimized for real
time applications. The current efforts within the publicly
funded European project EMPHYSIS (ITEA3, 2017), de-
veloping the FMI for embedded systems (eFMI) standard,
is addressing these challenges.

The Path Filter could be improved with respect to cali-
bration effort and ressource demand by reducing the num-
ber of tuning parameters and the number of states. The
estimation of the caster wheel angle using two first order
holds could be replaced by an estimator based on the mea-
sured velocities of the driven wheels.

The plant model of the SDV could be enhanced to con-
sider the impact of the currently neglected inertial forces.

Further studies shall reveal which constraints could be
incorprated by the motion planner to determine trajecto-
ries that are compliant with the orientation of the caster
wheels, which would allow to dispense the Path Filter.

References
G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Using

Modelica for advanced Multi-Body modelling in 3D graph-
ical robotic simulators. In Proc. of the 12th Int’l Modelica
Conference, Prague, Czech Republic, May 2017.

H. Durrant-Whyte and T. Bailey. Simultaneous Localization and

Mapping (SLAM): Part I/II. IEEE Robotics Automation Mag-
azine, 13(2/3):99–110/108–117, Jun/Aug 2006.

S. Imlauer, C. Mühlbacher, G. Steinbauer, S. Gspandl, and
M. Reip. Hierarchical Planning with Traffic Zones for a Team
of Industrial Transport Robots. In Proc. of 4th Workshop on
Distributed and Multi-Agent Planning (DMAP), pages 57–
65, London, UK, Jun 2016.

ITEA3. EMPHYSIS – Embedded systems with physical models
in the production code software, 2017. Retrieved 13 Nov
2018 from itea3.org/project/emphysis.html.

JModelica.org. FMI Library, 2012. Retrieved 3 Jul 2018 from
jmodelica.org.

Modelica Association Project "FMI". Functional Mock-up In-
terface for Model Exchange and Co-Simulation – Version 2.0,
Jul 2014.

F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov. A
Loosely-Coupled Approach for Multi-Robot Coordination,
Motion Planning and Control. In Proc. of 28th ICAPS, Delft,
The Netherlands, Jun 2018.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source
Robot Operating System. In Proc. of ICRA Workshop on
Open Source Robotics, Kobe, Japan, May 2009.

G. Rill. Simulation von Kraftfahrzeugen. Vieweg Verlag, Re-
gensburg, Germany, 2007.

SFI Offshore Mechatronics Research Centre. FMI4cpp,
2018. Retrieved 25 Oct 2018 from github.com/
SFI-Mechatronics/FMI4cpp/.

S. Swaminathan. Modelica-ROS Bridge. Retrieved 14 Jan 2019
from github.com/ModROS.

The MathWorks. Robot Operating System (ROS) Support from
Robotics System Toolbox. Retrieved 23 Oct 2018 from www.
mathworks.com.

M. Thümmel, G. Looye, M. Kurze, M. Otter, and J. Bals. Non-
linear Inverse Models for Control. In G. Schmitz, editor,
Proc. of the 4th Int’l Modelica Conference, pages 267–279,
Hamburg, Germany, March 2005.

S. Traversaro, P. Ramadoss, and L. Tricerri. gazebo-fmi. Re-
trieved 14 Jan 2019 from github.com/robotology/
gazebo-fmi.

D. Zimmer. A free Modelica library for planar mechanical multi-
body systems, 2014. Retrieved 23 Oct 2018 from github.
com/dzimmer/PlanarMechanics.

D. Zimmer and M. Otter. Real-time models for wheels and tyres
in an object-oriented modelling framework. Vehicle System
Dynamics, 2010.

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

DOI Proceedings of the 13th International Modelica Conference 451
10.3384/ecp19157451 March 4-6, 2019, Regensburg, Germany

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics
Kolesnikov, Artem and Tretsiak, Dzmitry and Cameron, Morgan

451

Systematic Simulation of Fault Behavior by Analysis of Vehicle

Dynamics

Artem Kolesnikov1 Dzmitry Tretsiak1 Morgan Cameron2
1ESI ITI GmbH, Dresden, Germany

2ESI Group, Rungis, France,

{Artem.Kolesnikov, Dzmitry.Tretsiak, Morgan.Cameron}@esi-group.com

Abstract
A new library for System Reliability Analysis for

systematic modelling of fault effects in multi-physical

systems is introduced. The motivation is outlined as well

as a description of the library structure with two helper

libraries and an Add-In for semi-automatic fault

augmentation. The library is exemplified in the

automotive domain with the fault effect simulation of a

vehicle model by using a new library for Driving

Maneuvers. The vehicle model is systematically

augmented with connector and component faults for the

analysis of different fault effects in vehicle dynamics.

Keywords: Fault, Reliability, Model-based Diagnosis,

Driving Maneuvers, Vehicle Dynamics

1 Introduction

The decreasing development time and the rising

competition in the automotive industry have led to the

increased application of model-based approaches to

system engineering. The applied models usually describe

the designed ("nominal") behavior of a technical system

and require a large amount of time and effort to be adopted

because of system deviations. The reasons the physical

system can deviate from its nominal behavior are

manifold. First of all, the manufacturing of products is

only exact to a certain point - there are variations and

sometimes systematic deviations from the specified

system design. Secondly, during the use of a product, its

behavior can change because materials and material

pairings are subject to wear, aging, abrupt failures etc.

These effects include loss of lubrication, corrosion and

hardening of materials. This has necessitated the

development of specific models for simulation of fault

effects.

Usually, models that represent fault effects are

developed to describe the specific non-nominal behavior

of a technical system and, hence, often require a large

amount of effort to be reused for other failures or

requirements. Moreover, the system simulation of multi-

domain systems such as a vehicle is usually based on their

nominal library components of object-oriented modelling

languages. Most of them, such as Modelica®-based

libraries, have seen limited attempts to extend models for

model-based failure analysis. These include the Fault

Triggering library, which allows for the insertion of faults

into models of existing components (van der Linden,

2014); and the Fault-Augmented Model Extension

(FAME) library with predefined fault augmentation (de

Kleer et al, 2013). The latter was described in detail in

(Saha et al, 2014) and has served as a basis for the

systematic fault-augmentation approach presented in this

paper.

In the following section the library developed for

System Reliability Analysis (SRA) is described, whose

components are the basis for the systematic fault

augmentation of the vehicle model. The SRA library

consists of a basic package containing elementary type

and class definitions to parametrize faults, as described in

(Gundermann et al, 2018). Beyond that, it is structured

according to the structure for composable models in the

Modelica® language (Minhas et al, 2014).

To demonstrate the capabilities of the SRA library, a

vehicle model was created based on the components of the

library Driving Maneuvers described in the section 3. As

a sample, the preconfigured standard driving test defined

by ISO “Severe double lane change” was chosen as

described in (ISO 3888-1, 1999). Helper libraries

supporting feature extraction and checking of

requirements fulfilment are described in section 4. The

augmentation of relevant faults in the investigated model

and sample analysis of fault effects are shown in section

5.

The systematic fault augmentation methodology

provides new capabilities to analyze fault behavior in

multi-physical systems in SimulationX

(www.simulationX.com), by exploiting the multi-domain

SRA library and accompanying semi-automatic fault-

insertion functionality. The paper motivates and

demonstrates these capabilities in the context of model-

based failure analyses in automotive applications.

Specifically, the vehicle model was augmented with

connector, component and signal fault structures of the

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

452 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157451

SRA library to simulate very different fault effects

extracted and analyzed by the helper libraries.

2 The Library for System Reliability

Analysis

Throughout this paper the term fault refers to any

deviation from the nominal system’s behavior. The

Modelica® components developed for the SRA library in

SimulationX simulate only the effect of a process on the

system’s behavior and focus on its dynamical evolution or

interaction with other processes. For example, mechanical

faults in joints, gears, shafts, springs or clutches because

of breakage or slipping lead to the reduction of transmitted

forces or torques. The current reduction because of bad or

open connections in an electrical system, the mass flow

decreases in a hydraulic system because of leakage or

obstruction as well as changes of heat flows in a thermic

system have comparable behavior and can be similarly

structured, modeled and analyzed (Kolesnikov et al,
2018). As an example, the three oscillators from different

physical domains shown in Figure 1 are similarly

structured and augmented with faults in SimulationX. This

follows from the analogies between the basic electrical,

mechanical and hydraulic network elements.

Figure 1. A model of oscillators in SimulationX with

electrical, mechanical and hydraulic network elements after

the augmentation with connector faults (red connectors) and

parametric faults (components with the symbol F).

2.1 Fault Types

Based on the processes and effects outlined above the SRA

library of SimulationX contains appropriate type

definitions for two defined types of faults: continuous and

discrete. Both these fault types are specialized classes –

records containing an editable variable which is dynamic
and can change its value during simulation (Fritzson,

2014). By using a type definition for the faults, it is easy

to systematically read out and control the faults in a

model.

Continuous faults parameterize the strength of a

gradual effect. Typical examples are wear and aging

phenomena which can lead to a gradually different value

of a backlash parameter, or friction coefficient, etc. In the

continuous record fault this gradual change is translated

into a normalized variable named intensity, ranging

between zero (nominal) and one (maximal effect). If the

fault modifies a parameter or variable, the extended

continuous record FaultWithFunction can be used, which

allows for the definition of the functional dependency of

parameter change, e.g. multiplicative

𝑝 = 𝑝0(1 + 𝑐0(𝑠𝑐𝑎𝑙𝑒 ∙ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)𝑛) (1)

or exponential

𝑝 = 𝑝0𝑒𝑐0(𝑠𝑐𝑎𝑙𝑒 ∙ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)𝑛
 (2)

Herein,

𝑝0 represents the nominal parameter value, 𝑐0 , 𝑛

represent parameters of the function. The scale parameter

is needed to define a typical magnitude of the fault effect,

which depends on the specific application, e.g. the mass

of the surrounding components, acting forces, etc.

The discrete fault type can be only active or not, i.e. the

fault is switched on or off. Typical examples are abrupt

phenomena, such as failure of an electronic component, or

breaking of a mechanical connection. The discrete record

fault contains the Boolean active, which is false in the

nominal case, and true if the fault is active.

If the fault modifies a parameter or variable, the

extended discrete record FaultWithFunction can be used,

which allows for the definition of the functional

dependency of parameter change, e.g. proportional to the

nominal parameter value including setting the prefactor

𝑑0

𝑝 = 𝑝0 ∙ 𝑑0 ∙ 𝑠𝑐𝑎𝑙𝑒 (3)

or as an alternative value including setting the value 𝑝1

𝑝 = 𝑝1 ∙ 𝑠𝑐𝑎𝑙𝑒 (4)

2.2 Fault Classes

As shown in Figure 1 a model consists of components

potentially taken from different libraries connected

together. Fault modelling leads to changes in the behavior

of components (ComponentFaults), alters the transport of

quantities between components (ConnectorFaults) or

adds new connections (BridgeFaults). A snapshot of a

model which was augmented with ComponentFaults,

ConnectorFaults and BridgeFaults from the SRA library,

is shown in Figure 2. One of the resistors is replaced by

its fault-augmented counterpart. A ConnectorFault

modeling a short-to-ground has been added to the

connection between the inductor and the capacitor. The

connection between the two resistors has been cut by a

ConnectorFault modeling a loose contact. An additional

switchable connection (BridgeFault) models a short

circuit between two junctions in circuits of consuming

components.

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

DOI Proceedings of the 13th International Modelica Conference 453
10.3384/ecp19157451 March 4-6, 2019, Regensburg, Germany

Figure 2. A model of an electrical circuit in SimulationX

which has been augmented with faults.

ConnectorFaults can be inserted at (connected)

connectors or into existing connections. The first type has

two connectors, as shown at the bottom of Figure 2, and

can be used to model, for example, the loose contact or the

breaking of a mechanical component, or a mechanical

obstruction. The second type has only one connection (in

Figure 2, at the top), it is added to a connection, and can

be used to model, for example, a contact-to-ground fault

or a leakage in hydraulics. The models of these faults

consist of a fault and a set of equations which depend on

the intensity/active(-ity) of this fault, and, in general, on a

scale.

BridgeFaults are elements with two connectors as

shown in the middle of Figure 2. For each domain there

exists one BridgeFault. They can be inserted between

existing components, adding further connect-statements,

if the fault is active. BridgeFaults can be used to model,

for example, an interaction between two leaky hydraulic

circuits.

Fault-augmented models with parametric

ComponentFaults are fault-augmented counterparts to the

nominal SimulationX library elements. As an example,

Figure 2 shows a fault-augmented element named

ComponentFaults.Electricity.Analog.Basic.Resistor,

which is an extension of the

Electricity.Analog.Basic.Resistor. It contains a fault,

which changes the resistance parameter from its default

value 1, as defined by intensity, scale, and function in the

fault-record. The Fault triggering library models faults in

a similar way to those contained within ComponentFaults

(van der Linden, 2014).

2.3 The Fault Scale

When modeling with the connector or bridge faults, but

also during the development of the fault-augmented

counterparts of the library elements, the amplitude of the

strongest effect (intensity=1, or active=true) differs

depending on the surroundings of the system into which

the fault is inserted. For example, the frictional torque in

a rotational connection which prevents the latter from

moving is several orders of magnitude higher in a ship's

propeller than in a clockwork mechanism.

In the SRA library this phenomenon is captured with the

definition of a positive real parameter named scale which

can be included and defined in the definition of a fault if

needed. It should be emphasized that the meaning of the

scale differs between different faults. Furthermore, scales

of the same faults in a model can differ in different places

e.g. if the model contains both the ship's propeller and the

clockwork mechanism.

For a meaningful effect of the inserted faults, it is

crucial to find ways to estimate the scale for each fault. In

the optimal case, one can calculate the scale from the

amplitudes of variables in the surroundings of the fault as

recorded during a single simulation of the nominal

behavior. For example, the scale of the translational

sticking fault is a prefactor to the friction force 𝐹𝑠𝑡𝑖𝑐𝑘

added to the connection. The latter is defined as

𝐹𝑠𝑡𝑖𝑐𝑘 = 𝑠𝑐𝑎𝑙𝑒 for intensity 1.

The scale should be chosen to be high enough to ensure

that the connection stops moving when the fault intensity

is equal to one. On the other hand, it should be low enough

that one is not faced with numerical issues, because the

system is stiff or the solver has trouble integrating when

the fault is switched on during a simulation. In the optimal

case, the scale value should be set to ensure that the range

of the friction force over increasing intensity is such that

for low intensities it already has some (recognizable)

effect on the connection, but does not already prevent it

from motion at all (sensitivity to fault intensity).

Estimating the scale can be challenging even in the

seemingly simple case of the friction force described

above. To this end, several algorithms are currently under

investigation using base unit, force, energy or power

values.

2.4 Semi-Automatic Fault Augmentation

Augmenting a model of the nominal system with various

faults can be time-consuming and error-prone. Moreover,

when replacing the nominal type of a component by its

fault-augmented counterpart, one must ensure that the

parameters are kept or modified correctly.

To support the fault-augmentation process, a dedicated

user interface to SimulationX has been developed. The

tabbed interface guides the user through the whole

augmentation and analysis process in an intuitive way.

Once the augmentation is completed, faults of interest can

be selected for subsequent analysis. The augmentation and

analysis workflow can be summarized by the steps

described below.

Definition of the candidate: First of all, the user must

define the candidate components, i.e. all those

components and connections in the model, which are to be

fault-augmented. Additionally, it can be decided whether

to exclude or include a certain class of faults (connector or

component faults), or whether to insert faults only from

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

454 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157451

specific domains (mechanical, electrical, etc.) as shown in

Figure 3.

Figure 3. Selection of fault classes and domains supported

by the SRA Add-In.

Augmentation: The actual fault-augmentation can be

executed by clicking the “Start augmentation” button. The

process changes the model structure as shown in the right-

hand side of Figure 4. “Nominal” components are replaced

by their fault-augmented counterparts. In this example, a

fault with two pins (broken) is added for each connected

connector was added, and another fault with one pin

(sticking) was added for the whole connection.

Figure 4. SimulationX model before (left) and after (right)

the automatic fault augmentation for mechanical

components.

3 Driving Maneuvers Library for

Analysis of Vehicle Dynamics

A vehicle model for the fault effect simulation was built

using a new library for Driving Maneuvers in

SimulationX. The modular library contains various

chassis model elements, wheel and axle suspensions,

wheel elements with tire model, driver models, track and

environment components and complete vehicle models.

The library elements are parameterized and validated

using real experimental data (Tretsiak et al, 2018).

The library structure has an open, user-extensible,

object-oriented model architecture thanks to its

compatibility with the Modelica® modelling language.

The library structure, shown in Figure 5, includes

following subsections described in detail below:

• Environment, Drivers and Maneuvers

• Bodies and Wheels

• Suspensions and Axles with Suspensions

• Vehicles

The real-time capable curve-based vehicle models can

be used in combination with elements such as powertrains

or brakes from other libraries of SimulationX (Mechanics,

Power Transmission (1D/MBS)), and with their fault-

augmented counterparts from the SRA library.

Figure 5. Structure of Driving Maneuvers library in

SimulationX

3.1 Environment, Drivers and Maneuvers

The sub-library Driver contains the two-level driver

model with anticipatory (open-loop) and compensatory

(closed-loop) control for vehicle longitudinal and lateral

dynamics, considering a curvature difference, steering

angle difference and lateral displacement (Figure 6),

which is generally based on Donges’ model (Donges,

1978).

Driver models can be configured individually, with the

option of externally-defined speed and steering profiles.

The output signals are steering, load and brake demands

(steer, gas, brake). Maneuver element types allow setting

of preconfigured standard driving tests defined by

International Standard Organization, for instance:

• (Severe) Double Lane Change (ISO 3888-1, 1999;

ISO 3888-2, 2002)

• Steady-State Circular Driving (ISO 4138, 2012)

The driving track and designation of maneuver sections

are depicted in Figure 7. There is the possibility to set

customer-specific test tracks.

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

DOI Proceedings of the 13th International Modelica Conference 455
10.3384/ecp19157451 March 4-6, 2019, Regensburg, Germany

Figure 6. A two-level model of driver steering behavior

a

b

Figure 7. Maneuver tracks and designation of sections:

a – (Severe) Double Lane Change; b – Steady-State

Circular Driving

The model element Air Drag provides air drag forces

and torques in all directions and gives the possibility to

define corresponding air drag coefficients:

• Only Cw-coefficient

• All air drag coefficients (cx,cy, ...) scaled on the Cw-

value

• All air drag coefficients

- Air drag force coefficients

- Air drag torque coefficients

3.2 Bodies and Wheels

Vehicle bodies can be visualized by default shapes or

user-defined imported CAD geometry with corresponding

scaling in all directions.

By default, three car types are available for

visualization of a vehicle body:

• Compact car

• Station wagon

• Sport utility vehicle

A single CAD geometry is used for the representation,

with corresponding scaling coefficients for each vehicle

type. The car body model element can be used to

represent, for instance, a truck cabin or a bus saloon,

requiring only corresponding CAD data. The trailer body

component has the same functionality as the car body.

Figure 8 presents the 3D model visualization with the

above-described library elements.

Figure 8. Visualization of Car Body and Trailer Body model

elements

The tire is modelled according to Pacejka's MF 6.1

(Bakker et al, 1987) and is used in a single wheel element,

which includes a corresponding visualization body.

3.3 Suspensions and Axles with Suspensions

These parts contain predefined curve-based models of

wheel and axle suspensions with anti-roll bars.

Suspension kinematics are defined by zero-order

kinematics parameters (e.g. value) or wheel lift

trajectories (e.g. camber angle over vertical displacement

of a wheel center).

Different steering types are available:

• With constant or variable steering gear ratio

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

456 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157451

• With direct input of wheel rotation angles over a

steering wheel angle

Five degrees of freedom of one wheel are constrained in

the case of an independent suspension.

Figure 9 shows the model structure of a one-wheel

suspension and an axle with independent suspension and

steering.

a

b

Figure 9. Structures of suspension models:

a – one-wheel suspension; b – axle with independent

suspension and steering.

The rigid axles library allows the modelling of specific

axles with suspensions also for heavy-duty trucks and

buses:

• Rigid axle with conventional suspension

• Complete rigid axle

• Swing axle (without suspension)

A mirror function for parameterization of symmetric

suspensions facilitates this routine process.

3.4 Vehicles

The real-time capable curve-based vehicle models with

1D and MBS connectors are based on the following

library elements:

• Car body

• Axle with independent suspension

• Axle with independent suspension and steering

• Air drag and motion sensor

Up to six load masses for passengers and luggage can be

defined.

Engine and powertrain mount torques can be

considered, depending on the engine position
(longitudinal or transverse).

There is a signal connector for steering input and

different variants are available to set wheel parameters:

• 4 equal wheels

• 2 equal front wheels, 2 equal rear wheels

• Free definition (individual settings)

The corresponding diagram views of characteristic

curve-based vehicle models with 1D and MBS connectors

are presented in Figure 10.

a

b

Figure 10. Structures of curve-based vehicle models:

a – curve-based vehicle with 1D-connectors; b – curve-

based vehicle with MBS-connectors (without wheels).

4 Analyzing Faults

As well as structuring the modeling and insertion of faults,

it is also helpful to structure and systematize all output

quantities of the model that constitute related information

about fault effects. Moreover, the checking of

requirements fulfillment in the model-based applications

must consider not only pre-defined criteria, but also

scenarios executed for them. The additional libraries for

special signal analysis in SimulationX presented in this

section serve as helpers for this task.

4.1 Signal Feature Extraction

For model validation, the model output is compared to real

systems’ data. Such data is, in general, sampled, can

sometimes be averaged, noisy, or even in frequency-

domain representation. To prepare the model output in the

same way, one needs ways to extract features from the

variables.

To avoid dealing with (different) sampling rates and the

quality of time series, or to use single-valued data from

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

DOI Proceedings of the 13th International Modelica Conference 457
10.3384/ecp19157451 March 4-6, 2019, Regensburg, Germany

output time series, meaningful features must be extracted.

Furthermore, requirements fulfillment is categorized by

blocks returning a single value: successful, failed, or

undecided/not clear. The determination of these categories

(for more details see subsection 4.2) is based on

calculations of output variables, which are again features

of the latter.

The library for signal feature extraction contains helper

blocks that support feature extraction. Helper blocks

shown in Figure 11 are provided for extracting features

such as time interval between two pulses or two events and

band check. The list is extended based on the examples

studied. One important requirement is that all features are

insensitive to numerical side effects. For example, the

extraction of the time between two pulses should not pick

a "numerical" peak, the height of which is dependent on

tolerance or other numerical artefacts. The extraction of

the time between two mean values should be possible over

restricted time spans to avoid a dependency on the overall

simulation time (e.g. the average velocity of the vehicle

decreases to zero, because the model driving scenario

depicts an unnecessary amount of time span after the

vehicle has come to rest).

Figure 11. Time Interval bw. 2 pulses or 2 events and band

check elements

The additional sub-packages ChecksInFixedWindow,

ChecksInSlidingWindow, SignalAnalysis from (Otter et

al., 2015) - although motivated by a completely different

application - serve similar purposes.

4.2 Requirements Fulfillment Analysis

The sample vehicle model analyzed in the next section

addresses the question of the requirements fulfillment

when it is subject to faults. Stated differently: which fault

or combination of faults leads to the violation of pre-

defined criteria. An example of such a criterion, taken

from the drive train example, is: The vehicle shall be able

to brake from 100 km/h to stop in 7 Seconds. To assess

this in the model, output variables (velocity, time) are

read, features are extracted (velocity at 7 seconds after

start of braking) and tested against the criterion

“stopping”. The formalization of the last step is supported

by the elements modeled in the library Requirements

Fulfillment.

The basic definition of a criteria contains an array of

assertions as an input. In the example of the velocity test

this array has one entry: v(tStartBraking +7)[km/h]. If this
entry is lower than zero, the criterion is fulfilled, if not, it

is violated. If the array of the assertions contains more

than one entry, it has to be defined whether they are

connected by an AND (i.e. all must be fulfilled to fulfill

the whole criterion), an OR (i.e. only one must be

fulfilled), or NOT (i.e. all must be violated to fulfill the

whole criterion). Sometimes it does not make sense to test

a criterion at all - for example, if there was no ignition,

there is no startup time. To address this scenario, the

requirements fulfillment elements contain a second input

named validity indicator defined in a similar way as the

assertion - i.e. if this variable is positive, the validity is

given and the assertion can be tested, if not, the assertion

does not need to be tested. The integer output

requirements fulfillment is based on the validity indicator

and the assertions, and is restricted to three values, which

represent the categories as listed in Table 1.

Table 1. Categories of the output of the Requirements

Fulfillment elements based on the incoming validity and

insertion.

requirements

fulfillment
category conditions

1 fulfilled validity>0, assertion>0

0 violated validity>0, assertion<0

-1 undecided valididy<0

For convenience, the assertions are fed to an output

variable assertionsOut. The output requirements

fulfillment can only tell if the simulation fulfilled or

violated the criterion, but not how far it was from violating

or fulfilling it. To have a measure for this, the relevant

continuous variables should be analyzed. Sometimes it is

important to have information about how close to

violating/fulfilling the specification, e.g. since due to

noises/variations which are not in the model the outcome

might not be robust. Furthermore, it proves helpful to have

some information about whether an increasing fault

intensity influences an assertion. This information cannot

be obtained from the integer output.

Figure 12 contains elements of the Requirements
Fulfillment library. Currently, the connection of assertions

via AND, OR and NOT is possible, since any logical

expression can be brought into either of these forms

(disjunctive/conjunctive normal form, see e.g.

(Hazewinkel, 1994)). More flexible definitions of

Requirements Fulfillment components will be developed

as applications demand.

The Modelica_Requirements library presented in

(Otter et al., 2015) contains a similar 3-valued logic to

those presented here. Its motivation comes from a

connection between system simulation and the formal

definition of requirements. For the

Modelica_Requirements library an extension of the

Modelica language is proposed to handle the 3-valued

temporal logic (satisfied, violated, undecided). The

formalization of proving the logical expressions built up
from validity and assertions (as described above) could be

improved if the handling of the 3-valued logic becomes

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

458 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157451

part of the language standard. However, it is not necessary

in our case.

Figure 12. Checking requirement criteria – ALL, ONE or

No Requirements must be met.

5 Simulation and Analysis of Vehicle

Dynamics with Fault Effects

To demonstrate the application of the SRA library in

SimulationX for considering fault effects by the analysis

of vehicle dynamics, the model for a preconfigured

standard driving test double lane change is used. It is a

well-known test method which is generally used for

subjective evaluation of vehicle dynamics (ISO 3888-1,

1999). The driver can use a vehicle brake system passing

through maneuver track. Consequently, there is the

possibility to simulate fault effects in the brake system and

analyze its influence on a vehicle dynamics and road-

holding ability.

5.1 Fault-Augmented Vehicle Model

The vehicle model is built using the model elements of

Driving Maneuvers library, described in the section 3.

Figure 13 shows the corresponding diagram view of the

vehicle model augmented with fault elements from the

SRA library and is described below.

The model structure includes the maneuver element

described in the subsection 3.1, whose input signal is the

driven route of the vehicle with a transverse engine. The

simplified vehicle model includes the torque source for

front drive wheels, whose value is defined by a

corresponding curve, and the differential element. The

corresponding mount torque of the car with transverse

engine is also considered.

The output from the maneuver component is connected

to the driver element and provides the closed-loop driver

model with the information about the desired route

curvature and desired vehicle speed. The instantaneous

curvature and car speed for the driver model are received

from the fault-augmented vehicle element. The output

signals from the driver element are: steering wheel angle

demand and load and brake requirements. Wheel brakes

provide corresponding brake torques based on the brake

signal from the driver model element.

For the fault augmentation by the SRA Add-In

described in the section 2.4, the elements of the brake

system and the vehicle were selected as candidate

components, as shown in Figure 14. The brake system was

augmented with ConnectorFaults (sticking 1-4) to analyze

the following failures:

• Drop of a brake pad friction coefficient, reducing the

braking torque acting on a wheel. It can be caused by

uneven wear of brake pads or their surface

contamination with oil film, dirt, etc.

• Drop of an actuation force of brake drive, reducing the

braking torque acting on a wheel because of a drop of

a hydraulic pressure caused by pipe rupture or leakage

in a brake drive.

• Jamming the wheel brake, decreasing vehicle stability

and control because of brake lining wear or wear of

sealing ring of a wheel hydraulic cylinder.

Figure 13. Vehicle model with augmented connector, signal

and component faults

The vehicle component was replaced with its fault-
augmented counterpart (ComponentFault) to investigate

F

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

DOI Proceedings of the 13th International Modelica Conference 459
10.3384/ecp19157451 March 4-6, 2019, Regensburg, Germany

the friction change in the contact between wheel and road

because of:

• Change of wheel pressure

• Tire tread wear

Figure 14. Selection of model components supported by the

SRA Add-In.

The component accuracyLoss from the SRA-library

was placed in the model between the driver and vehicle

components to consider signal fault (control signal

distortion) and to investigate its influence on the vehicle’s

behavior during the standard driving test with steering and

braking failures.

5.2 Sample Analysis of Vehicle Dynamics with

Fault Effects

As was mentioned above, the double-lane change

maneuver is used for subjective determination of a vehicle

obstacle performance, which is a part of vehicle dynamics

and road-holding ability. If a vehicle is in the track frames

during the test, then it is assumed that it has a sufficient

obstacle performance and road-holding ability. The model

allows visual analysis based on a vehicle trajectory

through the maneuver track (Figure 15). However, this
kind of analysis inefficient for assessment of multitude

fault combinations and cannot provide sufficient

information for the post-processing.

Figure 15. Vehicle trajectories by successful (left) and

unsuccessful (right) passing through maneuver track

To systematically analyse fault effects in the brake

system, components from the helper library Signal

Feature Extraction were used as shown in the lower-part

of Figure 13. These components (displ_check and

slip_check in the model) check information about passing

of a vehicle through maneuver based on the displacement

of a vehicle in XY-plane and the longitudinal slip of

vehicle front right wheel (Figure 16).

Figure 16 shows the deviation of the selected output

values of the fault-augmented model from its nominal

behaviour (without fault) because of the activation of the

connector faults. The connector faults (components

sticking 1-3 in Figure 13) decreases the braking torque in

the right rear wheel (fault in RR) or front left wheel (fault

in FL) up to 50% or jam the front right wheel brake (fault

in FR).

Figure 16. Selected output values of the fault-augmented

model with different faults in the brake system

Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

460 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157451

The limits depicted in Figure 16 define the parameters

of the components displ_check and slip_check that serve

to automatically extract the important features for the

Requirements Fulfillment components (displ, slip and

general) in the vehicle model. In the “Post-processing”

tab of the SRA Add-In output quantities in these

components provide a means to analyse requirements

fulfillment under different faults. Figure 17 shows the

results of the fault effect analysis with different fault

intensities (between 0 and 1) and checked requirements

(successful – 1, unsuccessful - 0). The analysis results can

be saved in CSV format or uploaded to the further

investigation in the data analytics tool ESI MINESET

(Mineset).

Figure 17. Results of requirement fulfillment analysis for

different fault combinations.

Conclusion

In this publication, we introduced the System Reliability

Analysis library, which enables the user to model and

simulate physical systems outside their nominal behavior

in a systematic way. We motivated the utility of the

System Reliability Analysis library with a vehicle model

from the Driving Maneuvers library having different

failures.

Based on the model, the broad range of applicability of

the fault effect analysis in multi-physics domains was

outlined. Illustrative simulation results - based on the

given sample model - were presented and show the

possibility of systematic simulation of fault behavior by

analysis of vehicle dynamics using new System Reliability
Analysis and Driving Maneuvers libraries.

In addition, the motivation for and implementation of

helper libraries (Signal Feature Extraction, Requirements

Fulfillment) and tools (SRA Add-In) was described.

References

Edmund Donges. A two-level model of driver steering

behaviour. Human factors, 20(6), 1978, pp. 691-707.

E. Bakker, L. Nyborg, and H. B. Pacejka. Tyre Modelling for

Use in Vehicle Dynamics Studies. Society of Automotive

Engineers, January 1987.

P. Fritzson. Principles of object-oriented modeling and

simulation with Modelica 3.3: a cyber-physical approach,”

Nov 2014, Wiley-IEEE Press, ISBN: 978-1-118-85912-4.

J. Gundermann, A. Kolesnikov, M. Cameron, and T. Blochwitz.

The Fault library - A new Modelica library allows for the

systematic simulation of non-nominal system behavior.

Proceedings of the 2nd Japanese Modelica Conference,

Japan, Tokyo, May 17-18, 2018, Industrial Paper, pages 161-

168, 2018, doi: 10.3384/ecp18148161.

Michiel Hazewinkel. Encyclopaedia of Mathematics (set).

Encyclopaedia of Mathematics. Springer Netherlands, 1994.

ISBN 9781556080104. URL https://books.google.

de/books?id=uxUBQwAACAAJ.

International Organization for Standardization, 1999. ISO 3888-

1 Passenger cars — Test track for a severe lane-change

manoeuvre — Part 1: Double lane-change. Geneve: ISO.

International Organization for Standardization, 2002. ISO 3888-

2 Passenger cars — Test track for a severe lane-change

manoeuvre — Part 2: Obstacle avoidance. Geneve: ISO.

International Organization for Standardization, 2012. ISO 4138

Passenger cars - Steady-state circular driving behaviour -

Open-llop test methods. Geneve: ISO.

J. de Kleer, B. Janssen, D. G. Bobrow, T. Kurtoglu, et al. Fault

augmented modelica models. 24th International Workshop on

Priciples of Diagnosis, Jerusalem, Israel, pages 71-78, 2013.

A. Kolesnikov, M. Andreev, and A. Abel. The Fault-Augmented

Approach for the Systematic Simulation of Fault Behavior in

Multi-Domain Systems in Aerospace. SAE Technical Paper

2018-01-1917, 2018, doi: 10.4271/2018-01-1917.

F. L. J. van der Linden. General fault triggering architecture to

trigger model faults in modelica using a standardized

blockset. 10th International Modelica conference, number 96

in Linköping Electronic Conference Proceedings, LiU

Electronic Press, pages 427-436, 2014, URL

http://elib.dlr.de/90576/

R. Minhas, J. de Kleer, I. Matei, B. Saha, at al. Using fault

augmented modelica models for diagnostics. Proceedings of

the 10th International Modelica Conference, March 10-12;

2014; Lund; Sweden, number 96, Linköping University

Electronic Press; Linköpings universitet, pages 437-445,

2014.

Martin Otter, Nguyen Thuy, Daniel Bouskela, Lena Buffoni,

Hilding Elmqvist, Peter Fritzson, Alfredo Garro, Audrey

Jardin, Hans Olsson, Maxime Payelleville, et al. Formal

requirements modeling for simulation-based verification. In

Proceedings of the 11th International Modelica Conference,

Versailles, France, September 21-23, 2015, number 118,

pages 625–635. Linköping University Electronic Press, 2015.

Mineset: https://cloud.esi-group.com/analytics

B. Saha, T. Honda, I. Matei, E. Saund, at al. A model-based

approach for an optimal maintenance strategy. Second

European conference of the prognostics and health

management society, pages 521-531, 2014.

D. Tretsiak, T. Wiedemann, C. Bellanger, and F. Kocksch.

Modeling of vehicles with varying level of detail for system

simulation - Development of a modular chassis model kit

including a consistent parameterization process. Proc. of ESI

SimulationX Conference, Dresden, Germany, 2018.

DOI Proceedings of the 13th International Modelica Conference 461
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 4C: AEROSPACE
Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects
Shangguan, Duansen and Chen, Liping and Ding, Jianwan and Liu, Yuhui

A Modelica-based environment for the simulation of hybrid-electric propulsion systems
Arzberger, Max and Zimmer, Dirk

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries
Milz, Daniel and Weiser, Christian and van der Linden, Franciscus and Hellerer, Matthias and Seefried,
Andreas and Bellmann, Tobias

.

462 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

DOI Proceedings of the 13th International Modelica Conference 463
10.3384/ecp19157463 March 4-6, 2019, Regensburg, Germany

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System
with Special Focus on model architecting and multidisciplinary effects
Shangguan, Duansen and Chen, Liping and Ding, Jianwan and Liu, Yuhui

463

Modeling and Simulation of Dual Redundant Electro-Hydrostatic

Actuation System with Special Focus on Model Architecting and

Multidisciplinary Effects

Duansen Shangguan1 Liping Chen1 Jianwan Ding1 Yuhui Liu1
1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China,

{ahcq1990,chenlp,dingjw, yuhuiliu}@hust.edu.cn

Abstract
Electro-hydrostatic actuator (EHA) is a new trend in the

more electric aircraft related research works and

engineering applications. As a high-performance

mechatronics product, however, the physical effects of

actuator behavior are multidisciplinary, coupled and

strongly nonlinear. Although many commercialized

multi-domain and system-level simulation packages

exist, they are rarely considered and analyzed as a whole,

lacking of a unified model architecture, efficient

modeling forms, and comprehensive simulation

verification. In this paper, Modelica is used to build a

multi-domain virtual prototype of the dual redundant

electro-hydrostatic actuation system (DREHAS) that

consists of two EHAs in parallel, which supports multi-

view modeling and interdisciplinary application of the

system. Finally, a simulation application case of the

elevator actuation system is presented to demonstrate

the effective role of Modelica models in system

modeling and evaluation.

Keywords: more electric aircraft, dual redundant

electro-hydrostatic actuator, working mode, system

model, Modelica

1 Introduction

In the last decade, the power-by-wire (PBW) actuators

became sufficiently mature to be applied in the more

electric aircraft (Cao et al, 2012; Rosero et al, 2007). As

the carrier of PBW, the EHA a hydraulic actuator driven

by a dedicated pump, rather than a hydraulic network,

which drives the pump to control the actuating

components by adjusting the motor speed. Compared to

conventional hydraulic actuators, the EHA is a typical

mechatronic system with the advantages of high-power

density, low load and easy modularization, which

emphasizes the integration and synergy in specific

domains such as mechanics, electronics, controls and

hydraulics (Charles, 2017; Li, 2007). But the EHA also

presents more challenges in some aspects. One of the

non-negligible aspects is the physical effects of the EHA

behavior are multidisciplinary, coupled and strongly

nonlinear. For example, the causes of force-fighting

phenomenon inherent in the DREHAS are more

complicated, possibly due to voltage spikes, current

transients, pressure pulses, electromagnetic interference,

electromagnetic interference and mechanical losses.

Traditionally, the modeling and simulation methods

for the DREHAS mainly include the theoretical

modeling method based on transfer function and the co-

simulation method with commercialized multi-domain

simulation software. The former modeling method is to

simplify and linearize some models of the system

(Waheed, 2015). In this way, there is a certain gap

between the processed model and the actual system,

which cannot fully reflect some characteristics and

working conditions of the actual system. The latter

modeling method can make the model more detailed and

accurate, using a variety of commercialized multi-

domain and system-level simulation packages. For

example, the performance analysis in normal and failure

modes can be achieved by co-simulation based on

AMESim and Matlab (Ji et al, 2009). However, a single

discipline-oriented multi-program combination often

requires more effort to achieve the optimal results that a

unified model system can achieve, which can lead to

complexity in modeling and simulation. Moreover, the

establishment of the EHA multidisciplinary unified

system model is conducive to evaluating the design

scheme and improving the quality of further analysis

and decision making.

As is well known, Modelica implements a multi-

domain unified statement description of mechatronics

systems, integrating energy flow, mass flow and

information flow, based on the generalized Kirchhoff

law (Broenink, 1999; Fritzson, 2014). The core topic of

this paper is the presentation of the multi-domain

unified Modelica model for the DREHA. On the one

hand, it is possible to provide an appropriate method for

the close cooperation of different disciplines, and on the

other hand to achieve the rapid and accurate evaluation

of the system characteristics, especially the

phenomenon of competing forces, during the conceptual

and preliminary design phases.

The rest of the paper is structure as follows. The

following section covers the introduction to the structure

and characteristics of the DREHAS. Section 3 shows the

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

464 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157463

M

M
actuator
control

electronics

actuator
control

electronics

logic
controller of

dual-
reduandancy

pressure monitoring

FCM

channel 1

current
position

current

rotate
speed

pressure monitoring

1
2 3 4

power drive
electronics

Driver
Circuit

rotate
speed

current

motor control system

position

position

5

ch
an

n
el

 1

ch
an

n
el 2

Figure 1 Schematic of a redundant electro-hydrostatic actuation system for elevator

model development process of the DREHAS. Section 4

showcases the simulation results and discussions.

Finally, Section 5 gives the conclusions.

2 The principle of the DREHAS

The DREHAS involved in this study, as shown in Figure

1, is composed of the two identical EHA in parallel. The

controller receives the FCM instruction signals and

monitors all sensor signals in real time to realize the

redundancy management and control of the system.

Each EHA system is a position servo control, which

controls the pump output flow of the pump by adjusting

the motor speed to achieve a specific actuator output

displacement and speed.

In addition, the safety-critical functions such as flight

control used by the DREHAS must have a very low

failure rate, which requires that each channel must have

fail-safe devices to allow the remaining channels to

operate correctly. In the DREHAS, the safety response

to faults is easily achieved with hydraulic components

at low quality and low cost. Figure 1 shows the functions

implemented in the DREHAS, such as oil compensation

function (part ①), protection against outgassing or

cavitation (part ②), oil unloading function (part ③),

bypass and safety pressure setting function (part ④).

2.1 Main components

In this paper, the DREHAS for elevator actuation

system consists of the following components:

• controller, which performs the closed loop control

of the EHA.

• permanent magnet synchronous Motor (PMSM),

which drives the quantitative plunger pump to

control the pump output flow by controlling the

motor speed.

• plunger pump, which converts mechanical energy

into hydraulic energy that drives the actuator.

• aircraft control surface, where a change in the angle

of deflection causes a change in the hinge moment

on the operating surface.

2.2 Working modes

In general, the DREHAS has three kinds of working

modes: active/active (A/A) mode (both the EHAs are

actively controlled), and active/passive (A/ P) mode

(one EHA is actively controlled and one passive

following). In addition, the last working mode refers to

the fault damped (DP) mode for the two EHA failures.

When the EHA is in the damping mode, the solenoid

valve will break the connection between the actuator and

the pump, and the oil passage is connected at both ends

of the actuator. In this case, the actuation system is

equivalent to a damper.

2.3 Control structure

The DREHAS follows the requirements of the pilot or

autopilot to drive the elevator to deflect a specific angle

and overcome the uncertain interference of the external

aerodynamic load. The dual redundant logic controller

obtains the working state parameters of the two-channel

hydraulic cylinder according to the sensor detection. In

the modules of channel 1 and channel 2, the working

state of the system is judged: A/A mode, A/P mode, DP

mode.

The surface position setpoint and the working mode

from the dual redundancy logic controller are used as

inputs to the EHA. As shown in part ⑤ of Figure 1,

when the EHA is actively controlled, PMSM adopts a

linear control method involving a PID serial corrector.

A commonly used controller structure consists of a

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

DOI Proceedings of the 13th International Modelica Conference 465
10.3384/ecp19157463 March 4-6, 2019, Regensburg, Germany

cascade of three nested loops: a current (internal) loop,

a speed (middle) loop, and a position (external) loop. In

addition, current feedback, speed feedback, position

feedback, and output pressure of the actuator are used

for real-time monitoring and control of the EHA.

2.4 Force-fighting phenomenon and

multiple physical effects

In the active/active mode, the two EHAs that make up

the DREHAS work together to push the rudder surface.

However, the magnitude of the respective output forces

in the physical actual state may not be completely

uniform, and the rudder surface has a large rigidity,

which causes a force-fighting phenomenon between the

plurality of main actuators on the same rudder surface.

Brushless DC
Motor

Controller
+

 Inverter

Pump
+

Valve

Hydraulic
actuator

Flexible elevator rudder surface

MEA Electrical Network

DREHAS

Electrical
power

Mechanical
power

Electrical

power

Hydraulic

power

Figure 2 Energy transfer process among different

physical domains in the DREHAS

In the traditional hydraulic double-residual actuation

system, the force-fighting phenomenon is mainly caused

by the accumulation of manufacturing and installation

errors of sensors, actuators and rudder surfaces.

However, the energy transfer during the operation of the

DREHAS for the elevator is more complicated, as

shown in Figure 2, and its control precision is more

precise with 4 closed-loop controls. In this case, the

factors causing force-fighting phenomenon are

multidisciplinary, such as grid pollution, voltage spikes,

current transients, electromagnetic interference,

electromagnetic interference and mechanical losses.

2.5 Model structures for system modeling

and evaluation

In terms of model modeling and simulation systems,

choosing the right "good enough simulation model"

means choosing a model with the corresponding

granularity, which depends largely on the needs of the

current engineering task. In many cases, a very precise

system modeling is not a reasonable way to describe

complex mechatronics, because even the uncertainty

and cost of a relatively detailed model may be so high

that its disadvantages become unaffordable compared

to simpler modeling. So, the best model should be just

enough to answer design questions, but not a more

elaborate model.

This article focuses on issues related to system

modeling and evaluation of the DREHAS, such as

system function verification in different working modes,

analysis of multiple physical phenomena (motor torque

pulsation, current transients, pressure pulsation, rudder

flutter), analysis and optimization of force-fighting

phenomenon. This requires different granularity of the

model of the DREHAS components. The models

concerned mainly include: the motor and its controller,

the plunger pump and the flexible rudder surface.

Figure 3 Realistic DREHA model in MWorks

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

466 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157463

Figure 4 Five main submodels that make up the DREHAS in MWorks

3 Model implementation and Virtual

prototype

The previous sections introduced the highly nonlinear

DREHAS model architecture and multidisciplinary

effects. In this section, a virtual prototype of the

DREHAS for elevator control is established in the multi-

domain simulation environment MWorks. MWorks

provides management of models and integrative solvers,

where Modelica standard library version 3.2.1 and older

versions can be invoked (Chen et al, 2011).

Reusing existing models can greatly improve the

efficiency of modeling and enable designers to focus

more on design than on detailed model development or

derivation of mathematical formulas. In this paper,

based on the principle structure of Figure 1, the standard

library model is called as much as possible to achieve a

unified model that considers multidisciplinary effects.

In the light of the design requirements in the preliminary

design stage, the DREHAS model, Figure 3, is divided

into five main sub-models (Figure 4): the controller

model, the motor model, the plunger pump model and

flexible surface.

3.1 Controller model

The DREHAS is composed of two independently

controlled the EHA. The single-channel controller

model is shown in Figure 1, which uses a classic three-

closed loop control structure: the current (inner) loop,

the speed (middle) loop and the position (outer) loop.

As shown in Figure 4(a), all the control loops adopt

PID controller. The current loop is the innermost loop of

the control law, allowing the motor current to quickly

track a given current, thereby increasing system

stiffness. Fast dynamic response and good tracking

performance are required, but no static difference is

required. The rotating speed loop is the intermediate

loop of the control law, which makes the rotate speed

fast track the given rotating speed, thus improving the

dynamic performance of the system. The position loop

is the outermost loop of the control law structure, which

determines the dynamic and steady performance of the

EHA, to ensure the system has fast dynamic

performance and the steady state error is zero.

3.2 Motor model

The pump drive motor in the elevator actuation servo

control system is a 270V high voltage PMSM with a

rated power of 10KW and a maximum output speed of

10000r/min. The model SM_PermanentMagnet in the

Modelica standard library can be directly reused. The

model considers common loss effects: heat loss of

armature winding resistance ， brush losses in the

armature circuit, friction losses, core losses, eddy

current losses, and stray load losses.

The motor driver adopts three-phase full bridge

circuit to convert dc voltage into a specific PWM

waveform and drive the motor. In this paper, switching

dynamics of the inverter are not accounted, and an

average inverter is used.

Obviously, unlike traditional hydraulic servo

actuators, there are multi-domain coupling effects and

high-frequency loops in the EHA, such as motor torque

ripple, current transients and energy losses, all of which

are considered in the Modelica model shown in Figure

4(b).

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

DOI Proceedings of the 13th International Modelica Conference 467
10.3384/ecp19157463 March 4-6, 2019, Regensburg, Germany

3.3 Plunger pump model

Hydraulic component model can be implemented by

using the Hydraulic component Design (HCD) library

developed based on MWorks/Modelica. The HCD

library contains 1-dimensional hydraulic components,

such as pistons, spools, poppets, etc.

In this paper, the EHA uses a 5-cylinder quantitative

axial plunger pump as shown in Figure 4(c). Referring

to the basic structure, the plunger pump model is

developed by using the HCD library and the model in

the 1D Modelica.Mechanics.Translational library.

3.4 Flexible rudder surface model

KR1

KR2

a

b

c

T3,α3

x1

x2

T1,α1

T2,α2

T4,α4

Figure 5 An elastic "structural beam" for the rudder

surface

The rudder surface driven by the DREHAS cannot be

considered as a simple rigid body due to the presence of

two incompletely consistent driving forces. In the

preliminary design stage, finite element analysis is not

yet available. However, the rudder surface can be

equivalent to an elastic "structural beam", as shown in

Figure 5.

The relationship between the actuation displacements

x1, x2 of the two parallel EHAs and the corresponding

steering surface deflection angle β is as follows:

..

3 4

3
3 1

1 1 1

4
4 2

2 2 2

1 2

*cos()
*

/

*cos()
*

/

()

J T T

bc
T F T

a x F KR

bc
T F T

a x F KR

T KT

= +

= +
 + +

= − + +

= −

 (1)

Where T1 and T2 is the equivalent upper beam torque,

KL and BL are the equivalent lower beam stiffness and

damping, KL1 and KR2 are the stiffness of the two EHA

fixed joints, T3 and T4 are the hinge moments at the

rudder surface fulcrum, α3 and α4 are the deflection

angles at the fulcrum of the rudder surface.

It is obvious that the numerical solution of equation

(1) is highly nonlinear. Solution environment MWorks

provides the equation modeling language Modelica to

describe the above equations and implement automatic

analytical solution of the model. Moreover, mechanical

components in the standard library can be reused to

build an equivalent beam model of the rudder plane, as

shown in Figure 4 (d).

4 Simulation results and discussions

Table 1 Simulation parameters of the DREHAS model

Parameters Values

Motor supply voltage (V) 270

Maximum motor speed (r/min) 10000

Swashplate inclination (deg) 12.5

Armature winding resistance of motor (Ω) 0.245

Armature winding inductance (mH) 0.008

Motor-pump inertia (kg·m2) 0.001

Displacement of pump (cc/rev) 1.5

Gas pre-charge pressure (bar) 3

Accumulator volume (L) 0.5

Equivalent beam stiffness (N/m) 2.7e5

Equivalent beam damping (Nm/(rad/s)) 80

Stiffness at the outboard fixed joints

(N/m)
10e7

Stiffness at the inboard fixed joints (N/m) 8e7

In this section, based on the system model shown in

Figure 3, the system characteristics of the DREHAS two

main and fault operating modes (A/A mode, A/P mode，
and DP mode) are simulated and analyzed. In addition,

the force-fighting phenomenon caused by

multidisciplinary effects in the A/A mode is simulated.

The main parameters used in the following simulations

are listed in Table 1.
Moreover, at 0.5s, a 0.02m step signal is given to the

system as the input of displacement instruction. And at

2s, a loading of external pneumatic disturbance of 2000

N is applied to the flexible rudder surface.

4.1 Active/active mode

In the A/A mode, the EHAs are in active control, and

the two channels of the DREHAS work in parallel,

driving their respective actuators to drive the rudder

surface motion. The position control performance of the

two EHAs are shown in Figure 6(a) indicates that the

EHA almost reaches stability without overshoot at 1.5s,

and the steady state error is less than 1%. When

aerodynamic disturbance occurs, the steady state of the

system is broken and then stabilized again under the

action of the controller (consuming 0.4s). It can be seen

that the controller can quickly restore the original

position and has strong anti-interference ability. In

addition, the EHA is a complex mechatronic product

with multidisciplinary coupling. Different from the

traditional hydraulic actuator, the actuator pistons move

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

468 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157463

more rapidly, as shown in Figure 6(b). Part of the reason

is due to the mechanical inertia of the mechanical

system (traditional factors); the other part is due to the

high frequency response of the motor and the plunger

pump (multidisciplinary factors), as shown in Figure

6(c)&(d).

In the above simulation process, both EHA are in the

ideal condition, without considering the actual multiple

physical factors such as sensor error, electromagnetic

interference, voltage pulsation, mechanical loss, and so

on. In this case, there is no force fighting phenomenon

between the two channels of DREHAS. In order to

simulate the phenomenon of force fighting phenomenon,

the model needs to be modified accordingly, where it is

chosen to add a deviation at the motor drive current

input. There is a large deviation between the two EHAs

output forces, that is, there is the force fighting

phenomenon (Figure 6(f)). Due to the flexibility of the

rudder surface and the respective different driving

forces, there is a certain deviation (Figure 6(e)) in the

output displacement of the two EHAs.

4.2 Active/passive mode & fault mode

In the A/P mode, one channel of the EHA is actively

controlled and the other passively follows. For EHA in

passive mode, by-pass solenoid valve connects both

ends of the actuator and the chamber will be filled with

fluid under the pressure of the compensator. At this time,

when there is an external load on the rudder surface, the

hydraulic oil of the oil return system will flow between

the two cavities through the throttle valve to act as a

damping. Generally, the rudder surface can respond

quickly under a given load gradient. Figure 7 shows that

the system is stable within 0.8s, so the system

performance can meet the requirements.

Figure 6 DREHAS response in A/A mode

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

DOI Proceedings of the 13th International Modelica Conference 469
10.3384/ecp19157463 March 4-6, 2019, Regensburg, Germany

Figure 7 Deflection angle of the surface in A/P mode

Figure 8 Angular velocity of surface deflection in the

fault state

An important function of the DREHAS is to suppress

the surface flutter. In normal operating mode, any EHA

can use its own stiffness to suppress chatter. When the

two EHAs are in a fault state, the DREHAS is in the

damping mode and should be able to meet the

requirements for suppressing chatter vibration through

the damping circuit. Figure 8 shows the rudder surface

can be stabilized rapidly under the action of external

aerodynamic disturbance.

5 Conclusions

The DREHAS, a multidisciplinary coupled mechatronic

product for more electric aircraft, is confronted with the

multidisciplinary coupling problems in design. This

paper presents a multi-domain unified Modelica model

for multi-view modeling and interdisciplinary

application in the preliminary design phase. For the

multidisciplinary effects existing in DREHAS, a unified

modeling language Modelica is used to establish the

system model on the basis of reasonably planning the

model hierarchy, defining the model interface and

abstracting the model. The strong coupling and

nonlinear problems are weakened to the greatest extent,

which facilitates rapid simulation and verification

between systems. The example of a simulation

application in elevator actuation system has shown that

the Modelica model not only supports the characteristic

analysis of key components (motors, plunger pumps,

etc.) and the overall performance evaluation of the

system (system characteristics in three working modes),

but also provides a suitable method for the close

collaboration of experts or designers in different fields.

Acknowledgements

Thanks for the support of the members of the complex

system design team in Huazhong University of Science

& Technology CAD Center.

References

Jan F. Broenink. Object-oriented modeling with bond graphs

and Modelica. SIMULATION SERIES, 31: 163-168, 1999.

Liping Chen, Yan Zhao, Fanli Zhou, et al. Modeling and

Simulation of Gear Pumps based on Modelica/MWorks®.

The International Modelica Conference, Technical

Univeristy, Dresden, Germany. pp. 421-429, 2011.

Wenping Cao, Barrie Mecrow, Glynn Atkinson, et al.

Overview of Electric Motor Technologies Used for More

Electric Aircraft (MEA). IEEE transactions on industrial

electronics, 59(9): 3523-3531, 2012. DOI:

10.1109/TIE.2011.2165453

Peter Fritzson. Principles of object-oriented modeling and

simulation with Modelica 3.3: a cyber-physical

approach[M]. John Wiley & Sons, pp. 565-589, 2014.

Youzhe Ji, Song Peng, Li Geng, et al. Pressure loop control of

pump and valve combined EHA based on FFIM. In

Electronic Measurement & Instruments, 2009. ICEMI'09.

9th International Conference on. IEEE, pp. 3-578, 2009.

DOI: 10.1016/j.cja.2017.03.013.

Kai Li and Shaoping Wang. Multidisciplinary modeling

method and simulation for Electro-Hydrostatic Actuator.

Industrial Electronics and Applications (ICIEA), 2010 the

5th IEEE Conference on. IEEE, pp. 544-548, 2010. DOI:

10.1109/ICIEA.2010.5517088.

Jean-Charles Mare, Jian Fu. Review on signal-by-wire and

power-by-wire actuation for more electric aircraft. Chinese

Journal of Aeronautics, 30(3): 857-870, 2017.

J.A. Rosero, J.A. Ortega, E. Aldabas, et al. Moving towards a

more electric aircraft. IEEE Aerospace and Electronic

Systems Magazine, 22(3): 3-9, 2007. DOI:

10.1109/MAES.2007.340500

Ur Rehman Waheed, Shaoping Wang, Xingjian Wang, et al.

A position synchronization control for HA/EHA system. In

Fluid Power and Mechatronics (FPM), 2015 International

Conference on. IEEE, pp. 473-482, 2015.

Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on
model architecting and multidisciplinary effects

470 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157463

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

DOI Proceedings of the 13th International Modelica Conference 471
10.3384/ecp19157471 March 4-6, 2019, Regensburg, Germany

A Modelica-based environment for the simulation of hybrid-electric propulsion
systems
Arzberger, Max and Zimmer, Dirk

471

A Modelica-based environment for the simulation of hybrid-electric

propulsion systems

Max J. Arzberger Dirk Zimmer

Insitute of System Dynamics and Control,

DLR German Aerospace Center, Germany,
{max.arzberger, dirk.zimmer}@dlr.com

Abstract
In this paper, a framework for the modeling of hybrid

electric propulsion system architectures for aviation is

presented in form of a novel Modelica library. The

scope and requirements for an aviation power train

modelling framework are specified. The presentation

then follows the hierarchical modelling structure of the

library. Alongside, key modeling concepts are

presented. Finally, the integrated analysis capabilities

are highlighted and briefly demonstrated based on

classic hybrid power train architecture.

Keywords: hybrid-electric power trains, electric

flight

1 Introduction

In order to meet the challenging CO2 emission goals

defined for aviation in Flightpath 2050 (compare

European Commission, 2011), new disruptive aircraft

developments are required to accelerate the progression

of aviation technology. In addition to novel airframe

and engine technologies, hybrid electric aircraft

propulsions systems constitute a promising avenue for

future developments by extending the design space for

potential aircraft configurations (see Figure 1). This

extension includes for instance electrical energy

storages, or airframe integration concepts of the

propulsion systems like boundary layer ingestion and

distributed propulsion. Therefore similar to the

automotive sector, a research trend for hybrid electric

propulsion systems rose up in aviation over the last

years (Hepperle, 2012). Besides the numerous studies

published by NASA (SCEPTOR focusing on

distributed propulsion, STARC-ABL focusing on

boundary layer ingestion, SUGAR Volt), also leading

companies in Europe collaborate in studies on hybrid

electric aviation (compare Siemens Extra 330, Airbus

E-Fan X).

In the context of hybrid electric propulsion systems

in aviation, novel power train architecture topics

emerge along with the classic aircraft design

challenges. In turn, this enquires for a propulsion

system analysis tool providing a proper framework for

the analysis of the various power train architectures of

interest and trade studies amongst them.

Figure 1. Additional dimensions of the design space

availed by hybrid electric propulsion (Jansen, 2016).

1.1 State of the art Modelica libraries

The modeling of hybrid-electric powertrains is one of

the first and most prominent applications of Modelica

as the DLR Powertrain Library (Tobolář, 2007) for the

automotive sector documents since over 10 years.

For aviation, similar approaches have been

undertaken in the frame of individual projects. This

includes the modeling of more-electric architectures for

power and thermal management (Schlabe, 2012, 2015)

as well the modeling of unmanned high-altitude

platforms operating on solar energy (Klöckner, 2013).

Regarding electric propulsion of passenger aircraft,

first studies with Modelica were performed by

(Kastner, 2016) and dedicated frameworks are

currently built up as in (Batteh, 2018). Meanwhile a

number of research projects are dedicated to the topic

of electric propulsion and the library of this paper shall

be one of the needed building blocks for early design

and optimization.

1.2 Specification for a hybrid electric power

train modeling environment

The environment is meant to accompany the design

process thought the different design stages ranging

from basic concept studies to detailed architecture

analysis. Thus, one of the main challenges is to

pinpoint the required level of detail representing the

significant effects for the phenomenon under

investigation while neglecting insignificant second

order effects with minor contributions to alleviate the

computational effort. If the models are interchangeable,

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

472 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157471

Figure 2. Categorization of the potential power train architectures for hybrid electric propulsion systems in aeronautics

(National Academies of Sciences, Engineering, and Medicine, 2016).

the modelling complexity becomes selectable for

various investigation interests and can be set to aimed

for fidelity level accordingly. To meet these

requirements, the framework of library must be object

oriented to allow for interchangeable models of various

complexities and detailing.

In addition to the different levels of detail in the

modeling of components and subsystems, the

framework is required to accommodate a variety of

potential power train architectures (compare Figure 2).

Thus, the interface definition between the components

and subsystems becomes a matter of

interconnectability, and flexibility in the number of

power train subsystems. To enable such flexibility, the

modeling framework is obligated to confine the

modeling complexity in the subsystems relaxing the

computational effort for the simulation of the power

train and the equation system for the initialization. This

requirement calls again for an object oriented approach

which also supplies the user with a building set for the

diverse power train architectures.

In addition to the topology requirements, different

operation strategies can lead to components changing

their power flow direction during a flight simulation.

E.g. an electric motor assisting the main engines during

top of climb might be used as a generator to charge the

battery pack during cruise. Hence, the non-causal

approach from Modelica has an advantage over causal

modeling tools like Simulink.

The modelling as well as the conception of hybrid

electric aircraft is highly interdisciplinary due to the

strong coupling of the subsystems in an aircraft. This

apparent coupling inhibits limiting the benefit analysis

to the isolated power train since efficiency gains on the

power train level are not directly reflected onto the

aircraft level. Other effects as additional drag (e.g. for

changed/additional nacelles or cooling demand) and

additional weight of the power train might cancel the

drive train benefits partially or even surpass the benefit

inducing an overall disadvantage on system level.

Hence, the repercussion of the power train on the other

subsystems of the overall aircraft has to be taken into

account necessitating a holistic analysis of the hybrid

electrically propelled aircraft. To accommodate the

variety of domains and disciplines, Modelcia evidently

is a proper modelling environment.

Besides the modeling of the components and

subsystems, the coordination of the power flow

between components embodies a main challenge for

the environment framework. Furthermore for

consistency purposes, physical system constraints must

be taken into account and be avoided during system

simulation.

The library introduced in this paper solely focuses

on the modeling of the power train for hybrid electric

propulsion systems. To represent the strong

interdependencies between the subsystems, the library

is to be combined with another one modelling the

lumped aircraft without the drive train. Generally, it

covers all the power distribution and conversion

components present in a power train. At this point,

cooling of the losses is not included in the library even

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

DOI Proceedings of the 13th International Modelica Conference 473
10.3384/ecp19157471 March 4-6, 2019, Regensburg, Germany

though it constitutes a major challenge in hybrid

electric aircraft propulsion. However, the interfaces

have already been adapted for future use. Besides the

overall power train analysis, the library is intended to

also provide means of testing and analysis tools for

subsystems of the drive train which could be extended

to unit testing for the process of sizing or modeling.

During the implementation of the environment in

Modelica, issues like the combined initialization of the

power train and the aircraft, confining the model

complexity in subsystems and defining a common

framework for various power train topologies have to

be addressed.

2 Organization of the modeling of the

hybrid electric power train

In the following, the hierarchical organization of the

power train models is presented and the concepts as

well as the interfaces for linking the subsystems and

portraying the framework for the model interaction are

introduced.

2.1 Hierarchical structure of the power train

models

The power train models are subdivided into three

hierarchy layers: One layer for the overall power train

level, one layer for the subsystems and one layer for

the components of the respective subsystems of the

propulsion units subsequently referred to as power

train participants. For the combination of the overall

power train model with a lumped aircraft model, an

additional top level hierarchy is called for. The layer

incorporating this level contains in addition to the

hybrid electric power train a flight mission, a reference

aircraft as well as the respective autopilot flying the

desired mission (see Figure 3).

2.2 The power train level model

To handle the complexity and to ease the orientation of

the user, the power train is subdivided into main power

train participants (hybrid electric turbofans, electric

fans, battery packs, turbofans, turbine propelled

generators), a component representing the central DC

backbone modeling the grid condition, an interface

component for the aircraft power train interface, a

central management unit for thrust and power

distribution control, and collectors for the thrust and

fuel flow (see Figure 4). Besides the physical

interconnection of the power train participants via the

DC backbone bus transferring the electric power

between the components, a second bus is established.

This central power train bus handles all power train

internal communication and also forwards the aircraft

information to the subsystems.

Figure 3. Top level layer for the combination of the

power train library with an external lumped aircraft

modelling library.

To guide the user through power train models, a

graphical template depicting an aircraft sketch is used.

The power train participants can be put to their

respective position leading to a direct understanding of

the basic power train architecture and the interaction

between the subsystems. It also serves the system

engineer as a standardized representation of the power

train.

Figure 4. Power train architecture level for an exemplary

partial turbo electric power train configuration.

Performance evaluation
Baseline Aircraft

INIT

C

C

Performance evaluation

Flight

mission

Autopilot Aircraft

model
Power train
model

P

Management

unit

Aircraft

power train

interface

Collectors

Power train

participants

DC backbone

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

474 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157471

2.3 Aircraft power train interface

The purpose of this component is to define the

interface between the aircraft model and the power

train model. While the aircraft receives information on

the thrust provided by the power train and its fuel

consumption, the power train is supplied with

atmosphere and flight state information like the

velocity and the Mach number the aircraft operates at.

The exchanged information is displayed in Table 1.

Further to ease the compatibility between power train

and aircraft model, the naming conventions of the

respective libraries can be mapped in this component.

Table 1. Information flow in the aircraft bus

Information flow from
the aircraft to the

power train

Information flow from the
power train to the

aircraft

Thrust scheduled by the

autopilot

Thrust provided by the

power train

Aircraft state: Mach

number, true air speed

Fuel flow leading to a

variation of the aircraft

weight

Atmosphere data: air

density, ambient tem-

perature (or condensed

in altitude information

based on the ISA

standard atmosphere)

Excess thrust demand

surplus to the maximum

available thrust of the

power train (as feedback

information for the

autopilot)

Secondly, this interface component can be used to

decouple the initialization of the power train and the

aircraft model. A simultaneous steady-state

initialization of both aircraft and power train model can

be numerically challenging for various flight

conditions due to the occurring non-linearities and

constitutes one of the major challenges in modeling of

hybrid electric powertrains.

In more concrete terms: for initializing the aircraft in

a specific flight state within its envelope, only the

altitude and path angles and the flight velocity/ the

attitude are predefined. Hence, the thrust demand is an

iteration variable of the aircraft initialization and not

specified by the user. The power train is in turn to be

initialized for a specific thrust demand and needs to

handle numerous interpolations as well as nonlinear

equations. Thus, the combined initialization of an

aircraft in a quasi-steady state at an arbitrary start point

results in a complex equation system which can be of

poor condition. Hence, this added complexity resulting

from the power train model could impede the overall

initialization or possibly lead to degenerated solutions.

To ease the initialization, the powertrain and aircraft

model can be decoupled at initialization and a

subsequent blending process makes the power train and

the aircraft model converge to a meaningful common

set-point.

2.4 Central power train bus

The central control bus is depicted by the yellow line

in Figure 4. This bus broadcasts the atmosphere data as

well as flight state data relevant for fans, engine cores

and turbofans obtained at the aircraft power train

interface, the control signals provided by the central

management unit, measured signals required for the

management of the power train and the information to

be send back to be aircraft model (e.g. fuel mass flow,

thrust provided by the power train).

To cope with a variable number of powertrain

components, the control and measurement signals are

implemented as arrays of variable size. To prevent

overlapping of signals in these arrays, a numbering of

the components is introduced serving as ID. Its

consistency is currently to be granted by the modeler.

In future, the UID library may be used instead

(Hellerer, 2017). The power train components set and

get the information in the respective array position

defined by their numbering. The bus is expandable to

allow the user to dynamically adapt it to the signals

required in the topology or at the aimed for fidelity

level, respectively.

2.5 DC-Backbone

The majority of the promising architectures for hybrid

electric aircraft propulsion rely on a high voltage DC-

backbone (kV region) for the distribution of electric

energy in the system. In the example of Figure 4, the

DC-Backbone is depicted as blue electric connection

between the main components. As found in literature

(Shuai et al, 2018; Chen, 2012), the basic dynamics of

a DC backbone can be modeled by a capacitance

relating the difference between feed currents and

currents drawn from the grid to a change in the grid

voltage. In a physical system, the grid capacitance

represents the electric inertia of the cabling and also

accumulates contributions from the input/output filter

capacitances of the power converts connecting the

power train participants to the DC backbone (if not

modeled separately). Hence, the change in the grid

voltage contains direct information on power

distribution imbalances which consequently can be

exploited for the management of the power train. To

make this information available for the power

management unit, it is broadcasted in the central power

train bus.

The different actors on the backbone are similar to

participants in a micro grid system. In a micro grid the

behavior of the participants is organized in multiple

levels (Shuai et al, 2018). This basic concept is adapted

here. In our library two levels are defined: A primitive

voltage-level based behavior serving as hard constraint

and a top-level coordination logic trying to enforce the

desired power flow by a certain management strategy

on the components with subject to the lower level

voltage based constrains.

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

DOI Proceedings of the 13th International Modelica Conference 475
10.3384/ecp19157471 March 4-6, 2019, Regensburg, Germany

In the library, the primitive level does not solely

monitor the grid voltage but also the power train

participants. Considering that electric machines are

relating the rotational speed of the shaft to a certain

back EMF voltage, also limitation for the shaft speeds

can be implemented on voltage level basis. Moreover,

the battery pack voltage can serve as measure for the

remaining capacitance and utilized for the

consideration of the capacitance limit. Hence, the

primitive level assures system protection and

robustness in off-design regions potentially caused by

improper sizing of the power train and failure cases.

The main power management is realized by a central

control logic and sets the current flow between the

different power train participants and the DC-backbone

as well as the thrust split amount the propulsion units.

The sources feeding current to the backbone try to

stabilize the voltage while the loads try to achieve

defined subsystem set points (e.g. fixing a fan shaft

speed according to a desired thrust setting by feeding

current into an electric machine) by drawing current

from the backbone. Hence, the power exchange with

the grid is realized on current level. The low level

constraint enforcement is implemented locally in the

respective power train components as dynamic

saturation for these current signals and linearly down

scales the maximum allowable current in vicinity of the

voltage bounds.

At this stage, all sub-systems are connected to the

DC-backbone via power converters acting according to

the two coordination levels and serving as main drivers

for the power distribution.

2.6 Central power management model

This component contains the system level logic (top

level management) for operating the power train. The

control signals calculated within this component are

normalized such that all controller outputs range in-

between the interval of -1 to 1 for bi-directional

components (that may act as both source and load) and

0 to -1/1 for unidirectional components (that may act

exclusively as source or load). In the power train

participants, this signal is scaled by the maximum

power capability of the respective power converter or

component. Hence, a value of -1 represents a

maximum power to be drawn from the grid while a

value of 1 represents a maximum power to be provided

by the component. The main power flow direction for

the electric systems is hence defined to be towards the

grid. For instance, in case of the engine cores, the

power flow is unidirectional and ranges from 0 to 1.

The normalization of the control signals simplifies the

reusability of the respective central management units

since proper scaling is not performed centrally in the

management logic and becomes sizing independent.

All control and measurement signals are broadcasted in

the central power train bus (see section 2.4).

Because of the non-linearity in many power train

participants, a direct stipulation of the set point by

means of algebraic equations may lead to difficult to

solve non-linear equation systems. Hence, the

implementation of the central power management

follows a rapid-prototyping control approach which

converges the subsystems to defined set points. This

approach allows for confining the nonlinearities in the

components and enables the robust modeling and

simulation of a variety of different architectures via

control states. The goal is hence not to implement a

realistic controller but rather the power management is

seen as an enabler to simulate the complete system at

the desired set-point. Because of the rapid-prototyping

approach, simple PI controllers with anti-windup are

used. The anti-windup is modified to also consider

external saturations and limitations in form of the

primitive level of the grid management (introduced in

section 2.5).

Also on the level of the power train components, a

local control logic may be additionally implemented.

The nominal value for the local control variables is

again managed centrally in the main management unit.

Examples for such a local logic are all forms of

turbofans. Since these can provide a set thrust

autonomously (subjected to the engine core

constraints), a local control is preferable.

However, the engine cores of hybrid electric

turbofans can be assisted by an electric machine during

critical operation conditions otherwise dominating the

sizing. Moreover, they can provide power to the grid if

excess power of the engine core is accessible. Hence a

central control for the electrical support provides more

flexibility.

2.7 Power train component models and their

interfaces

The different power train components considered at

this stage are (geared) turbofans, (geared) hybrid

electric turbofans, electric fans and battery packs.

These power train subsystems are the main building

blocks for hybrid electric propulsion systems in

aviation. Similar to the power train model, a template

for organizing these subsystems is provided (as

illustrated in Figure 5). The subsystems themselves are

built with the aid of component modules allowing for a

quick adaption of the fidelity level.

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

476 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157471

Figure 5. Power train architecture level for an exemplary

partial turbo electric power train configuration.

For the junction between fans, engine cores and

electric machines, the connector from the rotatory

mechanics standard library is chosen since it provides a

shaft speed and torque interface. This information is in

turn required to calculate the efficiency and the back

EMF of the electric machine. Furthermore, the

interface is capable of portraying the shaft speed and

torque characteristics of fans for different ambient

conditions, flight speeds and thrust outputs.

For an electric fan and a hybrid electric turbofan, the

sizing torque and the nominal speed of the electric

machine are dependent of the operation strategy and

the characteristics of the turbomachinery. Thus, this

approach also allows for checking the sizing of the

electric machine and for analysis of the operation

points it is subjected to.

The electric interface is based on the DC interface

provided by the standard library. AC subsystems are

modeled via DC surrogate models in the dq0 frame.

3 Analysis framework

In correspondence to the hierarchy levels, three levels

of analysis are designated in the current state of the

library: A component level investigation frame to

provide means of performing subsystem and

component test in static steady state condition (static

environment), a quasi-steady state frame in which the

subsystems and components can be subjected to the

demands and environment conditions of a classic flight

mission (indirect aircraft environment), and a

combined simulation of the lumped aircraft and the

overall power train (aircraft environment). For the

latter a second library contributing a lumped aircraft

model, a flight mission, and an autopilot model is

required. By default a library based on the Base of

Aircraft Data 3.7 standard (BADA) (for details see

(Eurocontrol Experimental Centre, 2009)) is availed as

default. This library encompasses three degrees of

freedom aircraft models, a standard mission and an

autopilot. The BADA standard also contains

information on the classic propulsion system for the

included aircraft. Therefore, it can also serve as

reference configuration for classical propulsion

systems. As aforementioned, the combined simulation

of the lumped aircraft and the power train is the level

of analysis providing meaningful flight performance

results for hybrid electric aircraft. The other two levels

of analysis can be utilized as intermediate analysis for

building up architectures from the scratch and to

preliminary tune their parameters if no external sizing

tool is accessible. Furthermore, these steps can be used

as check for external sizing results. However, the

quasi-steady state simulation can also be instrumented

for simply assessing the influences on power train

level. A summary of the capabilities for the 3 levels is

given in Table 2.

Table 2. Capabilities of the different test levels.

Testing

Capabilities

static
environ-

ment

indirect
aircraft
environ-

ment

aircraft
environ-

ment

For the thrust in

critical design

points on sub-

system level

X - -

For the thrust in

critical design

points on power

train level

X - -

for quasi-steady

state simulations
- X X

For hand tuning

the sizing of

components in a

subsystem

X X -

For analysis of

the power train

level benefit

- X -

For analysis of

the aircraft level

benefit

- - X

4 Exemplary a power train analysis

4.1 Description of the power train

architecture

For demonstration purposes, a parallel hybrid with two

main hybrid electric turbofans (see Figure 6) is

analyzed with the presented Modelica library. In the

selected analysis scenario, the engine cores of the

hybrid electric turbofans are undersized and are backed

up by electric machines. The power for the electric

Local Control

1 1

1

Conventional Part

Electrical Part

I+
A

G

K

PI

Power converter Fan Locally

imple-

mented

control Gearbox

Electric
machine

Engine core

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

DOI Proceedings of the 13th International Modelica Conference 477
10.3384/ecp19157471 March 4-6, 2019, Regensburg, Germany

machines is supplied to the DC-backbone by a battery

pack. The power train is operated such that the electric

motors buffer the power demand of the fans if the

engine cores approach the vicinity of their power limit.

To show the capability of a combined simulation of the

aircraft and the power train, an aircraft environment

type simulation is selected utilizing the default BADA

library. As aircraft data set, A320 is picked. The

mission profile is based on a typical medium distance

mission for an A320.

Figure 6. parallel hybrid with two main hybrid electric

engines.

4.2 Analysis revealing main features of the

library

As depicted in Figure 7, during takeoff and in the

approach phase, the engine cores can provide all the

power required to propel the fans. Close to the final

cruise altitude (at ca. 5300 s), the electric machines

back up the engine cores to provide sufficient power

for fans.

Figure 7. Power provided to one fan by the respective

engine core (solid line) and maximum power of the

respective engine core (dashed line) normalized by the

maximum takeoff power [%].

The power consumed by the electric motors is

drawn from the grid by the respective power

converters. Consequential, the power converter

controlling the power flow of the battery pack tries to

fix the voltage set point for the backbone by feeding

power into the backbone. At ca. 6300s the power rating

of the battery pack inhibits the controller dominating

the battery pack behavior from stabilizing the

backbone (as apparent in Figure 8). Hence, the

backbone voltage drops (see Figure 9) until the vicinity

of the lower operation bound of the backbone is

reached. At this point the current rating for the motor

control is down scaled by the primitive level to

equilibrate the power rating of the battery pack and the

motors. As soon as the power rating becomes adequate

to balance the full load demand, normal grid operation

is restored (as illustrated in Figure 9 at ca. 7200 s). In

the meantime, the thrust demand of the autopilot

cannot be achieved due to a lack in power rating. For

normal mission operation, this issue does not arise for

a properly sized power train because the sizing is also

considering component faults.

Figure 8. Power supplied to the DC-backbone by the

battery pack normalized by the maximum output power

[%].

Figure 9. DC-backbone voltage normalized by the

nominal voltage [%].

The drop in its energy content of the battery caused

by the power feed to the grid is depicted in Figure 10.

It can be seen that a surplus of energy remains for the

selected mission.

0

50

100

0 5000 10000 15000

[s]

P_max/P_max_0 [%] P/P_max_0 [%]

0

50

100

0 5000 10000 15000

[s]

P_bat/P_bat_min [%]

97

98

99

100

101

0 5000 10000 15000

[s]

V_DC/V_DC_nominal [%]

P

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

478 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157471

Figure 10. state of charge of the battery pack[%].

5 Conclusion and future work

The current library can handle varying numbers of

power train participants and gives insight into the first

order interactions between the power train participants.

It can serve as analysis tool for pre-sized power trains.

Furthermore, the capability of a combined simulation

of an aircraft model and the power train over a whole

flight mission has been proven.

Currently, the thrust collector does not consider the

position of the different propulsion units. For extending

the library for simulation of system failures also the

torques created by off centered thrust must be

expressed by the power train model. Furthermore, a

coupling the library with a six degree of freedom

capable aircraft modeling environment like DLR Flight

Dynamics library (Klöckner 2014) will be undertaken.

The main missing part of the analysis is the

modeling and sizing of the cooling system for the

electric components since its additional weight and

power demand in form of electricity and drag has a

significant effect on aircraft level.

0

50

100

0 5000 10000 15000

[s]

SOC [%]

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

DOI Proceedings of the 13th International Modelica Conference 479
10.3384/ecp19157471 March 4-6, 2019, Regensburg, Germany

References

Eurocontrol Experimental Centre. User Manual for the Base

of Aircraft Data (BADA) Revision 3.7, 2009.

European Commission. Flightpath 2050: Europe’s Vision for

Aviation, 2011.

Ralph H. Jansen, Cheryl Bowman and Amy Jankovsky.

Sizing Power Components of an Electrically Driven

TailCone Thruster and a Range Extender. 16th AIAA

Aviation Technology, Integration, and Operations

Conference, 2016, doi: 10.2514/6.2016-3766.

Loan T. F. W. Silva, Lucas P. Resende and Marcelo A.

Tomim. Mathematical modeling and numerical simulation

of locomotives electrical drive systems in Modelica,

Brazilian Power Electronic Conference (COBEP), pp. 1-8,

2017.

Zhikang Shuai, Junbin Fang, Fenggen Ning, Z. John Shen.

Hierarchical structure and bus voltage control of DC

microgrid. Renewable and Sustainable Energy Reviews,

Volume 82, Part 3, pp. 3670-3682, 2018.

Dong Chen and Lie Xu. Autonomous DC Voltage Control of

a DC Microgrid With Multiple Slack Terminals. IEEE

Transactions on Power Systems, vol. 27, no. 4, pp. 1897-

1905, 2012.

National Academies of Sciences, Engineering, and Medicine.

Commercial Aircraft Propulsion and Energy Systems

Research: Reducing Global Carbon Emissions. The

National Academies Press, 2016, doi: 10.17226/23490.

Martin Hepperle. Electric Flight - Potential and Limitations.

NATO Science and Technology Organization, 2012, ULR:

https://elib.dlr.de/78726/, [retrieved 2018].

Matthias Hellerer and Fabian Buse (2017) Compile-time

dynamic and recursive data structures in Modelica. In:

Proceedings of the 8th International Workshop on Equation-

Based Object-Oriented Modeling Languages and Tools

(EOOLT), Munich, Germany.

Klöckner, Andreas, Looye, Gertjan et. al. (2014) Object-

Oriented Aircraft Modeling with the DLR FlightDynamics

Library. 9th AIRTEC 2014 International Congress, 28 – 30

Oct. 2014, Frankfurt, Germany.

Jakub Tobolář, Martin Otter and Tillman Bünte: Modelling of

Vehicle Powertrains with the Modelica In: Systemanalyse in

der Fahrzeugtechnik IV.

Klöckner, Andreas und Leitner, Martin und Schlabe, Daniel

und Looye, Gertjan (2013) Integrated Modelling of an

Unmanned High-Altitude Solar-Powered Aircraft for

Control Law Design Analysis. In: Advances in Aerospace

Guidance, Navigation and Control. EuroGNC 2013, 2nd

CEAS Specialist Conference on Guidance, Navigation &

Control, April 10-12, 2013, Delft, The Netherlands.

Schlabe, Daniel (2015) Modellbasierte Entwicklung von

Energiemanagement-Methoden für Flugzeug-

Energiesysteme. Dissertation, Technische Universität

Dresden.

Schlabe, Daniel und Zimmer, Dirk (2012) Model-Based

Energy Management Functions for Aircraft Electrical

Systems. SAE Power Systems Conference 2012, 30. Okt. -

01. Nov. 2012, Phoenix, USA.

Kastner, Nir (2016). Modelica environment of hybrid-

electric propulsion. Presentaiton on electric & hybrid

technology symposium. Cologne, Germany.

John Batteh et. al. (2018) Development and Implementation

of a Flexible Model Architecture for Hybrid-Electric

Aircraft In: the American Modelica Conference 2018.

A Modelica-based environment for the simulation of hybrid-electric propulsion systems

480 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157471

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

DOI Proceedings of the 13th International Modelica Conference 481
10.3384/ecp19157481 March 4-6, 2019, Regensburg, Germany

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR
Flight Visualization and Flight Instruments Libraries
Milz, Daniel and Weiser, Christian and van der Linden, Franciscus and Hellerer, Matthias and Seefried,
Andreas and Bellmann, Tobias

481

Advances in Flight Dynamics Modeling and Flight Control Design
by Using the DLR Flight Visualization and Flight Instruments

Libraries

Daniel Milz1 Christian Weiser1 Franciscus L.J. van der Linden1 Matthias Hellerer1 Andreas
Seefried1 Tobias Bellmann1

1Institute of System Dynamics and Control, German Aerospace Center (DLR), 82234 Weßling, Germany,
{daniel.milz, christian.weiser, matthias.hellerer, andreas.seefried,

tobias.bellmann}@dlr.de

Abstract
This paper presents the Flight Instruments and Flight Vi-
sualization Libraries developed within the DLR Institute
of System Dynamics and Control. For the design of dy-
namic models and control systems, a visual evaluation
of the dynamic simulation is indispensable for a success-
ful design and test process. Especially when it comes to
aircraft models, an overview of the overall dynamics is
needed. Therefore, the presented libraries provide fast as-
sembly of fully configurable and generic flight visualiza-
tion tools in which the view positions as well as the setup
of Primary Flight Displays can be chosen freely. This pro-
vides the visual components of a rapid prototyping envi-
ronment which can be used in the development of flight
dynamic models and flight control laws. Moreover, the
camera views and displays can easily be reconfigured for
each purpose and research focus area. Furthermore, the
libraries can be used for desktop simulation, motion simu-
lator experiments as well as flight testing on a real aircraft.
Keywords: Visualization, Flight Simulation, Flight Con-
trol

1 Introduction
Modelica has become an important language in the field of
flight dynamics modeling and flight control design (Looye
2008). Moreover, the possibility of rapid prototyping
within these fields has become a key technology within
the development of modern aircraft (Looye 2007a). In ad-
dition to the enhancement of this rapid prototyping pro-
cess for flight control laws (Looye 2007b), a visualization
framework has been developed and proven helpful in sup-
porting the design process in terms of configuration anal-
ysis, simulation and experiments.

In the field of engineering, particularly in the area of
complex model and control design, visualization of phys-
ical data is indispensable for an efficient and successful
proceeding. R.B. Haber already stated the importance of
visualization for engineering (Haber 1990).

Until now, there is no integrated solution available for
flight dynamics visualization in Modelica. Therefore,

based on the Modelica Visualization Library (Bellmann
2009; Hellerer et al. 2014), the Flight Visualization and
Flight Instruments Libraries have been developed. These
libraries open up the possibility of a completely accessi-
ble, in-house developed aircraft visualization and simula-
tion environment with the following main applications to
be used within a rapid prototyping process:

• Desktop Simulation. The visualization models and
displays can be fitted for analysis and demonstra-
tion video purposes to display relevant information
directly on the screen.

• Motion Simulator Experiments.

• Flight Testing. The created flight instrument and data
display views can be reused on mobile devices inside
real aircraft.

Section 2 introduces the Flight Visualization Library
and its components, such as the modeling of flexible struc-
tures. Following, Section 3 gives insight into the imple-
mentation of different data displays and shows exemplary
setup of a standard Primary Flight Display (PFD). In a
further step, Section 4 shows synergies generated through
combination of both libraries. Moreover, additional fea-
tures such as on-board three-dimensional virtual reality
views to be used with commercial virtual reality glasses
are introduced. As a conclusion of the presented work,
Section 5 contains examples for easy usability of the pre-
sented framework within the process of flight dynamic
modeling and flight control law development.

2 Aircraft Visualization
The DLR Flight Visualization Library is based on the DLR
Visualization Library (Bellmann 2009) adding high level
structures for a rapid design of flight visualization models.

Figure 1 depicts a visualization of a dynamic aircraft
simulation generated with the Flight Visualization Library.
In this example, a flexible aircraft structure is displayed
and the forces which cause the deflection of the wing are
depicted in different colors.

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

482 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157481

Figure 1. Example of a visualization created with the DLR Flight Visualization Library.

On the one hand, the DLR Flight Visualization Library
can be used for creating stand-alone models that com-
municate by various internet protocols, e.g. Transmis-
sion Control Protocol (TCP) and User Datagram Protocol
(UDP). Via these protocols, input data containing the cur-
rent flight state and additional information on the aircraft
status are received. Alternatively, a predefined trajectory
can be stored internally.

On the other hand, this library can directly be integrated
in various Modelica dynamic models that are e.g. mod-
els created by the DLR Flight Dynamics Library (Looye
2007a). The created models can be individualized in the
following points:

• Data sources. Data in- / output using TCP / IP and
UDP protocols receive data from the main flight dy-
namics and flight control law models.

• Terrain. Terrain files which are referenced to geode-
tic coordinates.

• Aircraft models. Aircraft models can be built up by
one single or an assembly of multiple components.

• Camera position. Different cameras can be placed
with options of switching / moving the view during
the simulation.

This brings up a generic framework to visualize all
known aircraft configurations as well as other vehicles that
have a structure similar to aircraft such as e.g. underwa-
ter vehicles. Figure 2 shows the top level of an aircraft
visualization.

Figure 2. Top Level view of an Aircraft Visualization Model.

2.1 Aircraft Model
The aircraft model contains all visible components of the
airframe structure, such as fuselage, engines, actuators.
For simple simulations, one CAD file with geometry and
texture is sufficient. However, the modeling of the air-
frame can be extended to more sophisticated setups, in
which each movable component is modeled as a separate
object. With this approach, control surface positions may
be displayed during the simulation and can be useful as
visual feedback of control action.

Flexible Models Furthermore, the results of load calcu-
lations for a flexible aircraft (Kier and Hofstee 2004) can
be integrated into the aircraft visualization. For the in-
tegration of this feature, the displacement of the structural
grid points obtained from the dynamic, flexible simulation
is mapped to the 3D object file (Heckmann et al. 2006).
One powerful method to calculate real-time deformations
of free-form surfaces is the use of poly-harmonic splines
defined via radial basis functions (Botsch and Kobbelt

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

DOI Proceedings of the 13th International Modelica Conference 483
10.3384/ecp19157481 March 4-6, 2019, Regensburg, Germany

2005).

Polyharmonic Splines A polyharmonic spline is a lin-
ear combination of radial basis functions (RBFs) denoted
by:

f (x) =
N

∑
i=1

wiφ(|x− ci|)+vT
[

1
x

]
(1)

where x ∈ R3 is the current vertex to be transformed,
ci ∈RN×3 denotes all center points, w∈RN represents the
weights of the RBFs and v ∈ R4×3 denotes the weights of
the polynomial. In this case, the RBF φ(x) is defined as
φ(x) = x3.

The function f (x) calculates the displacement of a point
on a flexible element. The absolute position is thus calcu-
lated as xdisplaced = x+ f (x). The center points are reference
points of which the deflection is known. This deflection is
transformed into the weights wi and inserted into the func-
tion.

Implementation During simulation time the calcula-
tion of the object displacements are GPU accelerated and
therefore sufficiently high frame rates and smooth move-
ment display are achieved. The GPU acceleration is im-
plemented by adding the polyharmonic spline calculation
for the vertices into the corresponding shader that iterates
over all vertices. This is an essential tool for visualizing
e.g. reactions to gust and turbulence and qualitative as-
sessment of load alleviation.

2.2 Environment/ Terrain
The terrain modeling supports texture files with varying
resolutions. The terrain files are mapped to geodetic lon-
gitudes and latitudes. The terrain is created using the
OpenSceneGraph (OSG) Virtual Planet Builder (Pordes
et al. 2007) by combining georeferenced digital elevation
models (DEM) data with texture data. The Virtual Planet
Builder then generates an OSG based terrain database with
several levels of detail (Hellerer et al. 2014).

For simulation of landing maneuvers and collision de-
tection, feedback from the visualization is fed back into
the dynamic model in order to achieve accurate visualiza-
tion results for touchdown and ground contact.

3 Cockpit Visualization
Besides a Modelica library for the external visualization of
aircraft, a library for internal visualization aiming at cock-
pit displays is available through the DLR Flight Instru-
ments Library. This library includes all established cock-
pit displays as head-up and head-down instruments and a
framework for the 3-dimensional realization of virtual re-
ality cockpits. This virtual reality framework is introduced
in Section 4.1.

The two-dimensional cockpit displays are suitable for
various applications including overall flight system test-
ing, design of flight control laws, additional displays for
real flight tests and many more. The main displays inside

an aircraft are the Primary Flight Display (PFD), the Nav-
igation Display (NAV) and the Electronic Centralized Air-
craft Monitoring (ECAM) or Engine Indication and Crew
Alerting System (EICAS). Those components consist of a
set of different generic elements such as linear bars and
dial gauges. In addition, aerospace related elements, e.g.
an artificial horizon display, are built up.

Moreover, there is an interface to external databases and
APIs included. Those may provide additional informa-
tion such as navigational aids and the current or simulated
weather.

3.1 General Components
The library does not only consist of high level and aircraft
specific display instruments but also of low level and gen-
eral use displays: A dial gauge and a linear bar instrument.

Dial Gauge The dial gauge is a standard instrument not
only in terms of aerospace. Within aerospace applications
it is mainly used in order to display engine data or infor-
mation related to the flight control system. Figure 3 vi-
sualizes different engine parameter gauges. In addition to
the marking of desired and critical domain regions for the
displayed value, a change of background color gives a vi-
sual alert in case of a value exceeding its limits. The limit
parameters can be adjusted quickly using a GUI based
Modelica editor in order to support rapid prototyping use
in experimental setups.

Figure 3. Screenshot of different dial gauges.

Linear Bar The linear bar represents an important in-
strument for modern and digital flight displays. Especially
digital PFDs use bar instruments for displaying airspeed
and altitude. The bar includes arrows for trend values and
color-based markings for validity of a signal region.

3.2 Primary Flight Display (PFD)
The primary flight display (PFD) is the most important
display in an aircraft. The main component of the PFD
itself is the artificial horizon that shows the flight attitude.
Modern digital PFDs show the current flight attitude, ve-
locity and altitude of the aircraft.

Artificial Horizon The artificial horizon shows the cur-
rent roll attitude Φ (Phi) and pitch attitude Θ (Theta). For
civil aircraft, the center of the artificial horizon is a dot
representing the aircraft’s nose. In general, an artificial
horizon consists of a blue area, the sky, and a brown area,
the earth. This is depicted in Figure 4. The Modelica im-
plementation of the sky surface is shown in the following
code snippet.

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

484 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157481

In the beginning the model and the used variables are

declared.

model ArtificialHorizon
// Roll and Pitch angle
input Real phi, theta;
// Points defining the horizon
Real horizon[2,2];
// Extra points to span the two areas
Real expt[3,2];
// Points spanning the sky surface
Real spt[6,2];
// Surface, DLR Visualization Library
Face sky(points=displaysize/2 * spt);

equation
// ...

end ArtificialHorizon;

This model only takes the roll and pitch angle as an in-
put and displays a simple artificial horizon that consists
of only one surface. The design of the artificial horizon
corresponds to current implementations where the visual-
ization completely fills a quadratic display. The two hori-
zon points are calculated as a transformation of the points
[-1,0; 1,0] around the center [0;0]. Subsequently,
the transformation of horizon and expt is stated.

if abs(horizon[1, 2]) <= 1 then
horizon[1,1] = -1;

else
horizon[1, 1] = minmax(interpolate({

horizon[1, 2],-1},{horizon[2, 2],
horizon[2, 1]},sign(horizon[1, 2]))
);

end if;

horizon[1, 2] = -tan(phi) -theta;

if abs(horizon[2, 2]) <= 1 then
horizon[2, 1] = 1;

else
horizon[2, 1] = minmax(interpolate({

horizon[1, 2],horizon[1, 1]},{
horizon[2, 2],1}, sign(horizon[2,
2])));

end if;

horizon[2, 2] = tan(phi) -theta;

expt[1, :] = {horizon[1,1],interpolate(
horizon[1, :],horizon[2, :], expt[1,
1])};

expt[2, :] = {horizon[2,1],interpolate(
horizon[1, :],horizon[2, :], expt[2,
1])};

expt[3, :] = {1,extrapolate(horizon[1, :],
horizon[2, :], expt[3, 1])};

The minmax command restricts the input value to an
interval [−1;1] ⊂ R. Furthermore, interpolate and
extrapolate take two points and a single x-value as an
input. The functions calculate the y-value corresponding
to the x-value on a line spanned by the two points. The
sky surface is spanned by six two-dimensional points.
Those are finally computed by the following equations:

spt[1,1] = if horizon[1, 2] >= 1 then
horizon[1, 1] else -1;

spt[1,2] = 1;
spt[2,1] = if horizon[2, 2] >= 1 then

horizon[2, 1] else 1;
spt[2,2] = 1;
spt[3,1] = if spt[3, 2] >= 1 then

extrapolate({horizon[1, 2],horizon[1,
1]},{horizon[2, 2],horizon[2, 1]},1)
elseif horizon[2, 2] >= 1 then horizon
[2, 1] else 1;

spt[3,2] = minmax(extrapolate(horizon[1,
:],horizon[2, :],1));

spt[4,1] = if spt[3, 2] <= -1 then
extrapolate({horizon[1,2],horizon
[1,1]},{horizon[2,2],horizon[2,1]},-1)
else expt[2, 1];

spt[4,2] = if spt[3, 2] <= -1 then minmax(
extrapolate(horizon[1,:],horizon
[2,:],1)) else minmax(expt[2, 2]);

spt[5,1] = expt[1, 1];
spt[5,2] = minmax(expt[1, 2]);
spt[6,1] = if horizon[1, 2] >= 1 then

horizon[1, 1] else -1;
spt[6,2] = minmax(horizon[1, 2]);

The earth surface can be implemented analogously to
the sky surface.

In Figure 4 it is shown that the current PFD setup can
easily be adapted to show additional information com-
pared to standard PFDs used in commercial aircraft. In
the scope of the different works on adaptive control (Lom-
baerts et al. 2016; Lombaerts et al. 2018) the PFD was
extended to display various flight envelopes. This is illus-
trated by the colored bars and areas within the display.

Figure 4. Primary Flight Display.

3.3 Navigation Display (NAV)
The navigation display shows a map of the surrounding
navigational aids. Those include airports, VORs and many
more. Furthermore, surrounding aircraft are displayed.
The data can either be predefined in the model or re-
trieved during run-time from a database by various APIs

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

DOI Proceedings of the 13th International Modelica Conference 485
10.3384/ecp19157481 March 4-6, 2019, Regensburg, Germany

Figure 5. Navigation Display. Current simulated position near
Bielefeld, Germany, while intercepting radial 255 of a radio nav-
igation aid.

provided. Inside the DLR, a SQL database containing
most of the worldwide navigational aids exists. From this
database, the navigational aids within a selected radius are
retrieved every second. These are stored in an array and
visualized by elements provided by the DLR Visualization
Library. More details on the implementation of a SQL in-
terface is given in Section 4.3. Figure 5 illustrates an ex-
emplary navigation display.

3.4 Additional Displays
In Figure 6, the ECAM or EICAS is an additional display
that visualizes engine data such as shaft speed and fuel
flow as well as the current health state of the aircraft and
messages from the flight control system (FCS).

Figure 6. ECAM or EICAS display.

4 Linking of the Libraries and Addi-
tional Features

After the introduction of the two developed libraries, their
linking through a common data interface is enforced in or-
der to achieve additional benefits within the aircraft mod-
eling and control design process. Besides, additional func-
tions and features relevant for both libraries are intro-
duced.

4.1 Virtual Reality Environment
A three-dimensional virtual reality cockpit perfectly fits
the use for realistic pilot training and flight tests. This
harmonizes with the DLR Robotic Motion Simulator de-
scribed in (Bellmann et al. 2011).

For motion simulation, the visual cues are of excep-
tional importance. Therefore, a head mounted display
(HMD) is used with a high detailed cockpit. The displays
can be used within this virtual environment and be placed
at the positions of the ’real’ displays.

The virtual reality environment can be used in a ground
based simulator as well as in combination with a motion
platform, as described in Section 5.

4.2 Interaction of external and internal visual-
ization

To add full compatibility of the two introduced libraries, a
standardized interface to communicate between the mod-
els using a bus system is created. This allows the use of
different predefined cockpits with individual instruments.
It is not necessary to connect every display input as Mod-
elica assumes a zero input on all unconnected bus inputs.
This is in particular helpful for fast testing of new flight
controllers as the user only needs to connect the needed
sensor signals, leaving additional displays input blank. If
required for further testing or for development of a demon-
stration model, the remaining sensor inputs can be con-
nected for a fully operational cockpit.

This standardized interface allows the development of
several cockpits and displays based on a single flight
model. This feature has already proven to be helpful in
flight tests, when the pilots shall receive a different flight
display than the flight test engineers (Linden et al. 2018;
Grondman et al. 2018).

To be able to use the flight instruments library with a
wide range of flight models, interface converters are part
of the library that convert signals from different inputs
such as UDP / TCP connections directly from a real time
flight computer or a Simulink model.

4.3 SQL Database Integration
In the scope of the introduced work, a generic SQL
database interface is developed. M. Tiller already intro-
duced a generic data retrieval Modelica library that is par-
ticularly designed for XML and MATLAB files (Tiller
2005). Although the use of SQL databases is promised,
this solution was not available when creating this library.

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

486 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157481

Furthermore, no satisfying Modelica SQL interface is
available to the point where the development of this li-
braries started. This motivated the creation of an own SQL
interface. The relational database API is implemented in
an object-oriented manner and within extenal C funcitons.
Based on the ExternalObject parent class to manage
the Modelica objects, a system of various different func-
tions to connect, disconnect and query databases is imple-
mented.

5 Application Examples
One major application for the previously introduced
framework is the DLR Robotic Motion Simulator (RMS)
(Bellmann et al. 2011). The simulator is depicted in Fig-
ure 7 and uses a robotic arm instead of a hexapod to simu-
late aircraft movement and accelerations. Inside the gon-
dola, the user is wearing virtual reality glasses which pro-
vide a first person view from the pilot’s seat including a
visualization of the cockpit. Here, the use of the VR tech-
nology has the big advantage that no view projection is
needed and the whole field of vision is covered.

Figure 7. The DLR Robotic Motion Simulator.

A further example is the use of primary flight displays
during real flight test. For this purpose, the same display
as used during the design process in the desktop and sim-
ulator evaluation can be used on tablet computer and with
an additional interface receive all relevant data which shall
be displayed from the flight test instrumentation. This
has been a major advantage during several flight test cam-
paigns on novel flight control laws (Grondman et al. 2018)
as well as current and force control for the actuation sys-
tem (Linden et al. 2018). For this purpose, additional
gauges displaying the actuator position and current are
added to the Modelica flight displays.

Figure 8 shows the use of the Modelica Flight In-

Figure 8. Cockpit instruments in use for flight testing on a
Cessna Citation aircraft.

struments Library on-board the test aircraft during flight
preparation. In the center of the picture a standard con-
sumer tablet running the model can be seen. This includes
a standard PFD in the top half of the picture and additional
instruments and graphs for experiment relevant informa-
tion in the bottom half.

6 Conclusions
This work introduced two libraries for visualization of dy-
namic aircraft simulations. The libraries are not only re-
stricted to use in aircraft simulation, but can also be used
for any dynamic vehicle simulation, e.g. underwater ve-
hicles. The first part covered is the simulation of a mov-
ing vehicle in an environment, which provides the user
with easy accessible visual information of the vehicle’s
attitude and moving direction. Secondly, instruments and
displays can efficiently be used to embed important infor-
mation into the visualization model or to generate a sepa-
rate display. Thus, the overall process chain from model
development, control design, simulation and testing is fur-
ther enhanced and simplified. Additionally, all steps of the
process chain are kept completely accessible for the engi-
neer and no "black box" visualization tools are required.
Both libraries are currently not distributed since develop-
ment and extension are still ongoing.

References
Bellmann, Tobias (2009). “Interactive Simulations and

advanced Visualization with Modelica”. In: Proceed-
ings of the 7 International Modelica Conference Como,
Italy. Linköping University Electronic Press. DOI: 10.
3384/ecp09430056.

Bellmann, Tobias, Johann Heindl, Matthias Hellerer,
Richard Kuchar, Karan Sharma, and Gerd Hirzinger
(2011). “The DLR Robot Motion Simulator Part I: De-

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

DOI Proceedings of the 13th International Modelica Conference 487
10.3384/ecp19157481 March 4-6, 2019, Regensburg, Germany

sign and setup”. In: IEEE International Conference on
Robotics and Automation. DOI: 10.1109/icra.
2011.5979913.

Botsch, Mario and Leif Kobbelt (2005). “Real-Time
Shape Editing using Radial Basis Functions”. In: Com-
puter Graphics Forum 24.3, pp. 611–621. DOI: 10.
1111/j.1467-8659.2005.00886.x.

Grondman, Fabian, Gertjan Looye, Richard O. Kuchar,
Q. Ping Chu, and Erik-Jan Van Kampen (2018). “De-
sign and Flight Testing of Incremental Nonlinear Dy-
namic Inversion-based Control Laws for a Passenger
Aircraft”. In: 2018 AIAA Guidance, Navigation, and
Control Conference. American Institute of Aeronautics
and Astronautics. DOI: 10.2514/6.2018-0385.

Haber, R.B. (1990). “Visualization techniques for engi-
neering mechanics”. In: Computing Systems in Engi-
neering 1.1, pp. 37–50. DOI: https://doi.org/
10.1016/0956-0521(90)90046-N.

Heckmann, Andreas, Martin Otter, Stefan Dietz, and José
Díaz López (2006). “The DLR FlexibleBody library to
model large motions of beams and of flexible bodies ex-
ported from finite element programs”. In: 5th Interna-
tional Modelica Conference, pp. 85–95. URL: https:
//elib.dlr.de/47219/.

Hellerer, Matthias, Tobias Bellmann, and Florian Schlegel
(2014). “The DLR Visualization Library - Recent de-
velopment and applications”. In: The 10th International
Modelica Conference 2014. Linköping Electronic Con-
ference Proceedings. LiU Electronic Press, pp. 899–
911. URL: https://elib.dlr.de/92153/.

Kier, T. and J. Hofstee (2004). “VARLOADS - Eine Simu-
lationsumgebung zur Lastenberechnung eines voll flex-
iblen, freifliegenden Flugzeugs”. In: Deutscher Luft-
und Raumfahrtkongress, Dresden, 20.-23. Septem-
ber 2004. Vol. I & II. LIDO-Berichtsjahr=2004,
monograph_id=DGLR-JT 2004-240, URL: https://
elib.dlr.de/12207/.

Linden, Franciscus L. J. van der, Gertjan Looye, and Ti-
jmen Pollack (2018). “Aircraft control using actuator
current”. In: International Conference on Recent Ad-
vances in Aerospace Actuation Systems and Compo-
nents 2018, pp. 196–202. URL: https://elib.
dlr.de/120314/.

Lombaerts, Thomas, Gertjan Looye, Andreas Seefried,
Miguel Neves, and Tobias Bellmann (2016). “Develop-
ment and Concept Demonstration of a Physics Based
Adaptive Flight Envelope Protection Algorithm”. In:
IFAC-PapersOnLine 49.5. 4th IFAC Conference on
Intelligent Control and Automation SciencesICONS
2016, pp. 248–253. DOI: 10.1016/j.ifacol.
2016.07.121.

Lombaerts, Thomas, Gertjan Looye, Andreas Seefried,
Miguel Neves, and Tobias Bellmann (2018). “Proof
of concept simulator demonstration of a physics based
self-preserving flight envelope protection algorithm”.
In: Engineering Applications of Artificial Intelligence

67, pp. 368–380. DOI: 10.1016/j.engappai.
2017.08.014.

Looye, Gertjan H. N. (2007a). “An Integrated Approach
to Aircraft Modelling and Flight Control Law Design”.
PhD thesis. Delft University of Technology.

Looye, Gertjan H. N. (2007b). “Rapid Prototyping Us-
ing Inversion-Based Control and Object-Oriented Mod-
elling”. In: Lecture Notes in Control and Informa-
tion Sciences. Springer Berlin Heidelberg, pp. 147–173.
DOI: 10.1007/978-3-540-73719-3_8.

Looye, Gertjan H. N. (2008). “The New DLR Flight Dy-
namics Library”. In: 6th Modelica Conference. URL:
https://elib.dlr.de/55670/.

Pordes, Ruth et al. (2007). “The open science grid”. In:
Journal of Physics: Conference Series 78.1, p. 012057.
URL: http://stacks.iop.org/1742-6596/
78/i=1/a=012057.

Tiller, M (2005). “Implementation of a generic data re-
trieval API for Modelica”. In: 4th Modelica conference.
URL: https://www.modelica.org/events/
Conference2005 / online _ proceedings /
Session7/Session7b2.pdf.

Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and
Flight Instruments Libraries

488 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157481

DOI Proceedings of the 13th International Modelica Conference 489
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 4D: NUMERICAL METHODS
DAE Solvers for Large-Scale Hybrid Models
Henningsson, Erik and Olsson, Hans and Vanfretti, Luigi

Adaptive Step Size Control for Hybrid CT Simulation without Rollback
Farkas, Rebeka and Bergmann, Gábor and Horváth, Ákos

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator
Schulze, Christian and Varchmin, Andreas and Tegethoff, Wilhelm

.

490 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 491
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

DAE Solvers for Large-Scale Hybrid Models
Henningsson, Erik and Olsson, Hans and Vanfretti, Luigi

491

DAE Solvers for Large-Scale Hybrid Models

Erik Henningsson1 Hans Olsson1 Luigi Vanfretti2

1Dassault Systèmes AB, Lund, Sweden, {Erik.Henningsson, Hans.Olsson}@3ds.com
2Rensselaer Polytechnic Institute, Troy, NY, USA, vanfrl@rpi.edu

Abstract
We present a strategy for DAE mode simulations of
large-scale Modelica models with state events. DAE
solvers can be orders of magnitudes faster than traditional
ODE solvers when simulating models with large algebraic
loops. Such loops are common in, for example, power
grid models. Central for our DAE mode approach is the
accurate and efficient treatment of state events. Adapting,
extending, and optimizing results known in the literature
to the Modelica context resulted in a DAE mode imple-
mentation first released in Dymola 2019 and 3DEXPE-
RIENCE 2019x. The implementation is verified by effi-
ciency experiments featuring OpenIPSL power grid mod-
els. The run times for these models are competitive with
domain-specific, state-of-the-art simulation tools.
Keywords: DAE mode, hybrid model, state event, large-
scale, Modelica, power grid model

1 Introduction
As a high-level, equation based, and object-oriented lan-
guage Modelica promotes easy construction, modifica-
tion and reuse of models. It is therefore well suited for
modeling large-scale, integrated physical systems, see e.g.
(Baudette et al., 2018; Casella et al., 2016; Jorissen et al.,
2015).

With the increased presence of such large-scale models,
higher demands are put on Modelica tools to facilitate fast
simulations. To meet those demands, special model struc-
tures are typically analyzed and exploited (Casella, 2015).
Examples of strategies that have been successfully real-
ized in Modelica tools, such as Dymola and the 3DEXPE-
RIENCE platform, involve: multirate simulation (Thiele
et al., 2014), mixed-mode simulation (Schiela and Olsson,
2000; Thiele et al., 2014), model decoupling and paral-
lel execution (Elmqvist et al., 2014), and sparse solvers
(Braun et al., 2017).

In this paper we will consider the strategy referred to
as DAE solver or DAE mode. The name comes from the
mathematical representations of Modelica models: hybrid
differential-algebraic equations (DAEs). When generat-
ing simulation code a Modelica tool performs a series of
symbolic transformations involving common subexpres-
sion elimination, equation sorting, index reduction, and
tearing (Cellier and Kofman, 2006). During this process
the high-index DAE is transformed into an index-1 DAE,
and then, by solving systems of equations, it is normally

transformed into an ordinary differential equation (ODE).
The latter can be integrated by an ODE solver like CVode
(Hindmarsh et al., 2005). For most models the transforma-
tions make the numerics simpler and result in more robust
and efficient simulations.

However, some numerical integrators, such as Dassl
(Brenan et al., 1996), also allows integration of the index-1
DAE directly. For certain models, such DAE mode sim-
ulations can be orders of magnitude faster, among other
things, due to more efficient treatment of algebraic loops.
Significant speed-ups have, for example, been observed
when simulating national- and continental-sized models
of electrical power systems (Braun et al., 2017). Rosen-
brock DAE integrators were used by (Olsson et al., 2017)
to achieve fast and predictable run times for model-based
embedded control.

The goal of this paper is to present a strategy for ro-
bust, accurate, and efficient simulation of hybrid DAEs
using DAE integrators like Dassl. Because integration of
the index-1 DAE is well-understood, the main focus will
be on how to accurately and efficiently localize and treat
state events. To achieve this, we will argue for an approach
where the same generated code is used in DAE mode as in
ODE mode. By using all the symbolic transformations
and optimizations, the DAE fed to the integrators is kept
to a minimal size. The trade-off here being some loss of
sparsity (Braun et al., 2017; Magnusson, 2016). As an out-
look we will also discuss further benefits and possibilities
enabled by this approach.

Based on this strategy, DAE mode for hybrid DAEs was
introduced in Dymola 2019 (released in June 2018) and
3DEXPERIENCE 2019x for a diverse selection of numer-
ical integrators. The efficiency and accuracy of the imple-
mentation is verified by simulations of the Nordic power
grid model Nordic 44 from the OpenIPSL library (Van-
fretti et al., 2017).

2 DAE mode for hybrid systems
2.1 Mathematical formulation
Mathematically, Modelica models are represented by hy-
brid DAEs. That is, differential-algebraic equations that
may have discontinuities and/or may be controlled by dis-
crete variables and conditions that change at events.1 The

1Note that varying-structure models and multi-mode simulations are
out of scope of this paper.

DAE Solvers for Large-Scale Hybrid Models

492 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

general form of the DAE is

F(t, ẋ,x,y,d) = 0, (1)

where t denotes the independent time and y the algebraic
variables. Further, x are the differential variables and ẋ
are their time derivatives. The discrete variables, which
may change value only at events, are denoted by d. For
the initial value problem to be well-defined, appropriate
initial conditions must also be supplied.

Throughout the simulation time- and state-dependent
crossing functions

c = q(t, ẋ,x,y,d) (2)

are monitored for sign changes. The variable c repre-
sents the conditions of all if- and when-clauses. At zero-
crossings an event is triggered. If the corresponding cross-
ing function qi depends on any of ẋ, x, or y it is called
a state event, otherwise a time event. The former are
more difficult to locate and their combination with DAE
mode simulations is the main topic of this paper. When
an event is triggered a reinitialization is performed using
the DAE (1) and the crossing equations (2) together with
additional discrete equations

d = η(t, ẋ,x,y,pre(d),c). (3)

Here pre(d) are the previous values of the discrete vari-
ables. For details see (Olsson, 2017, Appendix C). This
combination of equations defines a continuous-discrete
mixed system of equations to be solved for the derivatives
ẋ, the algebraic variables y, the discrete variables d, and
the conditions c. Together, the three systems (1) – (3) de-
fine a hybrid differential-algebraic equation.

To construct simulation code a Modelica tool, such as
Dymola, applies several symbolic transformations to the
original hybrid DAE. These steps involve e.g. common
subexpression elimination, sorting, index reduction, and
tearing. For details see (Cellier and Kofman, 2006). Dur-
ing the process of reducing the index to one, the number
of differential variables may decrease and the number of
algebraic equations may increase. As the goal of these
transformations is to transform the DAE (1) into an ODE
the tool will select states x(t) ∈Rnx and solve for the state
derivatives. Each derivative ẋi that cannot be solved for
symbolically is replaced by an algebraic variable x̂i and
the equation ẋi = x̂i.

For a typical Modelica model a significant part of the
algebraic variables y in the original DAE (1) do not af-
fect the dynamics of the model. These are the auxiliary
variables and are not required during continuous simula-
tion. We will therefore exclude them from the DAE pro-
vided to the numerical integrator. However, they must be
computed when evaluating the crossing equations (2) and
the discrete equations (3) and we must therefore consider
them when locating and resolving events.

The symbolic transformations turns the original sys-
tem into a sequence of assignment statements intertwined

with smaller (nonlinear) systems of equations, the alge-
braic loops. These loops are then torn to minimize their
size (Elmqvist and Otter, 1994). Denote by nG the num-
ber of loops that affect the dynamics. Further, denote by zi
the iteration (tearing) variables of loop i, where zi(t)∈Rni ,
ni ≥ 1. These normally constitute a small subset of the al-
gebraic variables. The algebraic loops are represented by
the systems of equations

0 = Gi(zi; t,x,z1, . . . ,zi−1,d), (4)

for i = 1, . . . ,nG. Due to the equation sorting each alge-
braic loop is independent of later ones. The functions Gi
do not depend on the state derivatives ẋ, since these were
either solved for or substituted for an algebraic variable as
described above.

The goal of the symbolic transformation is to causalize
the DAE into an ODE,

ẋ = f̂ (t,x,d). (5)

Here, the algebraic variables z and the algebraic loops are
internal to the ODE. Thus, the evaluation of f̂ requires the
solution of the systems of equations defined in (4), which
may be solved in sequence, separate from each other.

For the DAE mode approach presented in this paper we
consider the DAE in the form it takes after all of the sym-
bolic transformations have been performed, with one ex-
ception: the iterative solution of algebraic loops. Note that
the loops that can be solved symbolically are still solved
in that way, involving linear loops and the inversion of el-
ementary functions like sin. Thus, we elevate, from the
function f̂ , the loops that cannot be solved symbolically
and arrive at the semi-explicit, index-1 DAE of interest
for this paper

ẋ = f (t,x,z,d), (6a)
0 = G(z; t,x,d), (6b)

where z = (zT
1 , . . . ,z

T
nG
)T and G = (GT

1 , . . . ,G
T
nG
)T. The im-

portant difference between f̂ and f is that the evaluations
of the latter do not require the solution of the loops (4),
rather the algebraic variables z are inputs.

The remaining algebraic variables y can be computed
from the variables in Equation (6). The computation of
the subset of y that affects the dynamics is internalized in
f and G. By construction, these computations are merely
assignment statements.

Similarly, the computations of y can be internalized in
the crossing functions, giving

c = Q(t, ẋ,x,z,d).

Note that computing the auxiliary part of y may in-
volve solving further (torn) algebraic loops, not consid-
ered in the dynamics.2 Thus, computing all of y from

2Alternatively these algebraic loops for auxiliary variables may also
be handled by the integrator, resulting in better predictors for the in-
volved variables.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 493
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

the variables in Equation (6) may be expensive. However,
the crossing functions themselves qi are typically cheap.
Therefore, computing several crossing functions Qi with
the same input is not significantly slower than computing
just one.

2.2 Continuous simulation in ODE mode
Since Modelica models are often stiff, implicit numerical
time-stepping schemes are commonly used to integrate the
ODE (5). This procedure requires, at each time step, the
solution of one or more nonlinear systems of equations in-
side the integrator. For example, for a multistep method,
such as the BDF methods implemented in Dassl, the sys-
tem

1
Chn

xn− f̂ (tn,xn,dn) = old(f̂ ,x), (7)

has to be solved for the next approximation xn of the state.
Here C denotes a method-dependent constant, hn is the
current step size, and old(f̂ ,x) is a linear combination of
old f̂ -evaluation and x-approximations. Similar equations
have to be solved to find the stages if using an implicit
Runge–Kutta method, such as the Radau schemes (Hairer
and Wanner, 1996).

The integrator equation (7) is typically solved by a
quasi-Newton iterative method. In each iteration a linear
system of equations is solved using the Jacobian

Ĵ =
1

Chn
I− ∂ f̂

∂x
,

where I is the identity matrix. Even though the Jacobian is
not updated each iteration, in fact not even with each time
step, the evaluation of ∂ f̂

∂x is one of the major bottlenecks
when simulating a large Modelica model.

The Jacobian Ĵ is normally approximated numerically
using finite differences, which requires a large number
of f̂ -evaluations. As previously mentioned, each f̂ -
evaluation requires the solution of the algebraic loops (4).
Thus, solving Equation (7) may involve treating nested
nonlinear systems of equations.

To illustrate the problem, consider that the cost for con-
structing and factoring a Jacobian often grows superlin-
early in the number of variables. This complexity depends
on the sparsity structure of the Jacobian and what other
optimizations are applied. In the worst case scenario the
construction cost can grow quadratically and the factor-
ization cost cubically. With this in mind, the cost for con-
structing (but not factoring) the integrator-Jacobian Ĵ can
be approximated as

cĴ ≈ const. ·npx−1
x ·

(
crem(nx)+

nG

∑
j=1

npi
i

)
,

where px ∈ [1,2] and pi ∈ [1,3] depend on how well spar-
sity and other optimizations can be utilized. The last factor
is the cost of one f̂ -evaluation, where crem(nx) denotes the

total cost of everything in the f̂ -evaluation, except the al-
gebraic loops. This term typically grows with the num-
ber of states nx. The factor npx−1

x is the number of f̂ -
evaluations required. For certain models, the size ni of
some of the algebraic loops may be as large as the number
of states nx or even larger. Note that several optimizations
are applied in Dymola to keep the exponents px and pi
small, with the aim to minimize the above cost. Especially
when constructing the integrator Jacobian.

Further f̂ -evaluations are required to compute the resid-
uals in the Newton iteration for the next step (7). Also
at output points and events the model must be evaluated.
However, for models like Nordic 44, considered in Sec-
tion 4, the construction of integrator Jacobians dominate
the simulation cost in ODE mode.

2.3 Continuous simulation in DAE mode
When integrating using the DAE mode proposed in this ar-
ticle, the algebraic loops are elevated and solved by the in-
tegrator. Rather than hiding the loops in Equation (5) they
are handed to the integrator via the semi-explicit DAE for-
mulation (6). When evaluating f the algebraic variables
must be known prior to the evaluation. This means that, in
DAE mode, the integrator has to handle also the iteration
variables z.

One important benefit of the DAE mode approach pre-
sented in this paper is that the problem size is kept to a
minimum by using the sorting and tearing information.
The state vector consists of the vectors x and z. If the
DAE solver was instead applied directly to the DAE (1) it
would have had to solve for x and all of y.

Applying e.g. a multistep method to Equation (6)
yields, in analog to Equation (7), the integrator equations

1
Chn

xn− f (tn,xn,zn,dn) = old(f ; x,z),

G(zn; tn,xn,dn) = 0,
(8)

to be solved for the next approximations xn and zn. The
corresponding Jacobian needed for the quasi-Newton so-
lution of these equations is

J =

1
Chn

I− ∂ f
∂x − ∂ f

∂ z1
− ∂ f

∂ z2
· · · − ∂ f

∂ znG
∂G1
∂x

∂G1
∂ z1

0 · · · 0
∂G2
∂x

∂G2
∂ z1

∂G2
∂ z2

· · · 0
...

...
...

. . .
...

∂GnG
∂x

∂GnG
∂ z1

∂GnG
∂ z2

· · · ∂GnG
∂ znG

,

where we have considered the algebraic loops separate
from each other to reveal the sparsity pattern that is given
by construction.

The cost for a numerical approximation of the DAE
mode Jacobian J differs in its structure from the cost of
the ODE Jacobian Ĵ. An approximation of the complexity

DAE Solvers for Large-Scale Hybrid Models

494 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

can be written as

cJ ≈ const. ·

(
nx +

nG

∑
j=1

ni

)p−1

·

(
crem(nx)+

nG

∑
j=1

ni

)
,

where p ∈ [1,2] depends on how effectively sparsity can
be used to minimize the number of f -evaluation. Since
the state vector is longer in DAE mode the Jacobian is
larger and more right-hand-side evaluations are typically
needed. However, instead of solving the algebraic loops
the DAE solver just inquires for their residuals Gi giving
the smaller second factor in the cost. Comparing with the
cost for approximating Ĵ one can conclude that comput-
ing one Jacobian in DAE mode is much faster when there
are large algebraic loops with non-trivial sparsity structure
(pi > 1). Throughout this paper these are the type of mod-
els we consider.

2.4 Event handling in ODE mode
During integration the crossing functions (2) are moni-
tored, applying special care to correctly handle multiple
zero crossings in the same crossing function.

When zero crossings are detected in one or more cross-
ing functions, the state x is interpolated and a root finding
algorithm is applied to accurately find the time of the first
zero crossing. Each of the crossing functions Q̂i is scalar-
valued and defines, together with Equation (5), a system
of nonlinear equations

ẋ = f̂ (t,Px(t),d),

0 = Q̂i(t, ẋ,Px(t),d),
(9)

in the variables t and ẋ. The interpolation polynomial for
the state x is denoted by Px(t). Note that the algebraic
variables z have here been internalized in Qi giving Q̂i,
compare with f and f̂ in Equations (5) and (6).

Noting that the algebraic variables are solved for with
a high accuracy in ODE mode, the above root finding ap-
proach guarantees that the solution will be in a consistent
state when a crossing is detected and an event iteration is
started. See for example (Eich-Soellner and Führer, 2008,
Chapter 6) for details on how to locate the first zero cross-
ing using iterative methods.

2.5 Event handling in DAE mode
When simulating in DAE mode the integrator handles the
algebraic variables z and approximates them to fit the sup-
plied integrator tolerance. Similarly to the ODE case we
may use the, now extended, state vector (x;z) to monitor
the crossing functions (2). Further, we may interpolate the
whole extended state when solving for the first crossing

ẋ = f (t,Px(t),Pz(t),d), (10a)
0 = Qi(t, ẋ,Px(t),Pz(t),d). (10b)

However, the integrator tolerance is several orders of
magnitude larger than the tolerance for the solver of the al-
gebraic loops in ODE mode. This means that the algebraic

equations (4) will generally not be fulfilled at the time of
crossing (10). The upcoming event iteration will then start
in an inconsistent state; the algebraic equations not being
accurately fulfilled. Severe problems may be experienced
when Equations (1), (2), and (3) are to be simultaneously
solved for a consistent restart state.3

Example 1. Consider the Modelica Standard Library
model EngineV6, which is a multibody model of a V6
engine, see Figure 1. To compute the force generated by
the combustion in an engine cylinder the piston velocity
is monitored. An event is triggered and the integration is
restarted when a piston velocity changes direction.

Figure 1. EngineV6, a multibody model of a V6 engine from
the Modelica Standard Library.

Figure 2. Inconsistent solution state causing empty events and
problems to locate the correct time of the zero crossing.

Monitoring the crossing functions and locating the zero
crossings according to Equation (10) gives the result of
Figure 2, where the piston velocity of the second cylin-
der is used as an example. At time t ≈ 0.06322196
Equation (10) signals for a zero crossing and an event
is localized. Starting the event iteration, the crossing
time t and interpolated state Px(t) are used as input
and the algebraic variables y are solved for, cf. Sec-
tion 2.1. Being an algebraic variable, the piston velocity
cylinder2.Cylinder.v, is thus solved for with high

3Similarly, the state derivatives ẋ may also be interpolated rather than
computed from Equation (10a). However, the same problems as when
interpolating z are to be expected.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 495
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

accuracy. With the integrator error removed from the ve-
locity it jumps up to its consistent value of approximately
4 · 10−5 m/s. This renders the event empty since the cor-
responding crossing function Qi(t, ẋ,Px(t),z,d) is again
positive and no discrete variables were changed. The inte-
gration restarts and the process repeats a few times (cannot
be seen in the figure since the subsequent velocity jumps
are of very small scale). When sufficiently close to the
correct crossing time t ≈ 0.06322220 the event is at last
correctly handled. 4

To make sure that the solution is in a consistent state
at zero crossings in DAE mode it is suggested by (Eich-
Soellner and Führer, 2008, Section 6.3.8) to accurately
solve the algebraic loops when crossing functions are eval-
uated. We will here adopt a slightly generalized and mod-
ified version of this idea. In our setting, and for each Qi,
we consider the following systems of equations

ẋ = f (t,Px(t),z,d), (11a)
0 = G(z; t,Px(t),d), (11b)
0 = Qi(t, ẋ,Px(t),z,d), (11c)

to be solved when locating a zero-crossing. In contrast to
the simple generalization (10) of the ODE case, where also
the algebraic variables z were interpolated, we here only
interpolate the original states x. The algebraic variables
must be solved for using Equation (11b).

For each Qi the system (11) has the unknowns t, ẋ, and
z. These systems must be solved with high accuracy to
guarantee that we get the correct crossing time and a con-
sistent state for the event iteration. Additionally, solving
the algebraic loops (11b) may be expensive, as we have
previously discussed. However, the benefit of having the
sorting and tearing information available here is that we
do not have to solve for all the algebraic variables y simul-
taneously, rather the remaining can be computed from z.
In Section 3.3 we will discuss further optimizations that
can be applied to efficiently and accurately monitor and
locate events in DAE mode.

3 Dymola DAE mode implementation
In Dymola and the 3DEXPERIENCE platform, DAE
mode has been implemented for the solvers Dassl,
Radau IIa, Sdirk34hw, and Esdirk of different orders.
Thus offering a selection of both multistep and Runge–
Kutta methods. With one of these solvers selected DAE
mode is enabled by the command

Advanced.Define.DAEsolver = true.

In the current section we will present a few key features
of this implementation. Most importantly the accurate and
efficient handling of state events.

3.1 Reusing the simulation code
When initializing and when locating and resolving events
the algebraic loops need to be accurately solved. For effi-
ciency and robustness it is typically beneficial to use all the

optimizations applied when generating ODE mode code,
including e.g. sorting and tearing. This means that the
code generated for ODE mode is needed also when inte-
grating a hybrid system in DAE mode. To keep the simu-
lation code simple and the code duplication to a minimum
our implementation strategy is therefore to reuse the ODE
code to the greatest extent possible.

As seen in Section 2.3 this strategy also allows us to
minimize the size of the integrator equation (8) during
continuous simulation in DAE mode. However, the draw-
back here is that tearing may cause fill-ins, i.e. the reduced
nonlinear system Gi = 0 may be less sparse than the orig-
inal system. In some cases this may even make simula-
tions slower (Braun et al., 2017). On the other hand, it
is concluded by (Magnusson, 2016) that tearing typically
is beneficial for DAEs resulting from hierarchical Model-
ica models. One may additionally gain in efficiency by
taking care to reduce fill-ins when tearing, especially for
large models. To which extent tearing should be used and
how it should be applied is considered out of scope of this
paper.

As discussed in Section 2 the only difference between
ODE and DAE mode continuous simulation is how the
algebraic loops are handled. In ODE mode the algebraic
loops (4) are solved for the algebraic variables z during
the f̂ -evaluations. By small changes in the simulator code
that handles the algebraic loops, these loops can easily be
modified to instead take z as an input from the integrator.
The input can then be used to compute the residuals G(z),
which are returned to the integrator for correction. All
this without any need to change the code generation or the
generated simulation code itself.

3.2 Utilizing the Jacobian structure
So far no changes are required to the generated simulation
code. However, there is one piece of auxiliary information
needed for efficient simulations.

The sparsity pattern of the integrator Jacobian is ana-
lyzed by Dymola when constructing the simulation code.
Knowing all explicit dependencies of the functions f̂ on
the variables x (respectively f on (x;z)), Dymola can
reduce the number of function evaluations required to
construct a numeric Jacobian. Several columns can be
grouped together and computed at the same time by uti-
lizing column independencies.

Since the dependencies change in DAE mode the ODE
mode analysis can not be reused. The DAE Jacobian J is
larger and typically more sparse, cf. (Braun et al., 2017,
Section 2.2). For example, partial explicit dependencies
in each algebraic loop can be taken into account when
constructing the sparsity pattern for the DAE mode Jaco-
bian. In contrast, in ODE mode, where the algebraic loops
are solved, all the iteration variables zi for each loop de-
pend on all of the loop inputs. To summarize, this enables
Dymola to be more aggressive when constructing column
groups in DAE mode.

Moreover, due to the increased size and sparsity of the

DAE Solvers for Large-Scale Hybrid Models

496 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

integrator Jacobian, the benefits of using sparse linear al-
gebra for storing and factorization are even greater. In Dy-
mola multithreaded SuperLU (Li, 2005) is used for this
task and is fully compatible with DAE mode simulations.

3.3 Efficient and accurate event localization
In Section 2.5 we demonstrated that correctly monitoring
and locating crossings can be expensive in DAE mode.
Interpolating the algebraic variables z led to problems and
instead the full equations (11) had to be considered. Addi-
tionally, to avoid having to discard time steps or output
points it is important to evaluate the crossing functions
often during continuous integration, normally after each
time step. Considering that each solution of the equa-
tions may be expensive, the aggregated cost may become
a major bottleneck for DAE mode simulations of hybrid
models. However, there are several optimizations that can
be performed to considerably shorten the time needed for
event localization.

First assume, for the sake of simplicity, that there is
only one crossing function Q and consider how zero cross-
ings are typically localized in ODE mode. It is straight-
forward to rewrite Equation (9) as an equation

0 = Q̂
[

t, f̂ (t,Px(t),d), Px(t), d
]
,

in the single, scalar variable t. This equation can be effi-
ciently solved with an iterative method, e.g. using regula
falsi variants like the safeguard techniques (Eich-Soellner
and Führer, 2008, Section 6.3.2).

The same techniques can be adopted in the DAE case to
efficiently solve the system (11). This results in the nested
systems of equations

0 = Q
[

t, f
(

t,Px(t),G−1(0; t,Px(t),d
)
,d
)
,

Px(t), G−1(0; t,Px(t),d
)
, d

]
.

In the outer equation the time of the crossing t is the only
unknown. Given an approximation of t the polynomial Px

can be evaluated. Using this, the algebraic variables can
be solved for from 0 = G(z). Then ẋ can be computed
and finally the crossing function residual. This nonlinear
equation in t can be solved by applying the same iterative
root finding techniques as in ODE mode.

Indeed, as the algebraic loops are solved also when f̂ is
evaluated the above described procedures for (9) and (11)
are equivalent. This means that the same code can be used
for event localization in ODE and DAE mode. The only
difference is that, in the latter case the simulator code han-
dling the algebraic loops must be told to solve them, and to
do this with high accuracy. After the event is fully handled
the code must again be told to only compute the residuals
of the loops for continuous DAE mode simulation.

Handling several crossing functions at the same time is
neither significantly more expensive, nor more difficult,
cf. Section 2.1. Thus, the above discussed solution tech-
nique for crossing equations is easily generalized to sev-
eral crossing functions.

Finally, and perhaps most importantly, we note that
accurately solving the algebraic loops is only important
when finding the correct crossing time and during the
event iteration. During continuous simulations, and when
no crossing function is close to zero, it is enough to con-
sider the more direct formulation first discussed in Sec-
tion 2.5. That is, we use the integrator approximations of
both x and z and after each time step we evaluate

ẋ = f (t,x,z,d),
c = Q(t, ẋ,x,z,d).

(12)

If any of the variables ci is close to zero we must switch to
the accurate crossing function handling (11) so the correct
crossing time can be located.

With these optimizations Dymola can accurately and
efficiently locate and resolve state events. The algebraic
loops must only be solved to a high accuracy when clos-
ing in on a crossing, when localizing the crossing, and
when resolving the event. Typically, only on the order of
ten solutions per state event is required, cf. Section 4.2. A
remaining problem is how to efficiently handle the situa-
tion where a crossing function is close to zero throughout
most of the simulation, but never crosses.

4 Application Example – Nordic 44
To verify the efficiency of the Dymola DAE mode
implementation we here perform experiments with the
Nordic 44 power grid model (Vanfretti et al., 2017).

4.1 Model description and test cases
Nordic 44 consists of 44 buses, 61 controlled generators,
67 lines, and 43 loads, which model the Nordic grid, see
Figure 3. The model is part of the Open-Instance Power
System Library (OpenIPSL), a Modelica library for power
system dynamic analysis (Baudette et al., 2018).

The DAE representation (6) of Nordic 44, given by the
symbolic transformations in Dymola 2019 FD01, consists
of nx = 1013 states and nG = 47 torn algebraic loops. The
first loop has n1 = 448 iteration variables and the remain-
ing have one each.

We will consider three different fault scenarios. Models
for all of them have been added to the OpenIPSL library.
They can also be found in the supplementary material to
this article and at a dedicated GitHub repository4. The
first two scenarios are reproductions of the experiments
performed by (Vanfretti et al., 2016, Section 3). There,
the second order Runge–Kutta scheme Rkfix2 was used
with the fixed time step h = 0.01 s.

For the first scenario we introduce a line opening be-
tween Bus 5103 and Bus 5304 to occur at t = 2 s. The
voltage for Bus 5304 is plotted in Figure 4, given as a re-
sult of the Dassl DAE mode simulation. To be able to

4GitHub: 2019_Modelica_Conf_DAESolvers4LargeHybridModels,
https://github.com/ALSETLab/2019_Modelica_
Conf_DAESolvers4LargeHybridModels

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 497
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

Figure 3. The Nordic 44 grid model.

Figure 4. Voltage for Bus 5304 during a line fault between
Bus 5103 and Bus 5304 occurring at t = 2 s.

compare CPU-times with the Rkfix2 ODE mode simula-
tions the tolerance 10−6 was chosen for Dassl. With this
tolerance the error estimates of the two solvers are approx-
imately the same.

In the second scenario a bus fault is instead simulated.
At time t = 2 s Bus 3100 short-circuits and connects to the
ground, with very small impedance, for 0.2 s. The simu-
lated bus voltage is plotted in Figure 5. For this model, the
Dassl tolerance 10−4 gives errors comparable to those of
Rkfix2.

The final scenario also considers a bus fault, this time in
Bus 5603. However, the model is also extended to include
an additional generator connected to Bus 5610, see Fig-
ure 6. Compared to the other generators in the Nordic 44
model, a different excitation control system (IEEE Type
AC2A Excitation System) is used. Depending on the gen-
erator field voltage, different control modes are used in
the excitation system to change its outputs. To switch be-
tween the modes state events are required. This extended
model has nx = 1313 states and nG = 65 algebraic loops of
sizes n1 = 498 and n2 = · · · = n65 = 1. Due to the exten-

Figure 5. Voltage for Bus 3100 during a fault in this bus between
t = 2 s and t = 2.2 s.

sion the default Nordic 44 initial conditions do not define
a steady state. To get close to steady state, a simulation is
first performed until t = 60 s. Then, the bus fault occurs
between t = 61.05 s and t = 61.15 s. The simulated gen-
erator field voltage (EFD) is plotted in Figure 7 together
with the unmodified control output (EFD1). For compa-
rable numerical errors the tolerance 5 · 10−5 is used for
Dassl.

4.2 Efficiency experiments
The CPU-times required to simulate the three different
scenarios are listed in Table 1. All simulations in this sec-
tion were run in Dymola 2019 FD01, with default settings
if nothing else is specified, and using Visual Studio 2015
for model compilation. An ordinary Windows 7 (64-bit)
laptop computer (Intel Core i7-6820HQ, 16 GB RAM) has
been used for all experiments, including the reproduction
of the Rkfix2 experiments (h = 0.01 s), reported by (Van-
fretti et al., 2016). As mentioned above, the Dassl toler-
ances have been tuned to give comparable numerical er-
rors between the two solvers.

DAE Solvers for Large-Scale Hybrid Models

498 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

Figure 6. Nordic 44 extended with an extra generator featuring
several control modes. The generator is connected to Bus 5610
and the fault occurs in Bus 5603.

Figure 7. Generator field voltage (EFD) and the unmodi-
fied excitation control output (EFD1) for the extra generator at
Bus 5610.

We observe that several orders of magnitude in simula-
tion speed-up was gained by running Dassl in DAE mode;
the construction of many expensive integrator Jacobians Ĵ
makes the ODE mode times uncompetitive. We remind
the reader that the Nordic 44 model has been specifically
chosen as an example in this paper since it is difficult to
handle efficiently in ODE mode. For most Modelica mod-
els ODE mode is more robust and as efficient. Finally,
comparing with Rkfix2 we conclude that using an explicit
method to altogether avoid integrator Jacobians does not
pay off for these simulations.

All of the power grid faults are triggered at specific

Table 1. CPU-times for the three Nordic 44 fault scenarios.

Fault Rkfix2 Dassl

ODE mode ODE mode DAE mode

Line 587 s 2 015 s 4.21 s
Bus 3100 270 s 7 810 s 33.7 s
Bus 5603 344 s 49 800 s 121 s

times, that is by time events. For the first scenario that is
also the only event. This explains the very fast simulation
time as the large algebraic loops only need to be solved
during initialization and during the event iteration of the
time event. In total each loop is solved only four times.

However, the remaining two scenarios have several
state events that must be located and resolved, namely
14 and 26, respectively. When the fault is triggered in
Bus 3100, the excitation control system inside several of
the generators reach their maximum limit. To prevent
wind-up in the integral controllers their internal states are
reset using state events. Since the desired set points cannot
be reached the controllers continue to wind-up and several
resets are required, cf. Figure 8. Even though reminiscent
of Figure 2, the saw blade shape here represents a cor-
rect solution of the model. This can be easily verified by
ODE mode simulations. Indeed, the fact that the accumu-
lation of events is accurately handled when closing in on
t = 2.1 s confirms the soundness of the event handling ap-
proach proposed by (Eich-Soellner and Führer, 2008) and
used in this paper.

Figure 8. The fault in Bus 3100 triggers saturation in several
generator excitation controllers. State events are issued to reset
the internal controller state, as exemplified here with one of the
generators connected to Bus 7000.

A similar analysis can be made of the third scenario
with the extended Nordic 44 model. But there the state
events instead represent switches between excitation con-
trol modes in the extra generator. Note that the higher
number of state events and the larger algebraic loop are
reflected by the longer simulation time.

As a final experiment we demonstrate the effect of
one of the event handling optimizations presented in Sec-
tion 3.3. Consider again the second scenario with the
fault in Bus 3100. We rerun the Dassl DAE mode simula-
tion, but during the simulation we monitor Equation (11)
rather than Equation (12). This means that the algebraic
loops (4) are solved throughout all of the simulation, not
only when closing in on a zero crossing. This results in
a run time of 197 s to be compared with 33.7 s for the
efficient DAE mode implementation. In the former case
the algebraic loops were solved 918 times, whereas in the

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 499
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

latter case only 143 times.

Finally, we compare with the simulations performed
by (Vanfretti et al., 2016) of equivalent models using the
domain-specific simulation tool PSS/E. On a computer
slightly faster than the one used for this paper the first
two scenarios run in 5 s, respectively 4 s. We conclude
that the Dymola DAE mode performance is competitive
against the industry state of the art. In fact, even faster for
the first scenario. At the same time, looking at the second
scenario, we note that there is room for further efficiency
improvements in the event handling.

5 Additional DAE mode challenges –
an outlook

Other than the accurate handling of events, DAE mode
simulations pose a few additional challenges not experi-
enced to the same extent during ODE mode simulations.

5.1 Robustness and discontinuities
The nonlinear system of equations (8) to be solved inside
the integrator is larger in DAE mode. Solving for both the
states x and the algebraic variables z simultaneously may
cause robustness problems. Compare with ODE mode
where the algebraic equations (4) are solved one at a time,
separate from each other, as part of each f̂ -evaluation. The
nonlinear equation solvers that treat the algebraic loops
may be optimized for this purpose. For example, when
solving algebraic loops with only one iteration variable
even major problems, such as a singular Jacobian, often
do not pose an insurmountable threat. When this singular-
ity becomes part of a large system of equations it becomes
a problem that is much more difficult to handle.

When interpolated values are of interest, as when mon-
itoring events, and the DAE is of index 1, it is recom-
mended by (Brenan et al., 1996, Section 5.4.2) to apply er-
ror control also to the algebraic variables z. However, this
may cause failed simulations when algebraic variables are
discontinuous in time, consider e.g. van der Pol’s equation

ẋ =−z,

0 = x−
(

z3

3
− z
)
,

(13)

(Hairer and Wanner, 1996, Section VI.1). Discontinuities
may also arise when using the noEvent operator.

5.2 ODE-powered DAE mode simulation
With the strategy of using the same generated simulation
code both in ODE and DAE mode an opportunity opens
up to handle these DAE mode specific problems. The idea
is simple and based on the fact that we can readily switch
between the modes: we integrate in DAE mode until a
problem is encountered. Then we switch to ODE mode
and integrate past the problem. When it is deemed fine to
continue in DAE mode, the switch back is made.

Note that switching to ODE mode comes with a con-
siderable cost. In contrast to the event handling strategy

previously discussed, we here want to perform continuous
integration in ODE mode. This requires the construction
of ODE Jacobians Ĵ, which is expensive. An important
goal for any implementation of this idea is probably to
keep the number of ODE Jacobians to a minimum. If ad-
ditionally the rest of the simulation runs smoothly in DAE
mode it may still be considerably more efficient than plain
ODE mode simulation.

We have made a prototype implementation of this idea
using Dassl. The algorithm is simple: when the integrator
gives up in DAE mode we do not stop the simulation, but
rather, switch to ODE mode. While in ODE mode we
allow for one Jacobian computation and simulate with this
until Dassl asks for a second. Instead of computing it, we
switch back to DAE mode and continue simulation until
the integrator gives up again or the simulation terminates.

Example 2. As discussed above, when simulating van der
Pol’s equation (13) in DAE mode it normally fails when
closing in on a discontinuity in z. The error estimate in
this variable becomes large and cannot be made smaller
by shorter time steps. However, using the prototype im-
plementation introduced here we can successfully simu-
late past the discontinuities by temporarily switching to
ODE mode, see Figure 9. For this simulation Dassl re-
quired 132 Jacobian-evaluations in DAE mode and only
two Jacobian-evaluations in ODE mode. 4

Figure 9. DAE mode solution of van der Pol’s equation (13)
using temporary switches to ODE mode to handle the disconti-
nuities in z.

Of course, when simulating the van der Pol’s equa-
tion there is no efficiency benefit in using DAE mode.
However, for a production-level implementation that can
handle large-scale models, the prototype implementation
needs several improvements and tuning. The most impor-
tant question is to decide when to switch, especially when
to switch back to DAE mode. The simple prototype im-
plementation presented above will often switch back too
early. A more careful analysis of the state of the prob-
lem should probably be performed before switching back.
Further questions involve how to best reinitialize the sim-
ulation and with which step size.

DAE Solvers for Large-Scale Hybrid Models

500 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

6 Conclusion
We have discussed and implemented a DAE mode strategy
for hybrid DAEs based on the idea of one common code
generation for ODE and DAE mode. By applying all of
the symbolic transformations and optimizations we get an
index-1 DAE of minimal size. The integrator only needs
to handle the original states and the iteration (tearing) vari-
ables of the algebraic loops. Even though a smaller sys-
tem is typically faster to simulate the tearing algorithm
may cause fill-in making the reduced system more dense.
How to best apply tearing in this context deserves deeper
analysis but is out of scope of this paper.

Our DAE mode approach made it possible to accurately
and efficiently handle state events, with minimal footprint
on the generated code. To localize these events we have
extended from results known in the literature to fit our
Modelica context. Suggestions for optimizing the root
finding were also discussed and implemented.

With these optimizations the algebraic loops only need
to be solved with high accuracy during initialization, when
closing in on a state event, when localizing it, and when
resolving it. Most importantly, solving the loops is not re-
quired when constructing the integrator Jacobian or other
evaluations of the dynamics. Typically, only on the order
of ten solutions per state event are required. We argue that
this is an acceptable cost for models with a moderate num-
ber of state events. For example, compare with the large
number of loop solutions that are required to just construct
the integrator Jacobian in ODE mode, cf. Section 2.2.

Therefore, DAE mode simulations can be vastly more
efficient for models with large algebraic loops. As ex-
emplified by simulations of the Nordic 44 model of the
Nordic power grid, where orders of magnitude in simu-
lation speed were gained. The measured simulation times
are competitive with domain-specific, state-of-the-art sim-
ulation tools that have been optimized for more than three
decades.

The presented DAE mode was made available in Dy-
mola 2019 and 3DEXPERIENCE 2019x for a broad se-
lection of numerical integrators. The implementation also
features detailed DAE mode sparsity pattern analysis and
is fully compatible with Dymola sparse solvers.

Acknowledgments
The authors thank Ricardo Rincon Ballesteros (Universi-
dad Nacional de Colombia) for constructing the third sim-
ulation scenario of the application section specifically for
this publication.

The authors also thank their colleagues for valuable
feedback on the paper drafts.

The work of L. Vanfretti was supported in part by the
Engineering Research Center Program of the National
Science Foundation and the Department of Energy under
Award EEC-1041877, and in part by the CURENT Indus-
try Partnership Program.

References
Maxime Baudette, Marcelo Castro, Tin Rabuzin, Jan Lavenius,

Tetiana Bogodorova, and Luigi Vanfretti. OpenIPSL: Open-
instance power system library — update 1.5 to “iTesla power
systems library (iPSL): A Modelica library for phasor time-
domain simulations”. SoftwareX, 7:34–36, 2018.

Willi Braun, Francesco Casella, and Bernhard Bachmann. Solv-
ing large-scale modelica models: New approaches and ex-
perimental results using OpenModelica. In Proceedings of
the 12th International Modelica Conference, pages 557–563.
Linköping University Electronic Press, 2017.

Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold.
Numerical Solution of Initial-Value Problems in Differential–
Algebraic Equations. Classics in Applied Mathematics. So-
ciety for Industrial and Applied Mathematics, 1996.

Francesco Casella. Simulation of large-scale models in Model-
ica: State of the art and future perspectives. In Proceedings of
the 11th International Modelica Conference, pages 459–468.
Linköping University Electronic Press, 2015.

Francesco Casella, Andrea Bartolini, Simone Pasquini, and
Luca Bonuglia. Object-oriented modelling and simulation of
large-scale electrical power systems using Modelica: A first
feasibility study. In IECON 2016 – 42nd Annual Conference
of the IEEE Industrial Electronics Society, pages 6298–6304,
2016.

Francois E. Cellier and Ernesto Kofman. Continuous System
Simulation. Springer-Verlag, Berlin, Heidelberg, 2006.

Edda Eich-Soellner and Claus Führer. Numerical methods in
multibody dynamics. Teubner, 2008.

Hilding Elmqvist and Martin Otter. Methods for tearing systems
of equations in object-oriented modeling. ESM’94 European
Simulation Multiconference, pages 326–332, 1994.

Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. Par-
allel model execution on many cores. In Proceedings of
the 10th International Modelica Conference, pages 363–370.
Linköping University Electronic Press, 2014.

Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II. Stiff and Differential–Algebraic Problems, vol-
ume 14. Springer-Verlag Berlin Heidelberg, second edition,
1996.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S. Wood-
ward. SUNDIALS: Suite of nonlinear and differential/alge-
braic equation solvers. ACM Transactions on Mathematical
Software, pages 363–396, 2005.

Filip Jorissen, Michael Wetter, and Lieve Helsen. Simulation
speed analysis and improvements of Modelica models for
building energy simulation. In Proceedings of the 11th Inter-
national Modelica Conference, pages 59–69. Linköping Uni-
versity Electronic Press, 2015.

Xiaoye S. Li. An overview of SuperLU: Algorithms, implemen-
tation, and user interface. ACM Transactions on Mathemati-
cal Software, 31(3):302–325, 2005.

DAE Solvers for Large-Scale Hybrid Models

DOI Proceedings of the 13th International Modelica Conference 501
10.3384/ecp19157491 March 4-6, 2019, Regensburg, Germany

Fredrik Magnusson. Numerical and Symbolic Methods for Dy-

namic Optimization. PhD thesis, Department of Automatic
Control, Lund University, 2016.

Hans Olsson, editor. Modelica – A Unified Object-Oriented Lan-
guage For System Modeling: Language Specification. Mod-
elica Association, 2017. Version 3.4.

Hans Olsson, Sven Erik Mattsson, Martin Otter, Andreas Pfeif-
fer, Christoff Bürger, and Dan Henriksson. Model-based em-
bedded control using Rosenbrock integration methods. In
Proceedings of the 12th International Modelica Conference,
pages 517–526. Linköping University Electronic Press, 2017.

Anton Schiela and Hans Olsson. Mixed-mode integration for
real-time simulation. Proceedings of Modelica 2000 Work-
shop, pages 69–75, 2000.

Bernhard Thiele, Martin Otter, and Sven Erik Mattsson. Mod-
ular multi-rate and multi-method real-time simulation. In
Proceedings of the 10th International Modelica Conference,
pages 381–393. Linköping University Electronic Press, 2014.

Luigi Vanfretti, Tin Rabuzin, Maxime Baudette, and Mo-
hammed Murad. iTesla power systems library (iPSL): A
Modelica library for phasor time-domain simulations. Soft-
wareX, 5:84–88, 2016.

Luigi Vanfretti, Svein H. Olsen, V.S. Narasimham Arava,
Giuseppe Laera, Ali Bidadfar, Tin Rabuzin, Sigurd H. Jakob-
sen, Jan Lavenius, Maxime Baudette, and Francisco J.
Gómez-López. An open data repository and a data processing
software toolset of an equivalent Nordic grid model matched
to historical electricity market data. Data in Brief, 11:349–
357, 2017.

DAE Solvers for Large-Scale Hybrid Models

502 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157491

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

DOI Proceedings of the 13th International Modelica Conference 503
10.3384/ecp19157503 March 4-6, 2019, Regensburg, Germany

Adaptive Step Size Control for Hybrid CT Simulation without Rollback
Farkas, Rebeka and Bergmann, Gábor and Horváth, Ákos

503

Adaptive Step Size Control
for Hybrid CT Simulation without Rollback

Rebeka Farkas1,2,3 Gábor Bergmann1,2,3 Ákos Horváth1,3

1Department of Measurement and Information Systems, Budapest University of Technology and Economics,
Hungary, {farkasr,ahorvath,bergmann}@mit.bme.hu

2MTA-BME Lendület Cyber-Physical Systems Research Group
3IncQuery Labs Ltd, Hungary

Abstract
The Hybrid CT approach for simulating cyber-physical
systems uses continuous time simulation and provides
wrappers for discrete event components that implement
the required interfaces. Besides the general obstacles of
continuous time simulation, Hybrid CT introduces new
challenges, such as creating wrappers, detecting discrete
events (with minimal latency), and finding the correct ba-
lance between the simulation step sizes required by diffe-
rent components.

We propose an adaptive step size controller that uses
high level information of the model and the simulation
(e.g. types of components, critical values of variables) to
adjust the step size based on the possibility of the detection
of a discrete event in the following step. Besides overco-
ming the challenges of Hybrid CT simulation the compo-
nent also improves threshold-crossing detection. The pro-
posed approach does not require step rejection (rollback),
that discrete event components often fail to support.

In this paper we present the step size controller, demon-
strate its usability on industrial case studies and evaluate
the component both theoretically and based on measure-
ments performed on our implementation that was integra-
ted to the OMSimulator. We show that adaptive step size
control can be used to bridge the gap between continuous
time and discrete event simulation.
Keywords: hybrid CT simulation, step size control

1 Introduction
Hybrid systems demonstrate both discrete and continuous
behaviour which makes their simulation challenging. A
possible approach is Hybrid CT that uses continuous time
simulation and provides wrappers for discrete event com-
ponents (as opposed to Hybrid DE simulation where con-
tinuous time components are adjusted so discrete event si-
mulation can be used).

The OMSimulator developed by the Open Source Mo-
delica Consortium (OSMC) uses Hybrid CT simulation
based on the Functional Mock-up Interface (FMI) stan-
dard (Blochwitz et al., 2012) that defines a centralized ar-
chitecture for simulation, where each component of the
system (the so-called Functional Mock-up Units, FMUs)

is simulated on its own with a master simulator control-
ling the process.

Despite the fact that there are proper approaches to
create FMUs from discrete event components, the co-
simulation of continuous-time and discrete-event blocks
is still in its early phases. From a simulation point of
view, one of the main differences between the two types
of components is the simulation step size: continuous sys-
tems are simulated by periodically calculating the value of
the variables with relatively large step sizes (measured in
seconds) but discrete event-based systems operate irregu-
larly and their simulation requires smaller steps (measured
in nanoseconds) since discrete events can trigger other dis-
crete events (almost) instantly. It is possible to simulate
continuous-time models with smaller step sizes (in fact,
it yields more accurate results), but it is inefficient (often
preventing industrial application) and mostly unnecessary
as events occur rarely. The sporadic occurrence of discrete
events raises the need for adaptive step size control.

We propose an adaptive step size control approach to
overcome the difficulties of hybrid CT simulation. The
proposed solution requires the user to select the varia-
bles that are used to model event-based behaviour and ad-
justs the step size when their values change. Moreover,
our approach can also be used to increase the accuracy of
threshold-crossing detection and location (which is an im-
portant aspect of hybrid simulation) without the need for
rejecting steps (rollbacks).

This paper is organized as follows: section 2 presents
some background knowledge on the challenges of Hybrid
CT simulation, section 3 lists the related work, section 4
presents the proposed step size controller, section 5 de-
monstrates its applicability, section 6 evaluates its useful-
ness and section 7 concludes the paper.

2 Preliminaries
2.1 Running example: Thermostat
In this paper we use an advanced version of the commonly
used thermostat example to illustrate the presented con-
cepts. The thermostat example describes a room with a
thermostat keeping the temperature near some target tem-
perature (with a given tolerance) that is given by a user

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

504 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157503

and can change through time. In addition we introduce a
monitoring system to ensure that the thermostat operates
correctly.

The monitoring system consists of three local monitors
and each of them is responsible for a component of the he-
ating system: the heating component, the heat sensor, and
the thermostat. The monitoring system is controlled by a
central monitor that communicates with the local monitors
via messages to check wether the system is working cor-
rectly. Such a check is performed periodically every three
minutes and each time before turning the heating on.

In the simulated scenario, the temperature initiates from
20◦C with the target temperature set to 22◦C. Originally
the hysteresis is 3◦C, but set to 2.5◦C after half an hour.
The temperature of the environment is 0◦C – that is, when
the heating system is not activated the temperature of the
room is decreasing towards 0◦C. Initially, the thermostat
is turned off but it is turned on after 10 seconds.

2.2 FMI-based hybrid co-simulation
The FMI standard for co-simulation makes it possible to
simulate a system containing various components descri-
bed by different types of models that require different
ways of simulation. Co-simulation requires that each mo-
del is encapsulated with an appropriate simulator making
an FMU which implements an interface through which the
master simulator can control the simulation. In addition,
the FMU also contains an XML-based model description
file, with high level information about the model and ad-
ditional information, such as the DefaultExperiment ele-
ment that contains the default values of basic simulation
parameters (e.g. stop time, relative tolerance, step size).

The modular architecture of FMI-based simulation ma-
kes it appropriate for hybrid co-simulation where the two
types of components are the discrete event and the coun-
tinuous time components. Additionally, neither the model
nor the simulator internal data need to be accessed, which
makes FMI-based co-simulation industrially applicable.

OMSimulator is an FMI-based simulator for cyber-
physical systems, developed by the OMSC. In order to
simulate, the architecture must be defined (input and out-
put ports must be coupled) and configuration data must
be provided, e.g. simulation step size, tolerance, duration
(the values given by the DefaultExperiment may differ in
each FMUs). After initialization the simulation is perfor-
med by alternating two types of steps: in a simulation step
the master simulator instructs all FMUs to perform a step
of the given step size, and in a communication step the
output values of the source components of the connections
are passed as the input values of the corresponding target
components. Simulation terminates after a given duration.

Example In case of the thermostat example, we created
the following FMUs.

• The Thermostat FMU contains a discrete event-
based model describing the operation of the thermo-
stat. The inputs of the thermostat include the settings
and the current temperature.

Room
FMU

Thermostat
FMU

Local monitor
FMU 1

Local monitor
FMU 2

Local monitor
FMU 3

Central
monitor

FMU

Messages

Settings, temperature,
heating control

Monitoring
information

Figure 1. Thermostat FMU architecture

• The Room FMU contains a continuous model descri-
bing the characteristics of the physical world, inclu-
ding the temperature and the user that provides the
settings of the thermostat. The user operations are
pre-defined and the temperature is calculated based
on the heating.

• The (discrete event-based) models of the each mo-
nitors are provided in separate FMUs. The monitors
get the same inputs as the thermostat and check if the
operations of the thermostat are correct.

Accordingly the Thermostat and the Room FMUs are con-
nected, and the monitors are connected to both both of
them are connected to each monitors. The complete archi-
tecture can be seen in Figure 1.

2.3 Simulation challenges
One of the most important requirement of simulation is
accuracy: while it is theoretically impossible to calculate
accurate values, there are many ways to calculate an over-
approximation of the error and to keep it below a given
amount (Viel, 2014; Arnold et al., 2014a,b). The other
important requirement is efficiency and – as usual – the
two requirements contradict.

In case of iterative methods accuracy can be improved
by increasing the number of iterations during a simulation
step. In practice the iterations required to comply with
the desired tolerance can result in an impermissibly large
runtime which makes non-iterative methods favoured in
case of co-simulation.

In case of non-iterative methods efficiency depends on
the number of steps performed (hence, larger step size
yields more efficient simulation) and accuracy depends on
the size of the steps (smaller step size yields more accurate
results). As an optimization, master algorithms often use
rollbacks (the rejection of one or more steps) when the si-
mulation error is above the tolerance and then re-simulate
with smaller step sizes. Rollbacks have other advantages,
e.g. in case of the so-called threshold-crossing detection
problem, where it has to be detected (and located) when a
given variable reaches a certain value.

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

DOI Proceedings of the 13th International Modelica Conference 505
10.3384/ecp19157503 March 4-6, 2019, Regensburg, Germany

Figure 2. Simulation error caused by step size

Introducing discrete event components into a continu-
ous time environment raises a new challenge, as it beco-
mes more important to detect events with minimal latency.
While this problem can also be solved with rollbacks (Gal-
tier et al., 2015) many discrete event FMUs can not handle
rollbacks and therefore the only way to ensure the events
are detected in time is to use smaller step sizes that ma-
kes simulation intractably expensive. It is also possible to
attempt to predict events (Guermazi et al., 2016).

Example: In case of the thermostat example the de-
tection of discrete events becomes important with the mo-
nitoring system: when the central monitor gathers infor-
mation to check if the thermostat works correctly, messa-
ges are passed between the monitors. This process is fast
and in order to simulate it accurately, the simulation step
sizes have to be small, as a number of discrete events (the
messages) are triggered by each other, therefore at most
one of these events occur in each simulation step. This
communication between the monitors takes place when
the heating has to be turned on as well as every three
minutes when the periodical checks are performed. The
former scenario introduces a threshold-crossing detection
challenge: it is important to detect when the temperature
exceeds the bounds of the target interval (initially 19◦C
and 25◦C), and the periodical checks raise the need for
event prediction.

In order to demonstrate the importance of keeping the
latency minimal, we have simulated the first time the tem-
perature falls below 19◦C in the thermostat example (ex-
cluding the monitor components) with constant step sizes
of 0.1 s and 0.01 s. The threshold-crossing happens about
344 seconds from initialization. The results are shown in
Figure 2, where the x axis represents the (simulated) time
and the y axis represents the simulated temperature. The
red line denotes the results of simulation with the smal-
ler step size and blue line corresponds to the larger step
size. Before the threshold-crossing the two simulation
produces similar results – with an exception of an initi-
alization offset (explained in subsection 6.2). However,
after the temperature decreases below 19◦C the two simu-
lations produce significantly different results. The reason
behind this is that because of the larger step sizes both the
threshold-crossing and the discrete reactions are detected

with latency. Because of this, in case of the smaller step
size the temperature raises over 19◦C in less than a se-
cond, while in case of the other simulation it takes almost
five seconds which is a simulation error caused purely by
event detection latency introduced by the large step sizes.

3 Related work
Discrete components in simulation There is extensive
existing research on introducing discrete event compo-
nents to continuous time environments. In (Guermazi
et al., 2016) the discrete event components are integra-
ted in the continuous time simulation workflow as a white
box, and the communication intervals are adjusted to de-
tect events based on internal information. In (Galtier et al.,
2015) rollbacks are used: when an event is detected, the
last step is rejected and the simulation step size is adjus-
ted to the minimum amount to locate it. In (Franke et al.,
2017) discrete time simulation is supported by introducing
clocks and corresponding clocked variables that only have
values when the clock ticks.

Step size control There are many adaptive step size con-
trol approaches for enhancing the performance of the si-
mulation (Schierz et al., 2012; Viel, 2014), but most of
them rely on internal data and step rejection, with the ex-
ception of (Busch and Schweizer, 2011) that uses a non-
iterative predictor/corrector error estimator. Adaptive step
size control can also be used for threshold-crossing de-
tection and location (Esposito et al., 2001) .

Since the presented algorithms all focus on finding the
largest possible step size, it is theoretically possible to
combine them.

4 Adaptive step size control
for Hybrid CT simulation

4.1 Overview of the approach
The approach is illustrated in Figure 3.

General idea The step size controller unit is a compo-
nent of the master simulator, invoked immediately before
performing a simulation step, as depicted in Figure 3a.
The size of the next simulation step is calculated based
on a number of influencing factors, such as values of va-
riables getting near to thresholds, expected occurrence of
events, expected event-responses, etc. These parameters
are pre-defined in a data structure that we call the sensi-
tivity model, that can be considered a configuration para-
meter of the simulation. Afterwards, the simulation step
is performed with the calculated step size. The simula-
tion step is followed by a communication step which is
followed by the step size calculation preparing the next
simulation step and so on.

Architecture The step size controller can be a compo-
nent of the master simulator or an additional layer con-
trolling it. The required sensitivity model is an input of

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

506 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157503

Master simulator

FMU FMU FMU ...

Adaptive
step size

controller

Initialization

Master simulator Communication
step

Simulation step
Step size
calculation

(a) Master simulation algorithm

Master simulator

FMU FMU FMU ...

Adaptive step
size controller

Configuration

Sensitivity model
Global
parameters
(e.g. stopTime)

(b) Architecture

Figure 3. Overview of approach

the component (or the simulator) – in the current imple-
mentation the complete sensitivity model has to be provi-
ded together, altough it would be more practical to pro-
vide the FMU-specific elements individually, encapsula-
ted with the corresponding FMUs (see subsection 6.2).
The architecture can be seen in Figure 3b.

Information to provide In case of FMI-based co-
simulation of a large-scale system integration project, the
FMUs can originate from different stakeholders who may
wish to safeguard their intellectual property. While the
sensitivity model does require some information on the
operation, this information could also be derived by con-
ducting a limited number of preliminary simulation runs
with large (fix) step sizes (see subsection 5.2). Therefore
the sensitivity model is a convenient compromise between
making the models public in order to simulate them accu-
rately and hiding the models and simulate with impracti-
cably small step sizes.

4.2 Sensitivity model
The sensitivity model parametrizes the adaptive step size
control approach. It describes the critical scenarios that
require accurate calculations or detecting discrete events
with low latency – that is, the scenarios where it is impor-
tant to set the step size small.

In case of FMI-based co-simulation the numerical accu-
racy is ensured by the internal simulators of the FMUs, but
in order to detect a discrete event precisely, the event has

to occur at the last moment of the simulation step, other-
wise the event is detected with latency.

4.2.1 Described scenarios

The sensitivity model was created to describe various sce-
narios where the step size need to be adjusted. The data
structure of the proposed sensitivity model can be seen in
Figure 4. The described scenarios can be classified as fol-
lows.

Event reactions Discrete events may trigger other dis-
crete events that have to be simulated with minimal la-
tency. In order to identify these scenarios, a set of event
indicators – i.e. variables where the change of the value
represent an event – have to be declared. During simu-
lation when an event is detected, the step size is set to
minimal, so that the reactions can be simulated accurately.

Example: In order to avoid the latencies during the se-
quences of discrete events during the simulation of the
thermostat, all variables representing messages should be
included in the set of event indicators. However, this so-
lution does not prevent the latency in the detection of the
first message.

Timed events Discrete events may be triggered by the
elapse of time. In order to perform a simulation step so
that the discrete event is simulated without significant la-
tency, they have to be predicted - i.e. the sensitivity model
has to store when to expect an event. A set of variables,
called time indicators can be given that each indicate when
an event will be fired. The values of the variables can be
changed during simulation so periodical events only re-
quire one indicator variable.

Example: It can be predicted when the central moni-
tor initiates the periodical check based on the variable the
component uses for timing the first message.

Threshold-crossing Discrete events may be triggered
by continuous variables crossing a given threshold. In or-
der to facilitate the detection of such scenarios with mi-
nimal latency the sensitivity model allows the description
of auxiliary threshold intervals for the variable with cor-
responding step sizes. Intuitively, the auxiliary intervals
should describe when the value is close to the threshold
and a corresponding step size should be small enough to
detect it. Accordingly, the step size controller does not
guarantee to precisely detect when a value of a signal gets
inside an interval (hence the interval should be appropri-
ately large) but as soon as it is detected, the step size is
adjusted accordingly. This way if the limits of the auxi-
liary interval are appropriate considering the behaviour of
the system, the threshold-crossing can be detected with
low latency.

Example: In case of the threshold-crossing depicted in
Figure 2 the temperature decreases less than 0.003◦C in a
second, therefore any upper bound over 19.003◦C and lo-
wer bound below 19◦C guarantees that a simulation with a
step size of 1 second will surely include a communication
step where the temperature is in the interval but more than

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

DOI Proceedings of the 13th International Modelica Conference 507
10.3384/ecp19157503 March 4-6, 2019, Regensburg, Germany

Sensitivity Model

minimumStepSize: Real

maximumStepSize: Real

0..* eventIndicators

StaticInterval

lowerBound: Real

upperBound: Real

ThresholdInterval

stepSize: Real

Variable
0..* timeIndicators

variable

0..* thresholdIntervals

lowerBound

upperBound
DynamicInterval

Figure 4. Sensitivity model data structure

19◦C. If the step size corresponding to the threshold in-
terval is 0.1 second, then by the time the target threshold-
crossing happens the step size will be set to 0.1 second and
the threshold-crossing will be detected with a smaller la-
tency. (Naturally, choosing the appropriate upper bound
before simulation is more difficult and requires domain
knowledge.)

4.2.2 Dynamic parameters

Parameters of the model (execution of timed events, thres-
holds) can be declared both statically and by assigning a
variable of the FMU whose value determines the current
value of the parameter – the latter can be useful e.g. for
declaring the next occurrence of a timed event or when the
important threshold to cross can change through time.

Example: The constant threshold-interval in the pre-
vious example only facilitates the threshold-crossing de-
tection until the hysteresis changes. In order to create a
general solution, additional variables have to be introdu-
ced to the model, e.g. instead of the constant upper bound
19.003◦C an additional variable vadd can be used with the
value vadd = vtrg − vhys + 0.01◦C where vtrg is the target
temperature vhys is the hysteresis and the constant was in-
creased to ensure the interval is large enough.

As demonstrated by the example, additional variables
often have to be created in order to describe dynamic pa-
rameters. While it is not always possible to modify the
FMUs since they are generated, but it is always possible
to create an additional FMU with the additional variables
that takes the outputs of other FMUs as inputs.

It is important to mention that the sensitivity model des-
cribes expected scenarios – it does not make a difference
during simulation whether the expected events are actually
detected, which makes it applicable for non-deterministic
models. However, the unnecessary adjustments cause the
simulation to be less efficient than it could be if the sensi-
tivity model was more precise.

4.2.3 Minimal and maximal values

As a reference, the minimum and the maximum value of
the step size has to be declared before the simulation. It
is guaranteed that during simulation the step size will al-
ways be between the minimum and the maximum value
(except for the very last step that may be smaller than the
lower bound). Generally, the main reason for the lower

t t-0.05 t+0.05 t t-0.05 t+0.05

Previous
step Simulation step

Next
step

Minimal step size

Latency

Event
indicator Output

(a) Event

t t-0.05 t+0.05 t t-0.05 t+0.05

Previous
step Simulation step

Next
step

Minimal step size

Latency

Event
indicator Output

(b) Event detection

Figure 5. Event detection latency example

bound is to avoid Zeno behaviour that could otherwise be
easy to cause (e.g. it is possible to schedule a sequence of
timed events, always with half as much delay as the last
one). However, in case of Hybrid CT simulation the lo-
wer bound is the guaranteed maximal delay of detecting
a timed event, as well as the guaranteed delay between a
sequence of discrete events triggered by each other. The
upper bound becomes significant when there is no discrete
event to expect in the next step – in this case, the step size
is set to the given maximum value.

Example In order to demonstrate the significance of the
minimal step size, consider the periodical check perfor-
med by the central monitor. Let us suppose the next check
is scheduled at time stamp t however, because of an active
threshold-interval, the current step size is 0.15 s, the simu-
lation time after the last step is t −0.05 s and the minimal
possible step size is 0.1 s. Since the size of the next si-
mulation step has to be at least 0.1 s the the event will be
detected at t+0.05 s. The latency is illustrated in Figure 5.

The event initiates a sequence of discrete events (re-
sponses) and if the event indicators are defined appropri-
ately in the sensitivity model then the step size stays at
the minimal value during the simulation of the event se-
quence.

4.2.4 IP protection concerns

In an industrial environment it is possible that the model
constitutes confidential intellectual property and using the
step size controller would require disclosing some of the
restricted information in the sensitivity model.

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

508 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157503

In this case the step size controller has to be used dif-

ferently: in order to protect intellectual property, the mo-
del needs to be modified so that the critical scenarios are
identified within the FMU. This can be achieved using an
auxiliary variable representing the critical scenarios and
creating corresponding threshold intervals in the sensiti-
vity model.

Example: Suppose there is a critical scenario that must
be simulated precisely. Instead of providing a detailed
sensitivity model, an auxiliary variable v can be used to
identify the scenario – e.g. v = 1 during the scenario
and v = 0 otherwise. The corresponding interval can be
0.5 ≤ v ≤ 1.5 and the corresponding step size can be the
minimal value. This way, when the critical scenario is
detected (within the FMU) v is set to 1 and the step size
controller adjusts the step size to the minimal value.

4.3 Algorithm
In order to calculate the size of the simulation steps, the
latest values of event indicators have to be stored. After
a communication step, the size of the next simulation step
is calculated based on the detected events, the scheduled
timed events and the threshold-crossing intervals. Each
element of the sensitivity model defines an upper bound
on the size of the next step (including the global maximum
step size), therefore the actual value of the next step should
be the minimum of the given upper bounds (unless it is
smaller than the possible minimal value).

An event can be detected by checking if the current va-
lue of the corresponding event indicator differs from its
previous value. When an event is detected the step size has
to be set to the minimal possible value. The stored (previ-
ous) values of event indicators always have to be updated,
but when an event is detected, no additional calculations
are necessary as the step size will certainly be set to the
minimal possible amount.

In case when no event is detected the time indicators
and the threshold intervals have to be checked. If a value
of a time indicator is less than the current simulation time
t, it is irrelevant. The time indicator with the smallest va-
lue tmin > t denotes the next possible timed event. In order
to detect the event precisely the next step can not exceed
the difference tmin − t, except if it is less than the defined
minimum.

The upper bound on the next step based on the threshold
intervals can be derived by checking the corresponding va-
riables – if the value of a variable is within the bounds of
one of its corresponding auxiliary intervals, the next step
can not exceed the corresponding step size described in
the sensitivity model.

Example: Let us demonstrate the simulation using
adaptive step size control on the thermostat model with
the sensitivity model describing the scenarios discussed
before and the minimal step size set to 0.01 s and the max-
imal step size set to 10 seconds. (The bounds of the step
size are intentionally unrealistic to demonstrate the opera-
tion of the step size control.) The intervals for the thres-

Table 1. Adaptive step sizes of the Thermostat

Start time Scenario Size Steps
0.00 s Default step size 10.00 18

180.00 s Message sequence 0.01 8
180.08 s Default step size 10.00 13
310.08 s Temp. below 19.10◦C 1.00 28
338.08 s Temp. below 19.02◦C 0.10 66
344.68 s Message sequence 0.01 9
344.77 s Temp. below 19.02◦C 0.10 162
350.97 s Temp. below 19.10◦C 1.00 9
359.97 s Timed event at 360 s 0.03 1
360.00 s Message sequence 0.01 8
360.08 s Temp. below 19.10◦C 0.01 15
375.08 s Default step size 10.00 2
395.08 s Simulation ends at 400 s 4.92 1

hold crossings are set so that when the difference between
the current threshold is less than 0.1◦C, the step size is set
to 1.0 s and when it is less than 0.02◦C, the step size is set
to 0.1 second. The model is simulated for 400 seconds.
The step sizes are shown in Table 1.

The simulation begins with the maximal step size. The
first periodical check happens to be scheduled exactly at
the end of the 18th step, therefore, the step size does not
have to be adjusted. However, as soon as the first message
is detected, the sequence of discrete events caused by the
messages is simulated with minimal latency.

In case of the checks caused by the temperature decre-
asing below 19◦C, the first discrete event – the state tran-
sition of the thermostat – is detected with (relatively) high
latency: the current step size to the corresponding inter-
val, namely 0.1 s. After that, the monitors send the same
eight messages which is why there is one more event in
this sequence, than in the ones representing the messages
passed during the timed checks.

In conclusion the simulation takes 340 steps, which is
99% less than what it takes to simulate it with constant
step size of 0.1 s (which would take 40 000 steps) but the
results are more precise.

5 Experimental evaluation
We have integrated the proposed adaptive step size con-
troller component in the OMSimulator1 and run measure-
ments on case studies with constant steps of different step
sizes as well as using adaptive step size control. In order
to find out how the step size controller affects performance
we measured the runtime and then analysed the differen-
ces between the efficiency and the results of corresponding
simulations.

5.1 Thermostat
The sensitivity model for the Thermostat was presented
in section 4. We performed the simulation with various
constant step sizes as well as with the step size controller.

1https://github.com/OpenModelica/OMSimulator

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

DOI Proceedings of the 13th International Modelica Conference 509
10.3384/ecp19157503 March 4-6, 2019, Regensburg, Germany

Table 2. Simulation performance of the Thermostat example

Size Steps Runtime Min temp Max temp
0.01 300 000 150.94 s 18.9997◦C 24.5000◦C
0.10 30 000 15.32 s 18.9975◦C 24.5004◦C
1.00 3 000 1.49 s 18.9734◦C 24.5047◦C

10.00 300 0.16 s 18.7387◦C 24.5356◦C
* 808 0.46 s 18.9990◦C 24.5005◦C

Each time 3000 seconds were simulated. The results are
shown in Table 2. The columns of the table contain the
step size, the number of steps performed, the runtime of
the simulation, and the minimal and the maximal simu-
lated temperature (respectively). The * in the first cell of
the last row represents that the simulation includes various
step sizes, as chosen by our adaptive algorithm. The simu-
lation with adaptive step size control resulted in 144 steps
of 0.01 s, 282 steps of 0.1 s, 93 steps of 1 s, 275 steps of
10 s and 13 steps of other sizes.

In the simulated scenario, the target temperature is
22◦C with initially 3◦C tolerance (which is why the mi-
nimal value is just below 19◦C) that is later set to 2.5◦C
by the user (which is why the maximal value is just above
24.5◦C). The results show, that – in case of constant step
sizes – an order of magnitude difference in the step si-
zes yields an order of magnitude difference between the
expected and the simulated extreme values. However, in
case of adaptive step size control, the difference is almost
as small as in case of the 0.01 s steps while the simulation
was almost as fast as in case of the 10 s steps.

5.2 Sherpa Automotive demonstrator
The Sherpa Automotive demonstrator is one of the indus-
trial models in the OpenCPS project2 that served as a basis
for required improvements of the simulator.

The case study contains the models representing the
mobility aspects of the system presented in (Mokukcu
et al., 2017). The physical aspects of a hybrid electric
vehicle are simulated to determine the amount of energy
required for the vehicle to move with the required speed.
The simulated scenario is 1200 time units and the default
step size is 0.01. We have performed the simulation with
constant step sizes of 0.1 and 0.01. The simulated speed
of the vehicle is depicted in Figure 6. Up to 800 time units
the results are similar: the largest difference between the
result of the simulation with the small (red) and the large
(blue) step size is less than 0.55. The biggest differen-
ces appear near to the local minimum and local maximum
values. In the remaining part of the simulation the dif-
ferences are much larger (14.0) and additional high fre-
quency sine components appear. The unstable oscillating
waveforms show that a step size of 0.1 is too large for

2 ITEA3, OpenCPS: Open Cyber-Physical System Model-Driven
Certified Development http://www.opencps.eu

accurate simulation.
The goal of adaptive step size control is to improve si-

mulation performance by using larger step sizes where it
does not affect precision. After studying the results we
have created a simple sensitivity model: braking is con-
sidered a discrete event, therefore the the signal represen-
ting the brake position is used as an event indicator, and in
order to avoid the additional sine components, threshold
intervals are used on the variable representing the target
speed.

We run the simulation, with 0.1 as maximal and 0.01
as minimal step size three times with the event indicator
and the intervals individually and combined. The results
can be seen in Figure 7. The runtimes and an evaluation
of all performed simulations are shown in Table 3. The
Diff column of the table denotes the maximum difference
between the simulated speed of the vehicle and the speed
simulated by the default simulation and Diff2 denotes the
maximal difference in the first 800 s of simulation time.

Using the brake as event indicators causes a runtime al-
most 90% smaller than that of the original simulation with
step size 0.01 while reducing the error of the large step
size simulation: in the first part the difference remained
under 0.55 and the unstable oscillations of the results di-
sappear decreasing the biggest difference to 2.8. However,
some additional low frequency sine waveforms can still be
seen.

Using the intervals (without event indicators) causes a
runtime 40% smaller than the simulation with the small
step sizes and reduces the error of the simulation with the
large step sizes: in the first part the difference is less than
0.55 and the obscure parts of the result disappear decrea-
sing the maximum of the difference to 0.7. However, one
additional sine waveform remains.

Using both elements of the sensitivity model combines
the advantages in accuracy as the results of the simulation
are almost the same as that of the simulation with the small
step size. However, the resulting runtime is larger than
that of the simpler sensitivity models (though not as large
as the runtime with a fixed small step size), since in each
step the step size is the minimum of those in the previous
cases.

The results show, that using the brake as event indicator
increased the performance drastically while only introdu-
cing small simulation errors. The case study also demon-
strated that intervals can be used to identify the critical
scenarios.

6 Discussion
6.1 Limitations and opportunities
As demonstrated in section 5 adaptive step size control
can be used to improve simulation performance. Step size
control has been shown to be effective for event detection
as well as decreasing runtime while preserving numerical
accuracy.

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

510 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157503

Figure 6. Simulation results of automotive case study

Table 3. Simulation performance of the automotive case study

Events Intervals Small steps Large steps Total steps Runtime Diff Diff2 Remark
120 000 0 120 000 31.27 s – – Default simulation

0 12 000 12 000 3.59 s 14.0 0.55 Unstable oscillations
+ 688 11 932 12 620 3.90 s 2.8 0.54 Sine waveforms

+ 34 900 8 511 43 411 18.54 s 0.9 0.55 Sine waveform
+ + 35 005 8 500 43 505 18.81 s 0.7 0.54 Almost identical

Usability The sensitivity model for the adaptive step
size controller requires domain knowledge (e.g. for event
prediction), however, some parts of it (e.g. the step sizes
assigned to the intervals for threshold-crossing detection)
depend on the current simulation configuration. Since
both domain-specific and simulation-specific knowledge
are required, using the step size controller in its current
form may cause difficulties in an industrial environment.
A possible solution can be separating the required infor-
mation and creating the sensitivity model in a final step
(see subsection 6.2).

Extensibility The proposed step size controller can be
easily extended with additional functionalities: the core
of the proposed approach is determining an upper bound
of the size of the next step based on several approaches
and then choosing the minimum of the calculated upper
bounds – it is easy to introduce new analysis methods to
the sensitivity model that determine upper bounds based
on new aspects. For instance, the algorithm could be com-
bined with the step size controller approach for numerical
stability proposed in (Busch and Schweizer, 2011) or the

threshold-crossing detection approach proposed in (Espo-
sito et al., 2001).

Possible improvements The proposed solution only
considers the possible events in the next step, which – as
presented in subsection 4.2 – causes delays. The delays
could be minimized using a lookahead method that inclu-
des more than one step in the calculation.

Example: In the previously referred example there is a
communication step at t − 0.2 s. No event is expected in
the next simulation step, therefore the next step size is set
to 0.15 s. At t − 0.05 s the event at t is considered, but
since the minimal step size is 0.1 s the event is detected
with latency. However, the delay can be prevented by ta-
king two consecutive steps of 0.1 s.

The threshold-crossing detection approach can also be
improved by using an advanced solution that uses extrapo-
lation to analyse the possibility of threshold crossing and
adjust the step size accordingly. This way it can be avoi-
ded to provide intervals and corresponding step sizes.

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

DOI Proceedings of the 13th International Modelica Conference 511
10.3384/ecp19157503 March 4-6, 2019, Regensburg, Germany

(a) Result of simulation with event indicators (b) Result of simulation with intervals

(c) Result of simulation with complete sensitivity model

Figure 7. Results of simulating the automotive case study with step size control

6.2 Lessons learnt

Implementation Throughout the OpenCPS project we
have simulated FMUs from various sources, such as
OMEdit, Dymola, Simulink, etc. and we have discove-
red that some FMUs do not comply with the FMI standard
completely. As mentioned before, sometimes FMUs can
not perform rollbacks. Additionally, in case of the ther-
mostat example the changes in the step sizes introduced
odd slopes that later turned out to be caused by the fact
that certain defective FMU implementations always per-
form the step with the previous step size. The difference
between the values of the decreasing phase of Figure 2 is
caused by the same phenomenon: in the first simulation
step (not depicted in the figure) the value does not change
and the decrease of the temperature starts in the second si-
mulation step, which is at 0.1 s in one case (denoted by the
blue line) and 0.01 s in the other. The time shift causes the
difference between the values. This shows that the FMUs
must be prepared in order to use adaptive step size control
effectively.

Error approximation Currently there are no approxi-
mations for the error of the simulation, other than that of
the internal simulators of the FMUs. However, – as de-
monstrated in Figure 5 – discrete events can introduce new
types of errors besides numerical stability. The calculation
of simulation errors resulting from hybrid co-simulation is
a complex theoretical problem and we believe it is an area
worth exploring.

Simulation configuration The sensitivity model requi-
res data that can be difficult to acquire, especially when
the FMUs to co-simulate originate from different stake-
holders. While the DefaultExperiment element of the mo-
del description file contains simulation-specific informa-
tion, it only specifies configuration data for simulation
with constant step size. Moreover, from a hybrid co-
simulation point of view, there are few ways to provide
discrete system-specific information in the model descrip-
tion file. A notable exception is the variability attribute
of ScalarVariable elements that can be set to discrete the-
reby denoting an event indicator. However, in case of FMI
for co-simulation, timed events and relevant threshold-
crossings can not be specified.

Accordingly, in the current implementation the infor-
mation stored in the sensitivity model is provided by the
user as an input of the simulator. However, we believe it
would be beneficial to make it possible to provide infor-
mation specific to discrete/hybrid systems and configura-
tion parameters for simulation with variable step size in
the model description file.

7 Conclusions
In this paper we presented a step size controller appro-
ach that improves continuous time simulation of discrete
event components. The core of the approach is the sensi-
tivity model that describes the simulation scenarios where
it is necessary to adjust the step size in order to simu-
late accurately. The sensitivity model can include se-
quences of discrete events, timed events and intervals for

Adaptive Step Size Control for Hybrid CT Simulation without Rollback

512 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157503

threshold-crossing detection. The described scenarios can
also change dynamically during simulation.

After each communication steps of the master algo-
rithm, the size of the next simulation step is calculated
based on the sensitivity model and the current values of va-
riables. The presented method does not require rollbacks.

We have implemented the presented approach within
OMSimulator and studied its applicability to the Thermo-
stat example as well as an industrial case study. The re-
sults show that the step size controller provides a better
compromise between simulation accuracy and efficiency
than fixed step sizes by using small step sizes only when
is required for simulation accuracy.

We have conducted experiments and found that the step
size controller can bridge the gap between continuous time
simulation and discrete event components, thereby impro-
ving simulation of cyber-physical systems.

Acknowledgement
This project was partially supported by the Hungarian
National Research, Development and Innovation Office
through the EUREKA_15-1-2016-0008 project as part of
the international ITEA3 OpenCPS (14018) project. The
authors would like to thank Magnus Eek, Lennart Ochel,
Philippe Fiani and Krisztián Mócsai for their assistance in
this research.

Gábor Bergmann was partially supported by the János
Bolyai Research Scholarship of the Hungarian Academy
of Sciences and by the ÚNKP-18-4 New National Excel-
lence Program of the Ministry of Human Capacities.

References
Martin Arnold, Christoph Clauß, and Tom Schierz. Error ana-

lysis and error estimates for co-simulation in fmi for model
exchange and co-simulation v2. 0. In Progress in Differential-
Algebraic Equations, pages 107–125. Springer, 2014a.

Martin Arnold, Stefan Hante, and Markus A Köbis. Error
analysis for co-simulation with force-displacement coupling.
PAMM, 14(1):43–44, 2014b.

Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, et al.
Functional mockup interface 2.0: The standard for tool in-
dependent exchange of simulation models. In Proceedings
of the 9th International MODELICA Conference; September
3-5; 2012; Munich; Germany, number 076, pages 173–184.
Linköping University Electronic Press, 2012.

Martin Busch and Bernhard Schweizer. An explicit appro-
ach for controlling the macro-step size of co-simulation met-
hods. Proceedings of The 7th European Nonlinear Dynamics,
ENOC, pages 24–29, 2011.

Joel M Esposito, Vijay Kumar, and George J Pappas. Accurate
event detection for simulating hybrid systems. In Internatio-
nal Workshop on Hybrid Systems: Computation and Control,
pages 204–217. Springer, 2001.

Rüdiger Franke, Sven Erik Mattsson, Martin Otter, Karl Wer-
nersson, Hans Olsson, Lennart Ochel, and Torsten Blochwitz.
Discrete-time models for control applications with fmi. In
Proceedings of the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017, number 132, pa-
ges 507–515. Linköping University Electronic Press, 2017.

Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe
Tavella, Jean-Philippe Lam-Yee-Mui, and Gilles Plessis.
Fmi-based distributed multi-simulation with daccosim. In
Proceedings of the Symposium on Theory of Modeling & Si-
mulation: DEVS Integrative M&S Symposium, pages 39–46.
Society for Computer Simulation International, 2015.

Sahar Guermazi, Saadia Dhouib, Arnaud Cuccuru, Camille Le-
tavernier, and Sébastien Gérard. Integration of UML mo-
dels in fmi-based co-simulation. In TMS/DEVS 2016, page 7.
ACM, 2016.

Mert Mokukcu, Philippe Fiani, Sylvain Chavanne, Lahsen
Ait Taleb, Cristina VLAD, and Emmanuel Godoy. Cont-
rol Architecture Modeling using Functional Energetic Met-
hod: Demonstration on a Hybrid Electric Vehicle. In 14th
International Conference on Informatics in Control, Auto-
mation and Robotics (ICINCO), Madrid, Spain, July 2017.
doi:10.5220/0006413300450053. URL https://hal.
archives-ouvertes.fr/hal-01719924.

Tom Schierz, Martin Arnold, and Christoph Clauß. Co-
simulation with communication step size control in an fmi
compatible master algorithm. In Proceedings of the 9th In-
ternational MODELICA Conference; September 3-5; 2012;
Munich; Germany, number 076, pages 205–214. Linköping
University Electronic Press, 2012.

Antoine Viel. Implementing stabilized co-simulation of strongly
coupled systems using the functional mock-up interface 2.0.
In Proceedings of the 10 th International Modelica Confe-
rence; March 10-12; 2014; Lund; Sweden, number 096, pa-
ges 213–223. Linköping University Electronic Press, 2014.

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

DOI Proceedings of the 13th International Modelica Conference 513
10.3384/ecp19157513 March 4-6, 2019, Regensburg, Germany

Steady State Initialization of Vapor Compression Cycles Using the Homotopy
Operator
Schulze, Christian and Varchmin, Andreas and Tegethoff, Wilhelm

513

Steady State Initialization of Vapor Compression Cycles
Using the Homotopy Operator

Christian Schulze1 Andreas Varchmin1 Wilhelm Tegethoff2

1TLK-Thermo GmbH, Germany, {c.schulze,a.varchmin}@tlk-thermo.com
2Institut für Thermodynamik, University of Braunschweig, Germany, w.tegethoff@tu-braunschweig.de

Abstract
This paper presents a concept how a hybrid DAE of a va-
por compression cycle can be initialized in steady state us-
ing the homotopy method. A simplified equation system
for a vapor compression cycle is described and its compu-
tational causality explained. It is discussed how additional
boundary conditions can be applied to the simplified equa-
tion system, which do not apply to the actual equation sys-
tem. The robustness and CPU time for different cases is
examined and discussed based on transition plots.
Keywords: Vapor Compression Cycle, Homotopy, TIL,
ThermalSystems

1 Introduction
Modelica is nowadays widely used in industry and re-
search for object oriented modelling and transient simu-
lation of cyber physical systems. Several Modelica com-
pilers are available and the compatibility between them is
continuously improving.

Although Modelica is used for transient simulation of
dynamic models, the user is often only interested in the
steady state results. And even if the transient simulation
is wanted, the initial state of the model is preferred to be
in steady state. These arguments particularly apply to va-
por compression cycles, because they are computationally
very expensive.

Models which were implemented for steady state sim-
ulation are fundamentally different from transient mod-
els, because simplifications or analytic solutions such as
the NTU method (see Verein deutscher Ingenieure (2013))
can be applied. From a user’s perspective it would be most
convenient to have just one model for both cases. If it is
not possible to merge both models, then the two different
models should provide the same level of detail and preci-
sion.

A typical simple model optimized for steady state simu-
lation of a vapor compression cycle could have two (alge-
braic) state variables. A dynamic model using finite vol-
ume method may have more than 100 (continuous time)
state variables, which have to be brought into a steady
state. So the dynamic models used for transient simu-
lation are structurally more complex than models which
have been optimized for steady state calculations.

If a dynamic model is initialized in steady state, all con-

tinuous time states and other initial unknowns (e.g. fixed
=false parameters) are calculated from an nonlinear sys-
tems of equations of the initialization problem. This ini-
tialization equation system is a result of the initial equation
der()=0 for all continuous time states.

Most Modelica tools translate the hybrid DAE de-
scribed by the Modelica equations to an explicit hybrid
ODE to solve it. Nonlinear sub-systems are solved inline
e.g. using Newton’s method. Some tools also provide a
DAE Solver to handle both, the differential equations and
the algebraic equations. However, the focus of these solv-
ing methods is the transient integration rather than solving
large nonlinear systems. Often the nonlinear solvers fail
to solve the nonlinear equation system of the initialization
problem.

One solution to improve the chance for a convergence
of the nonlinear system of the initialization problem would
be to improve the root finding method. Another solution
would be to simplify the model. The homotopy operator is
targeted at the second option. The nonlinear equation sys-
tem of the initialization problem can be simplified to make
sure that also less sophisticated solvers find a solution.

Vapor compression cycles are computationally very ex-
pensive. The fluid properties used in these models are
highly nonlinear and based on complex equations (mul-
tiparameter equations of state). The fluid properties also
have a very limited numerical range of validity, e.g. evalu-
ating these properties for a negative pressure, temperature
or density is impossible. As the equations have been es-
timated to describe measurement data, they also have an
even more restrictive physical range of validity. So it is
essential that the system state always is within the range
of validity.

2 Homotopy Operator
2.1 Rationale
If a dynamic model is initialized in steady state, many start
values are required. From an engineer’s perspective, rea-
sonable start values are either obvious and easily defined,
or they are almost impossible to provide, because they are
actually the desired result of the model. The solving pro-
cedure is obscure because it is intellectual property of the
tool vendor, and often it is not clear if the solving pro-
cess has failed because of physical or numerical problems.

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

514 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157513

Usually the engineer can observe that parts of the system
seem to diverge to problematic working conditions, but
there is no way to influence the solving procedure.

The larger algebraic nonlinear systems are, the harder
it is to trace back the reason for convergence problems
of nonlinear systems. It is very difficult to provide good
feedback to the user about the underlying problem.

Homotopy is a concept to increase the robustness and
simplify the solving procedure for algebraic nonlinear sys-
tems. The idea is to use a simplified model (to replace
complex dependencies by simplified ones), to calculate a
first guess for the result of the actual equation system, and
to make use of the similarity of the systems during the
transition from the simple to the complex equation sys-
tem.

For simple nonlinear systems a common Newton solver
will be more efficient than using homotopy method. The
larger the nonlinear systems are, the more effort has to be
invested into the numeric root finding method. The ho-
motopy method enables the engineers to find better ways
to define start values, and to focus the solving procedure
on relevant aspects. So in other words, it enables to de-
scribe the aspects which are obvious to the engineer with
a physical understanding of the system. An engineer al-
ways crosschecks the plausibility of the calculated system
states - the solver cannot do that.

An engineer would also try to generate guess values
based on a levelled approach. So first the focus should be
on the top level, to set general working conditions includ-
ing guess values for interface values between subsystems.
After that each subsystem has to be processed using the
interface values. Interdependencies between subsystems
can and have to be broken completely at the interfaces be-
tween the subsystems.

The homotopy method requires a simple equation sys-
tem, which can be used to calculate the same state vari-
ables that are calculated from the actual equation system.
Additionally it is essential that the resulting solution of the
state variables only changes continuously during the tran-
sition from the simple to the actual equation system. So
the causality must be compatible, and the transition must
be continuous. If these two requirements are fulfilled, then
the homotopy method can be applied.

2.2 Homotopy in Modelica
The Modelica implementation of homotopy as presented
in Sielemann et al. (2011) uses one global dimensionless
transition factor λ which is zero for the simple equation
system and one for the actual equation system.

The homotopy operator looks like a function in Model-
ica. It outputs a linear combination of the two inputs:

function homotopy
input Real actual;
input Real simplified;
output Real val;

end homotopy;

The homotopy function switches term-wise between
actual and simple equations. A small example could look
like this:

y = Termactual ·λ +Termsimple · (1−λ) (1)

z = y2 (2)

Even though the term for the calculation of y is switched
linearly in eq. 1, the eq. 2 to calculate z is switched non-
linearly because it is nonlinearly dependent on y.

In general all derivatives have to be set to zero, to ini-
tialize a system in steady state, consequently there will
be a large initialization nonlinear system. The homotopy
function can be used anywhere in the model equations or
initial equations. The function is intended to be used to
support solving nonlinear systems and it will be ignored
in other cases.

In Dymola there is a separate symbolic analysis of the
simplified equation system (λ = 0) that may have a differ-
ent computational causality and structure. E.g. the former
iteration variables could be calculated explicitly. There
is also a symbolic analysis for the initialization nonlinear
equation system dependent on the parameter λ which rep-
resents the der()=0 initial equations. The latter equation
system has the same structure, dimension and computa-
tional causality as if the homotopy method was not used,
although the homotopy function calls were inlined.

The solving procedure often implements a few basic
steps:

1. λ is set to 0

2. The (separately analysed) simplified equation system
is solved

3. The initialization equation system with the current λ

is solved using a common root finding method with
start values from the last evaluation

4. λ is increased

5. if λ < 1, repeat steps 3-5, else final execution of 3

Instead of solving one equation system, an equation
system has to be solved for each λ -value. So by design
the homotopy method is more computationally expensive
than solving the actual equation system directly. However,
comparing the CPU time is difficult, because the start val-
ues have a huge impact, and the chance of convergence
for different boundary conditions is also important. Com-
mon root finding method usually fail to initialize a larger
system in steady state without using homotopy method.
Considering robustness and the lack of good start values,
it is worth investigating the homotopy method.

Dymola usually uses a common root finding method for
nonlinear systems and it is required to activate the homo-
topy method use from the beginning (this can be done with
an Advanced-flag, or an annotation in the model). By de-
fault, the initial lambda step size is 0.1 and it remains un-
changed until one evaluation fails. If that happens, the step

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

DOI Proceedings of the 13th International Modelica Conference 515
10.3384/ecp19157513 March 4-6, 2019, Regensburg, Germany

size is reduced and the solver will try again. But the step
size will not be reset to 0.1, it remains reduced for the rest
of the solving procedure. This sometimes has a negative
effect on the computation time, if the transition is highly
nonlinear for low λ -values.

Initialization in a partially steady state is usually not
meaningful. Parts of a model which are not initialized in
steady state can be seen as a dynamic boundary condition
to the connected other model part which shall be initial-
ized in steady state. If the time derivative of all states in
a subsystem are zero given dynamic boundary conditions,
then usually that subsystem is not in a steady state. The
time derivative will be zero at the simulation start, but will
be unequal to zero as soon as t > tstart.

The Modelica homotopy operator is supported by dif-
ferent Modelica compilers such as OpenModelica, Dy-
mola, and SimulationX. But currently not many libraries
extensively use this method. E.g. the ThermoPower li-
brary (Casella and Leva, 2006) provides models with ho-
motopy as discussed in Casella et al. (2011). The ClaRa
library (Gottelt et al., 2017) also applies the homotopy op-
erator, but this feature is not implemented completely. The
ThermoCycle (Quoilin et al., 2014) uses homotopy. The
TIL library (Gräber et al., 2010), which is also known as
ThermalSystem library, does not yet support homotopy,
but is the basis for this publication.

2.3 Simple Example

Figure 1. Nonlinear pump characteristic with transition to a
simplified solution. The simplified model is linear, can there-
fore be solved symbolically and has only one solution.

In figure 1 the transition between a nonlinear pump
characteristic and linear approximation equation is shown.
The Modelica code is listed in section A.

These nonlinear pump characteristics can cause prob-
lems because algebraic equation systems based on them
may have several solutions. E.g. if the pressure differ-
ence is known and not dependent on the volume flow rate,
there might be three possible volume flow rates (e.g. at
dp = 6.5). In fact this is also a common problem for real
systems. Homotopy can help to find the wanted (right-
most) solution without giving a start value.

First the simple equation system can be rearranged
symbolically to calculate the mass flow rate because it
is a linear relationship. Then this result will be used to
solve the nonlinear equation system 6.5 = dp(Vflow) with
λ = 0. So the residual should be equal to zero for the
calculated start values. Subsequently lambda is increased

(e.g. λ = 0.1) and the equation system is solved again.
But since the new equation system is almost the same as
the last one, it is easy for the root finding method to find a
solution close to the start value.

Figure 2. Solving the pump characteristic for dp = 6.5 at λ =
0.7. The last result of the nonlinear system is used as start value
(large diamond marker) to find the next result (small diamond
marker).

In figure 2 the curve for λ = 0.7 is shown. The large
diamond marker represents the start value from the last so-
lution for λ = 0.6. The small diamond marker represents
the result of the equation system. The start value and the
solution are very close to each other, and by reducing the
λ step size, the values will be even closer.

Figure 3. Solutions of the equation system plotted over λ . The
transition is continuous and describes the transition from the
simple equation system to the actual one.

If the transition is continuous, then solutions calculated
for different lambda form a continuous solution path from
the simple to the actual equation system. The transition
of the resulting algebraic state is shown in figure 3. There
must not be a discontinuity or pole in this λ -plot. The
λ -plot could also be considered as a root locus plot - the
solutions for different λ -values are connected to a line.

3 Initializing Vapor Compression Cy-
cles with Homotopy

We are focusing on finite volume models with balance
equations for mass, energy, and momentum. Some com-
ponents such as the valve and compressor have steady
state balance equations. The dynamic heat exchangers are
dicretized one-dimensionally. In contrast to that the sep-
arator model is a 0-D model with dynamic mass and en-
ergy balance. For more details see Schulze (2013). If the
dynamic component models shall be initialized in steady
state, then an additional initial equation has to be added
to set the time derivative of the continuous time state to

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

516 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157513

zero. The continuous time state variables are pressure and
specific enthalpy.

150 200 250 300 350 400 450 500 550 600
Specific Enthalpy [kJ/kg]

1

8

16

Pre
ssu

re
 [b

ar
]

fixed Q_flow

fixed Q_flow
fix

ed
 m

_fl
ow

fix
ed

 P
_fl

ow

fixed p
lin

ea
r e

qu
at

io
n

Figure 4. User-defined boundary conditions for the simplified
equation system. Heat flow rates in each component are pre-
defined, mass flow rate, separator pressure, and a linear valve
characteristic.

In figure 4 the boundary conditions used for this work
are shown. The basic concept for the simple equation sys-
tem is to describe the state of a whole vapor compression
cycle using a number of simple conditions:

• Fixed heat flow rates in each heat exchanger

• Fixed mass flow rate and power in the compressor

• Fixed pressure and filling level in the separator

• Linear characteristic in the valve

For this simplified nominal working state, all mass flow
rates, enthalpy and pressure states can be calculated. Due
to the steady state mass balance all mass flow rates are
equal to the one set in the compressor. The high pres-
sure is set by the user in the separator. The low pressure
is calculated from the mass flow rate, the high pressure,
and linear valve characteristic. Starting from the separator
outlet enthalpy in a saturated state (which is known due
to the fixed pressure), all enthalpies can be calculated. In
a discretized heat exchanger the heat flow rate density is
assumed to be constant, so if the control volumes have the
same size, the enthalpy difference between two neighbor-
ing volumes is constant.

The valve characteristic is a linear equation which con-
nects high pressure, low pressure, mass flow rate, and
valve opening area. The valve opening area is usually con-
trolled.The valve opening area must not be removed from
the simple equation system, because the controller state
will be calculated from it.

The above described simplified equation system does
not require the calculation of fluid properties. Usually
the heat flow rate is calculated from a temperature differ-
ence, but as the heat flow rates are predefined, the tem-
perature has no influence on the result of the simplified
equation system. If in contrast a complex heat transfer

model would be replaced only by a constant heat transfer
coefficient, then the temperature-enthalpy relation is not
broken (Casella et al., 2011).

During the transition between the simplified and actual
equation system the states must stay within the range of
validity of the fluid properties. So the definition of the
simple system and the transition to the actual equation sys-
tem are the most important challenges when using homo-
topy.

Because the simple equation system is analysed sep-
arately, it is solved symbolically and no start values are
required. This is one of the main advantages when using
homotopy. The user only has to provide the values listed
above and nothing more. Usually the user knows how to
choose this nominal working state.

This concept also works for more complex vapor com-
pression cycles. In case there are more than two pressure
levels, there has to be an additional separator or a compo-
nent such as an ejector. An additional separator would set
the pressure, and an ejector would set the mass flow rate
ratio between suction inlet and driving inlet. Also inter-
nal heat exchangers do not cause problems, because the
predefined heat flow rate decouples the two fluid pipes. If
a system consists of multiple connected vapor compres-
sion cycles and/or heating/cooling liquid cycles, this sim-
ple equation system decouples the cycles and the above
shown computational causality can be applied to each cy-
cle.

The level of abstraction of the presented approach is
higher than in other publications such as (Casella et al.,
2011), many relations have been replaced completely by
predefined values, not only by linear relations.

4 Loop Breaker Component
A vapor compression cycle consists of at least 4 compo-
nents connected to a cycle. If dynamic models are used,
then it is no problem to connect these components to a cy-
cle. If only steady state models are used, then the mass
balance causes circular dependencies. Each component
has a mass balance that basically sets the outlet mass flow
rate equal to the (negative) inlet mass flow rate:

ṁA = ṁB (3)
ṁB = ṁC (4)
ṁC = ṁD (5)
ṁD = ṁA (6)

This equation system is singular. The equation ṁA = ṁA
can be derived, and no value is set.

To solve this problem using pure steady state models,
an additional component called loop breaker is used. This
component does not have a mass balance and is therefore
underconstrained. The circular dependency is no longer a
problem. However, when initializing a dynamic model in
steady state, the mass balance cannot be removed. Only
for the initialization phase the circular dependency has to
be broken.

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

DOI Proceedings of the 13th International Modelica Conference 517
10.3384/ecp19157513 March 4-6, 2019, Regensburg, Germany

The locally overdetermined equation system for the

mass flow rates can be brought into a balanced form, if one
degree of freedom is added to the this part of the initializa-
tion problem. This degree of freedom has to be set by the
mass balance equations. There are only a few ways to add
a degree of freedom to the initialization equation system
without changing the continuous time equation system:

1. A parameter with fixed=false

2. A discrete state variable

3. A continuous time state variable with der()=0 as
continuous time definition

One possible implementation for a loop breaker can
be interpreted as a junction model. Starting point is a
component model with one inlet connector and one out-
let connector. In this model an additional mass flow rate
mDot_loopbrk is added to the mass balance. If this com-
ponent is integrated to the closed cycle of steady state
components, mDot_loopbrk can be calculated. As no
mass is added in the other components, no mass will leave
the loop breaker component, therefore mDot_loopbrk is
equal to zero:

parameter Real mDot_loopbrk(fixed=false);
initial equation
der(density)=0;

equation
mDot_in + mDot_out + mDot_loopbrk =
volume*der(density);

It is important to notice, that the whole initialization
problem is balanced. It is only locally overdetermined. So
by adding a degree of freedom another initial equation can
be added.

The presented approach is similar to the one used by
(Casella et al., 2011).

5 Separator Model
The separator model has to be treated different from the
other models. Generally the separator has two main pur-
poses. First, it separates liquid from vapor in a normal
operating condition. Second, it is used to store refrigerant
without changing the state of the system. This compo-
nent is also special because its state cannot be calculated
from the constraint der()=0, because in normal operat-
ing condition, the filling level of this component does not
influence the outlet state (pure liquid or vapor). An addi-
tional information about the initial filling level or the total
mass in the system is required. The additional degree of
freedom added for the mass balance loop breaker is used
for this purpose. So actually there is a der(h)=0 initial
equation, and a fillingLevel=initialFillingLevel

initial equation.
The above presented approach to use predefined heat

flow rates may lead to another problem: The sum of the
predefined heat flow rates and powers might not sum up to
0. This is by definition not a steady state, since more (or

less) heat is put into than taken of the cycle. This circular
dependency is not properly detected by Dymola, rather the
problem is solved numerically. If the energy balance is
fulfilled numerically, then the solution can be found. If the
energy balance is not fulfilled, then evaluating the simple
solution fails. Similar to the mass balance, the system of
equations is not in a locally balanced state.

To overcome this overdetermined energy balance and
to smooth the transition from simple to actual solution,
an additional degree of freedom is added to the separator
model: An energy balance loop breaker. Similar to the
mass balance loop breaker, an additional variable is added
to the balance equation, and it is calculated from all ini-
tial conditions - namely the der(h)=0. So if the heat flow
rates sum up to zero, then the simple equation system re-
sult for this energy flow is zero. But if the heat flow rates
are unbalanced, then this additional energy flow is equal
to the energy balance error for the simple equation system.

For this additional degree of freedom an additional ini-
tial equation has to be added. But this initial equation
should not be used to define this degree of freedom, but
rather set something else which had not been defined yet:
the total pressure level. Up to now the pressure is not yet
defined, only pressure difference due to the valve charac-
teristic. Of course in the actual equation system the energy
balance loop breaker variable should be zero.

The following initial equation has been chosen:

homotopy(deltah_loopbrk, k*(p-pInitial))=0;
k=1e-2;

The loop breaker variable deltah_loopbrk with the unit
[J/kg] is set to zero as actual solution, and for the simpli-
fied solution the pressure is set to a fixed value. k is used
to define the transition shape between pressure difference
and energy boundary condition. As a result of this the en-
ergy balance does not have to be fulfilled for the prefixed
user values in the simple equation system. However, in
the actual equation system the loop breaker enthalpy dif-
ference is zero.

6 Specific Enthalpy Breaker Models
Similar to the separator model, it is useful to add addi-
tional breaker models, to define the fluid state i.e. spe-
cific enthalpy at certain positions. This is possible by
adding more degrees of freedom to the initialization prob-
lem which disappear at simulation time.

For example the superheat after the evaporator is often
controlled to a constant value. So assuming the controller
will be successful, the fluid state at that position is known
and can be set to a constant value for the simple solution.
The enthalpy difference delta_h in the model has to be 0
for the actual solution, and for the simple solution it has
to be calculated from the constraint portB.h_outflow=
superheatedEnthalpy. superheatedEnthalpy is the
enthalpy difference to the saturated enthalpy. So one pos-
sible implementation is:

Real superheatedEnthalpy=...;

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

518 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157513

parameter Real delta_h(fixed=false);

initial equation
0 = homotopy(delta_h,

portB.h_outflow-superheatedEnthalpy);
equation
portB.h_outflow = inStream(

portA.h_outflow) + delta_h;

7 Controller
In the presented simplified solution, the superheating af-
ter the evaporator depends on the mass flow rate, but the
outlet specific enthalpy does not. So the solver will try
to find a low pressure value, that has the desired super-
heating temperature for a given specific enthalpy. This
equation system is hard to solve and often has zero or two
solutions.

However, the controlled variables can be changed for
the simple solution. Instead of passing the actual super-
heating temperature to the controller, a pressure differ-
ence to a desired low pressure value can be passed to it
(of course the setpoint of the controller has to be added to
this difference). A simple model to modify the measured
signal could look like this:

parameter Real replacement_desired = ...;
parameter Real original_setpoint = ...;
parameter Real k = 1e-6;
RealInput u "original value";
RealInput replacement_measured;
RealOutput y = homotopy(u,

original_setpoint + (
replacement_measured -
replacement_desired)*k);

The replacement_desired is the desired low pressure,
replacement_measured is connected to the current low
pressure. k is used to relate the order of magnitude of a
pressure difference to a temperature difference.

Similar to this the capacity controller in the system has
to be modified. The controller usually modifies the com-
pressor displacement and consequently the mass flow rate.
The cooling capacity is fixed for the simple solution and so
is the air outlet temperature. If the controller is not mod-
ified, then the output will be limited and the integral part
will may be defined by the anti-windup implementation.
This issue can be fixed similarly by replacing the mea-
sured air outlet temperature with an homotopy term that
depends on the controller output itself. So using the above
described model the replacement_desired=0.9 is the
desired relative displacement, replacement_measured

has to be connected to the current relative displacement.
k is set to 10.

8 Software Experimental Results
In the following a common R-134a automotive vapor com-
pression cycle is examined. The system is shown in fig-
ure 5. The cycle has a valve, an evaporator, a compressor,
and a condenser with separator and build-in subcooling
section. The superheating after the evaporator is used to

control the expansion valve (superheating setpoint 7 K).
The evaporator air outlet temperature is used to control the
relative displacement of the compressor (air temperature
setpoint 3◦C). The whole system including the controllers
is initialized in steady state. The evaporator air inlet tem-
perature and the condenser inlet air temperature are 30◦C.
The compressor speed is set to 50 Hz (=3000 rpm). All
results have been calculated using Dymola 2019.

Figure 5. Automotive air conditioning cycle used for simulative
experiments, based on TIL. The condenser is implemented using
two separate heat exchangers.

150 200 250 300 350 400 450 500 550 600
Specific Enthalpy [kJ/kg]

0

10

20

30

40

Pre
ssu

re
 [b

ar
]

Figure 6. Steady state of the automotive air conditioning cycle
used for simulative experiments shown in the ph diagram.

The predefined values in the simplified equation system
are:

• High pressure: 25 bar

• Mass flow rate: 0.05 kg/s,

• Condenser heat flow rate: 7000 W condensation +
1000 W subcooling

• Evaporator heat flow rate: 6000 W

• Compressor power: 2000 W

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

DOI Proceedings of the 13th International Modelica Conference 519
10.3384/ecp19157513 March 4-6, 2019, Regensburg, Germany

• Nominal linear valve characteristic: mass flow rate =

0.05 kg/s at 24 bar pressure difference

• Setpoint for superheat controller replacement (low
press.) = 1 bar

• Setpoint for capacity controller replacement (rel.
disp.)= 0.9

The predefined values are enough to replace all initial and
start values in the model, if the system is initialized in
steady state.

The robustness of the solving procedure is influenced
by two aspects:

1. Plausibility of the simplified nominal working state.

2. Similarity between the simplified and nominal oper-
ating condition.

8.1 Transition from Simplified Nominal
System State to Actual System State

150 200 250 300 350 400 450 500 550 600
Specific enthalpy [kJ/kg]

0

5

10

15

20

25

30

35

40

Pr
es

su
re

 [b
ar

]

Figure 7. Transition from simplified nominal system state to
actual system state. Each marker represents a thermodynamic
state in a control volume of the heat exchanger. Circles mark the
simplified state. diamonds mark the actual state.

Figure 7 shows the transition between the simplified
and the actual control volume states in a ph-diagram. It
is clearly visible that the transition of the states is contin-
uous, but the shape of the transition is not linear. There
is no simple explanation for transition form. In the simple
equation system the pressures are predefined, in the actual
equation system the pressures are defined by the refriger-
ant mass in the components, the temperatures, and heat
transfer to the other medium.

As mentioned before, it is important that all enthalpy
and pressure states remain in a reasonable range during
the transition. Otherwise the fluid properties would cause
problems. E.g. it is not possible to provide reasonable
property data for a negative pressure or if temperature are
below the triple temperature. As can be seen the transition
stays well within a reasonable range. Pressures stay below
the critical point and above the triple point. The specific

150 200 250 300 350 400 450 500 550 600
Specific enthalpy [kJ/kg]

0

5

10

15

20

25

30

35

40

Pr
es

su
re

 [b
ar

]

Figure 8. Transition from simplified nominal system state with
zero heat flow rate to actual system state.

enthalpies stay around the two phase region. If the simpli-
fied nominal working state is not close to the actual state,
this does not seem to be a problem.

150 200 250 300 350 400 450 500 550 600
Specific enthalpy [kJ/kg]

0

5

10

15

20

25

30

35

40
Pr

es
su

re
 [b

ar
]

Figure 9. Transition from simplified nomnial system state with
low pressure difference to actual nominal system state.

Even the zero heat flow rate use case shown in figure 8
is working fine, although the transition is nonlinear. The
pressure levels of the simplified nominal working state
seem to be very important for the plausibility of the system
state as is visible in the nonlinear transition in figure 9.

8.2 Robustness against Operating State
Often a normal transient simulation from an arbitrary ini-
tial state is done to find the steady state of a dynamic
model. Homotopy method is an alternative to that. To
enable a fair comparison, the simulation times for both
cases have been tested. In this section the results of a batch
run for different boundary conditions are discussed. The
operating states of the system are shown to illustrate the
robustness. The following conditions have been varied:

• compressor speed: 10 Hz to 50 Hz (600 to 3000 rpm)

• condenser air inlet temperature: 10◦C to 60◦C

• evaporator air inlet temperature: 10◦C to 50◦C

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

520 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157513

All the dynamic simulations start from the same initial

state. The simulation stop time was set to 1000 s, DASSL
was used with a tolerance of 1e-4. To increase the chance
of convergence, the supheating controller has a compa-
rably low gain value. The results calculated with homo-
topy method are all based on the same nominal state ("nor-
mal"). The model was only initialized with homotopy at
t = 0s, but not simulated. The total number of cases is 60.

To examine how these results depend on the model size,
the same batch run has been done with different levels of
dicretization. "2 x volumes" indicates, that the number of
control volumes in the heat exchangers has been doubled.

150 200 250 300 350 400 450 500 550 600
Specific enthalpy [kJ/kg]

0

5

10

15

20

25

30

35

40

Pr
es

su
re

 [b
ar

]

Figure 10. Steady state results of the cycle of the parameter
variation. The results vary from very low pressures and temper-
atures up to the critical point.

Figure 10 shows the steady state results of the batch
run. In all cases the superheating was reached, and the
filling level of the separator was around 40 to 50%. So the
system was always in a normal operating condition, which
simplifies the simulation. The pressures are ranging from
2.5 bar to 43 bar.

For a wide range of operating states the above presented
homotopy method is capable of finding a steady state. It
proved to be very robust and easy to parametrize. How-
ever, if the controller limits would be active, the picture
might change.

8.3 Computational Effort
The batch run discussed in section 8.2 is now examined re-
garding its CPU time and function evaluations. The mea-
surements were taken on an i7 (2. gen), each calculation
as been executed 5 times to get an average execution time.

In figure 11 the CPU times for the different cases are
shown. For the three variations (three levels of dicretiza-
tion) of the system homotopy method is computationally
less expensive than a simulation by a factor of 5-10.

Since the CPU time is difficult to measure precisely and
is highly dependent on the CPU an additional indicator
was chosen: For the dynamic simulations the number of
F-evaluations (evaluations of the RHS of the hybrid ODE),
and for the homotopy method the number of evaluations of
the residual of the initialization problem. These measures

homotopy simulation
0

1

2

3

4

5

CP
U

tim
e

[s
]

normal

homotopy simulation
0

5

10

15

20

25

2 x volumes

homotopy simulation
0

50

100

150

200

250

300
4 x volumes

Figure 11. CPU time of a parameter variation compared be-
tween simulation with Dassl (tolerance = 1e-4) and homotopy
initialization. "2 x volumes" indicates that the number of con-
trol volumes has been doubled compared to the normal example.
The thickness of this violin plot indicates the density of occur-
rence.

homotopy simulation
0

2

4

6

8

10

12

14

16

Fu
nc

tio
n

Ev
al

ua
tio

ns
 [1

00
0]

normal

homotopy simulation
0

5

10

15

20

25

30

35

40

2 x volumes

homotopy simulation
0

20

40

60

80

100

120

4 x volumes

Figure 12. Number of function evaluations of a parameter varia-
tion compared between simulation with Dassl (tolerance = 1e-4)
and homotopy initialization. "2 x volumes" indicates that the
number of control volumes has been doubled compared to the
normal example. The thickness of this violin plot indicates the
density of occurrence.

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

DOI Proceedings of the 13th International Modelica Conference 521
10.3384/ecp19157513 March 4-6, 2019, Regensburg, Germany

usually are proportional to the CPU time. The results are
shown in figure 12.

The two figures look very similar, so the CPU time has
been measured with a sufficient precision. But compar-
ing the simulation with the homotopy shows that a RHS
evaluation of the ODE is not equivalent to a residual eval-
uation of the intialization problem. The F-evaluation is
computationally more expensive.

However, larger parameter studies and user tests have to
be done to clearly evaluate the benefits from using homo-
topy for different initial states, simplified nominal work-
ing states, and larger systems.

9 Conclusion
The simplified equation system to describe a vapor com-
pression cycle that was presented in this paper is easy to
parametrize, and defines a reasonable system state. The
simple model is very abstract but it particularly enables
separation of different flow paths and different cycles, so
it is potentially able to handle large scale problems, even
though this still has to be proven.

The mass and energy balance require a loop breaker to
handle the different causality of the simplified model. The
energy balance loop breaker turned out to have a positive
influence on the convergence. Measured values for con-
trollers have to be modified the define the integral part.

The experiments show that initialization using the pre-
sented approach is very robust, and neither the operating
state of the system, nor the boundary conditions have to
be close to the simplified solution.

Homotopy method lead to a reduction of the computa-
tional effort. The transition of the system state including
the controllers have a huge impact on the result. A bad
homotopy implementation is likely to fail or be compu-
tationally more expensive. More time has to be invested
to evaluate the user-friendliness, robustness, and compu-
tational speed also for other cycles.

10 Acknowlegdements
This work has been partially supported by the BMBF in
the VEOTOP project (FKZ: 01LY1809A).

A Appendix
Code for a simple homopty example:

model HomotopyPumpLine
Real V_flow(start=0);
parameter Real dp0=6;

initial equation
der(V_flow) = 0;

equation
der(V_flow) =
1*(
6.5 - homotopy(

actual = (dp0 + 3*V_flow - (3*
V_flow-0.5)^2*sign(3*V_flow-0.5
)),

simplified = (2*dp0 - 10*V_flow)
)

);
end HomotopyPumpLine;

In Dymola the flag Advanced.OnlyUseHomotopyMethod

has to be activated to find the rightmost solution. If it is
not activated, homotopy is only used if the default alge-
braic solver fails. If the flag Advanced.DebugHomotopy

is activated, a csv file with the V_flow over lambda will
be generated in the current working directory.

References
Francesco Casella and Alberto Leva. Modelling of thermo-

hydraulic power generation processes using modelica. Math-
ematical and Computer Modelling of Dynamical Systems, 12
(1):19–33, 2006. doi:10.1080/13873950500071082.

Francesco Casella, Michael Sielemann, and Luca Savold-
elli. Steady-state initialization of object-oriented
thermo-fluid models by homotopy methods. 2011.
doi:10.3384/ecp1106386.

Friedrich Gottelt, Timm Hoppe, and Lasse Nielsen. Apply-
ing the power plant library clara for control optimisation.
In Proceedings of the 12th International Modelica Confer-
ence, Prague, Czech Republic, May 15-17, 2017, number
132, pages 867–877. Linköping University Electronic Press,
Linköpings universitet, 2017. doi:10.3384/ecp17132867.

M. Gräber, K. Kosowski, C. Richter, and W. Tegethoff. Mod-
elling of heat pumps with an object-oriented model library
for thermodynamic systems. Mathematical and Computer
Modelling of Dynamical Systems, 16(3):195–209, 2010.
doi:10.1080/13873954.2010.506799.

Sylvain Quoilin, Adriano Desideri, Jorrit Wronski, Ian H. Bell,
and Vincent Lemort. A modelica library for the simulation of
thermodynamic systems. 2014. doi:10.3384/ECP14096683.

Christian Schulze. A Contribution to Numerically Efficient
Modelling of Thermodynamic Systems. PhD thesis, Dec
2013. URL https://publikationsserver.
tu-braunschweig.de/receive/dbbs_mods_
00057492.

Michael Sielemann, Francesco Casella, Martin Otter, C. Clauss,
Jonas Eborn, Sven Erik Mattsson, and Hans Olsson. Robust
initialization of differential-algebraic equations using homo-
topy. 2011. doi:10.3384/ecp1106375.

Verein deutscher Ingenieure. VDI-Wärmeatlas. VDI-Buch.
Springer, Berlin Heidelberg, 11 edition, 2013. ISBN 978-
3-642-19981-3. doi:10.1007/978-3-642-19981-3.

Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

522 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157513

DOI Proceedings of the 13th International Modelica Conference 523
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 5A: BUILDINGS 3
Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model
Hirsch, Hauke and Nicolai, Andreas and Petzold, Hans

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems
Altes-Buch, Queralt and Quoilin, Sylvain and Lemort, Vincent

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems
Rogers, Ryan and Lakhian, Vickram

.

524 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

DOI Proceedings of the 13th International Modelica Conference 525
10.3384/ecp19157525 March 4-6, 2019, Regensburg, Germany

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System
Model and Detailed Ground Heat Exchanger Model
Hirsch, Hauke and Nicolai, Andreas and Petzold, Hans

525

Co-Simulation Through Exchange of Time-Series Data Applied to

an Energy System Model and Detailed Ground Heat Exchanger

Model

Hauke Hirsch, Andreas Nicolai, Hans Petzold

Institute of Building Climatology, Technical University Dresden, Germany,
hauke.hirsch@tu-dresden.de

Abstract
In recent years, building energy systems have become

an important area of application for Modelica. However,

few components, such as ground heat exchangers, re-

main difficult to implement in Modelica, and thus re-

quire co-simulation with an external model. We present

a method for coupling a building energy system mod-

eled in Modelica with an external ground heat exchanger

model. The so-called waveform relaxation method

(WRM) realizes co-simulation by exchanging arbitrary

time-series data, instead of constant/polynomial values,

as currently possible with the FMI standard. This may

allow for performance improvement compared to FMI

under certain conditions. A major advantage of this

method is the applicability to simulation tools that do

not yet support FMI. First, we briefly explain the energy

system model (implemented in Modelica) as well as the

ground heat exchanger model (implemented in external

software DELPHIN). Next, we present different imple-

mentations of the WRM coupling method and their re-

sults. Finally, we discuss the performance of WRM un-

der certain conditions and compare it to the FMI-co-sim-

ulation approach.

Keywords: Co-Simulation, FMI, Building Simulation,

HVAC System, Ground Heat Exchanger, Wave Form

Relaxation

1 Introduction

As with the development of various libraries such as

AixLib (Müller et al, 2016), IDEAS (Jorissen et al.,

2018), Buildings (Wetter et al., 2014) and BuildingSys-

tems (Nytsch-Geusen et al., 2012), Modelica has be-

come an important tool for simulation of building en-

ergy systems. The Modelica approach is suitable for

most HVAC components, as they can usually be de-

scribed by differential equations with a low number of

spatial dimensions. However, there remain physical

problems in building energy systems, which are difficult

to model in Modelica. One example are heat pump sys-

tems with borehole heat exchangers or horizontal

ground heat exchangers (HGHX). These systems

strongly depend on the two- or three-dimensional tem-

perature distribution in the ground. Until now, there

have been few studies addressing these problems. In (Pi-

card and Helsen, 2014) a borefield heat exchanger

model was developed, based on a TRNSYS model. The

ground is discretized in radial and vertical direction and

the results are close to the original model. However, for

horizontal ground heat exchangers, cylindrical coordi-

nates are not suitable and therefore a much finer spatial

discretization is needed. In (Sangi and Müller, 2018) a

model for horizontal slinky coil heat exchangers was de-

veloped. The soil is discretized in three dimensions and

coupled to a dynamic pipe model. The model does not

take into account moisture transport and freezing of soil

water content and is limited to the particular slinky coil

geometry. Furthermore, the presented results cover only

a few days without taking into account real weather con-

ditions such as convection and radiation at the soil sur-

face. These effects, however, are crucial for an accurate

prediction of the heat pumps efficiency at a given cli-

mate and HGHX size. This is due to the fact that electri-

cal energy demand and heat output of heat pumps

strongly depends on their source temperature.

Accurate modeling of HGHX, taking into account all

relevant physical processes, requires a fine spatial dis-

cretization, usually about <10 mm, as shown in (Ram-

ming 2007, Hirsch 2016). This leads to huge systems of

differential equations, which need to be solved effi-

ciently using dedicated software. DELPHIN

(Grunewald 1994, Nicolai 2007) is a hygro-thermal sim-

ulation software, commonly used for component mod-

eling in building physics. As the physical processes are

similar, it can also be applied to transient heat and mois-

ture transport in soils.

 A common method for runtime coupling of different

software is the FMI standard. It allows for two different

coupling methods: the simulation under one common

solver (ModelExchange) and coupling of independent

solvers (Co-Simulation). While a number of existing

simulation tools support this standard, there are still

many tools, such as DELPHIN, without available FMI

interface.

In the present paper, we propose an alternative ap-

proach for the coupling of independent simulation tools,

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

526 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157525

called waveform relaxation method (WRM). WRM was

originally established for solving systems of differential

equations (Crow and Ilic, 1994), which can be broken

into subsystems. Each subsystem is solved over the

whole time domain using the time-dependent solution of

another coupled subsystem. The method is repeated it-

eratively until convergence is reached. (Maciejewski et

al, 2017) used WRM for the co-simulation of a digital

power controller with fixed time step and an electrical

circuit model with adaptive time stepping scheme. Both

components can be integrated over the entire time span

separately, which maintains their characteristics and

avoids any change in their numerical implementation.

This appears to be an advantage over classical co-simu-

lation algorithms, where both solvers have to stop and

communicate at a common time point, and commence

integration after exchange of variables.

In our case the WRM will be conducted by coupling

Modelica and DELPHIN and thus obtaining a detailed

building energy supply system simulation with appro-

priate modeling of heat and moisture transport in the

soil.

2 Ground Heat Exchanger Model in

DELPHIN

DELPHIN is a simulation program for coupled heat,

moisture and matter transport, commonly used for sim-

ulation of porous building materials. In a recent research

project we implemented different soil types in DEL-

PHIN, which enables us to model ground heat exchang-

ers as well.

Figure 1. HGHX geometry (left) and discretization of

computational domain (right)

2.1 General Assumptions and Geometry

The present study investigates a multi-layer horizontal

ground heat exchanger shown in Figure 1, hereafter

called HGHX. It consists of four horizontal layers of

pipes, filled with water-glycol mixture and placed be-

tween 1 m and 3 m underneath the surface. The number

of vertical rows as well as the pipe length are parame-

ters. Most important modeling assumptions are:

 The model is reduced to the two-dimensional plane

perpendicular to the HGHX tubes. Heat and mois-

ture transport along the flow direction is neglected.

 The HGHX is considered indefinitely wide, neglect-

ing lateral boundaries. This allows reducing the ef-

fective computational domain to the area showed in

Figure 1 due to the symmetry of the temperature

field.

2.2 Spatial Discretization

The right hand side of Figure 1 shows the discretized

computational domain. A fine mesh size is used close to

the soil surface and close to the pipes, while the mesh is

considerably coarser further away from these bounda-

ries. The minimum mesh size is 4 mm and its maximum

is 70 mm. This leads to a total number of 2944 elements.

We found these mesh sizes as a good compromise be-

tween accuracy and simulation performance, based on a

parameter study.

2.3 Boundary and Initial Conditions

At the soil volume surface, the following effects are con-

sidered:

 thermal convection

 long wave radiation

 absorption of short wave radiation

 vapor diffusion

 precipitation

The respective climate data is the test reference year

TRY 2010 (Zone 4) from (Deutscher Wetterdienst,

2010). We assume constant temperature at the lower

boundary, which is located at a depth of 15 m below the

surface. This assumption is valid, since the influence of

climate conditions at the surface is negligible at this

depth. The lower boundary is in direct contact with wa-

ter. Both lateral boundaries are considered adiabatic,

due to the temperature field symmetry.

Heat exchange between the porous material and fluid

inside the pipe is approximated by a special boundary

condition model. It assumes steady state flow and a con-

stant soil temperature along the pipe. The analytical so-

lution of the pipe outlet temperature reads

𝑇𝑜𝑢𝑡 = 𝑇𝑠 + (𝑇𝑖𝑛 − 𝑇𝑠) exp (−
𝑘𝐴

�̇�𝑐𝑝
) (1)

with 𝑇𝑖𝑛 and 𝑇𝑠 being the inlet and adjacent soil temper-

ature, 𝑘 refers to the heat transfer coefficient, 𝐴 is the

outer pipe area and �̇� and 𝑐𝑝 are the fluid mass flow rate

and its specific heat capacity.

Before carrying out coupled simulations, we con-

ducted an undisturbed simulation over a range of five

years without any heat exchange with the HGHX to

make sure quasi-steady state is reached. The resulting

1,0 m
1,0 m

3,0 m

computational
domain

HGHX pipe

15,0 m

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

DOI Proceedings of the 13th International Modelica Conference 527
10.3384/ecp19157525 March 4-6, 2019, Regensburg, Germany

temperature and moisture fields are then used as initial

values for the coupled simulations.

3 Building Energy System Model in

Modelica

The investigated building is a small office building with-

out domestic hot water demand. Heating energy is sup-

plied by a heat pump and the building can be cooled

through passive cooling using the HGHX. In a first step,

we determined the building heating and cooling demand

by simulating the building without considering energy

supply and distribution. These values are used as inputs

for the energy supply system. The Modelica model is

built using components from the AixLib library (Müller

et al, 2016) and Modelica Standard libraries and simu-

lated using DYMOLA.

3.1 Generic Building Model

The considered building model was created using the

tool TEASER, which allows for generation of archetype

building models based on few parameters (Lauster et al,

2016). It is a small office building with an area of 400 m²

divided into the following zones:

 Office (50%)

 Corridor (25%)

 Storage (15%)

 Meeting (4%)

 Toilets (4%)

 Equipment (2%)

Each zone consists of a 4K model taking into account

exterior wall, interior wall, roof and indoor air. During

heating season, the temperature set point is 21°C in the

daytime and 18°C at night (between 7 pm and 5 am) and

during cooling season (between May and September) it

is constant at 26°C. This leads to a total heating demand

of 13900 kWh/a and a cooling demand of 2900 kWh/a.

Figure 2. Energy supply system model in Modelica

3.2 Energy Supply System Model

The Modelica model of the energy supply system is

shown in Figure 2. Basis is a brine/water heat pump,

which charges a buffer storage for heat supply. The heat

pump operates only in two states: on or off, as this is

common practice in real systems. Its electrical energy

demand and heating power are calculated through inter-

polation using manufacturer data tables. A two-point

controller determines the heat pump operation based on

the buffer storage temperature. The buffer storage

model assumes one-dimensional stratification taking

into account buoyancy and heat losses to the environ-

ment.

The heating and cooling demands as well as the

HGHX outlet temperature (calculated in DELPHIN) are

implemented as data tables. A controller determines

whether the brine delivers heat (in case of heat pump

operation) or is supplied with heat (in presence of cool-

ing demand). The temperature at which the brine exits

the energy supply system serves as input for the HGHX

model.

4 WRM Co-Simulation of Modelica

and DELPHIN

4.1 Simple Approach

The WRM differs from FMI-type co-simulation, as the

coupled components are computed independently over

the whole time domain of interest, rather than solving

them for limited time steps. This allows the numerical

solvers to run independently from each other. No

changes are needed to the code of either simulation tool.

For the present study, we coupled the described DEL-

PHIN and Modelica models as shown in Figure 3.

Figure 3. Simple WRM coupling scheme of Modelica

and DELPHIN

First, we simulate the energy supply system over the

whole time domain, typically one year, assuming a con-

stant HGHX outlet temperature. Thus, we obtain the

HGHX inlet temperature from the Modelica system

model as time series for one year, which we use now as

an input for the DELPHIN simulation. The obtained

HGHX outlet temperature from DELPHIN is now again

Cold supply

to HGHX

Heat supply

Heat pump and buffer
storage

Controller

Modelica

DELPHIN

H
G

H
X

 𝑇
𝑜

𝑢
𝑡

H
G

H
X

 𝑇
𝑖𝑛

time

time

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

528 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157525

used as input for Modelica in the next iteration. The tem-

perature may changes drastically within short periods of

time, due to the intermittent behavior of the heat pump.

Hence, in order to provide sufficient accuracy, both

models write outputs every minute (sampling rate of the

input/output signals). We implemented the method as

Python script, which starts DYMOLA and DELPHIN

through command line and exchanges values using txt-

files. Figure 4 depicts the HGHX outlet temperature for

the first four days of the year. We ran the simulation

with 12 iterations.

The heat pumps on/off characteristic controlled by a

two-point controller leads to a typical behavior of the

fluid temperature: When the heat pump switches on, the

fluid temperature drops drastically, while when the heat

pump switches off, the fluid temperature approximates

the temperature of surrounding soil. However, the heat

pump heating power strongly depends on its source tem-

perature. A lower HGHX outlet temperature causes a

lower heating power, and thus the heat pump needs more

time to charge the buffer storage. Due to this non-linear

behavior, the system converges for a limited number of

iterations only within short simulation times. This can

be observed in the example in Figure 4, where conver-

gence appears to be achieved within the first day (grad-

ually smaller differences between lines from red to yel-

low). However, within the following days, there is still

no convergence after 12 iterations. This is due to the

time shift of the operation cycles. The problem persists

for the remaining simulation period. We expect the sim-

ulation to converge for all points in time after an un-

known (large) number of iterations, however, simula-

tion effort of DELPHIN is relatively high and thus, the

total CPU time becomes too large to be practical usable.

Hence, this simple approach to WRM co-simulation

does not appear to be suitable.

4.2 Stepwise Approach

In order to handle the problems revealed, we imple-

mented a new scheme, where WRM is carried out in

multiple time intervals, rather than simulating over the

whole time domain. As depicted in Figure 6, in each

time interval, we conduct WRM as described in sec-

tion 4.1. After convergence is achieved, we store the fi-

nal model state. In the next time interval, both programs

start, using their final states from the previous time in-

terval and the process is repeated. This leads to a tem-

poral decoupling and thereby clearly improves the con-

vergence behavior of the system.

We use the root mean square norm

𝑅𝑀𝑆 = √
1

𝑛
∑(𝑇𝑜𝑢𝑡,𝑖 − 𝑇𝑜𝑢𝑡,𝑖

𝑝𝑟𝑒𝑣
)

2
𝑛

𝑖=1

 (2)

in order to determine the state of achieved convergence.

Here, 𝑇𝑜𝑢𝑡 is the HGHX outlet temperature in the cur-

rent iteration and 𝑇𝑜𝑢𝑡
𝑝𝑟𝑒𝑣

 is the one in the previous itera-

tion.

Figure 4. HGHX outlet temperature over four days using simple WRM approach

Figure 5. HGHX outlet temperature over four days using stepwise WRM approach with an interval of 24 h

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

DOI Proceedings of the 13th International Modelica Conference 529
10.3384/ecp19157525 March 4-6, 2019, Regensburg, Germany

It should be noted that this method requires the capa-

bility of both models to load an initial state at the begin-

ning of a simulation and store their final state when the

simulation is finished. In DYMOLA, this can be

achieved using the dsin.txt, which contains the initial

values of the system and the dsfinal.txt, which contains

the systems final state. Both files have the same struc-

ture, so they can simply be replaced. In DELPHIN, the

final state is contained in the restart file, which is created

at the end of each simulation. It provides the possibility

of restoring the state of the simulation model and con-

tinuing the simulation from this point in time, when

DELPHIN is executed in restart mode.

Figure 6. Stepwise WRM coupling scheme of Modelica

and DELPHIN

Figure 5 shows the resulting HGHX outlet tempera-

ture with stepwise WRM using a time interval of 24 h.

In the first day, the system behaves identical to the ex-

ample from chapter 4.1 and converges after eight itera-

tions. For the next time interval, there is a distinct ad-

vantage for the iteration compared to the first time inter-

val: since the soil temperature changes very little within

one day and all other variables of Equation 1 remain un-

changed, we are able to estimate the initial value of

HGHX outlet temperature with relatively high accuracy.

This allows for a noticeable reduction of iterations, so

that the second time interval converges within six itera-

tions, the third time interval within three iterations and

the fourth time interval within two iterations. Thus, with

stepwise WRM, we achieved a total CPU time of around

150 min for one year simulation time, depending on cho-

sen parameters (Core i5-7200). We consider this as

practically usable, as it enables us to carry out numerous

parameter studies with reasonable simulation effort.

4.3 Assumptions and restrictions

The presented method can be applied to the Co-Sim-

ulation of arbitrary models, with the restriction that the

problem converges. Moreover, the sampling rate must

be significantly below the characteristic time constant of

the system, to ensure that important events are suffi-

ciently taken into account. In our study, an operation cy-

cle of the heat pump lasts around 30 min, hence we used

a sampling rate to 1 min. Finally, stepwise WRM re-

quires the capability of both models (respectively their

implementation), to store their final state and use this as

an initial state for the following simulation.

5 Discussion of Performance

5.1 Impact of Time Interval on Performance

The main parameter of the presented stepwise WRM ap-

proach is the time interval each WRM is conducted for.

Theoretically, shorter time intervals require less itera-

tions, which means an improvement of simulation per-

formance. However, there is a noticeable overhead in

starting a simulation model (initialization phase). Fur-

ther, both Modelica and DELPHIN have variable time-

step solvers based on error estimates. When started, both

solvers reinitialize and start with a tiny initial time step

and only gradually enlarge this time step. This consti-

tutes a fairly large slowdown of the simulation, which in

total lowers the performance for shorter time intervals.

Figure 7. Total CPU time and average number of itera-

tions using different time intervals.

Figure 8. CPU time in relation to real time for both mod-

els using different time intervals.

We investigated both effects, by carrying out WRM

co-simulations over 30 days with different time intervals

ranging from 6 h to 120 h. Figure 7 shows the total CPU

time and the number of iterations averaged over all time

intervals. As assumed, shorter time intervals require less

iterations. However, the total CPU time only decreases

between 120 h and 24 h, while very short time intervals

between 24 h and 6 h cause an increasing CPU time.

This can be explained when considering the CPU time

to real time relation for both models, depicted in Fig-

ure 8. When using short time intervals both models re-

quire significantly more CPU time for the same real

time, due to reasons explained. Thus, a time interval of

24 h appears to be a good compromise between both ef-

fects.

final
state

Modelica

DELPHIN

Modelica

DELPHIN

Modelica

DELPHIN

1. time interval 2. time interval 3. time interval

final
state

final
state

final
state

WRM WRM WRM

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

530 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157525

5.2 Generalization

The WRM coupling technique is very similar to the FMI

Co-Simulation with rollback as defined in version 2 of

the standard. The WRM corresponds to a Gauss-Seidel-

type co-simulation master algorithm. However, with

FMI v.2 the input and output signals are eithers con-

stants (as supported by most FMI implementations) or

polynomial functions expressed by the derivatives of a

Taylor-series expansion. Complex input/output signal

shapes as used in the WRM cannot be expressed by pol-

ynomials, thus communication step sizes typically need

to be much smaller than those used for the WRM. Fol-

lowing the previous argumentation, this would incur a

significant restart overhead and yield an overall slower

simulation.

However, if an FMI slave were to implement a full roll-

back, including all variables related to the time integra-

tion and error handling, a time interval could be repeated

without falling back to tiny initial step sizes (a process

also known as hot-restart). In this case, utilizing FMI

Co-Simulation for a WRM-type signal input/output han-

dling can be an interesting approach with potentially

much higher performance, since the FMI rollback fea-

ture can help avoid the excessive overhead in restart-

ing/reinitializing simulations. Currently, only the Simu-

lationX Modelica environment has documented such a

rollback functionality.

6 Summary

We investigated the application of the waveform relax-

ation method (WRM) for a co-simulation between Mod-

elica and an external software. Therefore, we used the

example of a building energy system simulation (Mod-

elica), which was coupled to a ground heat exchanger

model (DELPHIN). We showed that the non-linear be-

havior of the Modelica model causes convergence prob-

lems when a simple WRM approach is used. The simu-

lation converges only for short time domains within rea-

sonable number of iterations. In order to tackle that

problem, we introduced a stepwise approach, where

WRM is carried out in limited time intervals. This pro-

vides temporal decoupling, so that the simulation con-

verges with noticeably less iterations.

We revealed that the simulation performance of the

stepwise WRM strongly depends on the chosen time in-

terval. While long time intervals cause many iterations,

short time intervals increase the overhead of restart-

ing/reinitializing the individual simulations. Eventually,

a comparison to FMI Co-Simulation has been under-

taken. We propose that the possibility of using complex

input/output-signals in FMI-coupling may yield a sig-

nificant performance improvement, in particular if used

with a full rollback, where excessive overhead due to

reinitializing is avoided.

Acknowledgements

We gratefully acknowledge the support and funding re-

ceived from the German Federal Ministery for Eco-

nomic Affairs and Energy in the research project

“EnEff:Wärme – Erdeisspeicher und oberflächennahe

Geothermie” #03ET1382A.

References

M.L. Crow and M.D. Ilic. The Waveform Relaxation method

for systems of differential/algebraic equations. Mathemati-

cal and Computer Modelling, Volume 19, Issue 12, June

1994, Pages 67-84.

Deutscher Wetterdienst. Testreferenzjahre von Deutschland

für mittlere und extreme Witterungsverhältnisse TRY.

DWD, Offenbach am Main, Deutschland, 2010.

John Grunewald. Diffusiver und konvektiver Stoff- und

Energietransport in kapillarporösen Baustoffen. PhD thesis,

Dresden, TU Dresden, 1997.

F. Jorissen, G. Reynders, R. Baetens, D. Picard, D. Saelens,

and L. Helsen. Implementation and Verification of the

IDEAS Building Energy Simulation Library. Journal of

Building Performance Simulation, 11 (6), 669-688, doi:

10.1080/19401493.2018.1428361, 2018.

Hauke Hirsch, Fabian Rüsing, Gunter Rockendorf. Modellie-

rung oberflächennaher Erdwärmeübertrager für Systemsi-

mulationen in TRNSYS. BauSim 2016, Dresden, Germany.

2016.

M. Lauster et al. Design-Driven Parameterization of Reduced

Order Models Using Archetype Buildings with TEASER.

BauSIM 2016, Dresden, Germany. 2016.

M. Maciejewski, I. Cortes Garcia, S. Schöps, B. Auchmann,

L. Bortot, M. Prioli, and A.P. Verweij. Application of the

Waveform Relaxation Technique to the Co-Simulation of

Power Converter Controller and Electrical Circuit Models.

22nd International Conference on Methods and Models in

Automation and Robotics (MMAR). Miedzyzdroje, 2017.

pp. 837-842. doi: 10.1109/MMAR.2017.8046937

D. Müller, M. Lauster, A. Constantin, M. Fuchs, P. Remmen.

AixLib - An Open-Source Modelica Library within the

IEA-EBC Annex 60 Framework. BauSIM 2016, Dresden,

Germany. 2016.

Andreas Nicolai. Modeling and numerical simulation of salt

transport and phase transitions in unsaturated porous

building materials. PhD thesis, New York, Syracuse Uni-

versity, 2007.

Christoph Nytsch-Geusen; Jörg Huber; Manuel Ljubijankic;

Jörg Rädler. Modelica BuildingSystems - Eine Modellbib-

liothek zur Simulation komplexer energietechnischer

Gebäudesysteme. BAUSIM 2012 IBPSA Germany, 26.-28.

September. Conference Proceedings. Berlin, 2012.

Damien Picard and Lieve Helsen. Advanced Hybrid Model

for Borefield Heat Exchanger Performance Evaluation, an

Implementation in Modelica. 10th International Modelica

Conference, March 10-12, 2014, Lund, Sweden. doi:

10.3384/ecp14096857}

Klaus Ramming. Bewertung und Optimierung oberflächenna-

her Erdwärmekollektoren für verschiedene Lastfälle. PhD

thesis, Dresden, TU Dresden, 2007.

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

DOI Proceedings of the 13th International Modelica Conference 531
10.3384/ecp19157525 March 4-6, 2019, Regensburg, Germany

Roozbeh Sangi and Dirk Müller. Dynamic modelling and sim-

ulation of a slinky-coil horizontal ground heat exchanger

using Modelica. Journal of Building Engineering 16 (2018)

159–168. https://doi.org/10.1016/j.jobe. 2018.01.005.

Michael Wetter, Wangda Zuo, Thierry S. Nouidui and

Xiufeng Pang. Modelica Buildings library. Journal of

Building Performance Simulation, 7(4): 253-270, 2014.

Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed
Ground Heat Exchanger Model

532 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157525

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

DOI Proceedings of the 13th International Modelica Conference 533
10.3384/ecp19157533 March 4-6, 2019, Regensburg, Germany

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and
Energy Systems
Altes-Buch, Queralt and Quoilin, Sylvain and Lemort, Vincent

533

Greenhouses: A Modelica Library for the Simulation of
Greenhouse Climate and Energy Systems

Queralt Altes-Buch1* Sylvain Quoilin1,2 Vincent Lemort1

1Energy Systems Research Unit - Thermodynamics Laboratory, Aerospace and Mechanical Engineering Department,
University of Liege, Liege, Belgium

2Smart Thermal Energy Systems, KU Leuven, Geel, Belgium
*Corresponding author: qaltes@uliege.be

Abstract
This paper presents the results of an on-going project to
develop Greenhouses, an open Modelica library for the
simulation of greenhouse climate and energy systems.
The Greenhouses library is one of the few open-source
modeling frameworks for greenhouse climate and crop
growth simulation, and the first able to handle simulating
the energy integration of greenhouses coupled to thermal
systems (e.g. generation and storage units). The proposed
modeling framework can be used for multiple purposes,
such as the optimal control of the greenhouse actuators,
the optimal sizing of the heating appliances, or the optimal
integration of the units in the power system. The Green-
houses library also comprises multiple example models,
making it readily usable for both research and industrial
applications.
Keywords: Greenhouse climate, CHP, Crop yield, Ther-
mal systems, Climate Control, Dynamic modeling

1 Introduction
Greenhouses present the peculiarity of requiring heating,
electricity and CO2. As an energy consumer, they con-
tribute to the depletion of non-renewable energy sources
and to global warming through energy-related emissions
(e.g. CO2 emissions from fossil fuel combustion gases).
Their energy sources should therefore provide the com-
bined demands in a competitive but also sustainable way.
Up to now, the use of combined heat and power (CHP) is
proposed as an efficient technology for that purpose: the
CHP thermal generation is used for heating purposes, the
electricity covers the consumption of the appliances and
the CO2 from the exhaust gases can be recovered to ac-
tivate photosynthesis. In most cases, there is an excess
electricity generation that is fed back to the grid. CHP
units in greenhouse horticulture are highly flexible, with
the ability to go to full load in less than one hour (Buck
et al., 2014). Therefore, when coupled to thermal stor-
age, CHP units can be valuable for the power system by
providing services such as load balancing, ancillary ser-
vices or decentralised storage capacity (Jiménez-Navarro
et al., 2018). For example, in a country like the Nether-
lands, the CHP units dedicated to greenhouse horticulture

produced 7.8% of the national production in 2016 (cbs,
2018). Greenhouses can also be coupled to district heat-
ings, in which case activities such as heat recovery from
the industry are made possible.

To evaluate the potential of such activities, the com-
plex energy flows within greenhouses must be understood,
which also requires ad hoc greenhouse climate models. In
addition, a platform for dynamic simulation of the ther-
mal flows interacting between greenhouses and external
thermal systems (e.g. district heating networks, genera-
tion units, thermal storage) is required. In the current lit-
erature, a small number of models are openly available for
grenhouse climate simulation and crop growth. Although
researchers openly present model structures and simula-
tion scenarios, an open-source simulation platform is still
lacking. In fact, the most common climate simulation soft-
wares (e.g. CASTA, KASPRO, VirtualGreenhouse) are
not open-access and are not able to handle the integra-
tion of greenhouses with external thermal systems. The
Greenhouses Modelica library aims at filling this gap by
providing an open-source modeling framework capable of
simulating greenhouse climate as well as its complex in-
teractions with thermal systems. To that end, the library
proposes models covering the following aspects:
• Greenhouse climate, to compute the energy con-

sumption of a greenhouse given its specific design,
outdoor conditions and a specific control.
• Thermal systems, with models ranging from heat dis-

tribution systems in greenhouses to generation and
thermal storage units.
• Crop yield, to account for crop requirements as well

as crop behavior (e.g. transpiration and photosynthe-
sis), which influence the indoor climate and thus, the
greenhouse energy consumption.

Climate control systems (heating, ventilation, CO2 en-
richment and supplementary lighting) are also included in
the library. Furthermore, several numerical methods are
developed and implemented in order to enhance the ro-
bustness and the simulation speed of the models during
initialization and integration.

The library is simple to implement and intuitive to use.
The required information for a new user to get started is
provided in this paper. Moreover, an additional documen-

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

534 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157533

tation including a user guide with the required steps to
run the models and extended documentation of the library
content is available online (cfr. Section 5 for more details).

The library shows potential for both research and in-
dustry applications. On the one hand, it can be useful
for greenhouse operators when it comes to optimizing the
control of the actuators or the sizing of the HVAC appli-
ances. On the other hand, it can be used for purposes such
as optimizing the integration of CHPs in the electricity
markets.

2 The Greenhouses Modelica library
The Greenhouses Modelica library aims at providing a ro-
bust framework to simulate greenhouse climate and its in-
tegration with energy systems. The goal is to provide an
integrated and fully open-source solution ranging from the
computation of energy flows in a greenhouse, to the simu-
lation of complex systems with their control strategy. The
Modelica language is thus well adapted to the formulation
of this problem, mainly because of its acausal characteris-
tic language that allows inter-connecting the models in a
‘physical’ way (Casella et al., 2007). The key features of
the library are the following:

• Designed for system level simulations.

• Full compatibility (connector-wise) with the Model-
ica Standard Library and libraries such as Thermo-
Cycle, ThermoPower or Buildings.

• Various numerical robustness strategies implemented
in the components and accessible through Boolean
parameters.

• High readability of the models (limited levels of hi-
erarchical modeling).

The components provided in the library are designed to
be as generic as possible. For example, the detailed ge-
ometry records of the greenhouse structure are not com-
pulsory. Instead, only the floor area, the mean greenhouse
height and the roof tilt are required. In all the models,
default values relative to the most commonly used green-
house structure (e.g. the Venlo greenhouse) are proposed
for all the parameters.

2.1 Modeling of greenhouse climate
Greenhouse climate models have been the object of a sub-
stantial literature. While many models have been devel-
oped (Bot, 1983; De Zwart, 1996; Impron et al., 2007; Luo
et al., 2005; van Ooteghem, 2010), most of them can only
be used for a single location and for a specific greenhouse
structure and climate. Recently, a more generic green-
house climate model combining the work of Bot (1983)
and De Zwart (1996) was developed. For the purpose of
this work, this model, which was developed by Vanthoor
et al. (2011b) and validated for a range of climates and
greenhouse designs, has been implemented.

The model describes the indoor climate of a greenhouse
resulting from the greenhouse design, the outdoor climate

and a specific climate control. The indoor climate is char-
acterized by the air temperature, water vapor pressure (to
account for the air relative humidity) and CO2 concentra-
tion. Besides, the variables with an indirect influence on
the climate are also modeled. These are mainly the char-
acteristics relative to the canopy and the envelope (i.e. the
cover, the floor and the thermal screen). In order to com-
pute the indoor climate, the modeling approach consists
in applying the energy conservation principles on each
greenhouse component and the mass balance on the air.
To that end, all the existent energy and mass flows must be
modeled. A detailed description of the latter can be found
in Altes-Buch and Lemort (2018). Using the encapsula-
tion capabilities of the Modelica language, the balances
and flows are defined in independent models that should
be inter-connected to build the greenhouse system. The
Modelica language offers a high degree of flexibility to
the user because:

(i) the greenhouse structure and energy systems are not
predefined, i.e. the model can easily be adapted to
match different types of greenhouses

(ii) the models are parametrizable i.e. the user can define
the materials and system sizes.

The main models of the library are described in the fol-
lowing sections. For a full description of the equations
of the models, please consult the online documentation
of the library in https://greenhouses-library.
readthedocs.io. An example of greenhouse model
is shown in Figure 1. As it can be distinguished, the
greenhouse modeled in this example consists of a two-
level heating circuit, roof windows (no side vents), natu-
ral ventilation (no forced ventilation) and a movable ther-
mal screen. It should be noted that, when the screen is
drawn, the air of the greenhouse is divided in two zones,
i.e. below and above the screen. These zones are mod-
eled separately and their respective climate is assumed to
be homogeneous.

2.1.1 Surfaces

This section describes the modeling approach used to
model the cover, the floor, the canopy and the thermal
screen. The energy balance on these surfaces is defined
by equation (1):

ρcV
dT
dt

= ∑ Q̇+∑ Q̇L +PSun +PLight (1)

which takes into account the following exchanges:
• Sensible heat flows (Q̇), including convection with

the indoor or outdoor air, long-wave radiation be-
tween all surfaces or to the sky, and conduction
through the soil.

• Latent heat flows (Q̇L), such as the heat exchanged
by condensation on the inner side of the cover, con-
densation or evaporation on the screen, or evapora-
tion on the leaves. These flows can be treated as
forced flows, since they are determined by the mois-

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

DOI Proceedings of the 13th International Modelica Conference 535
10.3384/ecp19157533 March 4-6, 2019, Regensburg, Germany

Convection
Long-wave radiation
Short-wave radiation
Conduction
Vapour transfer

cover

air

canopy
Q_rad_CanCov

floor

Q_rad_FlrCan

Q_cnv_CanAir

Q_cnv_FlrAir

Q_rad_CovSky

degC

Q_cnv_CovOut

Q_rad_FlrCov

A_floor

Pa

MV_CanAir

Q_cd_Soil

Q_rad_CanScr

Q_rad_FlrScr

screen

Q_rad_ScrCov

air_Top

cover
air

canopy
floor

pipe_low
Q_rad_LowFlr

Q
_r

ad
_L

ow
C

an

Q_rad_LowCov

Q_cnv_LowAir

Q_rad_LowScr

pipe_up
Q_rad_UpFlr

Q
_rad_U

pC
an

Q_rad_UpCov

Q_cnv_UpAir

Q_rad_UpScr

Q_cnv_AirScr

Q_cnv_AirCov

Q_cnv_TopCov

Q_ven_AirOut

Q_ven_TopOut

Q_ven_AirTop

Q_cnv_ScrTop

K

Tair_sensor

U_Mdot

Tsoil7

TMY.y[2]

Tout

TMY.y[5]

I_glob

TMY.y[6]

u_wind

VPout

TMY.y[10]

U_OnOff

degC
TMY.y[7]

Tsky

SP.y[2] + 273.15

Tair_SP

TYM

CO2_air

CO2_top

M
C

_A
irT

op

MC_AirOut

MC_TopOut

mgCO2/m2
340*1.94

CO2out_mgm3

MC_AirCan

MC_ExtAir

U_CO2
CO2_air.CO2

CO2_air_PV

source

P
sinkP

RH

RH_air_sensor

TMY

SP.y[3]*1.94

CO2_SP

SC_usable

Ctrl_screen

TMY.y[2] + 273.15

Tout_K

U_vent

3.8 + (1 - SC.y)*0.4

h_greenhouse

SP

SP: set-point
TMY: typical meteorological year
TYM: tomato yield model
U: control variable
u: wind
PV: present value
ven: ventilation

PID

PID

solar_model

U_SC

INPUTS

LEGEND

cd: conduction
cnv: convection
h: height
Q: heat flow
MC: CO2 mass flow
MV: vapor mass flow
rad: radiation

Figure 1. Graphical interface of the greenhouse climate simulation model (Greenhouse1 in the Examples package)

ture mass flow rate caused by condensation or evap-
oration (Ṁv) and the heat of evaporation (∆h f g):

Q̇L,12 = ∆h f g · Ṁv,12 (2)

• Short-wave radiation inputs, such as the absorbed
radiation from the sun (PSun) and/or supplementary
lighting (PLight).

The water vapor pressure at a surface is defined as the
saturated vapor pressure at the surface temperature. No
mass balance is applied on the modeled surfaces.

Cover
The cover is the only surface exchanging with both the in-
side and outside air. The model (cover in Figure 1) can be
parametrized for any type of glazing (single-glass, double-
glass, polycarbonate, etc.). For single glazing, since glass
thickness is commonly small (4 mm), conduction is ne-
glected. Depending on the vapor pressure difference, con-
densation may take place at the inner side of the cover.
Evaporation of moisture from the cover to the air is ne-
glected since the condensate is commonly drained.

Canopy
The magnitude of the energy exchanged by the canopy
depends on the size of the leaves, which is increased with

crop growth and decreased by leaf pruining. To take this
into account, the leaf area index (LAI), defined as the leaf
area per unit of ground area, is used. The LAI is computed
in the crop yield model and input in the canopy model
(canopy in Figure 1). The heat capacity per unit of leaf
area is the main parameter. The canopy temperature has
an impact on its photosynthesis and transpiration, which
decrease the CO2 concentration and increase the moisture
content of the air, respectively.

Floor

The floor model (floor in Figure 1) can be parametrized for
a range of floor materials (e.g. soil, concrete). Conduction
through the soil is modeled by a nodal model, dividing it
into several layers. The temperature of the deepest layer
is a boundary condition. Vapor transfer is not modeled.

Thermal screen

The thermal screen (waved line in Figure 1) is a mem-
brane used to reduce the energy requirement to heat the
greenhouse. When drawn, thermal losses to the outside
are reduced by 38 to 60%, depending on the nature of its
material (Bailey, 1988). The screen model (screen in Fig-
ure 1) can easily be parametrized to cover the wide va-
riety of commercial screens nowadays used by horticul-

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

536 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157533

ture growers. The screen thickness, commonly less than 1
mm, implies a very low heat capacity. Since the screen is
mostly drawn at night (i.e. when there is no sunlight), the
absorbed heat from short-wave radiation is neglected.

Given the porous nature of the screen, air and moisture
are exchanged through its fabric. The present model as-
sumes that the thermal screen is capable of transporting
water from the lower side to the upper side. The storage
of moisture in the screen is however neglected. This im-
plies that the vapor that condenses at the screen is either
evaporated at the upper side or drips from the screen. The
rate of evaporation is therefore lower or equal to the rate
of condensation.

2.1.2 Air
The energy balance on the indoor air (air in Figure 1) is
defined by equation (3):

ρcpV
dT
dt

= ∑ Q̇+PSun +PLight (3)

which takes into account the following exchanges:
• Sensible heat flows (Q̇), including convection at sur-

faces and ventilation flows (natural, forced or leak-
age) with the outside air.

• Forced heat inputs, including the short-wave radia-
tion from the sun (PSun) or supplementary lighting
(PLight), which are first absorbed by the greenhouse
construction elements and later released to the air.

The moisture content of the air is increased by the tran-
spiration of the canopy and decreased by ventilation and
by condensation on the cover and the screen. In the model,
it is characterized by the water vapor pressure of the air
(Pv), which is determined by the vapor mass balance de-
fined in equation (4):

MH
V

RT
dPv

dt
= ∑Ṁv (4)

where MH is the molar mass of vapor and Ṁv is the vapor
mass flow rate.

The CO2 concentration of the greenhouse air, being in-
dependent from the heat and vapor exchanges, is com-
puted in a separate model (CO2_air in Figure 1). Its value
is decreased by ventilation processes and by the CO2 con-
sumption of the canopy, and increased by the CO2 sup-
ply from an external source controlled by the climate con-
troller. The CO2 mass concentration (γCO2 [mg{CO2}
m−3{air}]) of the air is determined in the CO2 mass bal-
ance, defined in equation (5).

V
dγCO2

dt
= ∑Ṁc (5)

where Ṁc is the CO2 mass flow rate.
The top air zone has a very low heat capacity and is only

modeled when the screen is drawn (i.e. mostly at night, to
mitigate losses in the lack of sunlight). For this reason,

its heat and vapor balances are computed in a simplified
version of the air model (air_Top in Figure 1), in which the
heat input from short-wave radiation (PSun in equation (3))
is neglected. The CO2 balance (CO2_top in Figure 1) is
done in the same manner as for the main zone.

2.1.3 Heating pipes

The fluid in the heating pipes from the greenhouse heat-
ing ciruit is modeled by means of the discretized model
for incompressible flow described in Section 2.4. Heat is
transferred by long-wave radiation to the canopy, floor and
cover, and by convection to the air. Since the thermal re-
sistance from the outer pipe surface to the air is about 100
times greater than the thermal resistance from the inner
surface to the outer one (De Zwart, 1996), the tempera-
ture of the pipe surface can be assumed equal to the water
temperature.

Greenhouse heating circuits are commonly made of
several parallel heating loops. The main parameters of the
model (pipe_low in Figure 1) are the pipe diameter, the
installed length per unit of ground area per loop, and the
number of parallel loops. The nominal mass flow rate and
the number of nodes in which each loop is discretized are
also parameters of the model.

2.2 Modeling of heat flows
Several models are proposed for computing the different
types of heat transfer. It should be noted that convection
and long-wave radiation are modeled separately.

2.2.1 Free convection at surfaces

The upward or downward heat exchange by free convec-
tion from an horizontal or inclined surface is modeled.
The heat exchange coefficients are modeled based on the
Nuselt-Rayleigh (Nu-Ra) relation (Balemans, 1989). The
model can be used for convection at the cover (upward
flow, inclined surface), the floor (upward/downward flow,
horizontal surface) or the screen (upward flow, horizontal
surface). The bi-direction nature of the convective flow on
the floor is due to the fact that the latter can be warmer
or colder than the air above it. The different natures of
the flows lead to different Nu-Ra relations for each sur-
face. Therefore, the user should indicate (by means of the
Boolean parameters) which surface is being modeled.

Depending on the status of the thermal screen, the heat
flow to the cover can originate either from the top or the
main air zone, and the heat flow to the screen can have
a different magnitude. Therefore, when the model is used
for the cover or the screen, the screen closure (control vari-
able in the global system) is a required input.

2.2.2 Free convection at the leaves

The heat exchange coefficient on the leaves of tomato crop
was derived experimentally by Stanghellini (1987). Be-
cause of the lack of required input data to compute it, in
the present model it is however simplified to a constant
value. This coefficient is expressed per unit of leaf area.

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

DOI Proceedings of the 13th International Modelica Conference 537
10.3384/ecp19157533 March 4-6, 2019, Regensburg, Germany

In order to compute the global heat exchange coefficient,
the LAI is thus a required input.

2.2.3 Free convection at heating pipes

The magnitude of convective heat from the heating pipes
to the air depends on the pipe position, which implies a
free exchange (i.e. pipes in free air) or a hindered ex-
change (i.e. pipes situated close to the canopy and near
the floor). The free exchange is modeled based on the
Nu-Ra relation. The hindered exchange, considered to be
forced, is modeled by experimental correlations derived
by Bot (1983). The user should indicate which exchange
should be modeled by means of a Boolean parameter. The
diameter of the pipes and the installed pipe length per unit
of ground area are also required parameters.

2.2.4 Forced convection with the outside air

The convection at the outer side of the greenhouse cover
is modeled according to the experimental work of Bot
(1983), who characterised the heat exchange coefficient
at this saw-tooth surface as a function of the wind speed.
The wind speed is an exogenous input of the model. The
main parameter is the cover tilt.

2.2.5 Natural ventilation

The heat transfer between the inside and outside air due
to natural ventilation is computed as a function of the air
exchange rate. This rate, derived by Boulard and Baille
(1993), depends mainly on two factors. The first one is
the window opening, a required input which is set by the
climate controller. The second one is the window charac-
teristics (e.g. the wind pressure coefficient and the coef-
ficient of energy discharge caused by friction at the win-
dows), which in order to simplify the model, are set to
constant values relative to standard roof windows.

Depending on the status of the thermal screen, the heat
flow can originate either from the top or the main air
zones. Therefore, the screen closure (control variable
from the climate controller) is also a required input.

This model also takes into account the leakage rate
through the greenhouse structure, which is dependent on
the wind speed (exogenous input of the model) and the
leakage coefficient of the greenhouse (parameter of the
model, characteristic of its structure).

2.2.6 Forced ventilation

The heat flow from forced ventilation is computed as a
function of the air exchange rate between two air volumes,
which depends on the capacity of the ventilation system
(parameter of the model) and the position of the control
valve (required input set by the climate controller).

2.2.7 Ventilation through the screen

Analogously to the other ventilation models, the heat
transfer caused by air exchange between the main and
top air zones is computed as a function of the air ex-
change rate, which is the sum of the air rates caused by
two mechanisms. The first one is the air exchange through

the openings in the fabric of the screen, which is temper-
ature driven and was derived experimentally by Balemans
(1989). The second one is the exchange through the gap
when the screen is opened, which is caused by density dif-
ference and was theoretically modeled by Miguel (1998)
using the Navier-Stokes equation. The main required in-
put is the screen closure (control variable from the climate
controller).

2.2.8 Long-wave radiation
The long-wave infrared radiation flows are modeled for
each exchange between all the surfaces in the greenhouse
(red lines in Figure 1). These flows are modeled by the
Stefan-Boltzmann equation. The emission coefficients,
characteristic of the surfaces, are parameters of the model
for which a standard value is proposed in the documen-
tation of the model. The view factor of each surface is
computed according to De Zwart (1996) in its component
model and is an input of the model.

2.2.9 Short-wave radiation
Short-wave radiation in a greenhouse can be originated
from the sun or from supplementary lighting.

Solar model
The main input is the solar radiation incident in a green-
house, which can be split in three spectral parts: ultra vi-
olet (UV, from 0.3 to 0.4 µm), visible light (from 0.4 to
0.7 µm) and near infrared light (NIR, from 0.7 to 3 µm).
The visible light has an interest for biological growth and
is referred as photosynthetically active radiation (PAR) in
greenhouse modeling. The fraction of UV and PAR in the
global radiation is 6-10% and 45-60%, respectively (Coul-
son, 1975). However, for plant growth it is common to
assign 50% to PAR, neglect the UV and assign the other
50% to NIR (De Zwart, 1996). Besides the spectral divi-
sion, the solar radiation can be divided in direct and dif-
fuse radiation. The solar model of this work is simplified
by making no distinction between diffuse and direct solar
radiation and by assuming that the transmission coefficient
of the greenhouse cover does not depend on the solar an-
gle. It should be remarked that the optical properties of
the greenhouse elements differ for PAR and NIR.

On the cover, the incident radiation from the sun is par-
tially reflected, absorbed and transmitted inside the green-
house. The transmitted radiation is absorbed by the con-
struction elements, the canopy or the floor. The transmit-
ted PAR to be absorbed by the canopy or the floor is de-
fined by:

q̇PAR,τ = (1−ηGlob,Air) · τCov,PAR ·ηGlob,PAR · IGlob (6)

where ηGlob,Air is the ratio of the radiation that is absorbed
by the greenhouse construction elements, τCov,PAR is the
transmission coefficient of the cover and ηGlob,PAR is the
fraction of PAR in the outside global radiation (IGlob).
When the thermal screen is closed, τCov,PAR is a lumped
transmission coefficient of the greenhouse cover and the
movable thermal screen.

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

538 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157533

For instance, the PAR absorbed by the canopy is the

sum of the PAR transmitted by the cover and directly ab-
sorbed by the canopy and the PAR reflected by the floor
and later absorbed by the canopy. In a homogenous crop,
this is described by an exponential decomposition of light
with the LAI (Ross, 1975):

q̇PAR,Can = q̇PAR,τ(1−ρCan,PAR)
(
1− e−KPAR·LAI)+

q̇PAR,τ · e−KPAR·LAI ·ρFlr,PAR(1−ρCan,PAR)
(
1− e−KPAR·LAI)

(7)
where ρCan,PAR and ρFlr,PAR are the reflection coeffi-

cients for PAR of the canopy and the floor, and KPAR is
the extinction coefficient for PAR of the canopy.

Supplementary lighting

Although the contribution of supplementary lighting is
very small during summer, in winter it can double the
sun input during a day and thus, have an important im-
pact on crop growth. The illumination model is designed
for high intensity discharge lamps (e.g. high pressure
sodium (HPS) lamps) and the main parameter is the in-
stalled power per unit of ground area. For these lamps,
only 17% and 25% of the electrical power is converted
into NIR and PAR, respectively. The remaining 58% is re-
leased to the greenhouse air (Urban and Urban, 2010). The
fraction of radiation absorbed by the greenhouse compo-
nents is computed similarly than in the solar model.

2.3 Modeling of moisture and CO2 flows
This section presents the modeling approach for the com-
putation of moisture and CO2 flows.

2.3.1 Condensation and evaporation

The mass exchange coefficients for condensation and
evaporation at the screen and the cover are linearly re-
lated to their convective heat exchange coefficients by a
conversion factor (De Zwart, 1996). As previously stated,
evaporation from the cover and from the screen’s lower
side is not modeled. Therefore, the mass flow rates due to
condensation are prohibited from being negative. Conden-
sation on the upper side of the screen is prohibited as well.
Negative flows are avoided by setting the mass transfer co-
efficients to zero when the water vapor pressure difference
between the air and the surface is negative.

2.3.2 Mass transfer through ventilation

Mass transfer occurs in ventilation processes, i.e. between
the main and top air zones, and between these and the out-
side air. The moisture and CO2 flows accompanying an air
exchange are function of the air flow rate, which is com-
puted as explained in Sections 2.2.5 and 2.2.7.

2.3.3 Mass transfer at the canopy

The canopy transpiration originates from a phase interface
somewhere inside the cavities of a leaf. The resistance to
moisture transport from the leaves to the air was derived
by Stanghellini (1987) as a function of leaf temperature,

CO2 concentration of the air, water vapor pressure dif-
ference and absorbed solar irradiation. These variables,
computed elsewhere, are inputs of this sub-model. Fur-
thermore, transpiration is also function of the dimension
of the leaves. The LAI is therefore an input of the model.

The CO2 flow from the air absorbed by the canopy de-
pends on the canopy photosynthesis rate and the respira-
tion processes. It is computed in the crop yield model and
input in this model.

2.4 Modeling of fluid flows
Fluid flows are modeled using the finite volume approach
by means of a discretized model for incompressible flow,
adapted from Quoilin et al. (2014). The model distin-
guishes between two types of variables: cell and node
variables. The main features and hypothesis of the model
can be summarized by:
• Dynamic energy balance and static mass and mo-

mentum balance are applied in each cell

• Upwind or central differences discretization scheme

• Uniform velocity through the cross section and con-
stant pressure

• Axial thermal energy transfer is neglected
The overall flow model can be built by connecting sev-

eral cells in series. The model is compatible with the Me-
dia package of the Modelica Standard Library, at the con-
dition that the considered fluid is incompressible.

2.5 Modeling of HVAC systems
In the Greenhouses library, several HVAC models are pro-
vided in order to enable system-level simulations such as
the energy integration of greenhouses with generation and
storage units. To that end, performance-based models of
CHP units, heat pump and thermal storage units are devel-
oped. Although the number of modeled HVAC systems
remains limited, the full compatibility (connector-wise) of
the Greenhouses library allows the connection with other
libraries more specialized in modeling thermal systems
(e.g. Buildings, ThermoCycle, ThermoPower, etc.). In
all the developed HVAC models, fluid flow is modeled by
means of the fluid model described in Section 2.4. To
illustrate the modeling possibility of the Greenhouses li-
brary, two system-level simulations are included in the Ex-
amples package.

2.5.1 CHP

The CHP model does not consider part-load operation
(ON/OFF regulation is assumed). Thus, constant nat-
ural gas consumption and total efficiency are assumed.
The electrical efficiency is computed assuming a constant
second-law efficiency, whose value is obtained using the
nominal operating conditions.

2.5.2 Heat pump

For heat pumps, two models are proposed. First, a
peformance-based model similar to the CHP model is de-

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

DOI Proceedings of the 13th International Modelica Conference 539
10.3384/ecp19157533 March 4-6, 2019, Regensburg, Germany

veloped, in which the second-law efficiency is assumed to
remain unchanged in part-load operation.

A second more detailed model is also implemented, in
which the heat pump performance are predicted at both
full- and partial-load operation by three polynomial laws
fitted through manufacturing data (Bolther et al., 1999).

2.5.3 Thermal energy storage

The thermal energy storage model is a nodal model of a
stratified tank with an internal heat exchanger and ambient
heat losses, adapted from Quoilin et al. (2014). The water
tank is modeled using the energy and mass conservation
principles and assuming thermodynamic equilibrium at all
times inside the control volume. The following hypothesis
are applied:

• No heat transfer between the different nodes.
• The internal heat exchanger is discretized in the same

way as the tank: each cell of the heat exchanger cor-
responds to one cell of the tank and exchanges heat
with that cell only.
• Incompressible fluid in both the tank and the heat ex-

changer.
• Axial thermal conductivity is neglected.

2.6 Modeling of crop yield
Several inputs used in the computation of the greenhouse
climate (e.g. the LAI, the CO2 flow absorbed by the
canopy) are characteristics of the crop and should be quan-
tified by a crop growth model. Moreover, with a crop
growth model, the yield and hence, the profitability (e.g.
savings in energy) from different control strategies can be
compared. For those reasons, a dynamic crop yield model
is implemented. Given that yield models differ between
crops, the model implemented in this work is only valid
for tomato crop.

Crop growth is related to photosynthesis and most of
the existent crop yield models directly relate these two
variables without considering a carbohydrate buffer. The
buffer is a storage system of the crop, whose function is
to store the carbohydrates from the photosynthesis (in-
flow) before they are distributed to the plant organs (out-
flow). It has a maximum capacity, above which carbo-
hydrates cannot be stored anymore, and a lower limit,
below which the carbohydrate outflow stops. Thus, the
in- and out-flows depend on the level of carbohydrates in
the buffer and thereby, may not be simultaneous. For in-
stance, crop growth may continue after dusk, when photo-
synthesis has stopped but distribution can still be possible
if the buffer content has not yet reached its lower limit.
The presence of a carbohydrate buffer is thus important
when modeling crop growth, as suggested in Dayan et al.
(1993); Heuvelink (1996); Linker et al. (2004); Marcelis
et al. (1998); Seginer et al. (1994).

In this work, a recent yield model developed and vali-
dated for a variety of temperatures (Vanthoor et al., 2011a)
is implemented. The model structure is shown in Figure 2.

The carbohydrate assimilation is modeled by distinguish-
ing three crop parts: the leaves, the fruits and the stems
(and roots). Mass balances are applied on each part and
on the buffer. For instance, the mass balance on the buffer
is described by:

dCBu f

dt
= ṀC,AirBu f − ṀC,Bu f Fruit − ṀC,Bu f Lea f−

ṀC,Bu f Stem− ṀC,Bu f Air

(8)

where CBu f is the availability of carbohydrates in the
buffer and ṀC are the carbohydrate flows, which are com-
puted as a function of fixed parameters related to the
tomato crop. The inputs of the model are the instantaneous
temperature of the canopy, the CO2 concentration of the
greenhouse air and the PAR absorbed by the canopy. Their
values are retrieved from the greenhouse climate simula-
tion model. The main outputs of the model are the LAI,
the harvested dry matter, the photosynthesis rate and the
respiration rates.

Figure 2. Schematic representation of the crop yield model.
Boxes define state variables (blocks), semi-state variables (dot-
ted blocks) and carbohydrate flows (valves). Arrows define mass
flows (solid lines) and information flows (dotted lines). Adapted
from Vanthoor et al. (2011a).

3 Numerical aspects
The complexity of the final model largely depends on the
selected discretization scheme for the piping and for the
ground. However, for a typical complete greenhouse ex-
ample model (e.g. the model Greenhouse1 in the Exam-
ples package), the system of equations comprises 4222
unknowns, among which 197 are differentiated variables.
After the symbolic manipulation, the size of the non-linear
systems of equations is 236 for the initialization problem
and 3 for the integration. The typical solving time is 48
minutes for a one-year simulation with a 3 GHz I7 proces-
sor.

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

540 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157533

Because of the important time constants involved in

some parts of the model (e.g. the vapor content of the
air within the greenhouse), most equations are initialized
in steady-state. While this adds some complexity to the
initialization problem (in the current example, a system of
236 non-linear equations), it avoids long and unnecessary
transients at the beginning of the simulation.

Some equations of the model include conditional state-
ments (in the form of equation (9)) which, during integra-
tion, generate state events and therefore decrease the com-
putational efficiency of the model (Jorissen et al., 2015).

y =
{

y1 if k > ks
y2 otherwise (9)

In order to increase the computational efficiency of the
model, these conditional statements have been replaced
by a differentiable switch function. For the general case
where y1,y2 ∈ R, the statement is replaced by:

y = y1 ·Sk + y2 · (1−Sk) (10)

where Sk is the value of a differentiable switch function
that is determined by the state variable k, which is defined
by:

Sk =
1

1+ esk(k−ks)
(11)

where ks is the value of k where Sk is 0.5, and s is the
slope of the differentiable switch at ks. The sign of s is
set according to if Sk increases (s < 0) or decreases (s >
0) with an increasing k. For instance, in the case where
some crop parameters differ between day and night, k is
the global irradiation, ks is equal to zero, and y1 and y2
are the values of the parameter at daytime and nighttime,
respectively.

The model also includes conditional statements in
which the output value is equal to the indicator function,
defined by equation (12).

y =
{

1 if k ∈ [ks1,ks2]
0 otherwise (12)

These conditional statements are approximated by:
y = S1

k ·S2
k (13)

where S1
k and S2

k are two differentiable switch functions,
which are defined according to equation (11) for ks1 and
ks2 and have opposite slope signs (i.e. the former is nega-
tive, the latter is positive).

4 Library implementation
4.1 Library structure
The Greenhouses library is hierarchically structured into
different packages, including:
• Components, is the central part of the library. It is

organized in three sub-packages:
– Greenhouse, contains models from the simple

greenhouse components (i.e. all the models de-
scribed in Section 2.1) to already-build green-
house models ready to use (similar to Figure 1);

– HVAC, contains the models for generation and
storage units presented in Section 2.5;

– CropYield, contains the yield model for tomato
crop described in Section 2.6.

• Flows, contains models of the flows that are encoun-
tered in a greenhouse system. It is organized in seven
sub-packages that model the heat, moisture and CO2
mass transfer, as well as fluid flow. These models are
described from Section 2.2 to 2.4.
• ControlSystems, organized in two sub-packages,

contains control units to control Climate (i.e. the
thermal screen closure, the operation of supplemen-
tary lighting and the window’s aperture) and HVAC
(i.e. the operation of generation units, the storage
(dis-)charge) (cfr. Section 4.2 for more details).
• Examples, contains examples that demonstrate the

usage of this library. It includes simulations of green-
houses (e.g. Figure 1) and two system-scale simula-
tions of a greenhouse connected to a thermal storage,
a CHP and a heat pump (e.g. Figure 4).
• Interfaces, contains all the type of connectors used in

the library.
• Functions, contains the empirical correlations used

to characterize some of the models presents in the
library.

Figure 3 shows an overview of the library structure.

Figure 3. An overview of the library structure from the Dymola
graphical user interface

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

DOI Proceedings of the 13th International Modelica Conference 541
10.3384/ecp19157533 March 4-6, 2019, Regensburg, Germany

4.2 Control Systems
Greenhouses have high requirements on indoor climate
control. The control strategies used in commercial cli-
mate controllers differ from manufacturers and are com-
monly private-access. For this reason, several control
strategies for the control of climate systems are devel-
oped. The implemented control strategies are based on
a literature review on climate requirements and control
practices (Aaslyng et al., 2003; Bailey, 1988; De Zwart,
1996; Dieleman and Kempkes, 2006; Grange and Hand,
1987; Grisey and Brajeul, 2007; Urban and Urban, 2010;
Vanthoor et al., 2011a). In the library, depending on the
nature of the strategies, two implementation approaches
are distinguished: proportional-integral (PI) and state
graph based controllers. The library includes models for
the control of:
• Supplementary lighting: ON/OFF operation deter-

mined by a state graph based controller. The strat-
egy sets up a time window for lighting, during which
a lighting set-point condition is applied. To prevent
cycling, natural light levels must be below or above
the set-point for a proving time, and once turned on,
lights must remain on for a minimum time.
• Natural ventilation: a PI controller sets the windows’

aperture based on air sanitation and air cooling, i.e.
the air relative humidity and temperature are not al-
lowed to increase above a certain value.
• Thermal screen: the screen’s closure is set by a state

graph based controller model. The screen deploy-
ment is done progressively as a function of the out-
side irradiation. Depending on the night, a small
temporary opening of the screen may be required to
regulate humidity or temperature.
• Heating: a PI controller adjusts the heating power

output by varying the supply mass flow rate of the
heating pipes according to the difference between the
air temperature set-point and actual value.
• CO2 external source: a PI controller adapts the CO2

supply rate to attain the set-point. In high ventilation
conditions, CO2 enrichment is commonly reduced
due to the high exchange rate to the outside air.

The developed control strategies remain relatively sim-
ple compared to some state-of-the-art commercial climate
controllers. Users are therefore encouraged to develop
their own controls systems adapted to their climate re-
quirements.

5 Open-source implementation
Quality of science relies upon basic principle such as
reproducibility, transparency or peer-review, which are
greatly facilitated by open-source and open-data ap-
proaches (Pfenninger et al., 2017). For this reason, the
presented library is released as open-source (using the
permissive Modelica License 2). The required documen-
tation for a new user to use the models is described in

this paper. The library can be downloaded from https:
//github.com/queraltab/GreenhouseLibrary.

In addition to this paper, an online docu-
mentation of the library is available in https:
//greenhouses-library.readthedocs.io. Apart
from an overview of the library, the online documen-
tation includes a user guide with the required steps for
a new user to get started. Furthermore, it includes an
extended description of each model of the library, in
which the main modeling assumptions and equations
are stated. To demonstrate the usage of the library, the
example simulations from the Examples package are also
commented.

6 Conclusion
The development of the Greenhouses library is an on-
going process aiming at providing a completely open-
source tool for the simulation of greenhouse climate and
its energy integration with thermal systems or the power
system. The library comprises a number of components
that can be used to simulate a wide range of greenhouse
structures and climates. Moreover, the crop growth model
allows determining the yield, and hence, the profitability
of different control strategies. The components can finally
be used to simulate the coupling of greenhouses with gen-
eration units and thermal storage, as proposed by the au-
thors in a previous publication Altes-Buch et al. (2018)
and illutrated in Figure 4. In that work the library was
used to optimize the control of a greenhouse connected to
a CHP, a heat pump and a storage system in such a way to
maximize self-consumption, leading to significant savings
(9 % of the total operation cost) compared to the baseline.

Figure 4. Diagram of a simulation example

The full compatibility (connector-wise) of the library
allows the connection with other libraries more special-
ized in modeling thermal systems, thus increasing the sim-
ulation possibilities of the Greenhouses library. The li-
brary is released as open-source, ensuring a proper repro-
ducibility and re-usability of this work. Ongoing and fu-

Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems

542 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157533

ture works will mainly focus on the integration of new
components and on the validation of the proposed models.

Acknowledgements
The authors thank the Walloon Region of Belgium, which
has funded this research in the context of the EcoSyste-
mePass project (convention 1510610).

References
CBS StatLine. Electricity; production and means of production, 2018.

URL https://opendata.cbs.nl/statline. Last ac-
cessed 16 January 2018.

J. M. Aaslyng, J. B. Lund, N. Ehler, and E. Rosenqvist. IntelliGrow: a
greenhouse component-based climate control system. Environmen-
tal Modelling & Software, 18(7):657–666, September 2003. ISSN
1364-8152. doi:10.1016/S1364-8152(03)00052-5.

Q. Altes-Buch and V. Lemort. Modeling framework for the simula-
tion and control of greenhouse climate. In Proceedings of the 10th
International Conference on System Simulation in Buildings, Liege,
December 2018.

Q. Altes-Buch, S. Quoilin, and V. Lemort. Modeling and control of
CHP generation for greenhouse cultivation including thermal energy
storage. In Proceedings of the 31st international conference on ef-
ficiency, cost, optimization, simulation and environmental impact of
energy systems, Guimaraes, Portugal, June 2018.

B. J. Bailey. Control strategies to enhance the performance of
greenhouse thermal screens. Journal of Agricultural Engineer-
ing Research, 40(3):187–198, July 1988. ISSN 0021-8634.
doi:10.1016/0021-8634(88)90206-5.

L. Balemans. Assessment of criteria for energetic effectiveness of green-
house screens. PhD thesis, Agricultural University, Ghent, 1989.

A. Bolther, Casari R., Fleury E., D. Marchio, and J.R. Millet. Méth-
ode de calcul des consommations d’énergie des bâtiments climatisés
ConsoClim. Technical Report CSTB ENEA/CVA-99.176R, Ecole
des Mines, Paris, 1999.

G.P.A Bot. Greenhouse climate : from physical processes to a dynamic
model. PhD thesis, Wageningen University, 1983.

T. Boulard and A. Baille. A simple greenhouse climate control model
incorporating effects of ventilation and evaporative cooling. Agricul-
tural and Forest Meteorology, 65(3):145–157, August 1993. ISSN
0168-1923. doi:10.1016/0168-1923(93)90001-X.

A. Buck, S. Hers, M. Afman, H. Croezen, F. Rooijers, W. van der Veen,
P. van der Wijk, and T. Slot. The Future of Cogeneration and Heat
Supply to Industry and Greenhouse Horticulture. Technical Report
14.3D38.67, CE Delft, Delft, October 2014.

F. Casella, J. G. van Putten, and P. Colonna. Dynamic Simulation of a
Biomass-Fired Steam Power Plant: A Comparison Between Causal
and A-Causal Modular Modeling. pages 205–216, January 2007.
doi:10.1115/IMECE2007-41091.

K. L. Coulson. Solar and Terrestrial Radiation. Elsevier, 1975. ISBN
978-0-12-192950-3. doi:10.1016/B978-0-12-192950-3.X5001-3.

E. Dayan, H. van Keulen, J. W. Jones, I. Zipori, D. Shmuel, and
H. Challa. Development, calibration and validation of a green-
house tomato growth model: I. Description of the model. Agri-
cultural Systems, 43(2):145–163, January 1993. ISSN 0308-521X.
doi:10.1016/0308-521X(93)90024-V.

H.F. De Zwart. Analyzing energy-saving options in greenhouse cultiva-
tion using a simulation model. PhD thesis, Wageningen University,
1996.

J.A. Dieleman and F.L.K. Kempkes. Energy screens in tomato: de-
termining the optimal opening strategy. Acta Horticulturae,
(718):599–606, October 2006. ISSN 0567-7572, 2406-6168.
doi:10.17660/ActaHortic.2006.718.70.

R. I. Grange and D. W. Hand. A review of the effects of atmospheric
humidity on the growth of horticultural crops. Journal of Horti-
cultural Science, 62(2):125–134, January 1987. ISSN 0022-1589.
doi:10.1080/14620316.1987.11515760.

A. Grisey and E. Brajeul. Serres chauffées: réduire ses dépenses én-
ergétiques. Centre technique interprofessionnel des fruits et légumes
(CTIFL), 2007.

E. Heuvelink. Tomato growth and yield : quantitative analysis and
synthesis. PhD thesis, Wageningen University, 1996.

I. Impron, S. Hemming, and G. P. A. Bot. Simple greenhouse climate
model as a design tool for greenhouses in tropical lowland. Biosys-
tems Engineering, 98(1):79–89, September 2007. ISSN 1537-5110.
doi:10.1016/j.biosystemseng.2007.03.028.

J. P. Jiménez-Navarro, K. C. Kavvadias, S. Quoilin, and A. Zucker. The
joint effect of centralised cogeneration plants and thermal storage on
the efficiency and cost of the power system. Energy, 149:535–549,
April 2018. ISSN 0360-5442. doi:10.1016/j.energy.2018.02.025.

F. Jorissen, M. Wetter, and L. Helsen. Simulation Speed Analysis and
Improvements of Modelica Models for Building Energy Simulation.
In Proceedings of the 11th International Modelica Conference, Ver-
sailles, France, September 2015. Lawrence Berkeley National Lab.
(LBNL), Berkeley, CA (United States).

R. Linker, I. Seginer, and F. Buwalda. Description and calibration of a
dynamic model for lettuce grown in a nitrate-limiting environment.
Mathematical and Computer Modelling, 40(9):1009–1024, Novem-
ber 2004. ISSN 0895-7177. doi:10.1016/j.mcm.2004.12.001.

W. Luo, H.F. de Zwart, J. DaiI, X. Wang, C. Stanghellini, and C. Bu.
Simulation of Greenhouse Management in the Subtropics, Part I:
Model Validation and Scenario Study for the Winter Season. Biosys-
tems Engineering, 90(3):307–318, March 2005. ISSN 1537-5110.
doi:10.1016/j.biosystemseng.2004.11.008.

L. F. M Marcelis, E Heuvelink, and J Goudriaan. Modelling biomass
production and yield of horticultural crops: a review. Scien-
tia Horticulturae, 74(1):83–111, April 1998. ISSN 0304-4238.
doi:10.1016/S0304-4238(98)00083-1.

A. A. F. Miguel. Transport phenomena through porous screens and
openings : from theory to greenhouse practice. PhD thesis, Wa-
geningen University, January 1998.

S. Pfenninger, J. DeCarolis, L. Hirth, S. Quoilin, and I. Staffell. The
importance of open data and software: Is energy research lagging
behind? Energy Policy, 101:211–215, February 2017. ISSN 0301-
4215. doi:10.1016/j.enpol.2016.11.046.

S. Quoilin, A. Desideri, J. Wronski, I. Bell, and V. Lemort. Thermo-
Cycle: A Modelica library for the simulation of thermodynamic sys-
tems. In Proceedings of the 10th International Modelica Conference
2014, 2014.

J. Ross. Radiative transfer in plant communities. In Vegetation and At-
mosphere (Ed. J. L. Monteith), pages 13–55. Academic Press, Lon-
don, UK, 1975.

I. Seginer, C. Gary, and M. Tchamitchian. Optimal temperature regimes
for a greenhouse crop with a carbohydrate pool: A modelling study.
Scientia Horticulturae, 60(1):55–80, December 1994. ISSN 0304-
4238. doi:10.1016/0304-4238(94)90062-0.

C. Stanghellini. Transpiration of greenhouse crops : an aid to climate
management. PhD thesis, Wageningen University, 1987.

L. Urban and I. Urban. La production sous serre: La gestion du climat,
volume 1. Lavoisier, 2nd edition, 2010.

R. J. C. van Ooteghem. Optimal Control Design for a Solar Greenhouse.
IFAC Proceedings Volumes, 43(26):304–309, January 2010. ISSN
1474-6670. doi:10.3182/20101206-3-JP-3009.00054.

B. H. E. Vanthoor, P. H. B. de Visser, C. Stanghellini, and E. J. van
Henten. A methodology for model-based greenhouse design: Part
2, description and validation of a tomato yield model. Biosystems
Engineering, 110(4):378–395, December 2011a. ISSN 1537-5110.
doi:10.1016/j.biosystemseng.2011.08.005.

B. H. E. Vanthoor, C. Stanghellini, E. J. van Henten, and P. H. B.
de Visser. A methodology for model-based greenhouse design: Part
1, a greenhouse climate model for a broad range of designs and cli-
mates. Biosystems Engineering, 110(4):363–377, December 2011b.
ISSN 1537-5110. doi:10.1016/j.biosystemseng.2011.06.001.

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

DOI Proceedings of the 13th International Modelica Conference 543
10.3384/ecp19157543 March 4-6, 2019, Regensburg, Germany

Modeling of Low Temperature Thermal Networks Using Historical Building Data
from District Energy Systems
Rogers, Ryan and Lakhian, Vickram

543

Modeling of Low Temperature Thermal Networks Using Historical
Building Data from District Energy Systems

Ryan Rogers1 Vickram Lakhian1 Marilyn Lightstone1 James S. Cotton1,2
1Department of Mechanical Engineering, McMaster University, Canada,

 2Corresponding Author: cottonjs@mcmaster.ca

Abstract
A Modelica library for modelling and comparing
District Energy Systems (DES) and Low Temperature
Thermal Networks (LTTN) has been developed. The
library consists of six unique models and a series of
replaceable sub-models that allow for different
scenarios for thermal energy generation. The fluid
transport model and losses have been tuned using an
empirical data set of a district energy system in
operation.
 An analysis was performed to compare the
performance of an existing, operational four-pipe DES
against an alternative design that consists of two one-
pipe LTTN. The results show that the LTTN
implementation can drastically reduce the natural gas
usage and in turn the carbon emissions of a district
energy plant by over 90% during a two-week period in
the transitional month of October for a thermal
microgrid in Southern Ontario, Canada.
Keywords: thermal microgrid, district energy, thermal
transport systems, carbon emissions

1 Introduction
District Energy Systems have historically been
implemented in areas with high heating demand and/or
cooling to increase energy efficiency due to the
utilization of larger industrial generation stations and
allow the sharing of energy resources (Lund et al.,
2014). These systems use a centralized plant that heats
and cools a thermal transport fluid to a set temperature
before distributing the conditioned fluid to different
buildings within the community using a piping
network. Traditionally these piping networks consist of
four pipes, a supply and return for heating, and a
similar two for cooling. In this way, each building has
access to centralized conditioning, and can access
energy through an Energy Transfer Station (ETS) that
consists of a heat exchanger that interfaces with the
district pipes (Figure 1.A).

Although these systems have proven effective at
consolidating a community’s energy production,
especially within large scale institutional campuses,
due to increased awareness of the effects of greenhouse
gases, there is significant research interest in

developing thermal microgrids and a shared thermal
economy as a means to reduce emissions.

A thermal microgrid does not depend entirely on
this centralized plant, but distributes the load to
decentralized energy generation, from traditional units
or renewable sources (solar thermal, deep lake cooling,
etc. (Li et al, 2016)). The control and balancing of the
system is done by an Energy Management Centre
(EMC) that allows for better utilization of energy by
coupling the energy production resources with demand
management strategies. The system can be further
exploited for increased efficiency and reduced
emissions with the modification of the distribution loop
from a high temperature distribution to a Low
Temperature Thermal Network (LTTN).

A Low Temperature Thermal Network replaces the
two fluid, four-pipe system present in traditional
District Energy Systems with a singular low
temperature working fluid. Like District Energy
Systems, this low temperature fluid is supplied to
buildings within a community using a thermal network,
which interfaces with each building through an ETS.
Although these systems can feature a four-pipe thermal
network, traditionally one- or two-pipe thermal
networks are used (Bünning et al, 2018). LTTN also
differ from the traditional system because they require
the use of heat pumps at the building to receive/ inject
thermal energy from/into the distribution thermal fluid
temperature to match the needs of the internal
distribution of the building. This allows for
customization within each building as each system is
not constrained to match the characteristics of the
thermal loop. This necessitates that at every building
interface, one or two heat pumps are required to
provide the building’s heating and cooling demands,
depending on whether there is a need for simultaneous
heating and cooling.

 The implication of this is that the low temperature
of the thermal loops allows for a higher level of
thermal energy heat capture from sources within the
DES or from rejected heat from cooling demand, as the
lower temperature within the DES allows for greater
temperature ranges for capture, and thus allowing for
greater system level energy utilization. Additionally,
because the LTTN features a low temperature transport

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

544 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157543

fluid, the resulting system energy losses to the
environment are reduced due to the lower temperature
difference between the piping network and the ground,
which results in a lower rate of heat transfer.

A consequence of this LTTN is that each of these
heat pumps will have an additional electrical load.
However, the countering benefit of LTTN’s ability to
capture low-grade waste energy from a community
provides a potential method to off-set further heating
demand. (Lund et al, 2014).

In the LTTN framework (Figure 1.B), the building
load is connected to the ETS through a heat pump. The
heat pump interacts with the LTTN through a heat
exchanger, where both the supply and return
connections are connected to the same pipe. This
results in a singular pipe which connects all buildings
in series and can in turn share energy between
buildings. Unlike, the four-pipe District Energy
System, after the working fluid leaves the ETS, instead
of being returned to the centralized plant, it continues
on to the next building. During seasons with
simultaneous heating and cooling loads, these series
connections allow buildings to act as producers. For
example, if a building requires cooling, it will transfer
energy into the thermal network, and raise the
temperature of the working fluid. This additional
energy can be used towards another building’s heating
demand and, as such, the energy demand upon the
centralized plant is reduced. This works similar in
reverse, as heating demands cool the temperature of the
thermal network and as such benefit other buildings
that require cooling. As this pipe is at one temperature,
it does not give a preference to either heating or
cooling demands of buildings but allows for both. It is
the role of the equipment at the central plant to

overcome any thermal imbalances and control the
setpoint temperature of the thermal fluid.

Due to this tradeoff between higher thermal energy
utilization and increased electrical consumption, there
exists a need to understand the system dynamics of
LTTN systems to determine the impacts on total
energy usage and implications on greenhouse gas
emissions. Modelica, due to its object-oriented nature
and its ease in modeling fluid systems, was chosen to
fulfill this need. Using a combination of both existing
Modelica equipment models and implementing new
analytical models, a modeling hierarchy was created.
These models were then tuned using empirical data of
an existing traditional four-pipe District Energy
Systems before implementing these models as a one-
pipe LTTN for the same community, as is described in
Section 2. The performance of both these systems was
compared by contrasting total resource utilization, peak
electrical power requirements and carbon emissions of
both systems.

2 Models
In order to accurately model both District Energy
Systems and LTTN, a Modelica library was created to
model the piping, ETSs, and a simplified EMC within
the system. These models incorporate components
from both the base Modelica Standard Library as well
as the AixLib Building systems library (Müller et al.,
2016).

2.1 Thermal Pipe Loss Model
The thermal pipe loss model, DistrictPipe is utilized to
simulate the heat losses from a buried pipe to the
environment. The model is based on an analytical
model for steady state pipe losses developed by
Wallentén (1991). The model considers pipe diameter,
insulation diameter, buried depth and ground surface
temperature taken from climate data. It calculates a
heat transfer resistance between the working fluid and
the ground using the buried depth, pipe size, and the
thermal conductivity properties for the ground and pipe
(1). Using this resistance, the temperature between the
fluid and the ground surface can then be used to
calculate the energy lost across the pipe.

 = 2 () , , (1)

Where is the pipe heat losses

 is the thermal conductivity of the ground
 is the temperature of the fluid in the pipe
 is the temperature at the ground surface
 is the heat transfer coefficient for the losses
 is the buried pipe depth
 is the outer radius of the pipe insulation
 is a dimensionless parameter relating the ground’s

thermal conductivity to that of the pipe’s insulation.

Figure 1 Different thermal network systems

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

DOI Proceedings of the 13th International Modelica Conference 545
10.3384/ecp19157543 March 4-6, 2019, Regensburg, Germany

 Using the Modelica standard library, the resistance
and temperature parameters were integrated in the
DynamicPipe model which then created a discretized
heat transfer model for the system. The DynamicPipe
model also calculates the pipe pressure losses for the
DistrictPipe model allowing comparisons to be made
between different pipe network configurations pump
power requirements.

2.2 Four-Pipe Energy Transfer Station
The four-pipe ETS is a standard energy transfer station
that consists of a pump, heat exchanger with unity
efficiency, and a return outlet. The pump is used to
direct a set amount of working fluid away from the
main header and into the heat exchanger. This diverted
mass flow set point is calculated using a relationship
derived from equipment datasheets that relates average
buildings heating or cooling requirements to a heat
exchanger’s nominal mass flow rate.

The building load interfaces with the ETS through
two Modelica RealInput interfaces. The first connector
supplies the seasonal average energy requirements for
the building which is used to calculate the mass flow
rate to the heat exchanger. The second is the energy
required by the building from the ETS. This is used to
dynamically calculate the inlet temperature to the heat
exchanger on the building side, changing the heat
exchangers performance and describing the load within
the building itself. A simple control strategy based on a
building set temperature and equipment trends gathered
from datasheets is also implemented which controls the
energy transfer, as well as enforces maximum and
minimum energy draw constraints on the heat
exchanger.

2.3 One-Pipe Energy Transfer Station
The one-pipe ETS expands on the four-pipe ETS by
replacing the heat exchanger with a heat pump model
(Figure 2). Since the thermal output of this model is
equipment dependent, two models have been made,
one for heating and one for cooling. In both cases,
Carnot based heat pumps were used from AixLib
(Müller et al, 2016). These models condition the
working fluid to a fixed outlet temperature and
calculate the Coefficients of Performance (COP) and
power consumption for the equipment based on a
Carnot efficiency.

 =

(2)

Where Thot is the temperature of the condenser
Tcold is the temperature of the evaporator

 is the Carnot efficiency of the heat pump when
compared to the ideal cycle

Although this model is not fully based on standard

equipment, the Carnot models allow for a range of
buildings to be tested without the reliance on
equipment look up tables. To further improve the
accuracy of the models, a building set temperature
control system as well as minimum and maximum
energy draw constraints were enforced on the heat
pump. These constraints ensured that the COP operates
within a reasonable range of existing commercial
equipment (COP = [3.09 – 4.20]).

2.4 Energy Management Centre
The Energy Management Centre model simulates the
centralized plant production for both the District
Energy System and the LTTN. It contains the fluid
conditioning system, sensory models used to determine
the total energy draw and an equipment dispatcher for
the energy production. This dispatcher connects to four
replaceable sub-models. These models break down the
energy production into four categories: on-peak heating
(x hours/day), off-peak heating (y hours/day), on-peak
cooling (z hours/day) and off-peak cooling (w
hours/day), where peak refers to the hours within a day
when the equipment would be operated during the
hours when there is electrical peak demand upon the
electrical grid. This is of interest in areas where
baseload electricity production is primarily emissions
free, except for peak usage where there is fossil fuel
generation (e.g. Ontario or British Columbia, Canada).
This typically refers to the between the hours of 7:00 to
19:00 per day during the month of October.

Figure 2. One-Pipe Energy Transfer Station model

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

546 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157543

These components within the model can easily be
replaced with four different models of mechanical
equipment: a boiler, a combined heating and power
plant (CHP), an air source electric chiller and a ground
source heat pump. By implementing these models
within the four different energy production categories,
they can convert the EMC’s thermal energy production
requirements to electrical power requirements, natural
gas demand and carbon dioxide emissions which can
then be used for system comparisons.

2.5 Supplemental Models
Additionally, various sub-models were also created to
simulate the thermal network system. One of these sub
models is a building load model, that incorporates real
building data within the Modelica environment through
a timetable. This system can handle data at a variety of
time steps and also produces the buildings average
energy requirements to the other models.

Another sub-model that was created, the IsoPipe
model, which was used to model the heat energy and
pressure losses for district energy pipes that were not
buried underground. These could exist within the
interior of buildings or within underground civil
infrastructure such as parking garages or utility
corridors.

Additional to these components, an array of
connectors was also made in order to reduce the total
number of connections required within the high-level
thermal network models.

3 District Energy Case Study
To validate the four thermal energy loop models, a case
study was chosen for simulation. This case study
focuses on a nine-building district energy system

located in a high-density community within Southern
Ontario, Canada. The community contains mixed use,
institutional, commercial and residential building
types. Figure 3 shows the general layout of this system;
the total foot print of the community is approximately
0.40 km2.

3.1 Design and Layout
The District Energy System can be portioned into two
major sections. The first area is the mixed-use area
located on the east end of the community. These three
buildings contain both office space and residential
apartments all which require both heating and cooling
from the district system.

The second area located in the southern section of
the community consists of six institutional buildings.
The four buildings located to the north, consist of an
office building and three community institutional
buildings. Additional to this, a large municipal building
is located in the southernmost part of the campus while
a medical research facility is centrally located.

Both areas are connected to the centralized plant
using a thermal network. The heating pipes are 15.24
cm diameter steel pipes with an insulated diameter of
24.51 cm. While the cooling pipes are larger diameter
20.32 cm HDPE without insulation.

3.2 Comparison between Model and Observations
Real-world observations were used to tune the model
to more closely match reality. To ensure the model
recreated the existing system as closely as possible,
information was obtained for the existing physical
four-pipe system.

Figure 3. District Energy System case study

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

DOI Proceedings of the 13th International Modelica Conference 547
10.3384/ecp19157543 March 4-6, 2019, Regensburg, Germany

This included all pipe lengths, equipment efficiencies
and the building load data within the system. This data,
captured at five-minute intervals, was then used to
reconstruct the physical plant as a Modelica model and
comparisons were then made between EMC
performance of the simulated model and the physical
plant.

The existing system observes a 24% loss in energy
from the total energy generation of the system at the
central plant, to where the energy is delivered to the
building loads. The system was simulated in Modelica
with the library described in Section 2. This indicated
that approximately half of the total losses (13%) were
heat loss from the buried pipes to the environment,
using expected values for the thermal conductivity of
the soil and heat exchanger efficiencies. Both the
thermal conductivity of the soil and the heat exchanger
efficiency were tuned to assess the sensitivity of the
error. This showed that while step changes in ground
thermal conductivity had little effect on the pipe losses,
the heat exchanger efficiencies could potentially
account for the error. This led to the decision that to
best address the remaining 11% error more
experimental work is needed to determine the true
nature of these losses before the library can be better
tuned.

4 LTTN Implementation
To showcase an example of a LTTN implementation,
the same case study that was used to validate the four-
pipe District Energy System was decomposed into two
communities that were then modeled with two, one-
pipe LTTNs (Figure 4).

4.1 Design and Layout
In this layout, the two distinct areas outlined with the
District Energy System have been separated and
outfitted with their own LTTN systems. Both of these
systems consist of individual one-pipe networks. For

this example, the distribution pipe was modelled using
the insulated pipe present in the physical system (15.24
cm pipe diameter, 24.51 cm insulation diameter).
Thermal losses to the environment were taken into
account, as with the observed data for the four pipe
District Energy case.

5 Results and Discussion
The results from operating the two different systems
for a two-week period in October of 2017 are discussed
in this section. It should be noted that there are
simultaneous demands for heating and cooling in this
month, typical of October in Southern Ontario,
Canada. For this comparison, the pipe specifications
outlined in the previous sections were used. For both
the District Energy System and the LTTN, the heating
production was supplied using a boiler and cooling
production was supplied with a chiller regardless of
peak timing. For the two different areas in the LTTN,
the average thermal energy requirements throughout
the two-week period are outlined in Figure 5 with the
total community energy requirements equal to
approximately 52.96 MWh for the period. Both

Figure 4. Low Temperature Thermal Network implementation

Figure 5. Energy demand distrubution for the case study
community

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

548 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157543

systems were then compared based on total power
consumption, total electrical costs and carbon
emissions.

5.1 Total Energy Usage:

5.1.1 Peak Electricity Usage
The total peak electrical power use for this two-week
period in October with the traditional four-pipe District
Energy system is 5.8 MWh, while in the case of the
LTTN it is 13.0 MWh (Figure 6). This is due to the
additional heat pump utilization with the LTTN.

5.1.2 Total Resource Usage
The four-pipe system uses 1.2 MWh of energy in the
form of electricity for pumping and requires 9.2 MWh
of electricity for cooling. Additionally, it also uses 23.0
MWh of thermal energy in the form of natural gas for
heating at the centralized plant.

Comparatively, the LTTN requires 0.7 MWh of
electricity for pumping, 5.4 MWh of electricity for
cooling and 0.8 MWh of natural gas energy for
heating. Additionally, the system utilized 15.1 MWh of
electricity for the heat pump operations, however this

additional electrical energy made the system more
efficient and resulted in a 34% total energy reduction
when compared to the District Energy System.

Figure 7 and Figure 8 show the dynamic energy
generation of both the DES and LTTN system
respectively. Although the LTTN utilizes 34% less
energy, it still has high generation periods equivalent to
that of the DES system during periods where cooling is
dominate. This 34% decrease in energy is a direct
result of the energy sharing which is taking place
between capturing rejected heat from cooling loads,
and conversely for heating loads.

Additionally, the LTTN model also exhibited much
lower pipe losses than the DES model. Using the same
insulated piping geometry for both cases, the lower
temperature set point of the LTTN (25°C) led to a 95%
reduction in pipe losses when compared to the higher
DES set point (75°C).

Figure 7 also gives insight into the nature of the
mixed loads within this DES. Although the community
has almost equivalent heating and cooling generation
requirements, these generation periods are offset by a
standard 12-hour period.

5.2 Carbon Dioxide Emissions
Considering the carbon dioxide emissions, it was found
during the transitional month of October, due to a mix
of heating and cooling demands (Figure 5), the LTTN
had much lower carbon emissions than the traditional
District Energy System (Figure 6). This stems from the
heat pumps ability to reduce total centralized plant
production by capturing rejected thermal energy from
periods that require both heating and cooling. During
periods of heating demand, the heat pumps within the
LTTN provide heating and in return cool the thermal
network. Similarly, during periods of cooling demand,
the heat pumps provide cooling and in turn heat the
thermal network. This rejected energy coupling
reduces the total production at the centralized plant
which results in lower emissions from natural gas

Figure 6. Carbon emission and peak power comparisions

Figure 7. DES Energy Generation Comparison: Heating (Natural Gas Heating Load), Cooling (Electrical Load)

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

DOI Proceedings of the 13th International Modelica Conference 549
10.3384/ecp19157543 March 4-6, 2019, Regensburg, Germany

heating. This reduction remains true even when
accounting for the additional carbon dioxide
production from using heat pumps when there is fossil
fuel generation on the electrical grid during peak times.
During these peak periods the impact of the waste
energy recovery benefit still reduces carbon emissions
by at least 56% based on calculations from
Environment Canada (2017) (51 kg CO2/Gj).

6 Conclusions
A library for modelling Low Temperature Thermal
Networks has been developed to help characterize the
performance of these new energy systems. The library
consists of six unique models for the simulation of both
traditional four-pipe District Energy Systems and one-
pipe LTTNs. The library models were used to simulate
an existing four-pipe District Energy System which
provided real energy data for both energy demand and
generation for a case community. This comparison
indicated an 11% error between the predicted values
and the historical values of the thermal losses in the
distribution grid, an error that is being addressed
through additional experimental analysis.

Beyond this comparison, a LTTN design was then
implemented in lieu of an existing District Energy
System in a nine building, high density community to
demonstrate the effectiveness of the LTTN. By
simulating the LTTN, it was found that although the
single pipe design’s integration of heat pumps
increases the peak electrical power requirements of the
community by 7.2 MWh, the waste energy recovery
potential of the system can reduce the carbon emissions
for the system by at least 56%. Additionally, the
system reduced the total energy utilization by 34% by
utilizing electrical energy to improve the efficiency of
the heating and cooling process.

7 Future Work
To further improve the Modelica library presented,
some revisions are still necessary to account for the
additional 11% energy losses in the validation case.
These steps include experimentally testing the DES

system to determine the nature of these losses and then
adjusting the Modelica library to account for them.

Acknowledgements
Natural Sciences and Engineering Research Council of
Canada, Ontario Centres of Excellence and the team
from HCE Energy Inc., Shawn Forbes, Ankur
Mehrotra and Savan Trivedi.

References
Felix Bünning, Michael Wetter, Marcus Fuchs, and Dirk

Müller. Bidirectional low temperature district energy
systems with agent-based control: Performance
comparison and operation optimization. Applied Energy,
209, pp. 502-515, 2018.

Mengyu Li, Xiongwen Zhang, Guojun Li, and Chaoyang
Jiang. A feasibility study of microgrids for reducing
energy use and GHG emissions in an industrial
application. Applied Energy, 176, pp. 138-148, 2016.

Henrik Lund, Sven Werner, Robin Wiltshire, Svend
Svendsen, Jan Eric Thorsen, Frede Hvelplund, and Brian
Vad Mathiesen. 4th Generation District Heating (4GDH)
Integrating smart thermal grids into future sustainable
energy systems. Energy, 68, pp. 1-11, 2014.

D. Müller, M. Lauster, A. Constantin, M. Fuchs, and P.
Remmen. AixLib - An Open-Source Modelica Library
within the IEA-EBC Annex 60 Framework. BauSIM, pp.
3–9, 2016.

P. Wallentén. Steady-state heat loss from insulated pipes.
Byggnadsfysik LTH, Lunds Tekniska Högskola, pp. 13-15,
1991.

Environment Canada, Greenhouse Gas Sources and Sinks in
Canada Part 2: Canada's Submission to the United Nations
Framework Convention on Climate Change. National
Inventory Report 1990–2015, 2017.

Figure 8. LTTN Energy Generation Comparison: Heating (Natural Gas Heating Load), Cooling (Electrical Load),
 ETS Power (Electrical Load)

Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy
Systems

550 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157543

DOI Proceedings of the 13th International Modelica Conference 551
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 5B: POWER & ENERGY 4
Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor
Mesa-Moles, Luis Corona and Argaud, Jean-Philippe and Jardin, Audrey and Benssy, Amine and Dong, Yulu

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration
Fu, Yangyang and Huang, Sen and Vrabie, Draguna and Zuo, Wangda

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures
Ramm, Tobias and Ehrenwirth, Mathias and Schrag, Tobias

.

552 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

DOI Proceedings of the 13th International Modelica Conference 553
10.3384/ecp19157553 March 4-6, 2019, Regensburg, Germany

Robust Calibration of Complex ThermosysPro Models using Data Assimilation
Techniques: Application on the Secondary System of a Pressurized Water Reactor
Mesa-Moles, Luis Corona and Argaud, Jean-Philippe and Jardin, Audrey and Benssy, Amine and Dong, Yulu

553

Robust Calibration of Complex ThermoSysPro Models using Data

Assimilation Techniques: Application on the Secondary Loop of a

Pressurized Water Reactor

Luis Corona Mesa-Moles1 Jean-Philippe Argaud1 Audrey Jardin1 Amine Benssy1 Yulu Dong1

1EDF R&D, France, {luis.corona-mesa-moles, jean-philippe.argaud, audrey.jardin,

amine.benssy, yulu.dong}@edf.fr

Abstract
ThermoSysPro (TSP) is a library for the modeling and

simulation of power plants and energy systems. It has

been developed by EDF and it is released under open

source license. When developing models with TSP it is

necessary to ensure that they match reality. In practice,

this operation is performed by adjusting the value of the

parameters appearing in the model. This major step

corresponds to model calibration.

Calibration can be performed through various

methods. A classical way to do so with Modelica models

is by model inversion. The major inconvenience of this

method, in addition of potential convergence problems

for complex models, is that it is necessary to have

exactly the same number of measurements as

parameters to be calibrated, which is not often the case

in practice.

This paper shows how data assimilation techniques

can robustly be used for calibration of complex TSP

models avoiding the inconveniences associated to

calibration by model inversion while ensuring an

optimal use of the available measurements. A complex

TSP model of the secondary loop of a Pressurized Water

Reactor (PWR) is considered for this purpose.

Keywords: Modelica, ThermoSysPro, ADAO, data

assimilation, model calibration, thermal-hydraulics,
pressurized water reactor.

1 Introduction and context

Physical models of energy systems such as power plants

can be advantageously used for the engineering of these

systems all along their lifecycle from the design phase

till the operation phase. They can be employed to test

different design or retrofit alternatives, to evaluate the

impact of changes in safety or environmental rules, to

validate the performance of new components during

their commissioning, to train operators, or even to help

diagnose component’s failures or sensor’s drifts during

operation and predict the system evolution in these

conditions.

Modelica (Modelica, 2018) is a language perfectly

suited for this kind of modelling thanks to its equation-

based and acausal features:

(1) The engineer can use physical equations to

capture in the same model the different

phenomena governing the system behavior from

the mechanical, hydraulic, thermal, electrical,

and so on points of view;

(2) The equations are expressed in an acausal (i.e.

non-oriented) way such that the engineer can

reuse the same model for different computation

purposes. From the same equation, one may, for

instance, deduce the perfect sizing of a

component to match a given operating point or

compute the resulting operating point given the

characteristics of on-shelf component.

A generic Modelica library, called ThermoSysPro

(TSP), has been developed by EDF to model and

simulate power plants and other kinds of energy

systems. It is released under open source license and

freely distributed with the OpenModelica simulation

tool (OpenModelica, 2018) downloadable here:

https://openmodelica.org/download/download-

windows#.

Numerous organizations and individuals worldwide

now use TSP and a large spectrum of use-cases exist

from nuclear, thermal, to combined-cycle through

biomass or even concentrated solar plants (El Hefni B.

and Bouskela D., 2017).

In the design phase, the engineer has no other choice

than calibrating such models with design assumptions

and theoretical performances of each component issued

from manufacturer data.

In the operation phase, when measurements within

the modelled system are available, it is possible to use

them to calibrate the model. One way to perform

calibration is by model inversion which consists in

computing the values of n parameters that

deterministically correspond to a given set of n

measurements. Model inversion can be performed using

the Modelica feature to express inverse problems. This

method gives satisfying results but it can be difficult to

implement in practice for complex models. The main

drawbacks associated to this method are:

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

554 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157553

 the necessity to readapt some part of the model in

order to express the inverse problem; in some cases

it may require to develop new modules facilitating

the convergence of the inverse model;

 the necessity to consider exactly the same number

of measurements as of parameters to calibrate

(which does not happen often);

 the fact that the different measurements are

considered homogenously (even if they have not

been obtained in the same conditions, or if the model

is not intended to be representative of all the

available measurements in the same way);

 no consideration of measurement uncertainties

(including on the boundary conditions of the

model).

Data assimilation framework (Asch M. et al., 2016;

Bouttier B. et al., 1999; Kalnay E. et al., 2003) provides

a number of alternative methods and techniques that can

be used to overcome these difficulties during model

calibration.

For illustration purposes and to better understand the

main differences between the two approaches, hereafter

is presented a calibration problem of a simple TSP

model, for more details see Modeling and simulation of
a complex ThermoSysPro model with OpenModelica (El

Hefni B. and Bouskela D., 2017). The model is

presented in Figure 1. It corresponds to a singular

pressure loss module with given boundary conditions (in

this case the inlet and outlet pressures).

Figure 1. Model of singular pressure loss

The calibration of the model consists in determining

the value of the pressure loss coefficient (K) of the

pressure loss module. The measurement available to

perform this calibration corresponds to the mass flow

rate through the pressure loss module (Q).

For the calibration by model inversion, the observed

mass flow rate is directly used to compute the exact

value of the pressure loss coefficient since both appear

in the same physical equation.

The corresponding physical equation is presented

below:

𝑃𝑖 − 𝑃𝑜 = 𝐾 ∙
𝑄 ∙ |𝑄|

𝜌

𝑃𝑖 and 𝑃𝑜 are the fluid pressure at the inlet and at the

outlet of the singular pressure loss respectively, 𝜌 is the

average density of the fluid, 𝑄 is the mass flow rate and

𝐾 is the friction pressure loss coefficient.

In the calibration using data assimilation techniques,

the approach is different. From the physical knowledge

of the system it is possible to give a guess value to the

K coefficient (or use directly the default value of the

TSP library), this corresponds to the a priori value of

the parameter to be calibrated. This a priori value is

used as a starting point and will be iteratively corrected

to find the best value of the calibrated parameter, “best”

in the sense that the results given by the model should

be in the end as close as possible to the available

measurements.

The objective of the article is to show how data

assimilation techniques can be used in general to have a

more robust approach of the calibration phase.

It illustrates on an industrial-size use-case, which is

the model of the secondary loop of a pressurized water

reactor, what are the concrete benefits of this approach

compared to the traditional one in place using model

inversion.

2 Model of the secondary loop of a

PWR

2.1 Nuclear power plant performance

monitoring

The secondary loop of a 1300 MW PWR nuclear power

plant has been modelled with TSP modules in order to

determine the best efficiency rate that can be expected

from the thermo-hydraulic cycle, given various

boundary conditions. This theoretical best efficiency

operation setpoint gives an estimation of several

physical quantities like pressures and temperatures

across the cycle. They are the references against which

the on-site measurements will be compared, allowing to

identify any deviation causing energy losses. These

symptoms will then be processed in order to identify

their potential causes.

The more accurate the model is, the better the

diagnosis will be.

2.2 Model description

Secondary loops of PWRs are classical Rankine cycles

that convert thermal energy into electrical power.

Figure 2. Model of 1300 MW PWR secondary loop with

TSP

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

DOI Proceedings of the 13th International Modelica Conference 555
10.3384/ecp19157553 March 4-6, 2019, Regensburg, Germany

The TSP model developed to represent such PWR’s

secondary loop is static and composed of the following

key systems (Figure 2):

 a turbogenerator set made of high-pressure (HP) and

low-pressure (LP) turbines and one generator;

 two sets of Moisture Separator Reheaters;

 one condenser;

 one feedwater tank and gas stripper system;

 two turbine-driven feedwater pumps;

 low (LP) and high pressure (HP) feedwater heaters.

Once properly calibrated, the model calculates the

nominal operation setpoint from thirteen boundary

conditions. Among which the more important are:

plant’s cooling water temperature and pressure, Steam

Generator’s (SG) thermal power, SG’s moisture

carryover level, SG’s pressure at the outlet, SG’s

feedwater flow.

3 Calibration methodology

3.1 Data assimilation framework

Data assimilation is a general well established

framework (Asch M. et al., 2016) for computing the

optimal estimate of the true state of a system, over time

if necessary. It combines knowledge between

observations and a priori models, including information

about their errors. The goal is to obtain the best possible

estimate of the system real state and of its stochastic

properties. Moreover, data assimilation provides

deterministic techniques in order to perform very

efficiently the estimation job. Because data assimilation

looks for the best possible estimate, its underlying

procedure always integrates optimization in order to

find this estimate.

The calibration of a model consists in looking for the

value (of part) of the parameters of a model, in such a

way that the simulation obtained with these parameters

is better adapted to real measurements on the same

simulated system, in the sense that the distance between

model predictions and measurements is smaller. The use

of data assimilation for calibration requires the

acquisition of measured information in the same

conditions under which the simulated system is to be

calibrated. The collection and prior analysis of these

measurements also establishes elements of confidence

and compared quality of the measurements, which will

be interesting in the use of algorithms. In addition, the

numerical model used must be functional over a validity

domain that includes the range of variation of the

parameters to be calibrated.

All quantities representing the description of physics

in a model are likely to be calibrated in a data

assimilation process, whether they are model

parameters, initial conditions or boundary conditions.

Their simultaneous consideration is greatly facilitated

by the data assimilation framework, which makes it

possible to objectively process a heterogeneous set of

available information.

3.2 Data assimilation applied to 0D/1D

models with ADAO

To perform data assimilation, a specialized LGPL free

distributed tool ADAO (Salome, 2018) is used to

simplify the application of data assimilation for the

simulation of complex systems. Available in the Python

environment that allows the simulation of Modelica

models and hence of TSP models, it allows to easily

automatize the calibration of 0D/1D models and the

development of complex calibration scenarios

according to the states of the analyzed physical system.

ADAO was initially developed to perform data

assimilation with 2D/3D models. Its adaptation to

0D/1D models has been coded during this work and now

simplifies the specification of model parameters to be

calibrated and simulated quantities to be compared to

measurements, which are known in the Modelica

description of the system. In addition, an advanced and

simultaneous management of the various possible

operating conditions enhances the physical

representativeness of the overall calibration of the

simulated system.

The use of ADAO in a Modelica/Python environment

allows to simply describe the data assimilation problem,

through a Modelica representation of the simulation and

of the named data for measurements as well as for the a

priori values of the parameters to be calibrated. Since

the different measurements are not obtained with the

same sensors, the confidence accorded to the different

available measurements can be easily modified as well.

Moreover, when calibrating a large number of

parameters, a sensitivity analysis can be performed to

reduce the set of parameters that should be calibrated to

the only ones that have a real impact on the quantities

observed through the measurements. The entire data

assimilation process is then automated and depends only

on the ability of the model to simulate the system for the

required parameter values through optimization. The

stability and convergence of the simulated system over

its entire domain of validity are therefore essential to

allow an efficient search for a set of calibration

parameters. The availability of complete or aggregated

outputs provided by ADAO for a simulation ensemble

is also crucial to ensure that the optimal simulation can

be analyzed in detail and that the calibrated parameters

are relevant.

3.3 Calibration procedure

The specialized tool ADAO allows to easily define the

different elements necessary to perform model

calibration using data assimilation techniques. These

elements are:

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

556 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157553

 Parameters (including initial conditions or boundary

conditions if required) to be calibrated (with given

a priori values);

 Available measurements (taking into account

whether they have been obtained under the same

conditions, i.e. with the same boundary conditions,

or not);

 Modelica model (describing the physical connection

existing between the parameters to be calibrated and

the observations/measurements).

It is important to note that a variable confidence error

can individually be associated to the different

measurements available, under the form of a covariance

matrix. This information is then used by ADAO to

compute the optimal values of the parameters. This

process is illustrated in Figure 3 (in blue the necessary

information to be provided to ADAO).

Figure 3. Illustration of the calibration procedure using

data assimilation techniques

3.4 Analysis criteria

In order to evaluate how good a calibration of the model

is, it is necessary to establish a certain number of

criteria. In a model calibration procedure as here, the

objective is that the variables computed by the model are

as close as possible to the available measurements.

Therefore, these indicators should be based on the

differences between the available on-site measurements

and the corresponding variables computed by the model.

In this paper, two different criteria are considered.

Firstly, a global indicator that it is equal to the sum of

the quadratic difference between the measurement and

the corresponding variable in the model, for all the

available measurements. This indicator is not very

different from the cost function value minimized by

ADAO in the calibration procedure. It provides a

general overview of a given calibration. Secondly, an

indicator for each measurement, considered

individually, is necessary in order to detect a calibration

that is unacceptable (i.e. outside of its a priori
confidence interval) for a given measurement while

being correct globally. For each measurement, the

relative difference between this measurement and the

corresponding model output is computed. The relative

difference is defined as the absolute value of the ratio

between the difference between the measurement and

the model output and the value of the measurement. It

provides therefore a homogenous indicator for all the

available measurements. This indicator can as well be

used to check precisely if the calibrated model is more

representative for certain measurements, judged to be

more important than the others.

4 Calibration of the secondary loop of

a PWR

4.1 Scenario description

The calibration of the TSP model of PWR’s secondary

loop (Figure 2) is performed over 116 parameters. For

comparison purposes, the same observations as for the

calibration by model inversion are considered. They

correspond to pressure, mass flowrate and temperature

measurements. These observations correspond to 116

measures obtained in ten campaigns of measurements.

Therefore, in total 10x116=1160 observations are used

to perform the model calibration. However, contrary to

the calibration by inversion, the observations are

considered simultaneously for the calibration presented

in this study. The use of ADAO and preprocessing

facilities allows to adapt the boundary conditions for

each set of 116 observations.

The calibration of the model is performed for two

different configurations, which mainly differ from the a

priori values given to the parameters as an initial guess.

In the first configuration the a priori values for the

parameters to be calibrated correspond to the values

obtained by model inversion. In the second one, typical

a priori values are considered, corresponding to what

can be found in technical data sheets of the modeled

components. This second case would correspond to a

typical calibration procedure while the first one shows

how data assimilation methods can improve the

calibration obtained by the classical model inversion

method which is now in current use in our engineering

divisions.

For the first configuration, the following sub-

scenarios are studied:

 High confidence on observations (scenario 1);

 High confidence on observations but according

more confidence to some of them that are

considered as more meaningful (scenario 2).

For the second configuration, the following sub-

scenarios are considered:

 High confidence on observations (scenario 3);

 High confidence on observations but considering a

reduced number of parameters to calibrate (the

selection of these parameters is performed through

a sensitivity analysis, 62 parameters are kept)

(scenario 4).

For each scenario, the domain in which the optimal

value of the parameters is searched is adjusted in order

to ensure the convergence of the simulated model (see

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

DOI Proceedings of the 13th International Modelica Conference 557
10.3384/ecp19157553 March 4-6, 2019, Regensburg, Germany

3.2 for more details). These research domains are

indicated in Table 1.

Table 1. Research domain for the optimal value of

calibrated parameters.

Scenario Research domain

Scenario 1 5% around a priori values

Scenario 2 5% around a priori values

Scenario 3 10% around a priori values

Scenario 4 60% around a priori values

It appears clearly that reducing the number of

parameters to calibrate enables to enlarge the research

domain for the optimal value of the parameters: the

convergence of the model is facilitated compared to the

situation in which all the parameters have to be

calibrated and may vary.

4.2 Results and discussion

First of all, it is important to examine the optimal value

of the parameters given by the data assimilation

procedure. A key point is to check if the optimal value

of the calibrated parameter reaches the bounds of the

research domain. In such case, it is probable that right

optimal value of the parameters is not reached. If there

were no limitations, or if the non-convergence situations

could be avoided, the calibration of the model would be

more trustful. Table 2 summarizes this aspect for the

scenarios described in the previous section: it indicates

the number of times that the bounds of the research

domain for a given parameter are reached.

Table 2. Number of times the bounds of the parameters

research domain are reached.

Scenario Number of times the bounds of
the research domain are

reached

Scenario 1 3

Scenario 2 1

Scenario 3 73

Scenario 4 9

For the scenarios in which the starting values of the

parameters is the one obtained by model inversion

(Scenarios 1 and 2), it can be checked that, even with a

small research domain, the bounds are rarely reached.

This seems logical as the value of the parameters

obtained by model inversion is supposed to be close to

an optimal value. For the scenarios in which typical a
priori values are considered, the bounds of the domain

research are often reached when all the parameters are

kept. If the number of parameters is reduced and the

research domain is enlarged (as in scenario 4 with

respect to scenario 3), reaching the bounds is largely

reduced: 63% of calibrated parameters reach the bounds

in scenario 3 compared to only 15% in scenario 4.

In order to evaluate how good the calibration is, an

overall indicator is the quadratic difference between the

observations and the model output (for the 1160

observations), see paragraph 3.4. The smaller this

quadratic difference is, the better the calibration is.

Table 3 summarizes this result for the four scenarios

studied in the present work and for the calibration

performed by model inversion, the so-called Inverse
calibration. The results are presented based on the result

obtained for the Inverse calibration method (a value

lower than 1 indicates that the result is better than the

result obtained by model inversion and a value higher

than 1 indicates that it is worse).

Table 3. Quadratic difference between the observations

and the model output – Inverse calibration as a reference

Scenario Quadratic difference

Inverse calibration 1 – Reference result

Scenario 1 0.166

Scenario 2 0.245

Scenario 3 4.483

Scenario 4 0.167

In Table 3, the most important point is the value of

the quadratic difference compared to the one obtained

by model inversion that is set to 1 for comparison

purposes. For scenarios 1 and 2, results show that this

difference is largely reduced (almost by a factor from 5

to 10, especially for scenario 1). This show how data

assimilation can improve an existing calibration.

For scenarios starting from typical a priori values, the

results are very encouraging as well. When all the

parameters are considered (scenario 3), the quadratic

difference is only a few times higher than the one

obtained by model inversion. However, when a fewer

number of parameters are kept but with a larger

variation range as indicated in Table 1 (scenario 4),

Table 3 shows that the quadratic difference is much

smaller than the one obtained by model inversion:

similar results as for scenario 1 are obtained. This shows

how important it is to ensure the model convergence in

a domain as large as possible (scenario 3 should give

better results than scenario 4, however as indicated in

Table 2 for scenario 3 a large number of parameters

reach the bounds of their research domain).

In addition of the overall overview of the calibration,

it is important to ensure that the calibration provides

good results for each observation separately, avoiding

for example to reduce the error obtained for one single

observation and increasing it for a large amount of them.

As presented in section 3.4, a good indicator can be for

example the relative difference between a given

observation and the corresponding model output. Table

4 shows how many times this relative difference

(averaged over the ten campaigns of measurements) is

minimal, with a certain tolerance, for the 116

observations.

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

558 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157553

These results show that this indicator is improved (or

at least not worsened) when starting from the values of

the parameters obtained by model inversion, especially

for scenario 2. This shows that even observation by

observation, considered separately, data assimilation

techniques can improve the model calibration. For

scenarios 3 and 4 it is shown that good results are

obtained for a significant number of observations as

well.

Table 4. Results with respect to the relative difference

between a given observation and the corresponding model

output.

Scenario Number of times that the
relative difference between a
given observation and the
corresponding model output is

minimal (with a tolerance of

10%)

Inverse calibration 48

Scenario 1 48

Scenario 2 67

Scenario 3 27

Scenario 4 25

Finally, in order to illustrate the effect of modifying the

confidence on certain observations, a focus is performed

on the observations for which a higher confidence has

been considered (in scenario 2, compared to scenario 1

in which all the observations were considered in the

same manner). These results are not provided for

scenarios 3 and 4 since no specific focus on these

observations was performed. Table 5 summarizes these

results. The observations for which a higher confidence

has been given, i.e. considered as more meaningful, are

numbered from 1 to 16. For these observations, the

relative difference between the observations and the

corresponding model output (averaged over the ten

campaigns of measurements) is indicated for the

calibration by model inversion and for scenarios 1 and

2. For each observation, the minimal relative difference

is put in bold. Moreover, the last line of Table 5

indicates the quadratic difference obtained over this

subset of observations (as in Table 3, the results are

given with respect to the results obtained with the

calibration method by model inversion).

Table 5. Comparison between observations and model

output for the observations on which a higher confidence

is given.

Observation
number

Inverse
calibration

Scenario 1 Scenario 2

1 1.66% 1.54% 1.33%

2 1.51% 1.51% 1.54%

3 1.50% 1.39% 1.31%

4 0.74% 1.09% 0.44%

5 4.28% 4.30% 4.33%

6 0.85% 0.99% 0.89%

7 0.36% 0.40% 0.34%

8 0.41% 0.32% 0.29%

9 0.33% 0.23% 0.21%

10 0.37% 0.25% 0.23%

11 0.11% 0.20% 0.18%

12 0.14% 0.10% 0.10%

13 0.67% 0.72% 0.59%

14 1.05% 0.87% 0.83%

15 1.07% 0.88% 0.82%

16 1.42% 1.16% 1.31%

Overall

quadratic

difference

1 - Reference 0.822 0.676

Table 5 shows that scenario 2 provides better results

for a large part of these observations considered

individually (and when this is not the case, the relative

difference is still very close to the one obtained by

inverse calibration or in scenario1). Moreover, the

overall indicator, giving the quadratic difference for this

subset of observations, shows clearly that in both cases

(scenario 1 and 2) the overall results obtained by data

assimilation techniques are better than those obtained by

model inversion. Therefore, it is possible, using data

assimilation techniques, to easily obtain different

calibrations of the model according to what the model is

intended for or according to the quality of the

observations.

These results show how the application of data

assimilation techniques for the calibration of complex

TSP models can give good calibration results, both in

providing or in improving the optimal value of the

calibrated parameters. Moreover, these calibration

results can be obtained in about one day of calculations,

compared to several weeks for the calibration by model

inversion currently required (including the development

of an inverse model, the pre-treatment of the

measurements initially available and the different post-

treatment techniques required to determine the optimal

value of the parameters).

5 Conclusion and perspectives

A new method for robust and reliable model calibration,

based on data assimilation techniques, for complex TSP

models is currently under development. It already shows

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

DOI Proceedings of the 13th International Modelica Conference 559
10.3384/ecp19157553 March 4-6, 2019, Regensburg, Germany

its important benefits compared to the traditional

method using model inversion.

The results presented in this paper show how the

application of data assimilation techniques to calibrate a

complex TSP model of the secondary loop of a PWR is

able to improve the calibration obtained by model

inversion. In addition, it shows how a usual calibration

procedure using these new techniques, coupled with a

sensitivity analysis of the model, can as well provide

better results than the traditional calibration method.

Therefore, compared to calibration by model

inversion, this new method enables to handle

conveniently situations that could not be treated before,

or that would have required an important number of pre-

treatments. For example, when more measurements than

parameters to be calibrated are available, with the

calibration by model inversion method, it was necessary

to make a choice and loose some information, whereas

with the new method presented in this paper it is not

necessary. On the contrary, if not enough measurements

are available it is not possible to calibrate the whole set

of parameters using the traditional inversion method,

whereas calibration approach based on data assimilation

techniques is able to provide an optimal value for the

whole set of parameters using efficiently all the

available information. In addition, the consideration of

measurements obtained in different operating conditions

is greatly facilitated by data assimilation since they can

all be considered simultaneously (it is therefore not

necessary to post-treat independently the results

obtained individually by one model inversion per each

operating condition or campaign of measurements).

Moreover, for some complex models, calibration by

model inversion requires to develop new inverse

modules when the convergence for inverse calculation

is difficult, which may be very time-consuming.

In other word data assimilation method allows to

automatize the model calibration procedure and hence

to considerably reduce the time necessary to its

calibration. Furthermore, it paves the way to improve

the calibration accuracy, by enabling the use of

additional information (e.g. more measurements than

those strictly necessary for calibration by model

inversion), or the use of available information in a

specific way (e.g. according more confidence to some

measurements). However, it is important to keep in

mind that a good knowledge of the modelled system and

of the model itself is very important in order to ensure

that the results obtained applying data assimilation

techniques are physically correct.

In the future, the current improvements under

development should facilitate the application of this new

calibration method. A major aspect is to ensure the

convergence of the model over a large domain so that

data assimilation techniques can provide even better

results. Work on model initialization will in particular

be done within the ongoing FUI ModeliScale project in

partnership with Dassault Systèmes, INRIA and

Phiméca. Other important point is from the

methodological point of view to study: (1) how

complementary studies such as sensitivity analysis of

the model can be used more efficiently to properly

formulate the calibration problem (e.g. by considering

for calibration only the parameter that have a real impact

on the variables of interest considered); (2) how data

assimilation could be used for other purposes such as

state estimation or prognosis.

References

Asch M., Bocquet M., Nodet M., Data Assimilation -
Methods, Algorithms and Applications, SIAM, 2016.

Bouttier B., Courtier P., Data assimilation concepts and

methods, Meteorological Training Course Lecture Series,

ECMWF, 1999.

El Hefni B., Bouskela D., Modeling and simulation of a

complex ThermoSysPro model with OpenModelica –

Dynamic Modeling of a combined power plant, 12th

International Modelica Conference, May 15-17, 2017,

Prague, Czech Republic.

Kalnay E., Atmospheric Modeling, Data Assimilation and

Predictability, Cambridge University Press, 2003.

Modelica, open-source modelling language, information

available at: https://www.modelica.org/

OpenModelica, open-source Modelica-based modeling and

simulation environment, information available at:

https://openmodelica.org/

 SALOME The Open Source Integration Platform for
Numerical Simulation, information available at:

http://www.salome-platform.org/

Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on
the Secondary System of a Pressurized Water Reactor

560 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157553

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration

DOI Proceedings of the 13th International Modelica Conference 561
10.3384/ecp19157561 March 4-6, 2019, Regensburg, Germany

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-
Grid Integration
Fu, Yangyang and Huang, Sen and Vrabie, Draguna and Zuo, Wangda

561

Coupling Power System Dynamics and Building Dynamics to
Enable Building-to-Grid Integration

Yangyang Fu1 Sen Huang2,* Draguna Vrabie2 Wangda Zuo1

1Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO,
USA {yangyang.fu, wangda.zuo}@colorado.edu

2Pacific Northwest National Laboratory, Richland, WA, USA {sen.huang, draguna.vrabie}@pnnl.gov

Abstract
The interactions between power system dynamics and
building dynamics are usually ignored or over-simplified
in existing power system and building modeling and sim-
ulation tools, which limits how system modeling can sup-
port Building-to-Grid integration. This paper discusses
a new approach to consider those interactions by model-
ing motor-driven building devices or systems. The motor-
driven model is based on simplified mechanical rotation
equations and allows us to study the coupling relation-
ship between frequency/voltage in the power system and
motor-driven device operation. This model is validated
by performing one proof-of-concept case study with Mod-
elica. The simulation results suggest that the proposed
model can yield better representations of these interac-
tions than the existing simplified models, especially the
ones with the fast transient dynamics.
Keywords: Building-to-Grid Integration, Motor, Coupling
Simulation

1 Introduction
There are significant interactions between power system
and the buildings. For example, research suggests that
the supply voltage of the power system dramatically af-
fects building energy efficiency (Hood, 2004; Bichik et al.,
2015; Lee, 2014). On the other hand, building systems, es-
pecially heating, ventilation, and air conditioning (HVAC)
systems, attribute to the voltage stability issues in the
power system (Wu et al., 2006; He et al., 2012; Li et al.,
2017). It is generally necessary to consider those inter-
actions, when designing or operating power systems or
buildings, to avoid undesirable side effects.

However, when simulating the power systems and
buildings, those interactions are usually ignored. For in-
stance, some power system models assume the power fac-
tors of the building system to be fixed (Chassin et al.,
2008). In addition, most building modeling tools implic-
itly ignore the influence of power systems on buildings by
assuming the supply voltage to be constant (Crawley et al.,
2001). Some models do consider those interactions, but in
a simplified manner. One example is the ZIP coefficient
model (Bokhari et al., 2014), which represents the varia-
tion (with voltage) of a load as a composition of the three

types of constant loads: impedance “Z”, current “I”, and
power “P” loads. It calculates the active/reactive power of
a device under varying voltage conditions, by

P = Po(Zp(
V
Vo

)2 + Ip
V
Vo

+Pp) (1)

Q = Qo(Zq(
V
Vo

)2 + Iq
V
Vo

+Pq) (2)

where P ,Q, and V are the active power, reactive power,
and voltage, respectively. Subscript o denotes the rated
condition while p and q denote the active and reactive
power, respectively. Essentially, the ZIP coefficient model
approximates the influence of the voltage on the device
with a polynomial function.

It is noted that the above assumptions or simplifica-
tions regarding the interaction between power systems and
buildings may be justified for certain applications. For
example, for buildings where the resistive devices (such
as the electric heater) dominate, the assumption that the
power factor is constant may be valid. In addition, when
considering a regulated power system, it might be accept-
able to assume that the supply voltage is constant in eval-
uating building design or operation (Gilbert, 1965). Fur-
thermore, the ZIP coefficient model was widely used in
the static or semi-dynamic analysis on the power system
(Hatipoglu et al., 2012).

Nevertheless, it is our view that the aforementioned
assumptions or simplifications may be inappropriate for
some applications, especially the Building-to-Grid inte-
gration activities. For instance, (Arriffin et al., 2017) pro-
posed an approach to increase the energy efficiency of
the buildings by optimizing the supply voltage. When
evaluating this approach, it is necessary to consider how
the buildings respond to the varying voltage in terms of
active/reactive power and the quality of the service they
provided to the occupants. It is also necessary to con-
sider how the proposed approach affects the stability of
the power supply. Apparently, none of the aforementioned
assumptions or simplifications help users to do so.

In this paper, we provide a more realistic representation
of the interactions between power grid and buildings by
presenting a new motor-driven model. The model is based
on simplified mechanical rotation equations. It allows us
to consider not only the effect of thermal dynamics in the

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration

562 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157561

building side on motor operations, but also the influence
from the power supply side on motor behaviors. Thus, it
is more suitable for the Building-to-Grid integration activ-
ities as we discussed above.

The rest of this paper is organized as follows: we first
describe the motor system and simplify it for modeling
purpose; then we elaborate the process for creating a Mod-
elica model for the studied system; Last, we discuss the
two proof-of-concept cases and future work.

2 Studied System
Figure 1 is a schematic of the studied system. The studied
system is defined to represent how a typical HVAC system
interacts with the power grid, and consists of three subsys-
tems:

1) Electrical Subsystem. This subsystem represents the
power system and provides power to the rest of the studied
system. It has one variable frequency drive (VFD), which
adjusts the frequency of power based on the request from
the building system.

2) Mechanical Subsystem. This subsystem represents
the process of converting to the service that building sys-
tems provide to occupants. In our case, the service we
considered is cooling/heating demand. The mechanical
system contains two components: an induction motor that
creates torque given receiving power flow and a transi-
tional device that converts the torque to the mechanical
work.

3) Thermal Subsystem. This subsystem represents
the HVAC system that addresses the cooling/heating de-
mand in buildings. It has motor-driven devices such as a
fan/pump that delivers fluid flows such as air or water flow
to actually remove/add heat from/to the indoor environ-
ment. There are also feedback-loop controls which guar-
antee that the motor-driven device delivers desired flow
rates by adjusting the frequency of the VFD.

It is noted that both the electrical subsystem and the
thermal subsystem are treated as abstract interfaces to be
connected to more detailed models for power systems or
building systems. Details of the power system or the
building systems such as the power distribution flow are
beyond the scope of this study.

3 System Model
As discussed in the previous section, the electrical subsys-
tem and the thermal subsystem are treated as interfaces to
be connected to the power system and buildings, respec-
tively. Thus, when elaborating on the system model, we
mainly focus on the mechanical subsystem. For the details
regarding the modeling of the power system or buildings,
readers can find more information in (Chassin et al., 2008;
Crawley et al., 2001).

In the mechanical subsystem, one major equipment is
the induction motor. Although Modelica Standard Library
has existing models for the induction machine, they are
built on an electrical interface that are hardly compati-

ble with Modelica Buildings library (Wetter et al., 2014)
that is widely used to perform dynamic simulation on the
building side. Whatḿore, those induction machine model
are too complicated for this preliminary study. Therefore,
in this paper, we presented a new induction motor model
which can be sufficient to capture the dynamics we need
for Building-to-Grid integration, and utilized the electrical
interface in Modelica Buildings Library to easily couple
with building side.

In the presented induction motor model, the inputs in-
clude voltage, V , frequency, f , and load torque, τL, while
the output is the electromagnetic torque,τe. The major pa-
rameters include the number of the pole pair, np, the num-
ber of the phase, n, the moment of the inertia, Jm, the elec-
tric resistance of the stator, Rs, the electric resistance of the
rotor, Rr, the complex component of the impedance of the
stator, the complex component of the impedance of rotor,
and the complex component of the magnetizing reactance,
Xs, Xr, and Xm.

τe is calculated by solving the following equations

τe =
n(V

Xm

Xm +Xs
)2 Rr

s

ωs((Rs(
Xm

Xm +Xs
)2 +(

Rr

s
)2))2 +(Xr +Xs)2

(3)

ωs =
4π f
np

(4)

s =
ωs −ωr

ωs
(5)

dωr

dt
=

τe − τL

Jm
(6)

In addition, the active and the reactive power of the mo-
tor, P and Q, are calculated by

P =
nV 2Req

Req
2 +Xeq

2 (7)

Q =
nV 2Xeq

Req
2 +Xeq

2 (8)

Req = Rs +
RrsX2

m

R2
r +(s2)(Xr +Xm)2 (9)

Xeq = Xs +
Xm(R2

r +(sXr)
2 +(s2)XrXm)

R2
r +(s2)(Xr +Xm)2 (10)

Regarding the transitional device, its inputs include τe
and the load shaft power Psha f t while the outputs include
the load speed, ωr and τL. One major parameter for the
transitional device is the load moment inertia JL. τL is
calculated by solving the following equations:

τL =
Psha f t

ωr
(11)

dωr

dt
=

τe − τL

JL
(12)

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration

DOI Proceedings of the 13th International Modelica Conference 563
10.3384/ecp19157561 March 4-6, 2019, Regensburg, Germany

Thermal SubsystemElectrical Subsystem

MotorVFD Fan/pum
p/chiller

Transitional
Device

Fluid
Flow

Feeder Variable Frequency
Drive

Induction
Motor

Motor-driven
Device

Thermal
Load

Mechanical Subsystem

Control Loop

Figure 1. The studied system

Transitional
Device Model

Motor
Model

߱r

ܲ௦௧, fc

Τ

Τ
ܸ, ݂

݂

Figure 2. The input-output interface for the generated Modelica
model

The load shaft power Psha f t can be calculated from
a conventional pump model commonly used in building
simulation tools.

Psha f t =
∆pQ
ηsha f t

(13)

∆p and ηsha f t are the head and shaft efficiency of the
pump. They can be expressed as a quadratic equation in
terms of volume flowrate Q and normalized rotation speed
r.

∆p = (a0 +a1(
Q
r
)+a2(

Q
r
)2)r2 (14)

ηsha f t = (b0 +b1(
Q
r
)+b2(

Q
r
)2)r2 (15)

where the normalized speed r can be calculated by receiv-
ing rotation speed ωr from the transitional device, and the
known nominal rotation speed ωr,0.

r =
ωr

ωr,0
(16)

We then implemented the above-mentioned models of
the induction motor and the transitional device in Mod-
elica (Fritzson and Engelson, 1998). Modelica is an
equation-based modeling language that allows the systems
to be described with implicit equations. Therefore, equa-
tions (3) to (12) can be used directly to create the corre-
sponding Modelica codes. The generated Modelica mod-
els have the input-output interface shown as Figure 2. The
inputs include the load shaft power and the frequency con-
trol signal, fc, from buildings, as well as the voltage V and
the actual frequency f from the power system; the outputs

simMot

pum.shaft.tau

loaTorExp

loaInt

J=JLoad
w_ref

spe

exact=
false

pum

Nrpm [rpm]

M

per

port_a port_b

f

P

Q

term_p
Electrical Interface

Transitional Device

Mechnical and Thermal System

Pump

Motor

Figure 3. Modelica representation of the motor-driven pump
model

are the actual speed of the motor-driven devices ωr and
the actual frequency control signal to the power system.

The final motor-driven pump model is built by connect-
ing the motor model, transitional device, and a mechanical
pump model in Modelica Buildings library together. The
Modelica representation is shown in Figure 3. The elec-
trical interface is used to connect with the grid model to
receive electrical information. The received electrical in-
formation is then delivered to the induction motor model,
which generates electromagnetic torque that is transmitted
to the mechanical pump by the transitional device.

4 Proof-of-concept Study
We conducted one case study to demonstrate how the gen-
erated models can capture the interactions between the
power system and the buildings. In this case, we consid-
ered a simplified hydraulic cooling system. As shown in
4, a pump on the supply side delivers cold water between
an ideal cooling source and an air handler. The cooling
source maintains the temperature of the leaving water to
be 7 ◦C while the water flow rate is modulated to main-
tain the air leaving the air handler to be around 16 ◦C. The
change in water flow rate is realized by adjusting the valve

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration

564 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157561

Cooling
Source

Air
Handler

Load

Pump

T

∆p

Pump control

Supply
temperature

control

Load
Change

Valve

Figure 4. The schematic drawing of the proof-of-concept case

portion of a two-way valve. The frequency of the pump is
adjusted to maintain a constant pressure difference in the
pipe across the air handler.

We implemented the above case based on the Modelica
Buildings library, which has been demonstrated to be able
to perform building level energy modeling and simula-
tion (Huang et al., 2016, 2017; Fu et al., 2018, 2019).
For example, the Buildings.Fluid.Sources.BoundarypT
is used to model the ideal cooling source. In ad-
dition, to model the pump, we consider three mod-
ules: One (named “conventional pump”) is the pump
module from the Modelica Buildings Library (Build-
ings.Fluid.Movers.BaseClasses.PartialFlowMachine).
This model doesn’t take voltage into consideration.
The second one (named “proposed pump”) is modified
based on the first one by adding the developed induction
motor and transitional device. Figure 5 shows a diagram
of the generated Modelica model with the proposed
pump in Dymola environment (Brück et al., 2002). The
performance characteristics curve of the pump is from the
Modelica Buildings Library.

We simulated the Modelica model for two different sce-
narios. In the first scenario, we studied how the system be-
haves when we change the status of the pump from off to
on. In this case, as shown in Figure 6, for both the “con-
ventional pump” and the “proposed pump”, the pressure
difference starts with 0 kPa and approaches the set point
of 20 kPa. However, it takes around 60s for the “proposed
pump” to be quite close to the set point while more than
400s for the “conventional pump” to reach to the similar
value. On the same time, we also observe much higher
pump power from 0 to 60s in the simulation of the “pro-
posed pump”. But as soon as the pressure is close to the
set point, the simulated power from the “proposed pump”
quickly drops to a value that is closer to that from the “con-

Figure 5. The diagram of the Modelica model in the proof-of-
concept case

Figure 6. Simulation results for the first scenario

ventional pump”. It is our view that the simulated result
from the ‘proposed pump” is closer to what we observed
in the real world, in terms of the power change.

In the second scenario, we studied how the system be-
haves when we change the supply voltage. To better eval-
uate the performance of the “proposed pump”, we consid-
ered another option for modelling the pump as a reference.
In this option, the induction motor and transitional device
in the “proposed pump” are replaced with the ZIP coef-
ficient model as described in equation 1 and 2. The re-
sulting new model is named “ZIP pump”. Figure 7 shows
the simulation results for the second scenario. The supply
voltage is kept constant before 100s. In that case, all three
models generate identical results in terms of active power.
At t = 100s, the voltage changes from 120V to around
108V; the active pump power in the “conventional pump”
is unchanged. For the “ZIP pump”, the active pump power
immediately changes to a smaller value while that in “pro-
posed pump” decreases at first and then takes around 11s
to increase to the same value as predicted in the “ZIP

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration

DOI Proceedings of the 13th International Modelica Conference 565
10.3384/ecp19157561 March 4-6, 2019, Regensburg, Germany

Figure 7. Simulation results for the second scenario

pump”. Regarding the reactive power simulation result,
we see a pattern similar to that of the active power. Based
on the results, it is clear that the “proposed pump” pro-
vides a more realistic representation of the response of the
building systems to the changing supply voltage.

5 Conclusion
In this paper, we developed Modelica models enable
consideration the interactions between buildings and the
power system. Based on the result from the proof-of-
concept study, we can see that the proposed models can
provide much better representation of the response of the
building systems to changing operation status and chang-
ing supply voltage. Therefore, we believe those models
can support research where more complicated interaction
between buildings and the power system need to be con-
sidered.

In a future study, we will perform the validation of
the proposed models with real-world data to quantitatively
evaluate their performance. In addition, the motor model
will also be connected with power flow analysis tools in-
stead of receiving ideal grid information as in the case
study. This will enable a simultaneous simulation of build-
ing and grid system.

6 Acknowledgement
This work has been supported by the the Buildings Tech-
nologies Office of the U.S. Department of Energy’s Office
of Energy Efficiency and Renewable Energy.

The authors would like to thank Dr. Marina Sofos, Sen-
sors and Controls Technology Manager in the Building
Technologies Office at the the U.S. Department of Energy,
for her technical guidance and support.

The authors thank Dr. Thomas McDermott for his help-

ful technical feedback and Matthew Wilburn for editing
the final version of the manuscript.

References
Aainaa Mohd Arriffin, Muhammad Murtadha Othman, Amirul

Asyraf Mohd Kamaruzaman, Ismail Musirin, Ainor Yahya,
and Mohd Fuad Abdul Latip. Stochastic approach of volt-
age optimization to maximize power saving in a building.
Indonesian Journal of Electrical Engineering and Computer
Science, 8(1):268–272, 2017.

Andrii Bichik et al. Impact of voltage variation on domestic and
commercial loads. 2015.

A. Bokhari, A. Alkan, R. Dogan, M. Diaz-AguilÃş, F. de LeÃşn,
D. Czarkowski, Z. Zabar, L. Birenbaum, A. Noel, and R. E.
Uosef. Experimental determination of the zip coefficients
for modern residential, commercial, and industrial loads.
IEEE Transactions on Power Delivery, 29(3):1372–1381,
June 2014.

Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans
Olsson. Dymola for multi-engineering modeling and simu-
lation. In Proceedings of modelica, volume 2002. Citeseer,
2002.

David P Chassin, K Schneider, and C Gerkensmeyer. Gridlab-d:
An open-source power systems modeling and simulation en-
vironment. In Transmission and distribution conference and
exposition, 2008. t&d. IEEE/PES, pages 1–5. IEEE, 2008.

Drury B Crawley, Linda K Lawrie, Frederick C Winkelmann,
Walter F Buhl, Y Joe Huang, Curtis O Pedersen, Richard K
Strand, Richard J Liesen, Daniel E Fisher, Michael J Witte,
et al. Energyplus: creating a new-generation building energy
simulation program. Energy and buildings, 33(4):319–331,
2001.

Peter Fritzson and Vadim Engelson. Modelica – a unified object-
oriented language for system modeling and simulation. In Eu-
ropean Conference on Object-Oriented Programming, pages
67–90. Springer, 1998.

Yangyang Fu, Michael Wetter, and Wangda Zuo. Modelica mod-
els for data center cooling systems. In 2018 Building Perfor-
mance Analysis Conference and SimBuild, Chicago, Illinois,
United States of America, 2018.

Yangyang Fu, Wangda Zuo, Michael Wetter, James VanGilder,
Xu Han, and David Plamondon. Equation-based object-
oriented modeling and simulation for data center cooling: A
case study. accepted by Energy and Buildings, 2019.

Elliott M Gilbert. Regulated power supply, July 27 1965. US
Patent 3,197,691.

K. Hatipoglu, I. Fidan, and G. Radman. Investigating effect of
voltage changes on static zip load model in a microgrid envi-
ronment. In 2012 North American Power Symposium (NAPS),
pages 1–5, Sept 2012.

X. He, R. Zhao, C. Zhu, and H. Yang. Improving short-term volt-
age stability problems by variable-speed air-conditioners. In
2012 15th International Conference on Electrical Machines
and Systems (ICEMS), pages 1–6, Oct 2012.

Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration

566 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157561

GK Hood. The effects of voltage variation on the power con-

sumption and running cost of domestic appliances. In Aus-
tralasian Universities Power Engineering Conference (AU-
PEC), 2004.

Sen Huang, Wangda Zuo, and Michael D Sohn. Amelioration
of the cooling load based chiller sequencing control. Applied
Energy, 168:204–215, 2016.

Sen Huang, Wangda Zuo, and Michael D Sohn. Improved cool-
ing tower control of legacy chiller plants by optimizing the
condenser water set point. Building and Environment, 111:
33–46, 2017.

Keun H Lee. Optimization of a hybrid electric power system
design for large commercial buildings: an application design
guide. PhD thesis, Colorado School of Mines. Arthur Lakes
Library, 2014.

Dezhi Li, Gaoying Cui, Lingling Sun, Jiru Yang, Ciwei Gao,
and Xiao Chen. A control strategy for static voltage stabil-
ity based on air conditioner load regulation. In Systems and
Informatics (ICSAI), 2017 4th International Conference on,
pages 288–293. IEEE, 2017.

Michael Wetter, Wangda Zuo, Thierry S Nouidui, and Xiufeng
Pang. Modelica buildings library. Journal of Building Per-
formance Simulation, 7(4):253–270, 2014.

Bei Wu, Yan Zhang, and Minjiang Chen. The effects of air
conditioner load on voltage stability of urban power sys-
tem. In 6 th WSEAS International Conference on Power Sys-
tems(PE’06), volume 6. Citeseer, 2006.

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

DOI Proceedings of the 13th International Modelica Conference 567
10.3384/ecp19157567 March 4-6, 2019, Regensburg, Germany

Modelling of the Central Heating Station within a District Heating System with
Variable Temperatures
Ramm, Tobias and Ehrenwirth, Mathias and Schrag, Tobias

567

Modelling of the Central Heating Station within a District Heating
System with Variable Temperatures

Tobias Ramm1 Mathias Ehrenwirth1 Tobias Schrag1
1 Institut für Neue Energie-Systeme, Technische Hochschule Ingolstadt, Germany

Tobias.Ramm@thi.de

Abstract
Within this paper, the concept of developing a detailed
model for an existing district heating system (DHS) is
described. The research focusses on the central heating
station with multiple different supply units. In the
present case, the model is implemented with a close-to-
reality-control and will be used for testing new control
strategies for the DHS. Therefore, a model with both
realistic behavior as well as control interfaces similar to
the real control is necessary. Within the NATAR
research project (Local heating grids with lowered
temperature as provider of balancing power), different
targets for the improvement of the control will be
investigated. One major target is an intelligent linking
between the heat and electrical sector to demonstrate the
opportunities of heating grids, as the investigated one,
to balance the power grid.
Keywords: district heating system, model, Modelica,
variable temperature, validation

1 Introduction
The German government agreed on the reduction of
human-made greenhouse gas emissions to slow down
the climate change (Bundesministerium für Umwelt,
Naturschutz, Bau und Reaktorsicherheit, 2018) by
focusing on the carbon dioxide emissions, which have
by far the highest share based on carbon dioxide
equivalents (CO2 equivalents) (BMWi, 2018).
Considering the application sectors power,
transportation and heat, the share of the CO2 emissions
by heat production accounts for approximate one third
of the total CO2 emissions. District heating systems
(DHSs) are considered cheap and easy way to integrate
multiple renewable energy sources as well as to provide
the linkage to the electricity grid.

Currently, DHSs are following different approaches
to reduce the greenhouse gas emissions and therefore the
environmental impact due to heating systems. On the
one hand, the improvement of the system’s efficiency
and the integration of renewables or waste heat are
subject to several research activities. To improve the
system’s efficiency, the temperature should be lowered,
since the distribution losses highly depend on this
temperature. Lowering the temperature is usually
limited, because the majority of houses are already built.
These houses usually need higher supply temperatures

compared to new ones. On the other hand, current
research on DHSs focusses on the integration into the
overall energy system in order to reduce the
environmental impact. One example of an innovative
DHS which addresses both measurers, is described by
Ramm et al. (2017). The system is located in Dollnstein
(Germany) and operating since 2015. The scheme of this
system is shown in Figure 1. Special emphasis is put on
the house transfer stations, which include a heat
exchanger, a heat pump and a buffer storage. The
heating grid may supply the consumers with high
temperatures by the heat exchanger or supply low-
temperature heat with 30 °C while the decentralized
heat pumps are used to provide heat at a desired level up
to 60 °C. Within the central heating station, multiple
heat sources can be found. The system includes a solar
thermal system, a peak boiler, a combined heat and
power plant (CHP) as well as a CO2 heat pump (HP)
utilizing close to surface geothermal heat by a well.

The free and open-source programming language
Modelica and the commercial software tool Dymola are
widely used for the modelling of complex energy
systems. The simulation of DHS in Modelica was done
with different focus by numerous researchers.

A conventional district heating system, e.g. a DHS
fed by a CHP, was simulated by Sangi et al. (2017). That
work focusses on the development and application of
exergy sensors for an automated exergy analysis tool
based on Modelica. Bünning et al. (2018) investigated
the novel approach of bidirectional low-temperature
district energy systems. They investigated the
performance of optimized operation for two test cases
with other state of the art DHSs. They proved the
concept by reduced energy costs, primary energy

Figure 1. Schematic of DHS with variable temperatures
operating in Dollnstein, Germany

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

568 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157567

consumption and emissions. Del Hoyo Arce et al. (2018)
created component models for the fast modelling of
district heating and cooling networks to perform real-
time simulations for the purpose of model predictive
control. Their models were validated against other
software tools.

2 Methodology
Within this paper, Modelica/Dymola is used to build a
detailed simulation model of the heating station of the
DHS in Dollnstein. These detailed models may also be
referred to as digital twins, like done for the application
in the field of building and equipment simulation by
(Nytsch-Geusen et al., 2018), but mainly used in the
field of production technology.

In the Modelica language, many free and open-source
libraries are available. This work uses the Modelica
Standard Library (MSL) and libraries based on the
common core library IBPSA (International Building
Performance Simulation Association). The IBPSA
library was created within the project Annex 60 by the
IEA EBC (International Energy Agency Energy in
Buildings and Communities Programme) (Wetter,
Fuchs et al., 2015) and is under further development
within the IBPSA project. A new, more specialized
library is created for the simulation of the DHS in
Dollnstein. Main purpose is the use for this application,
but the library will be created in an object-orientated

way to ensure that the library can be easily used and
adjusted for further simulations of low-temperature
district heating systems (LTDHS). In this way, the
library may constitute the basis for a district heating
library at the Institute of New Energy Systems (InES).
The scheme for the full model of the DHS is shown in
Figure 2. The system is divided into four parts: Central
heating station, heating grid, electricity grid and the
superior control strategy. An additional block for
evaluation purposes completes the model. The arrows
indicate the direction of information flow. While the
solid arrows represent the flow of physical quantities,
which directly influence the receiving subsystem as well
as control signals, the dotted lines illustrate the
delivering of data like measurement data or set points.
The thermal and control models will be developed with
high detail and the electricity grid is represented by an
ideal source and sink. Additionally, the model of the
electricity grid should provide data about the electrical
grid, e.g. the residual load. Within this paper, the
implementation of the model of the central heating
station is described. The model is implemented in an
object-orientated manner, using a similar structure as
shown in Figure 2. The pumps and valves are integrated
within the thermal producer models. In addition, a single
sub model represents the full solar thermal system
marked with blue border and background (top left). All
models contain low-order control algorithms, e.g. for
pumps and valves. This kind of implementation together

Figure 2. Schematic of system model. Solid arrows represent the flow of physical quantities which directly influence
the receiving subsystem as well as control signals, the dotted lines constitute the delivering of data like measurement

data or set points.

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

DOI Proceedings of the 13th International Modelica Conference 569
10.3384/ecp19157567 March 4-6, 2019, Regensburg, Germany

with the use of base class models as shown e.g. in Figure
3 and Figure 4 allows for a quick exchange of parts of
the system.

The base class models include all mandatory
interfaces to integrate the models to the system model.
The boiler model shown in Figure 3 is an example and
includes three ports with physical properties and several
ports with further data. Due to the non-causal modelling
approach of Modelica, the physical ports do not need an
explicit direction of transferring information. The model
has two fluid ports for entering and leaving heat transfer
medium as well as one heat port to account for the heat
transfer to the ambient. More information about the
concept of physical connectors within Modelica can be
found in Modelica Association (2017). The non-
physical connectors have an explicit direction of flow of
information. A control signal is entering the boiler
component and information for statistical and control
purposes are leaving the component. The base class
model is extended and additional information and sub
models were added as shown in Figure 4. Components
within the model can be exchanged for example by more
or less detailed ones.

The component models of the heating station will be
validated with measurement data from the actual
operation mode. Temperatures, heat flow rates as well
as electrical power and energy sums are used for the
validation.

3 Modelling
The model is implemented in the programming
language Modelica with the software Dymola (version
2019). The implementation is realized as shown at the
scheme within Figure 2. On the one hand the model
should be capable of simulating periods up to one year,
within a reasonable time, to evaluate the systems
performance for new operation approaches. One the
other hand temperature changes as well as shut-on and
shut-off behavior in minute resolution needs to be
provided to balance the electrical grid on this scale. In
this paper, the distinction between superior and low-
level control is made. Low-level control means the
control of e.g. pumps and valves by e.g. PID controllers.
The superior control on the other hand decides based on
the status of the system, e.g. the thermal storage tanks,
whether heat production units are shut-on or shut-off.

The entire central heating station and the superior
control in the simulation similar to the superior control
of the real system are implemented. Both the district
heating network as well as the electricity grid are
represented as boundary conditions. The heat generators
are modelled including the low-level control and
additional aggregates like pumps and valves.
Subsequently, the implementation of the main
components is described briefly, including the boiler,
the CHP, the heat pump, the solar thermal system and
the thermal storage tanks. The efficiency depending on
the operation temperatures is of major importance for
the investigation of the system. This is especially true
for the solar thermal system and the heat pump, since
these components are highly dependent on the operation
temperatures. Furthermore, the operation temperatures
within the overall system are import to investigate and
may change heavily during the year. Input data for the
model are the out- and indoor ambient temperature as
well as the solar radiation. Hitherto, the electricity grid
as well as the heating grid are also input data.

3.1 Combined heat and power plant
The CHP from the manufacturer Riemag is powered by
liquid gas and extended with an additional hydraulic
cycle, which uses the condensing energy as well as the
heat from the exhaust air coming from the case of the
CHP. The first cycle feeds the stratified storage while
the second one provides the heat to the low-temperature
storage. The model also has one input to control the
start-up/shut-down of the model as well as its behavior
under partial load. The CHP unit is a model from the
BuildingSystems library (Nytsch-Geusen, et al., 2016).
The model is based on two characteristic curves, one for
the electrical power and one for the heating. These
curves are used for the calculation of the fuel demand.
While the internal pump of the CHP is controlled to
maintain a certain supply temperature, the pump for the
condensing cycle just switches on and off with respect

Figure 4. Full model for a component including
secondary components and low-level control (e.g. boiler
model)

Figure 3. Basis model for a component (e.g. the boiler
model)

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

570 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157567

to the operation of the CHP and the temperature inside
the low-temperature storage. The heat transfer to the
additional hydraulic circuit is considered by a constant
heat flow rate, as long as the CHP is in operation. The
heat flow rate was determined by measurement data.
The heat transfer is only possible until a certain
temperature of the fluid. The pump of the second
hydraulic cycle is only operational when the low-
temperature tank has a maximum temperature below
21 °C.

3.2 Heat pump
At the Dollnstein system, a heat pump of the type
thermeco2 HHR 520-3(345) with additional internal
heat exchanger and 135 kWel nominal input, distributed
equally on three compressors, is installed. The set
supply temperature varies over time.

The HP model is based on a HP model out of the
IBPSA library. The HP in the real system has three
compressors. It is assumed that the efficiency does not
depend on the number of compressors that are in
operation as long as they work at full load. The
efficiency at partial load can be described by an arbitrary
polynomial function. Therefore, a new model including
three of the aforementioned HP models in parallel was
set up. The main ports of the model are four fluid ports,
two at the source and two at the sink as well as a control
signal, which can vary between 0 and 1. In this context
one third means one compressor at nominal load. The
effectiveness at nominal condition can be defined by the
Carnot efficiency and a reducing factor or by giving a
coefficient of performance (COP) at nominal
conditions.

Moreover, the model is used with a given COP at
nominal conditions, which was taken from the
manufacturer data. For these nominal conditions, the
manufacturer claims an electrical demand of 124 kW.
The electrical demand of real HP is changing by the
variation of the operation point. The model instead has
the same electrical demand in every operation point.
Therefore, the electricity demand of the model was
adjusted to the measurement data from 124 kW to
132 kW.

The main inputs for the energetic calculations are the
temperatures and temperature differences at the heat
exchangers as well as the nominal COP and the already
mentioned electrical power consumption. The dynamic
behavior is described by the capacity of fluid within the
heat exchangers, which are bounded to the nominal
mass flow rates.

3.3 Boiler
The boiler model has four important interfaces: two
fluid ports, one heat port and one control input. The
model consist of the control, a pump and the actual
boiler model, which is part of the Buildings library
(Wetter, Bonvini et al., 2015). The actual control of the

boiler is a two-point control depending on the storage
temperature. During run-time, the boiler runs with fixed
power. The pump is also operated on a fixed power and
switches on and off together with the boiler, but delayed.
A short description of the actual boiler model can be
found within the model description of the Buildings
library. Hitherto, a constant efficiency of the boiler is
chosen, because the gas consumption from the boiler on
its own cannot be determined yet.

The losses to the surrounding can be included by the
efficiency curve of the boiler model or additionally
added by connecting the heat port to the ambient. The
dynamic behavior is determined by the heat capacity of
the boiler itself as well as the fluid volume inside the
boiler and the heat losses.

In this modelling step, the parameters were taken
from the manufacturer data for the boiler type Buderus
SB 625-310 (289.9 kW).

3.4 Solar thermal system
The solar thermal system consists of the hydraulic
collector cycle including the collectors, a pump, a three-
way-valve and two heat exchangers. The solar thermal
collectors are flat plate collectors from the manufacturer
ratiotherm of type RA 251-4. The two heat exchangers
supply the two different thermal storages on different
temperature levels with heat.

The collector model was chosen from the
BuildingSystems library. This model is a general multi-
node model. Due to lower computational effort, the solar
collectors are aggregated in one model. The main
parameters are the coefficients to calibrate the efficiency
curve. Additional parameters are the absorber volume
and heat capacity. All parameters are available from the
manufacturer data. During summer operation, the solar
collectors only feed the stratified storage. The feeding
during winter operation depends on the temperature
within the low-exergy storage. Until a certain threshold
temperature inside the low-temperature storage, the
solar heat is fed to that storage. The set supply
temperature of the solar thermal system is also
dependent on the temperature of the storage to be fed.

3.5 Thermal storage tanks
The central heating station includes two thermal storage
tanks with volumes of 15 m³ and 25 m³. The larger one
is the stratified storage that feeds the grid while the
buffer storage at lower temperature feeds the source of
the heat pump.

For both storages, the storage model from the
BuildingSystems library is used. The model is a one-
dimensional model that takes the buoyancy by a simple
thermal model into account. Mixing due to in- and
outflowing streams is neglected. The necessary data to
parametrize both heat storages is taken from
manufacturer information. The stratified storage
includes temperature measurements at five different

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

DOI Proceedings of the 13th International Modelica Conference 571
10.3384/ecp19157567 March 4-6, 2019, Regensburg, Germany

levels of height. The discretization within the model is
done in a way that the temperature sensors are located
in different segments. The buffer storage is represented
only by five elements and includes three temperature
sensors.

3.6 Superior control
The actual superior control is primarily based on the
temperatures within the storages. The aggregates switch
on and off due to the temperatures within the stratified
storage. Minimum operation times and down times are
not taken into account yet. The set temperature for the
grid is given as an input table and relates both to the
outdoor ambient temperature and the heat demand. The
superior control is also able to control the decentralized
heat pumps and may take different temperatures at the
consumers into consideration. However, this is not used
yet, as the heating grid only serves as boundary
condition.

4 Model validation
The validation of the model is described subsequently.
The model was validated quantitatively in terms of
energy in- and output, e.g. thermal, electrical and fuel
consumption on a monthly scale. Additionally, the
dynamic behavior of the component models was
evaluated in a qualitative way. Mass flow rate, the
supply temperature, the provided heat and consumed
electrical power of the HP were studied for one cycle of
operation (shut-on and shut-off). In addition, the full
period of time is taken into account by analyzing the root
mean square error (RMSE) between the simulation and
measurement. The RMSE is discussed and described by
Chai and Draxler (2014). The discrete form is shown in
equation (1). The formula describes the square root of
the average of the squared differences at certain
evaluation points. The quantity is the same as the
quantity of the data.

ܧܵܯܴ = ඩ1݊(ݔୱ୧୫ െ ୫ୣୟୱ)ଶݔ
ୀଵ (1)

For evaluation purposes, the non-discrete notation was
implemented as displayed in equation (2).

ܧܵܯܴ = ඩ1ܶ න(ݔୱ୧୫ െ ୫ୣୟୱ)ଶ்ݔ
௧ୀଵ (2)

An evaluation for the different components can be found
in the following sub-sections.

If available, recorded control data from superior
control were used as inputs for testing the components.
Otherwise, the control signal was derived from the
measurement data. The evaluation is summarized in the
end of the section and energy wise displayed in Table 1.

4.1 Combined heat and power plant
The operation of the CHP is investigated for the period
from 1st March to 31st May 2018. For the observed
months, the CHP was about 1000 hours in operation and
fed 164.5 MWh heat to the stratified storage as well as
12.6 MWh to the low-temperature storage. The
simulation model fed 163.0 MWh to the stratified
storage, which means an error of only 0.9 % (see Table
1), but 32 MWh to the low-temperature storage. The
resulting difference occurs because the model also
supplies the low-temperature storage within summer-
mode, while the real CHP does not. This functionality
needs to be added to the model.

Figure 5 shows different values for one operation
cycle in March 2018. The control signal is always
plotted in the sub-plots below.

The left sub-figure shows the electrical power of the
system. Negative values indicate that the CHP is
running and electrical power is fed to the public grid.
Positive values indicate a supply of the system from the
public electricity grid.

Figure 3. Validation for the CHP operation - one operation cycle. Left sub-figure shows the electrical power of the system.
Sub-figure in the middle displays supply and return temperatures for the conventional and the condensing cycle. The right

sub-figure shows the heat flow rates for the conventional as well as the condensing cycle. Below the sub-figures, the
control signal is plotted.

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

572 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157567

The real CHP does not have a very stable control.
Due to that reason, both the mass flow rate and the
supply temperature (middle sub-plot) are strongly
varying during operation. As a result, the heat flow rates
(right sub-figure) strongly vary during operation too.
This is especially true during times without the
utilization the condensing cycle. The control of the
model is much more stable compared the real control.
The supply temperature (middle sub-figure) and
provided heat flow rate (right sub-figure) are almost
constant during operation. Only after switching on the
unit, the supply temperature shows a peak (Figure 5-
middle sub- plot) that also leads to a peak in the supplied
heat flow rate (Figure 5 - right sub-plot). The RMSE for
the heat flow rate is 20.4 kW and 4.2 °C for the
temperature. This means noticeable differences over the
course of time, but a big share of these differences is due
to the unstable control of the real CHP. Since the aim is
not to reproduce this behavior, this value itself has only
little significance. Therefore, the allover heat energy
(Table 1) and the graphs shown in Figure 5 are more
meaningful in this case. Although there are some
differences between model and reality, the allover
validation results show that the CHP model meets the
requirements of the simulation analysis formulated in
section 3.

4.2 Heat pump
The observed operation period for the heat pump lasts
from 1st January to 30th April 2018. During the summer
mode, the heat pump is not operating. Within the four
observed months, the heat pump is approximately
2000 hours in operation, mostly with one compressor,
sometimes utilizing a second compressor, but never
using all three compressors. The inlet temperature at the
sink needs to be maintained below 50 °C, because higher
temperatures lead to problems with the heat pump
operation. An additional heat exchanger provides
reliability of operation also during the winter period,
when higher return temperatures in the grid occur.
During summer, this is not an issue and the return
temperature may drop down to 20 °C. The supply

temperature of the grid during winter usually varies
between 60 °C and 80 °C. The source temperature
ranges between 10 °C and 23 °C while the temperatures
usually range around 11 °C, which is in the range of the
supply temperature of the well. The source temperature
is in the higher range when the low-temperature storage
was charged by the solar thermal system or the
condensing cycle of the CHP. The temperatures of the
source are not displayed in Figure 6.

Figure 6 shows different values for one operation
cycle in January. The control signal is always plotted
below the other graphs. While the real HP consumes an
electricity amount of 128.7 MWh, a minor deviation of
less than 1% between the real HP and the model can be
observed as shown in Table 1. The left sub-plot displays
the measured and simulated electricity consumption,
which match each other very well. In the middle figure,
the supply and return temperatures are shown. After
switching on the HP, the model needs a certain time to
reach stable control as the control of the pump is not
optimal parametrized. Adjustments within the low-order
control need to be done to achieve a more stable start-up
behaviour. While the supply temperature fits during
operation, there is a significant deviation during the non-
operation time. This is acceptable, since the thermal
behaviour during non-operation time is of minor
importance as long as the influence on the operation
time is limited.

The graphs in the right figure show the effective heat
flow rate for the heat, which is transferred to the fluid,
i.e. the heat flow rate provided by the heat pump system.
The heat pump system includes the additional heat
exchanger, shown in Figure 1. Therefore, the heat flow
rate provided by the heat pump is reduced by the heat
flow transferred between the heat exchanger and the
source of the heat pump. The systems efficiency is
highly dependent on the set temperature of the valve,
which ensures that the return temperature directly at the
heat pump stays below the threshold. The simulated heat
for the displayed flow rate is slightly lower than the
measurement data. This holds true for the most of the

Figure 4. Validation for the HP operation - one operation cycle. Left sub-figure displays the electrical power input. Middle
figure displays the supply and return temperature for the sink of the HP. Right sub-figure shows the heat production of the

heat pump. Below the sub-figures the control signal is plotted.

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

DOI Proceedings of the 13th International Modelica Conference 573
10.3384/ecp19157567 March 4-6, 2019, Regensburg, Germany

operation cycles, but the deviation changes, resulting in
a deviation of produced heat of 10.7 %. In the future
work, the calibration of the HP model will be further
pursued.

4.3 Boiler
For the testing of the boiler model, the recorded
operation signal from the superior control was used as
an input for the simulation model. The actual measured
temperature constitutes the boiler’s fluid inlet
temperature. The validation period is the time from 1st
February to 30th of March 2018. The boiler’s operating
periods lasted between 0.5 and more than 4 hours.
Within 34 hours of operation, the boiler generated a heat
amount of 5.43 MWh that means an average heat output
of 160 kW. During summer, the boiler is not in
operation. The heat output in the model is 5.5 MWh,
which amounts to an error of 0.9 % (Table 1).

 The dynamics of the model compared with the
measured data are shown in Figure 7. In the model as
well as in reality, sensors measure the temperature
directly after the boiler. Below the main figures, the
recorded operation time of the boiler is shown. The left
figure shows the measured and simulated mass flow
rate. The assumption of 1.9 kg/s within stable operation
meets the measurement data (1.85 kg/s to 1.95 kg/s)
quite well. A comparison of the supply temperature

from simulation with the measurement data shows, that
these match very good during operation, but shows
different results when the boiler is turned off. After
turning off, the pump has a shutdown delay of three
minutes. During this time, there is a strong drop in the
supply temperature in the measurement data and the
simulation. In the following time, the temperature drop
in the simulation is slower compared to the
measurement. Since both the mass flow rate as well as
the temperatures fit during simulation, a high degree of
correlation can be observed for the heat flow rate, too
(Figure 7- sub-plot right). The RMSE of the heat flow
rate for the full operation time is 11.6 kW, 2.2 °C for the
supply temperature and 0.15 kg/s for the mass flow rate.
Taking all these values in consideration, the boiler
model meets the measurements and requirements very
well.

The efficiency e.g. the gas consumption could not be
validated yet, because there is no data from that sensor
yet.

4.4 Solar Thermal System
The collector model was parametrized by the data sheet
of the real collector. The simulation results meet the
steady-state performance according to the data sheet.
The full solar thermal system was not validated yet, but
will be processed in following studies.

Figure 5. Validation for the boiler operation - one operation cycle. Left sub-figure shows the mass flow rate. The middle
sub-figure displays supply and return temperatures. The right sub-figure show the provided heat flow rate. The control

signal is plotted below the sub-figures

Figure 6. Validation for the utilization of the stratified storage – Period of 12 hours in January. Left sub-figure shows the
temperatures of the fluid leaving the bottom of the storage to enter the return of the producers and from the return inflowing
from grid. The middle sub-figure displays the supply temperature for the heating grid. The right sub-figure shows the heat
flow rate leaving the storage to the district heating grid. The entering (positive) and leaving (negative) mass flow rates are

plotted below the sub-figures.

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

574 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157567

4.5 Thermal storage tanks
The validation period for the storage tank is from
1st January to 1st February 2018. Figure 8 shows
12 hours of the validation period. To perform the
validation the inflowing mass flow rates with
temperatures as well as the indoor ambient temperature
are described. For the outflowing fluid, only the mass
flow rate is given and the temperature is part of the
evaluation. The temperatures of the outgoing mass
flows for the supply of the heating grid as well as the
return to the heat generators are import for the system’s
behavior. In addition, the temperatures at the
temperature sensors inside the storage are important for
the superior control, because the heat producers are shut
on and off due to these temperatures.

Over the course of the month, the storage supplied to
the grid amounts to 176.8 MWh of heat. The model
supplied 175.3 MWh and meets the measurement data
with an error of 0.8 % (see Table 1).

In the left sub-figure the measured and simulated
return temperatures to the heat producers, outflowing
from the stratified storage at the bottom, are plotted
together with the temperature of flow entering from the
grid. In the sub-figure below, the mass flow rates,
leaving and entering at the bottom of the heat storage are
shown. The outflowing mass flow rate is negative (flow
to the producers) and the entering one (flow from the
grid) is positive. For most of the time, the simulated
temperature is higher than the measured one. During
periods without operation of heat producers, the
temperatures approach each other. The temperature
deviation is significant, thus the behavior needs to be
investigated more in detail. The temperature difference
at the bottom of the storage needs to be reduced, since
this temperature is relevant for the entire system. The
sub-figure in the middle displays the measured and
simulated temperature at the top of the storage,
supplying the grid as well as the set-temperature of the
supply. To maintain the supply temperature the colder
return from the grid can be mixed with the supply from

the storage. This ensures that the supply has no higher
temperatures than necessary.

The measured and simulated grid supply
temperatures match well. This holds true for the most of
the observed period. Nevertheless, it can also be realized
that the temperature in the model changes faster and that
there are periods with big differences. These periods
typically occur when the temperature at the top of the
heat storage is dropping. This happens in case that the
producers do not supply the heat storage anymore while
the storage still feeds the grid. The drop in the model is
more drastic. In the right sub-plot, the influence on the
supplied heat flow rate is displayed. It can be seen that
measurement and simulation match well for most of the
time, but the differences occur at similar times as for the
supply temperature. The simulated heat flow rate is
lower than the measured one during phases of no heat
production. As already mentioned in the beginning of
this section, the overall heat supply of the model from
the storage to the grid meets the measurement data very
well, so that the influence of the differences in the heat
flow rates at certain times is not significant for the
evaluation of the energy balance.

4.6 Superior control
The superior control for the operation of the central heat
production units was implemented. For the most cases,
the real controller and the model controller show the
same behaviour, but slight time shifts occur.

4.7 Heating Central
The model of the entire heating central contains the
models validated in the sub-sections before. For the
central heating station, the efficiency of the whole
system is most important and will be evaluated.
Therefore the incoming and outgoing energy flows will
be used.

Component Heat/ Fuel/Electricity Energy (Measurement) Energy (Simulation) Rel. error
[%]

CHP
Heat 1 164.5 MWh 163.0 MWh - 0.9

Heat 2 12.6 MWh 32.0 MWh

HP
Heat (effective) 236.8 MWh 211.4 MWh - 10.7

Electricity 128.7 MWh 127.6 MWh - 0.9

Boiler Heat 5.4 MWh 5.5 MWh + 0.9

Storage Heat (grid supply) 176.8 MWh 175. 3 MWh - 0.8

Table 1. Evaluation of produced heat and energy demand for observation periods (CHP: 1st January to 30th April 2018,
Heat 1 feeding to stratified storage, Heat 2 feeding to low-temperature storage; HP: 1st January to 30th April 2018;

Boiler: 1st February to 30th March 2018; Storage: 1st January to 1st February 2018)

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

DOI Proceedings of the 13th International Modelica Conference 575
10.3384/ecp19157567 March 4-6, 2019, Regensburg, Germany

4.8 Discussion
The component models show a good correspondence
between simulation and reality. The superior control
sends operation signals to the production units. These
are mainly dependent on the storage temperatures of the
stratified storage. The part of the superior control that is
related to the grid operation will be implement in the
next step.

The heat producers and the superior control are
implemented, but for some operation conditions,
significant differences occurred. One of these is the
CHP within during the summer period. At this time, the
real CHP does not provide any heat to the low-
temperature storage. This needs to be taken into account
and is the reason, why there is a significant difference in
the heat amount supplied to the low-temperature storage
between measurement and simulation. The delivery of
heat by the HP is very sensitive with respect to the
mixing temperature at the sink inlet. The mixing of the
inlet temperature as well as the implementation of the of
the heat pump characteristics need adjustment to reduce
difference between the simulation and measurement
results for the heat pump.

To observe the system’s efficiency with respect to
fuel some, adjustments for the consumption of fuel have
to be made. Furthermore, the power demand of the
pumps within the system must be taken into account.
Additionally, minimum operation and shut-down times
should be considered, since these are limiting future
control strategies.

5 Conclusion
The central heating station of the DHS was implemented
within Modelica with all major units and additional
components like pumps and valves. The model is
appropriate for the detailed simulation of the central
heating station and investigation of new superior control
strategies.

The models of heat generators were implemented and
validated by the measurement data from the real system.
The heat supply shows a high degree of correlation.
Nevertheless, there is potential for improvement. The
efficiencies with respect to the fuel needs to be
evaluated. In addition, improvements for the low-level
control could be done to improve the stability and
computational performance. Additionally the model of
the heat pump should be further improved. On the one
hand, the model itself could be improved, one the other
hand the parametrisation of model could be improved.
Since the temperatures within the heat storages are of
major importance for the control of the system,
occurring temperature differences should also be
investigated more in detail.

Completing the validation of the system, will be the
next step. Especially the solar thermal system and the
gas consumption of the CHP and boiler need to be

adjusted to measurement data. Additionally, the power
consumption for the pumps needs to be added to
evaluate the overall performance of the heating station
and the subsystems.

The energy amounts for the whole period are used for
the evaluation, since these are of major importance for
evaluating the efficiency for the whole year. However,
it needs to be secured that the operation for different
conditions meet the real systems behaviour.

To model the entire system, a model of the heating
grid including the consumers’ needs to be added. This
model extension is necessary to improve the entire
control system including the control of the circulator
pumps and the use of the distributed HPs.

6 Acknowledgements
The authors are grateful to Bundesministerium für
Wirtschaft und Energie (BMWi), which finances the
project NATAR (Local heating grids with lowered
temperature as provider of balancing power; grant
number: 03ET1425A), the founding agency Project
Management Jülich (PtJ) as well as all project partners.

7 References
BMWi (2018). Höhe der Treibhausgasemissionen in

Deutschland nach Gas im Jahresvergleich 2000 und 2016
(in Millionen Tonnen CO2-Äquivalent). [Online].
Available at https://de.statista.com/statistik/daten/studie/
311861/umfrage/menge-der-treibhausgasemissionen-nach-
gasen-in-deutschland (Accessed 2 October 2018).

Bundesministerium für Umwelt, Naturschutz, Bau und
Reaktorsicherheit (2018). Klimaschutz in Zahlen:
Sektorenziele 2030. [Online]. Available at),
www.bmub.bund.de (Accessed 18 October 2018).

Bünning, F., Wetter, M., Fuchs, M. and Müller, D. (2018).
Bidirectional low temperature district energy systems with
agent-based control: Performance comparison and
operation optimization. Applied Energy, vol. 209, pp. 502–
515. doi:10.1016/j.apenergy.2017.10.072

Chai, T. and Draxler, R. R. (2014). Root mean square error
(RMSE) or mean absolute error (MAE)? – Arguments
against avoiding RMSE in the literature. Geoscientific
Model Development, vol. 2, 1247–1250. doi: 10.5194/gmd-
7-1247-2014

del Hoyo Arce, I., Herrero López, S., López Perez, S., Rämä,
M., Klobut, K. and Febres, J. A. (2018). Models for fast
modelling of district heating and cooling networks.
Renewable and Sustainable Energy Reviews, vol. 82,
pp. 1863–1873. doi: 10.1016/j.rser.2017.06.109

Modelica Association (2017) Modelica - A Unified Object-
Oriented Language for Systems Modeling: Language
Specification.

Nytsch-Geusen, C., Kaul, W. and Kharraz, S. (2018). Der
digitale Zwilling in der energetischen Gebäude- und
Anlagensiulation. BauSIM2018 - 7. Deutsch-
österreichische IBPSA-Konferenz. Karlsruhe, pp. 311–318.

Nytsch-Geusen., C., Banhardt, C., Inderfurth, A. and Mucha,
K. (2016). Buildingsystems - Eine modular hierarchische

Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

576 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157567

Modell-Bibliothek zur energetischen Gebäude und
Anlagensimulation. in Grunewald, J. (ed) CESBP Central
European Symposium on Building Physics/BauSIM 2016:
Dresden, Germany, September 14 - 16, 2016. E-Book of
Proceedings, Stuttgart, Fraunhofer IRB Verlag.

Ramm, T., Hammel, C., Klärner, M., Kruck, A. and Schrag,
T. (2017). Energy storage and integrated energy approach
for district heating systems. Energy Procedia, vol. 135,
pp. 391–397. doi: 10.1016/j.egypro.2017.09.515

Sangi, R., Jahangiri, P., Thamm, A. and Müller, D. (2017).
Dynamic exergy analysis – Modelica®-based tool
development: A case study of CHP district heating in
Bottrop, Germany. Thermal Science and Engineering
Progress, vol. 4, pp. 231–240. doi:
10.1016/j.tsep.2017.10.008

Wetter, M., Bonvini, M., Nouidui, T. S., Tian, W. and Zuo,
W. (2015). Modelica Buildings Library 2.0. Proceedings of
BS. Hyderabad, India, Dec. 7-9, 2015.

Wetter, M., Fuchs, M., Grozman, P., Helsen, L., Jorissen, F.,
Lauster, M., Müller, D., Nytsch-Geusen, C., Picard, D.,
Sahlin, P. and Thorade, M. (2015). IEA EBC Annex 60
Modelica Library – An International Collaboration to
Develop a Free Open-Source Model Library for Buildings
and Community Energy Systems. Proceedings of BS.
Hyderabad, India, Dec. 7-9, 2015, pp. 395–402.

DOI Proceedings of the 13th International Modelica Conference 577
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 5C: THERMODYNAMIC 1
Towards Hard Real-Time Simulation of Complex Fluid Networks
Zimmer, Dirk

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs
Otter, Martin and Elmqvist, Hilding and Zimmer, Dirk and Laughman, Christopher

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route
Hebeler, Maximilian and Schulze, Christian and Tegethoff, Wilhelm and Köhler, Jürgen

.

578 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Towards Hard Real-Time Simulation of Complex Fluid Networks

DOI Proceedings of the 13th International Modelica Conference 579
10.3384/ecp19157579 March 4-6, 2019, Regensburg, Germany

Towards Hard Real-Time Simulation of Complex Fluid Networks
Zimmer, Dirk

579

Towards Hard Real-Time Simulation of Complex Fluid Networks

580 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157579

Towards Hard Real-Time Simulation of Complex Fluid Networks

DOI Proceedings of the 13th International Modelica Conference 581
10.3384/ecp19157579 March 4-6, 2019, Regensburg, Germany

Towards Hard Real-Time Simulation of Complex Fluid Networks

582 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157579

Towards Hard Real-Time Simulation of Complex Fluid Networks

DOI Proceedings of the 13th International Modelica Conference 583
10.3384/ecp19157579 March 4-6, 2019, Regensburg, Germany

Towards Hard Real-Time Simulation of Complex Fluid Networks

584 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157579

Towards Hard Real-Time Simulation of Complex Fluid Networks

DOI Proceedings of the 13th International Modelica Conference 585
10.3384/ecp19157579 March 4-6, 2019, Regensburg, Germany

Towards Hard Real-Time Simulation of Complex Fluid Networks

586 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157579

Towards Hard Real-Time Simulation of Complex Fluid Networks

DOI Proceedings of the 13th International Modelica Conference 587
10.3384/ecp19157579 March 4-6, 2019, Regensburg, Germany

Towards Hard Real-Time Simulation of Complex Fluid Networks

588 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157579

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 589
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

Thermodynamic Property and Fluid Modeling with Modern Programming
Language Constructs
Otter, Martin and Elmqvist, Hilding and Zimmer, Dirk and Laughman, Christopher

589

Thermodynamic Property and Fluid Modeling

with Modern Programming Language Constructs

Martin Otter
1
 Hilding Elmqvist

2
 Dirk Zimmer

1
 Christopher Laughman

3

1
DLR - Institute of System Dynamics and Control, Germany

{martin.otter, dirk.zimmer}@dlr.de
2
Mogram AB, Magle Lilla Kyrkogata 24, 223 51 Lund, Sweden, Hilding.Elmqvist@Mogram.net

3
Mitsubishi Electric Research Laboratories, Cambridge, MA, USA, laughman@merl.com

Abstract
Modelica is used extensively to model thermo-fluid

pipe networks. Experience shows that Modelica

models in this domain have limitations due to missing

functional expressiveness of the Modelica language. In

this paper, a prototype is described that demonstrates

how thermodynamic property and thermo-fluid pipe

component modeling could be considerably enhanced

via modern language constructs. This prototype is

based on the Modia modelling and simulation

prototype and relies on features of the Julia

programming language. It utilizes some key ideas of

Modelica.Media, and part of Modelica.Media was

semi-automatically translated to Julia.

Keywords: Modelica, Modia, Julia, Modelica.Media,
Modelica.Fluid, ModiaMedia, thermodynamic property
models, thermo-fluid models

1 Introduction

Thermodynamic property models (abbreviated as

Media models in the rest of this article) require a great

deal of flexibility with regards to the choice of

thermodynamic and dynamic states to achieve robust

and fast simulations. These medium models need

functions to describe thermodynamic relationships with

different inputs and differential equations to describe

dynamic behavior. When such medium models using

the Modelica language were first introduced, the only

mechanism available that satisfied these requirements

was that of a replaceable Modelica package (Elmqvist,

et al. 2003). Special constructs for functions were also

added to enable media modeling. This use of packages

was not part of the initial Modelica language design,

however, as they were primarily intended for the

organization of model components. As a result,

compilers typically handle packages completely at

compile time. This fact has several significant

implications, such as the restriction from changing the

medium or the level of detail of the medium model

during simulation.

This paper investigates alternative media and fluid

modelling architectures available in the modern

programming language Julia (Bezanson, et al. 2017).

Mechanisms of interest instead of replaceable packages

include member functions, function references, and

multiple dispatch
1
. The resulting architecture provides

more dynamic flexibility and uses common language

constructs so that it is easier to understand and

maintain.

The design of the fluid library for Modia is based on

a new approach by (Zimmer et al. 2018). This

approach is currently used in aircraft industry and

enables the robust modeling of fluid streams and

avoids the creation of large non-linear equation

systems that can be a major source of problems for

conventional fluid libraries in Modelica.

2 Thermodynamic Property Models

2.1 Users view

A medium model consists of a data structure that holds

the data of the medium and a set of functions operating

on this data. The fluid properties are computed from a

set of variables called the thermodynamic states of the

medium. For example, the thermodynamic states of the

ideal-gas moist air model Modelica.Media.Air.MoistAir

are temperature T, pressure p, and the mass fraction of

water X, because all other quantities can be computed

from them.

A fluid component model, such as a volume model,

defines independent variables called model states that

describe the differential equations of a component

model as functions of these states. For example, if a

medium is used only in a single phase region, often

pressure p and temperature T are used as states of the

model, whereas pressure p and specific enthalpy h

might be used if the medium enters the two-phase

region. Other choices, such as pressure p and density d,

may also be necessary to address application-specific

requirements (Laughman, Qiao 2016). All media

models in Modelica.Media therefore have various

possibilities for model states, including (p,T), (p,h),

(p,s), and (d,T), as well as mass fractions X.

1
Multiple dispatch in Julia means that method selection is

based on the types of all non-optional function arguments

(if possible at compile-time, otherwise at run-time).

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

590 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

In general, fluid properties are computed by (a)

transforming model states into medium-specific

thermodynamic states, and (b) executing medium-

specific functions having the medium-specific

thermodynamic states as input arguments. A

programming language that supports member functions

can usually implement such a scheme in a reasonable

way.

Modelica does not support member functions and

therefore the definition of media is awkward and

limited. Julia does not have member functions, but

instead supports multiple dispatch to select the desired

function based on the types of all (non-optional)

function arguments (rather than base the selection on a

single input argument, as in object-oriented

programming languages).

The implementation of this media modeling

approach, called ModiaMedia, is available on Github
2
.

From a user's point of view, a medium is an object (an

instance of a Julia immutable struct) that is returned by

function getMedium(..), given the medium name as a

string. Example:

using ModiaMedia
Medium = getMedium("Air")

All media models are stored in a dictionary and

getMedium(..) inquires the medium from this dictionary

and returns the reference to it. In a second step, the

thermodynamic state of the medium is computed from

the desired independent variables of the application, for

example,

state = setState_pT(Medium, 1e5, 300)

Here the thermodynamic state of the Air medium is

computed from p = 10
5
 Pa and T = 300 K. Given the

thermodynamic state, functions are provided to

compute other desired medium properties. For

example, the density and specific enthalpy of air can be

computed by

d = density(Medium, state)
h = specificEnthalpy(Medium, state)

An alternative implementation of setState_pT(..) could

store a reference to Medium in state. This would then

simplify the further access calls, for example: d =

density(state). This has not been implemented, as there

are open questions about this approach.

In an object-oriented programming language, the

syntax would be:

d = Medium.density(state)
h = Medium.specificEnthalpy(state)

Functions are also provided to plot properties of the

medium. In the current version of this project, the most

2
 https://github.com/ModiaSim/ModiaMedia.jl

important characteristics of a medium are plotted with

the call standardPlot(Medium). This interface is

identical for all media. Figure 1 illustrates the (current)

standard plot for Air.

In addition to constants and functions, a medium

package in Modelica.Media also defines a Modelica

model called BaseProperties that computes the

properties of a medium needed for mass and energy

balances. Since ModiaMedia is a standalone package

that does not depend on Modia and can be used in

other standalone modeling environments, no equivalent

Modia model to BaseProperties is defined in

ModiaMedia.

Figure 1. Result of: standardPlot(getMedium("Air")).

2.2 Structure of the ModiaMedia package

The Julia package ModiaMedia has many features in

common with Modelica.Media, but is based on a

hierarchical type system that allows for greater

simplicity and flexibility. The abstract type system of

ModiaMedia is a direct mapping of the

Modelica.Media class hierarchy:

abstract type AbstractMedium end
abstract type PureSubstance <: AbstractMedium end
abstract type MixtureMedium <: AbstractMedium end

The above definitions state that PureSubstance and

MixtureMedium are subtypes of AbstractMedium. A

Medium model is defined as a medium-specific Julia

struct that is either a direct or indirect subtype of

AbstractMedium and has the following structure:

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 591
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

struct MediumTypeName <: AbstractMedium
 infos::FluidInfos
 fluidConstants::SVector{1,AbstractFluidConstants}
 fluidLimits::FluidLimits
 data::Any # fluid spec. data
end

where

 FluidInfos contains all constants that are similarly

defined for a Modelica.Media package (such as

mediumName and singleState),

 fluidConstants contains all the data of the

fluidConstants vector of records of the equivalent

Modelica.Media package,

 fluidLimits defines the validity range of the

medium model and

 data contains additional fluid specific data.

Example:

struct SingleGasNasa <: PureSubstance
 infos::FluidInfos
 fluidConstants::SVector{1, IdealGasFluidConstants}
 fluidLimits::FluidLimits
 data::SingleGasNasaData

 function SingleGasNasa(...)
 # Constructor function
 ...
 end
end

The functions that are available for an AbstractMedium

are defined in the following form:

density(m::AbstractMedium,
 state::ThermodynamicState) = error("undefined")

specificEnthalpy(m::AbstractMedium,
 state::ThermodynamicState) = error("undefined")

where ThermodynamicState is the abstract super type of

all thermodynamic states.

A medium model must provide concrete

implementations for these functions, e.g.,

density(m::SingleGasNasa, state:: State_pT) =
 state.p/(m.data.R*state.T)

In summary, while ModiaMedia models store

analogous data to that which is contained in a Modelica

medium package, it is stored in a hierarchical data

structure. In comparison, all data is stored in form of

constants inside a Modelica package. The benefit of the

hierarchical data structure is that this data can be

passed as argument to a function allowing a user to

easily add functionality for pre- and post-processing.

Since a Modelica medium model is actually a package,

and Modelica does not support functions that can

operate on packages, Modelica medium models can be

used for simulation only and it is not possible to easily

implement other functions, such as those that plot data

of a Modelica medium.

It should be noted that there are several

thermodynamic property packages available where

medium models are defined with objects and member

functions implemented in a programming language

such as C++, e.g., FluidProp
3
, CoolProp

4
, and

TILMedia
5
. In comparison with these packages,

ModiaMedia is a very early prototype to experiment

with a tight integration of a thermodynamic property

package with fluid component modeling to achieve fast

simulations of transient thermodynamic processes.

2.3 Conversion of Modelica to Modia/Julia

The Modelica Standard Library has a rich set of media

models, containing data, functions for thermodynamic

properties calculation, table lookup and interpolations,

and basic media model equations. Each medium is

represented as a Modelica package. To utilize the

extensive knowledge and effort encoded in this library,

a translator
6
 performing source-to-source transfor-

mation from Modelica to Modia/Julia has been written

in Julia. It has a recursive descent handwritten LL(2)

parser. Each grammar production of Modelica

(Modelica Association 2017, Appendix B) is

represented by a Julia function. Example:

Modelica grammar production:

extends-clause :
 extends type-specifier
 [class-modification]
 [annotation]

Julia function:

function extends_clause(env)
 expect("extends")
 type_specifier(env)
 if nextItem == "("
 class_modification(env)
 end
 if nextItem == "annotation"
 annotation(env)
 end
end

A scanner updates global variables nextItem and

nextType. The function expects checks nextItem and if

found, scans the next item. The First and Follow sets

used in LL parsers have been determined manually and

are used to select productions/functions and to end

repetition. The variable env is used to transfer which

output file is used, indentation level, etc.

3
 http://www.asimptote.nl/software/fluidprop

4
 http://www.coolprop.org/

5
 https://www.tlk-thermo.com/index.php/en/software-

products/tilmedia-suite
6
https://github.com/ModiaSim/ModiaFromModelica

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

592 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

Top level packages and classes of Modelica are

translated to Julia modules, while subpackages cannot

be converted to modules because cyclic dependencies

between Julia modules, such as exist between Modelica

subpackages, are not allowed. These subpackages are

therefore removed and flattened by introducing long

names such as: Modelica_Blocks_Interfaces_SISO for the

content.
Models, connectors, blocks are converted to Modia

@model macros, while records are converted to

mutable structs. Julia supports unit handling also in

functions using the package Unitful (Keller, et al

2018).

Since expressions in Modelica are quite similar to

those in Julia, there is no need to introduce an abstract

syntax tree; as a result, the corresponding Julia text can

be generated directly by the parsing function.

Examples of slightly different syntax:

{1,2,3} → [1,2,3]

[1,2,3; 4,5,6] → [1 2 3; 4 5 6]

While regular expression substitution could be

considered for expressions, if-then-else expressions

pose problems due to the need to introduce end in

Julia:

if a then b else c → if a; b else c end

(One could have used the syntax a ? b : c instead.)

Variable declarations in models have a different

structure in Modelica and Modia:

Real x[10] = ones(10) →

 x = Float(size=(10,), start=ones(10))

This means that information needs to be moved from

one parsing function to another. This is accomplished

by temporarily building small ASTs using tuples.

In comparison, syntax for declarations in functions

is quite different, e.g.,:

Real x[10] = ones(10) → x::Array{Float64,1} = ones(10)

2.4 Conversion of Modelica.Media to

Modia/Julia

Since the Medium definitions in Modelica and in

Modia are quite different, it is not yet possible to fully

automatically transform a Modelica medium package

in an equivalent ModiaMedia model. Instead, the Julia

code generated by the translator is currently semi-

manually transformed into the desired form with the

help of an editor that supports regular expressions.

For example, the SingleGasNasa coefficients that

have been transformed from Modelica to Julia are

defined as:

const Ag = IdealGases.Common.DataRecord(
 name="Ag",
 MM=0.1078682,
 ...)

With an editor (defining the changes with regular

expressions), all 1200 definitions have been

automatically transformed to the assignment of

dictionary entries:

singleGasesData["Ag"] =
 IdealGases_Common_DataRecord(
 name="Ag",
 MM=0.1078682,
 ...)

This dictionary is then serialized and stored so that

these medium data can be quickly loaded by the user,

rather than be regenerated on every use.

A Modelica medium function of the form:

redeclare function extends density
algorithm
 d := state.p/(data.R*state.T);
end density;

can be changed to the equivalent ModiaMedia model

function:

density(m::SingleGasNasa, state::state_pT) =
 state.p/(m.data.R*state.T)

via the following rules:

1. Add the medium instance m as the first argument

to the function.

2. Add the appropriate type information for the input

and return variables.

3. Prepend m to all variable data, e.g., “data.Hf” is

changed to “m.data.Hf”.

We plan to transform the complete Modelica.Media

package to ModiaMedia. The base Modelica package

has already been transformed to Julia and the

somewhat labor-intensive semi-manual final adaptation

is currently on the way.

3 Fluid Component Models

In general, our objective is to model and simulate

thermo-fluid pipe networks, such as heat exchangers,

air conditioning systems, distillation columns, or

power plants. Traditional simulation programs in this

field tightly couple the equations of the fluid

components to the equations of the medium that is

flowing in the components. Modelica.Fluid was

designed to increase the flexibility of these models by

separating the model of the fluid component from the

medium model, enabling the use of a pipe model for

media that have different thermodynamic states. The

Modia fluid prototype continues to pursue the

simplification and generalization of the Modelica.Fluid

approach.

There are different ways to formulate fluid network

models, depending on the application and the

properties of the fluid that need to be taken into

account. To experiment with simpler and more robust

network models, the new method from (Zimmer et al.

2018) is used as basis for the fluid component models

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 593
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

and has been implemented in a small experimental

library named ModiaFluid for unidirectional, 1D

thermo-fluid pipe flow that is suited for incompressible

media or for compressible media if Ma ≤ 0.3. The

Modelica.Fluid library has a similar application area

but supports bidirectional fluid flow.

3.1 Users view

A simple pipe network is shown in Figure 2.

Figure 2. Simple pipe network with splitter and junction.

With the ModiaFluid library, this network is defined

as:

const air = getMedium("Air")
@model PipeSystem begin
 fixedSource = FixedSource(Medium=air,
 p0=1.0e5, h0=10000,)
 fixedSink = FixedSink(p0=0.8e5)
 staticPipe1 = StaticPipe(k=3e5, l=1.0, A=0.01)
 staticPipe2 = StaticPipe(l=1.0, A=0.01)
 junction = Junction()
 splitter = Splitter()
 @equations begin
 connect(staticPipe2.outPlug, junction.inPlugA)
 connect(staticPipe1.outPlug, junction.inPlugB)
 connect(junction.outPlugC, fixedSink.inPlug)
 connect(splitter.outPlugB, staticPipe1.inPlug)
 connect(splitter.outPlugC, staticPipe2.inPlug)
 connect(fixedSource.outPlug, splitter.inPlugA)
 end
end

Currently, Modia has no graphical user interface, and

the system must be manually defined with the textual

definition above. The definition on this level looks

close to a corresponding Modelica model. The essential

difference is that the medium model is defined only at

one component (because the medium is propagated

through the connection structure), whereas in Modelica

it must be defined for every component.

3.2 Fluid connectors

The ModiaFluid library currently supports only

unidirectional fluid flow. This assumption is already

built into the connectors that are defined corresponding

to (Zimmer et al. 2018):

MediumVariable() = Variable(size=())

@model InPlug(:connector) begin
 Medium = MediumVariable()
 m_flow = Float(flow = true)

 r = Float()
 p = Float(input=true)
 h = Float(input=true)
end

@model OutPlug(:connector) begin
 Medium = MediumVariable()
 m_flow = Float(flow = true)
 r = Float()
 p = Float(output=true)
 h = Float(output=true)
end

The variables have the following meaning:

 Medium is a reference to the medium data structure

of section 2 and defines the medium that is flowing

through the connector. This reference is

propagated through the connection structure by

means of alias elimination and is treated as one

Modia variable in the symbolic engine. Note, a

Modia variable can be any Julia data structure.

 m_flow is the mass flow rate into the connector,

 r is the pressure that is used to accelerate the fluid

(see section 3.4),

 p = staticPressure - r, and

 h is the specific enthalpy.

A connector is modelled as a Modia @model macro

with the Symbol :connector as macro parameter. Note

that p and h are declared as either input or output.
Formally, an InPlug connector can only be connected

with an OutPlug connector and not with another InPlug

connector, so there are restrictions how components

can be connected together.

3.3 Medium propagation

In the connectors of section 3.2, Medium is a Modia

variable, where the type of the variable is not yet

defined but will be deduced by type inference. At one

or at several components, this variable is redefined to

an instance that is a subtype of AbstractMedium.

Example:

@model FixedSource begin
 Medium = MediumVariable()
 outPlug = OutPlug()
 state = Variable()
 ...
@equations begin
 outPlug.Medium = Medium
 state = setState_ph(Medium, outPlug.p, outPlug.h)
 d = density(Medium, state)
 ...
end

const air = getMedium("SimpleAir")

@model PipeSystem begin

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

594 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

 source=FixedSource(Medium=air)
 ...
end

In model FixedSource, the Medium variable must be

redefined when the component is used. This is

performed by first generating a medium model with

air = getMedium("SimpleAir")

and then using air as modifier to the FixedSource

instance:

source=FixedSource(Medium=air)

In the FixedSource component, an equation

outPlug.Medium = Medium is present. Furthermore, the

Medium variable might be used to compute medium

properties such as the density d.

Modia treats Julia structs (such as variable Medium)

specially: Struct variables can be used as modifier or as

variable in an equation "var1 = var2". When

propagating a reference in this way, an overdetermined

system of equations can occur (when connections form

a loop, or when the same medium is defined at several

components). This issue is automatically resolved by

extended alias elimination.

Since the media in Modelica.Media are packages

and Modelica cannot use packages in equations and

also does not have special language elements to

propagate packages in connections, a medium has to be

defined in every component where it is used.

Therefore, if a pipe system has 20 components, then

the medium needs to be defined 20 times.

In ModiaFluid, a medium can be defined in one

component model and is then propagated through all

components and connections where the fluid is

flowing. The current implementation of medium

propagation has however the temporary limitation that

a medium must also be defined at all volumes, for

details see section 3.5. In principal, this mechanism

would allow changes to the medium during simulation

as long as the same BaseProperties models (see section

3.5) are used.

3.4 Momentum balance

Modelica.Fluid utilizes the steady-state or the dynamic

momentum balance depending on the chosen option. In

ModiaFluid the approach from (Zimmer et al. 2018) is

used to achieve more efficient and more robust

simulations. Hereby, the unsteady Bernoulli equation is

the starting point (Zimmer et al. 2018, Schade et al.

2013 eq. 4.4-3, Brennen 2006 section Bnda
7
)
8
.

7
http://brennen.caltech.edu/FLUIDBOOK/basicfluiddyna

mics/Unsteadyonedimensionalflow/Unsteadybernoulli/un

steadybernoulli.pdf
8
 The unsteady Bernoulli equation is derived by

integrating the Euler equations for incompressible fluid

flow along a stream line. The Euler equations in turn are

The approach is sketched with the simple example

shown in Figure 3, where three pressure drop

components (for example pipes, orifices, bends) are

connected between two volumes and fluid flows from

volume1 to volume2.

Figure 3. Three pressure drop components connected

between two volumes (𝒑𝒔𝒊 is the static pressure

at the indicated location).

For simplicity of the derivation the specific kinetic

energy is neglected. Assume that all pressure drop

components have the same area 𝐴 and component i has

length ∆𝑠𝑖, that 𝑚𝑓𝑙𝑜𝑤 is the mass flow rate, 𝑝𝑠𝑖 is the

static pressure at the indicated location and ∆𝑝𝑖−1,𝑖 is

the pressure drop correlation of component i. The

unsteady Bernoulli equation can then be formulated as:

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠1

𝐴
+ 𝑝𝑠1 − 𝑝𝑠0 = ∆𝑝01(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠0, ℎ0)

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠2

𝐴
+ 𝑝𝑠2 − 𝑝𝑠1 = ∆𝑝12(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠1, ℎ1)

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠3

𝐴
+ 𝑝𝑠3 − 𝑝𝑠2 = ∆𝑝23(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠2, ℎ2)

The specific enthalpies ℎ𝑖 are separately computed,

e.g., for isenthalpic pressure drop components the ℎ𝑖

are the upstream specific enthalpies (ℎ2 ∶= ℎ1 ∶= ℎ0).

Note, in the Modelica.Fluid library the momentum

balance is used in the form
9

𝑑𝐼𝑠
𝑑𝑡

+ (𝑝𝑠1 − 𝑝𝑠0) ∙ 𝐴 = ∆𝑝01 ∙ 𝐴

𝐼𝑠 = 𝑚𝑓𝑙𝑜𝑤 ∙ ∆𝑠1

As can be seen, this is exactly the unsteady Bernoulli

equation multiplied with 𝐴.
10

 So, the starting point of

the derivation below are exactly the same equations as

used in the Modelica.Fluid library.

The static pressures are now split into two parts:

𝑝𝑠𝑖 ∶= 𝑝𝑖 + 𝑟𝑖

where 𝑟𝑖 is the pressure that is used to accelerate the

fluid and 𝑝𝑖 is the remaining part of the pressure. In

steady state operation, 𝑟𝑖 ∶= 0, 𝑝𝑠𝑖 ∶= 𝑝𝑖 . Introducing

the differential form of the momentum balance that is

used in Modelica.Fluid.
9
 Modelica.Fluid.Interfaces.PartialDistributedFlow

10
 The unsteady Bernoulli equation has, however, the

advantage that in its general form it holds along a

streamline, so also for bends and orifices. The momentum

balance along a streamline includes the (unknown)

reaction forces on the component and therefore it can only

be used in equations for a straight pipe, where the reaction

forces in direction of the pipe flow are zero.

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 595
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

these terms in the unsteady Bernoulli equations and

utilizing the abbreviation ∆𝑟𝑖−1,𝑖 = 𝑟𝑖 − 𝑟𝑖−1 results in:

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠1

𝐴
+ ∆𝑟01 + 𝑝1 − 𝑝0 = ∆𝑝01

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠2

𝐴
+ ∆𝑟12 + 𝑝2 − 𝑝1 = ∆𝑝12

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠3

𝐴
+ ∆𝑟23 + 𝑝3 − 𝑝2 = ∆𝑝23

Since the 𝑟𝑖 are defined to solely accelerate the fluid,

the equations can be split into two parts:

𝑝1 − 𝑝0 = ∆𝑝01(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠0, ℎ0)

𝑝2 − 𝑝1 = ∆𝑝12(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠1, ℎ1)

𝑝3 − 𝑝2 = ∆𝑝23(𝑚𝑓𝑙𝑜𝑤, 𝑝𝑠2, ℎ2)
𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠1

𝐴
= −∆𝑟01

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠2

𝐴
= −∆𝑟12

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
∙
∆𝑠3

𝐴
= −∆𝑟23

Furthermore, we have the boundary conditions at the

volumes:

𝑝𝑠0 = 𝑝0 (𝑟0 = 0)

𝑝𝑠3 = 𝑝3 + 𝑟3

No approximations have been introduced so far (the

original equations have been just reformulated). Now,

the approximation is made, that the dependency of the

pressure drop equations on the inertial pressure r is

neglected:

∆𝑝𝑖−1,𝑖 = ∆𝑝𝑖−1,𝑖(𝑚𝑓𝑙𝑜𝑤, 𝒑𝒊−𝟏 , ℎ𝑖−1)

Note that the pressure drop equations are typically

determined only for steady-state operations, and that

the relationships/equations that take the acceleration of

a fluid into account are often not known. In particular,

all the pressure drop correlations used in

Modelica.Fluid hold only for steady-state operations.

The big advantage of this slight approximation is

that the equations are now decoupled, as described in

the following. First, the pressures 𝑝𝑖 can be computed

in a forward sequence because the static pressures and

the specific enthalpies at the volumes are known, as

well as the mass flow rate 𝑚𝑓𝑙𝑜𝑤 (since its derivative

appears in the unsteady Bernoulli equation, 𝑚𝑓𝑙𝑜𝑤 is a

state):

𝑝1 ∶= 𝑝0 + ∆𝑝01(𝑚𝑓𝑙𝑜𝑤, 𝑝0, ℎ0)

𝑝2 ∶= 𝑝1 + ∆𝑝12(𝑚𝑓𝑙𝑜𝑤, 𝑝
1
, ℎ1)

𝑝3 ∶= 𝑝2 + ∆𝑝23(𝑚𝑓𝑙𝑜𝑤, 𝑝
2
, ℎ2)

The remaining equations then form a linear system of

equations and the coefficients of the system matrix are

constants:

[

∆𝑠1

𝐴
1 0 0

∆𝑠2

𝐴
1 −1 0

∆𝑠3

𝐴
0 1 −1

0 0 0 1]

∙

[

𝑑𝑚𝑓𝑙𝑜𝑤

𝑑𝑡
𝑟1

𝑟2

𝑟3]

=

[

𝑝𝑠0

0

0

𝑝𝑠3 − 𝑝
3]

The result is that the interconnection of pressure drop

components results only in a small linear equation
system with a constant coefficient matrix. Since this

matrix is constant, it is sufficient to perform an LU

decomposition once and then reuse it during the

simulation. If this approximation is not performed as in

the Modelica.Fluid library, nonlinear algebraic
equation systems often appear that can be either hard to

solve (especially, when starting at 𝑚𝑓𝑙𝑜𝑤 = 0) or in

which these equation systems have no unique

solutions.

For these reasons, there is a "rule of thumb" in the

Pipe-network community to always have a volume

between two pressure drop components. In

Modelica.Fluid there is, for example, the option

modelStructure in the DynamicPipe model to define

whether the pipe ends with a volume on either of the

ports or not, in order to avoid such nonlinear equation

systems. Obviously, such options are only for fluid

specialists. When using the new method, such

advanced options are no longer needed.

In (Zimmer et al. 2018) more complicated cases

with branching and joining piping networks are

additionally discussed. Here, the dynamic momentum

balance is also taken into account, whereas in

Modelica.Fluid only junction models with steady-state

momentum balances are provided.

In the ModiaFluid library the new method is used in

all components, including junctions. For example, a

pipe model is defined in the following way, directly

utilizing the equations explained above:

@model ShortPipe begin
 inPlug = InPlug()
 outPlug = OutPlug()
 ...
@equations begin
 # Medium propagation
 outPlug.Medium = inPlug.Medium

 # mass flow balance
 m_flow = inPlug.m_flow
 inPlug.m_flow + outPlug.m_flow = 0

 # Propagation of specific quantities
 outPlug.p = inPlug.p + dp
 outPlug.r = inPlug.r + dr
 outPlug.h = inPlug.h + dh
 dp = -m_flow*abs(m_flow)*k # pressure drop
 dr = -der(m_flow)/A*l # inertial pressure

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

596 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

 dh = 0.0 # isenthalpic process
 end
end

In the Modelica.Fluid package there are many options

that can be set either at the component level or

globally. For example, the user can choose either a

steady-state or dynamic momentum balance, the

presence of a volume on either port of a pipe, or the

definition of pressure drop components as functions of

the pressure difference or as functions of the mass flow

rate.

In ModiaFluid the complexity of the code and of the

options is drastically reduced by providing only the

dynamic momentum balance, by describing pressure

drop components as function of mass flow rate, and by

having only one discretization scheme for a pipe. The

simulation is also potentially more robust than when

defined with Modelica.Fluid, because no nonlinear

algebraic equations occur, even if pressure drop

components are connected together without a volume

in between.

3.5 Mass and energy balance

The definition of mass and energy balances are

essentially analogous to the approach used in

Modelica.Fluid. With the specific internal energy u,

density 𝑑, volume 𝑉, mass 𝑚, internal energy 𝑈, the

sum of the mass flow rates into the volume 𝑚𝑓𝑙𝑜𝑤, the

sum of the enthalpy flow rates in to the volume 𝐻𝑓𝑙𝑜𝑤,

the contribution due to the unsteady movement of the

fluid 𝐻𝑟, and the pressure 𝑝 and specific enthalpy ℎ as

the independent variables of the utilized medium

model, the balance equations can be formulated as:

𝑑 = 𝑑𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)
𝑢 = 𝑢𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)
𝑚 = 𝑑 ∙ 𝑉
𝑈 = 𝑚 ∙ 𝑢

𝑑𝑚

𝑑𝑡
= 𝑚𝑓𝑙𝑜𝑤

𝑑𝑈

𝑑𝑡
= 𝐻𝑓𝑙𝑜𝑤 + 𝐻𝑟

𝐻𝑟 = ∑ 𝑚𝑓𝑙𝑜𝑤,𝑖

𝑖∈𝑖𝑛𝑓𝑙𝑜𝑤𝑖𝑛𝑔

𝑟𝑖/𝑑

Since each inlet 𝑖 of a volume forms a boundary for the

pressure, a pressure difference may occur between the

volume and the inlet pressure 𝑝. This difference is

accounted by 𝑟𝑖 = 𝑝𝑠 − 𝑝𝑖. Since the volume work

𝑉𝑓𝑙𝑜𝑤,𝑖𝑟𝑖 = 𝑚𝑓𝑙𝑜𝑤,𝑖 𝑟𝑖/𝑑 of this pressure gradient is

accounting for the acceleration (or deceleration) of the

inflowing fluid, the enthalpy of the inflowing fluids

needs to be corrected by the term 𝐻𝑟. This is not

necessary for the outlets since for the outlets, the term

𝑟 is zero by definition.

If the @model equations would be defined in this

way, then 𝑚 and 𝑈 would be selected as states and the

independent medium variables, for example (𝑝, ℎ) or

(𝑝, 𝑇) would be in general determined by solving

nonlinear equation systems. The approach is to rewrite

the equations. In Modelica.Fluid this is performed by

providing the attribute StateSelect.prefer on the desired

states. The goal in Modia is to arrive at a simpler

language as Modelica and therefore an attribute

StateSelect is not supported. Instead, the derivatives are

manually expanded until the state derivatives appear.

For example, (𝑝, ℎ) shall be used as states. The mass-

and energy balance can then be reformulated to (=

manual index reduction):

𝑑 = 𝑑𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)
𝑢 = 𝑢𝑚𝑒𝑑𝑖𝑢𝑚(𝑝, ℎ)

der_d =
𝜕𝑑𝑚𝑒𝑑𝑖𝑢𝑚

𝜕𝑝
�̇� +

𝜕𝑑𝑚𝑒𝑑𝑖𝑢𝑚

𝜕ℎ
ℎ̇

der_u =
𝜕𝑢𝑚𝑒𝑑𝑖𝑢𝑚

𝜕𝑝
�̇� +

𝜕𝑢𝑚𝑒𝑑𝑖𝑢𝑚

𝜕ℎ
ℎ̇

𝑚 = 𝑑 ∙ 𝑉
𝑈 = 𝑚 ∙ 𝑢

der_d ∙ 𝑉 + 𝑑 ∙ �̇� = 𝑚𝑓𝑙𝑜𝑤

𝑚𝑓𝑙𝑜𝑤 ∙ 𝑢 + 𝑚 ∙ der_u = 𝐻𝑓𝑙𝑜𝑤 + 𝐻𝑟

By this reformulation only derivatives for the

independent medium variables (and of the volume 𝑉)

appear and therefore only these variables can be

potential states. Note, the equations above are linear in

the derivatives and no nonlinear equation system

appears anymore.

The first four equations are marked in blue to

indicate that these equations are medium specific.

Depending on the medium type, these four equations

need to be provided. This is accomplished by providing

a specific BaseProperties Modia model. Example for

the SimpleIdealGas medium that has (p,T) as states,

where d=d(p,T) and u=u(T):

@model SimpleIdealGas_BaseProperties begin
 p_start = 1e5
 T_start = 300.0
 Medium = MediumVariable()
 p = Float(start=p_start)
 h = Float()
 T = Float(start=T_start)
 d = Float()
 u = Float()
 der_d = Float()
 der_u = Float()
 state = MediumState()
@equations begin
 d = d_pT(Medium,p,T)
 u = u_T(Medium,T)
 h = h_T(Medium,T)
 der_d = d_pT_der_2(Medium,p,T)*der(p) +
 d_pT_der_3(Medium,p,T)*der(T)
 der_u = u_T_der_2(Medium,T)*der(T)
 state = setState_pT(Medium,p,T)
 end

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

DOI Proceedings of the 13th International Modelica Conference 597
10.3384/ecp19157589 March 4-6, 2019, Regensburg, Germany

end

BaseProperties(Medium:: SimpleIdealGasMedium;
 p_start=1e5, T_start=300.0) =
 SimpleIdealGas_BaseProperties(Medium=Medium,
 p_start=p_start, T_start=T_start)

Under the assumption that p,T are states and that all

used functions are available in ModiaMedia, all the left

hand side variables can be computed from p,T and their

time derivatives. In the @equations section the Modia

convention is used that fc_der_i(..) is the partial

derivative of function fc with respect to its i-th

argument. Note, the medium specific functions must

reflect the true dependency of the function from the

independent variables in order that the symbolic

transformation does not introduce singularities in the

generated code. For example, although p,T are the

thermodynamic states of this medium, the inner energy

u is only a function of T and not of p,T.

Above, for every medium type a medium specific

function BaseProperties(Medium; ...) is defined that

selects the medium specific BaseProperties @model,
instantiates it and returns this instance. Alternatively,

all medium-specific BaseProperties @models could be

stored in a dictionary, and function BaseProperties

could just return an instance of the corresponding

@model using the Medium type as a dictionary key.

Note, media types that have the same functional

dependency on d,u,h, can use the same BaseProperties

model. With these pre-requisites a general volume

model can be defined as:

@model ClosedVolume begin
 Medium = MediumVariable()
 inPlug = InPlug()
 outPlug = OutPlug()
 p0 = Medium.infos.p_default
 T0 = Medium.infos.T_default
 medium = BaseProperties(Medium; p_start=p0,
 T_start=T0)
 ...
@equations begin
 outPlug.Medium = Medium
 outPlug.Medium = inPlug.Medium
 m = medium.d*V
 U = m*medium.u
 m_flow = inPlug.m_flow + outPlug.m_flow
 H_flow = inPlug.m_flow*inPlug.h +
 outPlug.m_flow*outPlug.h
 H_r = inPlug.m_flow*inPlug.r / medium.d

 # Mass and energy balance
 medium.der_d*V + medium.d*der(V) = m_flow
 m_flow*medium.u + m*medium.der_u = H_flow+H_r

 # Propagation of specific quantities
 inPlug.p + inPlug.r = medium.p

 outPlug.p = medium.p
 outPlug.r = 0.0
 outPlug.h = medium.h
 end
end

A key part of this @model is the declaration of the

BaseProperties @model:

medium = BaseProperties(Medium; p_start=p0,
 T_start=T0)

This declaration provides an instance of a medium-

specific BaseProperties @model depending on the type

of variable Medium. The problem here is that Medium

should be propagated through connections and the

instantiation of BaseProperties can only be performed

when the type of the propagated Medium is known (so

instantiation and extended alias elimination must be

performed incrementally). Modia does not yet support

such a scheme and therefore the current

implementation of ModiaFluid requires to define the

Medium at volumes to select the BaseProperties

@model based on the Medium type.

3.6 Further Issues

ModiaFluid should optionally support bi-directional

fluid flow in the future. Additionally, there are other

issues:

Caching for media calculations

More complicated media, such as two-phase media or

mixture media, may require the solution of nonlinear

equation systems whenever medium variables, such as

specific internal energy, have to be computed. In

Modelica.Fluid typically the nonlinear solver either

starts always from the same start values of the iteration

variables, or with some very simplified models first

start values for the iteration variables are computed.

The current version of ModiaFluid only supports the

same approach.

In principal it would be possible to make such

medium calculations more efficient and more robust by

caching the medium states from the previous model

evaluation and use them as start values at the next time

instant:

setState_pT!(state, Medium, p, T)

Julia allows to update input arguments and therefore to

keep a memory between function calls. The

setState_xxx(..) functions would thus be slightly

rewritten to update the current state and hereby utilize

a cache in the state. In order that Modia knows which

variable is computed by such a call (for size inference

and equation sorting), the argument that is updated by

the call must be "somehow" marked.

Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs

598 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157589

Nonlinear equations at junctions

As described in detail in (Franke et al. 2009, section

4.2), junctions may give rise to nonlinear algebraic

equation systems where the iteration variables are

discontinuous when the mass flow rate changes sign

and therefore the solution is hard. In ModiaFluid this

cannot occur, because only unidirectional flow is

supported where the upstream direction does not

change during simulation.

Unnecessary nonlinear equations at 1:1 connections

As described in detail in (Franke et al. 2009, section

4.3), unnecessary nonlinear equation systems occur at

every 1:1 connection of fluid components if the

thermodynamic states are not (p,h) and h is a nonlinear

function of the thermodynamic states. This effect

currently appears in ModiaFluid. In Modelica.Fluid

this issue is resolved by an inverse function annotation

and an involved symbolic manipulation of the

equations. Current efforts in ModiaFluid include the

pursuit of a simpler solution to this problem.

4 Automatic Differentiation of Media

Functions

Partial derivatives of functions are needed since

relationships between thermodynamic variables are

modelled using functions and these relations needs to

be differentiated due to index reduction in the mass and

energy balance or for obtaining the Jacobian for

iterative solvers. Modelica.Media has many manually

provided derivatives of functions. The described

approach in ModiaMedia allows automatic

differentiation of functions to be easily utilized.

There are several Julia packages for automatic

differentiation, see http://www.juliadiff.org/. The

partial derivative of a function

specificEnthalpy_water(T) is obtained as follows by

using the ForwardDiff package:

specificEnthalpy_water_der_1(T) =
 ForwardDiff.derivative(specificEnthalpy_water, T)

5 Conclusion

Despite past successes of thermo-fluid modeling using

the Modelica language, there have been long-standing

discussions on how to improve thermodynamic

property modeling for dynamic systems by making it

more convenient, easier to comprehend, and more

powerful. Many of the modern programming

constructs of the Julia language, such as multiple

dispatch, lend themselves to new approaches to address

these existing challenges. The ModiaMedia and

ModiaFluid architecture described in this paper

represents one experimental effort to leverage these

recent developments: Thermodynamic property

modeling becomes an order of magnitude simpler, both

for implementation and for usage. Furthermore, it

becomes then possible to propagate medium models

through connection structures and use them in pre- and

post-processing. By adopting the new fluid approach

from (Zimmer et al. 2018), recent progress within the

Modelica community can be directly transferred to

Modia. We expect to continue developing and

enlarging this thermo-fluid modeling framework to

further explore the opportunities afforded by these new

computing paradigms and tools.

Acknowledgements

The authors want to thank Jarrett Revels, MIT for

valuable advice on Julia and automatic differentiation

using Julia.

References

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V.

(2017): Julia: A Fresh Approach to Numerical Computing.

SIAM Review, 59: 65–98. doi: 10.1137/141000671

Brennen, C.E. (2006): An Internet Book on Fluid Dynamics.

http://brennen.caltech.edu/FLUIDBOOK/FLUIDBOOK.ht

m

Elmqvist, H., Tummescheit, H. and Otter, M. (2003): Object-

Oriented Modeling of Thermo-Fluid Systems, Proceedings

of the 3
rd

 International Modelica Conference, Linköping,

Sweden, November 3-4, pp. 269-286.

https://www.modelica.org/events/Conference2003/papers/

h40_Elmqvist_fluid.pdf

Franke R., Casella F., Otter M., Sielemann M., Elmqvist H.,

Mattsson S.E., Olsson H. (2009): Stream Connectors – An

Extension of Modelica for Device-Oriented Modeling of

Convective Transport Phenomena. Proceedings of the 7
th

International Modelica Conference, Como, Italy, Sept. 20-

22, pp. 108-121.

http://www.ep.liu.se/ecp/043/012/ecp09430078.pdf

Keller, A., et al: https://github.com/ajkeller34/Unitful.jl,

downloaded 19 Nov 2018.

Laughman, C.R., Qiao, H. (2016): On the Influence of State

Selection on Mass Conservation in Dynamic Vapor

Compression Cycle Models. Mathematical and Computer

Modeling of Dynamical Systems, Vol. 23, No. 3, pp. 262-

283, December 2016,

 DOI: 10.1080/13873954.2017.1298625

Modelica Association (2017): Modelica, A Unified Object-

Oriented Language for Systems Modeling.

Language Specification, Version 3.4, April 10, 2017.

https://www.modelica.org/documents/ModelicaSpec34.pdf

Schade H., Kunz E., Kameier F. and Paschereit C.O. (2013)

Strömungslehre. 4. Auflage, de Gruyter.

Zimmer D., Bender B., Pollok A. (2018): Robust Modeling

of Directed Thermofluid Flows in Complex Networks.

Proceedings of the 2
nd

 Japanese Modelica Conference, pp.

39-48, Tokyo, May 17-19.

https://elib.dlr.de/120701/

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route

DOI Proceedings of the 13th International Modelica Conference 599
10.3384/ecp19157599 March 4-6, 2019, Regensburg, Germany

Simulative Potential Analysis of Combined Waste Heat Refrigeration using
Ammonia in an Intercity Bus on dynamic route
Hebeler, Maximilian and Schulze, Christian and Tegethoff, Wilhelm and Köhler, Jürgen

599

Simulative Potential Analysis of Combined Waste Heat

Refrigeration using Ammonia in an Intercity Bus on dynamic route

Maximilian Hebeler1*; Christian Schulze2; Wilhelm Tegethoff2; Jürgen Köhler1
1Institut für Thermodynamik, TU Braunschweig, Germany,

2TLK Thermo GmbH, Germany
* Corresponding author. Phone: +49 531-391-7892; E-Mail: m.hebeler@tu-bs.de

Abstract
In this work, a simulative potential analysis of a possible

topology for combining waste heat recovery and

passenger compartment refrigeration using ammonia is

carried out. The focus is on the energetic assessment

using a detailed simulation model of a long haul

intercity bus.

The topology combines a conventional refrigeration

cycle with an Organic Rankine Cycle (ORC). Both

systems share the working fluid and the condenser. The

used refrigerant is Ammonia (R-717). Expansion

machine and compressor are both connected to the drive

belt of the vehicle. In order to evaluate the fuel

consumption reduction potential of that topology the

intercity bus simulation model, equipped with a CO2

(R-744)-refrigeration system, is used as a reference.

The results show that using an Organic Rankine Vapor

Compression Cycle (ORVC) equipped with ammonia

leads to an effective reduction of fuel consumption for a

long-haul journey. The ORVC topology reduces fuel

consumption by 7.9 %.

Keywords: ORC, ORVC, CO2, Ammonia, R-744, R-

717

1 Introduction

The compressor of the Air-Conditioning System (AC)

of an intercity bus uses up to 15 kW of additional

mechanical power from the engine, thereby reducing the

effective power available for vehicle traction. For a long

haul journey of several hundred kilometers, this energy

input accounts for around 8 % of the overall diesel fuel

consumption. On the other hand, approximately one

third of the supplied chemical energy is rejected as hot

exhaust gas into the environment and another third is

dissipated by the cooling system leaving only one third

for vehicle traction. In order to use the exergetic

potential of the exhaust gas, a Waste Heat Recovery

(WHR) system can be applied, such as an Organic

Rankine Cycle (ORC). The recovered energy can be
used for reducing the engine load mechanically or by

driving auxiliary loads like the alternator or the

refrigerant compressor. Therefore, combining the waste

heat recovery and the air-conditioning system can be a

promising method for reducing primary energy usage.

Combining these two systems efficiently is a challenge,

as many aspects and interactions have to be considered.

The work described in this paper is part of the overall

research efforts that aim to develop and compare

different topologies and methods for intercity bus

climatization using exhaust waste energy. The aim is to

completely provide the energy need of the refrigeration

system and all its components via the WHR system

taking environmental regulations into account. In this

work, a preliminary analysis of one possible topology

for combined waste heat refrigeration is carried out

using a detailed simulation model of a long haul

intercity bus equipped with an R-744-refrigeration

system. In terms of ORVC, the carried out research is

mainly distinguished to other researches (e.g. Yilmaz,

2015; Wang et al, 2011; Saleh, 2016) by using ammonia

as working fluid/refrigerant.

2 Overview of Organic Rankine

Vapor Compression Cycle Systems

Figure 1. Schematic overview of an Organic Rankine

Vapor Compression Cycle. On the left hand side, the

diagram shows all essential components, the right hand

side shows the corresponding thermodynamic points of

state for the working fluid ammonia.

Figure 1 shows an example configuration of an

Organic Rankine Vapor Compression Cycle (ORVC),

as commonly shown in the literature (e.g. Yilmaz, 2015;

Wang et al, 2011; Saleh, 2016). All relevant

components and thermodynamic points of state are

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route

600 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157599

depicted. The conventional refrigeration process,

consisting of evaporator, condenser, compressor and

expansion valve, is extended by a Rankine Cycle, that

receives heat from the engine exhaust stream and

converts that thermal energy into mechanical energy by

evaporation and expanding the fluid. Expansion

machine and refrigereant compressor are mechanically

coupled thus the presented process is a combination of a

heat engine and refrigeration machine, sharing the same

working fluid. The remaining heat of both cycles is

rejected via the same condenser on middle pressure

level. Depending on the system design, the expansion

machine or the compressor can be connected

additionally to an auxiliary load or drive. The net power

output of the process is defined as follows:

𝑃𝑃𝑢𝑚𝑝 + 𝑃𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑟 + 𝑃𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 + 𝑃𝐹𝑎𝑛

= 𝑃𝑁𝑒𝑡
(1)

3 Simulation Model and Investigated

Topology

In the following, the investigated topology and its

implementation into the omnibus as well as the

simulation statistics of the corresponding models are

described. All models have been created using the TIL

and TIL Media library (Richter, 2008; Gräber et al,

2010; Schulze et al, 2011) in Modelica. In terms of the

TIL library a highly dynamic modelling approach has

been used. All components can handle zero mass flow

rate and flow reversal.

3.1 Vehicle simulation model

Figure 2. Schematic depiction of the main subsystem

interactions of the omnibus as modeled in (Kaiser, 2018).

Depiction in dependence on (Ebeling, 2018).

Figure 2 gives an overview of the complete omnibus

simulation model and its sub-models. All longitudinal
dynamics have been considered. Vertical dynamics have

been neglected. The model was created by Kaiser in

(Kaiser, 2018) using the object orientated programming

language Modelica and has been validated with

experimental data.

Figure 3. Schematic of the R-744 reference refrigeration

system including connections to engine, drive belt and

generator. Blue represents air, green represents working

fluid and yellow represents electrical current. Mechanical

work is depicted in gray.

The actual vehicle represents an omnibus with a

passenger capacity of 48 people and an engine peak

power of 295 kW. Figure 3 shows the R-744-

refrigeration system and its connections into the

powertrain of the omnibus. The refrigeration system has

three evaporators in parallel, one for the climatization of

the driver and two for the passenger compartment. For

the sake of simplification, Figure 3 shows a simplified

version of the refrigeration cycle with only one

evaporator for the passenger compartment. The

compressor is driven by the drive belt of the combustion

engine. All fans are fed by the vehicle’s electrical

system, respectively the alternator. Further explanation

of the refrigeration system can be found in detail in

(Kaiser, 2018).

Table 1 summarizes some of the simulation system’s

statistics for the vehicle simulation model including

HVAC-unit.

Table 1. Some of the simulation statistics of the vehicle

simulation model (including HVAC-unit)

Nontrivial Equations 21189

Continuous time states 1024

Time-varying variables 31845

Number of mixed real/discrete systems of

equations
35

Highest number of non-linear equations

after manipulation
3

Number of systems of equations with size

of 3
2

Number of systems of equations with size

of 2
0

Number of systems of equations with size

of 1
51

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route

DOI Proceedings of the 13th International Modelica Conference 601
10.3384/ecp19157599 March 4-6, 2019, Regensburg, Germany

3.2 Organic Rankine Vapor Compression

simulation model

Figure 4. Schematic of the ORVC-topology including

connections to engine, drive belt and alternator. Orange

represents exhaust gas, blue represents air, green

represents working fluid and yellow represents electrical

current. Mechanical work is depicted in gray.

Figure 4 shows the ORVC-topology and its

connections into the powertrain of the omnibus. This

topology is a combination of an R-134a refrigeration

system and an ordinary ORC-topology. The condenser

of the refrigeration system replaces the ORC-condenser.

The expected condensation heat is approximately twice

the condensation heat of the original refrigeration

system, hence the size of the condenser is doubled. The

number of condenser fans is increased as well. The

expansion machine and the compressor are both coupled

to the drive belt. The expansion machine is assumed to

have a constant overall efficiency of 70 %. Finally, the

gear ration between compressor and drive belt is

changed in order to achieve the same cooling power as

in the original R-134a system. In terms of working fluid

ammonia (R-717) is chosen as a drop-in, since it is a

natural refrigerant (GWP and ODP = 0) with a high

volumetric cooling capacity and a good compromise in

usability as a working fluid in terms of waste heat

recovery. The fundamental equation of state of ammonia

was implemented as a multi parameter equation of state

as in (Tillner-Roth et al,1993; Span et al, 1996),

therefore there was no interpolation routine necessary.

It has to be pointed out, that in this context it has not

been taken into account that the use of R-717 in direct

evaporation systems can lead to grave safety issues,

since it is a highly toxic substance. This study is

supposed to be a simulative potential study of ammonia

as a working fluid in ORVC systems with respect to

highly transient boundary conditions.

For controlling the pump speed, a PI-Controller is

used, which sets the outlet state of the expansion

machine to 60 K superheated vapor. In that manner, the

following internal heat exchanger is provided with

enough temperature difference to transfer heat from mid

pressure to high pressure level. Table 2 summarizes the

control concept of the presented ORVC topology.

Table 2. PI-Controller assignment for the presented

ORVC topology

Actuating Variable Controlled Variable

pump speed
overheating at expander

outlet

condenser fan speed mid-pressure level

evaporator fan speed
air inlet and compartment

temperature

valve eff. flow area
overheating at evaporator

outlet

The described topology is similar to (Yilmaz, 2015),

where R-134a and R-245fa are investigated as working

fluid. In (Yilmaz, 2015), compressor and expander are

directly coupled with no other external connection.

However, in this work the expansion machine and the

compressor are coupled via the drive belt of the vehicle.

Hence, the shaft work of expander and compressor may

be unequal, so that power is drawn from or supplied to

the engine. Furthermore, as mentioned, in this work

ammonia is used as working fluid.

Table 3 summarizes some of the simulation system’s

statistics for the vehicle simulation model including the

ORVC-topology. Despite the system size, the presented

model offers an integration time close to real-time on a

standard Desktop-PC. In comparison to the reference

model (see. Table 1), the number of nontrivial equations

has increased. Still, the number of nonlinear systems of

equations remains the same.

Table 3. Some of the simulation statistics of the vehicle

simulation model (including ORVC-topology)

Nontrivial Equations 22992

Continuous time states 1053

Time-varying variables 36176

Number of mixed real/discrete systems

of equations
35

Highest number of non-linear equations

after manipulation
3

Number of systems of equations with

size of 3
2

Number of systems of equations with

size of 2
0

Number of systems of equations with

size of 1
51

CPU-Time for integration of 37622 s of

simulation time
3.38e4 s

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route

602 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157599

4 Boundary Conditions and

Simulation Results

In order to evaluate the integration of the presented

topology into the vehicle, a real driving scenario from

Hanover to Munich is applied as simulation input. The

scenario considers vehicle speed, slope of route and

weather conditions. For the applied scenario a typical

august summer day has been chosen, further details are

explained in (Kaiser, 2018). Figure 5 shows the vehicle

speed over time and the corresponding driving slope. In

case of the ORVC-topology the system is only activated

during highway conditions. As a consequence the fuel

consumption measurement interval has been chosen

from 2000 until 23000 seconds of the journey. The

mentioned interval is depicted in Figure 5, as well. The

results are compared to the reference only in that time

period. In terms of the ORVC configuration, the exhaust

gas evaporator is integrated after the SCR-catalyst of the

exhaust after treatment system of the vehicle.

In all simulations the Dassl’s integration method has

been used with a solver tolerance of 1e-5. The output

interval has been set to 1s.

4.1 Evaluation Parameters

The exergetic efficiency is defined as the ratio of the

net power of the process and the provided exhaust gas

exergy at the exhaust gas heat exchanger inlet:

𝜂𝑒𝑥 =
−𝑃𝑁𝑒𝑡

𝐸�̇�𝑖𝑛𝑙𝑒𝑡,𝐺𝑎𝑠

 (2)

However, for positive values of the net power of the

process (the process draws power), the exergetic

efficiency is negative. In the shown results this is usually

the case, since the drawn power of the refrigeration

system exceeds the provided power of the waste heat

recovery system. It is therefore more feasible to

introduce the so called Work Number (WN), which

gives the ratio of the cooling heat to the necessary work

input of the whole process:

𝑊𝑁 =
∫ �̇�𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟 𝑑𝑡

∫ 𝑃𝑁𝑒𝑡 𝑑𝑡
 (3)

4.2 Results

Figure 6. Overview of the Work Number for the

evaluated topologies for the period of a real life driving

cycle from Hanover to Munich between 2000 and 23000

seconds of the journey.

Figure 7 shows the result for the exergy analysis in

the mentioned driving scenario for the reference system

and the mentioned topology. Exergy source and exergy

demand are compared to each other. The exergy balance

is formed around the engine, the drive belt and the gear-

box, taking all necessary consumers into account. The
exergy demand is hereby divided into driving resistance

and gearbox losses, engine auxiliaries (all kinds of

Figure 5. Real life driving scenario from Hanover to Munich (Kaiser, 2018). Vehicle speed and slope of route depicted with

respect to time (a). System input boundary conditions (b) and system response of pressure at high pressure evaporator outlet (c)

for a representative time interval of 3250 s to 3750 s.

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route

DOI Proceedings of the 13th International Modelica Conference 603
10.3384/ecp19157599 March 4-6, 2019, Regensburg, Germany

consumers like pumps or fans etc.), vehicle auxiliaries

(lighting and electronic control units etc.), HVAC

auxiliaries (condenser and evaporator fans and control

units), compressor shaft power and the resulting drive

belt losses. Electrical conversion losses of the electrical

components are included as exergy demand of the

corresponding component. In case of ORVC

applications the exergy demand of the pump is depicted

as well. As exergy source the corresponding component

is depicted in opposition and is divided into engine

crankshaft and, if existing, expansion machine.

Figure 7. Exergy demand and source for the evaluated

topologies for the period of a real life driving cycle from

Hanover to Munich between 2000 and 23000 seconds of

the journey.

It can be seen that the exergy demand covered by the

engine decreases from the reference system without

WHR to the ORVC topology. The exergy output of the

engine decreases by 8.6 % compared to the reference.

This decrease corresponds to a fuel consumption

decrease by 7.9 %. The reason for this decrease is

mainly due to the WHR system, since the expansion

machine reduces the engine load, as mentioned above.

In addition to that, the change of the refrigerant from R-

744 to R-717 already has a notable influence. The

necessary work input for the compressor is reduced by

almost 23 %, which already improves fuel efficiency.

The mentioned change in condenser size and the

increase in the number of condenser fans do not seem to

have a noticeable effect on the HVAC auxiliaries’

exergy demand. Figure 6 shows the work number of the

simulated topology in comparison to the system without

WHR taking all work in and outputs into account. It can

clearly be stated, that in case of the ORVC topology the

necessary work input into the system is twelve times

lower than in case of the reference system with no

WHR.

Still, the impact of the expansion machine on the

drive train of the engine has to be taken into account. As

mentioned, in both topologies identical boundary

conditions were applied. Due to that, the exergy demand

for the driving resistance should be equal in all

simulations. As shown in Figure 7, this is not the case.

The driving resistance differs by about 6 kWh in case of

the ORVC topology compared to the reference. Because

of the thermal capacity of the WHR and the exhaust

manifold, the time constant of the WHR is several

magnitudes bigger than that of the drivetrain’s

mechanics, hence the expansion machine is still

providing energy while the driver is applying the brake

pedal. Due to the additional power input of the

expansion machine into the drive train, the driver,

represented by a PI-controller, tends to accelerate and

decelerate more aggressively, which leads to the shown

increase in driving resistance, respectively fuel

consumption. Consequently, the fuel reduction potential

for the shown ORVC configuration is slightly higher

than depicted in Figure 6 and Figure 7 respectively. The

adaption of the driver model as function of drivetrain

design is part of future work of the author.

5 Summary & Discussion

In this work, a simulative preliminary comparison of

a possible topology for combined waste heat

refrigeration has been carried out using a detailed

simulation model of a long haul intercity bus. The

shown topology implements an Organic Rankine Vapor

Compression Cycle into the vehicle, where the

refrigeration system and the waste heat recovery system

share the refrigerant and condenser. The refrigeration

side of the shown topology is derived from an R-134a

refrigeration system. The applied refrigerant is

Ammonia (R-717). Expansion machine and compressor

are both connected to the drive belt of the vehicle. As

study reference, the intercity bus model equipped with

an R-744-refrigeration system is used.

The simulation results show that with the applied

topology and parameters it is possible to effectively

decrease the fuel consumption of an intercity bus on a

long haul journey under dynamic boundary conditions.

Furthermore it has been shown, that the dynamic

modelling approach enables the transient simulation of

large processes in a time-efficient manner without

sacrificing accuracy in physical behavior.

Still, it has to be stressed, that in this comparison it

has not been taken into account that the use of R-717 in

direct evaporation systems can lead to grave safety

issues, since it is a highly toxic substance. The scope of

future work is therefore to implement an ORVC in

combination with an intermediate evaporation system. It

has to be evaluated, if yet a fuel reduction potential is

given. In that case the use of an ORVC with R-717 is

highly promising, since the needed cooling load can be

maintained with simultaneously meeting environmental

regulations, such as GWP and ODP.

Apart from that, it has to be pointed out, that further

extended research has to be carried out in order to

compare the two systems. Several effects have not been

analyzed, which could improve or limit the presented

ORVC performance. To highlight all these effects goes

Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on
dynamic route

604 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157599

beyond the scope of this work and will be presented in

future publications.

Acknowledgements

Parts of this publication have been developed with

funding from the German Federal Ministry of Education

and Research (BMBF) within the research project VEOS

– Verfahren zur energetischen Optimierung
dynamischer thermischer Systeme (KMU Innovativ, 01 |

LY1502) and VEOTOP – Verfahren zur optimalen
Synthese und Topologieoptimierung komplexer

thermischer Energiesysteme (KMU Innovativ, 01 |

LY1809B)

References

Yilmaz, A.: Transcritical organic Rankine vapor compression

refrigeration system for intercity bus air-conditioning using

engine exhaust heat. Energy 82 (2015) 1047-1056.

Saleh, B.: Parametric and working fluid analysis of a

combined organic Rankine-vapor compression refrigeration

system activated by low-grade thermal energy. Journal of

Advanced Research (2016) 7, 651–660

Kaiser, C.: Untersuchungen zur Effizienz- und

Leistungsverbesserung von Omnibusklimaanlagen. PhD

thesis, TU Braunschweig (approx. published in 2018)

Richter, C.: Proposal of New Object-Oriented Equation-Based

Model Libraries for Thermo-dynamic Systems. PhD thesis,

TU Braunschweig (2008)

Schulze, C., Gräber, M., Huhn, M., and Grätz, U.: Real-Time

Simulation of Vapour Compression Cycles. In: Proceedings

of the 8th International Modelica Conference, Dresden

(2011)

Wang, H., Peterson, R., Herron, T.: Design study of

configurations on system COP for a combined ORC

(organic Rankine cycle) and VCC (vapor compression

cycle). Energy 36 (2011) 4809-4820.

Gräber, M., Kosowski, K., Richter, C., and Tegethoff, W.:

Modelling of heat pumps with an object-oriented model

library for thermodynamic systems. Mathematical and

Computer Modelling of Dynamical Systems, 16(3):195–

209., (2010)

Ebeling, P.: Konzeption eines Rankine-Prozesses für den

transienten Betrieb im Omnibus, PhD thesis, TU

Braunschweig (approx. published in 2018)

Tillner-Roth, R., Harms-Watzenberg, F., and Baehr, H.D., In:

Eine neue Fundamentalgleichung fuer Ammoniak, DKV-

Tagungsbericht, 20:167-181, 1993.

Span, R. and Wagner, W.: A New Equation of State for

Carbon Dioxide Covering the Fluid Region from the Triple-

Point Temperature to 1100 K at Pressures up to 800 MPa,

In: J. Phys. Chem. Ref. Data, 25(6):1509-1596, 1996.",

DOI Proceedings of the 13th International Modelica Conference 605
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 5D: ELECTRICAL POWER 2
Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL
Mukherjee, Biswarup and Vanfretti, Luigi

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL
de C. Fernandes, Marcelo and Vanfretti, Luigi and de Oliveira, Janaína G. and Baudette, Maxime

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library
Bartolini, Andrea and Casella, Francesco and Guironnet, Adrien

.

606 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 607
10.3384/ecp19157607 March 4-6, 2019, Regensburg, Germany

Modeling of PMU-Based Automatic Re-synchronization Controls for DER
Generators in Power Distribution Networks using Modelica and the OpenIPSL
Mukherjee, Biswarup and Vanfretti, Luigi

607

Modeling of PMU-Based Automatic Re-synchronization Controls
for DER Generators in Power Distribution Networks

using Modelica and the OpenIPSL

Biswarup Mukherjee1 Luigi Vanfretti2

1Indian Institute of Technology Bombay, India, bismuk.ece@gmail.com
2Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute (RPI), USA, vanfrl@rpi.edu

Abstract
Re-synchronization is traditionally coordinated between
the electric power transmission network operators and
power plants in an isolated portion of the grid. As the
number of DER continues to increase with the rise of re-
newable energy sources located at the lower voltage net-
works, automatic re-synchronization methods that can be
applied to a great number of DER are desirable. This
paper describes the architecture and modeling of an au-
tomatic re-synchronization controller, which can be ap-
plied to synchronize an islanded portion of the grid by
using remote measurements to drive a Distributed Energy
Resource (DER) within the islanded network. The con-
troller’s re-synchronization function uses bus frequency
measurements, which are derived using bus voltage pha-
sors and a new bus frequency computation technique that
can be used during the execution of dynamic simulations.
This paper also introduces a new bus-angle difference con-
trol function within the re-synchronization control system,
which allows monitoring the phase angle difference be-
tween two buses so to avoid unwanted re-synchronization.
The effect of the angle difference control function is eval-
uated using a controlled circuit breaker considering dif-
ferent power dispatch levels of the generator in the distri-
bution network model. Both deterministic and stochastic
load models are used to analyze the performance of the
automatic re-synchronization control system.
Keywords: Automatic re-synchronization controller;
phase angle difference controller; power distribution net-
work; synchrophasors; Modelica; OpenIPSL

1 Introduction
1.1 Motivation
Re-synchronization needs to be coordinated between the
transmission operators and power plants in an isolated por-
tion of the grid in order to maintain the balance between
the power supply and demand. This task can be chal-
lenging when one portion of the distribution grid contains
small generators having low inertia which is the case of
Distributed Energy Resources (DER), such as small hy-
dro, wind and solar power plants. As the number of DER
continues to increase with the rise of renewable energy

sources located at the lower voltage networks, automatic
re-synchronization method that can be applied to a great
number of DER are desirable. One of the main chal-
lenges with conventional synchronization techniques is to
maintain a stable system operation when a disturbance
occurs, during the re-synchronization process (Belyaev
et al., 2015).

In addition, as reported in (Assis and Taranto, 2013),
that perfect re-synchronization can only be achieved when
there is no power flow through the coupling circuit breaker
at the time of operation. Improper re-synchronization
leads to poor power quality and reliability, diminishing en-
ergy economics (Mazloomzadeh et al., 2012).

To address these challenges, this paper presents the
modeling of an automatic re-synchronization control sys-
tem in a centralized control architecture that allows to re-
connect two isolated power networks by exploiting syn-
chrophasors and frequency estimates from Phasor Mea-
surement Units (PMUs). PMUs are placed in both trans-
mission and distribution networks to assist the automatic
re-synchronization controller. All modeling has been car-
ried out using Modelica language (Fritzson, 2004) and the
OpenIPSL (Vanfretti et al., 2016) library.

1.2 Literature Review
Several aspects for grid synchronization have been dis-
cussed in (Blaabjerg et al., 2006) (Timorabadi and Daw-
son, 2006). It is described in (Belyaev et al., 2015) that
improper re-synchronization may lead to damaging circuit
breaker contacts, mechanical stresses on a generator and
prime mover, and other unwanted wear/tear.

The previously cited searches also highlight that, there
will be a sudden active power flow at the time of re-
synchronization, until the initial frequency difference of
the two sides of the circuit breaker reach a stable com-
mon frequency. The other criterion is the magnitude of
the voltage differences across the circuit breaker. If this
magnitude is very high, it will cause sudden transient cur-
rent to flow through the circuit breaker, resulting in high
reactive power flow. Meanwhile it is reported in (Belyaev
et al., 2015) that phase angle difference is another impor-
tant criterion for re-synchronization. Therefore control of
the phase angle difference across the circuit breaker can

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

608 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157607

be beneficial for re-synchronization.

To automate the re-synchronization process, it is pro-
posed in (Assis and Taranto, 2013) to use a voltage and
speed control strategy for automatic re-connection using
remote sensing of voltage and frequency signals after an
intentional islanding occurs. However, this approach still
depends on conventional synchronism check relays. Auto-
synchronizers are also available to perform automatic re-
synchronization when the synchronization function is ac-
tive. They will automatically adjust the speed of the gen-
erator through the governor in order to match the bus fre-
quency. This arrangement is ideal for synchronizing an is-
landed system of multiple generators and load to the grid
or another islanded network (Thompson, 2012). Alterna-
tively, the use of frequency estimates from PMUs are pro-
posed in (Kirkham et al., 2014). Reference (Almas and
Vanfretti, 2016) proposes to use PMUs to obtain frequency
measurements and GOOSE messaging for control, how-
ever, the control actions are discretized and applied using
a look-up table, which can introduce undesirable pertur-
bation to the generator.

Alternatively, to perform re-synchronization operation,
it would be equally interesting to develop a controller ca-
pable of using the frequency estimates from PMUs while
applying smoother control actions. Therefore this paper
proposes to use PMU measurements from both transmis-
sion or distribution networks for the re-synchronization
control system, while applying smooth control actions on
error signals from voltage, frequency and angle differ-
ences.

1.3 Paper Contributions
The main contributions of this paper are as follows:

• A bus-angle difference-based controller that helps
reducing the bus voltage angle difference and en-
hances operation of the re-synchronization process.
The controller uses the unwrapped angle calculated
from the bus angles, which is required due to the an-
gle switching.

• The proposed control system is interfaced in cascade
with traditional turbine governor and excitation con-
trollers (i.e. governor and voltage regulators) supple-
menting generator control systems model instead of
replacing existing ones.

• The performance of the proposed control system is
evaluated for both stochastic and deterministic load
models to illustrate the impact of load uncertainties
in the short time-scale of the re-synchronization pro-
cess.

The remainder of this paper is organized as follows. In
Sections 2 the centralized control system architecture and
modeling of the automatic re-synchronization controller
is explained. Section 3 describes the power system and
simulation execution models. Finally, case studies are an-
alyzed in Section 4 and conclusions are drawn in Section
5.

2 The Re-synchronization Controller
2.1 Control Architecture
A schematic of the proposed control architecture for auto-
matic re-synchronization is shown in Figure 1. It contains
three major functions or units: computation unit, activa-
tion unit and control unit. The computation unit com-
putes the bus voltage, frequency and angle differences.
The control system is comprised of a voltage controller,
a frequency controller and an angle-difference controller.
In addition the ‘activation unit‘ is used to trigger the indi-
vidual regulators following different control modes.

The decisions taken by this unit require checking
thresholds for three different synchronization variables:
∆V, ∆F, ∆θ ; these are the voltage, frequency and angle
differences, respectively, obtained from the computation
unit. The synchronizing variables are calculated using
PMU measurements from two locations of the power net-
work; one is the main grid and one in the islanded grid
under control.

One of the control modes of the activation unit will
be analyzed herein the traditional sequential mode. This
mode activates each of the individual controllers in se-
quence, after each of the individual thresholds for the
synchronization variables have been reached. The order
is ∆V, ∆F and finally ∆θ . Once the thresholds set for
the synchronization variables have been reached, the re-
synchronization process is completed by sending a trip
signal to the receiving end of the controlled circuit breaker.
Throughout this paper it is assumed that the sending end
circuit breaker is closed and that the power line is ener-
gized. Switching transients (i.e. those involved in the
electro-magnetic behaviour of the system) are ignored, as
it is assumed that because the control system minimizes
errors in the synchronizing variables, the switching tran-
sients will be negligible.

2.2 The ∆V, ∆F and ∆θ controller
Similarly to (Assis and Taranto, 2013), both the voltage
controller and the frequency controller use a PI block.
In addition an angle difference controller, proposed here,
also requires a PID function. The schematic of voltage
controller and the frequency controller are shown in Fig-
ures 2 and 4 respectively while their Modelica implemen-
tations are shown in Figures 3 and 5 respectively.

Table 1. Truth table of the voltage controller

Boolean Input signal Output (y)

True y = ∆V
(

KP +
KI
S

)
False 0

In the Modelica implementation of the voltage con-
troller (see Figure 3) u1 and u2 represent the voltage
magnitudes of the transmission and distribution network
buses, respectively. The output of the voltage controller is

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 609
10.3384/ecp19157607 March 4-6, 2019, Regensburg, Germany

Figure 1. Architecture of the automatic re-synchronization controller.

∑
S

K
K I

P

TV
~

DV
~

Transmission network

bus voltage

Distribution network

bus voltage

rsV

Signal to

AVR

Figure 2. Schematic of voltage controller.

Figure 3. Implementation of the voltage controller in Modelica.

applied to the AVR error signal, which controls the field
voltage of the generator.
If the Boolean input signal, start_voltage, is applied
to the switch is true then the computed voltage difference
is fed to the PI block. If this Boolean signal is false, the
output of the controller becomes zero. In sum, the voltage
controller output is defined by the truth table shown in
Table 1.

In the Modelica implementation of the frequency con-
troller (see Figure 5) f_IB and f_DN represent the fre-
quencies of the transmission and distribution networks, re-

∑
S

K
K I

P

Transmission network

bus frequency

Distribution network

bus frequency

1rsP

Tf

Df

Figure 4. Schematic of frequency controller.

Table 2. Truth table of the frequency controller

Boolean Input signal Output (y)

True y = ∆f
(

KP +
KI
S

)
False 0

spectively. The output of the frequency controller is Prs1
as shown in Figure 5.

If the Boolean output signal from the XOR gate is true,
the output of the switch is the frequency difference, which
is applied to the input of the PI controller. If this Boolean
output of the XOR gate is false then the output of the
switch is zero, and as a result, the output of the PI con-
troller becomes zero. The output of the XOR gate be-
comes true when either of the Boolean inputs is true, if
booth the inputs are true then output is false. The Boolean
signal Trigger turns true when the voltage limit is sat-
isfied. The Boolean signal Block is true when all three
(∆V, ∆F and ∆θ) limits are checked successfully. There-
fore the output of the frequency controller can be repre-
sented as shown in Table 2.

The angle difference controller is a PID controller
whose input is the angle difference between the transmis-
sion and distribution side bus voltage angles. A simple

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

610 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157607

Figure 5. Implementation of the frequency controller in Model-
ica.

∑ D
I

P SK
S

K
K

Transmission

network bus angle

Distribution

network bus angle

2rsP

T

D

Figure 6. Schematic of ∆θ controller.

block diagram representation of this controller is shown in
Figure 6, while its Modelica implementation is presented
in Figure 7. The output of the angle difference controller
is described in Table 3.

Table 3. Truth table of the ∆θ controller

Boolean Input signal Output (y)

True y = ∆θ

(
KP +

KI
S +KDS

)
False 0

PMUs perform angle wrapping when reporting pha-
sor data, if used in such representation during simulation,
computations will face numerical issues (Milano and Or-
tega, 2017). Hence to avoid this difficulty the following
Modelica code was implemented to unwrap the wrapped
bus voltage angle at each bus, from where the angle dif-
ference is calculated. The angle controller uses the new
angle input from theta_diff_new, so that the angle
difference does not corrupt the performance of the pro-
posed controller. The calculation of theta_diff_new
uses the Modelica operator Homotopy1 that operates on
the actual bus angle difference due to its non-linearity.

1Online at: http://modelica.readthedocs.io/en/latest/operators.html

Figure 7. Implementation of the angle difference controller in
Modelica.

equation
theta_diff = (-B6.angle) + B4.angle;
theta_diff_new = homotopy(actual =

smooth(0, noEvent(if theta_diff >
180 then theta_diff - 360 else
if theta_diff < (-180) then
theta_diff + 360 else theta_diff)
), simplified = theta_diff);

connect(theta_diff_new,
G22.theta_diff);

end;

2.3 Centralized control system architecture
and Modelica implementation

The Modelica implementation of Figure 1 is presented in
Figure 8. The controller is modeled using a centralized
control architecture deployed in the generator at the distri-
bution network. The TriggeredSampler blocks are
used inside the re-synchronization unit. These blocks are
used from the Modelica Standard Library 2 and latch the
input when the Boolean trigger input signal is true. The
Boolean output signal from the re-synchronization unit is
applied to the circuit breaker when all three limits are sat-
isfied inside the activation unit. The Modelica implemen-
tation of the generator at the distribution network is pre-
sented in the Figure 11.

2.4 Modeling of Frequency computation
Block

In previous work (Mukherjee and Vanfretti, 2018), the au-
thors developed a technique to compute frequency esti-
mates during the execution of dynamic simulation. Simu-
lation results comparing this model with the conventional
frequency computation approach used in power systems.
This previous results are used in this work.

To briefly summarize this previous work, let ω be fre-
quency of the bus voltage, the first order derivative of the
bus angle represents the frequency deviation at the bus.

2Online at: https://github.com/modelica/ModelicaStandardLibrary

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 611
10.3384/ecp19157607 March 4-6, 2019, Regensburg, Germany

Figure 8. Implementation of the automatic re-synchronization
controller in Modelica.

The bus frequency can be determined from the following
equation, where Vr and Vi represent the real and imaginary
parts of complex bus voltage respectively:

ω =
VrV̇i +ViV̇r

V 2
i +V 2

r
(1)

The controller uses the equation above to compute the
bus frequency from the bus voltage data, which is imple-
mented as a Modelica code in the frequency computation
blocks inside the simulation set-up that will be described
in the next sections.

3 Power System Model and Simula-
tion Set-up Implementation

3.1 Power System Model Implementation
Figure 9 shows the power system model mapped on
the component layer of Smart Grid Architecture Model
(Hooshyar and Vanfretti, 2017), while it’s Modelica im-
plementation presented in Figure 10. Figure 9 is use-
ful to understand re-synchronization would require the
coordination between three domains - transmission, dis-
tribution, and DER owners, and thus, the proposed re-
synchronization controller would be beneficial. The figure
shows how PMU data is measured at both a transmission
and distribution substation, while the re-synchronization
controller is located at the DER substation.

In the Modelica model shown in Figure 10, the re-
synchronization controller is within the generator (G22).
This is expanded in Figure 11, that shows how G22 is
modeled using the GENSAL block in OpenIPSL that cor-
responds to the synchronous generator; IEEESGO is the
OpenIPSL block that corresponds to the gas and turbine
model, and SEXS is the OpenIPSL block used to model
the excitation control system of the generator. Meanwhile,
in Figure 10, G1 represents a large power plant connect-
ing to the transmission portion. This is expanded in Fig-

ure 12, that shows how G1 is modeled using the HYGOV
block from OpenIPSL that corresponds to a hydraulic tur-
bine and governor systems model (HYGOV). To model
hydraulic power plants, the synchronous generator GEN-
SAL block in OpenIPSL is used to consider salient fluxes,
and excitation control system of the generator (SEXS).
The upper left corner of Figure 12 shows how the overall
system frequency is varied by introducing a speed change
in the governor system of the transmission network gener-
ator model, before the re-synchronization process starts.

3.2 Simulation Set-Up Implementation
The Modelica implementation of the simulation set-up
block is presented in Figure 13. It is used to set-up the
re-synchronization event that leads to the activation of
the automatic re-synchronization controller. The circuit
breaker 2 remains always closed and keeps line (L3) en-
ergized from the transmission side. Circuit breaker 1 is
controlled with the following logic. Initially, for first 6
seconds, the breaker is closed and after that it is open. At
6.01 seconds the re-synchronization process starts and the
Boolean signal y3 becomes true. This output is applied
as the Boolean input to the automatic re-synchronization
unit to start the voltage control. When the Boolean output
from the activating unit becomes true, the breaker CB2 is
closed. The frequency computation blocks calculate the
frequencies of each side of the network. The outputs y1
and y2 from these frequency calculation blocks are ap-
plied to controller inside G22, while a Boolean constant
true signal keeps the circuit breaker CB1 closed to keep
the transmission line energized between both breakers.

4 Case Studies
The following case studies are performed using a steam
turbine and governor system in the distribution side gen-
erator model G22 to analyze the performance of the pro-
posed automatic re-synchronization controller.

4.1 Sequential Control Mode Performance
This case study includes the performance of the re-
synchronization controller shown in Figures 14-16. As
it can be observed from Figure 14a, soon as the re-
synchronization process starts at 6.01 seconds the voltage
controller starts working and effectively reduces the oscil-
lations in bus voltages (Bus 4 and Bus 6 voltage). After
the re-synchronization occurs at 150 seconds the voltage
controller still works minimizing the error in the voltage
difference for both the buses (Bus 4 and Bus 6).

From Figure 15a it can be seen that both the transmis-
sion and distribution network frequency deviation undergo
excursion of -0.5≤ ∆fT≤-0.5 and -0.4≤ ∆fD≤-0.05. The
frequency controller in this paper aims to reduce the fre-
quency deviation to zero and that can be seen from Fig-
ure 14b; after the network is re-connected with the trans-
mission side, frequency deviation (with respect to that of
the transmission network) remains zero which satisfies the
goals of the proposed automatic re-synchronization con-

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

612 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157607

Figure 9. The use case mapped on the SGAM component layer.

Figure 10. Power network models using components from
OpenIPSL in Modelica.

troller. In Figure 16a the phase angle difference of the
bus voltages are plotted where it can be seen that dur-
ing and after re-synchronization the re-synchronization
the bus voltage angle difference also remains zero, imply-
ing ideal automatic re-synchronization. Figure 16b plots
the triggered signal to the controlled circuit breaker CB2.

4.2 Performance of the Angle Control Func-
tion

When measured by PMUs the angle of the bus voltage
phasor switches between +/- π (+/- 180 degrees), therefore
the angle difference calculated directly from bus data the
may corrupt the performance of the angle controller if it is
wrapped. This case study exhibits the performance of the
angle control for both wrapped and unwrapped angle cal-
culations for a dispatch of 10 MW from generator G22, as
shown in Figure 17. The the angle controller is activated at
t= 101 seconds whereas re-synchronization process starts
at t= 6.01 seconds . As it can be observed from the red
trace, the unwrapped angle difference calculated from the

Figure 11. Centralized control structure within the generator
model (G22) implemented using Modelica.

wrapped angle differences produces no transients in its re-
sponse, which makes the angle controller effective during
the automatic re-synchronization process.

4.3 Effect of Angle Difference Controller dur-
ing the Re-synchronization Process

This case study is performed to illustrate the effect
of angle difference on the total time taken for re-
synchronization, and also to understand the effect of angle
controller on the circuit breaker current magnitude at the
time of automatic breaker closure.

After the voltage and frequency control have minimized
their control errors below the pre-defined thresholds the
output of the angle difference controller plays an impor-
tant role controlling the time for the automatic breaker
re-closing process. The phase angle difference and the
control signal to the circuit breaker 1 (CB1), are plotted
in Figure 18 for different dispatches from the distribu-
tion side generator to demonstrate this effect. As it can
be observed from in Figure 18, when the angle differ-
ence between the distribution side and transmission side

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 613
10.3384/ecp19157607 March 4-6, 2019, Regensburg, Germany

Figure 12. Implementation of the transmission network genera-
tor model (G1) in Modelica.

Figure 13. Modelica implementation of the simulation set-up.

bus voltage phasor reaches a steady state value, CB1 re-
ceives a trigger signal for automatic re-closure. For lower
dispatches the angle difference controller is faster because
the generator has a larger bandwidth (i.e. available capac-
ity) to minimize the angle difference by speeding up the
active power output. Hence there is a large value of distri-
bution generation to (if possible) have available capacity
resources to use for frequency ancillary services during re-
synchronization to the transmission grids.
From Figure 19, it can be observed that with angle differ-
ence control activated the magnitude of the circuit breaker
CB2 current reduces, which implies that presence of the
angle control unit reduces unwanted effect of improper
re-synchronization. This comes at the cost of a longer re-
synchronization time, however, note that this is the time
spent on minimizing ∆θ .

4.4 Effect of Stochastic Load Model
In this case the performance of the re-synchronization
controller is analyzed for both deterministic and stochastic

0 50 100 150 200 250
0.8

0.85

0.9

0.95

1

1.05

Time(s)

V
o

lt
a

g
e

 m
a

g
n

it
u

d
e

 (
p

u
)

B4 Voltage

B6 Voltage

140 150 160 170

0.865

0.87

0.875

0.88

0.885

10 20 30

0.85

0.9

0.95

(a) Transmission and distribution network bus voltages.

0 50 100 150 200 250

−0.2

−0.15

−0.1

−0.05

0

0.05

Time(s)

V
o

lt
a

g
e

 d
if
fe

re
n

c
e

 (
p

u
)

145 150 155 160 165 170
−4

−2

0

2

4

x 10
−3

(b) Voltage difference during re-synchronization.

Figure 14. Bus voltages and bus voltage difference during the
re-synchronization process for 10MW dispatch from G22.

load models. Figure 20 shows the plot of the transmission
side frequency for both models. As it can be observed,
when the stochastic load model introduces uncertainties in
the load response, which in turn, affect the voltage phasor
values. As a result, the estimated frequency will vary, and
consequently, the controller activation time can no longer
be determined or designed deterministically. Depending
on the variance used for the stochastic load model dif-
ferent answers can be obtained. What this aims to show
is the need of stochastic modeling when considering re-
newable energy sources (RES), as the different thresholds
need to be determined a-priori, they need to be computed
probabilistically using the stochastic model and a Monte-
Carlo like approach; note that this is NOT in today’s cur-
rent practice. This will be subject to future work.

5 Conclusions
The following conclusions can be drawn from the above
work. The angle difference control function is required to

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

614 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157607

0 50 100 150 200 250

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time(s)

F
re

q
u

e
n

c
y
 d

e
v
ia

ti
o

n
 (

H
z
)

Transmission frequency

Disttribution frequency

100 150 200 250

−0.42

−0.4

−0.38

(a) Plot of frequency deviation in both transmission and distribu-
tion network

0 50 100 150 200 250

−0.4

−0.2

0

0.2

0.4

Time(s)

F
re

q
u

e
n

c
y
 d

if
fe

re
n

c
e

 (
H

z
)

100 120 140 160
−0.02

0

0.02

(b) Plot of frequency difference

Figure 15. Frequency deviation and frequency difference during
re-synchronization for 10MW dispatch from G22.

0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

Time(s)

A
n

g
le

 d
if
fe

re
n

c
e

 (
d

e
g

re
e

)

With angle−difference controller

100 120 140 160 180 200

−40

−20

0

20

40

(a) angle difference

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Time(s)

S
ig

n
a

l
to

 b
re

a
k
e

r
C

B
1

CB1 closes due
to automatic
re−synchronization

CB1 opens to island
distibution network
(at T=6 seconds)

Distribution network
 in islanded mode

(b) signal to breaker CB1

Figure 16. Plot of angle difference and controlled signal to CB1
during re-synchronization for 10MW dispatch from G22

perform seamless automatic re-synchronization process,
hence, reducing the circuit breaker power at the time of
re-connection. It is necessary to unwrap the bus voltage

0 50 100 150 200 250

−3

−2

−1

0

1

x 10
−3

Simulation Time [s]

A
n

g
le

 c
o

n
tr

o
l
o

u
tp

u
t

Unwrapped

Wrapped

Figure 17. Performance of the angle difference controller due
to angle measurement unwrapping.

0 50 100 150
−200

−100

0

100

200

Simulation Time [s]

A
n
g
le

 d
if
fe

re
n
c
e
 [
d
e
g
re

e
]

0 50 100 150
0

0.5

1

1.5

Simulation Time [s]

S
ig

n
a
l
to

 b
re

a
k
e
r

Dispatch= 5MW

Dispatch= 7MW

Dispatch= 10MW

∆V + ∆F

t
3

∆V

t
3

∆V + ∆F + ∆θ

Figure 18. Angle difference controller effect on the re-
synchronization time for different dispatches.

phase angle otherwise the wrapped bus angle will cor-
rupt the performance of the angle controller. The archi-
tecture of the automatic re-synchronization controller per-
forms satisfactorily for both deterministic and stochastic
load models.

Further work should involve the performance analysis
of the automatic re-synchronization controller for differ-
ent reporting rates, and data transmission delays for PMU
devices. It will be also be interesting to investigate the
performance of this controller for different of load uncer-
tainties (noise level) in order to analyze the impact of un-
certainties on the system behaviour. Authors of this paper
are currently working towards these goals.

Reproducible Research
The models used to obtain the results in this
paper are available online on the following
Github repository: https://github.com/

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 615
10.3384/ecp19157607 March 4-6, 2019, Regensburg, Germany

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

Time(s)

C
u
rr

e
n
t
m

a
g
n
it
u
d
e
 (

p
u
)

With angle−control

Without angle−control

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time(s)

S
ig

n
a
l
to

 b
re

a
k
e
r

With angle−control

Without angle−control

t
3

t
3

Figure 19. Circuit breaker current magnitude and trigger signal
to breaker with and without angle control for 10MW dispatch.

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

Simulation Time [s]

F
re

q
u
e
n
c
y
 d

e
v
ia

ti
o
n
[H

z
]

Stohastic

Deterministic

140 150 160 170 180
−0.44

−0.42

−0.4

−0.38

−0.36

Figure 20. Transmission network frequency deviation with both
deterministic and stochastic load models.

ALSETLab/2019_13thModelicaConf_
PMUBasedAutomaticRe-synchronization

Acknowledgment
Biswarup Mukherjee was supported by MHRD, Govern-
ment of India, for FOSSEE-Phase II at IIT Bombay. The
work of L. Vanfretti is supported in part by the Engi-
neering Research Center Program of the National Science
Foundation and the Department of Energy under Award
EEC-1041877 and in part by the CURENT Industry Part-
nership Program.

References
M. S. Almas and L. Vanfretti. RT-HIL implementation

of the hybrid synchrophasor and GOOSE-based passive

islanding schemes. IEEE Transactions on Power De-
livery, 31(3):1299–1309, June 2016. ISSN 0885-8977.
doi:10.1109/TPWRD.2015.2473669.

T. Assis and G. Taranto. Automatic reconnection from
intentional islanding based on remote sensing of volt-
age and frequency signals. In 2013 IEEE Power En-
ergy Society General Meeting, pages 1–1, July 2013.
doi:10.1109/PESMG.2013.6672101.

N. A. Belyaev, Y. V. Khrushchev, S. V. Svechkarev, A. V.
Prokhorov, and L. Wang. Generator to grid adaptive
synchronization technique based on reference model. In
2015 IEEE Eindhoven PowerTech, pages 1–5, June 2015.
doi:10.1109/PTC.2015.7232582.

F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus.
Overview of control and grid synchronization for distributed
power generation systems. IEEE Transactions on Industrial
Electronics, 53(5):1398–1409, Oct 2006. ISSN 0278-0046.
doi:10.1109/TIE.2006.881997.

Peter Fritzson. The Modelica Language. IEEE,
2004. doi:10.1109/9780470545669.part2. URL
https://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=5264368.

H. Hooshyar and L. Vanfretti. A sgam-based architecture for
synchrophasor applications facilitating tso/dso interactions.
In 2017 IEEE Power Energy Society Innovative Smart Grid
Technologies Conference (ISGT), pages 1–5, April 2017.
doi:10.1109/ISGT.2017.8085977.

Harold Kirkham, Jeffery E. Dagle, and Y. Sun. PMU measure-
ment technology. Technical report, Pacific Northwest Na-
tional Laboratory (PNNL), 04/2014 2014.

A. Mazloomzadeh, V. Salehi, and O. Mohammed. Soft
synchronization of dispersed generators to micro-grids for
smart grid applications. In 2012 IEEE PES Innovative
Smart Grid Technologies (ISGT), pages 1–7, Jan 2012.
doi:10.1109/ISGT.2012.6175812.

F. Milano and A. Ortega. Frequency divider. IEEE Transactions
on Power Systems, 32(2):1493–1501, March 2017. ISSN
0885-8950. doi:10.1109/TPWRS.2016.2569563.

B. Mukherjee and L. Vanfretti. Modeling of PMU-based is-
landed operation controls for power distribution networks us-
ing Modelica and openIPSL. In Proceedings of The American
Modelica Conference, MA, USA, October 2018.

M. J. Thompson. Fundamentals and advancements in genera-
tor synchronizing systems. In 2012 65th Annual Conference
for Protective Relay Engineers, pages 203–214, April 2012.
doi:10.1109/CPRE.2012.6201234.

H. S. Timorabadi and F. P. Dawson. A wide-range synchroniza-
tion system for AC power systems. In 2006 IEEE Interna-
tional Symposium on Industrial Electronics, volume 3, pages
1667–1672, July 2006. doi:10.1109/ISIE.2006.295820.

L. Vanfretti, T. Rabuzin, M. Baudette, and M. Mu-
rad. itesla power systems library (iPSL): A Mod-
elica library for phasor time-domain simulations.
SoftwareX, 5:84 – 88, 2016. ISSN 2352-7110.
doi:http://dx.doi.org/10.1016/j.softx.2016.05.001.

Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution
Networks using Modelica and the OpenIPSL

616 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157607

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 617
10.3384/ecp19157617 March 4-6, 2019, Regensburg, Germany

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced
Power Transmission and Unbalanced Distribution Grids using Modelica and the
OpenIPSL
de C. Fernandes, Marcelo and Vanfretti, Luigi and de Oliveira, Janaína G. and Baudette, Maxime

617

A Fundamental Time-Domain and Linearized Eigenvalue Analysis
of Coalesced Power Transmission and Unbalanced Distribution

Grids using Modelica and the OpenIPSL

Marcelo de C. Fernandes1,† Luigi Vanfretti1,‡ Janaína G. de Oliveira2 Maxime Baudette3

1Dept. of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, USA,
† decasm3@rpi.edu,‡ luigi.vanfretti@gmail.com

2Dept. of Electrical Energy, Federal University of Juiz de Fora, Brazil, janaina.oliveira@ufjf.edu.br
3Grid Integration Group, Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory,

Berkeley, CA, USA, baudette@lbl.gov

Abstract
This paper present mathematical modeling and implemen-
tation in Modelica language of a coalesced electric power
transmission and distribution system model. To this end,
a newly developed feature in OpenIPSL that allows to
amalgamate power transmission and distribution networks
at the equation level is described, two different sample
power systems are assembled and three simulations are
performed for each of them in a Modelica-compliant soft-
ware. Dynamic simulations are carried out to perform
comparisons between different modeling approaches for
a distribution feeder and among different load characteris-
tics. Moreover, each simulation is linearized using a script
in ten specific time instants and an eigenvalue comparison
is performed. Results show that the conventional positive
sequence models may lead to errors about the dynamic
behavior of the entire system, specially when considering
unbalances in distribution networks.
Keywords: Modelica, Power Systems, Hybrid Models,
Linearization, Eigenvalues, Transmission Networks, Dis-
tribution Networks

1 Introduction
1.1 Paper Motivation
In the past few years, the world has began to undergo an
important energy transition. Major environmental con-
cerns and the need for diversify the energy mix have
pushed society to look for alternative energy sources. As a
consequence, governments have encouraged investments
in renewable energy in order to increase energy system
sustainability.

This energy transition has a major importance in the
electric power sector, in which renewable sources are be-
ing integrated. Renewable technologies accounted for
25% of the world’s generation of electricity in 2016 (IEA.,
2017). In addition, renewable energy supply has increased
4% a year since 2000 (IEA., 2017), showing that the share
of renewable energy sources in power systems will not
slowdown in the near future.

Renewable energy sources may be connected to the
power grid on medium or low voltage levels as Distributed
Generation (DG), bringing challenges to the grid’s opera-
tion (Boemer et al., 2011). These challenges are a con-
sequence of the lack of understanding and adequate mod-
eling of Distributed Energy Resources (DERs) during the
design phase, particularly their control and protection, in
studies of their performance when integrated to transmis-
sion grids (ENTSO-E, 2014).

Therefore, it has become evident that distribution net-
works, and all its components, can no longer be neglected
from studies assessing power systems and its dynamic be-
havior (Jain et al., 2016). In order to address these issues,
many tools and strategies have been proposed in the last
years in order to perform the analysis of joint power trans-
mission and distribution (T&D) systems. These tools,
their modeling strategies and simulation approaches are
discussed next.

1.2 Background

Modeling assumptions established ever since the begin-
ning of long distance AC power transmission in the early
1900’s have led to a decoupled treatment of transmission
from distribution, and vice versa. Thus, analysis of each
of them has been carried out individually, using a differ-
ent approach for each network in order to analyze their
behavior. As an example, the transmission system is of-
ten represented on its single-phase equivalent or positive
sequence modeling (Tinney and Hart, 1967). This is due
to the assumption that bulk power systems can be consid-
ered to operate under completely balanced conditions. On
the other hand, distribution grids normally undergo unbal-
ances due to many factors, and thus, simulation tools for
distribution networks commonly used three-phase mod-
els (Garcia et al., 2000).

In fact, many proprietary and commercial software
packages made for the study of the power system are built
upon the aforementioned assumptions, especially when
the software provides phasor time-domain analysis rou-
tines. For instance, positive sequence modeling is typi-

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

618 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157617

cal in software packages such as PSS/E (Siemens) orig-
inally developed in the U.S.A., Anarede (Cepel, a) and
Anatem (Cepel, b) developed in Brazil. On the other hand,
three-phase analysis methods are available in CYMDIST
(EATON) and OpenDSS (EPRI) both developed in North
America. Coupling between models from these type of
tools is generally only possible through co-simulation and
the common belief of practitioners was that these model-
ing approaches were largely incompatible (Balasubrama-
niam and Abhyankar, 2017).

In order to solve this assumed incompatibility be-
tween modeling approaches and simulation tools, a hy-
brid model, named Monotri, was proposed in (Marinho
and Taranto, 2008). This model was the first to provide
a “physical interface” between a system modeled in posi-
tive sequence with another one using three-phase model-
ing, for power flow studies. Concurrently, the same re-
search group highlighted the importance of considering
DERs in dynamic simulations (Assis et al., 2006). Later,
the hybrid formulation presented in (Marinho and Taranto,
2008) was extended in (Taranto and Marinho, 2017) to
transient stability studies, i.e. dynamic modeling and sim-
ulation. This hybrid model has two main benefits: (1)
it provides a “physical interface” to couple Transmission
and Distribution T&D instead of using co-simulation, and
(2) it combines usual modeling approaches that are famil-
iar to power system domain users.

1.3 Modelica Tools for Power Systems
Previous work has shown that the Modelica language is
a promising alternative for modeling the complexity of
modern power systems (Vanfretti et al., 2013). For in-
stance, (Mirz et al., 2016) present a multi-level approach
to model power electronics in power systems using Mod-
elica, while (Casella et al., 2016, 2017) study the feasi-
bility of using Modelica-based tools to solve large power
system models.

Along these and other many studies, developers have
built several Modelica libraries for power system simula-
tion. The study presented in (Winkler, 2017) lists many li-
braries for power system analysis, along with their history,
modeling principles, library structure, weaknesses and
strengths. Among those packages there is the OpenIPSL
(Baudette et al., 2018).

According to (Winkler, 2017), the OpenIPSL pack-
age has many strengths such as its robustness and
its models. OpenIPSL models underwent software-to-
software validation against domain-specific proprietary
and open source software packages including PSS/E and
PSAT (Milano, 2005). In addition, OpenIPSL is friendly
to users familiar to typical power system analysis, as it
addresses resistance to change-factors, associated with
the use of new technologies (Vanfretti et al., 2014).
OpenIPSL is still being developed in voluntary basis as
an Open Source Software project on Github (http://
openipsl.org) and new features are being added. For
example, its latest version comes with an application ex-

ample package made for modeling positive sequence sys-
tems with three-phase networks using the hybrid interface
proposed in (Marinho and Taranto, 2008), for which some
results are reported in (de Castro Fernandes et al., 2018)
(in Portuguese).

In addition, models built using the OpenIPSL pack-
age may take advantage of the rich features available in
Modelica-based tools, such as linearization. Linear anal-
ysis and small-signal studies for integrated T&D systems
are not commonly available in power system tools. How-
ever, this analysis can be extremely useful to understand
the dynamics of DERs at lower voltage levels. With Mod-
elica tools it is possible to perform this analysis without
the need of encoding the linear and non-linear models sep-
arately. This paper exploits and demonstrates this possi-
bility, by analyzing a hybrid positive-sequence and three-
phase T&D model implemented using OpenIPSL.

1.4 Paper Contributions
The main contributions from this paper are listed below:

• Model description and implementation in the Mod-
elica language of a hybrid single-phase × three-
phase element, π-modeled three-phase lines and
wye-grounded loads. All using a phasor approach
with an OpenIPSL library.

• Exploring the rich features of Modelica language for
simulation, linearization and eigenvalue analysis of
a small joint-modeled transmission and distribution
system, avoiding the co-simulation approach.

• Analyses and comparisons of the positive-sequence
versus the hybrid-modeling approach in the stability
analysis of power systems.

2 Mathematical Modeling
2.1 Studied Power Network
The power system studied in this paper is described in Fig-
ure 1 and it consists of an adaptation of IEEE 14-bus test
system, first implemented using OpenIPSL in (Murad
et al., 2015). This transmission network was extended to
include synchronous machines and a distribution feeder.

To model different modeling impacts of unbalanced
distribution networks, loads at buses 2 and 11 are modi-
fied, one at a time, in different case studies. The modifica-
tion is based upon an extension of the original load itself,
to include a distribution feeder consisting of two buses, a
power line and a load. In one set of tests, the load on bus
2 is replaced by this distribution feeder and in another set
of tests, the replaced load is on bus 11. The distribution
feeder is connected to the respective bus by a transformer.
This element must be modeled using the hybrid formula-
tion proposed in (Marinho and Taranto, 2008). The re-
mainder of the power system is modeled using positive-
sequence models, including all dynamic components as
specified in (Kodsi and Canizares, 2003), starting from

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 619
10.3384/ecp19157617 March 4-6, 2019, Regensburg, Germany

the implementation in (Murad et al., 2015). The gener-
ators are labeled G1 and G2, while condensers are C1, C2
and C3, in Figure 1.

1

2

3 4

5

6

7

8

9

10

11

12

13

14

G1

G2

C1

C2

C3

Figure 1. Modified IEEE 14-bus test system diagram.

Positive-sequence buses and branches are avail-
able in the OpenIPSL library while the hybrid
and three-phase elements are included in the
./ApplicationExamples.ThreePhase pack-
age, within the OpenIPSL distribution. Models for all
machines are also available in the OpenIPSL library.
The ThreePhase package was recently added by the
authors (Baudette et al., 2018; de Castro Fernandes
et al., 2018) and thus, it is useful to present the math-
ematical modeling of such elements, along with their
implementation in the Modelica language.

2.2 Hybrid and Three-Phase Models
This subsection introduces the mathematical formulation
for hybrid and three-phase models. It is important to note
that since this paper is related to power system modeling,
the value for each variable is represented in per unit (p.
u.), which is the representation of the system’s quantities
as fraction of a base value. For this subsection, values
of voltage, current, power, admittance and conductance,
are represented in this way. In addition, variables written
in bold are matrices and vectors while variables written
in regular letters represent scalars. In addition, variables
with the upper bar (¯) denotes phasors.

The formulation of a hybrid power component is pro-
posed in (Marinho and Taranto, 2008; Taranto and Mar-
inho, 2017) and it consists of a passive π element, as de-
picted in Figure 2.

Equations for a three-phase π element are:

Iabc
k

Iabc
m

=

Yabc
ser +Yabc

shtk
−Yabc

shtk

−Yabc
ser Yabc

ser +Yabc
shtm

Vabc
k

Vabc
m

 (1)

−

+

Vabc
k

Iabc
k

Yabc
ser

−

+

Vabc
m

Iabc
m

Yabc
shtk

Yabc
shtm

Figure 2. Representation of three-phase, passive π-equivalent
component, such as a distribution power line or transformer.

where Vabc
x , Iabc

x are vectors of three-phase voltage and
injected current phasors, respectively, for a terminal x =
k,m, while Yabc

ser and Yabc
sht are series and shunt admittance

matrices, respectively.
Assuming that the system in terminal k is completely

balanced and that there is no negative component current
source in terminal m, it is possible to ignore zero and neg-
ative sequence components, resulting in:

Vabc

k = T1V+
k =

 1
α2

α

V+
k

I+k = T2 Iabc
k =

1
3

[
1 α α2

]
Iabc

k

(2)

where α = e j 2π
3 and V+

k e I+k are positive-sequence pha-
sors for voltage and injected current in terminal k, respec-
tively. Therefore, replacing (2) in (1) it is possible to write
the final equation for a hybrid model:

 I+k

Iabc
m

=

MSS MST

MT S MT T

 V+
k

Vabc
m

 (3)

where

MSS = T2

(
Yabc

ser +Yabc
shtk

)
T1

MST = T2

(
−Yabc

ser

)
MT S =

(
−Yabc

ser

)
T1

MT T = Yabc
ser +Yabc

shtm

(4)

A transmission or distribution power line can also be
modeled as a three-phase passive π element (Arrillaga
et al., 2001) and can also be described by (1). This
model is adequate to represent unbalanced transmission
lines such as the ones encountered in power distribution
systems.

The model of the a three-phase load with grounded-wye
connection is depicted in Figure 3. This load model will

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

620 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157617

Ia

Pa + jQa

Pc + jQcPb + jQb

Ib

Ic

V n

V a

V b

V c

Figure 3. Representation of a generic three-phase load in a
grounded wye connection.

be considered for the tests when the distribution feeder has
a three-phase representation. For this load model, it is pos-
sible to write one equation for each phase independently:

Sa = Pa + jQa =V an I∗a
Sb = Pb + jQb =V bn I∗b
Sc = Pc + jQc =V cn I∗c

(5)

To define the active and reactive power on each phase
(Px and Qx), the ZIP load model (Kersting, 2001) was cho-
sen. It allows the representation of a load as a composition
of three types of characteristics: constant power, constant
current and constant impedance. In addition, it shows how
the power demanded by the load varies according to its ter-
minal voltage Vxn. Therefore, it is possible to write (6) for
each phase, represented in the equation by under-script x.
The load demands P0 and Q0 are those for a terminal volt-
age of V 0

xn. The coefficient α shows how much of the load
is constant power (superscript p), current (superscript i) or
impedance (superscript z).

Px(Vxn) = P0
x

[
α

p
x +α i

x

(
Vxn
V 0

xn

)
+αz

x

(
Vxn
V 0

xn

)2
]

Qx(Vxn) = Q0
x

[
α

p
x +α i

x

(
Vxn
V 0

xn

)
+αz

x

(
Vxn
V 0

xn

)2
]

α
p
x +α i

x +αz
x = 1

(6)

3 Modelica Implementation
This section describes how the models developed in Sec-
tion 2 were written in Modelica, and implemented within
the OpenIPSL package. Because the actual implementa-
tion of each new component is rather large, this section
aims to illustrate how the models were implemented, and
not to document the implementation itself.

3.1 Studied Power Network in OpenIPSL
The IEEE 14-bus test system implemented in Modelica
using OpenIPSL models is illustrated in Figure 4. The

blue line shows the connection between elements. These
connections are made between PwPins from different
models. The PwPin is the main feature upon which the
connections of electrical components is made. The pin it-
self works as an electrical circuit node allowing the flow
of complex current variables, and providing two important
pieces of information (supposing a PwPin named P):

• real and imaginary part of the voltage at that particu-
lar node (P.vr and P.vi);

• real and imaginary part of the current flowing
through that node (P.ir and P.ii).

In a single-phase equivalent model, the pin has posi-
tive sequence voltages and currents. On the other hand,
in a three-phase model, one pin is necessary for each
phase represented. The connection between the machine
G1 (namely GenBus1 in Figure 4) to bus B1 is defined
using one-line code, as follows:

connect(GenBus1.pwPin, B1.p);

Figure 4. Original IEEE 14-bus system implemented in a
Modelica-compliant software using OpenIPSL.

However, for the connection between the grounded-
wye connected three-phase load and three-phase bus
Bus632, three lines of code are needed:

connect(Bus632.p1, 3phLoad.A);
connect(Bus632.p2, 3phLoad.B);
connect(Bus632.p3, 3phLoad.C);

It is important to note that a pin representing phase A
in one component must always be connected with respec-
tive pin representing the same phase in another compo-
nent.

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 621
10.3384/ecp19157617 March 4-6, 2019, Regensburg, Germany

3.2 Hybrid Transformer
The element that interfaces the positive-sequence model
with the three-phase distribution feeder is a transformer in
a ∆−Y connection. This connection is chosen for con-
sistency with the equations (2). In this case, a function
TransformerFcn.D_Yg was implemented and is im-
ported into the model in order to provide the values of
MSS, MST , MT S, MT T from (3) for a transformer in a ∆−Y
connection. Calculating these matrices with functions is
the most efficient approach because each transformer con-
nection has a different Y abc

ser , Y abc
sht,k and Y abc

sht,m. This helps in
describing, the hybrid transformer model as implemented
below. The values for reactance and resistance are only
used for illustration.

model Transformer_MT
import ThreePhase.TransformerFcn.D_Yg;
OpenIPSL.Interfaces.PwPin p;
OpenIPSL.Interfaces.PwPin A;
OpenIPSL.Interfaces.PwPin B;
OpenIPSL.Interfaces.PwPin C;
parameter Real tap = 1 "Nominal tap ratio

(Vs/Vp)";
parameter Real X=0.1 "Reactance (pu in

system base)";
parameter Real R=0.01 "Resistance (pu in

system base)";
protected
// Calculating M matrices:
Real[2,2] M_SS = D_Yg(X,R,tap,1);
Real[2,6] M_ST = D_Yg(X,R,tap,2);
Real[6,2] M_TS = D_Yg(X,R,tap,3);
Real[6,6] M_TT = D_Yg(X,R,tap,4);
// Writing matrix for voltages:
Real [2,1]Vin = [p.vr; p.vi];
Real [6,1]Vout = [A.vr; A.vi; B.vr; B.vi;

C.vr; C.vi];
// Writing matrix for currents:
Real [2,1]Iin = [p.ir; p.ii];
Real [6,1]Iout = [A.ir; A.ii; B.ir; B.ii;

C.ir; C.ii];
equation
// Equations related to hybrid interface
Iin = A*Vin+B*Vout;
Iout = C*Vin+D*Vout;

end Transformer_MT;

3.3 Three-Phase Line
The implementation of the three-phase transmission line
modeled as a π-element is straight forward using Model-
ica. However, observe that due to the PwPin voltage and
current convention, complex numbers are not used but in-
stead two real numbers representing imaginary and real
parts are used in the PwPin. Therefore, matrices Y abc

ser
and Y abc

sht are designed according to this convention. Using
equation (1) it is possible to write the following model:

model Line_3Ph
OpenIPSL.Interfaces.PwPin Ain;
OpenIPSL.Interfaces.PwPin Bin;
OpenIPSL.Interfaces.PwPin Cin;
OpenIPSL.Interfaces.PwPin Aout;
OpenIPSL.Interfaces.PwPin Bout;

OpenIPSL.Interfaces.PwPin Cout;
parameter Real[6,6] Y_ser;
parameter Real[6,6] Y_sht;

protected
//Writing the matrix A (Yser+Ysht):
parameter Real[6,6] A = Y_ser+Y_sht;
//Writing the matrix B (-Yser):
parameter Real[6,6] B = -Y_ser;
// Writing matrix for voltages:
Real [6,1]Vin = [Ain.vr; Ain.vi; Bin.vr;

Bin.vi; Cin.vr; Cin.vi];
Real [6,1]Vout = [Aout.vr; Aout.vi;

Bout.vr; Bout.vi; Cout.vr; Cout.vi];
// Writing matrix for currents:

Real [6,1]Iin = [Ain.ir; Ain.ii; Bin.ir;
Bin.ii; Cin.ir; Cin.ii];

Real [6,1]Iout = [Aout.ir; Aout.ii;
Bout.ir; Bout.ii; Cout.ir; Cout.ii];

equation
// Equations according to pi model:
Iin = A*Vin+B*Vout;
Iout = B*Vin+A*Vout;

end Line_3Ph;

3.4 Three-Phase Load
The three-phase load model implementation in Modelica
is also straight forward. The implementation of equation
(6) for each phase is shown in the Modelica code below.
The code shows the example values for active and reactive
power. In addition, note that a constant impedance load is
being used.

model WyeLoad_3Ph
outer OpenIPSL.Electrical.SystemBase

SysData;
import Modelica.Constants.pi;
parameter Real Sn = SysData.S_b "Power

rating (MVA)"
OpenIPSL.Interfaces.PwPin A;
OpenIPSL.Interfaces.PwPin B;
OpenIPSL.Interfaces.PwPin C;
parameter Real[1,3] P =

[1.234,0.984,1.306] "Active power for
phase A, B and C (MW)"

parameter Real[1,3] Q =
[0.635,0.365,0.619] "Reactive power
for phase A, B and C (MVAr)"

parameter Real [3,3] Coef = [0, 0, 100;
0, 0, 100; 0, 0, 100] "Load
percentages for constant power,
current and impedance (%)"

protected
// Calculating V and V squared:
Real[1,3] V = [sqrt(A.vr^2 + A.vi^2),

sqrt(B.vr^2 + B.vi^2), sqrt(C.vr^2 +
C.vi^2)];

Real[1,3] V2 = [V[1,1]^2, V[1,1]^2, V
[1,3]^2];

// Calculating the polynomial value:
Real CoA = Coef[1,1] + Coef[1,2]*V[1,1] +

Coef[1,3]*V2[1,1];
Real CoB = Coef[2,1] + Coef[2,2]*V[1,2] +

Coef[2,3]*V2[1,2];
Real CoC = Coef[3,1] + Coef[3,2]*V[1,3] +

Coef[3,3]*V2[1,3];

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

622 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157617

// Calculating the new values for power:
Real[1,3] Pnew = (1/(Sn/3))*[P[1,1]*CoA,

P[1,2]*CoB, P[1,3]*CoC];
Real[1,3] Qnew = (1/(Sn/3))*[Q[1,1]*CoA,

Q[1,2]*CoB, Q[1,3]*CoC];
equation
Pnew[1,1] = A.vr*A.ir + A.vi*A.ii;
Qnew[1,1] = A.vi*A.ir - A.vr*A.ii;
Pnew[1,2] = B.vr*B.ir + B.vi*B.ii;
Qnew[1,2] = B.vi*B.ir - B.vr*B.ii;
Pnew[1,3] = C.vr*C.ir + C.vi*C.ii;
Qnew[1,3] = C.vi*C.ir - C.vr*C.ii;

end WyeLoad_3Ph;

4 Simulation Methodology
In this paper, the original IEEE 14-bus system, depicted in
Figure 4, is modified in two different ways and three sim-
ulations are performed in each modified system, resulting
in a total of six dynamic simulations. The common char-
acteristic among all six experiments is that a small feeder,
consisting of two buses, one transformer, one transmission
line and one load is added to a transmission bus, effec-
tively extending it to represent a T&D system. In three ex-
periments this feeder replaces the load in bus number 11.
In the remaining three experiments, the feeder replaces the
load in bus number 02.

Consider the experiments related to the feeder addition
to bus 02. One experiment will consist of the addition of a
feeder modeled in positive sequence, as depicted in Figure
5(a). The load at the end of the feeder increase for 9 times,
every 12 seconds. In the second experiment, the feeder is
modeled in three-phase and the connection is made by a
hybrid transformer, shown in Figure 5(b). In that experi-
ment, the load increase occurs in a balanced way, again 9
times and every 12 seconds. The last experiment for bus
02 is based in the addition of the same three-phase feeder
depicted in Figure 5(b), however, the load increases with
phase unbalances.

(a) Positive sequence model.

(b) Three-phase model.

Figure 5. Distribution feeder model diagrams used in the exper-
iments.

The experiments related to the addition of the feeder to
bus 11 are similar to what was described for bus 02. The
difference between both set of experiments lies in param-
eter values for the line, load and transformer. All simula-
tions are listed in Table 1.

Table 1. Summary of simulations.

Test Description

I
Distribution feeder connected to bus 02.
Positive sequence model. 9 load steps

II
Distribution feeder connected to bus 02.

Three-phase model. 9 balanced load steps

III
Distribution feeder connected to bus 02.

Three-phase model. 9 unbalanced load steps

IV
Distribution feeder connected to bus 11.
Positive sequence model. 9 load steps.

V
Distribution feeder connected to bus 11.

Three-phase model. 9 balanced load steps.

VI
Distribution feeder connected to bus 11.

Three-phase model. 9 unbalanced load steps.

5 System and Simulation Parameters
This section provides information about the parameters
used for the simulation of the system presented in Sec-
tions 2 and 3 and in Subsection 4. Table 2 lists the ma-
chine models that were used in this study. All machines,
generators and condensers, are represented with the same
dynamic model. The parameters for these machines
along with voltage regulators are described in (Kodsi and
Canizares, 2003), which also provides load values and
branch parameters. In order to increase the total load of
the system, the load values reported in the original IEEE14
system are multiplied by a factor of 1.4, which is the same
procedure adopted in (Kodsi and Canizares, 2003). It is
very important to mention that the machines do not in-
clude automatic speed regulators. Thus, the value for me-
chanical power is kept constant during all the simulation
and equal to the steady state value of electrical power in
the initial condition. This means that with load increas-
ing, the system’s frequency will drift away from 60 Hz to
lower values. However, in this performed study the fre-
quency does not change significantly from the base value.

Table 2. Parameters for synchronous machines.

Equipment Model used

Machine PSAT.Order6
Voltage regulator PSAT.AVR.AVRTypeII
Speed regulator –

Table 3 lists system-wide parameters, such as its fre-
quency and its base power. The latter is used to calculate

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 623
10.3384/ecp19157617 March 4-6, 2019, Regensburg, Germany

all per-unit values in the system, such as the resistance and
reactance from the hybrid transformer.

Table 3. System parameters.

Description Value

System Frequency 60 Hz
Power Base 100 MVA

Table 4 presents all the simulation data chosen for run-
ning in all simulations (i.e. scenarios I to VI).

Table 4. Simulation parameters.

Description Value

Duration 120 s
Interval Size 0.005 s
Integration Method dassl
Tolerance 10−5

The values for transformer’s reactance (Xt f), power
line’s mutual (Zm) and self (Zs) impedance, and load
steps(∆S) are important parameters that need to be explic-
itly described. They are summarized in Table 5.

6 Simulation Results and Lineariza-
tion Analysis

All tests described in Section 4 were simulated using a
Modelica-compliant software tool. Results for the simula-
tions corresponding to the distribution feeder modeled in
positive sequence (simulations I and IV) are shown in Fig-
ure 6. Bus 02 voltage in simulation I is depicted in Figure
6(a), while bus 11 voltage in simulation IV, is shown in
Figure 6(b). Note that larger oscillations occur in simula-
tion I, which are due to the value of the load step. How-
ever, the voltage variation, in per unit (pu), is higher in
simulation IV than I. This is due to the location of the dis-
tribution feeder where the load is increased.

The comparison between bus 02 voltage in simulations
I, II and III is shown in Figure 7(a), during the last load
step increase, which occurs between 108 s and 120 s.
In that figure, the blue solid curve represents the voltage
curve for simulation I, while the dashed red line, marked
with squares, represents simulation II and the solid green
line, marked with circles, represents simulation III. It is
important to observe that the curve for simulation II over-
laps the one for simulation I. This result should be ex-
pected because a perfect balanced three-phase system may
be represented its positive sequence equivalent model,
which implies that the three-phase implementation has
been performed correctly.

The second important fact that should be observed is
that the green curve, resulting from simulation III, has a
different value if compared to the blue and red curves. The

difference may be small (approximately 0.05 %) but it is
important to be noted. This divergence between the curves
should be expected, since the unbalance should reduce the
value of positive sequence component.

A similar analysis is done in Figure 7(b), which depicts
voltage in bus 11 for simulations IV, V and VI during the
last load step increase. The solid blue line curve represents
the voltage curve for simulation IV, the dashed red line,
marked with squares, represents the voltage for simulation
V and the solid green line, marked with circles, represents
the result for simulation VI. Note that, again, blue and red
curves overlaps, as expected, and the green curve diverges
from the other two.

After verifying that the voltage curves behaves as ex-
pected in time domain simulations, a script was made in
order to explore the easy access to linearization process
provided by Modelica language. The script linearizes each
of the six simulations one time step, 0.005 s, before the
load step increase, totaling the value of ten processes for
every simulation. From each linear model, fifty eigen-
values are extracted and stored for comparison. As ex-
pected, the eigenvalues from the ten linear models com-
ing from simulation I are virtually the same ones coming
from simulation II. The total absolute error between the
fifty eigenvalues from the ten linear models coming from
simulations I and II is 0.00017. The same fact is observed
when comparing the eigenvalues from linear models com-
ing from simulations IV and V. In this case, the total error
between the eigenvalues is 0.00001.

The next analysis conducted in this paper is made using
specific eigenvalue collected from in simulations I and III.
It is important to observe that both eigenvalues become
apart from each other, and the distance increase with the
load step. The difference between this eigenvalue locus
is shown in Figure 8. Note that the eigenvalues from the
unbalanced case have less negative real part and more neg-
ative imaginary part if compared to the respective eigen-
value from the balanced case.

A similar analysis is conducted using the comparison of
one specific eigenvalue coming from simulations IV and
VI. Again, the eigenvalues become more distant with the
load variation. This variation is shown in Figure 9. In this
case, the eigenvalue has no imaginary part but the real part
of the eigenvalue become less negative with load steps.

7 Discussion
The distance between the eigenvalues from the different
linearized systems is of great interest, because it provides
crucial information about the system’s stability. Here, the
error in damping (∆σ) and in angular frequency (∆ω) are
analyzed. Table 6 presents the difference in damping and
angular frequency in the eigenvalues represented in Figure
8. Note that the difference in both damping and frequency
is not linear. Table 7 presents the difference in damping for
eigenvalues depicted in Figure 9 and, again, the difference
is not linear.

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

624 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157617

Table 5. Simulation system parameters details.

Test Xt f (pu) Line Data (pu) ∆S (pu) Load Description

I
0.11001

Zm = 0.0032+ j0.0099
Zs = 0.0226+ j0.0690 3.038+ j1.778

Positive sequence increase.
II Divided equally between phases A,B,C.
III Divided equally between phases A and C.

IV
0.55618

Zm = 0.0233+ j0.0494
Zs = 0.2443+ j0.2493 0.490+ j0.252

Positive sequence increase.
V Divided equally between phases A,B,C.
VI Divided equally between phases A and C.

(a) Voltage in bus 02 for simulation I, distribution feeder in bus 02.

(b) Voltage in bus 11 for simulation IV, distribution feeder in bus 11.

Figure 6. Voltage behavior in buses 02 and 11 during the 120 seconds of simulation.

Table 6. Comparison between eigenvalues of tests I and III.

Load Step # Error in Error in
Damping (∆σ) Frequency (∆ω)

1 -0.00003 0.00003
2 -0.00010 0.00011
3 -0.00030 0.00027
4 -0.00059 0.00047
5 -0.00094 0.00076
6 -0.00143 0.00110
7 -0.00193 0.00156
8 -0.00258 0.00210
9 -0.00335 0.00273

Table 7. Comparison between eigenvalues of tests IV and VI.

Load Step # Error in damping (∆σ)

1 -0.00002
2 -0.00009
3 -0.00021
4 -0.00038
5 -0.00062
6 -0.00093
7 -0.00133
8 -0.00183
9 -0.00245

8 Conclusions
This paper presented mathematical modeling and imple-
mentation in Modelica language of three-phase models for

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

DOI Proceedings of the 13th International Modelica Conference 625
10.3384/ecp19157617 March 4-6, 2019, Regensburg, Germany

(a) Comparison between voltage in bus 02 for simulations I, II and III.

(b) Comparison between voltage in bus 11 for simulations IV, V and
VI.

Figure 7. Voltages in buses 02 and 11 for corresponding simu-
lation sets, during the last load step.

−2.91 −2.9 −2.89 −2.88 −2.87 −2.86 −2.85 −2.84
−7.6

−7.58

−7.56

−7.54

−7.52

−7.5

Real Axis (s−1)

Im
ag

in
ar
y
A
x
is

(s
−
1
)

Eigenvalues from balanced case
Eigenvalues from unbalanced case

Figure 8. Comparison between specific eigenvalue coming from
simulations I and III.

−24.68 −24.67 −24.66
−0.4

−0.2

0

0.2

0.4

Real Axis (s−1)

Im
ag
in
ar
y
A
x
is

(s
−
1
)

Eigenvalues from balanced case
Eigenvalues from unbalanced case

Figure 9. Comparison between specific eigenvalue coming from
simulations IV and VI.

transmission lines and a hybrid positive sequence three-
phase models for T&D power networks. These models
are used to represent a three-phase distribution feeder con-
nected to benchmark IEEE 14-bus transmission system,
modeled in its positive sequence equivalent. Six different
simulations are realized to compare the different models
for the distribution feeder (positive sequence versus three-
phase) and to study different conditions to load increase in
two specific buses (balanced and unbalanced).

The results from dynamic simulations presented inter-
esting and expected results. Voltage behavior observed
using positive sequence models is the same one when the
three-phase model had a balanced load increase. Further-
more, results coming from unbalanced load increase show
that a positive sequence model might lead to erroneous re-
sults of the system dynamic behavior. This fact is corrobo-
rated by the linearization analysis performed in this paper.
The comparison between eigenvalues coming from the lin-
earized systems shows that, in fact, a positive sequence
model for the distribution feeder could lead to wrong con-
clusions about system stability.

In addition, it is important to highlight that linear anal-
ysis is easily conducted in this paper using Modelica-
compliant software. Software packages commonly used to
study power systems do not necessarily have linear analy-
ses tool, and are encoded separately. This analysis is im-
portant specifically to design controllers in the power sys-
tem. Thus, in this specific matter, the Modelica language
and compliant tools may assist in the development of new
computational software tools to analyze complex power
systems that should emerge in the near future.

The main results of this paper are particularly mean-
ingful, as distributed generation at low-voltage levels is
being introduced, especially in the form of photo-voltaic
generation; which imminently will give rise to unbalances
in distribution networks with single-phase feeders. This
type of distribution networks are being referred to as “Ac-
tive” Distribution Networks (ADNs), which are expected
to increase in the near future. While the studies in this
paper did not address ADNs specifically, the main result
already highlights the importance of unbalances, and nat-
urally, the addition of components with dynamics in dis-
tribution feeders will increase this impact. Hence, future
work will analyze the impact on power system stability
when modeling DG in distribution feeders, and in partic-
ular, the impact of their control response. In addition, the
study of larger and more complex systems would be of
great value and the authors consider it as a future study.

Acknowledgements

This work was supported in whole or in part by the Engi-
neering Research Center Program of the National Science
Foundation and the Department of Energy under Award
EEC-1041877, and in part by the CURENT Industry Part-
nership Program.

A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and
Unbalanced Distribution Grids using Modelica and the OpenIPSL

626 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157617

References
J. Arrillaga, C. P. Arnold, and B. J. Harker. Computer Modelling

of Electrical Power Systems, volume 2. Wiley Online Library,
2001.

T. M. L. Assis, G. N. Taranto, D. M. Falcao, and A. Manzoni.
Long and short-term dynamic simulations in distribution net-
works with the presence of distributed generation. In Power
Engineering Society General Meeting, 2006. IEEE, pages 7–
pp. IEEE, 2006.

K. Balasubramaniam and S. Abhyankar. A combined transmis-
sion and distribution system co-simulation framework for as-
sessing the impact of volt/var control on transmission system.
In 2017 IEEE Power Energy Society General Meeting, pages
1–5, July 2017. doi:10.1109/PESGM.2017.8274633.

M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova,
and L. Vanfretti. OpenIPSL: Open-instance power system li-
brary—update 1.5 to “iTesla power systems library (iPSL): A
modelica library for phasor time-domain simulations”. Soft-
wareX, 7:34–36, 2018.

Jens C Boemer, Karsten Burges, Pavel Zolotarev, Joachim
Lehner, Patrick Wajant, Markus Fürst, Rainer Brohm, and
Thomas Kumm. Overview of german grid issues and retrofit
of photovoltaic power plants in germany for the prevention of
frequency stability problems in abnormal system conditions
of the entso-e region continental europe. In 1st international
workshop on integration of solar power into power systems,
volume 24, 2011.

F. Casella, A. Bartolini, S. Pasquini, and L. Bonuglia. Object-
oriented modelling and simulation of large-scale electrical
power systems using modelica: A first feasibility study. In In-
dustrial Electronics Society, IECON 2016-42nd Annual Con-
ference of the IEEE, pages 6298–6304. IEEE, 2016.

F. Casella, A. Leva, and A. Bartolini. Simulation of large grids
in OpenModelica: reflections and perspectives. In Proceed-
ings of the 12th International Modelica Conference, Prague,
Czech Republic, May 15-17, 2017, number 132, pages 227–
233. Linköping University Electronic Press, 2017.

Cepel. ANAREDE. https://bit.ly/2Mjkd1F, a.

Cepel. ANATEM. https://bit.ly/2FzTKw4, b.

M. de Castro Fernandes, J. G. de Oliveira, L. Vanfretti,
M. Baudette, and M. A. Tomim. Modeling and simula-
tion of a hybrid single-phase/three-phase system in modelica.
In 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE),
pages 1–7, May 2018. doi:10.1109/SBSE.2018.8395775.

EATON. Cymdist. https://bit.ly/2HkxHer.

ENTSO-E. Dispersed Generation Impact on CE Region Secu-
rity. European Network of Transmission System Operators
of Electricity, ENTSO-E, 2014.

EPRI. OpenDSS. https://bit.ly/2zV4cLB.

P. A. N. Garcia, J. L. R. Pereira, S. Carneiro, V. M. da Costa,
and N. Martins. Three-phase power flow calculations using
the current injection method. IEEE Transactions on Power
Systems, 15(2):508–514, 2000.

IEA. World Energy Outlook 2017. Organization for Economic
Co-operation and Development, OECD, 2017.

H. Jain, K. Rahimi, A. Tbaileh, R. P. Broadwater, A. K. Jain,
and M. Dilek. Integrated transmission & distribution system
modeling and analysis: Need & advantages. In Power and
Energy Society General Meeting (PESGM), 2016, pages 1–5.
IEEE, 2016.

W. H. Kersting. Distribution System Modeling and Analysis.
CRC press, 2001.

S. K. M. Kodsi and C. A. Canizares. Modeling and simulation
of IEEE 14-bus system with FACTS controllers. University
of Waterloo, Canada, Tech. Rep, 2003.

J. M. T. Marinho and G. N. Taranto. A hybrid three-phase single-
phase power flow formulation. IEEE Transactions on Power
Systems, 23(3):1063–1070, 2008.

F. Milano. An open source power system analysis toolbox.
IEEE Transactions on Power Systems, 20(3):1199–1206, Aug
2005. ISSN 0885-8950. doi:10.1109/TPWRS.2005.851911.

M. Mirz, L. Netze, and A. Monti. A multi-level approach to
power system modelica models. In Control and Modeling
for Power Electronics (COMPEL), 2016 IEEE 17th Workshop
on, pages 1–7. IEEE, 2016.

M. A. A. Murad, F. J. Gómez, and L. Vanfretti. Equation-based
modeling of three-winding and regulating transformers using
modelica. In 2015 IEEE Eindhoven PowerTech, pages 1–6,
June 2015. doi:10.1109/PTC.2015.7232503.

Siemens. PSS/E software. https://sie.ag/2DpsTR9.

G. N. Taranto and J. M. T. Marinho. Simulation of integrated
transmission and distribution networks with a hybrid three-
phase/single-phase formulation. Interface, 2, 2017.

W. F. Tinney and C. E. Hart. Power flow solution by newton’s
method. IEEE Transactions on Power Apparatus and sys-
tems, (11):1449–1460, 1967.

L. Vanfretti, W. Li, T. Bogodorova, and P. Panciatici. Un-
ambiguous power system dynamic modeling and simula-
tion using modelica tools. In 2013 IEEE Power En-
ergy Society General Meeting, pages 1–5, July 2013.
doi:10.1109/PESMG.2013.6672476.

Luigi Vanfretti, Tetiana Bogodorova, and Maxime Baudette. A
modelica power system component library for model valida-
tion and parameter identification. In Proceedings of the 10th
International Modelica Conference; Lund; Sweden, num-
ber 96, pages 1195–1203. Linköping University Electronic
Press, 2014.

D. Winkler. Electrical power system modelling in modelica–
comparing open-source library options. In Proceedings of
the 58th Conference on Simulation and Modelling (SIMS 58)
Reykjavik, Iceland, September 25th–27th, 2017, number 138,
pages 263–270. Linköping University Electronic Press, 2017.

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

DOI Proceedings of the 13th International Modelica Conference 627
10.3384/ecp19157627 March 4-6, 2019, Regensburg, Germany

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a
Prototype for a Reference Power System Library
Bartolini, Andrea and Casella, Francesco and Guironnet, Adrien

627

Towards Pan-European Power Grid Modelling in Modelica:
Design Principles and a Prototype for a Reference Power System

Library

Andrea Bartolini1 Francesco Casella2 Adrien Guironnet3

1Dynamica s.r.l., Italy, andrea.bartolini@dynamica-it.com
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,

francesco.casella@polimi.it
3RTE, France, adrien.guironnet@rte-france.com

Abstract
This paper presents the PowerGrids library, which is
aimed at the modelling of large-scale power transmission
and distribution system. The requirements and design
principles of the library are extensively discussed, as well
as some key implementation details. The library repre-
sents a prototype implementation of the presented require-
ments and design guidelines, and will form the basis for
the future development of an industrial-grade open-source
library to be used by European TSOs and DSOs.
Keywords: Power System Modelling, Power Generation
and Transmission, Pan-European Power System

1 Introduction
Power systems are undergoing major changes due to the
increasing penetration of renewable energies, to the boom-
ing development of high-voltage direct current lines and
to the difficulty to build new AC lines, that lead power
system operators to design complex automata to fully use
the grid potential. All these changes are deeply affect-
ing the power system dynamics that are evolving from a
well-known behaviour, mainly driven by the synchronous
generator dynamics, to a more uncertain and complex
behaviour driven by a combination of power-electronic
based components without inertia, complex system-wide
controls and traditional machines.

In this context, the Transmission System Operators
(TSO) ability to assess the system stability is questioned
and recent events have shown the need for a new frame
for time-domain stability studies (ENTSO-E SG SPD Re-
port, a; ENTSO-E System Protection and Dynamics WG
Report; Yan et al., 2018). In order to accompany this
deep and global change in a secure way, power system
actors have to take adapted and coordinated decisions.
This demands a transition from current closed tools to-
wards flexible and transparent power system simulation
approaches, enabling all players to run collaborative stud-
ies in a straightforward and easy way.

Despite previous efforts led by the European Net-
work of Transmission System Operators for Electricity

(ENTSO-E) association with the development of a stan-
dard exchange format - Common Grid Model Exchange
Standard (CGMES) - different software tools still give dif-
ferent results for the same data set, even for small net-
works (ENTSO-E SG SPD Report, b). Without having
access neither to the final modelling implementation nor
to the mathematical methods used for the solution, it re-
mains very arduous to understand the reasons of the results
difference, and thus to agree upon common actions at the
pan-european level. Having open-source shared models
will be a first step towards a better understanding of the
overall power system behaviour and ease the power sys-
tem actors cooperation.

Modelica appears as a good candidate to build such
models and initiatives at the European level are currently
conducted to promote this vision – the necessity to con-
struct and share a reference Modelica library – using the
results from several previous efforts (Winkler, 2017). In-
deed, the European projects Pegase and iTesla have re-
spectively validated the usability of Modelica for power
system modelling on elementary components (Pegase;
Chieh et al., 2011) and proved the possibility to get results
from Modelica models that are similar to those obtained
with existing power system simulation software (iTesla;
Bogodorova et al., 2013; León et al., 2015). Due to their
intended goal, the library inherited from these projects
consists mainly in a direct porting of several tools models
that stick to a procedural way of modelling (Fortran-style
code), which is difficult to interpret, extend, and maintain.

Two open-source libraries have also been de-
veloped in the Modelica community for electro-
mechanical power system modelling: one is the
Modelica.Electrical.QuasiStationary library, which uses
complex phasors and contains only very basic component
models, thus not specifically designed for large scale
power system models. The other one is the PowerSystems
library, whose design is fundamentally based on the
concept of replaceable phase system, which can have
an arbitrary number of independent voltage and current
components, and an arbitrary number of reference phases.
The very high level of abstraction, coupled with an

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

628 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157627

extensive use of inheritance, allows to accommodate
a very wide scope in a unified framework spanning
DC, one- and three-phase AC in both quasi-static and
dynamic regimes. The end result is a code base which
is very general, elegant and concise; however, the price
to pay for these features is that the code is quite difficult
to comprehend for non-Modelica experts. For a more
detailed review of open-source Modelica libraries in this
field, the interested reader is referred to (Winkler, 2017).

The authors are also aware of the existence of commer-
cial Modelica libraries for power system, and also worked
on internal developments in this field that were mainly in-
tended for experimentation purposes, see, e.g., (Casella
et al., 2016). However, they won’t be discussed here, since
a key requirement of the next-generation pan-european
power system modelling tool is the accessibility and open-
source nature of the modelling code.

All the previously mentioned works contribute to
demonstrate the added value of using Modelica for power
systems models, but a more generic and high-level reflec-
tion, especially on the modelling side, is required to ensure
the widest possible adoption of Modelica by the power
system actors, i.e. Transmission System and Distribution
System Operators. This is the main objective of the proto-
type library introduced in this paper and could be achieved
by relying on the following library features:

• the library architecture was carefully designed to
take full advantage of the declarative modelling ap-
proach of Modelica, which allows to write models
that are close to their textbook descriptions, without
at the same time being too difficult to understand for
Modelica beginners because of the extensive use of
advanced object-oriented features;

• specific power system models have been written in
order to be easily understood, reused and potentially
extended by power system experts without much ex-
perience in the Modelica language, rather than by ex-
pert Modelica developers;

• the library has been designed to eventually evolve
into an industrial-grade tool.

The paper is organized as follows. Section 2 defines the
library scope while section 3 states the necessary require-
ments to embrace this scope. In section 4, the architecture
and design of the PowerGrids library are discussed, show-
ing how they can fulfil the requirements. Section 5 is a
presentation of the prototype library models and their val-
idation, both at an individual level and at a system level, is
detailed in section 6. Section 7 is devoted to conclusions
and future perspectives of this work.

2 Scope
The scope of the library described in this paper is to
build electro-mechanical power transmission and distri-
bution system models, possibly spanning entire countries

or even the whole pan-european system, though of course
smaller system models for regional studies or for didactic
purposes should also be covered.

The electro-magnetic behaviour of transmission lines,
transformers and loads is assumed to always be close to
sinusoidal steady-state, so that the relationships between
three-phase voltage and current systems can be repre-
sented by phasors, while fast electro-magnetic transients
in those components involving current and voltage state
variables are neglected.

The library described in this paper currently only con-
siders balanced three-phase systems, though it would
be possible to extend the approach to deal with un-
balanced systems by introducing the direct, inverse and
zero sequence representation. The system dynamic be-
haviour is generated by the mechanical inertia of rotat-
ing synchronous generators and by their internal electro-
magnetic transients, represented by lumped-parameter
models, which have much larger time constants than the
transmission lines, in the range 0.1-10 s, as well as by the
dynamics of all continuous-time and event-based control
systems.

The library should allow to efficiently simulate dynamic
islanding transients, whereby a synchronous system can
be split into two or more synchronous islands by the open-
ing of some circuit breakers, which could operate at sig-
nificantly different frequency for significant amounts of
time, and possibly be re-synchronized afterwards.

The system can be assumed to always operate at fre-
quencies close to the reference value (50 Hz for Europe),
since power systems cannot operate reliably when the sys-
tem frequency deviates by more than a few Hz from the
reference. Simulations need to be reliably initialized at
steady-state or sufficiently close to it also in the case of
very large-scale systems.

Last, but not least, the models from this library are ex-
pected to be used in two ways. One is to use them to build
complete power system models in Modelica, using Mod-
elica tools to turn them into simulation code. However,
even though encouraging experiments have been carried
out using Modelica tools to handle system models with
thousands of generators, lines, and loads, as reported in
(Casella et al., 2017), current Modelica compiler technol-
ogy, based on the expansion of models down to individual
scalar equations, still cannot handle realistic pan-european
grid models within acceptable limits in terms of code gen-
eration time (a few minutes at most) and of executable
simulation code size (a few MBytes).

A major breakthrough is thus needed in the Modelica
compiler technology to avoid the burden of code duplica-
tion relative to components that are instantiated hundreds
or thousands of times in the system model. In the mean-
time, it should be possible to also use models from the
library within domain-specific simulation tools, such as
RTE’s Dynaωo (Guironnet et al., 2018), that require only
one instance of C-code for each model appearing multiple
times in the system, build the residuals and Jacobians for

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

DOI Proceedings of the 13th International Modelica Conference 629
10.3384/ecp19157627 March 4-6, 2019, Regensburg, Germany

the DAE solver using said C-code and ad-hoc algorithms,
and finally use DAE open-source solvers to compute the
simulation results.

3 Requirements
The modelling approach for the physical components rep-
resented in the library should be fully declarative and
equation-based, with no compromises. The code describ-
ing the physical behaviour of components should be as
close as possible to the original formulation of the equa-
tions that are found in textbooks or technical reports. This
allows to achieve four important objectives:

1. the models are largely self-documenting and can eas-
ily be traced back to authoritative sources;

2. it is immediately clear to a domain expert by just
reading the code what a given model actually rep-
resents and what the modelling assumptions are;

3. it is easy to turn any new component model who is
devised by experts in terms of basic physical equa-
tions on the paper into the model code;

4. it is easy to adapt or customize existing models to fit
new and possibly unexpected simulation scenarios in
the future.

The model-solver separation principle should always
guide the code development. Models should be written
to be clear, compact, elegant and easily understood, with-
out any need to explicitly structure them in a way which
is oriented to their solution, as it is common practice in
traditional Fortran, Matlab, C, or C++ based models.

Basic data types, model building blocks and base
classes should be readily available in the library, to guide
modellers that are not Modelica experts in the develop-
ment of new models that fully exploit the power of the
Modelica language, avoiding them the hassle of taking
care of the tedious and repetitive parts of the modelling ef-
fort, and allowing them to focus on the core parts of their
models.

For controllers such as Automatic Voltage Regulators
(AVR), governors or Power System Stabilizers (PSS),
which are usually specified in terms of block diagrams,
the same representation should be used in the library, so
that again the model is as close as possible to the original
source (e.g. block diagrams taken from IEEE standards
or recommendations), self-documented and immediately
recognizable by a domain expert.

On the other hand, an essential point is that the actual
implementation of blocks, either in terms of equations or
of lower-level block diagrams, must be fully accessible,
so that the exact behaviour of the each block is clearly
and unambiguously defined. This is often a weak point in
closed-source simulation tools, in which the behaviour of
some non-trivial blocks such as anti-windup controllers,
that can actually be implemented in subtly different ways,

may be different from one tool to the other, leading to dif-
ferent behaviour of the same system model depending on
which tool it is run (ENTSO-E SG SPD Report, b).

It is assumed that the results of a power-flow calculation
are available, specifying the voltage modulus and phase
and the entering active and reactive power flow at each
three-phase port of each component. These could be com-
puted by a separate tool, or possibly by a corresponding
Modelica power-flow model, see section 5.5.

Last, but not least, it is important to point out who is go-
ing to write the code of the more sophisticated component
models. Most Modelica libraries are written by Modelica
experts and are expected to be used more or less out of
the box by domain experts and practitioners. In the case
of the library discussed in this paper, instead, one funda-
mental goal is to develop an open library that is readily
accepted by the community of transmission and distribu-
tion systems operators, as well as by students in this field,
also for developing new models. This requires the exist-
ing source code to be easily read and understood, and new
models to be easily developed or adapted, by people who
are domain experts but are not seasoned Modelica library
developers, having had only some basic training in Mod-
elica.

The most commonly used language in this area are For-
tran, C/C++ and possibly Matlab or Python, and people
are normally used to a procedural approach to modelling,
so the shift to the a-causal, declarative approach of Model-
ica already requires a significant effort to become second
nature to the modeller. From this point of view, providing
basic data types, objects and templates (base classes), as
well as some fully worked out reference model implemen-
tations can be very useful to make the learning curve less
steep.

Most importantly, advanced Modelica features should
then be used judiciously as long as they can actually make
reading and writing the code easier, by using basic types
and classes which are already defined in the library. On the
other hand, very elaborate inheritance-based library archi-
tectures, possibly involving replaceable classes and mul-
tiple inheritance, should rather be avoided, as they could
make understanding the code difficult for people without
a lot of experience and practice in using Modelica, end-
ing up in a steep barrier to the acceptance of the library,
and ultimately hindering its diffusion in the potential user
community.

4 Design of the PowerGrids Library
In this section, the basic architecture of the PowerGrids
library is presented in a bottom-up fashion, showing all
the basic data types and base classes that can be used to
described actual models in a very compact and clear way,
as will be demonstrated in Section 5.

4.1 Complex Variables
Following the declarative modelling paradigm, phasors
should be represented by complex variables, in order to

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

630 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157627

have a compact and immediately understood formulation
of equations, as in textbooks. Complex numbers are avail-
able in Modelica since 2013 and should be used to their
full extent. The explicit expansion of equations into their
real and imaginary parts is tedious, ugly and error prone,
makes the model unnecessarily obscure, and should thus
be left to the Modelica compiler, not to the modeller.

In fact, Modelica tools still turn out sometimes to be
a bit crude in handling Complex numbers in the most ef-
ficient way, but this should by no means be a reason to
work around these tool limitations by expanding models
to scalar values manually. To the contrary, this should be
a good reason to push Modelica tool vendors to improve
their handling so that there is no performance penalty
whatsoever when they are employed instead of writing
manually expanded equations using Real numbers.

4.2 Units and Scaling
Physical variables, in particular connector variables, are
always defined given in SI units. This guarantees consis-
tency at system and model level, avoids the need of intro-
ducing conversion factors in physical equations, and also
allows to use unit checking to spot modelling errors result-
ing in dimensionally inconsistent equations. As it is the
standard practice, engineering units can be used for con-
venience in the user interface, for parameter input and for
plotting, by setting the displayUnit attributes according
to the typical values found in high-voltage transmission
systems, i.e., kV for voltage, kA for current, MW for ac-
tive power, MVA for complex apparent power and MVAR
for reactive power.

Use of per-unit variables is restricted to those cases in
which their use makes the equations more compact and
thus easier to write and understand, such as models of syn-
chronous machines. In this case, the reference textbooks
use per-unit quantities when writing the equations, so the
application of the principle that the Modelica code should
be as close as possible to the textbook equation suggests
to also write the Modelica code in the same way, using
component-specific (not system-wide) base quantities de-
clared as parameters.

If model equations using SI units were solved directly,
the numerical accuracy of the solution would be severely
hampered because of badly scaled problems, since the
typical model will contain some variables with order of
magnitude 1 (the p.u. variables), some others (currents
and voltage variables) around 103–104, and some others
(power variables) in the range 108–109. In fact, one of the
reasons why p.u. variables and engineering units are used
explicitly in traditional power system simulation software
is to ensure the good numerical conditioning of the prob-
lem. However, this can make the code a bit confusing and
possibly lead to modelling mistakes, due to mix-up of per-
unit variables and parameters using different base quanti-
ties (system-wide and component-specific) with variables
and parameters in engineering units.

The proper way to address this problem in a declara-

tive way in Modelica is to avoid introducing explicitly the
scaled variables in the model, to define the nominal power
and voltage as parameters of each component, and then
to set the nominal attribute for all physical variables to a
value that can be derived from them, e.g.

Modelica.SIunits.Current I(nominal = SNom/VNom);

When generating the simulation code, the Modelica
tool uses the nominal attribute as a scaling factor for the
variables, and is also able to automatically derive a scaling
factor for equation residuals using the nominal values of
the variables and the values of the Jacobian, see (Casella
and Braun, 2017) for further details. The end result is
equivalent to the use of per-unit variables of traditional
power system simulation codes. However, according to
the model-solver separation principle, this process is to-
tally transparent to the modeller.

4.3 Connectors and System Object
AC components in power trasmission and distribution sys-
tems interact through 3-phase connections, which are as-
sumed to be balanced in the context of this work, since
this is the most commonly used assumption for large-scale
system studies. The efficient simulation of such systems
when they are close to sinusoidal steady-state requires a
representation of 3-phase systems leading to almost con-
stant variables in that case.

To achieve this objective, both the Model-
ica.Electrical.QuasiStationary and the PowerGrids
libraries represent 3-phase systems relative to a rotating
frame of reference, whose angle is defined by a source
component and propagated through connectors to all
the components of a synchronous system; the former
library uses complex phasors, while the latter uses a
dq0 decomposition. In order to handle this properly,
overconstrained connectors need to be used, whereby
the Modelica tool analyzes the connection graph and
automatically removes the redundant equations involving
the reference angle that are generated when meshed grids
are built.

This design is very elegant and fully object-oriented,
but as of Modelica 3.4 it has the fundamental limitation
that the topology of the graph is statically determined at
compile time and cannot be changed at runtime. It is
thus possible to model systems containing multiple syn-
chronous systems (e.g. two AC grids connected by an
HVDC line with AC/DC interfaces), but it is not possi-
ble to efficiently model systems that are split in two or
more disconnected synchronous islands during a simula-
tion, e.g. because of the opening of circuit breakers that
connect different areas in the system, as well as their re-
synchronization and re-connection. As the scope of the
library discussed in this paper should include this kind of
simulations, it is not possible to use connectors to propa-
gate the reference frame information.

Therefore, the AC connector in the PowerGrids library
is defined as

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

DOI Proceedings of the 13th International Modelica Conference 631
10.3384/ecp19157627 March 4-6, 2019, Regensburg, Germany

connector TerminalAC
Types.ComplexVoltage v;
flow Types.ComplexCurrent i;

end TerminalAC;

where v is the phase-to ground, RMS voltage phasor, and
i is the line RMS current phasor. Both phasors describe
the magnitude and phase of the three-phase balanced sys-
tem with respect to a reference rotating frame, that needs
to be the same for all connectors in each connection set.
There are then three possible options regarding reference
systems, which are selected in the system object and then
accessed via the inner-outer mechanism.

The first option can be chosen when the system is con-
nected to an infinite bus, which prevents the frequency of
all voltages and currents to drift significantly away from
50 Hz, lest synchronism is lost. In this case, all compo-
nents use the same reference, which rotates at the fixed
frequency of 50 Hz (or 60 Hz for US and Japan, the refer-
ence frequency being defined in the system object).

The second option can be chosen in the case of a single
system of components operating in synchronism, except
for possible electro-mechanical swings, whose frequency
can drift away from 50 (or 60) Hz for long intervals, e.g.,
if secondary frequency control is lacking or not effective
enough for some reason. In this case the frequency out-
put of one component, usually the angular frequency of
a large synchronous machine rotor in the system, is con-
nected to the reference frequency input of the system ob-
ject, from which all other system components access it via
the inner/outer mechanism. System models with multiple
synchronous islands (e.g. two AC grids connected by an
HVDC line) can be modelled by including each island in
a sub-model with its own system object and an outer con-
nector, which will then in turn be connected together with
the HVDC line.

The third option allow to handle dynamically splitting
and re-synchronizing synchronous sub-islands in the sys-
tem efficiently. In this case, the system object contains a
description of the grid topology (nodes and branches), it
receives the connection status of all branch components
(lines, transformers) in the grid by means of boolean in-
puts, and outputs the reference frequency and activation
status to all nodes in the system (machines and loads).

During initialization, and every time one such input
changes, e.g. because of a line trip, the system object runs
a topological analysis on the grid, determines what are the
synchronously operating islands, selects one node of each
island as the source of the reference frequency following
some criterion, and outputs the reference frequency values
to all the nodes of the island accordingly. If newly formed
islands end up operating steadily at different frequency, all
their phasors will be nearly constant, speeding up variable
step-size solvers; this would not be the case if the second
option was selected, because only the phasors of the island
containing the single reference generator would be con-
stant, while all others would end up rotating at constant,
non-zero speed.

In case islands are formed that would break the simula-
tion, e.g. because they have loads but no generators, the
activation signals of all the nodes become false, so that the
corresponding models can be switched to an "off state",
e.g. zero current for loads, zero power for generators.

The third option is currently not yet implemented in the
library, but is made possible by the library architecture; it
was successfully experimented within the feasibility study
reported by (Casella et al., 2017). A proper implementa-
tion is not trivial, because it needs to include efficient algo-
rithms for topology analysis, that will be run online each
time an event corresponding to a breaker opening or clos-
ing is triggered. Such algorithms should be implemented
efficiently as external C functions, possibly porting them
from the code-base of existing power system simulation
tools.

Setting up a model to work with the third option re-
quires a fairly large amount of signal connections between
node and branch components of the grid and the system
object, which is not really consistent with a fully object-
oriented modelling approach. On the other hand, large
grid models will most likely not be built manually using
a GUI, but rather generated automatically from grid de-
scription such as the XML-based CIM standard (R.Viruez
et al., 2017), so this is not necessarily a big issue. It would
be in fact be interesting to extend the overconstrained
connector semantics of Modelica to also handle run-time
topological changes of the connection graph, in order to
pass the reference phase/frequency information through
the connectors in fully object-oriented way, but relying
on this mechanism would make the library described in
this paper depending on a non-standard experimental fea-
ture of the language for a very long time, which is out of
question. The discussion of such a mechanism for future
improvements of Modelica would be nevertheless interest-
ing, but goes beyond the scope of this paper.

DC connections, as will be needed for HVDC links,
can be represented by using the standard connectors of the
Modelica.Electrical.Analog library.

4.4 Ports and Common Base Classes
AC components are connected via TerminalAC connec-
tors, which contain the minimum amount of independent
quantities needed to represent the physical interaction of
two or more components by means of connection equa-
tions, namely, the phase-to-ground and line current RMS
phasors. In fact, there are many other related variables
that could be used both for modelling and monitoring
purposes: the phase-to-phase voltage phasor, the per-unit
voltage and current phasors, the voltage and current mod-
ulus and phase angle, the active, reactive, and complex
power flowing through the connector, etc.

All these quantities and the equations relating them to
the phase-to-ground voltage and line current phasors are
thus defined once and for all in the PortAC model, so
they don’t need to be re-defined every time a new com-
ponent model is developed. In fact, since some of these

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

632 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157627

partial model OnePortAC
parameter Types.Voltage UNom;
parameter Types.ApparentPower SNom;
parameter Boolean portVariablesPu = true;
parameter Boolean portVariablesPhases = false;
parameter Boolean generatorConvention = false;
parameter Types.Voltage UStart = UNom;
parameter Types.Angle UPhaseStart = 0;
parameter Types.ActivePower PStart = SNom;
parameter Types.ReactivePower QStart = 0;

PowerGrids.Interfaces.TerminalAC terminal;
PortAC port(

final v = terminal.v, final i = terminal.i,
final UNom = UNom, final SNom = SNom,
final portVariablesPu = portVariablesPu,
...
final PStart = PStart,
final QStart = QStart,
...);

outer Electrical.System system;
end OnePortAC;

Figure 1. Code of OnePortAC base class

quantities are not always needed in all models, they are
conditionally defined based on boolean parameters. For
example, portVariablesPu activates the definition of
per-unit port variables, as well as the corresponding bind-
ing equations.

Power transmission and distribution system models
are usually represented by single-line diagrams, whereby
components are only connected to the ground internally
where needed (e.g. for shunt admittances in transmission
lines), but there is no need to show the connections to
ground explicitly at the system level. Hence, each port
corresponds to a single connector, not to a pair of connec-
tors, as in the case of DC component models.

It is then possible to define two base classes, one for
one-port components such as generators, load, and capac-
itor banks, that correspond to nodes in single-line connec-
tion diagrams, and the other for two port-components such
as transformers and transmission lines. These base classes
contain the terminal connector(s), the instance(s) of the
port(s), and the start values of port voltage phase and an-
gle as well as of the active and reactive power flowing into
the port, which will be the basis for initialization, see Sec-
tion 4.5. Fig. 1 shows the implementation of OnePortAC,
abridged for conciseness.

All one- and two-port AC components can then be writ-
ten by extending from these two base classes, directly us-
ing port variables such as the active power entering the
port port.P, the per-unit voltage phasor port.vPu or
the voltage phase angle port.UPhase in the model equa-
tions.

It is then possible to define the OnePortACdqPU base
model, which extends OnePortAC by adding the equa-
tions that define Park’s transformation between voltages
and currents in the port rotating frame of reference and the
direct and quadrature per-unit voltages vdPu,vqPu and

currents idPu,iqPu in the machine rotating frame of ref-
erence. This allows to directly write the machine models
using per-unit variables in the rotor frame of reference, as
it is normally done in textbooks, without bothering about
defining Park’s transformation, which is already provided
by the base class of the library.

This design is extremely user-friendly even for a novice
Modelica developer, because it is very straightforward. It
provides many of the variables that are usually involved in
power system component models, and ultimately allows
to focus on writing the actual model in a declarative way,
without wasting time on coding standard and well-known
basic definitions and transformations times and again.

4.5 Strategies for Initialization
The traditional strategy for initialization in power system
simulation tools is to have dedicated initialization models
to calculate initial values for the system states based on
boundary values. Indeed, TSOs only have observability
on their own network, which means that the initial val-
ues available are the bus values - voltage, active and re-
active flows into the bus - and not the set point values for
the different injections (machines, loads, static VAR com-
pensators, etc.). It is then necessary to derive these initial
values from the bus values: the causality of this problem
is opposite to the one from the time-domain problem in
which the fixed set points enable to calculate the bus val-
ues. In current power system software, the approach is
to manually derive the sequence of computations required
to solve the system for the initial values starting from the
boundary values.

This strategy, that was also followed in the design
of the iPSL library, has the advantage of splitting the
system-wide initialization problem into a large number
of small initialization problems, which are solved locally
for each component connected to the grid, and is histor-
ically proven to be reliable also on very large-scale sys-
tems. On the other hand, it follows a traditional procedu-
ral approach, which is particularly inconvenient because it
basically requires to re-write all the model equations two
times, one for the simulation and one for the initialization,
the only difference being the causality of the solution.

The PowerGrids library implements two declarative ini-
tialization strategies, based on the use of initial equations,
that can be selected from the system object. The start-
ing point in both cases are the initial values of the volt-
age magnitude and angle, active and reactive power at the
component ports, see Fig. 1. These values can be the
result of a power-flow computation carried out with a spe-
cialized tool, or they could be computed running a Model-
ica power-flow model, see Section 5.5, or they could come
from the TSO/DSO online grid monitoring system.

A key provision in both cases is the computation of start
values for a subset of variables that show up in a nonlin-
ear fashion in all models, e.g., the machine angle,vwhich
is the argument of sine and cosine functions, and the di-
rect and quadrature values of rotor current and voltage,

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

DOI Proceedings of the 13th International Modelica Conference 633
10.3384/ecp19157627 March 4-6, 2019, Regensburg, Germany

which are multiplied together to get the active and reactive
power, in synchronous machine models. This is performed
in a declarative way by writing as many initial equations as
necessary to compute those start values (which are fixed
=false parameters) from the port start values.

It is important to notice that the number of such equa-
tions is a small fraction of the total equations number
in the model, and also that it is not necessary to write
them down explicitly in the way they will be solved. It
is thus easy to check that they are correct by inspection,
because they are basically the same that show up in the
equation section, except that they have the start values
as unknowns instead of the model variables, and that they
lack all derivative terms (quasi-static initialization).

The first strategy replicates the traditional one, albeit
in a declarative way. In this case, initial equations fix
the currents values that are injected into the grid by the
generators, according to the results of the power-flow
calculations. The dependency analysis carried out by
the Modelica tool on the initialization problem, resulting
in the Block-Lower-Triangular (BLT) transformation, de-
termines that, starting from those values, it is possible
to solve the network equations, including transformers,
transmission lines and loads, to determine the correspond-
ing voltages. The corresponding problem is a very large,
sparse system of nonlinear equations; the convergence of
the iterative solver is guaranteed by the start values that
have previously been computed based on the power flow.

Once that is solved, both currents and voltages are
known at the generators’ boundaries, so the BLT anal-
ysis will automatically determine that the initialization
problems of each generator can be solved independently.
These will be automatically solved with the opposite
causality with respect to the simulation problem, again re-
lying on the computed start values to ensure the conver-
gence of implicit nonlinear equations, ultimately comput-
ing all the initial state values, as well as consistent values
of the governor and voltage regulators set-points, which
are given by fixed=false parameters.

The second strategy instead is to directly initialize the
whole system in steady-state, by adding initial equations
in the generators stating that the derivatives of all internal
states are zero. In this case, a very large nonlinear system
of equations will emerge from the BLT transformation of
the initialization problem, including all the components
of the system. Solver convergence can again be facilitated
by the start values mentioned previously, together with the
use of homotopy to deal with the controller and governor
saturations within the generator models, by first solving a
problem without controller saturations and then by gradu-
ally introducing them, by means of the homotopy() op-
erator.

This strategy can be used effectively to ensure a perfect
steady-state initialization without the need of any relax-
ation transient, in case the models used for the power-flow
analysis are not exactly consistent with the models used
in the Modelica system, e.g. because of simplifications in

Figure 2. PiNetwork

vA vAt vB

iA iAt iz iB

YA YB

Yk iAs iBs

vz

the loads. It is however hardly feasible in the presence of
discrete system-wide automata acting, e.g., on tap chang-
ers or phase shifters depending on the values of certain
voltages, currents, or power flows, because the solution of
the ensuing nonlinear mixed Real-Integer problem could
be infeasible.

It is also important to make sure that there are no
system-level singularity or ill-conditioning. For example,
if the system is not connected to an infinite bus, some pri-
mary frequency control needs to be present in the genera-
tor models. Otherwise, the steady-state initialization prob-
lem will be both over- and under-determined, since on one
hand the system frequency will not be well-defined, while
on the other hand the excess active power resulting from
the mismatch in the balance between the generators’ out-
put, the line losses, and the load consumption, will have
nowhere to go.

5 Prototype Library Models
5.1 Transmission Lines and Transformers
The base class PiNetwork defines a generic pi-network
with one series admittance Y , two shunt admittances at
each port YA and YB, and an ideal transformer with com-
plex tranformatio ratio k at port A, as shown in Fig. 2. It
extends TwoPortAC by adding the following 7 equations:

equation
// Kirchhoff’s laws

iAt = iz + iAs;
iBs = iz + iB;
vAt = vz + vB;

// Constitutive equations
vAt = k * vA;
iA = CM.conj(k)*iAt;
iAs = YA * vAt;
iBs = YB * vB;
iz = Y * vz;

From this base model, it is possible to derive many dif-
ferent models through inheritance. A transmission line is
obtained by making final k = 1 and by setting all the
admittances to be equal to parameters, which are kept con-
sant through the simulation; this is a commonly adopted
assumption, since the system frequency doesn’t change
much from the reference value. A transmission line with
breakers can instead be obtained by keeping Y , YA and YB
as time-varying variables, whose values are determined by
when clauses depending on the status of boolean breaker

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

634 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157627

opening signals. A fixed ratio transformer is obtained by
making Y , YA, YB, and k equal to parameters, while trans-
formers with tap changers and phase shifters can be mod-
elled by making the real part or the phase of k the result of
discrete equations modelling the control logic.

In the latter case, while the description of the physi-
cal behaviour is described declaratively in an equation
section, the control logic is described in an algorithm
section, which is more suited to describe the control logic
and state machine that govern the component’s behaviour.

Inheritance is used consistently in this case in order to
factor out common features, avoid code duplication and
keep the code base lean. However, the design is straight-
forward also for model developers who are Modelica new-
bies, since there is only one line of inheritance, whereby
each child object adds some specialization to define a
more specialized object, whose scope and definition is
easy to understand and corresponds to commonly used
concepts in power systems.

5.2 Loads
Load models can be implemented in a straighforward way
by extending the OnePortAC base class and by adding
the equations for the active and reactive power flows. For
example, the following model defines a voltage-dependent
PQ load:

U_URef = port.U / URef;
port.P = PRef*U_URef^alpha;
port.Q = QRef*U_URef^ beta;

PRef and QRef can be determined by parameters, or by
time-varying variables equal to an expression that is as-
signed with a binding equation when instantiating the
component, or by an input connector.

5.3 Synchronous Machine
Synchronous machines are a key component of power
transmission systems. The PowerGrids library contains a
full-fledged 4-windings machine model, to check how far
it is possible to push the declarative approach with non-
trivial models. Magnetic saturation was not included for
lack of time, but it could be added easily to the model.

The corresponding iPSL library model, a port of the
Eurostag machine model, is really difficult to understand:
the formulation heavily leans towards the procedural, and
would require a lots of extra documentation to explain
why each equation is written in the way it is. Consider-
ing also the initialization model, which is essential in or-
der to use the model, the model spans over 400 lines of
code. Once the original equations have been rewritten and
partially solved towards their solution to write the code,
reverse-engineering them back to their original formula-
tion is conceptually (as well as practically) impossible,
because some information was lost in the process. There-
fore, porting the iPSL library model into the PowerGrids
model was not really possible.

The right approach to write the model is instead to get
back to the original sources, in this case the theory man-

equation
// Flux linkages
lambdadPu = (MdPu+LdPu)*idPu + MdPu*ifPu + MdPu*iDPu;
lambdafPu = MdPu*idPu+(MdPu+LfPu+mrcPu)*ifPu+(MdPu+mrcPu)*iDPu;
lambdaDPu = MdPu*idPu+(MdPu+mrcPu)*ifPu+(MdPu+LDPu+mrcPu)*iDPu;
lambdaqPu = (MqPu+LqPu)*iqPu+MqPu*iQ1Pu+MqPu*iQ2Pu;
lambdaQ1Pu = MqPu*iqPu+(MqPu+LQ1Pu)*iQ1Pu +MqPu*iQ2Pu;
lambdaQ2Pu = MqPu*iqPu+MqPu*iQ1Pu+(MqPu+LQ2Pu)*iQ2Pu;
// Equivalent circuit equations in Park’s coordinates
if neglectTransformerTerms then

udPu = raPu*idPu - omegaPu*lambdaqPu;
uqPu = raPu*iqPu + omegaPu*lambdadPu;

else
udPu = raPu*idPu-omegaPu*lambdaqPu+der(lambdadPu)/omegaBase;
uqPu = raPu*iqPu+omegaPu*lambdadPu+der(lambdaqPu)/omegaBase;

end if;
ufPu = rfPu *ifPu + der(lambdafPu)/omegaBase;
0 = rDPu *iDPu + der(lambdaDPu)/omegaBase;
0 = rQ1Pu*iQ1Pu + der(lambdaQ1Pu)/omegaBase;
0 = rQ2Pu*iQ2Pu + der(lambdaQ2Pu)/omegaBase;
// Mechanical equations
der(theta) = (omegaPu - omegaRefPu) * omegaBase;
2*H*der(omegaPu) =

(CmPu*PNom/SNom-CePu) - DPu*(omegaPu-omegaRefPu);
CePu = lambdaqPu*idPu - lambdadPu*iqPu;
PePu = CePu*omegaPu;
PmPu = CmPu*omegaPu;
omega = omegaPu*omegaBase;

Figure 3. Equation section of the synchronous machine model

ual of the Eurostag software, which unfortunately lacks
some crucial details, and eventually to the classic book
(Kundur, 1994). The machine model is built by extending
from the OnePortACdqPU base class, that pre-defines all
the variables down to the per-unit voltages and currents
on the rotor direct and quadrature axes, and then by just
adding the equations taken from the textbook that define
the relationship between currents and magnetic field, the
relationship between magnetic field, speed, and voltage,
and the mechanical power balance on the machine rotor.

The ensuing code, reported Fig. 3 is self-documenting:
a reader familiar with synchronous machine theory will
immediately recognize the model and understand exactly
what kind of behaviour it represents.

A further important point is worth discussing. The
equations shown in Fig. 3 use physical parameters (induc-
tances, resistances) which are hardly accessible. External
parameters that can be experimentally determined are usu-
ally given instead: some per-unit inductances and some
time constants. External parameters can be computed ex-
plicitly from internal, see (Kundur, 1994) with different
degrees of approximation, but not the other way round.

One can then extend the internally-parameterized
model, make the internal parameters final and with
fixed = false, add the external parameters, and finally
add the initial equations relating the external parameters
to the internal ones as stated in the textbook. The Model-
ica tool will then automatically generate the code to solve
those equations backwards, computing the internal param-
eters from the external one.

The iPSL/Eurostag library model, instead, contains pro-
cedural code to carry out this operation, which is difficult
to understand unless accompanied by extensive documen-
tation, and a lot more difficult and error-prone to write.

It turns out that these equations are easily solved if the
approximate relationships are used, but they can give con-

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

DOI Proceedings of the 13th International Modelica Conference 635
10.3384/ecp19157627 March 4-6, 2019, Regensburg, Germany

vergence problem if the more accurate relationships are
used. This issue is brilliantly solved by the use of the
homotopy() operator, whereby the approximate relation-
ships are used for the simplified model and the accurate
ones are used for the actual model.

5.4 Controllers
Controllers such as AVRs, PSSs, and governors, are de-
fined in IEEE standards or guidelines, e.g. (IEEE PES-
TR1), (IEEE Std 421.5-2016) by means of block dia-
grams. The PowerGrids.Controls library contains the
implementation of basic building blocks which are not al-
ready available in the Modelica Standard library, either di-
rectly by means of equations, or by means of lower-level
block diagrams, if this is the way the block behaviour is
specified in the original document. The idea as usual is to
keep the Modelica representation of component behaviour
as close as possible to the original source documents.

A few representative controller models are also imple-
mented from the above-mentioned sources, e.g., the IEEE
ST4B Automatic Voltage Regulator, the IEEE PSS2A and
PSS2B Power System Stabilizers, and the IEEE TGOV1
turbine governor.

5.5 Power Flow
In case one wants to run a transmission system model
without the need of a separate tool to compute the
power-flow, one option is to set the power-flow prob-
lem up using Modelica, and to solve it with a Modelica
tool. The PowerGrids.Electrical.PowerFlow pack-
age contains models built for this purpose. Some of them,
e.g. the transmission line and the infinite bus, extend the
regular models by just changing some appropriate default
parameter values. Others, like the PV generators, the PQ
load, and the slack node, are easily built by extending from
OnePortAC and simply adding one or two equations to
determine the corresponding variables.

This is not meant to be a replacement of existing power-
flow tools, particularly for very large-scale models that
may include additional outer loops around the inner power
flow calculations, such as PV/PQ node switching, dis-
tributed slack node or automata simulations. However, the
ability of solving smaller power-flow problems, whose re-
sults are required to initialize the dynamic models, could
be interesting for smaller-size studies, for example by stu-
dents that do not have access to commercial power flow
tools.

6 Model Verification and Validation
Each component of the PowerGrids library has been veri-
fied in simple simulations with known analytical solution.

Specifically, the transmission line, transformer, and
load models were verified in a number of simple cases
with few non-zero parameters, for which the manual com-
putation of voltages and power flows is straightforward.

The synchronous machine model was verified by suc-
cessfully replicating the results of a worked-out exercise in

(Kundur, 1994), checking that all internal parameters are
computed correctly, and that the steady-state behaviour
corresponds to the values reported in the book. The dy-
namic behaviour of the synchronous machine was vali-
dated in a simple system also including a transformer, a
transmission line, and an infinite bus, starting in steady
state and applying step changes to the mechanical power
input and to the excitation voltage input.

All the above-mentioned test cases were replicated us-
ing the iPSL library and collected in the companion library
PowerGridsIPSLValidation. The results of all tests
matched with very good accuracy.

The test system described in (ENTSO-E SG SPD Re-
port, b), which also includes a governor, an automatic
voltage reguator, and a power system stabilizer following
IEEE standards, was built with the PowerGrids library. All
the test results of the report were reproduced satisfactorily.

The testing activity (as well as the library develop-
ment) was carried out using the OpenModelica tool, using
both the standard ODE mode, where the system model is
causalized by the tool and then integrated with an ODE
solver, and the experimental DAE mode (see (Braun et al.,
2017)) that directly solves the DAEs. Note that, although
the DAE equations are sparse, the ODE equations are
not, due to the instantaneous interaction among all the
generators induced by the phasor-based, quasi-static grid
model, making DAE mode integration mandatory for sys-
tems with more than a few generators.

Finally, the suitability of the library to describe large-
scale systems was tested with an ad-hoc scalable test grid
model. The model contains a rectangular grid of N ×M
nodes, where each node is connected to its four neighbours
by equal transmission lines; a synchronous generator is
connected via a step-up transformer to each node, and also
feeds a local load. The grid is initialized with a trivial
power flow, whereby the active and reactive power of each
generator is consumed by the local load, so that the grid is
unloaded and all the grid nodes have the same voltage.

Tests were carried out successfully with OpenModel-
ica on a Xeon 2650 CPU with 72 GB of RAM, using the
IDA DAE solver and the Kinsol sparse nonlinear solver
(both using KLU as sparse linear solver), on systems of
size up to N = 64 and M = 64, which correspond to about
4000 nodes, 750.000 differential equations, and one mil-
lion initial equations. However, the simulation perfor-
mance above 500 nodes scales quite badly with the size,
most likely due to the high number of cache misses caused
by the large size of the executable code (over 100 MB).
Above this size, Modelica tools capable of exploiting ar-
rays when generating simulation code would be required.
Research is currently starting in this area, but no such tool
is yet available at the time of this writing.

7 Conclusion and Future Work
This paper lays out the requirements for an electro-
mechanical power generation and transmission system

Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a
Reference Power System Library

636 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157627

modelling library. Such a library could be used by TSOs
and DSOs for daily activity up to and including pan-
european network stability assessment.

The prototype library PowerGrids presented in this pa-
per was developed according to these requirements using
the full power of the Modelica language, namely equation-
based and fully declarative models, model-solver separa-
tion, complex variables, SI units and clear textbook ref-
erences, while keeping the source code of library accessi-
ble for non-Modelica experts, which is not the case with
power system existing libraries. The authors believe that
the approach taken in the design of this library maximizes
the likelihood that experts in power transmission systems
in both industry and academia make the transition to Mod-
elica for their modelling work, avoiding the need of a too
steep learning curve that could hinder it.

This prototype library also offers an option for stu-
dents and academics to work with the same data and mod-
els. It provides them a direct and transparent way to the
used equations thus facilitates the potential discussions be-
tween modelling expert and helps improving the general
quality of power system models available.

The PowerGrids library will serve as a basis for a larger
and more consequent work to provide a reference library
for electro-mechanical and electro-magnetic grid models
which will ease a wider acceptance of Modelica in the
power system community, particularly for network stabil-
ity studies. This library development will hopefully be
conducted in a Horizon 2020 European research project
currently under preparation.

It is planned to release the PowerGrids library as open
source during the year 2019.

References
T. Bogodorova, M. Sabate, G. León, L. Vanfretti, M. Halat, J.-

B. Heyberger, and P. Panciatici. A modelica power-system
library for phasor time-domain simulation. In Proc. 4th IEEE
PES ISGT Europe, 2013.

Willi Braun, Francesco Casella, and Bernhard Bachmann. Solv-
ing large-scale Modelica models: new approaches and exper-
imental results using OpenModelica. In Proc. 12th Interna-
tional Modelica Conference, pages 557–563, Prague, Czech
Republic, May 15–17 2017. doi:10.3384/ecp17132557.

Francesco Casella and Willi Braun. On the importance of scaling
in equation-based modelling. In 8th International Workshop
on Equation-Based Object-Oriented Modeling Languages
and Tools, EOOLT 2017, pages 3–7, Wessling, Germany, Dec
1 2017. doi:10.1145/3158191.3158192.

Francesco Casella, Andrea Bartolini, Simone Pasquini, and
Luca Bonuglia. Object-oriented modelling and simulation of
large-scale electrical power systems using Modelica: a first
feasibility study. In Proceedings of the 42nd Annual Confer-
ence of the IEEE Industrial Electronics Society IECON 2016,
pages 0–6, Firenze, Italy, Oct. 24-27 2016. IEEE, IEEE.
ISBN 978-1-5090-3474-1.

Francesco Casella, Alberto Leva, and Andrea Bartolini. Sim-
ulation of large grids in OpenModelica: reflections and
perspectives. In Proc. 12th International Modelica Con-
ference, pages 227–233, Prague, Czech Republic, 2017.
doi:10.3384/ecp17132227.

A. Chieh, P. Panciatici, and J.Picard. Power system modeling in
Modelica for time-domain simulation. In Proc. PowerTech.
IEEE, June 2011.

ENTSO-E SG SPD Report. Analysis of CE inter-area
oscillations of 1st december 2016. Technical report,
a. URL https://www.entsoe.eu/publications/
system-operations-reports/.

ENTSO-E SG SPD Report. Documentation on con-
troller tests in test grid configurations. Technical report,
b. URL https://www.entsoe.eu/publications/
system-operations-reports/.

ENTSO-E System Protection and Dynamics WG Report.
Oscillation event on 3 december 2017. Technical report.
URL https://www.entsoe.eu/publications/
system-operations-reports/.

A. Guironnet, M. Saugier, S. Petitrenaud, F. Xavier, and
P.Panciatici. Towards an open-source solution using Mod-
elica for time-domain simulation of power systems. In Proc.
8th IEEE PES ISGT Europe, Sarajevo, Bosnia and Herzegov-
ina, Oct 21–25 2018.

IEEE PES-TR1. Dynamic models for turbine-governors in
power system studies. Technical report, IEEE-PES, 2013.

IEEE Std 421.5-2016. IEEE recommended practice for excita-
tion system models for power system stability studies. Tech-
nical report, IEEE, 2016.

iTesla. iTesla: Innovative Tools for Electrical System
Security within Large Areas. URL http://www.
itesla-project.eu.

Prabha Kundur. Power System Stability and Control. McGraw-
Hill, 1994.

G. León, M. Halat, M. Sabate, J.-B. Heyberger, F.J. Gomez, and
L. Vanfretti. Aspects of power system modeling, initialization
and simulation using the Modelica language. In Proc. 2015
IEEE PowerTech, Eindhoven, The Netherlands, 29 Jun–2 Jul
2015. IEEE.

Pegase. Pegase: Pan european grid advanced simulation and
state estimation. URL http://www.fp7-pegase.com.

R.Viruez, S. Machado, L.-M. Zamarre no, G. León, F. Beaude,
S. Petitrenaud, and J.-B. Heyberger. A modelica-based tool
for power system dynamic simulations. In Proc. 12th Inter-
national Modelica Conference, Prague, Czech Republic, May
15–17 2017.

D. Winkler. Electrical power system modelling in Modelica -
comparing open-source library options. In Proc. 58th SIMS,
Reykjavik, Iceland, Sep 25–27 2017.

R. Yan, N. Al-Masood, T. Kumar Saha, F. Bai, and H. Gu.
Anatomy of the 2016 south australia blackout: a catastrophic
event in a high renewable network. IEEE Trans. on Power
Systems, 33(5), Sep 2018.

DOI Proceedings of the 13th International Modelica Conference 637
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 6A: BUILDINGS 4
The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems
Hadengue, Bruno and Scheidegger, Andreas and Morgenroth, Eberhard and Larsen, Tove A.

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving
Vannahme, Anna and Schrag, Tobias and Ehrenwirth, Mathias and Ramm, Tobias

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System
Senkel, Anne and Bode, Carsten and Schmitz, Gerhard

.

638 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

DOI Proceedings of the 13th International Modelica Conference 639
10.3384/ecp19157639 March 4-6, 2019, Regensburg, Germany

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot
Water Systems
Hadengue, Bruno and Scheidegger, Andreas and Morgenroth, Eberhard and Larsen, Tove A.

639

The WaterHub Modules: Material and Energy Flow Analysis of
Domestic Hot Water Systems

Bruno Hadengue1,2 Andreas Scheidegger1 Eberhard Morgenroth1,2 Tove A. Larsen1

1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
bruno.hadengue@eawag.ch

2ETH Zurich, Institute of Environmental Engineering, 8093 Zürich, Switzerland

Abstract
Domestic Hot Water (DHW) systems are large energy
consumers in newly-built residential buildings. Mitiga-
tion measures involve more efficient hot water appliances
and distribution systems, waste heat recovery systems, or
changes in consumer habits. However, the implementa-
tion of these measures must be investigated carefully, as
combinations may lead to unforeseen systemic interac-
tions limiting their potential. In this article, we present
tools to identify and optimize these interactions. The
WaterHub modules were developed for Material and En-
ergy Flow Analyses (MEFA) of domestic hot water sys-
tems. Two modules are available: (i) the WaterHub Mod-
elica library includes models for MEFA system definition,
and (ii) The HydroGen Python module provides methods
for the stochastic generation of appliance-specific hydro-
graphs, used as input data for the simulation of the system
energy and water flows. First, we describe the technical
aspects of these modules. Second, we provide an example
of how they may be used in a didactic scenario analysis of
a heat recovery device.

Keywords: Domestic Hot Water Systems, Material and
Energy Flow Analysis, Modelica Library, stochastic de-
mand modeling

1 Introduction
If space heating is historically the largest energy con-
sumer in Swiss households, the share of Domestic Hot
Water (DHW) is growing larger as the energy-efficiency
of buildings envelopes dramatically increased over the last
decades (Meggers and Leibundgut, 2011). In the Nether-
lands, with a climate similar to Switzerland, Frijns, Hof-
man, and Nederlof (2013) have shown that 50% of the
natural gas demand of newly-built houses is attributed to
warm water production.

A broad range of technologies is available to reduce the
share of DHW primary energy consumption at household
level: improvements regarding hot water production and
distribution, measures targeting warm water demand, and
wastewater heat recovery strategies may positively impact
the system efficiency (Lazarova, Choo, and Cornel, 2012).

However, the energetic system integration of upcoming
DHW technologies must be investigated carefully. Sitzen-

frei, Hillebrand, and Rauch (2017) highlighted inter-
level competition when decentralized heat recovery appli-
ances at shower-level were implemented simultaneously
to sewer-level energy recovery facilities. The simulated
performance drop of the latter reached in this case 40%.
We hypothesize that other system combinations at house-
hold level may show similar competitive or synergetic be-
haviors that shall be identified in order to promote optimal
strategies.

In addition to technological interactions, behavioral
interactions impact system integration strategies. It is
widely recognized that energy and water consumption at
household level are strongly influenced by consumer be-
havior (Pakula and Stamminger, 2015). Nevertheless, the
influence of consumption patterns on the systemic energy-
efficiency and cost-efficiency of selected technologies is
seldom acknowledged. Hendron et al. (2009) were among
the first researchers to recognize the issue. Later, Kenway
et al. (2012) performed one of the first Material and En-
ergy Flow Analysis (MEFA) of water-related energy flows
in households, making use of stochastic demand equa-
tions. Although reliable models of water consumption are
emerging (Weber et al., 2005; Blokker et al., 2010; Hen-
dron et al., 2010; Penn et al., 2017), many energy-focused
investigations of DHW systems still lack the handling of
realistic consumption flows.

We hypothesize that investigations of system integra-
tion of DHW technologies will be significantly facilitated
by the development of a modeling tool fulfilling the fol-
lowing requirements:

1. Flexible and straight-forward definition of complex
DHW systems. The modeler should be able to graph-
ically construct technical models, integrating and
combining DHW technologies from a library of sub-
models.

2. The modeling environment should follow the formal-
ism of MEFA approaches as first described by Brun-
ner and Rechberger (2004), to allow for scenario
analyses and provide a standard framework for ad-
ditional comparisons, e.g., Life Cycle Assessments
(LCA) or Multi Criteria Decision Analysis (MCDA).

3. In the model, consumer interaction with DHW appli-
ances (showers, taps, dishwasher, etc.) should trigger

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

640 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157639

upstream (water heaters, distribution systems) and
downstream (heat recovery systems, water recycling
units) energy and water flows. The model is demand-
triggered.

4. The modeler should have full control of water con-
sumption patterns, feeding either (i) stochastic flows
or (ii) deterministic flows to single DHW appliances
in the technical model.

Tools specifically designed to model DHW systems
have emerged within the TRNSYS (Maguire et al., 2011)
or the Microsoft .NET environments (Springer et al.,
2008), with state-of-the-art treatment of heat losses in
pipes. However, these tools do not fulfill all above require-
ments, as they lack the flexibility of a library of models the
modeler can pick from (1), the MEFA formalism (2), and
full control over the consumption scenarios to be fed to
the model (3).

Modelica, an equation-based, object-oriented program-
ming language, offers high flexibility, hierarchical li-
braries of models and easy graphical definition of complex
systems. Existing Modelica libraries developed for whole
building simulation purposes are very powerful and versa-
tile tools that meet (and usually exceed) requirement (1),
such as the Buildings Library (Wetter, Zuo, and Nouidui,
2014), or more generally IEA Annex 60 based libraries
(Christoph et al., 2015). However, these libraries were
not developed to follow the MEFA formalism (2), lack the
demand-triggered model behavior (3) and full control over
domestic hot water flows (4).

Although these libraries may be adapted to meet the
above requirements, the purpose of using MEFA for-
malism (requirement 2) is to provide environmental re-
searchers, already acquainted with similar analyses such
as LCA, tools that do not require extensive knowledge in
building simulation practices. In this sense, the MEFA re-
quirement allows for significant simplification of the mod-
els developed in libraries originally meant for building or
district simulations. We thus considered more appropriate
to build a dedicated Modelica library rather than down-
grading and complementing existing libraries. However,
work is conducted to assess the use of the Annex 60 library
base interfaces, in order to facilitate potential future inte-
grations. We add that the choice of outsourcing the gener-
ation of model water flows to an external Python module
was motivated by the complexity of stochastic modeling
in Modelica.

We present in this article the WaterHub modules, com-
bining a custom Modelica library for DHW technologies
and a Python module for the modeling of demand flows.
We describe the implementation and typical use of the
tools, and provide an implementation example.

2 The WaterHub Modules
Figure 1 shows a typical workflow using the WaterHub
modules for the simulation of DHW system properties,

for instance the systemic energy efficiency. We present in
this section the MEFA formalism overarching the Water-
Hub modules and technical descriptions of the modules.
The early stage of development of the modules does not
yet allow for an open release, however access to the Git
repositories will be granted on request.

2.1 MEFA Formalism
Material Flow Analysis (MFA) and its extended version
Material and Energy Flow Analysis (MEFA) are described
by Brunner and Rechberger (2004) as the “systematic as-
sessment of the flows and stocks of materials [and energy]
within a system defined in space and time”. The main idea
of MEFA is to quantify all flows of materials, i.e. con-
served quantities, between processes (any transport, trans-
fer, transformation or storage of materials) present in a
given system. Energy and mass conservation governs the
system:

Ein −Eout = Estored (1)

Min −Mout = Mstored (2)

This approach has the advantage of clearly separating
flows (or fluxes) and processes. A process can hence be as
complex as required by the application without impacting
the nature of the flows, as it essentially sets the value of
its output flows using transfer coefficients on input flows.
Moreover, an MFA often form the basis of LCA, as they
share part of their formalism.

2.2 WaterHub Modelica Library
The WaterHub Library contains models for the defini-
tion of MEFA systems, using a bottom-up modeling ap-
proach. Although inspired by the Modelica Standard Li-
brary (MSL) Fluid library, the models inputs and outputs
were simplified to water and energy flows only, in an at-
tempt to stick to the MEFA formalism. The following
packages are available:

• Base Classes: Defines the WaterPort and HeatPort
connectors, for the water and energy flows, respec-
tively. Water flows are described by a volumetric
flow in liters per second and a temperature. Express-
ing flows with volume instead of mass units is stan-
dard in DHW studies. The specific volumetric heat
capacity of water is set to 4179.6 J l−1K−1, corre-
sponding to water at 25 ◦C. Energy flows are ex-
pressed in Watts and have no related effort variable.

• Blocks: Contains the interface models with the
Python HydroGen module (see Section 2.3). Most
used is the Sources.HydrographFromFile
model that connects the output file from HydroGen
to appliances from the End-Use package.

• Appliances: Technologies at the interface between
the water consumer and the DHW system: showers,
taps, washing machines, dishwashers, WC, etc. In

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

DOI Proceedings of the 13th International Modelica Conference 641
10.3384/ecp19157639 March 4-6, 2019, Regensburg, Germany

Figure 1. Typical workflow highlighting the use of the WaterHub modules for the simulation of DHW system properties (e.g.,
energy efficiency, absolute water or energy consumption, etc.). The HydroGen module and WaterHub Modelica library provide the
tools for straightforward Monte-Carlo processes.

addition to the energy and water inputs and outputs,
these models have a data port, allowing the modeler
to link the model flows to an external file containing
the flows demanded by the appliance (outputs of the
HydroGen module, for instance, see section 2.3).

• ImportExport: Includes infinite sources and sinks
for imported/exported water and energy flows (flow-
ing in/out of the system). We note here that the flows
are not strictly mono-directional, but the existence of
sources and sinks suggests a natural flow direction.

• Pipes and Carriers: Contains models for water and
energy carriers. Note that water pipe models are usu-
ally based on first principles, although this is not
mandatory.

• DHW Systems: Building blocks of DHW systems,
e.g., boilers, reservoirs, etc. Includes also water or
wastewater-related technologies aiming at recover-
ing resources from wastewater, e.g., wastewater heat
exchangers or heat pumps, greywater treatment units,
etc. Depending on the needed complexity, models
may be based on first principle heat exchanges or
emulate steady-state performance. Similarly, addi-
tional energy requirements due to pressure losses or
pumping subsystems may be modeled with appropri-
ate detail.

2.3 HydroGen Python Module
The module provides methods for the stochastic gener-
ation of appliance hydrographs, i.e. time-resolved flow
curves. Events for a specific appliance are uniquely char-
acterized by (i) a starting time, (ii) a flow rate, (iii) a tem-
perature and (iv) a total event volume. These properties
are sampled from distributions defined by the modeler,

as described by Scheepers and Jacobs (2014). The mod-
eler provides a consumption scenario, a JSON-formatted
file containing information for the HydroGen module to
generate appliance-resolved domestic water events. The
purpose of the following code is to exemplify the JSON
structure of a consumption scenario. Here, HydroGen will
stochastically generate shower events for a family of five:

{
"totSimTime": 86400,
"simDays": 1,
"nbInhabitants": 5,
"distroFile":{
"fileName": "DistroFile.xlsx",
"skipRows": [0,1,2],
"useCols": "B:G, J"

},
"eventList": [

{"type":"Shower",
"flowDist":{

"dist":"loglogistic",
"loc":0.127,
"scale":4.158
},

"volumeDist":{
"dist":"loglogistic",
"loc":55.97,
"scale":2.828
},

"tempDist":{
"dist":"normal",
"loc":39,
"scale":2
}

}
]

}

The following sections describe the variables and pa-
rameters present in this exemplary consumption scenario.

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

642 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157639

2.3.1 Simulation variables

totSimTime, simDays and nbInhabitants are
general simulation variables. totSimTime defines the
time span, in seconds, over which the events should be
generated (default is 86400, i.e. 1 day). Note that this
number must be consistent with the simulated period in
the consequent simulation of the system energy and wa-
ter flows. simDays defines the number of days the
flows should be aggregated upon (default is 1). Lastly,
nbInhabitants defines the number of consumers for
the modeled appliance. In the present version of Hydro-
Gen, the number of events is sampled from a truncated
normal distribution with parameters based on the number
of inhabitants. Next step will be to implement a modeler-
defined discrete distribution for a full control of the num-
ber of events.

2.3.2 distroFile

The distroFile key lets HydroGen compute the fre-
quency distributions from an excel or comma-separated
values (.csv) file. distroFile contains the average
time-resolved flows (liters per time-step) for each appli-
ance. Flows are converted into frequencies, and the start-
ing time of events is sampled using an inverse transform
sampling process as described by Devroye (1986).

2.3.3 eventList

eventList describes the type of events to be generated.
In the above example, HydroGen will generate “Shower”
events. The events types are organized as a list, each com-
ponent of the list containing four fields:

• type is a string and describes the event type. It
should correspond to one column of distroFile.
Types can for instance be shower, WC, kitchen, wash
basin, etc.

• flowDist is the flow distribution, from which the
event flow is sampled.

• volumeDist is the total volume distribution, from
which the event total volume is sampled.

• tempDist is the event temperature distribution,
from which the event temperature is sampled.

Each distribution contains a dist field describing
which distribution should be used for the sampling of
the event parameter, and the required parameters describ-
ing the distribution shape. The distributions are con-
structed based on the NumPy.random Python package,
and the shape parameters are consistent with their NumPy
counterparts. In the present version, the modeler can
select one of the following distributions: log-logistic,
Weibull, Gamma, lognormal, normal, Rayleigh or uni-
form. The modeler can also set dist as constant, and
the software will return a constant value that overrides the
stochastic sampling procedure.

2.3.4 Output
HydroGen2.0 produces a .csv file that can be used
with models from the WaterHub Appliances package,
as described in Section 2.2. The file is formatted to be
compatible with the WaterHub.Blocks.Sources.
HydrographFromFile model, inspired by the
CombiTimeTable from the MSL. The file contains
three columns: (i) time, (ii) demanded flow (liters/second)
and (iii) demanded temperature (K). We provide here an
example (with default totSimTime = 86400 seconds):

#1
float FlowTable(86400, 3)
0, 0.1, 311.0
1, 0.1, 311.0
2, 0.0, 0.0

...
86399, 0.0, 0.0
86400, 0.0, 0.0

2.4 Typical Workflow
The HydroGen Python module and the WaterHub Mod-
elica library are designed to ease the workflow of DHW
systems MEFAs and allow fast scripting of single simula-
tions or Monte-Carlo processes. The workflow is schemat-
ically shown in Figure 1. Using the WaterHub Model-
ica library, the modeler defines the DHW system, includ-
ing all appliances, sources, sinks and water-related tech-
nologies contained in the system following the MEFA for-
malism. The model is saved as a Modelica file (.mo).
Within a Python simulation environment, the model is
compiled into a Functional Mock-up Unit (FMU). In this
work, the JModelica.org platform from Modelon was used
(Åkesson et al., 2010). HydroGen methods are used for
the stochastic generation of hydrographs, based on the
modeler-defined consumption scenario, and fed as input
for each of the DHW system appliances using the Func-
tional Mock-up Interface (FMI) standard (the open-source
PyFMI python package, part of the JModelica.org plat-
form, was used) (Blockwitz et al., 2012). Each Monte-
Carlo iteration provides the FMU with a new set of hydro-
graphs through the FMI. Average system properties and
their associated distribution are consequently computed,
giving insights into the dynamics of the system flows.

The variability across Monte-Carlo iterations is cur-
rently dominated by the user consumption behavior, as
the variability intrinsic to the system, for instance system
parameters, is considered negligible. Future versions of
the modules will account for system variability through
the implementation of weather variables and/or cold wa-
ter temperature profiles, for instance.

3 Example Scenario Analysis
Typical questions about system integration of water tech-
nologies are: (i) how has the system performance changed
with the implementation of the technology, and (ii) how
does the rest of system react, i.e. whether the performance
of upstream or downstream technologies is impacted by

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

DOI Proceedings of the 13th International Modelica Conference 643
10.3384/ecp19157639 March 4-6, 2019, Regensburg, Germany

(a
)

W
at

er
fl

o
w

s
in

ba
se

sc
en

ar
io

.
(b

)
E

n
er

g
y

fl
o
w

s
in

ba
se

sc
en

ar
io

.

(c
)

W
at

er
fl

o
w

s
in

he
at

re
co

ve
ry

sc
en

ar
io

.
(d

)
E

n
er

g
y

fl
o
w

s
in

he
at

re
co

ve
ry

sc
en

ar
io

.

Fi
gu

re
2.

S
an

k
ey

d
ia

g
ra

m
s

o
f

D
H

W
sy

st
em

s,
d

ai
ly

av
er

ag
es

o
f

w
at

er
an

d
en

er
g

y
fl

o
w

s
fo

r
th

e
2

0
0

0
-i

te
ra

ti
o

n
M

o
n

te
-C

ar
lo

p
ro

ce
ss

.
M

E
F
A

p
ro

ce
ss

es
ar

e
sh

o
w

n
as

g
re

y
b
o

x
es

,
sy

st
em

im
p

o
rt

s
an

d
ex

p
o

rt
s

ar
e

n
o

t
o

u
tl

in
ed

.

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

644 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157639

the implementation. We present here an example scenario
analysis. The objective is to provide a usage example of
the WaterHub modules for the analysis of a heat exchanger
implementation at shower-level. We investigate how the
heat exchanger impacts the system energy efficiency and
the systemic consequences of its integration.

Two technical scenarios were constructed graphically
using the models contained in the WaterHub Modelica li-
brary. The base scenario includes the following models:

• Sources and sinks (MEFA imports and exports):

– Infinite water and energy supply

– Infinite wastewater sink

– Infinite energy (or environmental) sink.

• An ideal instantaneous water heater

• Two ideal appliances, a shower and a kitchen tap.
Appliance flows are sampled from data generated
by Butler et al. (1995); Friedler and Butler (1996);
Scheepers and Jacobs (2014)

• Two 15m water pipes, losing energy to the surround-
ing environment (temperature = 23 ◦C). The plug-
flow modeling of the pipes followed the methodol-
ogy described by Hanby et al. (2002). The model
was validated by computing values similar to exper-
imentally measured overall heat transfer factors in
flowing conditions (about 0.62 Wm−1K−1 for a 1/2”
copper pipe of type L)(Hiller, 2006).

The heat recovery scenario includes all components
from the base scenario, but the shower appliance is in ad-
dition connected to a simple local heat exchanger that pre-
heats incoming cold water (set at 10 ◦C) with the shower
outlet water. The heat exchanger was modeled with a con-
stant steady-state performance curve, using Newton law
of cooling and approximating the heat exchange by two
thermally connected straight pipes with fluid flows in the
same direction. The governing equations read

T out
1 = T in

1 +
ΔT

(1+ j1/ j2)
α (3)

T out
2 = T in

2 − ΔT
(1+ j2/ j1)

α (4)

α = (1− e
γ

j1+ j2
L
) , (5)

with T X
i being the temperature of pipe i at position X , ΔT

the temperature difference at pipe inlets, and ji the flow
in pipe i. The variable α (Equation 5) describes the ef-
ficiency of the heat exchanger, a function of the heat ex-
change coefficients and exchange surface area (contained
in parameter γ), length of pipes L, and flows ji. In this fic-
titious example, α is approximated by a constant value.
With α = 0, no heat is transferred between the pipes,
while all the available heat is transferred as α = 1. We
set α = 0.7.

Figure 3. Daily energy imports in the base scenario and the heat
recovery scenario.

The results of a 2000-iterations Monte-Carlo process
following the workflow described in Section 2.4 are shown
in Figure 2 as Sankey diagrams. The diagrams present the
average daily water and energy flows of the base scenario
and the heat recovery scenario. The small water consump-
tion differences are numerical errors due to the limited
number of Monte-Carlo iterations and can be neglected
in the analysis. Under the assumptions of this didactic ex-
ample, we recognize how the implementation of the heat
exchanger has modified the average flows, increasing the
cold/hot water ratio in the shower appliance from 0.64 to
1.13, saving on average 1.22 kWh per day for the heat-
ing of hot water (from 6.73 kWh to 5.51 kWh primary
energy import). As the heater must now provide a daily
average of 95 l of hot water instead of 115.9 l in the base
scenario, we may suggest that a new dimensioning pro-
cess is required to optimize the water heater to the new
demand. In addition to mean flows, insights into system
dynamics may be very important. The frequency analysis
of the heater energy demand in Figure 3 shows that the
daily energy import distribution is narrower when a heat
exchanger is implemented, further indicating that as the
heater will operate in a lower, narrower range, the power
required by the heater may also be reduced. In addition,
we note that the heat exchanger has no impact on the en-
ergy lost by the water pipe, indicating the two subsystems
are not interacting.

4 Conclusions
The WaterHub modules are dedicated tools for the analy-
sis of water and energy flows at household level, following
the Materials and Energy Flow Analysis (MEFA) formal-
ism, thus providing easy-to-use tools for Life Cycle As-
sessment (LCA) or stand-alone simulations of Domestic
Hot Water (DHW) systems.

The WaterHub modules are useful for the identification
and analysis of technological and behavioral interactions
within DHW systems. In the simple application shown
in the example of Section 3, we showed that the addition

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

DOI Proceedings of the 13th International Modelica Conference 645
10.3384/ecp19157639 March 4-6, 2019, Regensburg, Germany

of appliance-level heat recovery systems may impact the
design and dimensions of upstream water heaters.

The WaterHub Modelica library provides the mod-
eler with sub-models for graphical MEFA system defini-
tion. The HydroGen Python module provides the modeler
with methods for the stochastic generation of appliance-
specific hydrographs. The hydrographs are linked to mod-
els from the Appliances package included in the Water-
Hub Modelica library. In this sense, the modeled DHW
system is demand-based, triggering upstream and down-
stream flows by simulating human-appliance interactions.
The clear distinction between technical scenarios (built
with the WaterHub Modelica library) and consumption
scenarios (processed into stochastic flows by the Hy-
droGen Python module) facilitates scenario analyses, as
shown in the provided example, by allowing the modeler
full control over appliance flows and focusing solely on
water and energy flows. The distinction is emphasized by
the use of two separate modules: the Python module han-
dles the stochastic modeling and the Modelica environ-
ment provides an excellent framework for the simulation
of DHW flows.

5 Acknowledgements
This work has been financially supported by InnoSuisse
within the SCCER EIP project.

References
J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and

H. Tummescheit. Modeling and optimization with Opti-
mica and JModelica.org - Languages and tools for solv-
ing large-scale dynamic optimization problems. Com-
puters & Chemical Engineering, 34(11):1737–1749, 2010.
doi:10.1016/J.COMPCHEMENG.2009.11.011.

T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss,
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,
D. Neumerkel, H. Olsson, and A. Viel. Functional Mockup
Interface 2.0: The Standard for Tool independent Exchange
of Simulation Models. In Proceedings of the 9th Interna-
tional Modelica Conference, September 3-5, 2012, Munich,
Germany, pages 173–184, 2012. doi:10.3384/ecp12076173.

E. J. M. Blokker, J. H. G. Vreeburg, and J. C. Van Dijk. Sim-
ulating Residential Water Demand with a Stochastic End-
Use Model. Journal of Water Resources and Manage-
ment, 136(1):19–26, 2010. doi:10.1061/ASCEWR.1943-
5452.0000002.

P. H. Brunner and H. Rechberger. Practical Handbook of Ma-
terial Flow Analysis. Boca Raton, FL : CRC/Lewis, 2004.
ISBN 1566706041 9781566706049.

D. Butler, E. Friedler, and K. Gatt. Characterising
the Quantity & Quality of Domestic Wastewater In-
flows. Water Science and Technology, 31(7):13–24, 1995.
doi:10.2166/wst.1995.0190.

N.-G. Christoph, M. Wetter, M. Fuchs, P. Grozman, L. Helsen,
F. Jorissen, M. Lauster, D. Mülle, D. Picard, P. Sahlin, and

M. Thorade. IEA EBC Annex 60 modelica library - An in-
ternational collaboration to develop a free open-source model
library for buildings and community energy systems. In 14th
Conference of International Building Performance Simula-
tion Association, BS 2015; Hyderabad; India, pages 395–
402, Hyderabad, 2015. International Building Performance
Simulation Association.

L. Devroye. Non-Uniform Random Variate Generation.
Springer-Verlag, New York, 1986.

E. Friedler and D. Butler. Quantifying the Inherent Uncer-
tainty in the Quantity and Quality of Domestic Wastew-
ater. Water Science and Technology, 33(2):65–78, 1996.
doi:10.2166/wst.1996.0038.

J. Frijns, J. Hofman, and M. Nederlof. The Poten-
tial of (Waste)Water as Energy Carrier. Energy
Conversion and Management, 65:357–363, 2013.
doi:10.1016/j.enconman.2012.08.023.

V.I. Hanby, J.A. Wright, D.W Fletcher, and D.N.T Jones. Mod-
eling the Dynamic Response of Conduits. HVAC & Research,
8(1):1–12, 2002. doi:10.1080/10789669.2002.10391287.

R. Hendron, J. Burch, M. Hoeschele, and L. Rainer. Potential
for Energy Savings Through Residential Hot Water Distribu-
tion System Improvements. In ASME 2009 3rd International
Conference on Energy Sustainability, Volume 2, pages 341–
350. ASME, 2009. doi:10.1115/ES2009-90307.

R. Hendron, J. Burch, and G. Barker. Tool for Generating Re-
alistic Residential Hot Water Event Schedules: Preprint. In
Golden, CO: National Renewable Energy Laboratory, 2010.

C. C. Hiller. Hot Water Distribution System Piping Heat Loss
Factors - Phase I: Test Results. In ASHRAE Transactions,
volume 112, pages 436–446, 2006.

S. J. Kenway, R. Scheidegger, T. A. Larsen, P. Lant, and H. P.
Bader. Water-Related Energy in Households: A Model De-
signed to Understand the Current State and Simulate Pos-
sible Measures. Energy and Buildings, 58:378–389, 2012.
doi:10.1016/j.enbuild.2012.08.035.

V. Lazarova, K. Choo, and P. Cornel. Water-energy Interactions
in Water Reuse. IWA Publishing, 2012. ISBN 184339541X.

J. Maguire, M. Krarti, and X. Fang. An Analysis Model for
Domestic Hot Water Distribution Systems: Preprint. In 5th
International Conference on Energy Sustainability and Fuel
Cells, 2011.

F. Meggers and H. Leibundgut. The Potential of Wastewater
Heat and Exergy: Decentralized High-Temperature Recovery
with a Heat Pump. Energy and Buildings, 43(4):879–886,
2011. doi:10.1016/j.enbuild.2010.12.008.

C. Pakula and R. Stamminger. Energy and Water Savings Po-
tential in Automatic Laundry Washing Processes. Energy Ef-
ficiency, 8:205–222, 2015. doi:10.1007/s12053-014-9288-0.

R. Penn, M. Schütze, M. Gorfine, and E. Friedler. Simula-
tion Method for Stochastic Generation of Domestic Wastew-
ater Discharges and the Effect of Greywater Reuse on Gross
Solid Transport. Urban Water Journal, 14(8):1–7, 2017.
doi:10.1080/1573062X.2017.1279188.

The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems

646 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157639

H. M. Scheepers and H. E. Jacobs. Simulating Residential In-

door Water Demand by Means of a Probability Based End-
Use Model. Journal of Water Supply: Research and Technol-
ogy, 63(6):476–488, 2014. doi:10.2166/aqua.2014.100.

R. Sitzenfrei, S. Hillebrand, and W. Rauch. Investigating the In-
teractions of Decentralized and Centralized Wastewater Heat
Recovery Systems. Water Science and Technology 2, 75(5):
1243–1250, 2017. doi:10.2166/wst.2016.598.

D. Springer, L. Rainer, M. Hoeschele, R. Scott, and R. Solutions.
HWSIM: Development and Validation of a Residential Hot
Water Distribution System Model. In ACEEE Summer Study
on Energy Efficiency in Buildings, pages 267–277, 2008.

A. Weber, J. Nipkow, A. Tschui, and M. Poretti. Methode zur
Berechnung des Jahresenergieverbrauchs von Warmwasser-
anlagen. Technical report, Amstein + Walthert AG, 2005.

M. Wetter, W. Zuo, and T. S. Nouidui. Modelica Buildings
Library. Journal of Building Performance Simulation, 7(4):
253–270, 2014. doi:10.1080/19401493.2013.765506.

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

DOI Proceedings of the 13th International Modelica Conference 647
10.3384/ecp19157647 March 4-6, 2019, Regensburg, Germany

Comparison of a usual heat-transfer-station with a hydraulic modified version
under the aspect of exergy saving
Vannahme, Anna and Schrag, Tobias and Ehrenwirth, Mathias and Ramm, Tobias

647

Comparison of a usual heat-transfer-station with a hydraulic

modified version under the aspect of exergy saving

Anna Vannahme1 Tobias Ramm1 Mathias Ehrenwirth1 Tobias Schrag1
1Institute of new Energy Systems, University of Applied Sciences Ingolstadt, Deutschland,

anna.vannahme@thi.de

Abstract
In this paper, a modeling approach for comparing two

heat-transfer-stations (HTS) is presented. By comparing

a usual HTS with a modified HTS, where the return

temperature on primary side of the district heating

network (DHN) is used for heating the domestic warm

water (DWW), it can be shown that utilizing the return

flow of the heating positively contributes to a reduction

of temperatures within a DHN and in this way saves

exergy. The simulation model is implemented in

Modelica.

Keywords: heat-transfer-station, hydraulic system,

control design, district heating, single-family house

1 Introduction

In order to achieve the German government’s aims of

covering 60 % of gross final energy consumption by

renewable energy sources in 2050 (Bundesministerium

für Wirtschaft und Energie, 2018), it is necessary to

expand DHN and increase the economic efficiency of

existing DHN. Especially in rural areas with a low

specific heat demand, the economical operation of DHN

is challenging. To cope with these challenges, this paper

focusses on non-retrofitted single-family homes as heat

consumers, which accounts for a high proportion of

houses in rural areas. The return temperatures are a

decisive factor for reducing heat losses and improve

overall efficiency. The hydraulic setup of a HTS has a

great impact on the level of return temperatures

(Johansson et al., 2009). For this reason, a measurement

based and simulative comprehensive investigation of

different HTS will be done. The first step in this

comprehensive investigation is to simulate and analyse

different HTS. A test rig for space-heating systems in

residential buildings is currently under development to

carry out measurement based investigations of HTS and

to validate the simulation model. Later on, this test rig

will be combined with Modelica and thus used for

Hardware-in-the-loop (HiL) simulation.

In the field of measurement based investigations, the

University of Applied Sciences in Munich has

investigated HTS for apartment buildings with focus on

DWW heating and lowering return temperatures

(Stadtwerke München et al., 2014). Due to associated

more complex hydraulic setups, apartment houses are

mostly the objects of such investigations (Knierim,

2007; Triesch and Weinmann, 2008; Overhage, 2016).

The aqotec GmbH makes a concept proposal for a HTS,

where the primary return of DHN from the heating

system is used for heating the DWW (aqotec GmbH,

2011). This concept is adopted in this research article

and implemented within the simulation model.

In the recent years, modelling of DHN by using

Modelica increased (Heissler et al., 2016; Fuchs et al.,

2013). Also, HiL simulations with Modelica are

currently conducted (Baltzer et al., 2014; Knorr et al.,

2016).

As aforementioned, the first steps are to simulate

different HTS. Therefore, a usual HTS with a DWW

storage is compared with a modified HTS, where the

DWW storage is used for further cooling of the primary

return of DHN. The question posed in this article is,

whether a slight change in the hydraulic system and

control strategy can profitably reduce the return

temperatures in periods with space heating. The

question will first be answered on an exergetic basis and

then by analysing the return temperatures. An

investigation based on exergy analysis is quite common

(Falk, 2018; Sartor, 2017; Mollenhauer et al., 2016;

Jentsch, 2018). Also, a Modelica based tool for the

dynamic exergy analysis is developed by Sangi et al.

(2017).

To introduce the key terms of a district heating

system, Figure 1 shows a schematic setup of a DHN,

which consists of the following components:

 A central heating station, e.g. a combined heat and

power unit or biomass heating plant

 One piping for the warm water feed and one piping

for the returning water, which flowing back from

the consumers

Figure 1. Scheme of a district heating network.

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

648 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157647

A HTS is the connection between the DHN and the

heating system of a building. Usually, the feed

temperature of DHN ranges between 70 °C and 130 °C

(Dötsch et al., 1998). The heating system of residential

buildings has two different load profiles. One is the

heating system, (radiator or floor heating system) the

other one is the DWW. Table 1 shows the temperature

level of each system. Usually, the temperature of the

heating circuit is controlled depending on the outdoor

temperature. The supply temperature for radiator

systems in Table 1 is an orientation value for non-

retrofitted buildings. In general, the HTS includes a

hydraulic separation between the water in the DHN and

the water inside the heating system. In any case, the

DWW preparation is separated for hygienic reasons.

Table 1. Supply temperature level of heating systems for

residential buildings (Diefenbach et al., 2002; Euroheat &

Power, 2008)

Heat Supply temperature level

Radiator system 70 °C

Floor heating 35 °C

DWW 60 °C

Typically there exist two types of HTS for single-

family houses, which can be distinguish in the way of

(DWW) preparation (Euroheat & Power, 2008):

 The indirectly connected substation for

instantaneous water heaters (see Figure 2)

 Heaters with warm water storage tank (see

Figure 3)

The HTS with instantaneous water heater has two

parallel plate heat exchangers. In the case of heat

demand, the domestic cold water (DCW) gets heated

instantaneously. Therefore, a controller on the primary

side is necessary, which receives the actual temperature

from the secondary side and adjusts the mass flow on

the primary side accordingly. There are different

possibilities for controlling this mass flow such as

motor-controlled or thermostatic controlled valves. In

the first case, a controller gets the input from the

temperature sensor and modulates a control signal

according to the adjusted set point value, in the second

case the thermostatically operated valve operates

without the supply of auxiliary energy.

Figure 2. Instantaneous HTS.

There are two ways to design a HTS with a heat

storage tank. The storage tank can be connected either

on the primary or on the secondary side of the DHN. On

the primary side, an external or internal heat exchanger

ensures the hydraulic separation from the heat transfer

medium of the DHN. Usually, an internal stainless steel

pipe is used to charge the DWW storage tank.

Furthermore, external heat exchangers may be used to

load the heat storage.

Figure 3. Storage HTS.

While the HTS with an instantaneous water heater

requires a high nominal heat flow rate, the HTS with

storage has the disadvantage of high return

temperatures, unless a special control algorithm for the

stratification of the heat storage is implemented. The

hygiene is the particular advantage of instantaneous

HTS. Storing warm water below 60 °C increases the

formation of Legionella. Therefore, a daily heating up

above 60 °C is also recommended for single-family

houses (Deutsche Vereinigung des Gas- und

Wasserfaches, 2004). Correlating the DWW demand

with an appropriate design of the heat storage ensures

the daily exchange of water and thus a hygienic

drinkable water.

The integration of a heat storage tank opens various

opportunities such as the absorption of the heat from the

return of the heating system on the primary side.

Therefore, a modified system of the HTS with storage

tank, hereinafter referred to as “Advanced Storage

System” (see Figure 4), is proposed. Compared to the

conventional setup of a HTS with storage tank,

hereinafter called “Basic Storage System“ (see Figure

3), the advanced configuration is expanded by a three-

way-valve (2) (see Figure 4). By means of valves (1) and

(2) the charging of the heat storage by a Direct Digital

Controller (DDC) is controlled. If the temperature

inside the heat storage is too low for satisfying the

DWW demand, the storage tank is charged from the

DHN feed, valve (1) opens and the output (B) of valve

(2) is closed (see Figure 4). The storage tank is charged

when a defined temperature is reached in the top layer.

Figure 4. Modified storage HTS charging from DHN feed

(case 1).

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

DOI Proceedings of the 13th International Modelica Conference 649
10.3384/ecp19157647 March 4-6, 2019, Regensburg, Germany

If the heat storage tank is charged in the top layer, the

lower layers may still be colder than the heating return.

This allows transporting the returning mass flow of the

heat exchanger through the heat storage tank to cool

down further the returning mass flow (see Figure 5). In

this case, valve (1) closes and valve (2) opens output

(B).

Figure 5. Modified storage HTS in case of return cooling

(case 2).

If the lower layers of the heat storage tank have

reached the temperature of the heating return, the

heating return is routed directly to the return of the

network (Figure 6). In this case, valve (1) closes and

valve (2) closes output (B).

Figure 6. Modified storage HTS in case of fully charged

storage (case 3).

2 Methodology

For the simulation of the HTS with subsystems like

buildings and heating networks in future work, a

modular, acausal approach with Modelica language in

combination with the software tool Dymola is chosen.

The modular approach enables to modify subsystems

without the necessity to change other parts of the

modeled energy system. The specific acausal modeling

approach of Modelica is useful to simulate the HTS later

on in a bidirectional way.

For a first estimation of the exergetic saving, a

simulation model of both the conventional as well as the

more complex HTS with storage tank was proposed.

This enables a fair comparison of both systems under the

same boundary conditions. The HTS can be tested

regarding their function even under extreme conditions,

which can be rarely observe in reality.

Figure 7 illustrates a simplified scheme of the

modeled HTS. To emulate the DHN, an ideal source and

sink with constant pressure as supply and return are

used. The return path of heating and DWW is in each

case a boundary with a defined temperature and mass

flow rate, which emulates the respective heat demand.

The value of the mass flow rate comes from a connected

table. The tables contain the heat demand profile

according to VDI 4655 (2008). All boundary models are

taken from the Modelica Standard library (Modelica

Association, 2017). On a first estimation, heat losses of

the pipes and the heat storage are neglected.

Figure 7. Simplified model of HTS, with return cooling.

DHN source and sink (upper left), Heating supply and

return (upper right), DWW supply and return (below right),

return using control-valve a to c.

The heat exchanger with constant effectiveness is

taken from the Modelica Buildings library (Wetter et

al., 2014). The effectiveness of the heat exchanger is

well-designed with a temperature range of 3 K.

A stratified storage with an internal heat exchanger from

buildings library is chosen to simulate the heat storage

(Wetter et al., 2014). The control strategy for charging

the heat storage tank in the “Advanced Storage System”

is shown in Figure 8. The first condition inside the

storage tank is that the upper third part should be

charged between 50 °C and 60 °C. If this isn’t the case,

the storage tank is charged by the DHN feed by opening

valve (a) and closing valve (b) until it reaches 60 °C in

the top layer of the ten modeled layers. If the third layer

(counted from top) drops below 50 °C, the upper third

of storage is recharged, to maintain a sufficient drinking

water temperature at the outlet of the heat storage

greater or equal 50 °C (DIN 1988-200, 2012). If the

upper third of storage ranges between 50 °C and 60 °C,

the lower part of the heat storage is used for cooling

down the returning mass flow of the DHN. Therefore,

the temperature within the layers one to seven must be

lower than the return from the heater. In this case, valve

(b) (see Figure 7) opens and valves (a) and (c) are

closed. The storage is completely charged, if the

lowermost layer’s temperature equals the temperature of

the heating return. At this moment valve (c) opens and

the other two close. This process is controlled by

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

650 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157647

discrete valves, which are opened or closed via the

conditions in Table 2.

The comparison of the HTS takes place by ensuring that

the “Basic Storage System” has the same state of charge

within the storage layers than the “Advanced Storage

System”. The systems will be compared by the used

exergy, the course of the return temperatures and by

viewing the quantity of necessary loads from DHN feed.

Starts and stops
with simulation

50 °C < Tupper third of storage < 60 °C

Open valves a,c
Close valve b

Tlowermost layer < Theater return

Open valve b
Close valve a,c

Open valve c
Close valve a,b

Figure 8. Flow chart for the control strategy.

Table 2. Logic table for control the three cases described

in Figure 4 to Figure 6.

 Conditions inside the storage

50°C<Tupper

third of storage <

60°C

Tlowermost layer

<Theater return

Open

valve(s)

Case 1 False True a,c

Case 2 True True b

Case 3 True False c

3 Modeling

The HTS connects the DHN with the buildings heating

demand. In this investigation, an ideal source and sink

with constant pressures and a constant DHN supply

temperature emulate the DHN. The building’s overall

demand consists of both, the heating and DWW

demand. These demands are calculated from the

reference load profiles given by VDI 4655 (2008). The

demand profiles are passed as mass flow rate with one

minute.

The heating system has a supply temperature of 70 °C

and a return of 55 °C, which is typical for non-retrofitted

buildings (Diefenbach et al., 2002). To ensure that the

mass flow rate on the primary side of the heat exchanger

is high enough to satisfy the heat demand on the

secondary side, a valve is controlled by a PID controller,

which reading the actual state temperature of the supply

heating circuit and checking, if this value reaches the set

point temperature. If the temperature is below 70 °C, the

valve opens further and if the temperature is higher than

70 °C, the other way round.

The DWW storage is charged via an internal stainless

steel pipe. A hysteresis controller is implemented to

control the discrete valve (a), which opens for charging

the storage from the DHN feed and closes if a defined

temperature is reached. In case 2 (see Figure 5) the

return flow of the heating process passes through the

internal heat exchanger to charge the storage until the

lowest layer has an equal temperature. Subsequently the

discrete valve (b) is closed by the controller so that the

return flow of the heating process flows directly into the

DHN return.

On the secondary side of the storage, an outlet

temperature of at least 50 °C is required, as mentioned

above. To avoid scalding, the set point temperature for

the DWW is chosen 43 °C oriented on the

recommendation DIN EN 806-2 (2005). Therefore a

three-way-valve from the IDEAS library (Jorissen et al.,

2018) is implemented, which mixes the ten-degree

DCW (Baumgarten et al., 2014) with the warm water

leaving, to mix the DWW temperature of 43 °C.

4 Simulation

The simulation model was fed with the parameters

according to Table 3. The parameters for the DHN,

represent a small network, which found often in rural

areas. The pressure difference depends on the number of

consumers and the extension of the DHN. Thus, a

pressure difference of one bar is assumed (FairEnergie,

2015). The heating requirements are based on a non-

retrofitted four person single-family house with 140 m²

floor area and a specific heating demand of

100 kWh/m²a (Dott et al., 2013). The DWW heat

demand is base on a specific value of 500 kWh/a per

person stated in VDI 4655 (2008). The DWW storage is

usually designed for 30 l to 40 l per person and day, so

that once a day the content is fully consumed and

refilled. For an optimal heat transfer, the internal

stainless steel pipe is designed over the whole height of

the storage tank.

The control was implemented as shown in the flow

chart in Figure 8. A verification of the “Advanced

Storage System” is given by analysing the correct

switching of the valves (a) to (c) (see Figure 7). The

correct function of the PID controller is checked by

observe the actual and set point temperatures. At a feed

temperature of 80 °C the return temperatures ranging

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

DOI Proceedings of the 13th International Modelica Conference 651
10.3384/ecp19157647 March 4-6, 2019, Regensburg, Germany

between 55 °C and 60 °C for the both systems is

plausible. The validation should be done on a laboratory

test rig, which is outlined in detail below.

Table 3: Simulation parameters for the DHN, HTS and

control.

Model

component

Parameter Value

District

heating

Feed temperature 80 °C

 Pressure

source/sink

5,4 bar/4,4 bar

Heat

exchanger

Effectiveness 0,9

Heating Supply temperature 70 °C

 Return temperature 55 °C

DWW Desired temperature 43 °C

DWW

Storage

Volume 150 l

 Height 1,4 m

 T_initial 20 °C

Storage

charge

Controller

Charge temperature 60 °C

 Discharge

temperature

50 °C

4.1 Results

The results were analysed for a period of ten winter days

based on exergy. Exergy is the part of the total energy

of a system that can do work when placed in the

thermodynamic equilibrium with its environment.

The determination of the exergy E is based on the exergy

factor and the integrated heat flow (1). To compare the

used exergy correctly, the status of both heat storages

has to be determined after simulation.

Amount of used exergy E:

𝐸 = 𝑓𝐸𝑥𝑔 ∙ ∫ �̇�
𝑡2

𝑡1

𝑑𝑡 (1)

where:

𝑓𝐸𝑥𝑔: Exergy factor

�̇�: Heat flow in kW

The computation of the exergy factor is done using

the equation (2), because the temperatures in the period

under review are changing. The equation is based on the

approach proposed by Bargel (2010):

𝑓𝐸𝑥𝑔 = 1 −
𝑇𝑎𝑚𝑏

𝑇𝑓𝑙𝑜𝑤 − 𝑇𝑟𝑒𝑡𝑢𝑟𝑛
∙ 𝑙𝑛(

𝑇𝑓𝑙𝑜𝑤
𝑇𝑟𝑒𝑡𝑢𝑟𝑛

) (2)

where:

𝑇𝑎𝑚𝑏: Ambient temperature = 293.15 K

𝑇𝑓𝑙𝑜𝑤: Flow temperature in K

𝑇𝑟𝑒𝑡𝑢𝑟𝑛: Return temperature in K

The saved exergy with the “Advanced Storage

System” in comparison to the „Basic Storage System”

correlates to a saving of 83% with respect to the DWW

demand. This finding matches the observation of the

quantity of necessary charging cycles from DHN feed

(see Figure 9). In other words, almost the whole exergy

needed for DWW can be covered by the heating return.

Figure 9. Quantity of charging from DHN feed.

Figure 9 depicts that the “Advanced Storage System”

is loaded only three times by DHN feed. The first time

at the beginning (as the storage temperature has a initial

temperature of 20 °C), the second and third time in

quick succession during a high DWW demand.

Figure 10. Comparison of averaged return temperatures.

The average is weighted by the mass flow rate.

Figure 10 represents that the return temperature of the

“Advanced Storage System” is approximately 5 °C

lower compared to the return temperature of the “Basis

System”. As the mass flow rates are temporarily

different, the return temperatures are calculated like

written in equation (4). That is why the course of the

return temperatures at Figure 10 becomes more and

more stable.

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑛 =
∑ (𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑖 ∙ �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑖)
𝑛
𝑖

∑ �̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑖
𝑛
𝑖

 (4)

where:

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

652 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157647

𝑛: current simulation step

𝑖: 1 to n, with step = 1

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑛: Return temperature at current

simulation step in K

𝑇𝑟𝑒𝑡𝑢𝑟𝑛,𝑖: Return temperature at simulation step

i in K

�̇�𝑟𝑒𝑡𝑢𝑟𝑛,𝑖: Mass flow rate at simulation step i

in K

5 Discussion

As mention above, the results hold for non-retrofitted

buildings with a high heating demand and a high supply

temperature for the heating system. The results indicate

a significant saving of exergy, because in case of DHN

it cumulates. A reduced mass flow rate drawn from

DHN is also an advantage of the “Advance Storage

System” and it is the reason for the decreased need of

exergy. Furthermore, this result is achieved for a well-

designed heat exchanger with a temperature difference

of 3 K. If the heat exchanger has a lower effectiveness,

the return temperature has more than 58 °C, so that the

maximum storage tank temperature of 60 °C could be

reached solely by return cooling. In this case, more

exergy from the heating return is available. For a more

realistic estimation of the advantages of the “Advanced

Storage System”, the models should be simulated by

using a heat exchanger with a realistic, non-constant

effectiveness.

6 Outlook

One of the next steps will be the examination of the

system behavior and system efficiency in case of a

higher resolution of the input data, e.g. 10 s, and

therefore a more realistic representation of the DWW

demand. Furthermore, both the heat losses of the storage

and a realistic model of the pipes should be included.

The objective to decrease return temperature by means

of HTS will be pursued as follows:

First, more HTS will be investigated, e.g. a HTS with

DWW storage tank in comparison with a HTS with

instantaneous DWW heat exchanger application. A

second example is given by the HTS shown in Figure

11. A HTS with storage offers the opportunity to

integrate a decentralised heat source in a low

temperature district heating network (LTDHN), which

have usually feed temperatures of 40°C. Thus, it should

be investigated whether second heat sources such as a

heating rod connect with a photovoltaic array, solar

thermal collectors or a stove could be of use for the

realization of a LTDHN. This HTS, consisting of a

storage with a volume of 1 m³ for single-family houses,

is charged by LTDHN. Therefore, the solar thermal

system raises the temperature for the DWW demand.

The thermal stratification system provides a

temperature-dependent stratification of the heating

return.

Figure 11. HTS with storage for heating and DWW

After the simulative investigation of different HTS, a

measurement based investigation will be performed on

a currently developed test rig. As a result, the simulation

models of the HTS will be validated. Later on, this test

rig for space-heating systems in residential buildings

will be extended to a HiL simulation as shown by

Baltzer et al. (2014). The software simulation of

buildings will also be embedded into the HiL

simulation. This is one reason to pursue the concept of

a digital twin, e.g. done for the Rooftop building in the

field of building and equipment simulation by Nytsch-

Geusen et al., for a residential building. This allows a

testing of the HTS under realistic boundary conditions

and alternating user behavior.

References

aqotec GmbH (2011), “Ratgeber zur Optimierung der

Sekundäranlage beim Fernwärmeabnehmer”, Leitfaden

2011.

Baltzer, S., Lichius, T., Gissing, J., Jeck, P., Eckstein, L. and

Küfen, J. (2014), “Hardware In The Loop Simulation

with Modelica - A Design Tool for Thermal Management

Systems”, in Proceedings of the 10th International

Modelica Conference, March 10-12, 2014, Lund,

Sweden, March 10-12, 2014, Linköping University

Electronic Press, pp. 401–408.

doi:10.3384/ecp14096401.

Bargel, S. (2010), “Entwicklung eines exergiebasierten

Analysemodells zum umfassenden Technologievergleich

von Wärmeversorgungssystemen unter Berücksichtigung

des Einflusses einer veränderlichen Außentemperatur”,

Dissertation, Fakultät für Maschinenbau, Ruhr-

Universität Bochum, Bochum, 2010.

Baumgarten, C., Rechenberg, J., Richter, S., Chorus, I.,

Vigelahn, L. and Schmoll, O. (2014), Wassersparen in

Privathaushalten: sinnvoll, ausgereizt, übertrieben?:

Fakten, Hintergründe, Empfehlungen,

Umweltbundesamt, Dessau-Roßlau.

Bundesministerium für Wirtschaft und Energie (BMWi)

(2018), “Sechster Monitoring-Bericht zur Energiewende.

Die Energie der Zukunft”, Berichtsjahr 2016.

Deutsche Vereinigung des Gas- und Wasserfaches (2004),

Trinkwassererwärmungs- und

Trinkwasserleitungsanlagen: Technische Maßnahmen

zur Verminderung des Legionellenwachstums; Planung,

Errichtung, Betrieb und Sanierung von Trinkwasser-

Installationen, DVGW-Regelwerk / Technische Regel -

Arbeitsblatt W, Vol. 551, April 2004, Wirtschafts- u.

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

DOI Proceedings of the 13th International Modelica Conference 653
10.3384/ecp19157647 March 4-6, 2019, Regensburg, Germany

Verlagsges. Gas und Wasser mbH; DVGW Deutscher

Verein des Gas- und Wasserfaches e.V, Bonn.

Diefenbach, N., Loga, T., Born, R., Großklos, M. and Herbert,

C. (2002), “Energetische Kenngrößen für

Heizungsanlagen im Bestand. Eine Untersuchung im

Auftrag des Ingenieurbüros für energieeffiziente

Gebäudetechnik Ventecs, Bremen”.

DIN 1988-200 (2012), Technische Regeln für Trinkwasser-

Installationen <TRWI>: Technische Regel des DVGW,

Deutsche Norm, Vol. 1988,200, Stand: Mai 2012, Beuth,

Berlin.

DIN EN 806-2 (2005), Planung, Deutsche Norm: EN, 806-2,

Deutsche Fassung EN 806-2: 2005, Beuth Verlag GmbH,

Berlin.

Dötsch, C., Taschenberger, J. and Schönberg, I. (1998),

Leitfaden Nahwärme, Stuttgart.

Dott, B.R., Haller, M.Y., Ruschenburg, J., Ochs, F. and Bony,

J. (2013), “The Reference Framework for System

Simulations of the IEA SHC Task 44/HPP Annex 38. Part

B: Buildings and Space Heat Load”, A technical report of

subtask C. Report C1 Part B.

doi:10.13140/2.1.2221.4727.

Euroheat & Power (2008), “Euroheat & Power. Guidelines for

District Heating Substations”.

FairEnergie (2015), “Technische Anschlussbedingungen

Fernwärme Heizwasser (TAB-HW) für den Anschluss an

die Fernwärmenetze der FairEnergie GmbH”.

Falk, P.M. (2018), “Evaluation of district heating systems

based on exergy analysis. Bewertung von

Nahwärmenetzen basierend auf Exergieanalyse”,

Fachbereich Maschinenbau, Technische Universität

Darmstadt, 2018.

Fuchs, M., Dixius, T., Teichmann, J., Lauster, M., Streblow,

R. and Müller, D. (2013), “EVALUATION OF

INTERATCTIONS BETWEEN BUILDINGS AND

DISTRICT HEATING NETWORKS”, 13th Conference

of International Building Performance Simulation

Association, Chambéry, France, August 26-28, pp. 96–

103.

Heissler, K.M., Franke, L., Nemeth, I. and Auer, T. (2016),

“Modeling low temperature district heating networks for

the utilization of local energy potentials”, Bauphysik,

Vol. 38 No. 6, pp. 372–377.

doi:10.1002/bapi.201610038.

Jentsch, A. (2018), “Kalte Nahwärme als Zukunftsoption?

Exergie-basierter Vergleich von Nahwärmenetzen”,

BWK: Das Energiemagazin, No. 70/6, pp. 12–13.

Johansson, P.-O., Lauenburg, P. and Wollerstrand, J. (2009),

IMPROVED COOLING OF DISTRICT HEATING

WATER IN SUBSTATONS BY USING ALTERNATIVE

CONNECTION SCHEMES, 22nd International

Conference on Efficiency, Cost, Optimization Simulation

and Environmental Impact of Energy Systems, August 31-

September 3, 2009, Foz do Iguacu, Brazil, Sweden.

Jorissen, F., Reynders, G., Baetens, R., Picard, D., Saelens, D.

and Helsen, L. (2018), “Implementation and verification

of the IDEAS building energy simulation library”,

Journal of Building Performance Simulation, Vol. 11

No. 6, pp. 669–688.

doi:10.1080/19401493.2018.1428361.

Knierim, R. (2007), “Rücklauftemperatur: Ungehobener

Schatz für Versorger und Kunden. Weitere Erlöse aus

ungenutzter Wärmeenergie.”, EuroHeat&Power,

Vol. 2007 No. 3, 56-62, 64-65.

Knorr, M., Schinke, L., Beyer, M., Seifert, J., Mehrfeld, P.

Nürenberg, M. Huchtemann, K., Müller, D. and

Riedesser, F. (2016), “INSTATIONÄRE

ENERGETISCHE BEWERTUNG VON

WÄRMEPUMPEN- UND MIKRO-KWK-SYSTEMEN

- SIMULATION UND EMULATION”, TU Dresden,

RWTH Aachen, Universität Stuttgart, Dresden, Aachen,

Stuttgart, 2016.

Modelica Association (2017), “Modelica - A Unified Object-

Oriented Language for Systems Modeling. Language

Specification”, Version 3.4.

Mollenhauer, E., Christidis, A. and Tsatsaronis, G. (2016),

“Evaluation of an energy- and exergy-based generic

modeling approach of combined heat and power plants”,

International Journal of Energy and Environmental

Engineering, Vol. 7 No. 2, pp. 167–176.

doi:10.1007/s40095-016-0204-6.

Nytsch-Geusen, C., Kaul, W. and Kharaz, S., “DER

DIGITALE ZWILLING IN DER

ENERGETISCHEN GEBÄUDE-

UND ANLAGENSIMULATION”, in BauSIM2018 - 7.

Deutsch-Österreichische IBPSA-Konferenz 26.-28.

September 2018,, pp. 311–318.

doi:10.5445/IR/1000085743.

Overhage, A. (2016), “Maßnahmen zur Erreichung niedriger

Rücklauftemperaturen. Einflussmöglichkeiten von

Nutzern und Energieversorgungsunternehmen”, AGFW

Seminar: Maßnahmen zur Erreichung niedriger

Rücklauftemperaturen.

Sangi, R., Müller, D., Thamm, A. and Jahangiri, P. (2017),

“Dynamic exergy analysis - Modelica-based tool

development: A case study of CHP district heating in

Bottrop, Germany”, Thermal science and engineering

progress TSEP, Vol. 4 No. RWTH-2018-221637.

doi:10.1016/j.tsep.2017.10.008.

Sartor, K. (2017), “Simulation Models to Size and Retrofit

District Heating Systems”, Energies, Vol. 10 No. 12, p.

2027. doi:10.3390/en10122027.

Stadtwerke München, Hochschule für Angewandte

Wissenschaften München and Ebert-Ingenieure (2014),

“Breitenanwendung von Niedertemperatur-Systemen als

Garanten für eine nachhaltige Wärmeversorgung.

LowEx-Systeme Abschlussbericht zum

Forschungsvorhaben: LowEx-Fernwärme-Systeme im

Rahmen des Förderkonzeptes EnEff:Wärme - Forschung

für energieeffiziente Wärme- und Kältenetze”.

doi:10.2314/GBV:856917435.

Triesch, F. and Weinmann, E. (2008), “Nutzen innovativer

Anschlussanlagen für den Fernwärmekunden.

Reduzierung der Rücklauftemperatur.”, Euroheat &

Power, No. 4, 78-80,82,84-88,90.

VDI 4655 (2008), Referenzlastprofile von Ein- und

Mehrfamilienhäusern für den Einsatz von KWK-Anlagen,

VDI-Richtlinien, Vol. 4655, Mai 2008, Beuth, Berlin.

Wetter, M., Zuo, W., Nouidui, T.S. and Pang, X. (2014),

“Modelica Buildings library”, Journal of Building

Performance Simulation, Vol. 7 No. 4, pp. 253–270.

doi:10.1080/19401493.2013.765506.

Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy
saving

654 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157647

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

DOI Proceedings of the 13th International Modelica Conference 655
10.3384/ecp19157655 March 4-6, 2019, Regensburg, Germany

Evaluating the Resilience of Energy Supply Systems at the Example of a Single
Family Dwelling Heating System
Senkel, Anne and Bode, Carsten and Schmitz, Gerhard

655

Evaluating the Resilience of Energy Supply Systems at the Example

of a Single Family Dwelling Heating System

Anne Senkel Carsten Bode Gerhard Schmitz
 Institute of Engineering Thermodynamics, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg,

Germany, {anne.senkel, c.bode, schmitz}@tuhh.de

Abstract
Since the 1980s, the term “resilience” occurs more and

more frequently in energy system analysis. However,

the consideration and definition of the term primarily

occurs in a qualitative way. This papers introduces a

quantitative method to assess an energy system’s

resilience by using physical key figures to reflect the

maintained functionality during and after a disturbance.

The presented method is used to evaluate the

resilience of a heating system of a single family

dwelling when its pump or boiler fails. It can be shown

that the introduced resilience index mirrors the drop of

the system’s functionality and is also able to point out

weak spots and the most efficient system improvements.

This provides the foundation of comparing the resilience

of complex systems even though it is important to pay

attention to comparable assessment settings.

Keywords: Resilience, Energy Supply Systems

Assessment, Heating

1 Introduction

By publishing its special report on the impact of global

warming of 1.5 °C, the IPCC stressed the necessity to

decarbonize the energy sector in the medium-term

(Allen et al., 2018). On the other hand, already today the

increasing integration of renewable energies in the

electricity sector leads to rising numbers of

interventions and adaptions of the operational planning

of power plants to avoid overloading power line

sections. In Germany, these measures lead to the

“redispatch” of 20.438 GWh in 2017, compared to

4.956 GWh in 2012 (Bundesnetzagentur, 2018).

Therefore, not only costs and efficiency, but also the

security and resilience of the energy system have to be

taken into account while moving towards a sustainable

energy supply.

The term resilience originates from the Latin word

“resilire” (jumping back, rebounding, returning) and

was already used in the 17th century to describe physical

counter-reactions (Gößling-Reisemann, Hellige and

Thier, 2018). Later, it also became established in

psychology, sociology and ecology. However, a

universal definition of resilience has not been

established yet. In general, the definition by Holling

(1973) which defines resilience as a “measure of the

persistence of systems and of their ability to absorb

change and disturbance”, is used widely.

 Caused by the discussions about safety of nuclear

power plants and climate change, resilience increasingly

occurs in the energy sector since the 1980s. Since then,

several research projects have focused on defining

resilience in the context of energy systems.

A general overview of the historical development of

the resilience term and guidelines for designing a

resilient system are given by Gößling-Reisemann,

Hellige and Thier (2018). Fichter et al. (2010) include

vulnerability analysis as analytical category in their

resilience considerations. Resilience itself is used as a

normative category and characterized by introducing

system structures that increase resilience. Several ways

of qualitative analysis are also provided by (Thoma,

2014) who approaches resilience as a holistic concept

including technological, social and economic aspects.

Further qualitative assessments of resilience were

conducted by Roege et al. (2014), Molyneaux et al.

(2012) and Madni and Jackson (2009).

A quantitative evaluation method was presented by

Cimellaro et al. (2009) who used a functionality curve

to evaluate the dimensions of resilience rapidity,

redundancy, robustness and resourcefulness for

earthquake disasters. Francis and Bekera (2014) extend

this approach by implementing the fragility of the

system. A similar approach was conducted by Nan and

Sansavini (2017) who additionally considered the

performance loss. To assess the resilience of energy

systems in this work, the approaches of Francis and

Bekera (2014) and Nan and Sansavini (2017) are

adapted and the resulting definition presented in the

following section.

2 Definition of the Resilience Index

To be able to evaluate the resilience of an energy

system, it is necessary to define a key figure that reflects

the performance of the system. Nan and Sansavini

(2017) call this the “measure of performance” (MOP)

while Francis and Bekera (2014) use the term
“performance level”. Since these values are fictional

quantities, this approach needs to be adapted for the

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

656 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157655

assessment of the results of dynamic simulations.

Therefore, a physical value needs to be found. For the

electricity sector, this could be for example the grid

frequency. For the heating sector, the supply or the room

temperature is more suitable.

Each of these physical key figures 𝑥 is defined by a

set point 𝑥set and a tolerance band [𝑥min, 𝑥max] in which

deviations of 𝑥 are tolerated. In Figure 1, a characteristic

plot of such a key figure is depicted.

Figure 1. Characteristic course of a key figure in a

disturbed system.

Following the definitions of Francis and Bekera (2014)

and Nan and Sansavini (2017), the system’s restorative,

absorptive and adaptive capacity can be evaluated by

assessing the progression of this key figure.

For the restorative capacity, the Recovery Time 𝑅𝑇

of a system will be computed as,

𝑅𝑇 =
𝑡r − 𝑡d

∆𝑡norm

 (1)

with 𝑡d as the point in time when the key figure leaves

the tolerance band for the first time, and 𝑡r as the point

in time when the key figure returns into the tolerance

band and remains permanently within it. While Nan and

Sansavini (2017) divide this time period by the deviation

of the key figure, this paper introduces ∆𝑡norm as

normalization time to achieve dimensionless values.

For the absorptive capacity, Francis and Bekera

(2014) and Nan and Sansavini (2017) both propose to

examine the Maximum Deviation 𝑀𝐷 of the key figure,

∆𝑥max. Since a tolerance band was introduced, this

approach is adapted to only consider the deviation of 𝑥

from the minimum or maximum value of the tolerance

band (c.f. Figure 1). Therefore, ∆𝑥 is defined as,

∆𝑥 = {

𝑥 − 𝑥max if 𝑥 ≥ 𝑥max

0 if 𝑥min < 𝑥 < 𝑥max

𝑥min − 𝑥 if 𝑥 ≤ 𝑥min

(2)

which leads to ∆𝑥 = 0 for deviations within the

tolerance band so that normal fluctuations are not

punished. The maximum of ∆𝑥 is defined as ∆𝑥max and

used in the following considerations. While Francis and

Bekera (2014) divide this value with the set point 𝑥set,

Nan and Sansavini (2017) use no weight factor but

weight their MOP at the beginning resulting in MOPs

between 0 and 1. For the introduced physical key

figures, it is therefore necessary to define a

normalization deviation ∆𝑥norm as well,

𝑀𝐷 =
∆𝑥max

∆𝑥norm

 (3)

Additionally, Nan and Sansavini (2017) introduce the

Performance Loss 𝑃𝐿 as an indicator of the absorptive
capacity,

𝑃𝐿 =
∫ ∆𝑥

𝑡r

𝑡d
𝑑𝑡

𝐴norm
 (4)

which basically represents the area between the actual

course of the key figure and its set point. This figure is

also adapted to fit to the introduction of the tolerance

band and therefore defined as area between tolerance

band and the course of the key figure (depicted as 𝐴 in

Figure 1). When using this definition in combination

with physical values, a weight factor 𝐴norm will be

necessary as well.

Finally, both papers introduce a Recovery Ability 𝑅𝐴

to evaluate the system’s adaptive capacity,

 𝑅𝐴 =
𝑥(𝑡r)

𝑥(𝑡0)
 (5)

where a higher system’s functionality after the

disturbance 𝑥(𝑡r) than before 𝑥(𝑡0) indicates that the

system learned from the incidence and adapted to it.

However, this index is not suitable when examining

physical key figures. For example, a higher net

frequency would not indicate a better system’s

performance but rather further instabilities.

By combining the recovery time, the maximum

deviation and the performance loss, an Irresilience

Index 𝐼𝑅𝐼 is introduced,

𝐼𝑅𝐼 = 𝑅𝑇 ∙ 𝑀𝐷 ∙ 𝑃𝐿 (6)

and with this a Resilience Index 𝑅𝐼 is defined,

𝑅𝐼 =
1

1 + 𝐼𝑅𝐼
 (7)

where 𝑅𝐼 = 0 represents a completely irresilient system

and 𝑅𝐼 = 1 a resilient system. This general definition

can be applied to any energy supply system (electricity,

heat, gas, etc.) as long as an appropriate key figure for

which a tolerance band can be defined, is used.

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

DOI Proceedings of the 13th International Modelica Conference 657
10.3384/ecp19157655 March 4-6, 2019, Regensburg, Germany

3 Case Study of a Single Family

Dwelling

In the following section the introduced resilience index

will be applied to a heating system of a single family

dwelling (SFD).

3.1 Model Structure

The model of the heating system was built using

Modelica® (Modelica Association, 2019) in Dymola

(Dassault Systèmes, 2018) using the TransiEnt Library

(Andresen et al., 2015; Hamburg University of

Technology, 2017) and the ClaRa Library (Brunnemann
et al., 2012; Hamburg University of Technology, TLK-

Thermo GmbH, XRG Simulation, 2012) for the

components of the heating system. The heating demand

of the single family dwelling is modeled using the

Buildings Library (Wetter et al., 2014). Therefore the

heat exchange with the environment is considered at a

low resolution by aggregating the heat transfer through

the walls and windows, the heat capacity and the heat

gains and losses through solar irradiance, ventilation

and internal sources each in one instance (Senkel, 2017).

The icon layer of the heating system model is depicted

in Figure 2.

In the heating system, the heat is produced by a gas

boiler and transferred to the building through a heat

exchanger. The produced heat flow of the boiler is set to

obtain the supply temperature given by the heating curve

of the system. To adjust the heat transferred to the

building, a thermostat is integrated that varies its

opening in order to obtain a room temperature of 22 °C

(according to EN 15251 (European Commitee for

Standardization, 2007)). The installed pump regulates

its mass flow to keep a constant pressure loss resulting

in a smaller mass flow when the thermostat is closing in.

Furthermore an expansion vessel is integrated to balance

the pressure in the system. The most important

parameters of the system are collected in Table 1.

The following results were simulated with the solver

Dassl in a 15-minutes resolution with a tolerance of

0.0001.

Table 1. Parameters of the heating system.

Parameter Value

Set room temperature 22 °C

Nominal supply/return

temperature
60/40 °C

Nominal mass flow 0.2 kg/s

Nominal pressure 1 bar

Nominal heat flow of gas boiler 7 kW

Heat transfer coefficient of the

building envelope
0.4 W/(m2K)

Heat transfer coefficient of the

windows
3 W/(m2K)

Floor area 100 m²

Window area 16 m²

Minimal outdoor temperature -12 °C

3.2 Scenarios

First, the shown system is simulated with the weather

data of Hamburg in the period between January 30th and

February 2nd, 2012 (Lange, 2014). This time period was

selected due to the occurring low outside temperatures

which lead to an enhancement of the considered effects.

According to EN 15251 (European Commitee for

Standardization, 2007), an operational temperature of

22 °C within a tolerance band of ±2 K is recommended

for ambient temperatures below 16 °C. Figure 3 shows

Figure 2. Model structure of Reference System.

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

658 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157655

that the system is able to provide this service offering as

long as it is undisturbed. In this case the temperature

only slightly varies from its set point due to fluctuations

in the outside temperature and solar irradiance.

Figure 3. Room temperature and outside temperature

without disturbance.

The first considered improvement (System 1) is to lower

the house’s heat losses by installing windows with a

lower heat transfer coefficient (𝑘win=1.3 W/(m2K)).

The second improvement (System 2) involves a

change of the heating system by installing a hot water

storage vessel (𝑉stor = 0.6 m³) as shown in Figure 4.

This also leads to changes in the control of the heating

system. Therefore, the heat flow of the boiler is

regulated to obtain a temperature of 60 °C in the upper

part of the hot water storage. The mass flow in the boiler

circuit is regulated by a pump which adapts its power to

obtain a maximum boiler outlet temperature of 60 °C. In

the consumer circuit, a mixing valve is integrated to mix

cool return water with the hot water of the storage in

order to meet the supply temperature given by the

heating curve. The control of the pump in the consumer

circuit and the thermostat are left untouched.

In the following simulations, the systems are

disturbed by a failure of the boiler or the supply pump

(see also Figure 2 and Figure 4, indicated by the

lightning symbol). Both failures occur in the first twelve

hours of February, 1st.

3.2.1 Scenario Consumer Pump Failure

When the pump shuts down, no hot water flows through

the heat exchanger. Hence, no heat can be transferred to

the building and the room temperature of the reference

systems drops drastically due to the cold outside

temperature (Figure 5).

When looking at System 1 during the pump failure,

one can observe that due to the improved insulation the

temperature drops less than in the reference case.

Furthermore, it becomes obvious, that the system

recovers faster than in the reference case since the heat

loss to the surroundings is lower, resulting in a shorter

reheating phase.

For the failure of the consumer pump, System 2

shows a similar temperature drop as in the reference

case since the house itself remains without heat supply

and the heat losses to the surroundings are due to the

same insulation as high as in the reference case. After

the disturbance, the boiler inlet temperature is higher

Figure 4. Model structure of System 2.

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

DOI Proceedings of the 13th International Modelica Conference 659
10.3384/ecp19157655 March 4-6, 2019, Regensburg, Germany

since the boiler is fed from the hot water storage in

which the cold return water is mixed with the warmer

water stored at the bottom of the tank. Additionally, the

supply water is mixed with hotter water in the top of the

storage vessel. Both effects lead to higher supply

temperatures in System 2 than in the reference system

which is why the set point of the room temperature is

reached faster in this system.

Figure 5. Temperature profiles during consumer pump

failure (shaded: tolerance band, solid: Reference System,

dashed: System 1, dotted: System 2).

3.2.2 Scenario Boiler Failure

The failure of the boiler in the reference system results

in a less drastic temperature drop (Figure 6) since the

heat exchanger is still supplied with warm water.

However, after transferring heat to the building, the

water is not reheated by the boiler which leads to

gradually declining supply and room temperatures.

Because of the lower supply water temperature, one can

also observe that the heating system needs longer to

recover after the disturbance since the boiler inlet

temperature is lower than when the pump was shut

down.

For System 1, the same effects occur as when the

pump failed: due to the improved insulation the

temperature drops less and the system recovers faster.

In System 2, when the boiler shuts down, the supply

water stays hotter for a longer term than in the reference

system since it is fed by the stored hot water. However,

the temperature in the tank gradually declines as well

since the cold return water is led into it and thus the

room temperature also declines. When comparing this

temperature behavior with System 1, one can notice that

System 2 needs longer to recover. This fact also leads

back to the higher heat transfer coefficient of the

windows and the therefore higher heat losses in System

2. Furthermore, the hot boiler outlet water is mixed with

the colder storage water which leads to a colder

temperature at the radiator inlet.

Figure 6. Temperature profiles during boiler failure

(shaded: tolerance band, solid: Reference System, dashed:

System 1, dotted: System 2).

3.2.3 Behavior of a Combined System

After focusing on single improvements in the

considered system, a system combining both

improvements was simulated with the presented

disturbances. The temperature profiles are compared

with those of System 1 and 2 in Figure 7 and Figure 8.

When considering the pump failure, it becomes once

again obvious that the most important effect during this

disturbance is the heat loss of the building. Accordingly,

the temperature profile of the Combined System

matches that of System 1. Installing a storage vessel in

the system has no big impact when regarding this

disturbance.

Figure 7. Temperature profiles during consumer pump

failure (shaded: tolerance band, solid: Combined System,

dashed: System 1, dotted: System 2).

When considering the boiler failure, the positive effects

of lower heat losses due to better window insulation and

a longer heat supply due to the installed heat storage add

up to a significantly lower temperature drop and a faster

system recovery.

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

660 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157655

Figure 8. Temperature profiles during boiler failure

(shaded: tolerance band, solid: Combined System, dashed:

System 1, dotted: System 2).

3.3 Discussion of the Resilience Index

According to eq. (5), the resilience indices are computed

for the presented systems under the influence of the two

disturbance scenarios with and without considering the

performance loss 𝑃𝐿. The normalization values used are

∆𝑥norm = 1 K, ∆𝑡norm = 6 h and 𝐴norm = ∆𝑥norm ∙
∆𝑡norm = 6 Kh. The results can be found in Table 2 and

Table 3.

Overall, it is obvious that large temperature drops and

recovery times lead to small resilience indices which

shows that the resilience index reliably reflects the

resistance and recovery ability of the system.

In general, the resilience indices are rather low which

is plausible since the considered system does not feature

common qualitative resilience aspects like redundancy,

buffer capacity or variety (refer to (Fichter et al., 2010)

for more information). With regard to these low values,

it should be noted that the absolute values of the indices

are dependent on the choice of the normalization values.

Therefore, it is important to only compare systems with

the same normalization values since the results are

otherwise distorted.

Table 2. Resilience indices for Reference System, System

1 and 2 and the Combined System during pump failure.

 Table 3. Resilience indices for Reference System, System

1 and 2 and the Combined System during boiler failure.

 Furthermore, it is apparent that in all cases the

installation of windows leads to an increase of resilience

since this improvement counteracts to the main reason

of the system’s vulnerability, the poor insulation of the

building. Accordingly, implying this improvement is

most effective in regards to resilience matters.

Another general aspect that becomes evident, is that

the resilience indices vary for the same system in

accordance to the disturbance it is exposed to. Hence,

one can derive that there is no “absolute” resilience

index, especially when keeping in mind that the concept

of resilience also contains the system’s capability to

keep its functionality up when facing unknown

disturbances. Therefore, when investigating a system’s

resilience, it is not sufficient to only look at one

disturbance. In fact, the significance of a resilience

analysis rises with its number of considered incidents.

Especially when looking at the results for the pump

failure, one notices that all considered systems show

very low resilience indices. This is in line with the

observation that all systems experience significant

temperature drops since the heat transfer to the building

is directly cut off when the pump is not working. Thus,

using the resilience index, is not only helpful when

comparing different systems with each other but it can

also reveal weak points of an energy system which

consequently need to be protected or backed up more

than others.

The multiplication with the performance loss leads to

a weighting of the severity of the deviation. Since small

deviation will lead to performance losses that are

smaller than the normalization value, higher resilience

indices will be calculated for these cases. This effect can

be retraced by looking at the resilience index for the

Combined System during the boiler shut down. Large

deviation, however, lead to performance losses bigger

than the normalization values and therefore even smaller

resilience indices, as can be seen in the results of the

Reference System and System 1 and 2.

System Ref 1 2 Comb

∆𝑥max [K] 6.6 5.5 6.6 5.5

∆𝑡 [h] 14.3 13.1 13.8 13.1

𝑃𝐿 [Kh] 57.8 46.7 57.6 46.7

𝑅𝐼 w/ PL 0.01 0.02 0.01 0.02

 w/o PL 0.06 0.08 0.06 0.08

System Ref 1 2 Comb

∆𝑥max [K] 3.4 2.3 2.1 0.8

∆𝑡 [h] 16.8 9.1 9.1 5

𝑃𝐿 [Kh] 26.5 12.7 12.3 2.9

𝑅𝐼 w/ PL 0.05 0.22 0.24 0.86

 w/o PL 0.09 0.21 0.24 0.6

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

DOI Proceedings of the 13th International Modelica Conference 661
10.3384/ecp19157655 March 4-6, 2019, Regensburg, Germany

4 Conclusion and Outlook

This paper introduces a definition of resilience for the

assessment of energy supply systems by evaluating the

maximum deviation, the recovery time and the

performance loss of a system. Several approaches are

presented and used to introduce a resilience index that

can be applied to analyze dynamic simulation results as

those produced by simulations in Modelica. This index

was calculated for different heating system

configurations of a single family dwelling.

It was shown that the use of the resilience index

enables the comparison of two different system

improvements. While System 1 focuses on the

consumer side, System 2 changes the structure of the

heating system.

To comprehend the development of the resilience

index, a very simple example was chosen. However, the

definition of the resilience index also allows the analysis

of more complex systems and the efficient evaluation of

proposed improvements.

The presented performance loss reflects a system’s

recovery phase more than only focusing on the

deviation’s amplitude and time outside the tolerance

band. Thus, it is recommended to use this parameter

when looking at systems that undergo pre-stable phases,

to gain a more precise resilience evaluation.

Additionally, the implementation of the performance

loss leads to a weighting of the severity of deviations.

As shown, the presented resilience analysis enables

further location of a system’s weak points which helps

to choose and initiate system improvements that are the

most efficient in regard to increasing the resilience.

Nevertheless, as in many evaluation methods, great

caution needs to be taken when setting the evaluation

conditions. This means that the absolute values of the

resilience indices depend on the chosen normalization

values. On the one hand, this constitutes the risk of

comparing indices that are not comparable. On the other

hand, it provides the flexibility to set the normalization

according to the considered system. Therefore, an

energy system which supplies sensitive infrastructure,

for example a hospital, can be rated using smaller

normalization values than a system supplying a

residential area.

In addition, the quantification of the resilience allows

a calculation of the “costs” of resilience – with regards

to financial but also environmental aspects. As a result,

a statement of how much more money or CO2 emission

lead to how much more resilience, can be made.

The introduced evaluation method deviates from

methods in literature because it is not able to show a

system’s adaptive capability since further social,

economic and political aspects have to be considered

that cannot be integrated in the physically based

simulation environment of Modelica. The only way to

approach this aspect is to perform several simulations

that integrate system changes that are caused by a

disturbance and influence the resilience in future

scenarios. However, the fact remains that dynamic,

technically-based simulations are not able to reflect the

whole spectrum of resilience. For this reason, an

additional qualitative assessment is recommended.

Further research should focus on using the resilience

index on more complex systems including integrated

energy systems and the evolutions that are necessary for

these kinds of systems. Hence, it is proposed to allocate

one resilience index for each integrated sector and

combine them into one overall index which will make it

possible to evaluate complex system changes, e.g. a

rising share of renewables, with regards to resilience

aspects.

Acknowledgements

The authors greatly acknowledge the funding from the

German Federal Ministry of Economic Affairs and

Energy for the project "ResiliEntEE - Resilienz

gekoppelter Energienetze mit hohem Anteil

Erneuerbarer Energien" (ResilientEE - Resilience of

integrated energy networks with a high share of

renewable energies, project number: 03ET4048).

Reference list

Allen, M. et al. (2018) Global Warming of 1.5 °C: An

IPCC special report on the impacts of global warming of

1.5 °C above pre-industrial levels and related global

greenhouse gas emission pathways, in the context of

strengthening the global response to the threat of climate

change, sustainable development, and efforts to eradicate

poverty. Geneva (sr15). Available at: http://www.ipcc.ch/

report/sr15/.

Andresen, L. et al. (2015) ‘Status of the TransiEnt Library:

Transient Simulation of Coupled Energy Networks with

High Share of Renewable Energy’, Proceedings Modelica

Conference 2015, The 11th International Modelica

Conference, September 21-23, 2015: Linköping University

Electronic Press, pp. 695–705. doi: 10.3384/ecp15118695

Brunnemann, J. et al. (2012) ‘Status of ClaRaCCS:

Modelling and Simulation of Coal-Fired Power Plants with

CO2 Capture’, Proceedings of the 9th International

MODELICA Conference, September 3-5, 2012, Munich,

Germany, 9th International MODELICA Conference,

Munich, Germany, Sept. 3-5, 2012: Linköping University

Electronic Press, pp. 609–618. doi: 10.3384/ecp12076609

Bundesnetzagentur (2018) Redispatch. Available at:

https://www.bundesnetzagentur.de/DE/Sachgebiete/

ElektrizitaetundGas/Unternehmen_Institutionen/

Versorgungssicherheit/Engpassmanagement/Redispatch/

redispatch-node.html.

Cimellaro, G.P. et al. (2009) Quantification of Disaster

Resilience of Health Care Facilities. Buffalo.

Dassault Systèmes (2018) Dymola® (Version 2019).

Vélizy-Villacoublay, France. Available at: https://

www.3ds.com/de/produkte-und-services/catia/produkte/

dymola/.

Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating
System

662 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157655

European Commitee for Standardization (2007) EN 15251

2012-12, Indoor environmental input parameters for

design and assessment of energy performance of buildings

addressing indoor air quality, thermal environment,

lighting and acoustics. Brüssel.

Fichter, K. et al. (2010) Theoretische Grundlagen für

erfolgreiche Klimaanpassungsstrategien. Bremen.

Francis, R. and Bekera, B. (2014) ‘A metric and

frameworks for resilience analysis of engineered and

infrastructure systems’, Reliability Engineering & System

Safety, 121, pp. 90–103. doi: 10.1016/j.ress.2013.07.004

Gößling-Reisemann, S., Hellige, H.D. and Thier, P. (2018)

The Resilience Concept: From its historical roots to

theoretical framework for critical infrastructure design.

Bremen (artec-paper 217). Available at: https://www.uni-

bremen.de/fileadmin/user_upload/sites/artec/

Publikationen/artec_Paper/217_paper.pdf.

Hamburg University of Technology (2017) TransiEnt

Library. Hamburg. Available at: https://www.tuhh.de/

transient-ee/en/.

Hamburg University of Technology, TLK-Thermo GmbH,

XRG Simulation (2012) ClaRa - Power Plant Simulation.

Hamburg, Braunschweig. Available at: https://

www.claralib.com/.

Holling, C.S. (1973) ‘Resilience and Stability of

Ecological Systems’, Annual Review of Ecology and

Systematics, 4(1), pp. 1–23.

doi: 10.1146/annurev.es.04.110173.000245

Lange, I. (2014) Outdoor Temperatures, Hamburg

Billwerder, 900s, 2012. Available at: https://

wettermast.uni-hamburg.de/.

Madni, A.M. and Jackson, S. (2009) ‘Towards a

Conceptual Framework for Resilience Engineering’, IEEE

Systems Journal, 3(2), pp. 181–191.

doi: 10.1109/JSYST.2009.2017397

Modelica Association (2019) Modelica. Linköping.

Available at: https://www.modelica.org/.

Molyneaux, L. et al. (2012) ‘Resilience and electricity

systems: A comparative analysis’, Energy Policy, 47,

pp. 188–201. doi: 10.1016/j.enpol.2012.04.057

Nan, C. and Sansavini, G. (2017) ‘A quantitative method

for assessing resilience of interdependent infrastructures’,

Reliability Engineering & System Safety, 157, pp. 35–53.

doi: 10.1016/j.ress.2016.08.013

Roege, P.E. et al. (2014) ‘Metrics for energy resilience’,

Energy Policy, 72, pp. 249–256.

doi: 10.1016/j.enpol.2014.04.012

Senkel, A. (2017) Vergleich verschiedener Arten der

Wärmeverbrauchsmodellierung in Modelica. Master

Thesis. Hamburg University of Technology.

Thoma, K. (2014) acatech STUDIE Resilien-Tech:

„Resilience-by-Design“: Strategie für die technologischen

Zukunftsthemen. Freiburg.

Wetter, M. et al. (2014) Modelica Buildings Library.

Available at: https://simulationresearch.lbl.gov/modelica/

download.html, doi: 10.1080/19401493.2013.765506.

DOI Proceedings of the 13th International Modelica Conference 663
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 6B: THERMODYNAMIC 2
Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process
Kormann, Maximilian and Krüger, Imke Lisa

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering
Singh, Sukhwinder and Schmitz, Gerhard and Mickan, Bodo

Transient modelling and simulation of a double-stage Organic Rankine Cycle
Eller, Tim and Heberle, Florian and Brüggemann, Dieter

.

664 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process

DOI Proceedings of the 13th International Modelica Conference 665
10.3384/ecp19157665 March 4-6, 2019, Regensburg, Germany

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling
Process
Kormann, Maximilian and Krüger, Imke Lisa

665

Application of a Real Gas Model by van der Waals for a Hydrogen
Tank Filling Process

Maximilian Kormann1 Imke Lisa Krüger2

1Dassault Systèmes, Germany, maximilian.kormann@3ds.com
2Dassault Systèmes, Germany, imkelisa.krueger@3ds.com

Abstract
Hydrogen fuel tanks operate at high system pressure lev-
els. In these regions effects occur, which cannot be han-
dled by an ideal gas model. One of these is the Joule-
Thomson effect. It describes an adiabatic throttling with-
out change in enthalpy, but a change in temperature. The
tank filling process can be simplified to a throttling valve,
so the effect is of interest. In this investigation the van der
Waals equations are implemented in a real gas model for
the Hydrogen Library and the Pneumatic Systems Library
(PSL) by Dassault Systèmes and the model is applied to
a hydrogen tank filling process. Performance and accu-
racy are compared to the CoolProp fluid properties library,
which is imported with the ExternalMedia library.
Keywords: Hydrogen, Pneumatic Systems Library, Tank
Filling Process, Medium Models, Real Gas, van der
Waals, Joule-Thomson-Effect, CoolProp

1 Introduction
The calculation of thermodynamic properties plays an im-
portant role in simulating thermohydraulic systems. The
specific behaviour we want to study as well as the pressure
and temperature range define the exactness needed of the
medium properties model. The ideal gas approach is only
valid for low pressures, complex approaches that cover the
liquid phase as well slow down the simulation speed.

The van der Waals model gives a simplified analytical
approach and it assumes the deviation to be acceptable for
e.g. early stages of design or if only the qualitative be-
havior should be shown. The Joule-Thomson effect that is
to be examined in this paper can be analytically modeled
and studied with the van der Waals approach. It results in
simple equations for e.g. the internal pressure.

The model has been implemented for the Hydrogen and
Pneumatic Systems Library by Dassault Systèmes. New
gases can be easily added, the only parameters needed are
the molar mass of the gas, the critical pressure and temper-
ature, the sutherland constants and the table-based specific
internal energy.

A recent application where this effect occurs is the hy-
drogen tank filling processes for fuel cell vehicles. Hy-
drogen has to be stored at high pressures e.g. 200 bar due
to the low energy density at low pressures. In order to
be competitive to conventionally fueled cars, tank filling

should take less than 200 s for 5 kilogram (US DOE et al.,
2009). For safety reasons, the temperature inside the tank
may not exceed 85 ◦C.

Due to its small molecules, hydrogen shows a dif-
ferent behavior when compressed or expanded than e.g.
air. When air is expanded isenthalpic, temperature sinks
where as for hydrogen the temperature rises. This is due
to the different signs of the Joule-Thomson coefficient,
that describes the temperature evolution during a pressure
change.

To design the tank filling processes and identify cooling
needs during the injection, system simulation is the best
way. We will demonstrate in this paper that the van der
Waals approach can be used for hydrogen to evaluate tank
filling processes at an early stage of development.

2 Thermodynamic background
To describe the temperature change at an adiabatic throt-
tling some thermodynamic basics have to be given.

2.1 Ideal Gas
The ideal gas model assumes the fluid to consist of dimen-
sionless particles which can move freely in the given vol-
ume until they hit another particle or the wall. The thermal
equation of state between the pressure p and temperature
T is defined according to (Adkins, 1983; Tschoegl, 1983)
with the specific gas constant R:

RT = pv (1)

and the specific volume

v =
V
m

=
1
ρ

(2)

2.2 Real gas equation by van der Waals
The ideal gas model lacks two effects: Interactive forces
between the fluid molecules and their dimension. For the
first effect, the pressure in the van der Waals model (der
Waals, 1967) is increased by the internal pressure of the
gas. The influence of the dimension of the molecules is
considered by reducing the specific volume by the volume
of the fluid molecules:

RT =
(

p+
a
v2

)
(v−b) (3)

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process

666 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157665

The two new parameters can be derived from the critical
state of the fluid (Weigand et al., 2008). The internal pres-
sure is defined using the cohension pressure parameter:

a =
27(RTc)

2

64pc
(4)

The volume occupied by the molecules can be written di-
rectly:

b =
RTc

8pc
(5)

2.3 Internal Pressure
The internal pressure of a fluid is defined as the partial
derivation of the specific internal energy u by the specific
volume at constant temperature (Moore, 1986):

πT =

(
δu
δv

)
T

(6)

It can be derived from the fundamental thermodynamic
relation with the specific entropy s under assumption of
a constant amount of mass (Callen, 1985) by deriving the
internal energy partially by the volume at constant temper-
ature:

du = T ds− pdv (7)(
δu
δv

)
T
= T

(
δ s
δv

)
T
− p (8)

With the Maxwell-Relation (Weigand et al., 2008)(
δ s
δv

)
T
=

(
δ p
δT

)
v

(9)

the expression for the internal pressure becomes:

πT =

(
δu
δv

)
T
= T

(
δ p
δT

)
v
− p (10)

For an ideal gas we get from equation (1):(
δ p
δT

)
v
=

R
v

(11)

πT = T
(

δ p
δT

)
v
− p = T

R
v
− p = 0 (12)

As the ideal gas equation does not model forces between
the fluid molecules except elastic collisions, the internal
pressure is zero. Thus the Joule-Thomson effect cannot be
covered by an ideal gas law. In the real gas equation the
van der Waals forces between the molecules are covered
by the internal pressure term. From equation (3) we get:(

δ p
δT

)
v
=

R
v−b

(13)

πT = T
(

δ p
δT

)
v
− p = T

R
v−b

− p (14)

= T
R

v−b
−
(

RT
v−b

− a
v2

)
=

a
v2 (15)

The internal pressure for a real gas modeled with the van
der Waals equation is always positive.

2.4 Caloric equation of state

Assuming a constant amount of mass the total differential
of the internal energy is (Weigand et al., 2008):

du =

(
δu
δT

)
v
dT +

(
δu
δv

)
T

dv = cvdT +πT dv (16)

For an ideal gas, the internal pressure is zero and thus the
internal energy only depends on the temperature with the
specific heat capacity at constant volume cv.

2.5 Specific Enthalpy

The enthalpy describes the energy of a system. The en-
thalpy can only change when energy is transferred over
the system border. The specific enthalpy of a fluid is de-
fined as (Weigand et al., 2008):

h = u+ pv (17)

For an ideal gas the expression simplifies to

h = u+RT (18)

As described according to equation (16), for an ideal gas
the internal energy only depends on the temperature. In
this case, also the enthalpy only depends on the inner en-
ergy. This is not the case for a real gas.

2.6 The Joule-Thomson effect

When a gas is expanded from a high pressure over an isen-
thalpic valve, a change in temperature can be observed.
This behaviour cannot be described by an ideal gas model
as it does not model a pressure dependency of the specific
enthalpy as mentioned in section 2.5. The effect is de-
scribed by the Joule-Thomson coefficient (Greiner et al.,
1993):

µJT =

(
δT
δ p

)
h

(19)

To derive its equation, the total differential of the spe-
cific entropy under assumption of a constant amount of
mass will be set into the fundamental thermodynamic re-
lation from equation (7). It reduces the dependency of the
change in enthalpy to pressure and temperature:

ds =
(

δ s
δT

)
p

dT +

(
δ s
δ p

)
T

d p (20)

dh = du+ pdv+ vd p (21)

dh = T
(

δ s
δT

)
p

dT +T
(

δ s
δ p

)
T

d p+V d p (22)

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process

DOI Proceedings of the 13th International Modelica Conference 667
10.3384/ecp19157665 March 4-6, 2019, Regensburg, Germany

With the definition of the specific heat capacity at con-
stant pressure cp and the Maxwell-Relation for the Gibbs
energy we get:

T
(

δ s
δT

)
p
= cp (23)(

δ s
δ p

)
T
=−

(
δv
δT

)
p

(24)

dh = cpdT −T
(

δv
δT

)
p

d p+V d p (25)

Now we can set dh = 0 and rearrange:

µJT =

(
δT
δ p

)
H
=

1
cp

(
T
(

δv
δT

)
p
− v

)
(26)

For v >> b and v >> a/RT the real gas equation (3) can
be rewritten and solved by v (Greiner et al., 1993):

p =
RT
v

(
1+

b
v
− a

vRT
+

abp
vR2T 2

)
(27)

v =
RT
p

+b− a
RT

+
abp

R2T 2 (28)

Then the inner differential from equation (26) can be for-
mulated and put into the equation of the Joule-Thomson
coefficient:(

δv
δT

)
p
=

R
p
+

a
RT 2 −2

abp
R2T 3 (29)

µJT =
1
cp

(
2a
RT

−b−3
abp

R2T 2

)
(30)

3 Implementation as a real gas model
The equations from section 2.2 and 2.4 are introduced as
an additional fluid model in the Hydrogen Library and the
Pneumatic Systems Library (PSL). The dynamic viscosity
is estimated by the law of (Sutherland, 1893).

3.1 Density
The density is estimated according to the real gas model
by van der Waals from equation (3).

3.2 Specific Enthalpy
To get a non-differential formulation of the specific en-
thalpy, equation (16) has to be integrated from a reference
point indicated by a subscript 0 and put into equation (17):

h =
∫ T

T0

cvdT +
∫ v

v0

πT dv+ pv (31)

h =
∫ T

T0

cvdT − a
v0︸ ︷︷ ︸

uT (T)

+
a
v
+ pv (32)

As there is no easy-to-handle analytical expression for
cv and to avoid the use of polynomials, the temperature-
dependent part of the specific internal energy and the inter-
nal pressure correction of the reference point (marked with
an under-brace in equation (31)) is provided as a table-
interpolation uT (T). Then we get the following equation
for the specific enthalpy:

h = uT (T)+ pv+
a
v

(33)

3.3 Parametrization
Compared to ideal gas models, the additional parameters
for creating a new gas model are pressure and temperature
in the critical state as well as the tables for the specific
internal energy and heat capacity (see table 1). As the
specific heat capacity is described by a look-up-table, the
degrees of freedom are no longer necessary for the van der
Waals Real Gas Model.

Table 1. Required parameters for the gas models.

Gas model Ideal Real

Molar mass • •
Dynamic viscosity at ref. point • •
Viscosity ref. point temperature • •
Sutherland constant • •
Degrees of freedom •
Critical pressure •
Critical temperature •
Temperature table •
Specific internal energy table •
Specific heat capacity table •

4 Benchmark of the van der Waals
model

To determine a range for the validity of the gas model, it
will be compared to generated values by the CoolProp li-
brary (Bell et al., 2014) for pure Hydrogen gas. The open
source C++ library CoolProp provides equations of state
and transport properties for pure fluids and mixtures. The
relative deviations of results for various fluid properties
of hydrogen compared to the NIST Reference Fluid Ther-
modynamic and Transport Properties Database (Lemmon
et al., 2010) are in the range of 1×10−4 to 1×10−14.
The CoolProp library is interfaced with the help of the Ex-
ternalMedia library (Casella and Richter, 2008). The Ex-
ternalMedia provides medium packages that can be used
directly in the Pneumatic Systems Library and in the Hy-
drogen library.

4.1 Density of hydrogen
In the following, the influence of the gas model on the
density will be outlined in the case of hydrogen.

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process

668 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157665

50 100 150 200 250 300 350 400
Temperature [K]

50

100

150

200

250

300

P
re

ss
ur

e
[b

ar
]

Critical Point 0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

ρ
I
d
ea
lG
a
s
/ρ

C
oo
lP
ro
p

Figure 1. Comparison of the density between the ideal gas
model and the CoolProp model for hydrogen.

The ideal gas model has a quite small range of valid-
ity: To keep the error in the density below 5%, the pres-
sure has to be below 50bar and the temperature has to be
above 100K (see Figure 1). As discussed in section 2.3,
the Joule-Thomson effect can not be covered by the ideal
gas law, as it does not consider intermolecular forces.

50 100 150 200 250 300 350 400
Temperature [K]

50

100

150

200

250

300

P
re

ss
ur

e
[b

ar
]

Critical Point 0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

ρ
R
ea
lG
a
s
/ρ

C
oo
lP
ro
p

Figure 2. Comparison of the density between the van der Waals
gas model and the CoolProp model for hydrogen.

The van der Waals model has a much wider range of
validity (see Figure 2). Pressures up to 200bar and tem-
peratures above 100K can be covered with an error in the
density below 5%. For the same pressure and temperature
the error is smaller than for the ideal gas model. Besides
the wider range of application, the Joule-Thomson effect
can be covered by the van der Waals air model, as dis-
cussed in section 2.3.

4.2 Density of air
Though air is a mixture of several gases, it still can be
modeled by the van der Waals real gas approach. As stated
in section 2.5, only the critical state of the fluid has to be
known. This can be measured for air. Again, the density
of the gas model will be compared to the CoolProp library.

50 100 150 200 250 300 350 400
Temperature [K]

50

100

150

200

250

300

P
re

ss
ur

e
[b

ar
]

Critical Point
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

ρ
I
d
ea
lG
a
s
/ρ

C
oo
lP
ro
p

Figure 3. Comparison of the density between the ideal gas
model and the CoolProp model for air.

The ideal gas model has quite small range of validity:
To keep the error in the density below 5%, the pressure has
to be below 150bar and the temperature has to be above
250K (see Figure 3).

50 100 150 200 250 300 350 400
Temperature [K]

50

100

150

200

250

300

P
re

ss
ur

e
[b

ar
]

Critical Point
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

ρ
R
ea
lG
a
s
/ρ

C
oo
lP
ro
p

Figure 4. Comparison of the density between the van der Waals
gas model and the CoolProp model for air.

The van der Waals air model has a slightly wider range
of validity (see Figure 4). Pressures up to 200bar and tem-
peratures above 170K can be covered with an error in the
density below 5%. The benefit in application range by
using the van der Waals model for air is smaller than for

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process

DOI Proceedings of the 13th International Modelica Conference 669
10.3384/ecp19157665 March 4-6, 2019, Regensburg, Germany

hydrogen. Still low temperatures can be handled with a
higher precision and the Joule-Thomson effect is covered.

4.3 Joule-Thomson coefficient
In section 2.6 an analytic formulation for the Joule-
Thomson coefficient has been derived in equation (30). It
will be compared to the direct derivative of the enthalpy
calculated in the PSL according to equation (19) for hy-
drogen:
temp_der_T = der(gas.temperature, p);
mu_jt_modelica = temp_der_T(p=p,h=h);
mu_jt_analytical = 1 /

gas.specificHeatCapacityAtConstantPressure
(p=p,T=T) * (2 * gas.a / gas.R / T -
gas.b - 3 * a * b * p / R^2 / T^2);

1000
-8E-7

-6E-7

-4E-7

-2E-7

0E0

2E-7

T[K]

mu_jt_modelica // 1 bar

mu_jt_modelica // 50 bar

mu_jt_modelica // 100 bar

mu_jt_modelica // 200 bar

mu_jt_analytical // 1 bar

mu_jt_analytical // 50 bar

mu_jt_analytical // 100 bar

mu_jt_analytical // 200 bar

1100300 400

Figure 5. Analytical and Numerical Joule-Thomson coefficient
for hydrogen.

The result for different pressures over the logarithmic
scaled temperature is shown in Figure 5. For ambient pres-
sure both definitions show the same behaviour. For higher
pressures the assumption v >> b from equation (27) can-
not be met anymore and the analytical description of µJT
recedes from the numerical derivative formulated in the
PSL.

5 Applications
5.1 Hydrogen fuel tank
To simulate the filling process of a hydrogen tank a simpli-
fied model utilizing the Hydrogen Library as in Figure 6
is used. The fluid part consists of a pressure source at
200bar, a variable orifice and a reservoir with a heat con-
nection to the environment. The mass flow rate should be
kept constant over the filling process, so a PI controller is
used to set the valve opening. To restrict the maximum
temperature in the tank during the filling process, the hy-
drogen gas from the pressure source is assumed to be pre-
cooled at −10 ◦C.

5.2 Results
The temperature in the tank during filling pro-
cess is plotted in Figure 7 for different hy-
drogen media models. The ideal gas model

hydrogenOutlet

p,T
valve

tank

V=0.43 m³

PI

PI

step

startTime=1 s

massFlowSensor

m

hydrogenSettings

Figure 6. Dymola model to simulate a tank filling process for
hydrogen.

(Modelica.Media.IdealGases.SingleGases.H2)
strongly underestimates the maximum temperature as
it only takes into account the temperature rise due to
translational work from the pressure step at the inlet of the
tank. Both the CoolProp and the van der Waals Real Gas
Model consider the additional temperature rise due to the
Joule-Thomson effect, while it is slightly overestimated
by the van der Waals Real Gas Model. In the use-case
of the tank filling process the safer approach is to use
a model overestimating the temperatures, so the safety
margin to the temperature limitation is increased.

0 100 200 300 400
0

20

40

60

80

100

T
 [

°C
]

t [s]

real_gas.tank.medium.T [°C]

coolprop.tank.medium.T [°C]

ideal_gas.tank.medium.T [°C]

Figure 7. Results of the tank filling process simulation.

5.3 Performance
To compare the performance of the van der Waals gas
model, the fuel tank experiment has been conducted using
the Hydrogen Library ideal and van der Waals gas model
as well as the CoolProp Library with the ExternalMedia
interface (Casella and Richter, 2008). The results are sum-
marized in table 2.

Table 2. Results of the performance test.

Fluid model Simulation time

Ideal gas model / Hydrogen 0.2 s
van der Waals model / Hydrogen 1.06 s
CoolProp lib. / ExternalMedia 4.18 s

Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process

670 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157665

The van der Waals model has a significant performance

advantage against the ExternalMedia approach at the cost
of lower accuracy.

5.4 Excursus: Experiment of Gay-Lussac
The experiment of Gay-Lussac was conducted in 1807 and
repeated by (Joule, 1845). A volume with a high pressure
at 22bar and environment temperature of 20◦C is con-
nected to an evacuated volume and the gas flows until both
pressures are equal. After reaching thermodynamic equi-
librium, the same temperature as the start temperature was
measured in both volumes. With the measurement accu-
racy of that time the ideal gas law was proven. The model
shown in figure 8 is an example model of the PSL. The two
volumes are modeled as spheric tanks with a heat transfer
connection. Between the pneumatic ports of the volumes
a V22 valve prevents air flow. After one second the valve
opens and gas flows until the equilibrium is reached.

V V

P A

booleanStep

1 s

Figure 8. Dymola model to simulate the experiment of Gay-
Lussac.

With more accurate measurement it was found that
the temperature after reaching thermodynamic equilib-
rium was 3 K below the initial temperature. As the exper-
iment did not allow any change in enthalpy, this behavior
could only be explained by the real gas law. The results in
table 3 show that the van der Waals model covers this real
gas effect.

Table 3. Results of the experiment of Gay-Lussac.

Fluid model End temperature

Ideal gas model / PSL 20.0 ◦C
van der Waals model / PSL 17.2 ◦C
CoolProp lib. / ExternalMedia 16.9 ◦C

6 Summary
The investigation shows that the van der Waals Real Gas
Model is a good compromise between accuracy and sim-
ulation performance. A big advantage of the model is the
possibility to describe the influence of the internal pres-
sure on the specific enthalpy fully analytical. Thus it can
be reduced to a single additional term in the formulation of

the internal energy. A van der Waals model can be easily
adapted to different gases as the formulation only requires
pressure and temperature at the critical state, the molar
mass and a table for the temperature-dependent part of the
internal energy.

References
C. J. Adkins. Equilibrium Thermodynamics (3rd ed.). Cam-

bridge University Press, Cambridge, UK, 1983. ISBN 0-521-
25445-0.

Ian H. Bell, Jorrit Wronski, Sylvain Quoilin, and Vincent
Lemort. Pure and pseudo-pure fluid thermophysical prop-
erty evaluation and the open-source thermophysical prop-
erty library coolprop. Industrial & Engineering Chemistry
Research, 53(6):2498–2508, 2014. doi:10.1021/ie4033999.
URL http://pubs.acs.org/doi/abs/10.1021/
ie4033999.

H. B. Callen. Thermodynamics and an Introduction to Ther-
mostatistics. John Wiley & Sons, New York, 1985. ISBN
978-0471862567.

Francesco Casella and Christoph Richter. Externalmedia: A li-
brary for easy re-use of external fluid property code in mod-
elica. Proceedings of 6th International Modelica Conference,
pages 157–161, 2008.

J. D. Van der Waals. The equation of state for gases and liquids.
Nobel Lectures, Physics 1901-1921, pages 254–265, 1967.

Walter Greiner, Ludwig Neise, and Horst Stöcker. Thermo-
dynamik und statistische Mechanik. Verlag Harri Deutsch,
Frankfurt am Main, 1993. ISBN 978-3808557082.

J.P. Joule. Liv. on the changes of temperature produced by the
rarefaction and condensation of air. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
26(174):369–383, 1845. doi:10.1080/14786444508645153.

Eric W. Lemmon, M. L. Huber, and M. O. McLinden. NIST
Standard Reference Database 23: Reference Fluid Thermo-
dynamic and Transport Properties - REFPROP. National
Institute of Standards and Technology, Standard Reference
Data Program, Gaithersburg, 9.0 edition, 2010. URL http:
//www.nist.gov/srd/nist23.cfm.

W. Moore. Grundlagen der Physikalischen Chemie. De Gruyter,
Berlin, 1986. ISBN 978-3110099416.

W. Sutherland. The viscosity of gases and molecular force.
Philosophical Magazine 5, pages 507–531, 1893.

N. W. Tschoegl. Fundamentals of Equilibrium and Steady-State
Thermodynamics. Elsevier, Amsterdam, 1983. ISBN 0-444-
50426-5.

Office of energy efficiency US DOE, Renewable energy, the
FreedomCAR, and fuel Partnership. Targets for onboard hy-
drogen storage systems for light-duty vehicles. Technical re-
port, 2009.

B. Weigand, J. Köhler, and J. v. Wolfersdorf. Thermodynamik
kompakt. Springer-Verlag, Berlin, 2008. ISBN 978-3-540-
71865-9.

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

DOI Proceedings of the 13th International Modelica Conference 671
10.3384/ecp19157671 March 4-6, 2019, Regensburg, Germany

Modeling of the Flow Comparator Prototype as New Primary Standard for High
Pressure Natural Gas Flow Metering
Singh, Sukhwinder and Schmitz, Gerhard and Mickan, Bodo

671

Modeling of the Flow Comparator Prototype as New Primary
Standard for High Pressure Natural Gas Flow Metering

Sukhwinder Singh1 Gerhard Schmitz1 Bodo Mickan2

1Institute for Engineering Thermodynamics, Hamburg University of Technology, Germany,
{sukhwinder.singh,schmitz}@tuhh.de

2Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, bodo.mickan@ptb.de

Abstract
The German national metrological institute, Physikalisch-
Technische Bundesanstalt, is developing a new concept
for volumetric primary standard to calibrate high pressure
gas flow meters. The TUHH is supporting these R&D
activities with its competence to elaborate computational
models for detailed analysis of complex mechanical sys-
tems including fluid flow aspects. The new primary stan-
dard is based on a actively driven piston prover to measure
the gas flow rate using the time the piston needs to displace
a defined enclosed volume of gas in a cylinder.

A computational model written in Modelica R© is devel-
oped to investigate the Flow Comparator’s dynamic be-
havior. Validation of the model shows good compliance
of the piston velocity and differential pressure at the pis-
ton in the model with measured data. With this model the
control voltage trajectory can be optimized to increase the
available measuring time and it allows to gather detailed
information about pressure and temperature development
at arbitrary chosen locations in the system with high time
resolution.
Keywords: modeling of multi-domain physical systems,
flow comparator, high pressure natural gas flow metering,
linear motor, optimization

1 Introduction
For the trade with natural gas the uncertainty of high pres-
sure natural gas flow meters is of major importance. The
calibration of the flow meters is done with transfer stan-
dards which are calibrated by the German national pri-
mary standard for high pressure natural gas flow. The
current primary standard is a High Pressure Piston Prover
(HPPP) (Schmitz and Aschenbrenner; PTB, 1991, 2009).
It is owned and operated by the National Metrology Insti-
tute of Germany Physikalisch-Technische Bundesanstalt
(PTB) and installed on the calibration facility for gas me-
ters pigsarTM in Dorsten, Germany. The HPPP can be op-
erated with inlet pressures up to 90 bar and flow rates up
to 480 m3/h (PTB, 1991).

Due to the increasing size and flow rates of the gas flow
meters and the limited operation range of the current na-
tional standard, a new concept for calibrating gas flow me-
ters is being developed, the Flow Comparator. A develop-

ment prototype of the Flow Comparator is used for pre-
liminary tests such as investigating the controllability and
the usable flow rate at ambient conditions. A picture of
the prototype is shown in Figure 1.

Figure 1. Picture of the Flow Comparator prototype

2 Experimental Setup
The key element of the Flow Comparator is a piston in a
cylinder. Together they act as an asynchronous linear mo-
tor. For this, the cylinder has two layers, one with mag-
netic properties and the other one acts as an electrical con-
ductor. The stator core with its windings is integrated into
the piston. For the electrical power of the stator core a
supply cable is connected to the piston. The velocity of
the piston is controlled by using a frequency inverter to
set the control voltage and frequency for the stator core.

The experimental setup is shown in Figure 2. The dif-
ferential pressure over the piston is measured with a sensor
in the piston. A specified leakage in the piston with a flow
sensor measures the fluid flowing through it. With the two
sensors, it is possible to compare the piston movement rel-
ative to the fluid flow. The piston has an integrated check
valve to limit the pressure drop downstream of the piston.

The position of the piston is measured using a dis-
tance measuring equipment (DME). The ambient temper-
ature and pressure as well as the temperature and pressure
downstream of the cylinder are measured.

A Turbine Meter (TM) is used as transfer standard. The
TM measures the volume flow rate using the rotational

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

672 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157671

p,T

TMNozzle BankFanOutlet

Inlet

DME ∆p,v Piston Prover

p0,T0

Figure 2. Scheme of the experimental setup with the Flow Comparator prototype

velocity of a turbine inserted into the fluid flow. The ro-
tational speed is measured using a magnetically induced
discrete signal of the turbine blades. The nozzle bank is
used to set the flow rate and consists of calibrated nozzles
with different volume flow rates in a parallel setup. The
nozzle bank is not needed for the operation of the Flow
Comparator, but provides the advantage of decoupling the
experimental setup from pressure fluctuations created by
the fan. The fan ensures that the pressure downstream of
the nozzle bank is low enough to have a critical flow in the
nozzles.

At the beginning of a measurement, the volume flow
rate is set by the nozzle bank and the piston moves slowly
upstream. At the starting point, the piston is accelerated
downstream until the piston velocity is the same as the
fluid velocity. The actual measurement phase starts when
the piston reaches the defined velocity and moves past a
certain point. The measurement phase ends at a defined
point downstream where the piston is stopped. The vol-
ume flow rate can be calculated as stated in Equation 1,
with the volume in between the starting and end point and
the time span ∆FCt. Therefore, the Flow Comparator is
traceable to the standards of length and time.

V̇FC =
VFC

∆FCt
(1)

In the same time span, the discrete pulses of the turbine
meter are counted. The volume flow rate VTM indicated
by the turbine meter can be calculated using a relation-
ship between volume flow rate and indicated signals per
time period for the turbine, which is known from previous
calibration (or from manufacturer specifications).

The calibration result is the relative deviation f at a cer-
tain volume flow rate and pressure. The relative deviation
is calculated as stated in equation 2 with the corrected vol-
ume flow rate as indicated by the turbine and the corrected
volume flow rate as indicated by the Flow Comparator.

f =
V̇ c

TM−V̇ c
FC

V̇ c
FC

(2)

To improve the calibration accuracy, some corrections

are applied to the indicated volume flow rate by the turbine
meter and the Flow Comparator. These are explained in
the following:

1. With equation 3 it is possible to correct the error
caused by the discrete nature of the turbine meter
signals. As stated before, the time span ∆FCt is the
duration of the measurement phase. The time span
∆TMt is the duration from the first signal of the tur-
bine meter after the start of the measurement phase
to the first signal of the turbine meter after the end of
the measurement phase.

V̇ c
TM = V̇TM

∆FCt
∆TMt

(3)

2. The following two corrections are applied due to
small differences of piston velocity to the fluid ve-
locity. With the differential pressure sensor and the
fluid flow velocity sensor it is possible to compare
the flow upstream and downstream of the piston.

A non-zero differential pressure at the piston results
in a leakage around the piston. The relationship be-
tween leakage and differential pressure is stated in
Equation 4.

V̇leak,∆p = a
√

∆p+b (4)

The coefficients a and b can be estimated by experi-
ments.

The volume flow correction with the differential
pressure sensor is practical for relatively high leak-
age flows. For small leakages at the piston the fluid
flow velocity sensor can be used. A non-zero veloc-
ity indicated by the fluid flow velocity sensor results
in a leakage around the piston. The relationship is
shown in equation 5 where the coefficients c and d
are also experimentally determined.

V̇leak,v = cv2 +dv (5)

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

DOI Proceedings of the 13th International Modelica Conference 673
10.3384/ecp19157671 March 4-6, 2019, Regensburg, Germany

3 Description of the model
Modelica R© was used as modeling language to describe the
physical and dynamic behavior of the Flow Comparator.
As simulation environment Dymola is used. A graphical
representation of the developed model is shown in Fig-
ure 3.

The assumptions used in the model are (von der Heyde
et al., 2015):

• pressure losses are proportional to the dynamic pres-
sure,

• the gas flow is one dimensional,

• the system is adiabatic,

• potential energy of the gas is neglected,

• the heat transfer in the gas can be neglected in com-
parison to convective energy transport.

The air used in the Flow Comparator is sucked out of
the experimental hall. Therefore, a constant ambient tem-
perature and pressure can be assumed. This is modeled
using a supply volume of infinite size from the Modelica
Standard Library (MSL). These boundary conditions are
set by equation 6 and equation 7. pIn is the inlet pressure
and TIn is the inlet temperature

pIn = const. (6)

TIn = const. (7)

The air properties are calculated using an air model of
the MSL.

Another boundary condition is set by the nozzle bank.
As aforementioned the fan ensures that the pressure down-
stream of the nozzle bank is low enough to have critical
flow in the nozzle. The critical volume flow rate V̇N in the
nozzle is set by Equation 8.

V̇N = const. (8)

The physical behavior of several nozzles is the same to
one larger nozzle with equivalent diameter. Therefore, the
nozzle bank is modeled as one nozzle with larger diameter
based on equations from International Standard DIN EN
ISO 9300 (International Organization for Standardization,
2005). The mass flow rate in the nozzle is calculated in
Equation 9 using the critical volume flow rate V̇N and the
upstream density ρ .

ṁN = V̇Nρ (9)

For the model, the measuring cylinder is divided into
one volume upstream of the piston and one volume down-
stream of the piston. The enclosed gas volumes depend on
the position of the piston and change volume with piston
movement. They can store mass m, internal energy mu and
momentum mv as described in Equation 10, 11 and 12.

dm
dt

= ṁi + ṁi+1 (10)

d
dt

mu = ṁi

(
hi +

v2
i

2

)
+ ṁi+1

(
hi+1 +

v2
i+1

2

)

+

(
pi+1− pi + pf,i+1− pf,i

2

)
V̇i + Q̇

(11)

d
dt

mv = ṁi|vi|+ ṁi+1|vi+1|−A(pi+1− pi)

−A(pf,i+1− pf,i)
(12)

In direction of fluid flow a spatial discretization is ap-
plied which leads to a number of finite volumes in the en-
closed gas volume. For the discretization the finite volume
method with a staggered grid approach is used. Figure 4
shows the placement of variables on a 1D staggered mesh.
The scalar variables (e.g. pressure, density etc.) are lo-
cated in the control volume cell center while the velocity
and momentum variables are stored on the cell faces.

Equations 10-12 are applied for each finite volume in
the enclosed gas volume. ṁ is the mass flow rate, h the
specific enthalpy, v the mean velocity in the cross area, p
the static pressure, pf the pressure loss due to friction, V
the volume and Q̇ is the heat flow.

The pressure loss is calculated using the detailed char-
acteristic wall friction model from the MSL. The model
calculates the pipe friction coefficient depending on the
Reynolds number and the relative roughness. A heat port
is included in the model of the enclosed gas volume and
can be connected to another heat port, e.g. the ambient or
the piston. The heat flow in the model is calculated using
a heat transfer model from the MSL.

The position and motion of the piston is determined by
the equation of motion as stated in Equation 13.

mPs̈P = p1AP− p2AP−FR,P−FR,C +FLM (13)

p1 and p2 are the pressures of the fluid upstream and
downstream of the piston, FR,P is the roll resistance of the
piston, FR,C the resistance of the connection cable and FLM
is the force of the linear motor to drive the piston. The
roll resistance of the piston is modeled using a constant
rolling resistance coefficient as stated in equation 14 with
cR being the roll resistance coefficient and FN being the
normal force of the piston.

FR,P = cRFN (14)

The resistance due to the weight of the connection cable
FR,C is modeled as shown in Equation 15 with g being the
gravitational force, mC the total weight of the connection
cable, s the current position of the piston and l the total
length of the connection cable.

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

674 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157671

Supply Volume Piston

s

p1

FilterPipe TMNozzle Bank

ṁ,p,h

Medium System l2l1

p2

Volume 1 Volume 2

M

Control
Voltage

Motor

U F

ṁ,p,h ṁ,p,h

ṁ,p,h

ṁ,p,h

Check Valve

Flow Resistance

ṁ,p,h ṁ,p,h

Figure 3. Graphical representation of the computational model

vn−1 vn vn+1pn−1 pn
ρn−1 ρn

Figure 4. Placement of variables using the finite volume method
with a staggered grid approach

FR,C = g ·mC
s
l

(15)

The movement of the piston can be controlled with the
linear motor integrated into the piston. As a first approach
to model the force of the linear motor, a function depend-
ing on control voltage input and velocity of the piston is
used. The function is derived by measuring the velocity of
the piston for several control voltages and different flow
resistances. The fitting function used is shown in Equa-
tion 16.

FLM = α(I− IS) · (
v

Ucontrol
− vS)+FF (16)

α is a proportional constant, I is the electric current of
the linear motor, IS is the magnetizing current for the mag-
netic field, v is the velocity of the piston, vS is the normal-
ized synchronous velocity of the linear motor and FF is the
friction force of the piston. The experimental data and the
result of the fitting is shown in Figure 5 where each line
represents a different control voltage. The experimental
data and fitting function are close-fitting overall. The out-
put of the linear motor model is the force accelerating the

piston. The motor model needs the current velocity of the
piston and control voltage of the frequency inverter as in-
put.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

v/U
control

 in m/Vs

-200

-100

0

100

200

300

400

fo
rc

e
in

 N

Experiment
Regression

Figure 5. Experimental results and fitting function for the force-
velocity relation of the linear motor

The control voltage model depends on the position of
the piston. Initially, it increases linearly to a predefined
negative value. When the starting position of the piston is
reached, the control voltage increases to a defined positive
value.

The check valve in the piston is modeled as a check
valve between the gas volumes of the measuring cylinder.
It opens at a specific differential pressure and enables a
fluid flow from volume 1 to volume 2. The check valve is
modeled with a hysteresis to avoid chattering. The mass
flow rate through the check valve is proportional to the
pressure drop over the check valve. For this a pressure loss
coefficient ζCV as specified by the manufacturer is used.

The flow resistance model describes the leakage be-
tween measuring cylinder and piston as there is a small

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

DOI Proceedings of the 13th International Modelica Conference 675
10.3384/ecp19157671 March 4-6, 2019, Regensburg, Germany

diameter difference between the two. To describe the re-
lation of mass flow rate and pressure drop a function is
derived from experiments.

The turbine meter model uses a constant pressure loss
coefficient ζTM to model the pressure loss in the turbine
meter as shown in Equation 17. ρ is the density and vA the
mean velocity in the cross area A of the turbine meter.

∆p = ζTM
ρ

2
v2

A (17)

The pressure loss coefficient ζTM is taken from mea-
surement data. The relationship between indicated vol-
ume flow rate and real volume flow rate of the turbine is
modeled as stated in Equation 18 which is a further devel-
opment of the equation described in (Mickan et al., 2010).
vi,rel is the relative indicated volume flow rate in relation
to the maximal possible volume flow rate for the specific
turbine meter, v the real volume flow rate, ρ is the density
and vi the indicated volume flow rate. The coefficients a,
b, A and B are results of different experiments.

v̇i,rel− (a+bvi,rel) = Aρv2−Bρvvi (18)

The filter is modeled as simple flow resistance and the
pressure loss is determined as shown in equation 17. The
DynamicPipe model of the MSL is used as the pipe model.
It uses the balance equations for mass m, internal en-
ergy mu and momentum mv shown in Equation 19, 20
and 21 on a number of finite volumes in the pipe. ṁ is
the mass flow, h the specific enthalpy, v the velocity, A the
cross-sectional area of the pipe, p the pressure and FF the
friction force in the pipe (Mickan et al., 2010).

dm
dt

= ṁi + ṁi+1 (19)

d
dt

mu = ṁihi + ṁi+1hi+1

+
1
2
(vA(pi+1 + pi)+ vFF)

(20)

d
dt

mv = ṁi|vi|+ ṁi+1|vi+1|−A(pi+1− pi)−FF (21)

4 Verification
The verification of a model shows the correct physical
implementation of a model and the accurate solution of
the equation system. For this, different parameter of the
model are varied and piston velocity and pressure differ-
ence over the piston are used as measure for verification.

For the solution of the equation system, the solver Dassl
with a relative tolerance of 10−6 is used. A further de-
crease in relative tolerance as well as using other solvers
does not change the model trajectory. For the volumes of
the measuring pipe, 8 discrete volumes are used and for
the pipe, 4 discrete volumes are used.

In Figure 6, the piston velocity for different control
voltages of the frequency inverter is shown. The accel-
eration of the piston is the same as it primarily depends on
the power ramp of the frequency inverter. Higher control
voltages have a greater maximum peak velocity as well as
end velocity.

0 1 2 3 4 5 6 7 8 9 10

time in s

0

0.2

0.4

0.6

0.8

pi
st

on
 v

el
oc

ity
 in

 m
/s

1.2 V
1.6 V
2 V

Figure 6. Piston velocity over time for different frequency in-
verter control voltages

The piston velocity for different rising time for the ramp
of the frequency inverter is shown in Figure 7. As ex-
pected, a lower rising time results in a higher acceleration
of the piston due to the faster increasing current in the lin-
ear motor and therefore a higher induced force on the pis-
ton. After the control voltage has increased to the defined
value, the difference in piston velocity decreases and the
piston velocity is almost the same at the end of the simu-
lation.

0 1 2 3 4 5 6 7 8 9 10

time in s

0

0.1

0.2

0.3

0.4

0.5

pi
st

on
 v

el
oc

ity
 in

 m
/s

3 s
5 s
7 s

Figure 7. Piston velocity over time for different frequency in-
verter rising time

In Figure 8, the differential pressure at the piston for
different volume flow rates of incoming air flow is shown.
For a volume flow rate of 65 m3/h, the piston velocity is
close to the velocity of the air flow and the differential
pressure is almost zero after the acceleration process. As
the piston velocity is almost independent of the air flow
rate, a lower volume flow rate results in a negative differ-
ential pressure at the piston. A negative differential pres-
sure means that the downstream pressure is higher than the
upstream pressure due to the faster movement of the pis-
ton in comparison to the air flow. Accordingly, a higher air
flow rate results in a positive differential pressure around
the piston.

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

676 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157671

0 1 2 3 4 5 6 7 8 9 10

time in s

-1000

-500

0

500

1000

1500

 p
 in

 P
a

40 m3/h

65 m3/h

90 m3/h

Figure 8. Differential pressure at the piston over time for differ-
ent air flow rates

5 Validation
To use the model for further predictions of the dynamic be-
havior of the Flow Comparator, the accuracy of the model
is highly relevant. The accuracy is affected by the afore-
mentioned mentioned general assumptions, the accuracy
of the empirical correlation for the linear motor and fre-
quency inverter, the assumptions for the friction force, and
further simplifications.

For the model’s validation, the prototype’s measure-
ment data is used. The experiments are conducted as de-
scribed in Section 2. The position of the piston is mea-
sured using the laser distance measuring equipment.

The simulations are carried out with the same control
voltage for the frequency inverter as the experiment for
a given air flow rate to validate the empirical approach
used for frequency inverter and linear motor. The moment
when the piston starts moving forward is set as t = 0 s and
the validation is only done for that part of the experiment
as this is the important part of the measurement.

In Figure 9, the piston velocity in simulation and ex-
periment is shown over time for a volume flow rate of
116 m3/h and a control voltage of 1.95 V. In the first 0.5 s,
the linear motor is not active due to the rising ramp of the
frequency inverter and the piston is accelerated by the dif-
ferential pressure at the piston. In this time frame, the
simulation shows a lower acceleration for the piston than
in the measurement. When the linear motor is active, the
simulated piston acceleration is higher than the measured
acceleration of the piston. In simulation and measurement,
the maximum piston velocity is similar. The decrease in
piston velocity due to the increasing resistance force of
the connection cable shows a similar behavior in simula-
tion and measurement. Overall, a relatively good accor-
dance of the simulated and measured piston velocity for a
volume flow rate of 116 m3/h is achieved.

The differential pressure at the piston over the time for
the simulation and the measurement is shown in Figure 10
for a volume flow rate of 116 m3/h and a control volt-
age of 1.95 V. The differential pressure around the piston
between simulation and measurement shows a time off-
set. The simulation has an immediate differential pressure
drop when the piston accelerates while the measurement

0 1 2 3 4 5 6 7

time in s

0

0.2

0.4

0.6

0.8

pi
st

on
 v

el
oc

ity
 in

 m
/s

Simulation
Measurement

Figure 9. Comparison of the piston velocity over the time in the
model and the measured data for a volume flow rate of 116 m3/h
and a control voltage of 1.95 V

data shows a delayed decrease in differential pressure. The
slope of differential pressure decrease is the same for sim-
ulation and measurement. Except for the time offset, the
simulation and measurement show a good agreement in
behavior of the differential pressure at the piston.

-1 0 1 2 3 4 5 6

time in s

-500

0

500

1000

1500

2000

2500

3000

 p
 in

 P
a

Simulation
Measurement

Figure 10. Comparison of the differential pressure at the piston
over the time in the model and the measured data with a time
offset toff = −1.9s for a volume flow rate of 116 m3/h and a
control voltage of 1.95 V

For validation of lower volume flow rates, the simula-
tion and measurement data for V = 65 m3/h is shown in
Figure 11. The simulation again has a lower piston accel-
eration at the beginning and a higher piston acceleration
when the linear motor is active. After reaching the max-
imum piston velocity simulation and experimental data
have an similar decrease in piston velocity. Therefore, a
good accordance between measurement and simulation is
also achieved for lower volume flow rates.

The difference in acceleration between simulation and
measurement data due to the air flow is caused partly by
the modeling of the pistons resistance force and the ap-
proach of using a constant roll resistance coefficient. This
may lead to the described difference. The accuracy of the
linear motor model may be increased by using an empiri-
cal approach which describes the dynamic part of the ac-
celeration in more detail.

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

DOI Proceedings of the 13th International Modelica Conference 677
10.3384/ecp19157671 March 4-6, 2019, Regensburg, Germany

0 1 2 3 4 5 6 7 8 9 10

time in s

0

0.1

0.2

0.3

0.4

0.5

pi
st

on
 v

el
oc

ity
 in

 m
/s

Simulation
Measurement

Figure 11. Comparison of the piston velocity over the time
in the model and the measured data for a volume flow rate of
65 m3/h and a control voltage of 1.25 V

6 Optimized control voltage trajec-
tory

The model is used to optimize the control voltage tra-
jectory of the frequency inverter to increase the available
measuring time. The differential pressure at the piston is
used as measure for the available measuring time.

There are different aspects to consider when optimizing
the control voltage. The pressure drop at the piston results
in a lower density downstream of the piston and accord-
ingly less mass in the measuring cylinder. In order to in-
crease the pressure and density downstream of the piston
an overshoot in piston velocity is necessary. Accordingly,
an overshoot in control voltage needs to be applied. The
piston’s resistance increases while it moves downstream
due to the connection cable. Therefore, an increase in
driving force is necessary.

In Figure 12 the trajectory of the optimized and non-
optimized control voltage over time for a volume flow rate
of 116 m3/h is shown. The control voltage in the opti-
mized case has an maximum value of 2.8 V and thus has
an overshoot of 0.85 V. It decreases to a value close to the
non-optimized control voltage and then increases with a
constant slope.

0 1 2 3 4 5 6 7

time in s

0

0.5

1

1.5

2

2.5

3

co
nt

ro
l v

ol
ta

ge
 in

 V

Non-optimized
Optimized

Figure 12. Comparison of the optimized and non-optimized fre-
quency inverter control voltage over time for a volume flow rate
of 116 m3/h

The piston velocity over time is shown in Figure 13 for
both regarded cases. The piston velocity is the same as

long as the control voltage is increasing and has the same
value. At the control voltage overshoot the piston velocity
for the optimized case overshoots, too. After the over-
shoot the piston velocity in the optimized case reaches the
air flow velocity much earlier than in the non-optimized
case. Furthermore, the piston velocity in the optimized
case stays close to the flow velocity while the piston ve-
locity in the non-optimized case decreases continuously.

0 1 2 3 4 5 6 7

time in s

0

0.2

0.4

0.6

0.8

1

1.2

pi
st

on
 v

el
oc

ity
 in

 m
/s

Non-optimized
Optimized

Figure 13. Comparison of the piston velocity over time for the
optimized and non-optimized frequency inverter control voltage
for a volume flow rate of 116 m3/h

The differential pressure at the piston over time for the
non-optimized and optimized case is shown in Figure 14.
At the beginning of the measurement the differential pres-
sure at the piston is the same for both regarded cases. The
differential pressure at the piston decreases faster to the
desired value of ∆p= 0 Pa than in the non-optimized case.
Furthermore, in the optimized case the differential pres-
sure stays in a close range around ∆p = 0 Pa during the
measurement. In comparison, the differential pressure at
the piston in the non-optimized case is increasing.

The maximum permitted differential pressure at the pis-
ton during the measuring time is set to ∆p = 50 Pa. With
this restriction the measuring time of the optimized case is
4.5 s long while in the non-optimized case the measuring
time is about 2.5 s. The measuring time can be increased
by 80 % using the optimized control voltage trajectory.

-1 0 1 2 3 4 5 6 7

time in s

-500

0

500

1000

1500

2000

2500

 p
 in

 P
a

Non-optimized
Optimized

Figure 14. Comparison of the differential pressure at the pis-
ton over time for the optimized and non-optimized frequency
inverter control voltage for a volume flow rate of 116 m3/h

Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow
Metering

678 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157671

7 Conclusion and Outlook
A model of the Flow Comparator is implemented in
Modelica R©. The model is successfully verified and val-
idated against measurement data. With the model the fre-
quency inverter control voltage trajectory is optimized to
maximize the available measuring time. With this simple
optimization, the measuring time could be increased by
80 % in the model. This result of optimization will allow
to extend the upper limits of flow rate usable for calibra-
tions. Furthermore, the possibility to gather detailed infor-
mation about pressure and temperature development at ar-
bitrary chosen locations in the system with high time res-
olution enables much better and more reliable statements
about the accuracy of flow rate measurement with this sys-
tem.

The model uses an empirical approach to model the lin-
ear motor’s force. In future work, the linear motor should
be modeled using physically based equations. Addition-
ally, it will be essential to extend the model by heat trans-
fer from the motor components to the gas to complete the
modeling of the overall thermodynamic performance of
the piston prover.

Furthermore, the optimization of the frequency inverter
control voltage should be done using a more detailed ap-
proach. For this the position depending resistance as well
as the increase of resistance due to the connection cable
weight needs to be measured exactly.

In future work the check valve model and the model of
the leakage between piston and cylinder can be improved
by using a greater number of measurements to describe
their behavior.

References
International Organization for Standardization. DIN EN ISO

9300: Durchflussmessung von Gasen mit Venturidüsen bei
kritischer Strömung. 2005.

B. Mickan, R. Kramer, and V. Strunck. Transient response of
turbine flow meters during the application at a high pres-
sure piston prover. In 15th Flow Measurement Conference
(FLOMEKO). Linköping University Electronic Press, 2010.

Physikalisch-Technische Bundesanstalt PTB. Prüfschein der
Rohrprüfstrecke. 1991.

Physikalisch-Technische Bundesanstalt PTB. PTB Mitteilun-
gen. Special Issue Volume 119 no.1, 2009.

G. Schmitz and A. Aschenbrenner. Experience with a Piston
Prover as the New Primary Standard of the Federal Republic
of Germany in High-Pressure Gas Metering. In Proceedings
of the 18th World Gas Conference, Berlin, 8.-12.7.1991.

M. von der Heyde, G. Schmitz, and B. Mickan. Modeling of
the German National Standard for High Pressure Natural Gas
Flow Metering in Modelica. In Proceedings of the 11th Inter-
national Modelica Conference, Versailles, France, Septem-
ber 21-23, 2015. Linköping University Electronic Press, sep
2015. doi:10.3384/ecp15118663. URL https://doi.
org/10.3384/ecp15118663.

Transient modelling and simulation of a double-stage Organic Rankine Cycle

DOI Proceedings of the 13th International Modelica Conference 679
10.3384/ecp19157679 March 4-6, 2019, Regensburg, Germany

Transient modelling and simulation of a double-stage Organic Rankine Cycle
Eller, Tim and Heberle, Florian and Brüggemann, Dieter

679

Transient modelling and simulation of a double-stage Organic

Rankine Cycle

Tim Eller1 Florian Heberle1 Dieter Brüggemann1
1Institute of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET),

University of Bayreuth, 95440 Bayreuth, Germany; {tim.eller, florian.heberle, brueggemann}@uni-
bayreuth.de

Abstract
Geothermal energy is a renewable resource for power

and heat production. For low enthalpy reservoirs the

geothermal energy is usually converted to electricity by

an Organic Rankine Cycle (ORC). The efficiency and

profitability of these power plants can be increased by

combined heat and power production. In this study, a

dynamic model of a double-stage ORC power plant is

developed to investigate and evaluate geothermal

combined heat and power plant concepts. The

simulation model is validated by operational data of a

real geothermal power plant in the South of Germany.

For the validation, the relative root mean squared error

(RRMSE) is used. In addition, the coefficient of

correlation is calculated to evaluate the dynamic

behavior. The results show that the electrical power

output of the power plant can be predicted by an

RRMSE of 3.9 %. The coefficient of correlation is 0.99

and shows that the model is capable to predict the

dynamic behavior of the power plant.

Keywords: transient simulation, Organic Rankine

Cycle, geothermal heat and power production

1 Introduction

Geothermal energy is a renewable resource for low

carbon heat and power production. In binary systems,

the thermal power of the brine is usually converted to

electricity by Organic Rankine Cycles (ORC). A

previous study (Heberle et al., 2016) shows that the

efficiency and profitability of these power plants can be

increased by an additional heat supply. Because of the

fluctuating heat demand, the power plant is driven more

often in part load conditions. For that reason, a dynamic

model of a double-stage ORC power plant is developed

to evaluate different power plant concepts for combined

geothermal heat and power production.

In the literature, several dynamic ORC models are

presented for waste heat recovery (WHR) from engines.

Huster et al. (2018) modelled a one-stage ORC for WHR

in a diesel truck. For the simulation, the software
gPROMS is used and the model is validated against

measurement data. The results show that the

initialization process of the model is a challenging task

and that the dynamics in the heat exchangers are

dominated by the pressure level. Jiaxin Ni et al. (2017)

developed also an ORC for waste heat recovery (WHR)

from diesel engines using the software Dymola. The

study shows that the dynamics of the system can be

damped by the integration of an intermediate oil cycle.

Bin Xu et al. (2017) developed a model for WHR from

diesel engines in MATLAB/Simulink and showed that

the vapor temperature and the evaporation pressure can

be predicted with 2 % and 3 %, respectively.

Next to WHR dynamic ORC models are also

developed for solar and geothermal applications.

Baccioli et al. (2017) built up a dynamic model for an

ORC with compound parabolic solar collectors and

developed a control strategy to drive the system without

a thermal energy storage. Proctor et al. (2016) developed

a one-stage ORC simulation model for geothermal

power production and validated the model against

measurement data with a standard deviation of 1.4 %.

The model will be used to test potential improvements

to the control system of the power plant. To sum up, so

far only small scale dynamic ORC models are

developed.

In this study, a dynamic model of a double-stage

ORC is developed with the software Dymola to

investigate potential plant concepts for geothermal

combined heat and power production. The simulation

model is described and in chapter 3 the results of the

validation are presented.

2 Methodology

In this section the double-stage ORC concept is

introduced and the dynamic modelling of the cycle

components is presented. For modelling and simulation

the software Dymola (Dassault Systèmes, 1992-2004) is

combined with the Modelica based library

ThermoCycle (Quoilin et al., 2014). For the calculation

of the fluid properties, the software CoolProp (Bell et

al., 2014) is used.

2.1 Double-stage ORC

In this study, a double-stage ORC is considered based

on a real operating power plant in the German Molasse

Transient modelling and simulation of a double-stage Organic Rankine Cycle

680 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157679

Basin. A scheme of the power plant and its components

is shown in Figure 1.

high
temperature
ORC

brine
low
temperature
ORC

preheater
HHT

evaporator
HT

turbine
HT

evaporator
LT

turbine
LT

preheater
LHT

preheater
LT

pump
HT

pump
LT

tank HTtank LT

condenser
HT

condenser
LT

G

generator

Figure 1. Scheme of the considered double-stage Organic

Rankine Cycle.

The double-stage ORC consists of two modules, a high

temperature (HT) and a low temperature (LT) ORC. In

both modules, R245fa is used as working fluid.

Regarding the cycle components, each ORC contains a

pump, at least one preheater, an evaporator, a turbine

and a condenser. The thermal water enters the HT ORC

with a temperature of 138 °C und and a mass flow rate

of 120 kg/s. Firstly, heat is supplied to the HT-ORC and

then to the LT-ORC. A detailed T-Ḣ-diagram of the

power plant is shown in Figure 2. Table 1 summarizes

some characteristic data for the heat exchangers and the

rotating equipment at the design point.

0

20

40

60

80

100

120

140

160

15 20 25 30 35 40 45 50 55 60

Enthaply Flow / MW

T
em

p
er

at
u

re

/
 °

C

 thermal water LT HT

Figure 2. T-Ḣ-diagram of the considered double-stage

Organic Rankine Cycle.

Table 1. Characteristic data of the considered power

plant. (Heberle et al., 2015)

parameter value

rotating equipment

LT pump isentropic efficiency 78.4 %

HT pump isentropic efficiency 76.7 %

HT turbine isentropic efficiency 82.7 %

HT turbine isentropic efficiency 88.3 %

generator efficiency 98.0 %

heat exchanger areas

LT-preheater 201.0 m²

LT-evaporator 741.4 m²

LHT-preheater 270.4 m²

HHT-preheater 277.6 m²

HT-evaporator 741.4 m²

LT-condenser 7512.0 m²

HT-condenser 3756.0 m²

2.2 Modelling

In principle, two types of components have to be

modelled to simulate a double-stage ORC system:

turbomachines (pumps, turbines) and heat exchangers

(preheaters, evaporators, condensers).

Turbomachines

Several previous investigations of dynamic ORC

models show that the time constants in the

turbomachines are relatively low compared to those of

the heat exchangers. Therefore, the pump and the

turbine can be modelled as quasi-stationary components

(Quoilin, 2011; van Putten and Colonna, 2007; Wei et

al., 2008).

For the pump the exhaust enthalpy is calculated

according to the following equation:

out in

out in
s in

p p
h h

 (1)

The isentropic efficiency of the pump ηs depends on the

pumped volume flow rate. For the simulation, the

characteristic curve of the manufacturer data sheet is

implemented for the LT- and the HT-ORC pump,

respectively. The normalized curves are shown in

Figure 3.

Transient modelling and simulation of a double-stage Organic Rankine Cycle

DOI Proceedings of the 13th International Modelica Conference 681
10.3384/ecp19157679 March 4-6, 2019, Regensburg, Germany

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70

80

 HT-Pump

 LT-Pump

ef
fi

ci
en

cy

/
 %

load condition / %

Figure 3. Characteristic curve of the pump isentropic

efficiency for the HT- and LT-ORC.

The turbine is modelled based on Stodola’s law:

2

1 out

in in in

in

p
m K p

p

 (2)

The coefficient K is calculated for the HT and the LT

ORC by the respective nominal turbine inlet and outlet

conditions.

The isentropic efficiency of the turbine depends on the

volume flow rate at the turbine outlet and on the

enthalpy difference utilized in the turbine (Milora and

Tester, 1977). Both parameters are influenced by part

load operation. In addition, in the considered power

plant air-cooled condensers are used. Therefore, the

condensing pressure varies during the day according to

the ambient temperature. This affects the turbine outlet

pressure and thereby the utilized enthalpy difference.

For that reason, a quasi-stationary model of the

isentropic efficiency is implemented in the turbine based

on the approach of Ghasemi et al. (2014):

 ,s s nom h vr r (3)

The nominal isentropic efficiency ηs,nom is corrected by

two factors: rh takes into account the off-design enthalpy

difference and is calculated by

 1.398 5.425 6.274 1.866 0.619h T T T Tr r r r r (4)

with

, ,

, ,

turbine in turbine out

T

turbine in turbine out nom

h h
r

h h

. (5)

rv takes into account the off-design volume flow rate at

the turbine outlet and is given by

 0.21 1.117 2.533 2.588 0.038v VT VT VT VTr r r r r (6)

with

 VT

nom

V
r

V
 . (7)

Heat exchangers

The dynamic models for the heat exchangers are built

up in three steps according to Quoilin et al. (2011):

1. At first, a stationary model is built up with

detailed correlations for the heat transfer and

the pressure drop depending on the geometry.

2. In the next step, the stationary model is

simulated at the design point and nominal

values for the heat transfer coefficient αnom and

the pressure drop Δpnom are calculated.

3. In the third step, the detailed heat and pressure

drop correlations are simplified and a dynamic

heat transfer coefficient and pressure drop is

calculated based on the nominal values.

Exemplarily, the dynamic heat transfer

coefficient α of the working fluid in the

preheaters can be calculated according to

equation (8):

n

nom

nom

m

m

 (8)

The preheaters are shell and tube heat exchangers with

double-segmental baffles and two passes for the hot and

the cold side, respectively. The thermal water flows in

the tubes and the working fluid in the shell. For

modelling of heat exchangers, the most common

approaches are the finite volume approach and the

moving boundary approach (Jensen, 2003). For the

simulation of the preheaters, the finite volume approach

is used.

The heat transfer coefficient of the thermal water in the

tubes is calculated by Gnielinski (2013). For the

working fluid on the shell side an adapted version of the

correlation of Bell-Delaware is used (Milcheva et al.,

2017). For the pressure drop on the hot side a correlation

of Kast and Nirschl (2013) is implemented and for the

working fluid the pressure drop is calculated by Taborek

et al. (Hewitt, 2008).

The evaporators in the considered power plant are

designed as kettle boilers. The working fluid on the shell

side is heated by the thermal water in the tube bundle.

On the tube side there are four passes.

Since the dynamics on the shell side can not be covered

accurately by the finite volume or moving boundary

approach, a two-volume model for the evaporator is

Transient modelling and simulation of a double-stage Organic Rankine Cycle

682 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157679

developed in ThermoCycle according to Pili et al.

(2017). For the tube side the finite volume approach is

used.

The heat transfer coefficient for pool boiling on tube

bundles is calculated by Macchi and Astolfi (2017)

 ,1bundle nb b ncF . (9)

Fb takes into account the effect of convective boiling

and is calculated by Taborek et al. (Hewitt, 2008):

0.75

20.866

0.785
1.0 0.1 1.0

(/)

b

b

t o o

D
F

p D D

 (10)

According to Welzl et al. (2018) for the pool boiling

heat transfer coefficient αnb,1 of R245fa the correlation

of Cooper (1984) is used. The convective boiling heat

transfer coefficient αnc is assumed to be 250 W/m²K

according to Macchi and Astolfi (2017). For the heat

transfer in the vapor region the Bromley equation

(Bromley, 1950) is implemented. The pressure drop is

calculated by the static pressure drop since the pressure

drop in kettle boilers is dominated by the static part

(Thome, 2004). For the thermal water, the same

correlations for the heat transfer coefficient and pressure

drop are used as for the preheaters.

As mentioned above, in the considered power plant air-

cooled condensers are implemented. The working fluid

flows in tube bundles with two passes and the air in

cross-flow over the tube bundles. On the working fluid

side the heat transfer for one-phase regions (liquid and

vapor) is calculated by Gnielinski (2013). For the two-

phase region Cavallini et al. (2006) is used. For the

pressure drop Kast and Nirschl (2013) is implemented

for one phase regions and for the two-phase region

Friedel is used. The heat transfer coefficient on the

shell side is calculated by Haaf et al. (Steimle and Plank,

1988).

2.3 Validation parameters

The developed dynamic models are validated against

operational data of a real geothermal heat plant. The

validation takes place in two steps.

At first, the relative root mean squared error (RRMSE)

(Despotovic et al., 2016) is calculated as an indicator for

the quantitative quality of the simulation results by

2

1

1 N

i

i

R
N

RRMSE
x

, (11)

where N is the number of intervals and R the difference

between the measured value x and the simulated value

y.

The RRMSE, however, is not able to take into account

the dynamic behavior of the model. Therefore, in a

second step the coefficient of correlation ρ is calculated:

 1

2 2

1 1

()()

() ()

N

i i

i

N N

i i

i i

x x y y

x x y y

 (12)

The coefficient of correlation is used for time series

analysis and can range from -1 to +1. A value of +1

means that both time histories are identical in shape.

(Sarin et al., 2010) Therefore, the coefficient of

correlation evaluates the dynamic behavior of the model

compared to the operational data.

3 Results

For the validation of the double-stage ORC a period of

24 hours in steps of one minute is simulated. The

validation results are presented in Table 2.

Table 2. Validation results of the cycle components.

parameter RRMSE

 [%]

HT-ORC

pump outlet pressure 3.5

pump outlet volume flow rate 17.0

turbine inlet pressure 4.8

turbine outlet pressure 3.6

HHT preheater inlet temperature 0.4

HHT preheater outlet temperature 0.9

HHT preheater temperature difference 6.2

evaporator outlet temperature 0.4

tank temperature 1.8

LT-ORC

pump outlet pressure 4.2

pump outlet volume flow rate 5.3

turbine inlet pressure 1.4

turbine outlet pressure 4.7

LT preheater outlet temperature 0.5

evaporator outlet temperature 0.1

tank temperature 1.8

Thermal water

HT evaporator temperature difference 11.0

HHT preheater inlet temperature 0.9

HHT preheater outlet temperature 0.7

HHT preheater temperature difference 5.1

LT evaporator inlet temperature 0.7

LT evaporator outlet temperature 0.5

LT evaporator temperature difference 5.0

LHT preheater inlet temperature 0.5

LHT preheater outlet temperature 1.2

LHT preheater temperature difference 12.8

LT preheater outlet temperature 0.8

LT preheater temperature difference 6.3

injection temperature 1.1

Transient modelling and simulation of a double-stage Organic Rankine Cycle

DOI Proceedings of the 13th International Modelica Conference 683
10.3384/ecp19157679 March 4-6, 2019, Regensburg, Germany

The volume flow rate and the temperature of the

geothermal fluid, the electrical power consumption of

the fans and the ambient temperature are used as inputs

for the simulation.

The RRMSE is on average 3.6 %. For the pressure

and the temperatures, the RRMSE is lower than 5 %.

Except for the temperature differences and the volume

flow rates in LT- and HT-ORC module the RRMSE is

higher than 5 %. According to the manufacturer for the

volume flow rates in the ORC-modules the uncertainties

of the integrated flow rate sensors are responsible for the

deviations (Heberle et al., 2015). Regarding the

temperature differences, the reason for the deviation is

the uncertainty in the measurement of the volume flow

rate of the geothermal fluid.

In Figure 4 the results for the evaporating pressure of

the HT-cycle are presented. The deviation between

simulation and operational data is quantified by an

RRMSE of 4.8 %. Regarding the coefficient of

correlation is 0.97 and shows that the simulation model

can reproduce the dynamic behavior.

0 2 4 6 8 10 12 14 16 18 20 22 24

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

p
re

ss
u

re
 /

b

ar

time / h

 operational data simulation brine

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

v
o

lu
m

e
fl

o
w

 r
at

e
 /

m

³/
h

Figure 4. Validation results for the evaporating pressure

of the HT-ORC.

Figure 5 shows the validation results for the

reinjection temperature of the geothermal fluid, which is

an indicator for the heat supplied to the ORC. The

RRMSE is 1.1 %. In addition, the dynamic behavior is

evaluated by a coefficient of correlation of 0.99 and

shows that the simulation and the operational data are

almost identical in shape.

0 2 4 6 8 10 12 14 16 18 20 22 24

42

44

46

48

50

52

54

56

58

60

62

re
in

je
ct

io
n

 t
em

p
er

at
u

re

/

 °
C

time / h

 operational data simulation brine

200

220

240

260

280

300

320

340

360

380

400

420

440

460

480

v
o

lu
m

e
fl

o
w

 r
at

e
 /

m

³/
h

Figure 5. Validation results for the reinjection

temperature of the geothermal fluid.

For the evaluation of the whole system, the electrical

power output of the generator is used as the validation

parameter. The results are shown in Figure 6. The

RRMSE is 3.9 % and the coefficient of correlation is

0.99. Therefore, the simulation model can predict the

dynamic behavior.

As mentioned, the measurement of the volume flow rate

of the thermal water is connected to high uncertainties.

For that reason, the simulated electrical power output of

the generator is lower than the real power output even

though no heat losses to the ambient are considered in

the simulation model.

0 2 4 6 8 10 12 14 16 18 20 22 24

3.5

4.0

4.5

5.0

5.5

6.0

6.5

el
ec

tr
ic

al
 p

o
w

er
 o

u
tp

u
t

 /

M

W

time / h

 operational data simulation brine

320

340

360

380

400

420

440

460

480
v

o
lu

m
e

fl
o

w
 r

at
e

 /

m

³/
h

Figure 6. Validation results of the double-stage Organic

Rankine Cycle.

Transient modelling and simulation of a double-stage Organic Rankine Cycle

684 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157679

The dynamic model is developed to investigate different

concepts for geothermal heat and power production.

Geothermal reservoirs usually provide a fixed volume

flow rate and temperature. Therefore, the parameters of

the thermal water can be defined in the model so that the

results are not affected by measurement uncertainties of

the thermal water volume flow rate. For that reason, the

deviation regarding the generator output is acceptable.

Due to the fluctuating heat demand of district heating

networks, the power plant is driven more often in part

load conditions. Therefore, it is necessary to predict the

dynamic behavior of the power plant accurately. As the

results show, the dynamics can be reproduced by the

developed simulation model.

4 Conclusion

In this study, a transient simulation model of a double-

stage ORC is developed and validated by operational

data of a real power plant in the German Molasse Basin.

The model is built up in Dymola based on the

ThermoCycle library.

The results show a RRMSE of 3.6 % on average The

pressure and temperatures can be predicted by an

RRMSE lower than 5 %. For the whole double-stage

ORC power plant the electrical output of the generator

can be predicted by 3.9 %. The coefficient of correlation

is 0.99 and shows that the simulation model can

reproduce the dynamics of the real power plant.

In future work, based on the dynamic simulation

model different geothermal combined heat and power

plant concepts are investigated and evaluated by annual

return simulations. For the district heating network heat

demand profiles based on real heat plant data will be

implemented. In addition, different peak loads as well as

supply and return temperatures are investigated.

Acknowledgements

The funding from the Bavarian State Ministry for

Education, Science and the Arts in the framework of the

project “Geothermie-Allianz Bayern” is gratefully

acknowledged.

References

Baccioli, A., Antonelli, M., and Desideri, U.: Dynamic

modeling of a solar ORC with compound parabolic

collectors: Annual production and comparison with

steady-state simulation, Energy Conversion and

Management, 148, 708–723,

doi:10.1016/j.enconman.2017.06.025, 2017.

Bell, I. H., Wronski, J., Quoilin, S., and Lemort, V.: Pure and

Pseudo-pure Fluid Thermophysical Property Evaluation

and the Open-Source Thermophysical Property Library

CoolProp, Industrial & engineering chemistry research,

53, 2498–2508, doi:10.1021/ie4033999, 2014.

Bromley, L. A.: Heat Transfer in Stable Film Boiling,

Chemical engineering progress, 221–227, 1950.

Cavallini, A., Col, D. D., Doretti, L., Matkovic, M.,

Rossetto, L., Zilio, C., and Censi, G.: Condensation in

Horizontal Smooth Tubes: A New Heat Transfer Model

for Heat Exchanger Design, Heat Transfer Engineering,

27, 31–38, doi:10.1080/01457630600793970, 2006.

Cooper, M. G.: Heat Flow Rates in Saturated Nucleate Pool

Boiling-A Wide-Ranging Examination Using Reduced

Properties, in: Advances in heat transfer, Hartnett, J. P.,

and Irvine, T. F. (Eds.), Advances in Heat Transfer, 16,

Academic Press, Orlando, London, 157–239, 1984.

Dassault Systèmes: Dymola - Dynamic Modeling

Laboratory, 1992-2004.

Despotovic, M., Nedic, V., Despotovic, D., and Cvetanovic,

S.: Evaluation of empirical models for predicting

monthly mean horizontal diffuse solar radiation,

Renewable and Sustainable Energy Reviews, 56, 246–

260, doi:10.1016/j.rser.2015.11.058, 2016.

Friedel, L.: Improved friction pressure drop correlations for

horizontal and vertical two-phase pipe flow, in:

European Two-phase Flow Group Meeting 1979.

Ghasemi, H., Sheu, E., Tizzanini, A., Paci, M., and Mitsos,

A.: Hybrid solar–geothermal power generation: Optimal

retrofitting, Applied Energy, 131, 158–170,

doi:10.1016/j.apenergy.2014.06.010, 2014.

Gnielinski, V.: Durchströmte Rohre, in: VDI-Wärmeatlas.

(in German), 11., bearb. und erw. Aufl., VDI-Buch,

Springer Vieweg, Berlin, 785–792, 2013.

Heberle, F., Eller, T., and Brüggemann, D.:

Thermoeconomic evaluation of one-and double-stage

ORC for geothermal combined heat and power

production., in: Proceedings of European Geothermal

Congress 2016, Paper-ID T-PO-148, Strasbourg

(France), September 2016, Strasbourg (France),

September 2016, 2016.

Heberle, F., Jahrfeld, T., and Brüggemann, D.:

Thermodynamic Analysis of Double-Stage Organic

Rankine Cycles for Low-Enthalpy Sources Based on a

Case Study for 5.5 MWe Power Plant Kirchstockach

(Germany), in: Proceedings World Geothermal

Congress 2015, Melbourne, Australia, 19-25 April,

2015.

Hewitt, G. F.: Thermal and hydraulic design of heat

exchangers, Heat exchanger design handbook (HEDH),

3, 2008.

Huster, W. R., Vaupel, Y., Mhamdi, A., and Mitsos, A.:

Validated dynamic model of an organic Rankine cycle

(ORC) for waste heat recovery in a diesel truck, Energy,

151, 647–661, doi:10.1016/j.energy.2018.03.058, 2018.

Jensen, J. M.: Dynamic modeling of thermo-fluid systems:

With focus on evaporators for refrigeration, MEK-ET-

PHD, 2003-01, Department of Mechanical Engineering,

Technical University of Denmark, Lyngby, 152 pp.,

2003.

Kast, W. and Nirschl, H.: Druckverlust in durchströmten

Rohren, in: VDI-Wärmeatlas. (in German), 11., bearb.

und erw. Aufl., VDI-Buch, Springer Vieweg, Berlin,

2013.

Macchi, E. and Astolfi, M. (Eds.): Organic rankine cycle

(ORC) power systems: Technologies and applications,

Woodhead Publishing series in energy, number 107,

Woodhead Publishing, Duxford, UK, 2017.

Milcheva, I., Heberle, F., and Brüggemann, D.: Modeling

and simulation of a shell-and-tube heat exchanger for

Organic Rankine Cycle systems with double-segmental

Transient modelling and simulation of a double-stage Organic Rankine Cycle

DOI Proceedings of the 13th International Modelica Conference 685
10.3384/ecp19157679 March 4-6, 2019, Regensburg, Germany

baffles by adapting the Bell-Delaware method, Applied

Thermal Engineering, 126, 507–517,

doi:10.1016/j.applthermaleng.2017.07.020, 2017.

Milora, S. L. and Tester, J. W.: Geothermal energy as a

source of electric power. Thermodynamic and economic

design criteria, 2. printing, MIT Press, Cambridge

Massachusetts, 186 pp., 1977.

Ni, J., Wang, Z., Zhao, L., Zhang, Y., Zhang, Z., Ma, M.,

and lin, S.: Dynamic simulation and analysis of Organic

Rankine Cycle system for waste recovery from diesel

engine, Energy Procedia, 142, 1274–1281,

doi:10.1016/j.egypro.2017.12.485, 2017.

Pili, R., Spliethoff, H., and Wieland, C.: Dynamic Simulation

of an Organic Rankine Cycle—Detailed Model of a

Kettle Boiler, Energies, 10, 548,

doi:10.3390/en10040548, 2017.

Proctor, M. J., Yu, W., Kirkpatrick, R. D., and Young, B. R.:

Dynamic modelling and validation of a commercial

scale geothermal organic rankine cycle power plant,

Geothermics, 61, 63–74,

doi:10.1016/j.geothermics.2016.01.007, 2016.

Quoilin, S.: Sustainable Energy Conversion Through the Use

of Organic Rankine Cycles for Waste Heat Recovery

and Solar Applications., Dissertation, Faculty of Applied

Science, University of Liège, Liège, 2011.

Quoilin, S., Desideri, A., Wronski, J., Bell, I., and Lemort,

V.: ThermoCycle: A Modelica library for the simulation

of thermodynamic systems, in: the 10th International

Modelica Conference, March 10-12, 2014, Lund,

Sweden, March 10-12, 2014, Linköping Electronic

Conference Proceedings, Linköping University

Electronic Press, 683–692, 2014.

Sarin, H., Kokkolaras, M., Hulbert, G., Papalambros, P.,

Barbat, S., and Yang, R.-J.: Comparing Time Histories

for Validation of Simulation Models: Error Measures

and Metrics, Journal of Dynamic Systems, Measurement

and Control, 132, 1–10, doi:10.1115/1.4002478, 2010.

Steimle, F. and Plank, R. (Eds.): Handbuch der Kältetechnik,

(in German), Springer, Berlin, 730 pp., 1988.

Thome, J. R.: Engineering Data Book III, Wolverine Tube,

Inc., Lausanne, 2004.

van Putten, H. and Colonna, P.: Dynamic modeling of steam

power cycles: Part II – Simulation of a small simple

Rankine cycle system, Applied Thermal Engineering,

27, 2566–2582,

doi:10.1016/j.applthermaleng.2007.01.035, 2007.

VDI-Wärmeatlas, (in German), 11., bearb. und erw. Aufl.,

VDI-Buch, Springer Vieweg, Berlin, 1760 pp., 2013.

Wei, D., Lu, X., Lu, Z., and Gu, J.: Dynamic modeling and

simulation of an Organic Rankine Cycle (ORC) system

for waste heat recovery, Applied Thermal Engineering,

28, 1216–1224,

doi:10.1016/j.applthermaleng.2007.07.019, 2008.

Welzl, M., Heberle, F., and Brüggemann, D.: Experimental

evaluation of nucleate pool boiling heat transfer

correlations for R245fa and R1233zd(E) in ORC

applications, Renewable Energy,

doi:10.1016/j.renene.2018.09.093, 2018.

Xu, B., Rathod, D., Kulkarni, S., Yebi, A., Filipi, Z., Onori,

S., and Hoffman, M.: Transient dynamic modeling and

validation of an organic Rankine cycle waste heat

recovery system for heavy duty diesel engine

applications, Applied Energy, 205, 260–279,

doi:10.1016/j.apenergy.2017.07.038, 2017.

Nomenclature

Symbols

D diameter

h specific enthalpy

m mass flow rate

N number of intervals

p pressure

pt tube pitch

R residual

x measured value

y simulated value

Greek symbols

α heat transfer coefficient

η efficiency

ρ density

Subscripts

b bundle

in inlet

nom nominal

o outer

out outlet

s isentropic

Superscript
¯ mean value

Transient modelling and simulation of a double-stage Organic Rankine Cycle

686 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157679

DOI Proceedings of the 13th International Modelica Conference 687
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 6C: TOOLS
A New OpenModelica Compiler High Performance Frontend
Pop, Adrian and Östlund, Per and Casella, Francesco and Sjölund, Martin and Franke, Rüdiger

OMJulia: An OpenModelica API for Julia-Modelica Interaction
Lie, Bernt and Palanisamy, Arunkumar and Mengist, Alachew and Buffoni, Lena and Sjölund, Martin and
Asghar, Adeel and Pop, Adrian and Fritzson, Peter

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves
Vering, Christian and Hinrichs, Sven and Lauster, Moritz and Müller, Dirk

.

688 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 689
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

A New OpenModelica Compiler High Performance Frontend
Pop, Adrian and Östlund, Per and Casella, Francesco and Sjölund, Martin and Franke, Rüdiger

689

A New OpenModelica Compiler High Performance Frontend

Adrian Pop1 Per Östlund1 Francesco Casella2 Martin Sjölund1 Rüdiger Franke3

1PELAB - Programming Environments Lab, Dept. of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden, {adrian.pop,per.ostlund,martin.sjolund}@liu.se

2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,
francesco.casella@polimi.it

3ABB, IAPG-A26, Kallstadter Str. 1, 68309 Mannheim, Germany, ruediger.franke@de.abb.com

Abstract
The equation-based object-oriented Modelica language al-
lows easy composition of models from components. It
is very easy to create very large parametrized models us-
ing component arrays of models. Current open-source and
commercial Modelica tools can with ease handle models
with a hundred thousand equations and a thousand states.
However, when the system size goes above half a mil-
lion (or more) equations the tools begin to have problems
with scalability. This paper presents the new frontend of
the OpenModelica compiler, designed with scalability in
mind. The new OpenModelica frontend can handle much
larger systems than the current one with better time and
memory performance. The new frontend was validated
against large models from the ScalableTestSuite library
and Modelica Standard Library, with good results.
Keywords: OpenModelica, compiler, flattening, frontend,
modelling, simulation, equation-based, scalability

1 Introduction and Motivation
System-level dynamic modelling and simulation is a key
activity in modern system engineering design. In paral-
lel to the detailed component design, which is performed
using advanced 3D CAD, CFD and FEM software tools,
system-level modelling, usually including systems of sys-
tems and large numbers of interacting components, allows
predicting the dynamic performance of complex systems,
which emerges from the interaction of its components.

The Modelica language (Modelica Association, 2017;
Fritzson, 2015) is a standardized tool-independent non-
proprietary equation-based object-oriented modeling lan-
guage, which was introduced 20 years ago by the non-
profit Modelica Association, with strong links to industry
and academia. This language, and the related eco-system
of tools, model libraries and the FMI standard (Blochwitz
et al., 2011), is ideally suited to system-level modeling of
complex, heterogenous and multi-domain cyber-physical
systems. It has become a de-facto standard in many in-
dustries, most notably the automotive one. The Model-
ica language is currently supported by about 10 different
modeling and simulation software tools; one of them, in
particular, the open-source OpenModelica software suite
(Fritzson et al., 2018), is the only Modelica tool owned

and maintained by a non-profit organization – the Open
Source Modelica Consortium (OSMC).

The main applications of Modelica tools so far have
been the study of individual systems, such as a car’s driv-
etrain and active suspension and steering control system,
a single industrial robot, a single power plant, a single
HVDC power link, the air conditioning system of a car,
etc. Existing Modelica tools employ strategies and algo-
rithms that are optimized for such system models, whose
typical complexity lies in the range of 1000-50000 equa-
tions and up to a few thousand state variables. The advent
of the internet-of-things paradigm is now fostering the de-
velopment of innovative very large-scale cyber-physical
systems, for example smart grids, or fleets of autonomous
vehicles. It is also sparking a renewed interest at the mod-
ernization of traditional large-scale systems. A first exam-
ple is continental-size high-voltage power generation and
transmission, which is facing increasing challenges due
to the introduction of power electronics equipment and to
the increased penetration of intermittent renewable energy
sources. A second example is district heating, possibly
integrated with heat pumps and distributed power genera-
tion in an integrated electrical and thermal smart grid. See
(Casella, 2015) for further examples and motivation.

Unfortunately, when Modelica is used to tackle the
modelling of large-scale systems with sizes exceeding the
ones mentioned above, currently available simulation soft-
ware that support Modelica fall short at providing ade-
quate performance. The time required to compile the mod-
els vastly exceeds what end users typically expect for sys-
tem level studies, i.e., a few minutes at most. The size of
the generated code and the memory requirements for com-
pilers vastly exceed what is normally available on laptops
and workstations used for daily work (8-16 GB).

In the last couple of years there have been some pio-
neering attempts at pushing the boundary of the size of
Modelica models that can be handled with reasonable time
and effort. In particular, some of our published papers
have demonstrated the feasibility of Modelica models of
high-voltage power generation and transmission systems
(Braun et al., 2017; Casella et al., 2017) and of detailed
models of key system components of future nuclear fusion
reactors, see (Froio et al., 2017). The size of the largest
models handled so far is about 750000 equations, which

A New OpenModelica Compiler High Performance Frontend

690 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

is about one order of magnitude bigger than the typical
size mentioned earlier.

The results were indeed very interesting and sparked a
lot of interest in the Modelica community. On the other
hand, they clearly showed the limits of current Modelica
tool technology, which is rather strained in terms of time
and memory requirements at that scale, and that cannot
in practice handle models of a size larger than one mil-
lion equations. Breaking that barrier and achieving the 10
million equations model size goal requires fundamental
methodological breakthroughs.

To summarize, the Modelica language has a lot of po-
tential to support the system-level modelling of innova-
tive engineering systems that require large-scale models.
However, current Modelica tools have serious limitations
as the system size grows.

1.1 Overcoming the Size Barrier with New Ef-
ficient Flattening Approach

An important goal of this work is overcoming the size bar-
rier of current Modelica simulation tools, making it possi-
ble to efficiently generate fast simulation code for systems
of up to 10 million equations, enabling new important ap-
plications such as those mentioned earlier, including large-
scale networked system models. Overcoming the size bar-
rier to 10 million equations means handling one to two
orders of magnitude larger models than what is currently
possible with state-of-the-art tools. To keep the total simu-
lation time within reasonable bounds, the time needed for
the model compiler to generate executable code should be
in the order of minutes in the worst case, and the memory
requirements should be fulfilled by the standard memory
size available on laptop computers (16 GB), or possibly
on engineering workstations for the largest problems (64
GB). The size of the executable code should also be much
smaller than what can be achieved today, otherwise most
of the simulation time risks to be spent waiting for data to
be shuffled back and forth between RAM and CPU cache.

The availability of such a tool will allow to use the
Modelica language, its high-level declarative modelling
paradigm, to support a wide range of large-scale system
design activities, as discussed in the previous sections. To
realize these goals, a large new tool development within
the OpenModelica tool suite was initiated about two years
ago, in particular the development of a new highly per-
forming compiler frontend, reported in this paper. More
than half of the OpenModelica model compiler has been
re-written and extended, and the software tool architecture
significantly enhanced.

Traditionally, when a Modelica compiler is generating
the simulation code, the system model is first flattened
(expanded), i.e., reduced to a large system of scalar equa-
tions, before performing structural analysis and code gen-
eration. Although this process allows to combine compo-
nents belonging to different domains in a straightforward
way, this approach is obviously inefficient when there are
many similar components in a system model, that only dif-

fer by their parameters, because the structural analysis and
the generated code will be highly redundant.

Arrays of models, or even multiple instances of the
same model, which only differ by the values of their pa-
rameters, should not be flattened to their scalar equations,
but rather handled in an efficient way throughout the code
generation process. Structural analysis and symbolic sim-
plification of models which are instantiated multiple times
should be performed only once instead of many times. At
the system level, structural analysis of the overall system
of equations should use algorithms and methods that con-
sider arrays as symbolic entities instead of breaking them
down to individual components. The efficiency of the final
code generation process should also be improved so that
ideally, if there are 1000 instances of the same component
in a model, code should be generated for the equations
of one of them only, and then called 1000 times, so as to
drastically reduce the code generation time and memory
consumption.

Achieving this goal requires fundamental changes to
the structure of the Modelica tool with respect to the
current state-of-the-art, which is to perform flattening to
scalar equations before starting the code generation phase.

2 Related Work
Instantiation and flattening of Modelica is quite complex.
Even as of the time of this writing there are open discus-
sion on the Modelica issue tracker about unclear parts of
the Modelica specification with regards to flattening. Fur-
thermore, there is no available information on the instan-
tiation and flattening process in the commercial Modelica
tools – this is only available for the two open-source Mod-
elica tools available: OpenModelica and JModelica.org.

JModelica.org is based on JastAdd (Hedin and Mag-
nusson, 2003), a Java based meta-compilation system that
supports Reference Attribute Grammars (RAGs). The in-
stantiation and flattening in JModelica.org is detailed in
(Åkesson et al., 2010). The process is similar to the one in
OpenModelica. The instance ASTs (abstract syntax trees)
are created from source ASTs and data is referenced using
inter-AST references. From the instance ASTs trees the
Flat ASTs are generated. The difference between Open-
Modelica and JModelica.org comes down to the funda-
mental differences between JastAdd and MetaModelica
(Pop and Fritzson, 2006). The JastAdd framework com-
putes attributes in the ASTs based on user-defined equa-
tions that relate to existing or circular attributes. In Meta-
Modelica we use functional programming via functions
and pattern matching to compute these attributes. JastAdd
translates to Java, MetaModelica translates to C code.
Both frameworks have automatic garbage collectors.

Interested readers can read more about compilers in
(Aho et al., 1986). More on functional programming is
available in (Hudak, 2000; Milner et al., 1997). Our pre-
vious work on boostrapping the OpenModelica compiler
can be found in (Sjölund et al., 2014).

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 691
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

3 OpenModelica Compiler New Fron-

tend Architecture
This section details the architecture and design of the
new frontend. The new frontend is implemented in mod-
ern MetaModelica 3.0 which combines Modelica fea-
tures with functional languages features. The implementa-
tion consists of 65 MetaModelica packages or uniontypes
defining encapsulated data structures and functions that
operate on the defined data.

3.1 New Frontend Typical File Structure
The new frontend uses the full capabilities of MetaModel-
ica 3.0 which simplifies the code, control flow and archi-
tecture.

Data structures are defined using uniontypes and
records. For example the flat model obtained after instan-
tiation and flattening was performed is defined as below.

encapsulated uniontype NFFlatModel
import Equation = NFEquation;
import Algorithm = NFAlgorithm;
import Variable = NFVariable;

record FLAT_MODEL
list<Variable> variables;
list<Equation> equations;
list<Equation> initialEquations;
list<Algorithm> algorithms;
list<Algorithm> initialAlgorithms;
Option<SCode.Comment> comment;

end FLAT_MODEL;

end NFFlatModel;

Encapsulation of data definition and functions that work
on the defined data is similar to Modelica. Below is a
partial definition of a binding in the new frontend together
with functions to access or query it.

encapsulated package NFBinding
public

import Expression = NFExpression;
import NFInstNode.InstNode;
import SCode;
import Type = NFType;
import NFPrefixes.Variability;
import Error;

protected
import Dump;

public
constant Binding EMPTY_BINDING

= Binding.UNBOUND();

uniontype Binding
record UNBOUND
end UNBOUND;

record UNTYPED_BINDING
Expression bindingExp;
// ...

end UNTYPED_BINDING;

record TYPED_BINDING
Expression bindingExp;
// ...

end TYPED_BINDING;

public
function isBound
input Binding binding;
output Boolean isBound;

algorithm
isBound := match binding
case UNBOUND() then false;
else true;

end match;
end isBound;

function untypedExp
input Binding binding;
output Option<Expression> exp;

algorithm
exp := match binding
case UNTYPED_BINDING()
then SOME(binding.bindingExp);

else NONE();
end match;

end untypedExp;

function typedExp
input Binding binding;
output Option<Expression> exp;

algorithm
exp := match binding
case TYPED_BINDING()
then SOME(binding.bindingExp);

else NONE();
end match;

end typedExp;

end Binding;
end NFBinding;

One can note some of the new features in MetaModel-
ica 3.0:

• does not require verbose listing of all components (or
named component access) of the record in the pattern
matching (UNTYPED_BINDING())
• accesses record components via the dot notation in-

side the case (binding.bindingExp).
• allows definitions of functions inside uniontypes
• allows definitions and the use of generic datatypes

such as trees using redeclare/replaceable types

3.2 Features Relevant to High Performance
The new frontend was carefully designed with perfor-
mance and scalability in mind.

References (pointers) are used to link component refer-
ences to their definition scope via lookup and usage scope
via application.

Constant evaluation and expression simplification are
more restricted compared to the old frontend.

Both arrays of basic types and arrays of models are not
expanded until the Scalarization phase (see next section).

Expansion of arrays is currently needed because the
backend cannot handle all the cases of non-expanded ar-
rays. See Section 4 on preliminary handling of non-
expanded arrays of models in the backend and runtime.

3.3 New Frontend Design
The old OpenModelica frontend builds a DAE structure
(flattened Modelica code) directly from the SCode struc-
ture (simplified parsed abstract syntax tree) for a model.

A New OpenModelica Compiler High Performance Frontend

692 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

This means that it takes one component and flattens it to
list of variables and equations for that single component
before continuing with the next component. This flatten-
ing process involves doing instantiation, scalarization of
arrays, typing, and so on.

Components in Modelica models often have dependen-
cies on other components though, and the approach taken
by the old frontend means that components sometimes
need to be partially or fully flattened out of order. This
has made it hard to implement certain features, such as re-
declares, and has also led to a lot of superfluous flattening
where parts of the model are flattened multiple times.

One of the driving forces in the design of the new fron-
tend has therefore been to find ways to break dependen-
cies between the various frontend phases. Instead of be-
ing component-focused like the old frontend it has in-
stead been designed to be model-focused, meaning that
each frontend phase processes the whole model before the
model is passed on to the next phase. The result is the de-
sign seen in Figure 1, which shows the flow of the model
through the different phases of the new frontend. The fol-
lowing sections will describe each phase in more detail.

3.3.1 Instantiation

The instantiation phase takes all the libraries and models
that have been loaded by the compiler in the form of an
SCode structure as well as the name of the model that
should be instantiated, and builds an instance tree for that
model. The instance tree consists of the class instance cor-
responding to the model as the root node, with the compo-
nent instances of the class as child nodes that themselves
have component instances (as seen in Figure 2).

Because the SCode structure is not suitable for name
lookup, as it only contains lists of elements, the instance
tree is instead used for this purpose by the new frontend
since each node contains a lookup tree. The first task of
the instantiation is thus to partially instantiate the concep-
tual root class that contains all top-level classes, which
mainly involves constructing a lookup tree. The first part
of the model name can then be looked up in the root class,
and the rest of the name is looked up recursively using the
same process.

Once the SCode element of the model’s class has been
found, it will then be instantiated, which involves three
stages: partial instantiation, expansion, and full instanti-
ation. Partial instantiation will, as mentioned, construct a
lookup tree, but only local classes and imported names are
added in this stage. This is needed to be able to look up
the names of base classes, since Modelica allows classes
to inherit from local and imported classes but not from in-
herited classes.

The next stage, expansion, uses this partial lookup tree
to resolve any base classes of the class. All the inherited
names as well as the names of local components are then
added to the lookup tree. The reason why local compo-
nents are not added until this stage is because the order
in which the local and inherited components are declared

SCode

Instantiation

Expression Instantiation

 Instance Tree

Typing

Flattening

Constant Evaluation

 Flat Model

Simplification

Scalarization Function Collection

DAE Conversion

Function Tree

DAE + DAE Function Tree

Figure 1. Frontend phases.

needs to be preserved, since this is important for e.g. func-
tions where the order of the function parameters matter.
The class elements are therefore stored in declaration or-
der in arrays, with the lookup tree only referencing ele-
ments in those arrays, and the inherited components need
to be known before all components can be added in the
correct order.

The final stage is full instantiation in which the compo-
nents of the class are instantiated, which involves looking
up the type of each component and instantiating it. In this
stage modifiers are also associated with the elements they
modify, and redeclares are applied. The names of any base
classes are also looked up again in this stage, to make sure
that the same classes are found as in the earlier expansion
stage since inheriting from an inherited class is illegal in
Modelica (see Figure 3). This conveniently also allows
the frontend to also check that no extends is referencing a
component, since those are, as mentioned earlier, added to
the lookup tree after resolving base class names.

Because modifiers are only applied in the full instantia-
tion stage, it is possible for the new frontend to cache the

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 693
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

model A
Real x;
Real y;

end A;

model B
A a;
Real z;

end B;

model M
B b;

end M;

⇒

''M''

b

a z

x y

Figure 2. Example of a model and its instance tree.

model A
model B

...
end B;

end A;

model M
extends A;
// Illegal, B is inherited from A.
extends B;

end M;

Figure 3. Example of illegal inheritance in a Modelica model.

work done during partial instantiation and expansion for
each class. This means that e.g. the lookup tree for a class
is only constructed once and then reused for all instances
of that particular class, unlike the old frontend where a
new lookup tree is constructed for each instance.

3.3.2 Expression Instantiation

Expressions in the compiler are things such as numbers,
strings, unary and binary operator expressions, and named
references to elements such as a.b[2].c[4]. They are
used to represent things such as equations and algorithms,
modifiers, and array dimensions.

The old frontend represents names used in expressions
as a nested structure where each node contains the refer-
enced element’s name and type, the subscripts used, and
for qualified names a reference to the next part of the
name. The new frontend uses a similar representation, but
instead of storing the element’s name it stores a reference
to the element’s instance tree node (which itself contains
the name).

This small difference in representation has a large im-
pact on the design of the new frontend, because unlike the
old frontend it always has direct access to the referenced
elements. The old frontend is instead forced to look up
names whenever it requires additional information about
a name used in an expression, which due to how the old
frontend is designed might require additional instantiation
and other performance issues. Rewriting the old frontend
to use a similar representation would have required a com-

plete redesign, since it has no instance tree in the same
way that the new frontend has.

For the new frontend this means that it needs to find the
correct instance node during name lookup, which can be
tricky to do during the instantiation since names can refer
to elements that have not yet been instantiated. Expres-
sions are not needed to build the instance tree though, so
the instantiation is therefore separated into two phases: the
instantiation phase described in the previous section and
the expression instantiation phase described in this sec-
tion.

The instantiation phase builds the instance tree and con-
structs all the nodes, and the expression instantiation phase
instantiates all expressions in that instance tree. This in-
volves looking up the names used in expressions and asso-
ciating them with the correct nodes in the instance tree. In
the case of function calls this also triggers instantiation of
the called functions, which mostly involves instantiating
the function as a normal class.

3.3.3 Typing

The typing phase traverses the instance tree and deter-
mines the type of all components and expressions. Similar
to the instantiation this is again done in two stages: typing
of components and typing of expressions.

The typing of components involves determining the
type of each component in the instance tree. For com-
ponents of basic types, such as Real or Integer, this is
trivial by virtue of them being instances of said types. For
composite types, such as instances of models, blocks or
records, it means typing each child of the instance tree
node and constructing a type from them.

The most complex part of the typing of components is
typing dimensions for array components and classes. This
is partly because dimensions can be expressions that need
to be evaluated, and partly because they can be declared
as : which means that the dimension size must be deduced
from the component’s binding equation.

This can require typing components that have not yet
been typed, and must be done with care to avoid introduc-
ing unnecessary dependencies between dimensions. Hav-
ing dimensions whose size depend on each other could
result in a typing loop that would cause the compiler to
hang or crash, but the new frontend detects such loops and
gives an appropriate error message instead. In many cases
such loops can be avoided by typing as little as possible
when determining the size of a dimension, such as only
typing the first dimension of a when typing a dimension
defined as size(a, 1).

The next stage of the typing phase is typing of expres-
sions, which involves typing binding equations, equations,
and algorithms. This also includes checking that expres-
sions are type compatible, for example checking that bind-
ing equations are type compatible with the components
they belong to. Having a separate stage for typing of ex-
pressions is not strictly necessary in the same way as dur-
ing the instantiation, but it means that expressions can be

A New OpenModelica Compiler High Performance Frontend

694 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

typed with the assumption that all components are already
typed and acyclic. The typing of expressions therefore be-
comes less complicated and more optimized than it would
be if all the typing were to be done in a single combined
stage.

Most of the typing of expressions is fairly straightfor-
ward, but the typing of binding equations becomes some-
what non-trivial in the new frontend due to the way array
components are handled. Take for example this model:

model A
Real x;

end A;

model M
A a[3](x = {1, 2, 3});

end M;

The old frontend would instantiate and type each el-
ement of the array component a and the modifier on a

would be split, so the component would thus be in-
stantiated and typed as a[1].x = 1, a[2].x = 2, and
a[3].x = 3 (where [1], [2], and [3] are subscripts).

The new frontend instead treats this as one component,
a[3].x = {1, 2, 3} (where [3] is a dimension), which
is achieved by keeping track of where a modifier comes
from and adding the appropriate dimensions to the com-
ponent’s type when type checking the binding equations.
In this particular case it would thus add the dimension [3]

to the type of x when checking that the binding equa-
tion is type compatible, in other words type checking
one Real[3] == Real[3] relation whereas the old fron-
tend would type check three separate Real == Real rela-
tions. The superior efficiency of this approach in the case
arrays with thousands of elements need to be instantiated
is pretty obvious.

3.3.4 Flattening

The flattening phase of the new frontend traverses the in-
stance tree and flattens the tree into a flat model that con-
sists of a list of variables, a list of equations and a list of
algorithms:

model A
Real x;
Real y;

equation
y = der(x);

end A;

model B
A a;

equation
a.x = time;

end B;

model M
B b;

end M;

⇒

model M
Real b.a.x;
Real b.a.y;

equation
b.a.y = der(b.a.x);
b.a.x = time;

end M;

The flattening involves prefixing component names and
element name references in expressions with the names
of their parents in the instance tree, to make sure all vari-
ables in the flat model have unique names. It also collects

all the connect-equations in the model and inserts the re-
quired equations generated from the connections into the
flat model.

Another task done by the flattening phase is unrolling
for-equations into scalar equations:

for i in 1:3 loop
x[i] = i;

end for;
⇒

x[1] = 1;
x[2] = 2;
x[3] = 3;

This might be considered more appropriately done
by the later scalarization phase, or preferably not done
at all, even though the connection handling requires
for-equations containing connect-equations to be un-
rolled. The current backend additionally requires all for-
equations to be unrolled, so at the moment the flattening
unrolls all for-equations by default, regardless of whether
they contain connect-equations or not. However, it is pos-
sible to disable the loop unrolling (as well as other scalar-
ization features discussed later on in the paper) with the
-d=-nfScalarize debug flag, which allows to experi-
ment with extensions of the backend, code generation, and
runtime phases that can handle arrays directly.

3.3.5 Constant Evaluation

Some parts of the frontend evaluate expressions when
needed, for example when typing dimensions consisting
of arbitrary expressions where the actual size needs to be
known in a model context (unlike in a function context).
Constants that are not used in such places should still be
evaluated though, which is done in the constant evaluation
phase. This phase traverses the flat model and replaces
references to constants with the values bound to those con-
stants:

model M
constant Real x = 1.0;
Real y;

equation
y = x;

end M;

⇒
model M
Real y;

equation
y = 1.0;

end M;

Models can also contain so called structural parame-
ters, which are parameters used in places where they affect
the structure of the model. One example is array dimen-
sions which must as mentioned be known in a model con-
text, but are allowed to be defined by parameters. Once
such a parameter has been evaluated it should no longer
be considered changeable, since changing its value after
the model has been compiled could result in parts of the
model using the old value and other parts the new value.
The earlier parts of the new frontend therefore mark such
parameters as structural, and the constant evaluation phase
makes sure all occurrences in the model are replaced with
the parameter’s value.

3.3.6 Simplification

The simplification phase traverses the flat model and sim-
plifies expressions, equations and algorithms. This in-
cludes doing trivial simplifications such as evaluating
unary and binary operations involving numerical literals,

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 695
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

e.g. 1 + 1⇒ 2, but also structural changes such as remov-
ing for-loops with zero-sized iteration ranges.

3.3.7 Scalarization

The scalarization phase expands array variables and equa-
tions into separate scalar variables and equations:

model M
Real x[3];

equation
x = {1, 2, 3};

end M;

⇒

model M
Real x_1;
Real x_2;
Real x_3;

equation
x_1 = 1;
x_2 = 2;
x_3 = 3;

end M;

This is not necessary for the operation of the frontend
itself, but is done because the old frontend does it and the
backend expects it to be done. A long term goal is to im-
prove the handling of arrays in the backend though, par-
tially or completely removing the need for this phase (see
Section 4).

Since the scalarization is a separate phase in the new
frontend it can also easily be disabled, unlike in the
old frontend where the scalarization is an integral part
of the flattening process that is hard to isolate. This
is currently possible by means of the already mentioned
-d=-nfScalarize debug flag.

3.3.8 Function Collection

The flat model contains only the variables, equations and
algorithms of the model. The functions used in the model
are stored in the instance tree nodes corresponding to the
functions’ classes, but the backend expects to get a binary
search tree containing the functions that are used in the
model.

The new frontend therefore has a phase that goes
through the model and collects all functions that are used
in the model into a function tree. Besides explicitly called
functions, this also includes, e.g., record constructors for
all record instances, which might be needed by the back-
end even if they are not explicitly called in the model.

3.3.9 DAE Conversion

The old frontend produces a DAE structure that’s used
as an immediate representation of the flat model, and the
OpenModelica backend expects the model to be given in
this format.

The flattening phase of the new frontend uses its own
representation of a flat model though, since using the old
DAE structure would cause many of the advantages of the
new frontend to be lost (such as name references in ex-
pressions having direct access to the instance tree nodes).

The new frontend therefore contains a final phase that
converts the flat model and the function tree to the DAE
structure expected by the backend. This serves as an inter-
face between the new frontend and the backend, and is rel-
atively straightforward since the DAE structure is mostly
a subset of the data structures used by the new frontend.

4 Compilation of Vectorized Models
for New Digital Applications

Many emerging applications require the individual con-
trol of vast numbers of similar devices that share a com-
mon system infrastructure. Such applications include dis-
tributed renewable power generation and charging of elec-
tric vehicles that share the same power grid. Other appli-
cations arise from autonomously driving cars that share
the same roads. The Internet of Things opens the possibil-
ity to connect such devices to digital twins and to imple-
ment supervisory control applications in the cloud.

Unfortunately today’s Modelica tools typically suffer
from bad performance for the translation of resulting large
models. This is caused by the Modelica DAE represen-
tation defined for a flat model. Even though the Model-
ica syntax supports arrays of model objects to express re-
peated structures, the expansion of arrays during flattening
results in large numbers of scalar variables and equations
that slow down the translation. This is particularly bad
if the computational effort of the used algorithms grows
more than linearly with increasing model size. Moreover,
the resulting executable model code becomes unnecessar-
ily large.

The new frontend offers the feature to convert arrays
of component models to array equations and to keep ar-
rays during flattening. Additionally, the current backend
has been extended prototypically, by exploiting previous
work by (Schuchart et al., 2015) to treat for-equations dur-
ing model translation and by (Franke et al., 2015) to treat
unexpanded arrays and array slices in the generated code.

Consider the following example. It instantiates a large
number of solar plants as array of component models and
connects them to a collector grid.

package Vectorized
import SI = Modelica.SIunits;

connector Terminal
SI.Voltage v;
flow SI.Current i;

end Terminal;

model SolarPlant
input Boolean on "Plant status";
input SI.Power P_solar "Solar power";
parameter Real eta = 0.9 "Efficiency";
Terminal term;

equation
term.v * term.i =
if on then eta * P_solar else 0;

end SolarPlant;

model Collector
parameter Integer n;
parameter SI.Voltage V = 1000;
output SI.Power P_grid;
Terminal terms[n];

equation
for i in 1:n loop
terms[i].v = V;

end for;
0 = P_grid + terms.v * terms.i;

end Collector;

A New OpenModelica Compiler High Performance Frontend

696 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

model SolarSystem
parameter Integer n = 1000;
SolarPlant plant[n](
each on = true,
P_solar = 100:100:n*100);
Collector grid(n = n);

equation
connect(plant.term, grid.terms);

end SolarSystem;

end Vectorized;

With a number of n=1000 solar plants, the flat model
would have 6001 variables and 6001 equations. The num-
ber of variables reduces to 7 when preserving arrays. Then
the whole dependency analysis, equation sorting and code
generation only treat 7 equations. This is possible as each
array variable is defined with one array equation, resulting
in a balanced array model.

The current implementation in OpenModelica still con-
siders the dimension parameter n as structural and fixes
its value during model instantiation. This is not needed
though. The actual value of n could be left undefined until
model execution.

The flat array model reads:
class SolarSystem
parameter Integer n = 1000;
Real[1000] plant.term.i;
Real[1000] plant.term.v;
parameter Real[1000] plant.eta = 0.9;
Real[1000] plant.P_solar =

(100:100:100000);
Boolean[1000] plant.on = true;
parameter Integer grid.n = 1000;
parameter Real grid.V = 1000.0;
Real grid.P_grid;
Real[1000] grid.terms.i;
Real[1000] grid.terms.v;

equation
plant.term.v = grid.terms.v;
plant.term.i + grid.terms.i = 0.0;
for $i in 1:1000 loop

plant[$i].term.v * plant[$i].term.i =
if plant[$i].on then

plant[$i].eta * plant[$i].P_solar
else

0.0;
end for;
for i in 1:1000 loop

grid.terms[i].v = grid.V;
end for;
0.0 = grid.P_grid +

grid.terms.v * grid.terms.i;
end SolarSystem;

The array of connectors between plant and grid results
in array equations. The flow equation, as well as some
variable bindings, relate arrays to scalars. This simplifies
the further treatment up to code generation, implicitly as-
suming an "each" qualifier. Note that this only happens
after the check of types and dimensions. It is crucial to
avoid unnecessary expansions of large literal arrays.

Many Modelica expressions cannot be vectorized eas-
ily. For instance the condition of an if-expression must
be a scalar boolean in an array equation as well. This is
why the vectorization of component models converts non-
trivial equations to for-equations. See the equation with
P_solar as an example.

The early prototype implementation of vectorized mod-
els presented here already proved useful in first production
uses (see next section for benchmarks). The model given
in this section can be compiled and simulated without ar-
ray expansion via flags -d=newInst,-nfScalarize
--simCodeTarget=Cpp. Future work needs to focus
on enhanced preservation of arrays during symbolic trans-
formations in the backend. The frontend might expand
arrays selectively, e.g. expand two or three dimensional
arrays in electrical multi-phase models, while preserving
large arrays of component models along with dimension
parameters.

5 Status and Benchmarks
The new frontend is still work in progress at the time of
this writing (January 2019). It is currently able to pro-
cess about 75% of the 7884 models with an experiment(

StopTime) annotation in the set of 55 tested open-source
Modelica libraries that are included in the extended test-
suite of the OpenModelica continuous integration sys-
tem. The development effort so far has been focused
towards achieving full coverage of the Modelica Stan-
dard Library (MSL) 3.2.3, for which the fraction of suc-
cessfully simulating models is currently 92%, includ-
ing non-trivial models such as the 6 d.o.f. robot model
of Modelica.Mechanics.Multibody and models using the
IF97 water model of Modelica.Media.

The updated status of the coverage is available online
(New FrontEnd - Modelica Library Coverage). The de-
velopment of the new frontend can be followed on (New
FrontEnd - Ticket 4138); in particular, the progress of
the coverage of the development version of MSL 3.2.3 is
shown in Fig. 4. The new frontend is currently able to pro-
cess all models except one, though there are still some is-
sues that are revealed later in the code generation process,
either because of incorrectly flattened models, or because
the model is flattened in a different way than the old fron-
tend, which the back-end cannot handle correctly. Note
that the verification indicator is not reliable, due to many
false negatives and to the lack of reference results for all
the models introduced in version 3.2.3.

During the last six months, the number of successfully
simulating MSL models has steadily increased at a rate of
about 8%/month, so it is expected that full coverage for
the MSL will be achieved by the end of Q2 2019 at the
latest; the coverage of the 55 open-source library testsuit
should approach 100% before the end of 2019.

All the benchmarks have been realized on a portable
computer: HP ZBook Studio G3 I7 QuadCore 6820HQ @
2.7Ghz with 16Gb of RAM.

To validate performance and scalability we have bench-
marked the new OpenModelica frontend against the state-
of-the-art commercial tool Dymola 2019 (2018-04-11)
(Dassault Systèmes) on some large models from the Scal-
ableTestSuite library (Casella, 2015).

An example of the Dymola and OpenModelica scripts

A New OpenModelica Compiler High Performance Frontend

DOI Proceedings of the 13th International Modelica Conference 697
10.3384/ecp19157689 March 4-6, 2019, Regensburg, Germany

Figure 4. Modelica Standard Library version 3.2.3 coverage

used are given below. Note that this include parsing of
the Modelica Standard Library, the ScalableTestSuite and
running checkModel on the given model where Model-
Path is the full path to the model in the library.

Dymola script:
openModel("ScalableTestSuite/package.mo");
checkModel("ModelPath");
exit();

OpenModelica script:
loadFile("ScalableTestSuite/package.mo");
getErrorString();
checkModel(ModelPath);
getErrorString();

The benchmarking was performed from command line
using running adaptations of the scripts above. The re-
sults for selected ScalableTestSuite (STS) models and the
Vectorized.SolarSystem from section 4 are given below in
Table 1.

One can see that the new OpenModelica frontend per-
forms very well in comparison to Dymola, in some cases
faster, in some cases slower. The comparision between the
current frontend (CF) and the new frontend (NF) is also
included where possible. From these benchmarks one can
also see that investigation is needed to find out why param-
eter arrays are scaling poorly in the new frontend (models
6, 7, 8). For models 10 and 11 the number in the paren-
theses is for the new frontend not expanding arrays at all
during the flattening. The performance improvement in
this case is extreme.

In Table 2 we compare the current frontend (CF) with
the new frontend (NF) when instantiating and flattening
models from Modelica.Mechanics.MultiBody
and evaluating their graphical annotation. The
OpenModelica compiler API function that is
called to evaluate the graphical annoations is
getComponentAnnotations(). The new frontend
performs 20 to 200 times better than the current Open-
Modelica frontend, allowing to obtain a nearly immediate
response time of the OMEdit GUI, which relies on this
API.

6 Conclusions and Future Work
In this paper, the new high-performance frontend of the
OpenModelica compiler is presented. The frontend has
been completely redesigned, with the main objective of
achieving dramatically improved performance on large
models, as well as of resolving many corner-cases that the
old frontend could not handle without the need of exces-
sive ad-hoc work.

The architecture of the new design is presented in de-
tail, particularly concerning the new approach that avoids
the full expansion and scalarization of components one at
a time, thus allowing significant optimizations when large
numbers of instances of the same class, and/or large ar-
rays, are present in the model. Many of these optimiza-
tion would also require a substantial redesign of the com-
piler backend, code generation, and runtime system. For
the time being the new non-scalarization approach has
been experimented with a prototype implementation in the
backend, which works in some specific cases, for which
very promising results are reported.

Future developments involve first and foremost the fi-
nalization of the new frontend, with the aim of achieving
100% coverage of most open-source Modelica libraries,
particularly the MSL. This goal is planned to be achieved
during the first half of 2019. In the long term, the plan is
to use the new frontend to achieve full support of non-
expanded arrays of equations and models in the entire
compiler toolchain, including also the backend, code gen-
eration, and runtime system.

Another research direction is to improve the compi-
lation speed by using the LLVM framework to perform
function evaluation in the new frontend.

7 Acknowledgements
This work has been supported by Vinnova in the ITEA
OPENCPS and EMPHYSIS projects and in the Vinnova
RTISIM and EMISYS projects. This work was supported
in parts by the German Federal Ministry of Education
and Research (BMBF) in the PARADOM project. Sup-
port from the Swedish Government has also been received
from the ELLIIT project. The OpenModelica develop-
ment is supported by the Open Source Modelica Consor-
tium. Many students, researchers, engineers have con-
tributed to the OpenModelica system. There is not room
here to mention all these people, but we gratefully ac-
knowledge their contributions.

References
Alfred V. Aho, Ravi Sethi, and Jeff D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley Publishing Company, 1986.

Torsten Blochwitz et al. The Functional Mockup Interface for tool indepen-
dent exchange of simulation models. In Christoph Clauß, editor, Pro-
ceedings of the 8th International Modelica Conference. Linköping Uni-
versity Electronic Press, March 2011. doi:10.3384/ecp11063105.

Willi Braun, Francesco Casella, and Bernhard Bachmann. Solving large-
scale Modelica models: new approaches and experimental results us-

A New OpenModelica Compiler High Performance Frontend

698 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157689

No Model Equations Dym (s) OMC NF/CF (s)
1 Electrical.DSystemAC.SE.DistributionSystemLinear_N_40_M_40 99776 15.53 06.32 / 91.33
2 Electrical.DSystemAC.SE.DistributionSystemLinear_N_80_M_80 397936 40.50 17.76 / 435.32
3 Electrical.DSystemAC.SE.DistributionSystemLinear_N_112_M_112 779312 74.21 32.31 / 1076.54
4 Electrical.DSystemDC.SE.DistributionSystemModelicaActiveLoads_N_80_M_80 129929 18.04 08.33 / 159.28
5 Electrical.TransmissionLine.SE.TransmissionLineModelica_N_1280 26915 09.84 04.45 / 47.77
6 Elementary.ParameterArrays.SE.Table_N_100_M_100 0 06.59 05.09 / 06.21
7 Elementary.ParameterArrays.SE.Table_N_400_M_400 0 10.25 12.19 / 18.03
8 Elementary.ParameterArrays.SE.Table_N_1600_M_100 0 09.77 19.04 / 28.17
9 Power.ConceptualPowerSystem.SE.PowerSystemStepLoad_N_64_M_16 11907 17.29 03.99 / 28.57
10 Vectorized.SolarSystem(n=10000) from section 4 60001 146.30 34.12 / 314.8 (02.95)
11 Vectorized.SolarSystem(n=100000) from section 4 600001 14458.68 2450.57 / 19760.42 (02.95)

Table 1. Flattening performance comparison Dymola vs. OpenModelica (NF vs CF included). Bold numbers in parentheses are
with Scalarization disabled -d=-nfScalarize. Shortened names: SE=ScaledExperiments, DSystem=DistributionSystem.

Model CF (s) NF (s) Factor
World 9.53 0.28 33.9

Joints.FreeMotionScalarInit 28.90 0.14 199.4
Joints.Planar 3.56 0.13 25.6

Joints.UniversalSpherical 6.99 0.22 30.5
Joints.SphericalSpherical 4.64 0.11 39.5

Joints.Universal 2.31 0.12 18.4

Table 2. Flattening performance comparison of the current (old)
vs the new frontend in OpenModelica (OMEdit GUI impact).

ing OpenModelica. In Proc. 12th International Modelica Confer-
ence, pages 557–563, Prague, Czech Republic, May 15–17 2017.
doi:10.3384/ecp17132557.

Francesco Casella. Simulation of large-scale models in Modelica: State of
the art and future perspectives. In Peter Fritzson and Hilding Elmqvist,
editors, Proceedings 11th International Modelica Conference, pages
459–468, Versailles, France, Sep 21–23 2015. The Modelica Associa-
tion. ISBN 978-91-7685-955-1. doi:10.3384/ecp15118459.

Francesco Casella, Alberto Leva, and Andrea Bartolini. Simulation of large
grids in OpenModelica: reflections and perspectives. In Proc. 12th Inter-
national Modelica Conference, pages 227–233, Prague, Czech Republic,
2017. doi:10.3384/ecp17132227.

Dassault Systèmes. Dymola version 2019, 2018. URL http://dymola.
com.

Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi Braun, and Bern-
hard Bachmann. Model-based control with FMI and a C++ runtime for
Modelica. In Proceedings of the 11th International Modelica Confer-
ence. Modelica Association, Paris, France, 2015.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach. Wiley-IEEE Press, 2 edition,
April 2015. ISBN 978-1-118-85912-4.

Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard Bachmann, Willi
Braun, Robert Braun, Lena Buffoni, Francesco Casella, Rodrigo Cas-
tro, Alejandro Danós, Rüdiger Franke, Mahder Gebremedhin, Bernt
Lie, Alachew Mengist, Kannan Moudgalya, Lennart Ochel, Arunku-
mar Palanisamy, Wladimir Schamai, Martin Sjölund, Bernhard Thiele,
Waurich Volker, and Per Östlund. The OpenModelica Integrated Mod-
eling, Simulation and Optimization Environment. In Michael Tiller and
Luigi Vanfretti, editors, Proceedings of the 1st American Modelica Con-
ference. Linköping University Electronic Press, October 2018. URL
http://www.ep.liu.se/.

Antonio Froio, Francesco Casella, Fabio Cismondi, Alessandro Del
Nevo, Laura Savoldi, and Roberto Zanino. Dynamic thermal-
hydraulic modelling of the EU DEMO WCLL breeding blanket cool-
ing loops. Fusion Engineering and Design, 124:887–891, 2017.
doi:10.1016/j.fusengdes.2017.01.062.

Görel Hedin and Eva Magnusson. JastAdd: An aspect-oriented compiler
construction system. Sci. Comput. Program., 47(1):37–58, April 2003.
ISSN 0167-6423. doi:10.1016/S0167-6423(02)00109-0. URL http:
//dx.doi.org/10.1016/S0167-6423(02)00109-0.

Paul Hudak. The Haskell School of Expression: Learning Functional Pro-
gramming Through Multimedia. Cambridge University Press, New York,
NY, USA, 2000. ISBN 0-521-64408-9.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997. ISBN 0262631814.

Modelica Association. Modelica: A unified object-oriented language for
physical systems modeling, language specification version 3.4, 2017.
URL http://www.modelica.org/.

New FrontEnd - Modelica Library Coverage. New FrontEnd - Mod-
elica Library Coverage, 2018. URL https://libraries.
openmodelica.org/branches/overview-newinst.html.

New FrontEnd - Ticket 4138. New FrontEnd - Ticket 4138, 2018.
URL https://trac.openmodelica.org/OpenModelica/
ticket/4138.

OSMC. Open Source Modelica Consortium, 2007. URL https://
openmodelica.org/home/consortium.

Adrian Pop and Peter Fritzson. MetaModelica: A unified equation-based
semantical and mathematical modeling language. In 7th Joint Modu-
lar Languages Conference, JMLC 2006 Oxford, UK, September 13-15,
2006 Proceedings, pages 211–229. Springer Berlin Heidelberg, 2006.
doi:10.1007/11860990_14.

Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implementation
of a Modelica compiler using JastAdd attribute grammars. Sci.
Comput. Program., 75(1-2):21–38, January 2010. ISSN 0167-6423.
doi:10.1016/j.scico.2009.07.003. URL http://dx.doi.org/10.
1016/j.scico.2009.07.003.

Joseph Schuchart, Volker Waurich, Martin Flehmig, Marcus Walther, Wolf-
gang E. Nagel, and Ines Gubsch. Exploiting repeated structures and vec-
torization in Modelica. In Proceedings of 11th International Modelica
Conference. Modelica Association, Paris, France, 2015.

Martin Sjölund, Peter Fritzson, and Adrian Pop. Bootstrapping a Compiler
for an Equation-Based Object-Oriented Language. Modeling, Identifica-
tion and Control, 35(1):1–19, 2014. doi:10.4173/mic.2014.1.1.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 699
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

OMJulia: An OpenModelica API for Julia-Modelica Interaction
Lie, Bernt and Palanisamy, Arunkumar and Mengist, Alachew and Buffoni, Lena and Sjölund, Martin and
Asghar, Adeel and Pop, Adrian and Fritzson, Peter

699

OMJulia: An OpenModelica API for Julia-Modelica Interaction

Bernt Lie1, Arunkumar Palanisamy2, Alachew Mengist2, Lena Buffoni2, Martin Sjölund2, Adeel
Asghar2, Adrian Pop2, Peter Fritzson2

1University of South-Eastern Norway, Porsgrunn, Norway, Bernt.Lie@usn.no;
2Linköping University, Linköping, Sweden, Peter.Fritzson@liu.se

Abstract
Modelica is an object oriented, acausal equation-based
language for describing complex, hybrid dynamic mod-
els. About ten Modelica implementations exist, of which
most are commercial and two are open source; the imple-
mentations have varying levels of tool functionality. Many
Modelica implementations have limited support for model
analysis. It is therefore of interest to integrate Model-
ica tools with a powerful scripting and programming lan-
guage, such as Julia. Julia is a modern and free language
for scientific computing. Such integration would facil-
itate the needed analysis possibilities and can speed up
the development of effient simulation models. A number
of design choices for interaction between Julia and Mod-
elica tools are discussed. Next, Julia package OMJulia
is introduced with an API for interaction between Open-
Modelica and Julia. Some discussion of the reasoning be-
hind the OMJulia design is given. The API is based on a
new class ModelicaSystem within package OMJulia, with
systematic methods which operate on instantiated mod-
els. OMJulia supports handling of FMU and Modelica
models, setting and getting model values, as well as some
model operations. Results are available in Julia for fur-
ther analysis. OMJulia is a further development of a pre-
vious OMPython package; a key advantage of Julia over
Python is that Julia has better support for control engineer-
ing packages. OMJulia represents a first effort to interface
a relatively complete Modelica tool to Julia, giving access
to an open source set-up for modeling and analysis, in-
cluding control synthesis, easily installable from a unified
package manager. Some possibilities of OMJulia are illus-
trated by application to a few simple, yet industrially rele-
vant problems within control design. Keywords: Model-
ica, FMI, FMU, OpenModelica, Julia, Julia API, OMJulia

1 Introduction
Julia is a modern, rich script language, (Bezanson et al.,
2017), with excellent support for efficient and fast differ-
ential equation solvers (Rackauckas and Nie, 2017), in-
cluding DAEs (Sund et al., 2018), as well as a number of
other packages for plotting, control engineering, optimiza-
tion, statistics, machine learning, etc., (JuliaLang, 2018).

Modelica is a modern, equation based, acausal lan-
guage for encoding models of dynamic systems in the
form of differential algebraic equations (DAEs), see, e.g.,

(Modelica Association, 2016), (Modelica Association,
2017), (Fritzson, 2015) on Modelica, and, e.g., (Brenan
et al., 1989) on DAEs. The Functional Mock-up Inter-
face (FMI) is a common standard format to support both
model exchange and co-simulation of dynamic models in
the form of Functional Mock-up Units (FMU) between
many modelling and simulation environments, (FMI Con-
sortium, 2018).

OpenModelica1 (Fritzson et al., 2018) is a mature,
freely available tool set that includes OpenModelica Con-
nection Editor (flow sheeting, textual editor with debug-
ging facilities, and simulation environment), the OMShell
(command line/script based execution), and a number of
extensions. OpenModelica Shell supports commands for
simulation of Modelica models, for use of the Modelica
extension Optimica, for carrying out analytic linearization
via the Modelica package Modelica_LinearSystem2, and
for converting Modelica models into Functional Mock-
Up Units (FMUs) as well as for converting FMUs back
to Modelica models. However, the OMShell is relatively
limited wrt. other, advanced analysis possibilities such
as availability of random number generator, control tools,
etc.

Based on OMPython (Ganeson, 2012; Ganeson et al.,
2012), an API was developed for simple operation on
Modelica models from within Python (Lie et al., 2016).
Both Modelica (Baur et al., 2009) and Python2 have lim-
ited support for control tools, and it is of interest to ex-
plore connecting OpenModelica to other scripting tools
with richer eco-systems for control engineering — two
possibilities are MATLAB and Julia. To ease the mainte-
nance of interfacing Modelica with 3 different script lan-
guages, it is necessary to compromise on the specific style
of each language. This paper discusses the API adapted to
Julia, and illustrates how OMJulia can be used for analysis
of Modelica models, exemplified by a simple water tank
model, and then for more advanced analysis of a nonlinear
reactor model3. The paper is organized as follows. In Sec-
tion 2, an overview of the API is given. In Section 3, use of
the API is applied to analysis of a simple, process oriented
model. In Section 4, a somewhat more complex chemical
engineering type process is used to illustrate possibilities

1www.openmodelica.org
2https://sourceforge.net/p/python-control/wiki/Home/
3The nonlinear reactor case will be added in the final paper.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

700 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

with combining OpenModelica with Julia. In Section 5,
some discussion of the API is provided with conclusions.

2 Overview of Julia API
2.1 Goal
Julia is a modern, rich script language, while Model-
ica, offers mature, equation based encoding of physically
based models, with system (input-output), and library sup-
port. It is of interest to consider the use of Modelica with
Julia for a wide range of engineering disciplines. The
computer science threshold of using Modelica with Julia
should be low. The OMJulia extension should be installed
via the standard Julia packet manager (Git-based), and
support the same platforms as Julia does. Results should
be returned as standard Julia structures.

OMJulia can be installed as described at https://
github.com/OpenModelica/OMJulia.jl.

2.2 Design Choices
Essentially, four paths to Modelica–Julia interaction are
realistic4.

1. Sending Modelica script commands as text strings
from Julia to the Modelica tool via the ZMQ com-
munication protocol5 (Hintjens, 2013), and retriev-
ing results. This is similar to the original idea of
OMPython6. Advantage: simple solution. Disadvan-
tage: requires detailed knowledge of Modelica tool
script commands; possibly relatively slow if the in-
teraction time is a large fraction of the computation
time.

2. Julia API with commands native to Julia, which are
translated to Modelica script commands “behind-the-
scene”, interacts with Modelica via ZMQ, and with
results returned to Julia in Julia objects. Advantage:
simple to use within Julia. Disadvantage: limited to
existing possibilities in Modelica tool; possibly rela-
tively slow.

3. Translate Modelica code to Julia code. Currently,
OpenModelica code is translated to C code. It is pos-
sible to alternatively translate the code to Julia code.
Advantage: utilize specialized syntax (Modelica) for
describing models, and with full integration with Ju-
lia, fast. Disadvantage: the user must handle two
languages.

4. Extend Julia with Modelica-like structures, such as
the Modia initiative (Elmqvist et al., 2017). Advan-
tage: the user operates in one language, fast. Disad-
vantage: limitations in Julia syntax and slightly dif-
ferent language semantics may make the extensions
more complex for the user than Modelica is.

4The same paths are possible with other script languages such as
Python and MATLAB

5http://zeromq.org/
6Originally, OMPython used CORBA technology instead of ZMQ

Ideal integration for speed and use of Julia tools would be
achieved by either design choices 3 or 4. Sims.jl rep-
resents an early exploration of choice 4, while Modia.jl
represents a newer, more extensive work within choice 4.7

Here, we describe the OMJulia API, which belongs to de-
sign choice 2. A longer term plan is to improve on the pre-
vious OMPython API (Lie et al., 2016), and offer a suite
for Python, Julia, and MATLAB.

Based on experience with the OMPython API, the syn-
tax of the OMJulia API is updated/improved for easier
use. To be future proof, the tool developer should “own”
the API. Ease of maintenance of such a suite is essen-
tial, which implies that the syntax should be similar across
script languages. Thus, some compromises must be made
wrt. syntax. As an example, the key paradigm in Python
is objects, and applying method simulate to object mod

would have the syntax mod.simulate(). The key
paradigms in Julia are types and multiple dispatch (“func-
tion overloading”), and the natural syntax in Julia would
be simulate(mod) where the type of mod decides which
method/function implementation is used (“dispatching”).
Still, Julia allows for the same syntax as Python, and the
Pythonian syntax is therefore chosen — for ease of main-
tenance. Ease of maintenance also dictates that OMJulia
should depend on as few packages as possible, and take
advantage of existing packages in Julia for plotting, etc.

2.3 Description of the API
The API is described in the subsections below.

2.3.1 Julia Class and Constructor

The first step to using the OMJulia API is to introduce it
in the Julia session using the using command:8

julia> using OMJulia

Next, an empty Julia model object is constructed which
communicates with OpenModelica:9

julia> mod = OMJulia.OMCSession()

We are now ready to fill the model object with con-
tent. The OMJulia method which is used to populate the
model object with a Modelica model is the model con-
structor ModelicaSystem(). This constructor requires
two arguments, with an optional third argument:

1. The first argument is a string containing the name of
the Modelica file which holds the model, if necessary
with full directory path.

2. The second argument is a string containing the name
of the main Modelica model within the file.

7See www.julialang.org under Explore packages.
8The Julia prompt julia> is not typed, and does not appear in

script files, nor in IJulia/Jupyter notebooks.
9Any valid Julia identifier can be used as the model object name.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 701
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

3. If the main Modelica model uses some libraries (e.g.,

the Modelica Standard Library), these are listed as
strings in a Julia vector (= 1D array) in a third argu-
ment. If a single library is used, the vector of a single
string can be replaced by the string.

Example 1. Use of Model Constructor

Suppose that we have establised a Julia object mod which
communicates with OpenModelica, see above. Suppose
next that we have a Modelica model with name CSTR,
wrapped in a Modelica package Reactors — stored in file
Reactors.mo:

package Reactors
// ...
model CSTR

/// ...
end CSTR;
//

end Reactors;

Assuming that no external Modelica code is used, the
following Julia code populates the Julia object mod with
the Modelica model:

julia> mod.ModelicaSystem("Reactors.mo", "
Reactors.CSTR")

N

2.3.2 Methods, Arguments, and Return Values

In the Julia language, it is in general recommended not
to use class functions (“methods”) in the way we have
done in OMJulia. Instead of using get and set methods
(as in Python), one could operate directly on the object at-
tributes10. And instead of using methods that transform
the object, e.g., simulate, linearize, etc., one could de-
fine general functions combined with type dispatching.
However, because OMJulia is part of a family of script
language interfaces for OpenModelica, some compromise
has been made in order to simplify maintenance. To this
end, in OMJulia, “methods” in the sense of object oriented
languages a la Python are appended to the object after a
dot.11

Methods in OMJulia have zero or one argument. In the
case of one argument, this is either a Julia string or a vector
(= 1D array) of strings.12 The following Julia syntax is
useful in this context:

10In Julia, operating directly on the object attributes is safe because
Julia is a strongly typed language, contrary to, e.g., Python. Safe, as-
suming that strong type definition has been used.

11In Julia, the word method as a different meaning than in general
object oriented languages. Here, the word “method” is used as in object
oriented languages such as Python.

12In the OMPython initiative, (Lie et al., 2016), Python’s keyword
assignment syntax was used. Keyword assignment is, however, trouble-
some, since possible Modelica identifiers such as mod.K and der(x)
are invalid as identifiers/keywords in Python, Julia, etc.

1. String concatenation is achieved by symbol *, thus
strings "K", "=", and "5" can be concatenated by
"K"*"="*"5" to become "K=5".

2. String substitution (referred to as string interpolation
in the Julia community) is achieved by the reserved
symbol $, e.g., "T=\$(25+273)" is interpreted as
"T=298", while T0=298 followed by "T=\$T0" or
"T=$(T0)" gives the same result.13

Some methods return a single string s holding a numerical
value, or a vector v holding strings each with a numerical
value. Such a string s can be trivially converted to a float-
ing point number by parse(Float64,s); such a vector
v can be converted to a vector of floating point numbers
by [parse(Float64,s)for s in v].

In the subsequent overview of methods, object name
mod is used for illustration — in real use, any valid Ju-
lia identifier can be used as object name. Methods may
or may not return results — if the methods do not return
results, the results are stored within the object.

2.3.3 Utility Routines, Converting Modelica ↔ FMU

Two utility methods convert files between Modelica files
with file extension .mo and Functional Mock-up Unit
(FMU) files with file extension .fmu.

1. mod.convertMo2Fmu() — method for converting
the Modelica model of the object into an FMU file.

• Required arguments: none, operates on the
Modelica file associated with the object.

• Optional input arguments:

– version: string with FMU version, "1.0
" or "2.0"; the default is "1.0".

– fmuType: string with FMU type, "
me" (model exchange) or "cs" (co-
simulation); the default is "me".

– fileNamePrefix: string; the default is
"className".

• Return argument:

– generatedFileName: string, returns the
full path + filename of the generated FMU
(.fmu).

2. mod.convertFmu2Mo(s)— method for converting
an FMU file into a Modelica file.

• Required input arguments: string s, where s
holds the name of the FMU file, including ex-
tension .fmu.

13With $ being a reserved symbol in Julia, it is necessary to use the
escape character \, i.e., \$ to achieve the effect of character $ in strings,
e.g., to specify LaTeX typesetting. Alternatively, by using Julia package
LaTeXString, syntax L"..." replaces $ with \$ in the string
without user intervention.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

702 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

• Optional input arguments: a number of op-

tional input arguments, e.g., the possibility
to change working directory for the imported
FMU files.

• Return argument:

– generatedFileName: string, returns the
full path + filename of the generated Mod-
elica file (.mo).

2.3.4 Get and Set Information

Several methods are dedicated to getting and setting
information about objects. With two exceptions —
getQuantities() and getSolutions() — the get
methods have identical use of arguments and results, while
all the set methods have identical use of input arguments,
with results stored in the object.

Get Quantity Information. Show Quantity Informa-
tion Method mod.getQuantities() has no input ar-
guments, and returns a vector14 of dictionaries, one dictio-
nary for each quantity. Each dictionary has the following
keys (strings) — with values being strings, too.

• "name" — the name of the quantity, e.g., "T", "der
(T)", "n[1]", "mod1.T", etc.,

• "aliasvariable" — typically nothing,

• "variability" — typically "continuous", "
parameter", etc.,

• "changeable" — value "true" or "false",

• "causality" — value "internal" or "
external" (for inputs),

• "value" — string of number "50", text string, or
"None",

• "description" — string copied from Modelica:
description of the quantity, e.g. "Mass in tank,
kg", or nothing.

• "alias" — typically "noAlias".

Modelica constants are not included in the returned vector
of dictionaries.15

A Julia specific utility function mod.
showQuantities() is included with the same syntax
as mod.getQuantities(), taking advantage of Julia
DataFrames to present the quantities in a table.16

14In Julia, a vector is a 1D array.
15In Modelica, constant is used for values which require recom-

pilation when changed. parameter values, on the other hand, can
be changed without recompilation.

16In Python, mod.showQuantities() is redundant because
the return object directly produces a table with Python pandas.

Get Solutions We consider method getSolutions()
— which assumes that the simulate() method has been
applied (see below). Three calling possibilities are ac-
cepted.

• mod.getSolutions(), i.e., without input argu-
ments, returns a vector of strings of names of quan-
tities for which there is a solution.17

• mod.getSolutions(s), where s is a string of a
name, returns a single time series (= vector of float-
ing point numbers) for the corresponding name.

• mod.getSolutions(v), where v is a vector of
strings of names, returns a vector of time series
(= vectors of floating point numbers) for the corre-
sponding names.

It follows that a vector of all time series can
be returned by the construct mod.getSolutions(
mod.getSolutions()).

Standard Get Methods We consider meth-
ods getXXX(), where XXX is either of {
Continuous, Parameters, Inputs, Outputs,
SimulationOptions, LinearizationOptions
}. Thus, methods mod.getContinuous(),
mod.getParameters(), etc. Three calling possi-
bilities are accepted.

• mod.getXXX(), i.e., without input argument, re-
turns a dictionary with names (strings) as keys and
values given in strings.

• mod.getXXX(s), where s is a string of a name, re-
turns a single string with value of the corresponding
name.

• mod.getXXX(v), where v is a vector of strings of
names, returns a vector of strings of values for the
corresponding names.

Set Methods The information that can be set is a
subset of the information that can be get. Thus, we
consider methods setXXX(), where XXX is either of
{Parameters, Inputs, SimulationOptions,
LinearizationOptions}, thus methods

mod.setParameters(), mod.setInputs(), etc.
Two calling possibilities are accepted.

• mod.setXXX(s), with s being a string of key-
word assignments of type quantity "name = value
". Here, the quantity name could be a parameter
name, an input name, etc.

– For parameters and simulation/linearization
options, the value should be a single value such
as a numerical value or a name of a solver, etc.,
e.g., s is "R=8.31" or "solver=dassl".

17The reason why a dictionary with every name as key and time series
as value is not returned, is that the amount of data might be exhaustive.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 703
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

– For inputs, the value could be a numerical value

if the input is constant in the time range of the
simulation, e.g., "u = 1.0", or

– For inputs, the value could alternatively be
a vector of tuples (t_{j},u_{j}), i.e., [(
t1,u1),(t2,u2),...,(tN,uN)] where the
input varies linearly between (t_{j},u_{j})
and (t_{j+1},u_{j+1}), where t_{j}<=
t_{j+1}, and where at most two subsequent
time instances t_{j},t_{j+1} can have the
same value. As an example, "u=[...,
(1,10), (1,20), ...]" describes a per-
fect jump in input value from value 10 to value
20 at time instance 1.

• mod.setXXX(v), with v being a vector of strings as
described for mod.setXXX(s). An example could
be could be ["R=8.31","cp=4.18"].

2.3.5 Operating on Julia Object: Simulation

The following method operates on the object, and has no
input arguments. The method has no return values; instead
the results are stored within the object.

• mod.simulate() — simulates the system with the
given simulation options

To retrieve the results, method mod.getSolutions() is
used as described previously.

2.3.6 Operating on Julia Object: Linearization

The following methods are used for linearization:

• mod.linearize() — with no input argument, re-
turns a tuple of 2D arrays (matrices) A, B, C, D.

• mod.getLinearInputs() — with no input argu-
ment, returns a vector of strings of names of inputs
used when forming matrices B and D.

• mod.getLinearOutputs() — with no input argu-
ment, returns a vector of strings of names of outputs
used when forming matrices C and D.

• mod.getLinearStates() — with no input argu-
ment, returns a vector of strings of names of states
used when forming matrices A, B, C, D.

Observe that linearization is carried out at the stopTime
specified in LinearizationOptions. The reason why
linearization is not carried out at initial time, is that to han-
dle DAEs, OpenModelica needs to initialize the model at
initial time — before linearization can be carried out. For
normal use, stopTime should be given a small value if
linearization at the current operating value is intended.

Figure 1. Driven water tank, with externally available quantities
framed in red: initial mass is emptied through bottom at rate ṁe,
while at the same time water enters the tank at rate ṁi.

2.3.7 Operating on Julia Object: Sensitivity

Sensitivy is related to ∂y(t)
∂θ , i.e., how an infinitesimal

change in a parameter θ leads to an infinitesimal change
in the solution of variable y; both θ and y can in princi-
ple be vectors. Sensitivity is very important in connection
with model fitting and identifiability analysis. The follow-
ing method is implemented on the Julia side, and provides
numeric sensitivities. The method has 2 or 3 input argu-
ments, and returns a tuple of 2 return arguments.

• mod.sensitivity(a1,a2[,a3]) — computes
sensitivity ∂y(t)

∂θ . Input arguments must be vectors:
a1 holds strings of the name of model parameters
(θ), a2 holds strings of the name of system vari-
ables (y), while the optional third argument a3 holds
floating point values for fractional parameter pertur-
bation. The return tuple holds two vectors, r1 and
r2. The first vector, r1, holds strings of the name of
the sensitivities that have been computed, while vec-
tor r2 holds the corresponding time series (vector of
solution values) — computed at the time instances
given by the simulation options.

3 Basic Use of API for Model Analysis
3.1 Case: Simple Tank Filled with Liquid
We consider the tank in Figure 1 filled with water.

Water with initial mass m(0) is emptied by gravity
through a hole in the bottom at effluent mass flow rate ṁe,
while at the same time water is filled into the tank at in-
fluent mass flow rate ṁi. Our modeling objective is to find
the liquid level h. Here, the input variable is the influent
mass flow rate ṁi, while the output variable is the quantity
we are interested in, h.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

704 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

Table 1. Parameters for driven tank with constant cross sectional
area.

Parameter Value Comment
ρ 1kg/L Density of liquid
A 5dm2 Constant cross sectional area
K 5kg/s Valve constant
hς 3dm Level scaling

Table 2. Operating condition for driven tank with constant cross
sectional area.

Quantity Value Comment
h(0) 1.5dm Initial level
m(0) ρh(0)A Initial mass
ṁi (t) 2kg/s Nominal influent mass flow

rate; may be varied

3.2 Model Summary
The model can be summarized in a form suitable for im-
plementation in Modelica as

dm
dt

= ṁi − ṁe (1)

m = ρV (2)
V = Ah (3)

ṁe = K

√
h
hς (4)

To complete the model description, we need to specify
model parameters and operating conditions. Model pa-
rameters (constants) are given in Table 1.

The operating conditions are given in Table 2.

3.3 Modelica Encoding of Model
The Modelica code describes the core model of the tank,
ModWaterTank, and consists of a first section where con-
stants and variables are specified, and a second section
where the model equations are specified (compactified
Modelica code is shown below).

model ModWaterTank
constant Real rho = 1 "Density";
parameter Real A=5, K=5, h_s=3;
parameter Real h_0=1.5, m_0=rho*h_0*A;
Real m(start=m_0, fixed=true);
Real V, md_e;
input Real md_i;
output Real h;

equation
der(m)=md_i-md_e;
m=rho*V, V=A*h, md_e=K*sqrt(h/h_s);

end ModWaterTank;

As seen from the first section of model ModWaterTank,
the model has 4 essential parameters (rho–h_s) of which
one is a Modelica constant (rho) while other 3 are de-
sign parameters, compare this to Table 1. Furthermore,

the model contains 2 “initial state” parameters, where 1 of
them can be chosen at liberty, h_0, while the other one,
m_0, is computed automatically from h_0, see Table 2.
The purpose of the “free parameter” h_0 is that it is easier
for the user to specify level than mass. Also, free “initial
state” parameters makes it possible for the user to change
the initial states from outside of model ModWaterTank,
e.g., from Julia.

Next, one variable is given with initial value — the state
m — is initialized with the “initial state” parameter m_0.
Then, 2 variables are defined as auxiliary variables (alge-
braic variables), V and md_e.18

One input variable is defined — md_i — this is the in-
fluent mass flow rate ṁi, see Table 2. Inputs are charac-
terized by that their values are not specified in the core
model — here ModWaterTank. Instead, their values must
be given in an external model/code — we will specify this
input in Julia. Finally, 1 output is given — h.

In the second section of model ModWaterTank, the
Model equations exactly map the mathematical model
given in Eqs. 1–4. For illustrative purposes, the core
model ModWaterTank is wrapped within a package
named WaterTank and stored in file WaterTank.mo,

package WaterTank
// Package for simulating

// driven water tank
model ModWaterTank

// Main driven water tank model
// ...
...

end ModWaterTank;
// End package
end WaterTank;

3.4 Use of Julia API
First, the following Julia statements are executed — we
did this in Jupyter notebook (IJulia).

using Plots; pyplot()
using LaTeXStrings
using DataFrames
using OMJulia
Linewidth
LW1 = 1.5
LW2 = 1
Colors - core
usn_red = colorant"#D64349"
usn_blue = colorant"#27B2DO"
usn_green = colorant"#3BAFA2"
usn_purple = colorant"#4646A5"
usn_gold = colorant"#FFD240"

Here, package Plots is the plotting meta pack-
age of Julia; we use pyplot as back-end. Package
LaTeXStrings makes it possible to automate insertion
of escape symbol \ in LaTeX code to produce proper
Julia strings. Package DataFrames is used to present
quantities in Jupyter notebook tables. Two line widths

18md is notation for m with a dot, ṁ, i.e., a mass flow rate.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 705
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

Figure 2. Typesetting of quantity vector of dictionaries as a table
in a Jupyter notebook.

are assigned, to variables LW1 and LW2, to obtain uniform
line width.

Colors are taken from the graphical profile of the em-
ployer of first author are used to illustrate how one can de-
fine colors using hex code. Alternatively, the CSS color
names are available19 as case insensitive symbols, e.g., :
red, :cornflowerblue, etc.

3.5 Basic Simulation of Model
We instantiate object tank with the following command:

tnk = OMJulia.OMCSession()
tnk.ModelicaSystem("WaterTank.mo","WaterTank.

ModWaterTank")

In the sequel, Julia prompt julia> is used when
Jupyter20 notebook actually uses In[*] — where * is
some number, while the response in Jupyter notebook is
prepended with Out[*] .

julia> q = tnk.getQuantities()
julia> typeof(q)
Array{Any,1}
julia> length(q)
11
julia> q[1]
Dict{Any,Any} with 8 entries:
"name" => "m"
"aliasvariable" => nothing
"variability" => "continuous"
"changeable" => "false"
"causality" => "internal"
"value" => "None"
"description" => "Mass in tank, kg"
"alias" => "noAlias"

julia> tnk.showQuantities()

Method tnk.showQuantities() produces a table
overview, Fig. 2.

The results in Figure 2 should be compared to the Mod-
elica model in Section 3.2. Observe that Modelica con-
stants are not included in the quantity list.

Next, we check the simulation options:

julia> tnk.getSimulationOptions()

19https://www.w3schools.com/colors/
colors_groups.asp

20Jupyter is denoted IJulia in Julia.

Dict{Any,Any} with 5 entries:
"startTime" => "0"
"stopTime" => "1"
"solver" => "dassl"
"stepSize" => "0.002"
"tolerance" => "1e-006"

It should be observed that the stepSize is the fre-
quency at which solutions are stored, and is not the step
size of the solver. The number of data points stored, is thus
(stopTime–startTime)/stepSize with due rounding.
This means that if we increase the stopTime to a large
number, we should also increase the stepSize to avoid
storing large amounts of data.

Possible inputs are:

julia> tnk.getInputs()
Dict{Any,Any} with 1 entry:
"md_i" => "None"

where value None implies that the available input, md_i,
has yet not been set. The simulation will not work with
value None; let us instead set ṁi = 3, simulate for a long
time, and then change “initial state” parameter h(0) to the
steady state value of h:

julia> tnk.setInputs("md_i=3")
julia> tnk.setSimulationOptions(["stopTime=1

e4", "stepSize=10"])
julia> tnk.simulate()
julia> h, = tnk.getSolutions("h")
julia> tnk.setParameters("h_0=$(h[end])")

Observe that the syntax h, is needed to unpack the time
series for h when the vector of solutions has a single ele-
ment.

Next, we reset the stop time to 10, and specify an input
sequence with a couple of jumps:

julia> tnk.setSimulationOptions(["stopTime=10
","stepSize=0.02"])

julia> tnk.setInputs("md_i = [(0,3),(2,3),
(2,4),(6,4),(6,2),(10,2)]")

Finally, we simulate the model with the time varying
input, and plot the result:21

julia> tnk.simulate()
julia> tm, h = tnk.getSolutions(["time","h"])
julia> plot(tm,h,linewidth=LW1, color=

usn_blue, label=L"h")
julia> plot!(title="Water tank level")
julia> plot!(xlabel=L"time t [s]")
julia> plot!(ylabel=L"h [dm]")

The result is displayed in Figure 3.

3.6 Monte Carlo Simulation
It is of interest to study how the model behavior varies
with varying uncertain parameter values, e.g., the effluent
valve constant K. This can be done as follows:

21plot() plots a result, plot!() overlays information on an
existing plot.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

706 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

Figure 3. Tank level when starting from steady state, and ṁi (t)
varies in a straight line between the points (t j, ṁi (t j)) given by
the list [(0,3),(2,3),(2,4),(6,4),(6,2),(10,2)
].

Figure 4. Uncertainty in tank level with a 5% uncertainty in
valve constant K. The input is like in Figure 3.

julia> par = tnk.getParameters()
julia> K = parse(Float64,par["K"])
julia> Nmc = 10;
julia> KK = K + (randn(Nmc)-0.5)*K/20;
julia> tnk.simulate()
julia> tm, h = tnk.getSolutions(["time","h"])
julia> v_h = Vector{Vector}(Nmc)
julia> for (i,K) in enumerate(KK)

tnk.setParameters("K=$(K)")
tnk.simulate()
v_h[i] = tnk.getSolutions("h")

end
julia> plot(tm,h,lw=LW1,lc=usn_red,label=L"

h")
julia> plot!(tm,v_h,lw=LW2,ls=:dot,lc=usn_red

,legend=false)
julia> plot!(title="Tank level sensitivity")
julia> plot!(xlabel=L"time t [s]")
julia> plot!(ylabel=L"h [dm]")

The result is as shown in Figure 4.

3.7 Linearizing Model
We can find a linearized approximation of the system.
First we reset K to 5, then set the stop time of the lin-
earization to 10−6 before we linearize the system and ex-
tract matrices A, B, C, and D.

julia> tnk.setParameters("K=5")
julia> tnk.setLinearizationOptions("stopTime

=1e-6")
julia> A,B,C,D = tnk.linearize();

If we use the Julia ControlSystems package,22 we can
define an LTI system and find the transfer function:

julia> using ControlSystems
julia> sys = ss(A,B,C,D)
julia> tf(sys)
ControlSystems.TransferFunction{

ControlSystems.SisoRational{Float64}}
0.2

1.0*s + 0.2587650960551352

Continuous-time transfer function model

We may also like to know the state which OpenModelica
has chosen:

julia> tnk.getLinearStates()
1-element Array{Any,1}:
"m"

4 Case study: PI control of reactor
4.1 Reactor
We consider an extension of a reactor described in (Se-
borg et al., 2011); see (Sund et al., 2018), (Khalili and
Lie, 2018) for details of the model and linearization of the
model. The reactor is exothermal with water cooling via a
heat exchanger, and is unstable at the operating point. The
original model (org) in (Seborg et al., 2011) has 2 states:
reactor temperature T and concentration cA of species A.
An extended model which only assumes ideal solution (is
) has 3 states: the states of the org model as well as con-
centration cB of species B. Both models exhibit nonlinear
oscillations when forced away from the equilibrium point.
A possible control problem is to control the reactor tem-
perature T by means of the cooling water temperature Tc
of the heat exchanger.

4.2 PI Controller
A linearized model can easily be found by using the
mod.linerize() method of OMJulia — the linearized
model is as in (Khalili and Lie, 2018), with cooling tem-
perature Tc as control input. The closed loop matrix Acl
with a proportional controller (P controller) is

Acl = A−KpBC (5)

where B is the input matrix and Kp is the controller gain.
Looping through Kp ∈ [−1,8] leads to the closed loop
eigenvalues as depicted in Figure 5.23

22A similar tool in Python is limited in scope, and rather complicated
to install.

23Here, Julia’s ControlSystems package has been used, together
with a user-modified rlocus() function.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

DOI Proceedings of the 13th International Modelica Conference 707
10.3384/ecp19157699 March 4-6, 2019, Regensburg, Germany

Figure 5. Root locus plot λ
(
Acl;Kp

)
for Kp ∈ [−1,8].

The P-controller stabilizes the system for Kp ' 1.14;
Kp = 5.7 gives two real, closed loop eigenvalues/poles at
approximately λ ≈ −5, which implies closed loop time
constants τ j ≈ 1

5 = 0.2.
For a proportional + integral controller, it is reasonable

to let the reset time (= integral time) be, say, 10 times
larger than the closed loop time constants of a P controller.
Thus, the PI controller

Tc (s) = T ∗
c +Kp

1+Tints
Tints

· e(s) (6)

e(s) = Tref (s)−T (s) (7)

with Kp = 5.7 and Tint = 2 may be an acceptable choice.24

Nominal input T ∗
c is not needed with integral action, but

is useful to avoid an initial “kick” in the control action.
Tref is the reference temperature. If we let Tint → ∞, the
controller becomes a P controller.

In the time domain, we can express the PI controller as

Tc −T ∗
c = Kpe+ T̃c (8)

dT̃c

dt
=

Kp

Tint
e. (9)

To handle constraints for Tc ∈ [4,96]◦C, if Tc =Kpe+T ∗
c +

T̃c breaks this constraint, we set Tc equal to the constraint
and dT̃c

dt = 0 to avoid controller wind-up. The controller is
implemented in Modelica, but controller parameters and
constraints in Tc are set from Julia using OMJulia.

4.3 Proportional + Integral Control
Figure 6 shows the use of a PI controller to keep reactor
temperature T close to a reference Tref. The PI controller
tuned for the org model, is also applied to the is model.

The result indicates that the controller easily handles
the model difference between the two models. Figure 7
shows the applied control input Tc as well as the integral
state T̄c in the controller for the two model cases.

Figure 7 clearly shows a problem for the controller: the
cooling water can not take on negative temperatures Tc

24The integral time is denoted Tint in order to make a distinction be-
tween integral time and influent temperature, Ti.

Figure 6. Output T as controlled with PI controller tuned for
org model, and applied to org and is model.

Figure 7. PI control signal Tc and integrator state T̄c for org
and is models.

[◦C]. We therefore add the constraint that Tc ∈ [4,96] ◦C,
which together with anti-windup leads to the results in
Figures 8 and 9 for output T and controller Tc, respec-
tively.

5 Discussion and Conclusions
This paper presents OMJulia, a first effort to interface a
relatively complete Modelica tool, OpenModelica, to Ju-
lia, giving access to an open source set-up for modeling
and analysis, including control synthesis, easily installable
from a unified package manager.

Figure 8. Output T as controlled with PI controller tuned for
org model, and applied to org and is model: control input Tc
is constrained to [4,96] ◦C and anti-windup is applied.

OMJulia: An OpenModelica API for Julia-Modelica Interaction

708 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157699

Figure 9. PI control signal Tc and integrator state T̄c for org
and is models: control input Tc is constrained to [4,96] ◦C and
anti-windup is applied.

Some design choices of the Julia API are briefly de-
scribed, and the syntax and possibilities of OMJulia are
then detailed. The use of the API is illustrated with a sim-
ple example of a water tank model, then some possibili-
ties for control analysis of a chemical reactor are detailed.
The API has also been tested on more complex models not
shown here.

The key contribution of the OMJulia package is not
within Modelica as a language, but rather to increase the
usefulness of Modelica into new fields such as control en-
gineering. Future work will include a package OMMatlab,
updating the syntax of OMPython, and possibly extension
of the API to the optimization and symbolic sensitivity
analysis routines in OpenModelica. Another possibility is
to consider a translator from OpenModelica to Julia (de-
sign choice 3).

References
Marcus Baur, Martin Otter, and Bernhard Thiele. Modelica Li-

braries for Linear Control Systems. In Proceedings, the 7th
International Modelica Conference, Como, Italy, 2009.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Sha. Julia: A Fresh Approach to Numerical Computing.
SIAM Review, 49(1):65–98, 2017. doi:10.1137/14100067.

K. E. Brenan, S. L. Campbell, and Linda R. Petzold. Numerical
Solution of Initial-Value Problems in Differential-Algebraic
Equations. North-Holland, New York, 1989.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter. Inno-
vations for Future Modelica. In Proceedings of the 12th Inter-
national Modelica Conference, Prague, Czech Republic, May
2017. doi:10.3384/ecp17132693. May 15-17, 2017, Prague,
Czech Republic.

FMI Consortium. Functional Mock-up Interface
for Model Exchange, version 2.0, 2018. URL
https://fmi-standard.org/.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley-IEEE Press, Piscataway, NJ, second edition, 2015.
ISBN 978-1-118-85912-4.

Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard Bach-
mann, Willi Braun, Robert Braun, Lena Buffoni, Francesco
Casella, Rodrigo Castro, Alejandro Danós, Rüdiger Franke,
Mahder Gebremedhin, Bernt Lie, Alachew Mengist, Kan-
nan Moudgalya, Lennart Ochel, Arunkumar Palanisamy,
Wladimir Schamai, Martin Sjölund, Bernhard Thiele, Volker
Waurich, and Per Östlund. The OpenModelica Integrated
Modeling, Simulation and Optimization Environment. In
Proceedings of the 1st American Modelica Conference, Cam-
bridge, MA, USA, October 2018. LIU Electronic Press,
www.ep.liu.se. October, 8-10, 2018.

Anand Kalaiarasi Ganeson. Design and Implementation of a
User Friendly OpenModelica - Python interface. Master’s
thesis, Linköping University, 2012.

Anand Kalaiarasi Ganeson, Peter Fritzson, Olena Rogovchenko,
Adeel Asghar, Martin Sjölund, and Andreas Pfeiffer. An
OpenModelica Python Interface and its Use in PySimulator.
In Proceedings of the 9th International Modelica Conference,
September 2012. doi:10.3384/ecp12076537. September 3-5
2012.

Pieter Hintjens. ZeroMQ. Messaging for Many Applications.
O’Reilly Media, March 2013.

JuliaLang. The Julia Programming Language, 2018. URL
https://julialang.org/.

Mohammad Khalili and Bernt Lie. Comparison of Linear Con-
trollers for Nonlinear, Open-loop Unstable Reactor. In Pro-
ceedings, SIMS 2018, Oslo Metropolitan University, Septem-
ber 2018. SIMS, Linköping University Press.

Bernt Lie, Sudeep Bajracharya, Alachew Mengist, Lena Buf-
foni, Arunkumar Palanisamy, Martin Sjölund, Adeel Asghar,
Adrian Pop, and Peter Fritzson. API for Accessing Open-
Modelica Models from Python. In Proceedings of EuroSim
2016, Oulu, Finland, 2016, September 2016.

Modelica Association. The Modelica Standard Library, v.
3.2.2, 2016. URL https://github.com/modelica/
ModelicaStandardLibrary/.

Modelica Association. Modelica R⃝ — a Unified Object Ori-
ented Language for System Modeling Language Specifica-
tion, version 3.4, 2017. URL https://modelica.org/
documents/ModelicaSpec34.pdf.

Christopher Rackauckas and Qing Nie. DifferentialEquations.jl
— A Performant and Feature-Rich Ecosystem for Solving
Differential Equations in Julia. Journal of Open Research
Software, 5(15), 2017. DOI: http://doi.org/10.5334/jors.151.

Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, and
III Doyle, Frank J. Process Dynamics and Control. John Wi-
ley & Sons, Hoboken, NJ, third edition edition, 2011. ISBN
978-0-470-12867-1. ISBN 978-0-470-12867-1.

Sveinung M. Sund, Marianne Plouvier, and Bernt Lie. Compar-
ison of Simulation Tools for Dynamic Models. In Proceed-
ings, SIMS 2018, Oslo Metropolitan University, September
2018. SIMS, Linköping University Press.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

DOI Proceedings of the 13th International Modelica Conference 709
10.3384/ecp19157709 March 4-6, 2019, Regensburg, Germany

 “hello, (Modelica) world”: Automated documentation of complex simulation
models exemplified by expansion valves
Vering, Christian and Hinrichs, Sven and Lauster, Moritz and Müller, Dirk

709

“hello, (Modelica) world”: Automated documentation of complex

simulation models exemplified by expansion valves

Christian Vering Sven Hinrichs Moritz Lauster Dirk Müller

Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany,
cvering@eonerc.rwth-aachen.de

Abstract
The constantly increasing computing power enables the

implementation of complex simulation models.

Therefore, it is possible to create more detailed models

to predict system behavior more accurately. Modelica,

for example, has proven great suitability in modelling

complex systems, because of its high degree of

reusability. However, understanding these models is

quite difficult and many simulation models are poorly

documented. Consequently, it is very time-consuming

to retrace given model structures especially for novice.

The Unified Modeling Language (UML) provides a

user-friendly and graphical structure for documentation

to simplify working with existing simulation models.

Hence, an algorithm (ADoCSM) is developed to

automatically present the structure of a Modelica

simulation model in UML. This algorithm is

exemplarily applied to a refrigerant circuit expansion

valve model. Thereby, we contribute to an increase of

simulation model quality as well as simplifying the entry

in the world of Modelica. ADoCSM and the expansion

valve model are freely available on GitHub:

https://github.com/RWTH-EBC/ADoCSM

https://github.com/RWTH-

EBC/AixLib/tree/issue590_ExpansionValve

Keywords: Modelica introduction, simplify modelling,

automated model documentation

1 Introduction

In the last decades, modelling complex systems has

gained importance. In engineering, we utilize modelling

in order to support designing processes or to enable the

application of sophisticated control strategies like model

predictive control. Therefore, detailed simulation

models with high software quality are necessary.

However, careful modelling is time-consuming and the

documentation of models is exhausting.

In the context of building energy systems’ heat supply,

heat pumps are awarded to be a key technology

supporting the achievement of stated climate goals in

this sector (EEA, 2016). The heat pumps’ lifetime

strongly depends on the operation of its compressor.

Avoiding droplet impact within the compression

process, the heat pumps’ expansion valves adjust a level

of superheat of the refrigerant at the compressor inlet

(Jahnke, 2000). Thus, the expansion valve is very

important for the lifetime of heat pumps. Hence,

modelling expansion valves is essential to understand its

behavior within the refrigerant circuit and increase the

lifetime of the compressor by advanced expansion valve

control.

Due to superposition of thermodynamic and fluid

mechanic interactions, modelling expansion valves is

challenging (Cao, 2016). In particular, the complexity of

superposition makes good documentation necessary.

Therefore, the expansion valve modelling and

concurrent documentation offers a suitable application

to show functionality of the presented algorithm

ADoCSM (“Automated Documentation of Complex

Simulation Models”). In order to ensure both a well-

defined simulation model and a well-documented one, a

modelling as well as a documentation language need to

be chosen.

One suitable modelling language for thermal systems is

Modelica, because of its DAE-based modelling options

as well as its high degree of reusability.

Many approaches for modelling of thermal systems like

expansion valves already exist and are utilized in

literature. Thereby, two approaches are common. On the

one hand, mathematical black box approaches are

applied to ensure short simulation times by sufficient

prediction accuracy for individual refrigerants (Müller,

2016). Going for modular and scalable models on the

other hand, grey box approaches include physical

behavior by applying fundamental equations to predict

change of states. As a result, prediction accuracy can be

increased for a wider range of refrigerants by

simultaneous loose of computational speed (Müller,

2016). Joining presented advantages, we show

automated documentation of a modular and scalable

expansion valve simulation model.

A well-known and well-established model

documentation approach is using the graphical Unified

Modeling Language (“UML”) (Weilkiens, 2006). In

order to utilize UML for Modelica many tools already

exist (Loeffler, 2006). However, an automation

algorithm is not known.

Therefore, reducing entry barriers into both the structure

of Modelica as well as our algorithm, we present an

open-source solution that is applicable with a graphical

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

710 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157709

user interface (GUI). Hence, we want to educate users

in understanding Modelica as well as to improve our

algorithm to be suitable for many use-cases as easy as

possible.

Thus, within this paper, we contribute to three main

ideas by breaking up rather complicated structures:

1) Modular and scalable modelling approach for

expansions valves on refrigerant level is set up

in Section 2, combining thermodynamic and

fluid mechanic effects by consideration of

a. metastable coefficient of mass flow

and transition of two-phase flow and

b. choke effects.

2) In Section 3, we present the algorithm that

translates Modelica code into a UML code,

which enables a structured and automated

documentation of complex simulation models.

3) Reducing entry barriers in Modelica and the use

of the algorithm, we show in Section 4 a GUI

that easily offers all functionalities of the

current state of our work.

In the end of the paper, we conclude the work and

discuss the outlook for further developments.

2 Modeling expansion valves

Heat pumps are a key technology coupling sectors of

heat and electricity regarding the building stock

(Huchtemann, 2009). This enables a systematic

electrification of heat supply in order to increase the

flexibility of the energy system. Exploiting the whole

potential of this technology, detailed simulation models

are necessary to predict system behavior. Therefore,

Modelica has proven great suitability.

Figure 1 depicts a schematic of a modular and scalable

heat pump in Modelica (Dymola) that strictly separates

physical system description from system control.

Further information about this grey-box approach is

published in Storek et al. (Storek, 2018) and

Vering et al. (Vering, 2018).

Figure 1: A modular and scalable heat pump in

Modelica showing the main physical components

separated from control blocks.

The expansion valve (EV) is an important component to

ensure mass flow adjustment within the refrigerant

circuit. The mass flow directly correlates to the

refrigerant mass in the evaporator and dwell times in this

component. Thus, EV allows controlling the level of

superheated vapor at evaporator outlet and thereby at the

inlet of the compressor.

Compressors’ lifetime can be reduced by supplying it

with non-superheated vapor, which causes droplet

impact (Jahnke, 2000). Therefore, it is necessary to

avoid those refrigerant conditions. Hence, controlling

the level of superheat is important while operating a heat

pump. As consequence, a resilient prediction of the fluid

state at compressor inlet using simulation models

requires careful modelling.

The expansion valve throttles the refrigerant from a

high-pressure level to a lower one by decreasing the

flow area with a positioning cylinder as shown in

Figure 2. In this process, a superposition of

thermodynamic and fluid mechanics effects occurs,

which is a complex phenomenon (Huo, 2010). The main

effects defining this process are choke, flash, cavitation

and evaporation waves (Moreira, 2003). Modelling all

physical interactions is not recommended in literature as

well as just using the Bernoulli equation for an

incompressible fluid and frictionless fluid flow (Cao,

2016).

In consistence to the whole heat pump model, we choose

a grey-box modelling approach to estimate refrigerant

states. Therefore, basic physical equations as well as

some assumptions are covered and implemented. The

mass flow �̇� through an EV considering expansion by

an expansion factor 𝑌 can be written as (Davies, 1973):

�̇� = 𝐶d𝑌𝐴th√2 𝜌in(𝑝in − 𝑝out), (1)

𝑌 = 1 −
𝑝in − 𝑝out

3𝐹γ𝑋T
. (2)

𝐶d describes the flow coefficient, 𝐴th means flux area,

𝜌in fluid density at inlet and 𝑝𝑖 is the pressure of the fluid

at inlet and outlet. 𝐹γ𝑋T is the product of a specific heat

ratio 𝐹γ and a pressure drop factor of the valve 𝑋T.

Figure 2: Schematic of fluid phenomina within an

expansion valve showing the throtteling process for

refrigerants with phase change.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

DOI Proceedings of the 13th International Modelica Conference 711
10.3384/ecp19157709 March 4-6, 2019, Regensburg, Germany

For a fluid flow with constant density without phase

change Equation 1 is simplified by 𝑌 = 1 to Bernoulli

Equation (Li, 2013).

Modelling a choked mass flow with constant EV inlet

pressure 𝑝in Equation 1 can be written as

�̇� =
2

3
𝐶d𝐴th√2 𝜌in𝑝in𝐹γ𝑋T. (3)

It is obvious, that a two phase mass flow is always lower

than for a one phase flow. Regarding detailed modelling

approaches of the flow coefficient, we refer to (Li,

2013).

We implemented Equation 3 in Modelica to model the

physical behavior of an expansion valve and the choke

effect of the refrigerant considering two phase flow.

Showing the main governing equations,

interdependencies between different variables occur,

which are related to the reformulation of the problem.

The modeler exactly knows which variable and equation

stands for what. However, making a model open-source

available, not only the modeler uses the model, but also

end users. Simplifying the use of a model, a structured

documentation is necessary. Within this work we chose

UML to be a suitable graphical way of documentation

because of its dissemination and establishment.

Enabling the use of UML, an algorithm that translates

Modelica code into an UML readable format is required.

This algorithm is presented in Section 3.

The expansion valve model is freely available on

GitHub:

https://github.com/RWTH-

EBC/AixLib/tree/issue590_ExpansionValve

3 Automated Documentation of

Complex Simulation Models

ADoCSM stands for “Automated Documentation of

Complex Simulation Models”. It is a tool that scans

Modelica libraries and translates them into a code,

which can be interpreted by UML language. Therefore,

we use the freely available tools PlantUML and Papyrus

because they support 9 (Papyrus 13) different UML

diagrams and they are easily extendable (PlanUML,

2018).

These tools need to be interconnected via a parser to

translate Modelica main functions into UML readable

and interpretable code.

The parser is based on the Python programming

language and has to recognize keywords from Modelica

that relate to various Modelica functions.

We started implementing four main relations

“Inheritance”, “Aggregation”, “Composition” and

“Polymorphism” that are summarized in Table 1, which

are key ideas of object-oriented modelling and allow a

high level of reusability. Inheritance passes all methods

and attributes from a parent to the child class and is

initialized with the keyword “extends”. In the

composition several objects are assembled into a new

overall system and is initialized with the “modelname”.

The relation polymorphism is used to specify

interchangeable classes or object types that can be

exchanged later in the parameterization.
Table 1: Relations in Modelica that the parser finds and

translates into UML code.

Relation Modelica key
word

UML
Notations

Inheritance extends

Aggregation outer / inner

Composition model

Polymorphism replaceable
model

In a pre-processing step, a structured reformulation of

the Modelica code decreases the parser’s error rate.

Hence, we introduce two steps before starting the parser.

In a first step, the path of the Modelica model is defined.

This allows a systematic naming of packages and

classes. After that, we translate a well-defined Modelica

code into an easily parser readable formulation.

Therefore, we choose a structure that follows these

designs:

 << Variable >> << Comment >> << Annotation >>

 << Method >> << Comment >> << Annotation >>

Using the new code, the workflow of the parser is shown

in Figure 3. Further reducing error rates, there is a first

check whether a library exists. After that there is a

lookup for the existing files.

Within this, file packages are declared. A package with

its models is taken to be translated into the UML

notation. Therefore, different key words are translated

into a PlantUML format:

 Method

 Attribute

 Stereotype (model, record, type, block,

function, connector)

Using these three inputs, the parser defines all relations

within this model and repeats these steps for the whole

list of files.

After passing all steps, the parser analyses the next

layer i. The user defines the number of layers

beforehand. Finally, the Modelica code is translated into

a UML readable notation that can be interpreted e.g. by

PlantUML. The converted Modelica code can now be

loaded into the PlantUML tool and will be graphically

generated in the UML form.

Thereby, the model structure can be broken up in order

to get an overview of the model.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

712 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157709

Figure 3: Workflow of the parser translating Modelica code into an UML readable notation.

With the aid of the UML class diagram, the structure of

the model can be displayed graphically. For example,

inherited models, parameters or exchangeable classes

can be displayed. The visual representation reduces the

complexity of the model and the relationships and

composition of the model can be detected more quickly.

Furthermore, simplifying the use of this algorithm and

disseminating it, we develop a graphical user interface

(GUI) that is presented in the next section by applying

UML documentation to the expansion valve simulation

model.

4 Use of ADoCSM

Supporting the entry in the world of Modelica, by

making the structure of Modelica models more

transparent, the parser translates Modelica code into the

UML notation. For a user-friendly design, we develop a

graphical user interface (GUI).

The GUI of ADoCSM is mainly separated in six parts,

which are shown in Figure 4. These are initialization (1),

settings (2-5) and console (6).

For “initialization” the input file (1) has to be chosen.

With this file the paths of the files as well as libraries are

defined for the parser. This example uses the AixLib

(D. Müller, et al. 2016) and the Modelica standard

library in the Model Library directory.

Additionally, the result file path can be redefined.

After that, the “settings” for the parser are selected. The

user can choose, which information e.g. parameter,

constants or variables (2) of a model should be plotted

within the UML representation. In particular for

complex models with a large number of parameters,

constants or variables, it is helpful to show or hide a

specific group of attributes in order to retain the overall

overview. In particular, depicting model structures with

a high degree of polymorphism, whole packages can be

superimposed or hided out to keep overview.

Additionally, the user immediately learns, which

packages can be replaced by other ones.

Figure 4: Graphical User Interface (GUI) to simplify

the use of ADoCSM.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

DOI Proceedings of the 13th International Modelica Conference 713
10.3384/ecp19157709 March 4-6, 2019, Regensburg, Germany

Regarding a structured representation, the number of

investigation layers (3) is set and UML diagram type (4)

can be chosen.

By default, a class diagram is predefined. For further

work, it should be considered whether additional

diagram types should be added. Pushing the button (5)

executes the generation of the UML structure regarding

defined paths and settings. Using the expansion valve as

example, in Figure 5 the referring UML class diagram is

depicted with all relations and model parameter. The

“console” (6) shows in the end, if a workflow was

successfully executed or if errors occurred. A successful

execution is then shown in a separate window.

In Figure 4 all structure investigation layers are

depicted. On top, in the first layer there is the first box

of the expansion valve model with respect to choke

effects. The box is regarding UML class diagram

requirements divided into three parts. In the upper one

the indication is shown as a “model” named

“ExpansionValveChoke”. In the lower one the user can

see the corresponding parameter 𝑋T. The third box is not

required in this case, because no operators are defined

within this model. It inherits its properties from the next

layer, where the partial model

“PartialIsenthalpicExpansionValve” is shown.

On the next deeper layer, “PartialExpansionValve” with
all typical properties of an expansion valve is illustrated.

Different parameter such as “Area” or “Diameter” are

defined with a value and the corresponding SI unit.

Additionally, parameter of the type Boolean like

“useInpFil” are shown.

In the last layer, the inheritances, compositions and a

polymorphism are pointed out. The only inheritance of

a “PartialTwoPortTransport” model is revealed. A

combination of “CalcProc”, “RealInput”, “RealOutpt”,

“Filter” and “RealPassThrough” constitutes all model

compositions. Furthermore, a polymorphism

“ConstantFlowCoefficient” is shown. As consequence,

the user immediately knows, that this is a replaceable

model within the “ExpansionValveChoke” model.

Compared to typical Modelica tree structures, the UML

class diagram easily illustrates the expansion valve

simulation model structure. That supports the

understanding of inheritances and compositions as well

as polymorphism. Additionally, parameter and initial

values are revealed by the graphical representation of

the model.

All these points simplify the understanding of complex

simulation models. As consequence, training times of

model structures can be reduced and simultaneously the

code quality is increased by better documentation.

The algorithm is freely available on GitHub. We kindly

invite external users to use and improve the

functionalities of ADoCSM by online cooperation using
this link:

https://github.com/RWTH-EBC/ADoCSM

Figure 5: Representation of an expansion valve in an UML class diagram that was translated from Modelica code

showing the model structure and the relations.

“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by
expansion valves

714 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157709

Improving the quality of the algorithm and doing

systematic troubleshooting, we will apply ADoCSM to

the AixLib (Müller, 2016 - 2). Thus, on the one hand,

the model quality increases due to documentation

improvements. On the other hand, the algorithm is tested

and error rate of application will be reduced.

5 Conclusion

Within this work we show that Modelica code can be

translated into UML code via the presented tool that is

freely available on GitHub:

https://github.com/RWTH-EBC/ADoCSM.

It allows to visualize the model structure and the

parameter interdependencies, which is a powerful tool

increasing the understanding of Modelica.

Using the recent version, we show for an expansion

valve example that it is possible to create UML

diagrams considering both important key words and

relations of the model.

Our presented expansion valv simulation model for

refrigerant circuits is freely available on GitHub:

https://github.com/RWTH-

EBC/AixLib/tree/issue590_ExpansionValve

The model considers idealized expansion valve

functionality as well as chocked mass flows for different

pressure to pressure drop ratios.

All in all, we show functionality of both the modelling

approach and of the parsers algorithm. The next steps

will consider the investigation of further models to start

systematic troubleshooting in order to increase the

quality of our algorithm. Therefore, AixLib will be the

first large use-case.

References

European Environment Agency (EEA). “Trends and

projections in Europe 2016”, 2016.

A. Jahnke. Webasto Schulungs-Handbuch: Kälte-Klima,

2000.

X. Cao, Z.-Y. Li, L.-L. Shao und C.-L. Zhang. Refrigerant

flow through electronic expansion valve:

Experiment and neural network modeling.

Applied Thermal Engineering, 92:210–218, 2016.

D. Müller. Simulationsmodelle für die Heiz- und

Raumlufttechnik: Heizflächen.

Vorlesungsvortrag, RWTH Aachen University,

Aachen, 2016.

M. Loeffler, Michaela Huhn, Christoph Richter, Roland

Kossel. Modelica CDV A Tool for Visualizing the

Structure of Modelica Libraries, In The 5

International Modelica Conference, pp. 55-62.,

2006.

T. Weilkiens. Sysml: Ein neuer Standard der omg. omg-

Kolumne, pages 12–15., 2006.

K. Huchtemann und D. Müller. Advanced simulation

methods for heat pump systems. In The 7

International Modelica Conference, 798–803.

Linköping University Electronic Press, 2009.

T. Storek et al. A modular modelling approach for

thermodynamic systems applied to heat pumps. In

31st ECOS Conference, 2018.

C. Vering et al. Transiente Modellierung eines Verdichters

zum Vergleich von niedrig GWP-Kältemitteln für

Kompressionswärmepumpen. In BauSIM 2018.

M. Huo. A study in the characteristics of the flow inside a

thermostatic expansion valve, Master thesis,

University of Illinois at Urbana-Champaign,

2010.

J. R. Simões-Moreira, C. W. Bullard. Pressure drop and

flashing mechanisms in refrigerant expansion

devices, Int. J. Refrig., 26:840–848, 2003.

A. Davies, T.C. Daniels. Single and two-phase flow of

dichlorodifluoromethane, R12 through sharp-

edged orifices, ASHRAE Transactions 79 (Part 1)

(1973) 109-123., 1973.

W. Li. Simplified modeling analysis of mass flow

characteristics in electronic expansion valve,

Applied Thermal Engineering, 54:8-12, 2013.

Drawing UML with PlantUML: Language Reference

Guide (Version 1.2018.2).,

http://plantuml.com/PlantUML_Language_Refer

ence_Guide.pdf, 2018

D. Müller, et al. AixLib – An open-source Modelica library

within the IEA-EBC Annex 60. In BauSIM, 2016:

3-9, 2016.

DOI Proceedings of the 13th International Modelica Conference 715
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

SESSION 6D: AUTOMOTIVE 3
Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation
Chen, Weitao and Ran, Shenhai and Jacobson, Bengt

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures
Ensbury, Theodor and Dempsey, Mike and Briant, David

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation
Holzinger, Franz Rudolf and Benedikt, Martin

.

716 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

DOI Proceedings of the 13th International Modelica Conference 717
10.3384/ecp19157717 March 4-6, 2019, Regensburg, Germany

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation
Chen, Weitao and Ran, Shenhai and Jacobson, Bengt

717

Integration and Analysis of EPAS and Chassis System in
FMI-based Co-Simulation

Weitao Chen1,2 Shenhai Ran1 Bengt Jacobson2

1Vehicle Dynamics CAE, Volvo Cars, Sweden,
{weitao.chen,shenhai.ran}@volvocars.com

2Vehicle Dynamics, VEAS, Chalmers University of Technology, Sweden,
bengt.jacobson@chalmers.se

Abstract
The vehicle steering characteristics and active functions
can be virtually developed with a high-fidelity electric
power assisted steering (EPAS) model and a multibody
chassis model. The simulation of the EPAS model re-
quires small integration step due to high stiffness and in-
terfacing with the controller. The multibody chassis model
is computationally heavy for each integration step due to
calculation of large matrices. A mono-simulation based
on a single solver is not efficient for this case. Instead a
co-simulation (solver coupling) approach has been used to
overcome the drawbacks.

In this paper the EPAS system and chassis system are
modeled in Dymola and further exported as separate func-
tional mockup units (FMUs) and integrated with the con-
trol algorithms in Matlab. A co-simulation based on the
explicit parallel calculation scheme (Jacobi scheme) has
been used. A huge simulation speed-up has shown the po-
tential and effectiveness of the approach. To understand
its accuracy and tolerance, analysis on the numerical error
and dynamics of the coupled-system are given.
Keywords: EPAS system, Chassis system, Co-Simulation,
FMU

1 Introduction
Modern vehicles involve more electric and functional sub-
systems with a trend of electrification and automation.
Multi-domain subsystems need to be modeled and inte-
grated by co-simulation for a holistic development. This
modular approach is quite common because the models
might be from multiple sources (e.g., OEM-suppliers re-
lationship) in different tools. Furthermore, it enables each
model efficiently solved by a domain-specific numerical
method. The approach has been applied in many engineer-
ing cases such as an integration of large-scale pantograph-
catenary system (Arnold, 2010), a distributed simulation
of a 4 cylinder engine (Saidi et al., 2016).

For accurate simulation of vehicle handling, steering
and active function tests, a mechanical multibody chassis
model and an EPAS model are needed. The chassis model
has hundreds of degrees of freedom and its dynamics is
relatively slow especially for handling and steering simu-

lation on the flat road. The EPAS model has much faster
dynamics because of the lightweight components, friction
elements, electric parts and the control algorithms. Its fi-
delity is critical for the steering feel. As the chassis model
and EPAS model differ in terms of dynamics and require-
ments. A mono-simulation based on a single solver might
not be the optimal solution. In this paper, a FMI-based co-
simulation has been tested. The coupled-system is consti-
tuted by FMUs of a chassis model, an EPAS mechanical
model, a S-function for the EPAS electrics and control al-
gorithms.

The modeling work in Dymola is presented in Section 2
and Section 3. The integration based on FMI standard and
the co-simulation setup are shown in Section 4. In Sec-
tion 5 the co-simulation results and analysis on simulation
speed and system dynamics are discussed.

2 EPAS System
2.1 EPAS mechanism
The EPAS mechanism comprises mainly a steering wheel
and column, a steering rack and an EPAS motor as shown
in Figure 1. The steering column is connected to the rack
and pinion by a compliant torsion bar. A belt transmission
connects the motor and the ball screw which transfers the
motor rotation into the rack translation.

Figure 1. The EPAS system with axle-parallel drive.

The steering rack is articulated to the vehicle chas-
sis through the suspension tie-rods and steers the front
wheels. This mechanical chain builds a direct interaction

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

718 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157717

between the driver and the road. The auxiliary electric mo-
tor can deliver an assist torque according to the torsion bar
deflection and vehicle speed to reduce the steering effort.
The steering feel defined by the introduced mechanisms
is a key metric in vehicle development and needs to be
accurately simulated and evaluated on a driving simulator.

The EPAS mechanism is modeled by 3 degrees of free-
dom: 2 degrees of rotation for the column and motor, 1
degree of translation for the rack. Different from the Mod-
elon Vehicle Dynamics Library (VDL) steering template,
the non-linear effect from the column CV-joint has been
neglected and no multibody components have been used
for simplicity. Instead, the friction and motor dynamics
are very important for EPAS in terms of vehicle steering
response, subjective feeling for the driver and the stabil-
ity of EPAS controller (Harrer and Pfeffer, 2017), more
detailed effects have been considered.

Figure 2. The EPAS mechanism modeled in Dymola.

The model based on basic Modelica mechanical com-
ponents and detailed friction elements, shown in Figure 2,
is created according to the dynamics on the column, the
motor and the rack:

Jcolumnδ̈s =Ts−Tpinion−Tc f riction (1)

Jmotorδ̈m =Tmotor−Tbelt (2)
mrackẍR =Fpinion +Fassist −Frod−Fr f riction −Fhousing (3)

The states and parameters of the model are given in Ta-
ble 1. The force Fpinion and Fassist are calculated from the
respective torques and transmission ratios:

Fpinion =Tpinion/ipinion (4)
Fassist =Tbelt/(ibelt ibs) (5)

where the torque Tpinion and Tbelt are calculated based on
the deflection of the torsion bar and belt.

Table 1. States and parameters of the EPAS model.

Notation Definition

δs,δm angle of the steering wheel, motor
xR rack displacement
Jcolumn,Jmotor inertia of the column and wheel, motor
mrack rack mass
ipinion, ibelt , ibs transmission ratios of the rack pinion,

the belt, the ball screw
Ts steering torque
Tpinion torsion bar torque
Tc f riction column friction torque
Tmotor applied torque from the motor
Tbelt load torque on the output shaft
Fpinion force transmitted by the rack pinion
Fassist assist force from the ball screw
Frod tie-rod force along the rack
Fr f riction friction on the rack
Fhousing a spring-damper force from the housing

2.2 Friction elements
The mechanical friction is mainly divided into the up-
stream element Tc f riction and the downstream element
Fr f riction . The friction elements are modeled by the LuGre
friction model (Astrom and Canudas de Wit, 2008). In
Modelica the standard friction element is implemented by
discrete events switching between stuck and slide mode.
An appropriate numerical method is needed for this con-
tinuous/discrete approach. The LuGre friction model adds
the hysteresis effect and it expresses the friction by differ-
ential equations:

ż = v−σ0z/g(v)|v| (6)

g(v) = Fc +(Fs−Fc)e−(v/vs)
2

(7)
Ff riction = σ0z+σ1ż+σ2v (8)

where v is the sliding velocity, z is the internal state.
The bristle stiffness σ0 and micro-damping σ1 produce
a spring-like behavior in small displacements. σ2 is the
viscous friction coefficient. g(v) is a velocity-dependent
term relating to the Coulomb friction Fc, the static friction
Fs and the Stribeck velocity vs.

Numerical methods for continuous system can be used
to solve this model. However, its dynamics is so stiff that
small tolerance value for variable step solver or small time
steps for fixed step solver is needed. As a result, the sim-
ulation speed gets slow. A detailed implementation and
analysis of the LuGre friction model in Modelica has been
introduced in (Aberger and Otter, 2002).

The friction model parameters have been partially iden-
tified from experiments using a steering system test rig
with a steering robot connecting the steering wheel and
two linear actuators connecting the rack. Pull-by-torque
and pull-by-rack tests (Harrer and Pfeffer, 2017) have
been taken with the EPAS controller deactivated. The

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

DOI Proceedings of the 13th International Modelica Conference 719
10.3384/ecp19157717 March 4-6, 2019, Regensburg, Germany

steering system is excited accordingly either by velocity-
controlled steering wheel input or rack input in free load
condition. Thanks to the acausal modeling, the recorded
data can be conveniently taken as input to the EPAS
model. The comparison of the simulation results and the
measurement data are given in Figure 3 and Figure 4.

-600 -400 -200 0 200 400 600
steering angle [deg]

-10

-5

0

5

10

st
ee

ri
n
g

to
rq

u
e

[N
m

]

simulation
measurement

Figure 3. Steering torque in a pull-by-torque test with a steady
steering velocity input of 13 deg/s.

-0.1 -0.05 0 0.05 0.1
rack displacement [m]

-1500

-1000

-500

0

500

1000

1500

ra
ck

fo
rc

e
[N

]

simulation
measurement

Figure 4. Rack force in a pull-by-rack test with a steady rack
speed of 2 mm/s.

2.3 EPAS control
The large inertia, high friction and less damped behavior
from the EPAS mechanism is counterbalanced by the ba-
sic steering functions involving the inertia compensation,
friction compensation, active damping and power-assist.
The advanced driving functions like the lane keeping aid
(LKA) and Pilot-Assist are added to the motor torque re-
quest Trequest in Figure 5, which is further delivered to the
electric motor.

The detailed models of the control algorithm, ECU and
electrics are provided from the supplier as black-box S-
functions with inputs of vehicle speed Vvehicle, torsion bar
angle δpinion, motor speed δ̇m and the external request from
the advanced functions. So that the system needs to run in
the Simulink environment with a forward Euler method
with 1 ms integration step.

Figure 5. A block diagram of the EPAS control architecture.

3 Chassis Model in Dymola
A chassis model based on the Modelon VDL has been
used. It is constituted by the car body, Pacejka tire models
and suspensions (Figure 6). To facilitate the computation,
the suspension linkages are represented by kinematic ta-
bles. The wheel orientation and translation varies accord-
ing to the wheel jounce and steering input. A validated
model of Volvo XC90 has been used in the work.

To integrate the chassis model with the created EPAS
model, 1D translation interface is attached to the rack
and the original VDL steering model is disconnected as
a dummy part. In this way the translation is still relative
to the front subframe whose compliance may have a great
impact on the steering feel.

Figure 6. The multibody chassis model in Dymola.

4 Co-Simulation Setup
The EPAS model and chassis model are compiled to sepa-
rate FMUs embedded with variable step and variable order
Dassl solvers. The EPAS FMU, chassis FMU and EPAS
control S-function are coupled by specified input-output
signals (Figure 7). At the coupling interface the chassis
FMU takes the rack velocity ẋR as input and EPAS model
takes the force Frod as input. The decision is based on our
analysis from a previous work (Chen et al., 2018), briefly:

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

720 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157717

• The force variable should be applied towards the

heavier and stiffer part for robustness. The EPAS
system due to the gear ratio effect is much heavier
and stiffer than the lateral dynamics of chassis sys-
tem.

• The displacement input results an improper dynamic
system (more zeros than poles in the transfer func-
tion). Thus, the derivation of input variable is needed
and this might generate noisy or incorrect results.

Figure 7. The layout of the co-simulation setup.

The chassis FMU is setup with a communicative step of
∆t2 which is the time size that the local solver updates the
input and output. The communicative step of EPAS FMU
is ∆t1 with a default value of 1 ms because of the coupling
with the controller.

For simplicity, the co-simulation is implemented with
an explicit parallel calculation scheme (i.e., during the
communicative interval each model is integrated indepen-
dently and the input is approximated from extrapolation).
In this work, a common constant extrapolation (zero-order
hold) has been used. Although this calculation scheme
suffers from the numerical stability and coupling errors.
It is advantageous for less computational burden and easy
implementation in practice because no control of compu-
tation sequence or iterative process is needed from a mas-
ter algorithm (Busch, 2012).

5 Co-Simulation Results
The co-simulation have been tested with various scenarios
as given in Table 2. For comparison, a mono-simulation
reference, denoted by Ref-1, is made by compiling the
EPAS and chassis model together as a whole FMU with
the same solver. The tests are performed on a laptop with
32GB RAM and one Intel Core i7 processor which runs 8
cores at 2.70 GHz.

5.1 Simulation speed-up
A 5 seconds steering maneuver with a sine wave steer-
ing torque input has been simulated. From the CPU time
of each simulation case (Figure 8), one can see that com-
paring with Ref-1 the co-simulation cases are much faster

Table 2. Simulation Cases

Case Communicative step

Ref-1 ∆t1 = 1ms no ∆t2
Ref-2 ∆t1 = 5ms no ∆t2
CS-1 ∆t1 = 1ms ∆t2 = 1ms
CS-2 ∆t1 = 1ms ∆t2 = 5ms
CS-3 ∆t1 = 1ms ∆t2 = 10ms
CS-4 ∆t1 = 1ms ∆t2 = 15ms
CS-5 ∆t1 = 1ms ∆t2 = 20ms

especially when ∆t2 gets larger. In mono-simulation case
Ref-1, the chassis model needs to take a small integration
step due to the stiff EPAS model. Instead, in co-simulation
each solver can adapt to the local dynamics more effi-
ciently.

In another mono-simulation case Ref-2 with increased
∆t1, the CPU time reduces a lot as well but the time saving
is not so effective as the co-simulation cases with a same
or larger ∆t2 setup. It can be observed that a big time sav-
ing is from a relaxation of communication with the chassis
model.

The co-simulation case CS-1 does not show an obvious
advantage in the simulation speed. Because the adaptabil-
ity of the local solver is constrained by a very frequent
communication of 1 ms. In such a case the speed-up ca-
pability of co-simulation cannot be fully used even though
the stiff part has been decoupled.

For other co-simulation cases, a further relaxation of
∆t2 does increase the simulation speed but the improve-
ment gets reduced at a larger step. If a rather large ∆t2 has
been taken, the two models can be seen as nearly decou-
pled and calculated independently. Therefore, the simu-
lation time might just depend on the dynamics and solver
of each part. In practice, the ∆t2 size setup needs to be
compromised considering the stability and coupling error
which is discussed in the following section.

ref-1 ref-2 cs-1 cs-2 cs-3 cs-4 cs-5
0

100

200

300

400

500

C
P
U

ti
m

e
[s
]

476.6

109.1

411.2

99.22

46.36
32.79 27.6

Figure 8. CPU time for a 5 seconds simulation.

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

DOI Proceedings of the 13th International Modelica Conference 721
10.3384/ecp19157717 March 4-6, 2019, Regensburg, Germany

0 1 2 3 4 5
time [s]

-4

-2

0

2

4
st

ee
ri
n
g

w
h
ee

l
a
n
g
le

[r
a
d
]

0 1 2 3 4 5
time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

st
ee

ri
n
g

ra
ck

sp
ee

d
[m

/
s]

0 1 2 3 4 5
time [s]

-0.4

-0.2

0

0.2

0.4

v
eh

ic
le

y
aw

ra
te

[r
a
d
/
s]

0 1 2 3 4 5
time [s]

-1

-0.5

0

0.5

1

1.5

v
eh

ic
le

la
te

ra
l
v
el

o
ci

ty
[m

/
s]

ref-1
ref-2
cs-1
cs-2
cs-3

Figure 9. Simulation results of the EPAS system and chassis states.

5.2 Error analysis
Two EPAS system states (steering wheel angle δs, rack
speed ẋR) and two chassis states (yaw rate, lateral veloc-
ity) from the previous simulation tests are plotted in Fig-
ure 9. It can be seen that Ref-2 gives inaccurate and use-
less results although it can run really fast in the previous
analysis. Because the high bandwidth coupling between
the EPAS control, electric and the mechanism, the cou-
pling variables are poorly approximated by extrapolation
and the simulation error gets quite large.

The co-simulation cases, due to a more robust integra-
tion, have shown more stable and consistent results even
their simulation speeds are faster. Case CS-3 in Figure 9
shows larger stepwise signals from the chassis model. The
co-simulation results deviate more at the peaks which is
very intuitive since the accuracy of extrapolation is worse
when the signal changes direction.

The relative global error εg,x of selected state x are com-
puted by the normalized root-mean-square error as:

εg,x =

√
∑

T
t=0

(
(xcs(t)− xre f (t)

)2
/T

xmax
re f − xmin

re f
(9)

where xmax
re f and xmin

re f are the maximum and minimum ref-
erence state value during simulation time t ∈ [0,T]. The
relative global error εg,x is plotted in Figure 10. One can

see that εg,x in case Ref-2 is clearly the worst and the er-
ror increases as the step ∆t2 grows, which limits the re-
laxation of communication for the simulation speed-up.
To reduce the error and enable a further relaxation, some
explicit coupling methods from (Khaled et al., 2014) and
(Benedikt et al., 2013) can be potentially applied, which is
out of the scope of this paper. Thus, only a basic constant
extrapolation is presented in this work.

ref-2 cs-1 cs-2 cs-3 cs-4 cs-5
0

0.05

0.1

0.15

0.2

0.25

re
la

ti
v
e

g
lo

b
a
le

er
ro

r

steering angle
rack speed
yaw rate
lateral velocity

Figure 10. Comparison of the relative global error εg,x .

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

722 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157717

100

Frequency [Hz]

0

0.05

0.1

0.15

0.2

0.25

0.3
a
b
s(

S
W

A
/
S
W

T
)

ref-1
cs-1
cs-2
cs-3
cs-4
cs-5

100

Frequency [Hz]

0

0.005

0.01

0.015

0.02

0.025

0.03

a
b
s(

V
ra

ck
/
S
W

T
)

100

Frequency [Hz]

0

2

4

6

8

a
b
s(

V
y
/
V
ra

ck
)

100

Frequency [Hz]

0

0.5

1

1.5

2

2.5

a
b
s(

Y
aw

R
a
te

/
V
ra

ck
)

Figure 11. The identified transfer behaviors of EPAS and chassis.

5.3 System dynamics analysis

To investigate the system dynamics in multiple conditions,
a frequency domain comparison is more intuitive as a sec-
ond analysis. In this analysis, a steering torque input from
low frequency up to high frequency has been applied. The
simulation time is long enough that the system can be ex-
cited sufficiently within the frequency range of interest.
Two pairs of transfer functions are identified from the sim-
ulation results. The first is steering torque (SWT) to steer-
ing wheel angle (SWA) and rack speed (Vrack), which is
more relevant to steering behavior. The second is from
rack speed (Vrack) to chassis lateral speed (Vy) and yaw
rate which mainly shows the chassis lateral dynamics.

The magnitudes of the transfer functions are plotted in
Figure 11. The steering feedback character (SWA/SWT)
and the EPAS transfer behavior (Vrack/SWT) are influ-
enced in a certain range. The deviation gets larger around
1.1 Hz which is close to the chassis yaw eigenfrequency.
As ∆t2 increases, more delayed rack force resistant to the
rack motion gives an increased steering wheel angle and
rack speed.

The chassis transfer behaviors are relatively more con-
sistent to the reference. It might be the reason that the
chassis has a slower dynamics and more robust to the cou-
pling effect. The deviation of chassis dynamics occurs
mainly below 0.5 Hz and the magnitude of deviation is
correlated to the relaxation condition.

Furthermore, the dynamics of the EPAS and chassis
system limited the bandwidth of the coupling signals. In
the high frequency range of steering input, the only exci-

tation to chassis system has been filtered out and the cou-
pling effect gets minor.

6 Conclusion
In this paper a FMI-based co-simulation of EPAS and ve-
hicle chassis system has been presented. The solver cou-
pling approach is used for mechanical-functional system
integration and also for mechanical systems in large time
scale. The accelerated simulation speed makes the simu-
lation tool more useful for design optimization and control
tuning work. A controllable coupling error without severe
numerical instability is induced by the explicit parallel cal-
culation scheme. The approach can also be applied on
real-time applications where the simulation speed is cru-
cial. However, the CPU time from the current test is still
huge that model order reduction might be needed to make
each system real-time capable first.

The approach is quite promising for vehicle chassis and
other mechatronic systems (e.g., active suspension, elec-
tric propulsion and automated driving system).

Acknowledgement
The authors would like to thank ITEAM project funded
by the European Union Horizon 2020 research and in-
novation program under Marie Sklodowska-Curie Grant
Agreement No. 675999.

References
Martin Aberger and Martin Otter. Modeling friction in Modelica

with the Lund-Grenoble friction model. Proceedings of the

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

DOI Proceedings of the 13th International Modelica Conference 723
10.3384/ecp19157717 March 4-6, 2019, Regensburg, Germany

2nd International Modelica Conference, 3:285–294, 2002.

Martin Arnold. Stability of Sequential Modular Time Integration
Methods for Coupled Multibody System Models. Journal of
Computational and Nonlinear Dynamics, 5(3):031003, 2010.

Karl Johan Astrom and Carlos Canudas de Wit. Revisiting the
LuGre model; Stick-slip Motion and Rate Dependence. IEEE
Control Systems Magazine, 6:101–114, 2008.

Martin Benedikt, Daniel Watzenig, Josef Zehetner, and Anton
Hofer. NEPCE - A nearly energy-preserving coupling ele-
ment for weak-coupled problems and co-simulations. V Inter-
national Conference on Computational Methods for Coupled
Problems in Science and Engineering, pages 1–12, 2013.

Martin Busch. Zur effizienten Kopplung von Simulationspro-
grammen. PhD thesis, Kassel University, 2012.

Weitao Chen, Shenhai Ran, and Bengt Jacobson. Design of In-
terface in Co-simulation for Electric Power Assisted Steering
System Development. Proceedings of the 14th International
Symposium on Advanced Vehicle Control (AVEC’ 18), 2018.

Manfred Harrer and Peter Pfeffer. Steering Handbook. 2017.

Abir Ben Khaled, Laurent Duval, Mohamed El Mongi Ben Gaïd,
and Daniel Simon. Context-based polynomial extrapolation
and slackened synchronization for fast multi-core simulation
using fmi. In International Modelica Conference, pages 225–
234. Linköping University Electronic Press, 2014.

Salah Eddine Saidi, Nicolas Pernet, Yves Sorel, and Abir Ben
Khaled. Acceleration of FMU Co-Simulation On Multi-core
Architectures. The First Japanese Modelica Conferences,
(124):106–112, 2016.

Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation

724 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157717

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

DOI Proceedings of the 13th International Modelica Conference 725
10.3384/ecp19157725 March 4-6, 2019, Regensburg, Germany

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full
Vehicle Proving Ground Testing Procedures
Ensbury, Theodor and Dempsey, Mike and Briant, David

725

Virtual Proving Ground Testing: Deploying Dymola and Modelica
to recreate Full Vehicle Proving Ground Testing Procedures

Theodor Ensbury1 David Briant2 Mike Dempsey2
1Claytex USA, Inc., Ann Arbor, Michigan, USA, theodor.ensbury@claytex.com

2Claytex Services Ltd. Edmund House, Rugby Road, Leamington Spa, CV32 6EL, UK
{david.briant, mike.dempsey}@claytex.com

Abstract
Physical testing of new automobiles is often a lengthy
and expensive process. Virtual testing of vehicles offers
a much more flexible, efficient solution to testing new
vehicles, whilst also providing a more consistent and
easier to mange testing environment. This paper
presents how the VeSyMA suite of libraries contains the
necessary features required to recreate 2 typical physical
proving ground tests in the virtual world. Key new
features added to the VeSyMA suite to enable this are
presented, namely: a new method of defining the
proving ground road model using GPS and body
accelerometer data, a new driver model capable of
conducting a series of scheduled driving tasks
(mimicking a human test driver) and new tyre contact
models more suitable to typical proving ground rough
roads.

Keywords: Virtual testing, proving ground, vehicle
testing

1 Introduction
Development of a robust, high quality product naturally
relies upon an extensive program of testing to identify
anything which negatively impacts the customer
experience. Designed to replicate all elements within a
product’s usage envelope, such a program seeks, and
enables the manufacturer to find, potential issues and
validate effective solutions. A program like this can take
many forms, including from monitoring actual usage
within the field during pre-production; accelerated
lifecycle simulation in both deployed or simulated
settings; various specific specialist use cases and design
limit exceeding, but to name a few.

Automotive product development is no different,
complicated by a long, arduous product lifecycle and
adherence to various regulatory constraints all over the
world. Added complexity arises from the safety-critical
nature of an automobile, which further enhances the
need for a wide scale testing program to be conducted
by the Original Equipment Manufacturer (OEM).

This paper will establish how the Vehicle Systems
Modelling and Analysis (VeSyMA) suite of libraries
can be deployed to recreate typical real-world testing
scenarios in the virtually using Dymola and Modelica,

focusing on offline, non Driver-in-the-Loop (DiL)
simulation.

1.1 Standard Automobile testing
To prepare an automobile for market, testing at various
stages of the automobile development process is
conducted by an OEM. Some testing will be to fulfil
regulatory requirements, with other testing unique to the
OEM, often focused on specific areas of interest which
the OEM prioritizes. This can include proof-of-concept
evaluation. Typically, an OEM test program involves a
high amount of physical mileage conducted in
prototype, pre-series production and series production
vehicles. Various scenarios can be chosen depending on
the need, which can involve the vehicle having to be
driven extensive amounts of distance or transported
around the world to undertake environmental testing.
Some testing can be done in laboratory conditions, but
non-static full vehicle testing often requires the vehicle
to be transported to another part of the world.

 This means full vehicle testing can be an expensive
and time-consuming endeavour, due not only to the
costs associated with producing prototype or pre-series
vehicles, but also to the need to transport the vehicles
around the globe for testing. Resource time allocation
requirements of testing programs can thus impact the
product development cycle, often dictating at what point
certain test programs can be conducted, rather than
deployment at the optimum time during the
development cycle.

1.2 Virtual testing advantages
Harnessing simulation tools to test virtually can endow
multiple benefits. Elimination of the need to produce the
same number of prototype and pre-series vehicles is an
obvious area cost and time saving to the OEM, in
addition to being more environmentally sound.
Reducing the amount of travel associated with testing
programs further reduces cost, time and environmental
expenditure.

Beyond this, virtual testing is also an inherently more
flexible process than physical testing. Proof-of-concept
testing can be done at a much earlier stage of the design
process, whilst durability evaluation can begin to be
conducted at earlier stages of the design cycle, as
immature designs can be evaluated in the same manner

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

726 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157725

as mature designs at the full vehicle level. This leads to
the possibility of shortened development schedules, as
design issues can be identified earlier and eliminated
sooner, with less resources going into failed design
elements. Virtual testing can also aid the efficiency and
optimisation of components; more inclusive, targeted
and varied testing of components to cover more use
cases can be conducted during the component
development stage.

Virtual testing also offers the possibility of a more
consistent testing environment, with greater control of
various factors which effect results. Ambient
temperature, wind speed and wind direction can all
effect physical testing; they can be controlled far more
tightly in the virtual environment than in the real world.
Human variance when driving the vehicle can also
eliminated in the virtual testing environment, as driver
models can be used in their place if desired. All this
leads to testing conditions being continually repeatable
in the virtual world, something unachievable in the
physical realm.

1.3 Virtual testing requirements
To faithfully recreate a physical real-world testing
scenario virtually, the modelling requirements can be
broken down into 3 individual categories:

 Vehicle Model

 Road Model

 Driver Model
The vehicle model is termed as the model tasked with
recreating the physical vehicle platform’s behaviour,
including the tyres. A road model accounts for the
ground position at the wheel contact point, with a Driver
model simulating the control actions applied to the
vehicle by the human driver. Complex aerodynamic and
thermal interaction with the atmosphere is neglected in
this example to reduce the performance load of the
simulation.

Logically, a vehicle model deployed in such an
application is required to recreate the vehicle behaviour
to the satisfaction, and confidence, of the user. In
addition, to be able to fully realize the flexibility virtual
testing can provide, it follows that it should be built in a
modular way with scalable detail. This enables the user
to be able to tailor the complexity of the simulation to
their desire, effectively isolating specific use cases or
effects. Dymola and Modelica’s object-oriented nature
makes them the obvious choice for this task.

Requirements for a road model are slightly simpler.
It should represent the topography of the road surface
the vehicle traverses in enough detail to induce the same
vehicle response as occurs in the real world. Local and
global topical phenomena (rain, dust, dirt or tyre rubber
accumulation), which effect the road surface and
influence vehicle response behaviour can be included by
varying the road mu value (Segers, 2014). Similarly, the

driver model utilized must be capable of recreating the
same control inputs as conducted in the real-world test.

2 Vehicle Modelling
All vehicle, vehicle system models and tyre models
described in this chapter form part of the VeSyMA suite
of libraries from Claytex.

2.1 VeSyMA Approach to vehicle modelling
As outlined in previously (Hammond-Scott and
Dempsey, 2018), the VeSyMA suite of libraries from
Claytex provides a complete vehicle simulation
solution, scalable to specific customer needs and
desires. Comprised of the VeSyMA library itself with
multiple subject specific expansion libraries, each
subject library can either be used in isolation or with
extension libraries at both the system model and full
vehicle level. Underpinning the VeSyMA suite is the
Modelica Standard Library (MSL) and the Vehicle
Interfaces Library; the latter defining the standard
vehicle level model interfaces, thus enabling each of the
VeSyMA subject libraries to interact on a modular level.
This is shown in Figure 1.

Figure 1. Schematic overview of the VeSyMA suite of
simulation libraries.

Acting as a parent library, the VeSyMA library itself
defines model templates as well as having the
capabilities for straight-line drive cycle testing.
Examples of subject specific libraries available for use
with the VeSyMA suite include VeSyMA –
Suspensions, for detailed analysis of automotive vehicle
dynamics including 3D multibody suspension, high-
fidelity tyre models, road and driver models; VeSyMA
– Engines, a library devoted to high-fidelity internal
combustion engine models; VeSyMA – Powertrains, a
library of full 3D multibody driveline and gear train
models; VeSyMA – Driver-in-the-Loop, which enables
the deployment of vehicle models developed using the
VeSyMA – Suspensions (or VeSyMA – Motorsports)

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

DOI Proceedings of the 13th International Modelica Conference 727
10.3384/ecp19157725 March 4-6, 2019, Regensburg, Germany

libraries in DiL real time virtual environments, such as
rFPro.

The concept of model reuse is a core principle of the
VeSyMA suite. An efficient modelling philosophy, this
enables the VeSyMA suite to be a fully scalable,
modular solution, where the same models can be
deployed in simulations ranging from detailed desktop
scenarios, to DiL applications and quick drive cycle
evaluations. This enables the user the flexibility to fully
utilize several aspects of simulation-based development
and investigation over physical testing.

2.2 Vehicle model
To demonstrate the capabilities of virtual testing, an
example vehicle model was taken from the VeSyMA –
Suspensions library, namely the RoadsterSportMTRT
vehicle model as shown in Figure 2. Being a complete
multibody vehicle model, the body is free to move
within the virtual environment in all 6 degrees (lateral,
longitudinal, heave; roll, pitch and yaw). All subsystem
models within this model can be found in either the
VeSyMA library or the VeSyMA-Suspensions library.

With a Euro NCAP roadster sport class segment
vehicle platform, the RoadsterSportMTRT features a
traditional rear-wheel drive layout (RWD) with the
drive torque only sent to the rear wheels through an ideal
manual transmission model and 1D rotational driveline.
No electronic stability modules were included in the
vehicle. Lubrication or front engine ancillary drive
(FEAD) models were also omitted. A mapped engine
model simulated an example internal combustion engine
(ICE). More detailed powertrain models could be
included by deploying the VeSyMA – Engines or

VeSyMA – Powertrains libraries. Such models are not
included as part of the VeSyMA – Suspensions library,
thus not featured in this example vehicle model.

Double wishbone suspension was featured at both the
front and rear of the vehicle; innovative “aggregate”
joints capable of DiL running were utilized.
Compliances within the suspension mountings were
omitted, as were flexures within the suspension
members themselves. No suspension bushing models
were used. As the suspension linkages were full
multibody models, each link had its own specific mass
and inertia properties. Ride spring and damping
elements were modelled using translational models,
with full multibody anti-roll bar models deployed at
both the front and rear axle. Aerodynamic effects were
considered, using a simple lift, side force and drag
model. All four wheels featured independent brake
models, utilizing a controlled elasto-plastic model
(Dankowicz, 1999) to model the friction between the
disc and the pad. Each brake model featured individual
rotating mass models to account for the gyroscopic
effects of rotation, along with a separate, static calliper
mass model.

The variable step Radau IIa – order 5 stiff solver was
used with a tolerance of 0.0001 to simulate the vehicle
model during test scenarios. 116 continuous time states
were selected when the vehicle model was translated. As
this is an generic example vehicle model, it is a
qualitative representation of a vehicle using
approximate data. Due to this, it enables qualitative
judgements to be made regarding it (and surrounding
simulation tools), rather than specific quantitative
judgements.

Figure 2. Schematic overview of the RoadsterSportMTRT vehicle model

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

728 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157725

2.3 Tyre and Contact Modelling
A key component of any vehicle simulation is the tyre
model used. In the example vehicle a fully combined
lateral and longitudinal slip Pacejka tyre model was
used, corresponding to Magic Formula (MF) 6.2.
Behaviour and response were thus non-linear. Included
is asymmetric tyre behaviour due conicity and ply-steer
with a kelvin spring damper modelling the vertical
dynamics of the tyre (Pacejka, 2012). Contact frame
information is obtained by interfacing with the road
model to gain position, road normal and friction
coefficients. These inputs are then used by the tyre
model to produce forces and torques that are applied to
the suspension and powertrain models.

Typical implementations of the Pacejka model
feature only a single point of contact; this limits the
model’s ability to handle terrain which varies with high
frequency, where surface/tyre contact can occur in
multiple places on a single tyre.

Figure 3. Comparison of multi-point tyre contact models.
On the left is an example of the grid contact point model,

with the 5 point model on the right.

Tyre model fidelity can be enhanced by deploying a
multi-point contact model. Such models interface with a
higher frequency or undulating road models, reducing
the multiple contact point data down to a single point
input for the tyre force model. One outcome is a natural
smoothing effect of high frequency/high amplitude road
topographical variations. There are 2 implementations
of weighted multi-point contact models available in the
VeSyMA – Suspensions library, shown in Figure 3; a 5-
point diamond and a grid pattern. The 5-point contact
model features 4 auxiliary outer points arranged in a
diamond around a central contact point; spacing of the
outer points relative to a central point is controlled by
the user by specifying the dimensions of the contact
patch. The cross product of the vectors between the
central point and the outer points are used to generate 4
normal vectors. And a weighted average of the position
of these points is used to produce a contact position. In
contrast, the grid pattern contact model sees the contact
patch discretized into a rectangular grid of points,
aligned with the heading of the wheel hub. The weight
of each point is dependent on the penetration depth of
the point. The user can define the dimensions and

resolution of the grid; each row and each column is
equidistant from the next, with the distance ahead being
important when considering step changes.

Moving further, the VeSyMA – Suspensions library
also supports use of the FTire (Flexible Structure Tyre
Model) model, a physics-based tyre model developed by
Cosin scientific software. Dymola support is provided
by the FTire library, which provides an interface to the
FTire external program. The VeSyMA – Suspensions
library builds on this interface to integrate into the
vehicle models through the road am wheel models only.
Unlike mathematical based tyre models, FTire is a fully
physical model, which “explains complex tyre
phenomena on a strictly mechanical, tribological, and
thermodynamic basis”. Applicable in short-wave-
length, high-frequency studies, such as for vehicle
noise, vibration and harshness (NVH), ride comfort
studies, load prediction and durability testing, FTire
details “temperature, wear, air vibration, (and) rim
flexibility” with both rigid and non-rigid road models
(Cosin scientific software, 2018).

FTire models require license for use from Cosin
scientific software, and thus were not deployed in the
use cases presented in this paper.

3 Road Modelling
A road model (also termed a ground model), is the
model responsible for defining the position of the road
surface and commonly includes the driving line
information to follow, such as position and velocity
targets. Within the VeSyMA libraries there are several
different road models, all using the methodology of
defining road data relative to the distance along the
centreline or driving line, perpendicular offset and road
normal height (s, w and z). The inner definition of the
road at the top level of the experiment is used in
conjunction with outer road blocks that can read data
from the road using those s, w and z inputs.

The height of the surface of the road is defined by
two elements of the road; the underlying topography and
the roughness, which is overlaid over the top.
Topography of the road defines its general profile (low
frequency undulations), which are smooth and
considered the general position of the surface.
Roughness is a deviation around the topographical
position along the road normal to apply higher
frequency roughness (bumps) and surface height change
events such as kerbs or potholes. Such separation of the
two improves efficiency and allows for more accurate
measurement relative to the road. For example, during
vehicle pitch or roll, the roughness does not influence
the measurements taken as the data is measured relative
to the smooth underlying surface, improving the
accuracy and speed of simulation.

There are several other road types that are available
to use in the VeSyMA libraries, which allow for
alternative methodology while maintaining the same

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

DOI Proceedings of the 13th International Modelica Conference 729
10.3384/ecp19157725 March 4-6, 2019, Regensburg, Germany

interface, using the road blocks. But FTire uses its own
road model which defines the road models and is passes
data to the wheels within vehicle model.

3.1 Defining road topography
Two approaches can be taken to defining the road model
topography; either a real physical road/venue can be
recreated, or a fictional road can be used. Both
approaches have value depending upon the type of study
to be undertaken. For instance, a fictional road can be a
road which is impossible to build in real life, like a
perfectly flat plane to evaluate spring and damper
settings without interference from body forces
generated by road topography or roughness. Within the
VeSyMA and VeSyMA – Suspensions libraries, there
are several functions which enable a road model to be
generated from inputted data points. These enable the
user to build their own road models of any topography
(3D geometry, width, banking angle, friction coefficient
and roughness) they wish. In addition, road model
building from curvature is also supported, with several
functions supporting the development of various
specialist roads, such as constant radius circles, slalom
courses and figure of eight roads.

It is however often desirable to recreate a physical
road for use in virtual testing. One method of doing this
is to have the road (or circuit) laser scanned using
LiDAR to generate a 3D point cloud of the surface. Such
methods are highly accurate; VeSyMA – Terrain Server
provides the tool chain required to interface a VeSyMA
suite vehicle model with the full laser scanned driving
environments found in rFpro. However, getting a road
scanned in such a way is a prohibitively cost intensive
endeavour, which may not be suitable. Therefore, the
VeSyMA – Suspensions library features a specialist
road building function called “RoadFromLoggedData”
which builds a road model from GPS and body
accelerometer data. This method of building a road
model is useful in applications where it is not possible
to or simple to laser scan a road (too costly, too time
consuming, or the user does not have the permission to
undertake such an endeavour) yet the user desires a road
model. Furthermore, this method only requires 6
channels of data from 2 sensors, which can often be
found on data logging equipment as simple as phone.

As most commercially available GPS units use the
Universal Transverse Mercator (UTM) format, the GPS
data can easily be converted into x, y and z coordinates
by reversing the Gauss-Krüger projection (Kawase,
2013). Based upon dividing the Earth’s surface into 60
north/south zones each measuring 6˚ longitude, each
zone is an effective projection of the curved surface of
the Earth onto a flat plane (U.S. Geological Survey,
1997). Transformation parameters utilized are those
found in the World Geodetic System 1984 (WGS 84)
spheroid model of the Earth (National Geospatial-
Intelligence Agency, 2005). The only data the user is

required to have beyond the GPS sensor output is
knowledge of whether the road to be modelled is in the
northern or southern hemisphere (a sign change occurs
depending on the hemisphere inhabited in the UTM
system) and the UTM zone the data was logged in,
which can be looked up on a standard map (Kawase,
2013). This is a valid method of detailing road
topography, as the Gauss-Krüger projection has been
shown to be accurate to “a few nanometers” (Karney,
2011).

Body accelerometer data (x, y and z axes) is utilized
to determine the banking angle of the road, as
experienced by the vehicle. For the function to give
accurate results, it is advised that the accelerometer data
is smoothed sufficiently to present the low frequency
fluctuations of data clearly, in addition to being recorded
on a vehicle which experiences low roll and pitch
angles. Correction for vertical accelerations created by
extremely high aerodynamic forces (such as downforce
on a prototype racing car) is advised. The following
equation is used to determine the banking angle as
experienced by the vehicle:

𝜃 = atan (
𝐺௧ − 1

𝐺௧
)

This method of deriving the banking angle is

considered the standard method when converting logged
vehicle data and has been used extensively in motorsport
applications (Segers, 2014).

As the aim of the function is to describe the low
frequency undulations in road topography, it is advised
that the data used to build a road using the
“BuildRoadFromLoggedData” function is filtered prior
to usage with an appropriate filter and pass band
frequency, as well as being logged a non-excessive rate
(around 20Hz).

3.2 Defining road roughness
As explained earlier in this paper, road roughness is
effectively “overlaid” onto the existing road
topography, meaning roughness as defined is the
deviation of z height relative to the underlying road
topographical data. Therefore, this means that the
standard VeSyMA road models require the roughness to
be defined independently of the road topography. There
are two main ways to do this: implement a standardised
friction grade or define a specific roughness table, with
data generated from another source.

Each VeSyMA suite standard road model features the
ability to deploy an ISO 8608 standard roughness grade;
various grades are available, designed to be
characteristic of paved road surface quality in different
states of wear (Agostinacchio et al, 2013). Available
options are:

 A (Very Good)

 B (Good)

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

730 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157725

 C (Medium)
 D (Bad)

 E (Very Bad)
Defined as a 2D implementation of roughness, each
roughness profile is comprised of various excitation
frequencies to generate a singular roughness value.
Various differing grades provide different amplitudes,
whilst the user can determine the range of frequencies
which are used to define the roughness in each case.
Roughness values generated this way are valid along the
heading direction of the road, therefore care should be
taken if the vehicle yaws at high angles relative to the
road heading direction. Despite this, this method
provides a useful method of including generalised
roughness values when specific data does not exist.

A user can also specify a roughness table directly into
the road when the road model is built using one of the
in-built VeSyMA road building functions. Being a 2D
table, this enables the user to specify the roughness not
only as a function of the road centreline, but also at
various road width points perpendicular to the road
centreline.

3.3 Road feature modelling
Actual physical roads do not solely comprise the driving
surface, nor do the vehicle tyres only contact the surface
immediately within the contact patch; therefore, there
needs to be consideration of road features within the
road models.

Such features typically comprise of large protrusions
above the road surface, such as kerbs, speed bumps and
irregularly large bumps. Features such as these are
available to deployed in a cylindrical form, as additions
to the road surface. The user can specify their location
on the road, as well as their radius, which enables
control of their height above the road surface. The multi-
point tyre contact models are recommended for use with
road kerbs. Specifying a negative height of such a road
feature can be done to model depressions in the road
surface, such as pot holes.

3.4 Advanced road formats (VeSyMA -
Terrain server, Open CRG, Open
Drive)

Moving beyond road models and features which form
part of the standard VeSyMA roads, various advanced
options are available for the user to deploy in a VeSyMA
vehicle simulation.

Despite the increased cost of production, point cloud
data remains a popular method of defining a road in
acute detail. Road models made of point cloud data are
very high fidelity, with even the smallest details of the
surface, surroundings and topography represented. Such
formats are popular in DiL applications, such as rFpro,
where they are used to recreate various real-world
environments, alongside standard rFpro road model

definitions. The VeSyMA – Terrain server library
provides an interface between the rFpro Terrain Server
and the offline Dymola simulation, meaning rFpro point
cloud road surfaces (and standard format) can be
deployed in VeSyMA vehicle experiments. This enables
consistency between the road model used within the DiL
and offline simulations. It also allows offline
simulations to use high fidelity road models, which
exactly match measured road surfaces for improved
accuracy of evaluation experiments. Support for all tyre
contact methods used in rFpro is also included.

OpenCRG (Curved Regular Grid) format road files
are also supported by a specialist road model within
VeSyMA, termed the OpenCRGRoad. Growing out of
an internal Daimler AG road format in 2008, OpenCRG
is a widely used file format for the detailing road
surfaces (OpenCRG, 2018). Characterised by a curved
reference line with a regular elevation grid, the Open
CRG format enables the road topographical data to be
accurately and efficiently stored. It defines a specific file
structure for this purpose, therefore a specialist road
model is used in the VeSyMA suite to support use.
(Rauh et al, 2008).

Complimentary to the Open CRG format is
OpenDRIVE, a file format for the description of road
networks. Another open source format, it is developed
and maintained by VIRES Simulationstechnologie
GmbH and designed to enable the user to select routes
from larger Open CRG databases (OpenDRIVE, 2018).
The VeSyMA – Suspensions library features a tool
which creates road files in the VeSyMA road format
using a GUI that uses the OpenDRIVE road file to
define the route and add velocity targets.

4 Driver Modelling
To be able to perform vehicle manoeuvres using
conventional vehicle controls, driver models output all
demands matching those found in a normal vehicle.
Such models can be considered as belonging to one of
two categories: Open Loop or Closed Loop, depending
on control type. Open Loop drivers do not use inputs
from the vehicle or road to produce control demands;
they have predetermined outputs, normally dependent
on time. Closed Loop drivers use inputs from the vehicle
and compare them to targets, either gathered from the
road or internally from the driver, producing thus a
control demand to achieve those targets.

The interface from the driver to the vehicle uses the
same variable naming that is found in the
vehicleInterfaces library, which is used as a base,
allowing for improved interfacing with other vehicle
models.

4.1 Closed Loop Driver Methodology
The Closed Loop driver models have a methodology
laid out by the template with replaceable components
allowing for adjustable methodology. The methodology

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

DOI Proceedings of the 13th International Modelica Conference 731
10.3384/ecp19157725 March 4-6, 2019, Regensburg, Germany

follows in following order and is broken into separate
sub-models within the driver, as shown in Figure 4:

1. Senses: Gathers information from vehicle and
interprets inputs into usable variables.

2. Planning: Uses interpreted variables to compare
against targets.

3. Controllers: Uses the comparisons in the
planning to produce a Normalised demand.

This demand is then outputted to the vehicle, where it is
received by a driver environment that converts it from
normalised demands to real inputs. These inputs, used
by the vehicle components, match real measurable
values, such as steering wheel angle or pedal position.

The Senses block, alongside routing variables from
the vehicle to the driver, also converts position into road
and driving coordinates, such that they then can interact
with the road to produce target variables.

The planning block is broken down into 3 separate
planning areas: longitudinal, lateral and gearbox
planning. Each planning block, while predominantly
independent, can also be fed by other planning blocks.
These blocks take the inputs from either the road and
then output achievable targets, such as velocity, that the
driver achieves.

The controller blocks, Longitudinal, Lateral and
Gearbox, use the targets from the planning block and
compare them to the output of the senses block to
provide demands.

Both the lateral and longitudinal controllers use
modified PID based controllers to produce demands
with multiple, separate “Look Ahead” points from the
planning block that gather target data ahead of the
current vehicle position. For Longitudinal planning that
could be target speed, for lateral planning it is driving
line position and heading.

To control the driver characteristics, all control
variables have been propagated to the driverProfile, a
replaceable record, that allows large changes in driver
response to be changed with one redeclaration.

Given that there are several different types of vehicle
control that a driver would encounter, a controlType
selection regarding the gearbox type defines which
elements of the driver are active and the types of
outputs. This can reference the same variable that exists
in the vehicle which further automates the linking of
driver to vehicle, requiring less modification of the
driver to change between vehicles.

4.2 Test Drivers
The Closed Loop driver, described above, uses a
consistent method of target and demand generation.
However, for a test such a durability cycle, which can
contain both speed, gear and other Closed Loop
demands and Open Loop, control specific output
demands in the same test, this is not enough. An
extension to the pre-existing Closed Loop driver is
required to include this flexibility. Said extension is

required to maintain the same ability to follow Closed
Loop targets, as well as specified open and closed
demands in any order; all with the ability to return to full
Closed Loop mode smoothly.

There are two versions of the test driver extension,
the first with a predefined step initiated by a simulation
time or driving line position. A Closed Loop demand is
swapped for the demand provided by a replaceable
source. This is predominantly used for simple tests,
where there is only one change in demand. An example
of this is the ISO double lane change where the vehicle
is to coast through the manoeuvre after arriving at a
constant speed.

The second version of the test driver is the test
sequence driver, where both the target outputs of the
planning block and the demand output from the driver
can be controlled. With an expandable number of steps,
defined by a record vector, each step contains an
activation condition and driver action or target to be
followed. Resulting actions or targets must either be
output directly as a demand or as a target for the
controllers to follow. This, alongside the controlType
definition, allows the same driver and test sequence to
be built and run with any vehicle. Target or control
output is then defined by output from a choice of source.

Figure 4. Test Sequence Driver Layout

4.3 Test Sequence methodology and
generation
The test sequence driver, as mentioned above, uses an
expandable record vector with each step defining the
condition and output to be used for each step. The
activation condition is to be selected from a list of
available conditions, which include position, time,
velocity and yaw rate. With each condition is the
comparison type, either greater or less than or equal to.
The driver action, to reduce overheads and complexity,

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

732 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157725

is primarily broken down into individual signal-based
demand changes. There are also blanket changes to the
controls, such as reverting all controls to closed loop. If
the driver action has associated targets to define then
these are then chosen from a list. If the target, such as a
target velocity, is defined then the same closed loop
control is used, with the outputs from the planning block
being overridden. This therefore retains all the same
characteristics as a standard closed loop driver.

During a simulation the driver proceeds through the
sequence with the step condition only able to be
activated once the previous step is active. This reduces
overheads for the driver, with only calculations being
active when the current step or awaiting activation.

5 Example test scenarios
It has been stated that “Proving grounds are an
extremely efficient means of qualifying the durability of
vehicle components. They accelerate damage
accumulation rates so failures are detectable in a very
short period of time” (Halfpenny and Pompetzski,
2011). Therefore, to show the suitability of the VeSyMA
suite to simulate proving ground tests, two examples of
vehicle durability studies are presented. Specific areas
investigated in this paper are high speed laps around a
banked circuit and chassis twist/warp bumps, to
demonstrate the new additions to the VeSyMA library.
High speed lapping of a banked circuit is a standard
method of accelerating high-mileage for durability
testing, with chassis twist/warp bumps a typical test
structural durability, often found at physical proving
grounds (Berg, 2015). Each example tests different
areas of the vehicle and requires different directions for
the driver and vehicle setup. As explained in section 2,
due to the vehicle model being a generic example,

results presented here are intended for qualitative
analysis rather than specific quantitive analysis.

5.1 Chassis Twist Bumps
In the chassis twist experiment there are bumps spaced
at roughly a wheelbase length apart on either side of the
vehicle. This applies most of the weight of the vehicle
onto the opposite corners of vehicles, applying a large
amount of torque down the length of the chassis.

For this type of experiment there are several methods
of generating road models, as described above. This
experiment utilises the VeSyMA – Suspensions road
with inbuilt roughness and cylindrical kerbs. The kerbs
are spaced equidistantly, roughly a wheelbase length
apart on alternating sides of the vehicle, as shown in
Figure 5. The roughness is considered as a medium road
surface, using the Grade C roughness. The contact
model used for each of the tyres was the grid contact
with 40 contact points each. This allows for the Pacejka

Figure 6. Vertical Wheel Loads against time (seconds) during the chassis twist experiment

Figure 5. Vehicle rolling over kerbs with wheel loads

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

DOI Proceedings of the 13th International Modelica Conference 733
10.3384/ecp19157725 March 4-6, 2019, Regensburg, Germany

model to interact with the kerbs correctly, once more
shown by Figure 5.

The target for the driver is to maintain a constant
velocity of 1m/s, it holds 1st gear and doesn’t use the
brake. This allows the vehicle to progress over the kerb
at a steady rate without applying brakes such that it rolls
over smoothly.

5.2 High Speed Banked Circuit
The other test being investigated in this paper is a set of
high-speed laps around an oval track with banked
corners. In this test the vehicle will be lapping the circuit
with both open and closed demands. The roughness will
be a smoothest surface Grade A, this matches the road
roughness of a refined road track.

This shortened durability cycle includes high-speed
laps, high braking sections and incremental speed
increases to test elongated driving in different gears.
This evaluates drive train durability and is used to gain
loads both throughout the drivetrain and reaction
forces/torques to the drivetrain mounts.

5.3 Results
The chassis twist experiment generated wheel,
wishbone, chassis mount and strut top loads that can be
used with FEA and fatigue analysis software to generate
lift time analysis of both suspension components and the
chassis. Figure 6 shows these results, displaying from a
qualitive viewpoint the expected wheel load trends,
within a ‘sensible’ force range. As a generic vehicle
model was used, the actual specific numerical values of
the presented results are not of primary importance.
Rather, the trends shown are representative, indicating
the simulation is behaving in an accurate manner. With

specific vehicle data, this test could be modified to gain
kerb strike analysis if the speed was increased to gain a
more violent reaction from the wheel input. It can also
be extended to move mass around the cabin and include
trailers to investigate peak tow bar loads. These results,
combined with other, more varied tests can generate a
wider understanding of the life time requirements of
suspension components. The high-speed durability test
(Figure 7) provides additional, higher frequency loads
applied to all components, improving the fatigue
analysis ability. This test specifically yielded engine
reaction and transmission loads applied to the
transmission housing mounts at higher frequencies.
Changes in the engine and transmission mount torque
can be observed as the result of the actions undertaken
by the test driver. Conducting such a simulation would
provide to the user the expected loads experienced by
the vehicle undergoing this test, which could be
deployed in more advanced FEA or fatigue analysis
software for detailed analysis. Furthermore, they could
be used on their own with fatigue metrics to understand
how design changes will effect the lifecycle fatigue load
the vehicle will endure. Similar caveats regarding the
specific numerical value of the results presented in
Figure 7 apply as were explained for Figure 6.

6 Conclusions
The results presented in this paper demonstrate the
capability of the VeSyMA suite by Claytex to provide a
virtual testing solution which is capable of recreating
proving ground tests, with the introduction of a new
driver model, multi point tyre contact models and road
modelling features as presented. Furthermore, other
methods available to the user through the VeSyMA suite

Figure 7. High speed engine speed and Powertrain reaction torques against time (seconds)

Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground
Testing Procedures

734 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157725

are presented, which can be used to include further detail
into their analyses.

Example testing scenarios presented show that the
vehicle model behaves in a representable manor when
travelling at high speed on a banked proving ground
circuit, demonstrating the validity of the vehicle and the
road model. Multi-point tyre contact models are shown
to enable representative rough road and kerb strike
experiments to be conducted. The same vehicle model
was deployed in both example experiments, albeit with
different tyre contact models. This delivers on the
assertion of the flexibility of the VeSyMA suite of
libraries as a simulation solution, with model reuse
enabling the user to focus more on the investigation at
hand rather than reformulating simulation models.

6.1 Further work
Virtual testing is not just limited to the offline examples
demonstrated in this paper. To fully harness the
advantages of the simulation solution, it is
recommended that such detailed offline work be
deployed alongside other forms of simulation, such as
DiL and Hardware-in-the-Loop (HiL) testing.
Furthermore, as alluded to in the paper, the fidelity of
the vehicle model can be improved upon by deploying
other subject-specific libraries. Incorporating the
VeSyMA – Terrain Server library would enable both
detailed offline simulation and DiL testing to be
deployed effectively in conjunction with one another.

Related Work
H. Hammond-Scott and M. Dempsey (2018). Vehicle Systems

Modelling and Analysis (VeSyMA) Platform. Proceedings
of the 2nd Japanese Modelica Conference, 2018.

M. Dempsey, G. Fish and J. G. Delgado Beltran (2015). High
Fidelity Multibody Vehicle Dynamics Models for Driver-
in-the-Loop Simulators. Proceedings of the 11th Modelica
Conference, 2015.

References
M. Agostinacchio, D. Ciampa and S. Olita (2013). The

vibrations induced by surface irregularities in road
pavements – a Matlab approach. European Transport
Research Review. (2014) 6:267–275. DOI:
10.1007/s12544-013-0127-8

T. Berg, (2015). Navistar to Use Indiana Proving Grounds
For Extensive Testing. Online. Accessed 11 January 2019.
Available at:
https://www.truckinginfo.com/129556/navistar-to-use-
indiana-proving-grounds-for-extensive-testing

Cosin Scentific Software (2018). FTire: Features and
Capabilities. Online. Accessed 08 November 2018.
Available at: https://www.cosin.eu/products/ftire/

H. Dankowicz (1999). Modelling of dynamic friction
phenomena. ZAMM 1999;79:399–409.

A. Halfpenny and M. Pompetzki (2011). Proving Ground
 Optimization and Damage Correlation. SAE International.
 DOI: 10.4271/2011-01-0484

H. Hammond-Scott and M. Dempsey (2018). Vehicle Systems
Modelling and Analysis (VeSyMA) Platform. Proceedings
of the 2nd Japanese Modelica Conference, 2018.

C. F. F. Karney (2011). Transverse Mercator with an accuracy
of a few nanometers. SRI International. DOI: 1002:1417

K. Kawase (2013). Concise Derivation of Extensive
Coordinate Conversion Formulae in the Gauss-Kruger
Projection. Bulletin of the Geospatial Information Authority
of Japan. Vol. 60 March, 2013.

National Geospatial-Intelligence Agency (2005). World
Geodetic System 1984. Technical Bulletin, United Nations
Office for Outer Space Affairs, 2005.

OpenCRG, 2018. Background. Online. Accessed 09
November 2018. Available at:
http://www.opencrg.org/project.html

OpenDRIVE, 2018. Background. Online. Accessed 09
November 2018. Available at:
http://www.opendrive.org/project.html

Hans B. Pacejka (2012). Tyre and Vehicle Dynamics, 3nd
edition. Oxford: Elsevier, pp 356-404.

J. Rauh, H. Schindler, L. Witte, T. Kersten and W. Zipperer
(2008). OpenCRG: A unified approach to represent 3D
road surface data. AK 6.1.3 Tire Models for Vehicle
Dynamics 11.12.2008.

J. Segers (2014). Analysis Techniques for Racecar Data
Acquisition, 2nd edition. Warrendale, PA. USA: SAE
International.

U.S. Geological Survey (1997). The Universal Transverse
Mercator (UTM) Grid. USGS Fact Sheet 149-97.
September, 1997.

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

DOI Proceedings of the 13th International Modelica Conference 735
10.3384/ecp19157735 March 4-6, 2019, Regensburg, Germany

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-
Iterative Co-Simulation
Holzinger, Franz Rudolf and Benedikt, Martin

735

Hierarchical Coupling Approach Utilizing Multi-Objective
Optimization for Non-Iterative Co-Simulation

Franz Rudolf Holzinger1 Martin Benedikt1

1Department Electrice/Electronics & Software, VIRTUAL VEHICLE Research Center, Austria,
{franzrudolf.holzinger,martin.benedikt}@v2c2.at

Abstract
A hierarchical scheduling approach for non-iterative co-
simulation is presented. With an increasing number of
subsystems the number of possible combinations and per-
mutations increases dramatically, resulting in an unsolv-
able problem to define a proper co-simulation scheduling
for application engineers. This paper shows an approach
to get an optimal trade-off between simulation duration
and simulation accuracy by the usage of a multi-objective
optimization approach to find an optimal scheduling for
hierarchical co-simulation.
Keywords: hierarchical co-simulation, co-simulation
graph, multi-objective optimization

1 Introduction
Virtualization of products is common practice in industry
in order to reduce costs in design, analysis and test phases.
Tailored simulation tools are available for covering the
different engineering domains and applications. How-
ever, when it comes to overall system considerations the
different subsystems must be virtually integrated for en-
abling analysis of their interactions. In contrast to a time-
consuming remodeling, by the co-simulation approach the
individual subsystems are simulated within their dedicated
simulation tools and predefined coupling variables are ex-
changed at specific points in time for synchronization pur-
poses (Kübler and Schiehlen, 2000).

First activities in the field of co-simulation were pub-
lished in the 1970ies and 1980ies, motivated by the idea
of massive parallelization for electrical circuit simulation
in analog system design (Lelarasmee et al., 1982). Al-
gebraic constraints and non-linear behaviours of the com-
ponents require implicit numerical solvers for these ap-
plications, which were directly implemented within the
dedicated simulation environments. Nowadays, a lot of
domain-specific simulation tools are available on the mar-
ket, some of them are equipped with dedicated API’s (ap-
plication programming interfaces) for enabling an integra-
tion in terms of co-simulation. Most of the tools only
supports the exchange of coupling variables at predefined
points in time (no iterations over steps; no exchange of
model information), which renders the co-simulation ap-
proach to a pure explicit numerical scheme in general. The
FMI Standard (Functional Mockup Interface (Blochwitz

Figure 1. Co-simulation topology of the HEV example.

et al., 2012)) represents a promising path for enabling
broadly horizontal subsystem integration and the appli-
cation of implicit co-simulation master algorithms. By
considering a system simulation in general, the individ-
ual subsystems typically possess different dynamic ranges
and properties, which makes the use of different step-
sizes, kinds of extrapolation and orders of execution rel-
evant. With the increasing number of integrated subsys-
tems an engineer is typically not able to configure the
co-simulation master as required for ensuring stable and
accurate co-simulation results. But, as more information
about the individual subsystems is available in beforehand
or may be gathered online, i.e. during the co-simulation
run, as more automation is possible in order to support the
user in configuration of co-simulation settings. Recently
this idea was discussed (Benedikt and Holzinger, 2016) by
the authors; within this contribution especially the aspect
of subsystem scheduling is addressed. Scheduling relates
the proper selection of the order of execution of the in-
volved subsystems, i.e. the determination of the optional
trigger-sequence.
The outline of the paper is as follows. Coupling mech-
anism within non-iterative co-simulation are introduced.
Based on this, the trigger sequence of sub-models is dis-
cussed. After that a multi-objective optimization approach
is presented to determine a scheduling configuration for
hierarchical co-simulation. An example is used to illus-
trate the different coupling configurations as well as the
multi-objective approach.
The topology of the co-simulation example is shown in
Figure 1. It represents a hybrid electric vehicle (HEV).

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

736 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157735

Table 1. Subsystem of the HEV example.

Sub-Model Calc. Effort d j

S1 Electrical Subsystem 17.3%
S2 EMS Battery Management 1.9%
S3 EMS Hybrid Management 4.9%
S4 EMS ICE Speed Controller 2.3%
S5 EMS Product 1.9%
S6 EMS Rate Limiter 2.0%
S7 EMS Torque Limitation 1.8%
S8 Gearbox 27.8%
S9 ICE 11.4%
S10 Vehicle Dynamics 28.7%

The HEV system is based on a Matlab/Simulink example
and was split into 10 subsystems (Miller, 2017). The sub-
systems, compiled as FMUs, are integrated within a co-
simulation framework (Model.CONNECTTM, R2018a).
Table 1 represents the sub-elements of the HEV example
with their calculation effort d j.

2 Coupling Mechanism
The most common used coupling approach for co-
simulation is to calculate all sub-models at the same time.
Each subsystem has not to wait for each other and so this
coupling mechanism has the best simulation performance.
Nevertheless, this parallel coupling approach causes the
most coupling errors, due to the high number of extrap-
olated inputs. If subsystems are calculated sequentially,
i.e. a subsystem starts the calculation when the previous
subsystems already finished the calculation step, no
inputs have to be extrapolated. With a sequential coupling
approach a minimum number of extrapolation can be
reached, but the simulation performance will suffer. A
hierarchical approach on the other side allows a com-
bination of sequential and parallel scheduling. Several
subsystems can be nested, where e.g. the subsystems
within a group are calculated in sequential order and the
several subsets (groups) are calculated in parallel.

2.1 Simulation Performance
The simulation performance referenced by the real-time
behaviour for different coupling mechanism related to the
HEV example is shown in Table 2. The real-time fac-
tor (RT F) describes the relation between simulation dura-
tion and the wall-clock time. A real-time factor RT F < 1
means faster than wall-clock time and RT F > 1 means a
simulation duration greater than the wall-clock time. For
real-time applications it is required, that the RT F < 1 in
each coupling time step, otherwise the real-time behaviour
is not ensured.

The performance results in Table 2 show, that the
real-time behaviour of the parallel coupling approach is
lower than real-time. On the other hand, the sequential

Table 2. Real-time capability regarding the coupling mecha-
nism.

Coupling Mechanism RTF

parallel 0.44
sequential 1.1
hierarchical 0.5−0.75

Figure 2. Co-simulation graph of the HEV example.

coupling approach has a real-time factor greater than one,
i.e. it is not real-time capable. From the timing point of
view a parallel coupling approach represents a reasonable
co-simulation scheduling setting.

2.2 Trigger Sequence
The calculation order or trigger sequence of a sequential
coupling mechanism defines the extrapolated inputs and
so the induced extrapolation errors.
Related to HEV example with n = 10 subsystems it
exists n! = 3628800 different permutations to set the
calculation order of the subsystems. With the knowledge
of the topology it is possible to find at least an optimal
trigger sequence with respect to a minimal number of
extrapolations (Glumac and Kovacic, 2018).

Co-simulation networks can be interpreted as a directed
graphs. The nodes of the graph represent the several sub-
systems and the edges describe the directed dependences
of the subsystems. The weight of the edge describes the
strength of the dependency e.g. the individual number of
connections between the subsystems.

Figure 2 illustrates the co-simulation graph of the HEV
example with 10 subsystems. The edges show the directed
dependency of the subsystems and the weight of the edges
represent the number of signals which are exchanged be-
tween the subsystems.

The trigger sequence can be interpreted as a Hamilto-

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

DOI Proceedings of the 13th International Modelica Conference 737
10.3384/ecp19157735 March 4-6, 2019, Regensburg, Germany

0 4 8 12 16
Simulation Time, s

0

20

40

60

80

100

V
eh

ic
le

V
el
o
ci
ty

,
k
p
h

Monolithic

Parallel

Sequential

Hierarchical

Figure 3. Simulation result (Vehicle Velocity) regarding differ-
ent coupling mechanisms.

nian cycle, where each node has to be visited once. The
weights of the edges represent the number of inputs to be
extrapolated. The shortest way to visit all nodes represents
the optimal trigger sequence with respect to minimal num-
ber of to be extrapolated inputs. Nevertheless, the connec-
tions of already visited nodes do not need an extrapolation
and so the weights of these edges (connections) becomes
zero.

A comparison of sequential and parallel coupling ap-
proach (in contrast to the monolithic simulation) is shown
in Figure 3. The sequential simulation delivers almost the
same results than the monolithic simulation. The results
of the parallel coupling approach clearly differ from the
reference.

3 Optimal Hierarchical Approach
Parallel scheduling turns out the best behaviour with re-
spect to the simulation duration but induces, on the other
hand, the most coupling errors into the co-simulation. A
minimal number of extrapolated inputs can be reached by
a sequential coupling approach at an expense of the sim-
ulation duration. A hierarchical coupling approach allows
to find an optimal trade-off between simulation duration
and accuracy.
The permutations of the subsystems with sequential
method enlarges by the number of possible combinations.
An upper estimate of possible combinations in consider-
ation of the simple nested scheme (parallel scheduling of
sequential calculated groups) is as follows:

n−1

∑
j=0

(
n−1

j

)
n! = 2n−1n!. (1)

For a number of n = 10 subsystems there are almost
1.8 · 109 possible combinations and permutations for
setting the calculation order. This huge number makes
it practically impossible for co-simulation application
engineers to find a proper set without any automated
optimization approach.

0 4 8 12 16
Simulation Time, s

0.5

1

1.5

C
al

cu
la

ti
on

T
im

e,
s

#10-3

Electrical Subsystem

Figure 4. Calculation time of the Electrical Subsystem.

Beforehand some assumptions have to be applied:

• The calculation time (the time which the subsystem
needs to compute the results) is significantly bigger
than the synchronisation time (time which is needed
to exchange the coupling signals). So the synchroni-
sation time is unattended.
Note: For a high number of coupling signals or fast
calculating subsystems, the synchronisation time is
not negligible. In this case both, the synchronisation
time and the calculation time have to be considered.

• The calculation effort has an ergodic behaviour. Fig-
ure 4 shows the calculation duration of the model
Electrical Subsystem (S1) during the simulation. The
mean computation duration is about 9ms and is al-
most constant throughout the simulation.

• The coupling error is directly associated to the
number of extrapolations and degrades overall co-
simulation accuracy.
Note: In general this is not the case. The introduced
coupling error depends on the subsystem dynamic as
well as the coupling signal behaviour. Nevertheless,
if no additional subsystem information is available
and the system behaviour is unknown, the introduced
coupling error can be assumed equal for each input.

The relative calculation effort of the several subsystems
is illustrated in Table 1. The Vehicle Dynamics (S10),
Gearbox (S8) and the Electical Subsystem (S1) together
need about 75% of the computation time. It is obvious
to combine several subsystems and calculate the different
sets in a parallel way, to reduce the overall calculation ef-
fort.

A combination set C = {C1,C2, ...,Ci} consists of sev-
eral subsets C j and includes all subsystem indices. The
duration D j of a subset C j is calculated as follows:

D j (C j) = ∑
i∈C j

di, (2)

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

738 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157735

where di ∈R is the calculation effort of the individual sub-
systems Si (see Table 1). The objective function JD con-
cerning the calculation effort can be written as the maxi-
mum duration of all subsets scaled by the sum of all ele-
ments:

JD =
1

∑i di
max

j
D j. (3)

With respect to the HEV example a reasonable com-
bination C consists of the subsets C1 = {6,10} ,C2 =
{1,2,3,8} and C3 = {4,5,7,9}. Based on the effort of
the combinations D1 = 30.7, D2 = 51.9 and D3 = 17.4 a
cost value JD = 0.519 is determined.

For each possible subset C j an optimal calculation order
can be found, where the number of extrapolated inputs is
minimized. Therefore the adjacency matrix A is used.

A =

− 0 2 0 0 0 0 2 0 0
2 − 0 0 0 0 0 0 0 0
0 2 − 0 1 0 1 2 2 1
0 0 2 − 0 0 0 0 1 0
0 0 0 0 − 0 1 1 0 0
0 0 0 0 0 − 0 0 0 0
0 0 0 0 0 1 − 1 0 0
2 0 0 0 0 0 0 − 1 1
0 0 0 1 0 0 0 1 − 0
0 0 0 0 0 0 0 1 0 −

(4)

The adjacency matrix A in (4) represents the graph of
the HEV example (see Figure 2). The number of required
extrapolated inputs, which is directly associated to the
simulation accuracy, can be calculated as follows:

ek =
N

∑
i=1

Aik. (5)

Beginning with one element of the subset k ∈ C j the
whole column is summed up. This represents the whole
number of extrapolated inputs for the index. Regarding to
the HEV example for an index k = 3 the whole column is
summed up and e3 = 4.

In contrast to the calculation effort, the number of ex-
trapolated inputs is depending on the execution order of
the subsystems. Therefore the entire row of the consid-
ered index k (or subsystem) has to be set to zero.

Aki = 0, i ∈C j (6)

If the node 3 is already visited, the subsystem has been
calculated and the results are available. There is no ex-
trapolation needed anymore for these coupling signals, i.e.
the row of the node has to set to zero, see (7).

A =

− 0 2 0 0 0 0 2 0 0
2 − 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 − 0 0 0 0 1 0
0 0 0 0 − 0 1 1 0 0
0 0 0 0 0 − 0 0 0 0
0 0 0 0 0 1 − 1 0 0
2 0 0 0 0 0 0 − 1 1
0 0 0 1 0 0 0 1 − 0
0 0 0 0 0 0 0 1 0 −

(7)

The extrapolation effort E j of the subset C j is given as
sum of the required to be extrapolated inputs.

E j (C j) = ∑
i∈C j

ei (8)

The normalized objective function regarding the num-
ber of extrapolations can be written as follows:

JE =
1

∑ j ∑i Ai j
∑

j
E j. (9)

A multi-objective optimization problem with minimiza-
tion of number of extrapolated inputs and minimization of
the simulation duration can finally formulated as follows:

min{(1−w)JE +wJD} , (10)

where the factor w enables to set the focus of the opti-
mization to the extrapolation error JE or to the calculation
duration JD. A small factor w weights the optimization
in the direction of the minimum extrapolation error and
so sequential calculation is preferred. On the other hand

Table 3. Optimized hierarchical scheduling with respect to
weighting factor w.

w Trigger Sequence

0.0 (S6),S10,S9,S8,S7,S5,S3,S4,S1,S2
0.25 (S6),S10

S9,S8,S7,S5,S3,S4,S1,S2
0.5 (S6),S10

S9,S8,S7,S5,S3,S4
S1,S2

0.75 (S6),S10
S9
S8
S7

S5,S3,S4,S1,S2
1.0 (S6),S10

S9
S8
S7

S5,S4,S3,S2,S1

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

DOI Proceedings of the 13th International Modelica Conference 739
10.3384/ecp19157735 March 4-6, 2019, Regensburg, Germany

0 0.2 0.4 0.6 0.8 1
Weighting Factor, -

0

20

40

60

80

100

O
b
je

ct
iv

e
F
u
n
ct

io
n
,
%

Calculation E,ort

Extrapolation Error

Figure 5. Relative calculation effort and relative extrapolation
error regarding weighting factor w.

the factor w = 1 is the focus on the optimization of the
simulation duration and so parallel approach is selected.

The solutions of the hierarchical optimization prob-
lem for the HEV example is shown in Table 3. The
optimization is analysed by different weighting factors
w = [0,0.25,0.5,0.75,1]. The order of the subsystems in
a row indicates the trigger sequence. The several rows
within the w cases mean the parallel calculation of these
bundles. In the case of w = 0.5 the combined models
S6,S10 are calculated parallel to the sequential calculated
group S9,S8,S7,S5,S3,S4 and S1,S2. The subsystem S6
is considered separately and therefore in Table 3, it is
written in parentheses because it has no dependencies on
other subsystems.

The overall simulation duration increases with increas-
ing w and, on the other hand, the number of extrapolated
inputs decreases. The behaviour of the extrapolation error
and the calculation effort regarding the weighting factor w
for the HEV example is shown in Figure 5. A proper trade-
off between simulation duration and accuracy for this ex-
ample is at w = 0.5.

The comparison of the different coupling approaches
is illustrated in Figure 6. The sequential and hierarchical
(w = 0.5) approach are equal to the monolithic simulation
result. The result of the parallel scheduling shows a dif-
ferent behaviour.

The HEV example in Table 3 shows the identical results
regarding the calculation order for different weighting fac-
tors. Only the parallelization of subsystems changes de-
pendent on w, because in contrast to the optimization part
regarding the extrapolation error JE , the calculation effort
JD is not dependent on the execution order. Therefore it
is conceivable that the execution order is calculated first
and after that the parallelization is determined. This will
at least reduce the computation effort to find an optimal
trigger sequence.

0 4 8 12 16
Simulation Time, s

-200

-100

0

100

200

300

400

500

E
-M

ot
or

T
or

q
u
e,

N
m

Monolithic

Parallel

Sequential

Hierarchical

Figure 6. Simulation result (Electric Motor Torque) regarding
different coupling mechanisms.

4 Conclusion and Future Work
Especially with increasing number of subsystems hi-
erarchical co-simulation can bring a balance between
simulation duration and simulation accuracy. A high
number of subsystems makes it almost impossible to
find a proper configuration set regarding the execution
order. The HEV example in this work shows that the
simulation duration of parallel scheduling is better than
sequential coupling but the simulation result on the
other hand differs significantly from the monolithic
simulation caused by the introduced extrapolation errors.
The presented hierarchical approach allows a real-time
capable simulation with accurate simulation results.
In the discussed HEV example all subsystems have the
same coupling time-steps. For future works hierarchical
co-simulation with different coupling time-steps is con-
sidered. Therefore subsystems with similar dynamics and
coupling time-steps are clustered together. So they can be
interpreted as a separate hierarchical layer.

Acknowledgements
This work was accomplished at the VIRTUAL VEHI-
CLE Research Center in Graz, Austria. The authors
would like to acknowledge the financial support of the
COMET K2 - Competence Centers for Excellent Tech-
nologies Programme of the Austrian Federal Ministry for
Transport, Innovation and Technology (bmvit), the Aus-
trian Federal Ministry of Science, Research and Econ-
omy (bmwfw), the Austrian Research Promotion Agency
(FFG), the Province of Styria and the Styrian Business
Promotion Agency (SFG).

References
M. Benedikt and F. R. Holzinger. Automated configura-

tion for non-iterative co-simulation. In 2016 17th Inter-
national Conference on Thermal, Mechanical and Multi-
Physics Simulation and Experiments in Microelectronics

Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

740 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157735

and Microsystems (EuroSimE), pages 1–7, April 2016.
doi:10.1109/EuroSimE.2016.7463355.

T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauss,
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauss,
D. Neumerkel, H. Olsson, and A. Viel. Functional mockup
interface 2.0: The standard for tool independent exchange
of simulation models. In Proceedings of the 9th Interna-
tional Modelica Conference, pages 173–184. The Modelica
Association, 2012. ISBN 978-91-7519-826-2. URL http:
//dx.doi.org/10.3384/ecp12076173.

Slaven Glumac and Zdenko Kovacic. Calling sequence cal-
culation for sequential co-simulation master. In Proceed-
ings of the 2018 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, SIGSIM-PADS ’18, pages
157–160, New York, NY, USA, 2018. ACM. ISBN 978-1-
4503-5092-1. doi:10.1145/3200921.3200924. URL http:
//doi.acm.org/10.1145/3200921.3200924.

R. Kübler and W Schiehlen. Modular simulation in multibody
system dynamics. Multibody System Dynamics, 4, 2000.

E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli.
The waveform relaxation method for time-domain anal-
ysis of large scale integrated circuits. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, 1(3):131–145, July 1982. ISSN 0278-0070.
doi:10.1109/TCAD.1982.1270004.

Steve Miller. Hybrid-electric vehicle model in simulink.
(https://www.mathworks.com/matlabcentral/
fileexchange/28441) MATLAB Central File Ex-
change, 2017. Accessed: 2017-08-30.

Model.CONNECTTM. Hybrid electric vehicle (hev). (https:
//www.avl.com/-/model-connect), R2018a. Ac-
cessed: 2018-04-11.

DOI Proceedings of the 13th International Modelica Conference 741
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

POSTER SESSION
Flow Network based Diagnostics for Incorrect Synchronous Models
Olsson, Hans

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products
Inui, Masatomo and Fujinuma, Tomohisa

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library
Heckel, Jan-Peter and Becker, Christian

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features
Nicolai, Andreas and Paepcke, Anne and Hirsch, Hauke

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems
Watanabe, Yutaka and Takahashi, Toru

Daccosim NG: co-simulation made simpler and faster
Evora, Jose and Cabrera, Jose Juan Hernandez and Tavella, Jean-Philippe and Vialle, Stéphane and Kremers,
Enrique and Frayssinet, Loïc

der(x,p) !? Applications and Computational Methods of Dynamic Parameter Sensitivities
Elsheikh, Atiyah

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation
Bao, Bingrui and Guo, Junfeng and Zhang, Baokun and Zhou, Fanli

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer
Fu, Yangyang and Lu, Xing and Zuo, Wangda

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool
Park, Sooncheol and Jeon, Yonggwon and Kang, Dae-Oh and Hyun, Min-Su and Heo, Seung-Jin

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles
Liu, Yuhui and Chen, Liping and Zhao, Yan and Liu, Shanshan and Zhou, Fanli and Shangguan, Duansen

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica
Webster, John and Bode, Carsten

Translating Simulink Models to Modelica using the {\NSP} Platform
Chancelier, Jean-Philippe and Furic, Sébastien and Weis, Pierre

modelica_bridge : A Library for Connecting Modelica to ROS
Swaminathan, Shashank

.

742 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157

.

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 743
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

Flow Network based Diagnostics for Incorrect Synchronous Models
Olsson, Hans

743

Flow Network based Diagnostics for Incorrect Synchronous Models

Hans Olsson1

Dassault Systemes, Sweden, hans.olsson@3ds.com

Abstract
This paper will present a novel way to give diagnostics

for incorrect synchronous models.

The goal is that this will ease the introduction of

synchronous models, since unclear diagnostics often

create a barrier for new users. In particular the case of

separating the clocked and continuous parts will be

considered, and shown to be equivalent to finding a

“leak-flow” in a certain flow network, which can be

solved using max-flow/min-cut techniques.

The result is efficient, easy-to-adapt, and gives

diagnostics focused on correcting the issue.

We have not seen this idea used before in this context,

even if in retrospect it seems natural and

straightforward.

The methods have been implemented in Dymola

2019 (released in June 2018) and also in 3D Experience

Platform 2019x.

Keywords: synchronous, graph theory, flow networks,

minimal cut, error diagnostics

1 Introduction

Diagnostics for incorrect Modelica models is an

important part of Modelica tools. Tools can implement

advanced diagnostics, either by additional analysis

based on the current Modelica language (Bonus and

Fritzson, 2002), or in combination with adding

restrictions to Modelica such as balanced models

(Olsson et al; 2008).

After a short discussion about different forms of

diagnostics for errors, we will start by introducing the

synchronous part of Modelica 3.3, and then flow

networks and the max-flow/min-cut theorem.

When presenting error diagnostics, important aspects

include how early the diagnostics is given, and how

localized the error is. The ideal situation is early

detection and that at least one plausible correction is

clearly located.

In particular, some diagnostics can be given as soon

as the error is made, and tools can in those cases prevent

the error from being introduced in the model, e.g.,

attempting to connect an electrical pin to a mechanical

flange.

Other diagnostics can only be given when translating
the complete model, e.g., missing a source signal in an

expandable connector set.

An intermediate variant is those where we can give

diagnostics for incomplete models without introducing

false positives – i.e., we avoid diagnostics for issues that

will naturally be corrected as part of completing the

model; but it is still a global property.

The clock partitioning problem is one of these

intermediate variants, which adds the restriction that the

diagnostics should work on such incomplete models –

in particular when equations are missing.

That also implies that we could present the

diagnostics after each operation, but that is currently not

implemented. The errors are not necessarily local – but

it may still be that they could be corrected in one or a

few places.

2 Synchronous Modelica

Modelica 3.3 added synchronous primitives (Elmqvist

et al, 2012) intended to make it easier to model control

systems that run on a sampled clock and connect to the

continuous plant model. This section will only describe

the concepts needed in this paper and is not a general

introduction to synchronous modeling.

To illustrate we have a simplified model illustrating

some of the concepts:

model FirstOne
 Real x,y,z;
equation
 when Clock(1) then
 2*x=sample(y);
 end when;
 when Clock() then
 z=x+1;
 end when;
 y=hold(z)+time;
end FirstOne;

The equation 2*x=sample(y); is a clocked

equation and only active when the corresponding clock

ticks (every second as given by Clock(1)). Note that it

is an actual equation – but only active when the clock

ticks, in contrast to non-clocked when-clauses in

Modelica which only allow a restricted form of

equations where the left-hand side must be a variable.

One important aspect of the synchronous extension is

that variables and equations are not declared to be

continuous or clocked (in the example x and z are

clocked and y is continuous), instead the clock-partition

can be inferred using “clock inferencing”.

Flow Network based Diagnostics for Incorrect Synchronous Models

744 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

Additionally, sub-models can be used in both the

continuous and clocked domains; be restricted to one

domain or the other, or connect the two domains in

certain ways. That the same sub-model can be used in

both domains imply that we cannot infer properties of

the used models in general – but only infer properties for

each specific component of those sub-models.

Specifically equations in when Clock must be

clocked, and sample takes a continuous time input and

returns a clocked value; and hold converts in the other

way. It is not possible to directly use a clocked variable

when it is not active, instead one must explicitly use

hold(z) to get the last active value for z. Additionally

time is always continuous time.

If the modeler makes mistakes, the clock inferencing

may fail. A trivial example would be writing y=z+time;

in the model above, since time must be continuous and

z is given by a clocked equation. The algorithm in this

paper gives diagnostics and recommended solution for

such errors (mixing clocked and continuous) – and the

algorithm is particularly suited for larger models where

there are a large number of (potentially incorrect)

intermediate steps in the inferencing.

In this example the clock for z is not specified, but

automatically inferred to be the same as for x. The

Clock(1) could also be duplicated, and it is then

verified that the two clocks tick at the same time –

ensuring that different clocks are not used accidentally.

The example could also be written as:

model SimplerFirst
 Real x,y,z;
equation
 2*x=sample(y, Clock(1));
 z=x+1;
 y=hold(z)+time;
end SimplerFirst;

In this case we automatically infer that x and z are

clocked, and y continuous time. The equation z=x+1;

can on its own be either clocked or continuous time (and

could in general be in a sub-model that works in both

parts).

An advanced feature is that clocked equations may

include differential equations provided a discretization

method is specified for the clocked partition, e.g.:

model Discretized
 Real x,y,z;
equation
 2*x=sample(y, Clock(Clock(1),

 solverMethod="ExplicitEuler"));
 der(z)=x+1-z;
 y=hold(z);
end Discretized;

The solverMethod argument ensures that any

differential equation in the partition (in this case

der(z)=x+1-z;) will cause the corresponding variable,

z, to be updated using one step of explicit Euler when

the clock ticks. The der-operator cannot occur in

clocked partitions without a deduced solverMethod

(there are additional details regarding different

partitions that are not relevant for the analysis in this

paper).

A final important aspect is that Modelica supports

graphically connecting components – continuous,

clocked, and even components mixing the two domains.

There are also libraries of models, including

Modelica_Synchronous that contain tested standard

models.

3 Flow networks

A flow network (Ford and Fulkerson, 1956; or any

general overview such as Cormen et al, 1993); is a

directed graph where each edge has an arbitrary

nonnegative capacity. When modifying the graph the

capacities can become zero, and in that case we view it

is as if the edge is not present.

A flow in such a network satisfies a number of

constraints, in particular the flow in each edge does not

exceed its capacity and except for source and sink

vertices the in-flow to a vertex matches the out-flow

from that vertex. In Figure 1 a small flow network with

flows is shown, the source is marked with “s” and the

sink with “t” (for target) and each edge has two

numbers, the first is the current flow and the second is

the capacity. The edges where the current flow equals

the capacity are saturated.

Figure 1 A small flow network.

Without loss of generality we can assume that there

is only one source and one sink (Ford and Fulkerson,

1956). If there are e.g., multiple sources it is known that

we can introduce a “super-source” with edges of infinite

capacity going to each source, and treating those

original sources as normal vertices; unless there are

additional restrictions on the flows.

3.1 Minimal cut theorem

A disconnecting set of edges partitions the vertices into
two sets – one containing the source and another the

s

o

 3
/3

t

t

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 745
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

sink. A disconnecting set without redundant elements is

a cut.

The max-flow min-cut theorem, also known as

“minimal cut theorem” (Ford and Fulkerson, 1956);

states that the maximal flow obtainable in a network is

the minimum of the sum of capacities of the edges in the

set taken over all disconnecting sets. (Note: even if it is

the minimum for all disconnecting sets the minimum is

clearly for a disconnecting set without redundant

elements, i.e., for a cut.)

If we revisit the previous small flow network we see

that the maximum flow is 10, and the minimal cut is

shown in red in Figure 2; and the other edges as dotted.

Figure 2 Minimal cut

Note that the minimal cut is not necessarily unique –

another option would be to replace the 6/6 edge with the

other 6/6 edge, and a third option would be the two

edges going into “t”. The two edges going from the

source are clearly a cut, but its total capacity is 11 and it

is therefore not a minimal cut. The red 6/6 edge and the

4/4 have a sum of capacities of 10, but is not a

disconnecting set and thus not a cut. The red edges in

union with the 4/4 edge form a disconnecting set that is

neither a cut nor minimal.

There exists a number of algorithms for constructing

the minimal cut and the maximum flow, with different

running time in terms of number of edges and vertices;

(Cormen et al, 1993).

3.2 Augmentation path

If a flow network allows a flow between the source

and the sink we can find a path – called chain of edges

in (Ford and Fulkerson, 1956) connecting them. The

maximum flow through that path is the minimum

capacity of any of the edges in the path.

After “subtracting” this flow from the graph one can

attempt to find an additional path (called “augmentation

path”) connecting the source and the sink, and repeating

this leads to the algorithm called Ford-Fulkerson based

on (Ford and Fulkerson, 1956).

Subtracting the flow means both reducing the

capacities of the used edges, and adding a capacity in the

reverse direction; the latter is needed since we will

sometimes later reduce the flow through specific

vertices.

The path will later be used for error diagnostics, and

thus redundant edges will cause a problem in at least two

cases:

If the graph has cycles a vertex could appear multiple

times in the path, but that can only decrease the flow

through the path and the algorithm thus avoids revisiting

vertices.

Additionally, if there are multiple sources a path

could start at one source and then have an edge leading

to a different source (and similarly for sinks). By

treating all sources as visited at the start and avoiding

revisiting vertices that is avoided for the sources, and by

stopping at the first sink reached it is avoided for sinks.

The current implementation does not use a breadth-

first search for the path, but that would naturally avoid

the previous issues.

A major restriction of the algorithm is that this only

converges in a finite number of steps if the capacities are

integers (or in general rational numbers); and has a

running time of O(number of edges*maximum flow).

This follows from the fact that we can find one

augmentation path in running time proportional to the

number of edges, and each augmentation path has a flow

of at least one.

We currently do not use any specific heuristic for

finding the augmentation path, but a breadth-first search

is generally a good heuristic avoiding specific problems

for large maximum flow (Cormen et al, 1993).

Assuming the maximum flow is small this simple

algorithm compares favorably to recent algorithms; that

instead are superior if the maximum flow is large or the

capacities are real numbers; as their running time only

depend on the number of edges and vertices.

4 Min-cut and Clock partition

We will now combine the clock partition and the flow

network.

4.1 Flow networks for synchronous models

Based on a model with synchronous parts we can

construct a flow network where the variables and

equations that must be continuous are sources, and

variables and equations that must be clocked are sinks.

Both equations and variables are vertices in this

graph, and edges connect equations to variables

appearing in the equation – unless the variables appear

inside certain primitives, in this paper we will only

discuss sample and hold, but in general it also includes

“Clock with Boolean condition”. The variables inside

these primitives are instead sources or sinks. The edges

are also added in the opposite direction (with the same

capacity in both directions) so that we get a symmetric

directed graph. Alternatively, we can replace this pair of

edges with one bidirectional edge with capacities in both

directions – initially equal.

s

o

 3
/3

t

t

Flow Network based Diagnostics for Incorrect Synchronous Models

746 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

Having edges in both directions implies that there are

cycles in the graph, but the chosen algorithm can handle

that.

The capacities for all edges can be selected as positive

integers; the exact values will be discussed later.

Figure 3 Flow network for the model “Discretized”

In Figure 3 we see the flow network corresponding to

the previous model “Discretized” illustrating most of the

concepts, where continuous equations and variables

(argument of sample) are marked in yellow (and

dashed outline) and clocked equations and variables

(argument of hold) are marked in green. The der(z)-

variable is special and marked in lighter yellow (and

dotted outline), indicating that without a solverMethod

it must be in a continuous partition (which would cause

a leak-flow between the partitions). There is also an

edge from der(z) to z indicating that they should be in

the same partition (in later graphs derivative-variables

will not be separate nodes). Since there is a

solverMethod attached to the clock-partition, der(z) is

just a normal variable and there is no leak-flow.

Figure 4 Incorrect assignClock

In Figure 4 we have an incorrect model from MCP-

0030 (Frenkel, 2018). The corresponding flow network

is shown in Figure 5, where the continuous part (due to

time) is marked in yellow and the clocked part (due to

when Clock()) in green, and the edges that are not part

of the augmentation path are dotted. The arrows on the

edges indicate the direction of the flow.

The saturated edges (i.e., potential minimal cuts) are

shown in red and wider. It is common that the saturated

edges occur in pairs and the implementation handles

that, but we will in the future investigate alternative

formulations that avoid this.

Figure 5 Synchronous simple flow network

The graph is bipartite with equations and variables

forming the two parts as is normal in Modelica, but since

both sources and sinks can appear in both parts this fact

does not seem useful for analyzing this flow network.

This implies that the edges in the cut can go both from

equation to variable and vice-versa.

Note that the problem of assigning variables to

equations in Modelica is equivalent to solving a

maximum-flow problem on such a bipartite graph.

4.2 The significance of the flow

A correct model can be partitioned into zero or more

clocked parts, and zero or more continuous parts. This

corresponds to separating the graph into separate parts,

and thus a zero flow.

If the flow is positive it indicates that graph cannot be

partitioned in this way and the flow gives “leakage”

between continuous and clocked parts. If there are

multiple disjoint errors there will be multiple “leakages”

increasing the flow; i.e., a higher flow can be seen as an

indication of a more incorrect model.

The cut indicates which variables to remove from the

equations to restore the partition. Replacing the

variables by sample() or hold() variants of the same

variables removes the edge, without excessively altering

the model structure.

Similarly, the corresponding path(s) between source

and sink is important, since that allows the user to see

that there is an unwanted path between the clocked and

continuous parts.

4.3 The capacities of edges

The previous method would work for any set of positive

integers as edge-capacities, and give some cut between

clocked and continuous parts.

Good diagnostics for errors can thus be seen as

finding a suitable heuristic for the capacities. The basic

idea is that we give high capacity to edges that we do

not want in the cut-set; or roughly that high capacity

corresponds to high trust in that equation.

As a first attempt, we chose capacity 1 for edges

corresponding to connection-equations, and 10 for other

edges. In the future, we are considering having higher

weights for equations from tested libraries.

assignClock1

periodicClock1

1 s s

clock

startTime=0

x

z

y

2*x=sample(y, …)

der(z)=x+1-z;

y=hold(z)

der(z)

clock.y

assign.u

assign.y

clock.y=f(time)

connect(clock.y, assign.u)

when Clock() then

 assign.y=assign.u;

end when;

1/10

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 747
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

4.4 Algorithm

The following presents pseudo-code outlining the

algorithm. Note that similarly as (Ford and Fulkerson,

1956) it is not a completely specified algorithm as there

are multiple ways of finding the augmentation path.

Additionally, the source-cut part can use any

algorithm that finds reachable nodes in a graph.

Sources={time}

Targets={}

Edges={}

// Build graph based on equations:

for eq in Equations loop

 // Low capacity for likely errors

 cap=if eq is connection then 1 else 10;

 for var in Incidence(eq) loop

 if var inside sample then

 Sources+={var};

 eq.isClocked=true;

 elseif var inside hold then

 Targets+={var};

 eq.isNonClocked=true;

 else

 // Edge(from->to, cap)

 Edges+={Edge(eq->var, cap)};

 Edges+={Edge(var->eq, cap)};

 end if;

 end for;

 if eq.isClocked then

 Targets+={eq};

 end if;

 if eq.isNonClocked then

 Sources+={eq};

 end if;

end for;

// Ford-Fulkerson finding max-flow:

maxFlow=0;

loop // Find path of edges having cap>0

 augmentPath=FindPath(Sources, Targets);

 if augmentPath=={} then

 break;

 end if;

 // Possible flow for path

 flow=min(e.cap for e in augmentPath);

 maxFlow+=flow;

 // Subtract augmentPath flow:

 for e in augmentPath loop

 e.cap-=flow;

 reverse(e).capacity+=flow;

 end for;

end loop;

// Find source-cut, i.e. the cut

// closest to the source

// We first find all vertices

// reachable from the sources

SourceConnected={};

AddTo=Sources;

while not AddTo.empty() loop

 vertex=AddTo.front();AddTo.pop_front();

 if not vertex in SourceConnected then

 for e in Edges.from(v) loop

 if e.cap>0 then

 AddTo.push_back(e.target);

 end if;

 end for;

 end if;

end while;

// Find all edges with 0 capacity

// that leaves this set

SourceCut={};

for v in SourceConnected loop

 for e in Edges.from(v) loop

 if e.cap==0 and

 not (e.to in SourceConnected) then

 SourceCut+={e};

 end if;

 end for;

end for;

// And similarly for the target-cut

5 Examples

MCP-0030 (Frenkel, 2018) was made to solve the same

problem as this paper. It contains one example of a bad

model – shown in Figure 4. The rationale for the MCP

was that earlier diagnostics just listed all equations and

variables that failed for clock inference and it was not

helpful for users. Note that the ideas presented here were

implemented before the MCP.

With the approach in this paper, this example gives

the diagnostics:

Continuous time parts and discrete parts don't

decompose.

 It is necessary to introduce sample or hold elements

replacing:

connect(clock.y, assignClock1.u);

The following sequence indicates that the involved

variables and equations are continuous time:

clock.y :

 clock.y = clock.offset+(if time < clock.startTime then

0 else time- clock.startTime);

However, this is in contradiction with

assignClock1.u:

 when assignClock1.clock then

Flow Network based Diagnostics for Incorrect Synchronous Models

748 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

 assignClock1.y = assignClock1.u;

end when;

The two sequences of equations and variables are

constructed from the augmentation paths, cut according

to the minimal cut.

It could be even clearer by showing that clock.y is

continuous due to using time, and in this case the

connection between clock.y and assignClock1.y was the

obvious culprit.

We will now consider variations of an example from

Modelica_Synchronous shown in Figure 6.

Figure 6 Textbook controller

If we had forgotten one of the synchronous primitives

(there are two sample-blocks and one hold-block) the

goal would be that diagnostics would recommend

adding it.

The possible errors will be listed starting from the one

ones that are simplest to investigate, and then proceed to

the more complicated ones.

Without sample2 the diagnostics will pinpoint that:

It is necessary to introduce sample or hold elements

replacing:

connect(ramp.y, feedback.u1);

If sample2 were replaced by a gain-block the

diagnostics would be:

Continuous time parts and discrete parts don't

decompose.

 It is necessary to introduce sample or hold elements

replacing:

 connect(ramp.y, gain.u);

or:

 connect(gain.y, feedback.u1);

or some variation of this.

The two proposed corrections are two different min-

cuts (one close to source, one to sink). In general there

could be a large number of possible min-cuts, and listing

them all could be time-consuming and unlikely to help

users.

If both sample1 and sample2 are missing, the

diagnostics state:

It is necessary to introduce sample or hold elements

replacing:

connect(feedback.y, PI.u);

This shows an interesting change, since the proposed

change moves the feedback-component from the
clocked part to the continuous part.

If only sample1 was removed the method described

so far would see two possibilities:

connect(torque.tau, hold1.y);

connect(speed.w, feedback.u2);

The first suggestion has two problems: firstly, it

would make more sense to remove the hold-block than

introduce a sample-block, but secondly and more

importantly, that model would not translate, since the

der-operator is used in a clocked partition without

solverMethod.

That is handled by running the algorithm on a slightly

different flow network, which is constructed by

considering the der-operator part of the continuous

partition. That results in:

Continuous time parts and discrete parts don't

decompose, when there is no solverMethod attached to

the clock.

 It is necessary to introduce sample or hold elements

replacing:

 connect(speed.w, feedback.u2);

Without hold1 we get:

Continuous time parts and discrete parts don't

decompose, when there is no solverMethod attached to

the clock.

 It is necessary to introduce sample or hold elements

replacing:

 connect(torque.tau, PI.y);

Indicating that the correction is instead to introduce

hold1.

If both sample1 and hold1 are missing the model is

valid for check, but translation would give (flow

network in Figure 7):

Continuous time parts and discrete parts don't

decompose, when there is no solverMethod attached to

the clock.

 It is necessary to introduce sample or hold elements

replacing:

 connect(speed.w, feedback.u2); connect(torque.tau,

PI.y);

The following sequence indicates that the involved

variables and equations are continuous time:

 speed.w : speed.w = der(speed.flange.phi);

 torque.tau : torque.flange.tau = -torque.tau;

 torque.flange.tau :

load.flange_a.tau+torque.flange.tau = 0.0;

 load.flange_a.tau : load.J*load.a =

load.flange_a.tau+load.flange_b.tau;

 load.a : load.a = der(load.w);

However, this is in contradiction with

 feedback.u2 : feedback.y = feedback.u1-

feedback.u2;

 feedback.u1 : sample2.y = feedback.u1;

 sample2.y : sample2.y = sample(sample2.u,

sample2.clock);
 feedback.y : feedback.y = PI.u;

 PI.u : when Clock_0 then

 PI.x = previous(PI.x)+PI.u/PI.Td;

feedback controller plant reference

load

J=10 kg m²

ramp

duration=2 s

-
feedback torque

tau

PI

PI

Td=1

sample2

0.0

hold1

sample1
periodicClock

0.1 s s

Flow Network based Diagnostics for Incorrect Synchronous Models

DOI Proceedings of the 13th International Modelica Conference 749
10.3384/ecp19157743 March 4-6, 2019, Regensburg, Germany

 PI.y = PI.kd*(PI.x+PI.u);

 end when;

The sub clock, BaseClock_0.SubClock_1, includes

derivatives, but no solver method is specified.

The last line indicates that one way of correcting the

model is to specify a solverMethod for the partition. In

that case the plant-part will be discretized as part of the

clocked partition.

However, the first part of the error message indicates

that another solution is to introduce sample and hold.

This error message lists two connect-statements, and the

users has to replace both of them.

The part “The following sequence…” would as

default be collapsed since it is quite long and only shows

what is already stated. However, even if lengthy it still

only lists relevant variables and equations, e.g.

load.flange_a.phi and load_flange_b.phi are also part of

the continuous-time partition – but they are not part of

any augmentation path used and thus not included.

6 Implications for models

The examples demonstrate that no changes are needed

to support these diagnostics. However, changes in

models and/or the language can still be helpful to

improve the diagnostics further.

In particular, models representing external controllers

can currently be written as

model Controller

 extends SI2SO;

equation

 y=do_step(u1, u2);

end Controller;

Here do_step is an external C function (possibly part

of an FMU), and each do_step updates the internal state

and thus it should be run at every sampling point of the

inferred clock.

That works in correct models where it is assigned to

the clocked part and run at every sampling point.

However, if the controller is incorrectly connected that

can end up in the continuous part; which is not intended.

Modelica 3.4 (Olsson (editor), 2017) has restrictions

for impure functions, but if do_step is not declared as

impure that will not generate diagnostics. For the future

we might consider treating impure function as sinks in

the graph.

One possibility is to change the model to:

model Controller

 extends SI2SO;

equation

 when Clock() then

 y=do_step(u1, u2);

 end when;

end Controller;

That variant works and ensures that it is part of a

clocked partition, providing better diagnostics – but it

looks slightly distracting. A future possibility could be

to introduce a form of “Clocked model” where all

equations are seen as clocked.

7 Future work

For the future there are multiple lines of potential work

– one is improving the current work by improving the

diagnostics, another is using this for unrelated problems.

7.1 Other uses of min-cut

An obvious question is whether the same concept can be

applied to other problems.

The characteristics leading to min-cut being a good

fit for this problem are:

 Vertices can be partitioned into two parts where

certain vertices (the sources and sinks) must be

in certain partitions.

 Corrections correspond to removing edges.

If we consider the separation of variables into different

clocks (and similarly for sub-clocks) we see that they

sort of match the first, but not the second criteria:

 One Clock could be a selected as a source and

another Clock-variables as sink. This works if

there are two Clocks mixed together that should

not be mixed, but if there are three or more

Clocks mixed together this is not ideal (but at

least it produces some diagnostics).

 However, removing an edge is not the only

possible correction – another possibility is that

the Clocks should be the same.

Clock-partitioning diagnostics should thus both

include the possibility of separating the graphs, and also

changing the Clocks to be the same, i.e., we can view it

as two distinct cases (like for missing solverMethod or

missing sample and hold).

For sub-clocks, the possibility of merging the clocks

is even more complicated, since they can depend on

multiple sub-clock factors.

Unrelated to synchronous models we believe this

kind of diagnostic can be useful when breaking

dependencies using decouple to allow parallelization

– as described in (Elmqvist et al, 2014). It cannot

directly help with decouple failing to split the system

of equations into smaller part, but it can detect that the

two sides of decouple are connected in unexpected

ways, which has a tendency to occur.

7.2 Implementation

The algorithm was originally implemented Dymola

2019 (released in June 2018) and also in 3D Experience

Platform 2019x. The handling related to solverMethod

will be added in Dymola 2020, and all diagnostics are

from that version.

Acknowledgements

Flow Network based Diagnostics for Incorrect Synchronous Models

750 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157743

The incorrect models from various users were one

important aspect for starting this work; another

inspiration to start the work was an effort to understand

the existing algorithms for synchronous models

developed by Sven Erik Mattsson (Elmqvist et al, 2012).

The proposal for a new primitive in MCP-0030

(Frenkel, 2018) gave a major inspiration to describe the

approach.

Feedback from my colleagues and reviewers were

helpful in making this paper clearer.

References

Peter Bunus, and Peter Fritzson (2002): Methods for

Structural Analysis and Debugging of Modelica models.

Proceedings of the 2th International Modelica Conference.

157-165.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.

Rivest (1993): Introduction to Algorithms.

Hilding Elmqvist, Martin Otter, Sven Erik Mattsson (2012):

Fundamentals of Synchronous Control in Modelica.

Proceedings of the 9th International Modelica Conference.

15-26. doi: 10.3384/ecp1207615

Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson (2014):

Parallel Model Execution on Many Cores. Proceedings of

the 10th International Modelica Conference. 363-370. doi:

10.3384/ECP14096363.

L. R. Ford, Jr and D. R. Fulkerson (1956): Maximal Flow

Through a Network. Canadian Journal of Mathematics

8:399-404. doi:10.4153/CJM-1956-045-5.

Jens Frenkel (2018): Modelica Change Proposal MCP-0030

IsClocked Operator.

Hans Olsson, Martin Otter, Sven Erik Mattsson, Hilding

Elmqvist (2008): Balanced Models in Modelica 3.0 for

Increased Model Quality, Proceedings of 6th International

Modelica Conference, vol. 1:21-33.

Hans Olsson (editor) (2017): Modelica A Unified Object-

Oriented Language for Systems Modeling Language

Specification Version 3.4.

8 Appendix

Figure 7 Flow network for advanced example

ramp.y ramp.y=f(time)

sample2.u

sample2.y

connect(ramp.y, sample2.u)

sample2.y=sample(sample2.u)

feed.u1 connect(sample2.y, feed.u1)

feed.y=feed.u1-feed.u2 feed.u2

feed.y

PI.u

PI.x

PI.y

when Clock() then

 PI.x=previous(PI.x)+PI.u/Td;

 PI.y=kd*(PI.x+PI.u);

end when;

connect(feed.y, PI.u)

connect(PI.y, torque.tau)
torque.tau

torque.flange.tau=-torque.tau

torque.flange.tau

torque.flange.phi

load.flangea.tau

load.flange
b
.tau

load.flange
a
.phi

load.flange
b
.phi

load.w

load.a

speed.flange.tau

speed.flange.phi

speed.w

 torque.flange.tau

+load.flangea.tau=0

 torque.flange.phi

=load.flange
a
.phi

 load.J*load.a=

 load.flange
b
.tau

 +load.flange
a
.tau

 load.w=der(load.flange
b
.phi)

 load.a=der(load.w)

 load.flange
b
.phi

=load.flange
a
.phi

 load.flange
b
.tau

+speed.flange.tau=0

 load.flange

b
.phi=

 speed.flange.phi

 speed.w=

 der(speed.flange.phi)

connect(speed.w, feed.u2)

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

DOI Proceedings of the 13th International Modelica Conference 751
10.3384/ecp19157751 March 4-6, 2019, Regensburg, Germany

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products
Inui, Masatomo and Fujinuma, Tomohisa

751

Study on Efficient Development of 1D CAE Models of Mechano-

Electrical Products

 Masatomo Inui1 Tomohisa Fujinuma2
1Dept. of Mechanical Systems Engineering, Ibaraki University, Japan, masatomo.inui.az@vc.ibaraki.ac.jp

2Standardization Committee of New Digital Verification Technology, JEITA, Japan, tomohisa.fujinuma@toshiba.co.jp

Abstract
To promote the use of 1D CAE model in the mechano-

electrical industry, it is necessary to resolve the issues

associated with the model and reduce the cost of

creating it. We are in the process of developing the

guidelines for creating proper 1D CAE models that will

help reduce the modeling cost. A mechano-electrical

product is generally a complex system of mechanical,

electrical/controlling, and software components. In the

industry, Modelica and MATLAB/Simulink are

emerging as popular tools for modeling the mechanical

and electrical/controlling components, respectively.

Programming languages derived from C are usually

used for describing the software necessary in the

mechano-electrical product. For example, SystemC is

recognized as a standard tool for describing a hardware

behavior in the design of electronic circuits to be

incorporated in the product. In this study, we

investigated a method for the combined use of these

tools. We explain our findings in our experimental

construction of 1D CAE models of a mechano-electrical

product using Modelica, MATLAB/Simulink, and

SystemC simultaneously.

Keywords: 1D CAE model, modeling guideline,

Modelica, MATLAB/Simulink, SystemC, FMI

1 Introduction

Compact, high-precision, and high-performance

mechano-electrical products such as multifunctional

copiers, printers, and digital cameras are products of

manufacturing industry in which Japan has

demonstrated its excellence traditionally. While

developing these products, high functionality and low

price are to be ensured. Accordingly, technologies for

supporting the design are considered to be the critical

success factors in realizing an efficient and reliable

product.

Figure 1 illustrates a typical design process for a

high-tech mechano-electrical product. We divided the

process into four stages: function and performance

consideration, packaging and control design, system
evaluation, and producibility evaluation. In this study,

we focused on the first stage that determines most of the

fundamental structure and parameters of the product. To

realize a high functionality and a low price, it is

important to utilize the computer simulations effectively

in the design processes so that the feasibility of the

functions is evaluated and the appropriate design

options are narrowed down at an early stage.

Figure 1. Typical design process of mechano-electrical

products.

Figure 2. Barriers between design processes.

Considering that only a limited geometric

information of the product is determined at an early

stage of design, the existing CAE technologies are not

suitable for simulations straightaway. Therefore, the

Japanese manufactures prefer to develop their own

original solutions such as an analysis software or a

simulation model, and to use their proprietary

knowledge base such as the original formulations,

empirical formulae, and technology know-hows built

over time. However, there are several practical issues in

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

752 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157751

using these original systems especially in respect of their

maintenance, integration with other CAD/CAE systems,

and validation of their solutions.

Figure 2 illustrates the typical issues encountered by

the Japanese mechano-electrical industry in interfacing

the design processes. As shown in the figure, there are

“barriers” to smooth digital data exchange between the

design processes of the CAD and CAE systems.

Therefore, many manufactures in Japan develop their

own original interfaces and data sharing methods.

However, this approach has a few inherent limitations

particularly in respect of the distribution of data.

Consequently, manual data exchange is still widely

adopted in Japan.

Figure 3. Problems in the joint development of a mechano-

electrical product with multiple companies.

While development of a product jointly by multiple

companies is becoming a common trend, there are

critical issues in data exchange and co-simulations by

multiple systems. Figure 3 illustrates the issues found in

the joint development of an automatic ticketing gate in

a railway station. In the case of a product developed by

a single company, the parts are simply purchased, while

their CAD models (electrical data) are required to

determine the appropriate fixing and assembly methods.

Nowadays, most products are developed by multiple

companies jointly through collaboration. It is necessary

that the engineering information (CAD and CAE data)

of all the parts are available in the early stage of design

to enable a comprehensive analysis of the product. In the

case of the example, the major parts are the ticket

transferring mechanism, chassis, and control software

for automatic ticketing gate operation. Compatibility of

the data and the models between the simulation systems

is an essential factor to realize the collaborative product

design successfully.

2 1D CAE for Mechano-Electrical

Products

In Japan, we constituted a Standardization Committee of

New Digital Verification Technology to establish a

standard method for using the computer simulation

technologies so that it can assist the design activities of

a mechano-electrical product in its function and

performance consideration stage.

In the design of automobiles and aircrafts, the product

functions are rapidly advanced, resulting in issues

similar to those related to a mechano-electrical product,

and therefore a problem-solving method known as

model-based development (MBD) is widely adopted. In

MBD, the various conditions related to the requirements

and functions of a product are defined by mathematical

models. By evaluating the models, the product functions

can be verified at the early design stages. Considering

that simple analyses are often employed prior to

determination of the 3D information, the MBD that is

applied at the early functional design stage is

specifically known as 1D CAE. Tools such as Modelica

(Fritzson 2011) and MATLAB/Simulink (Tyagi 2012)

have been used extensively in the automobile/aircraft

industries. In these tools, the mathematical formulae

related to the product functions are expressed as icons

on the GUI of a computer, while the mathematical

models for functional verification are represented by the

interconnections.

Figure 4. Paper transfer simulation of a plain paper

copying machine in early design stage.

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

DOI Proceedings of the 13th International Modelica Conference 753
10.3384/ecp19157751 March 4-6, 2019, Regensburg, Germany

The 1D CAE model is considered to be effective for

assisting the functional design of mechano-electrical

products. Figure 4 illustrates an example of MBD for the

design process of a plain paper copying machine, which

is a typical mechano-electrical product whereby it is

critical to analyze the behavior of the paper while it is

moving.

In earlier days, the paper behavior was checked by

using a trial product. When a paper was jammed during

the real-time use of a machine, the position and posture

of the parts were slightly adjusted by guessing the paper

behavior. Nowadays, the designers themselves analyze

the paper behavior right at the initial stage of design by

suitable paper transfer simulations (see Figure

4(a))(Hayakawa 2008). After introducing the paper

transfer simulation, the jamming troubles are

substantially reduced (see a graph in Figure 4 (b)).

As shown in this example, the 1D CAE model is

effective in assisting the functional and performance

design of the mechano-electrical products. Unlike the

automobile and aircraft industries, the 1D CAE model is

not a popular design method for mechano-electrical

products. Some reasons for its limited use include the

facts that:

⚫ The development cycle of a mechano-electrical

product is relatively brief, and therefore, the cost of

preparing the mathematical model for 1D CAE

represents a relatively large proportion of the total

cost of the product.

⚫ The basic structure of a mechano-electrical product

changes rapidly, and therefore, the prior models

cannot be used in new designs for obvious reasons.

In other words, a new model needs to be created for

every new product.

⚫ The scale of business of a mechano-electrical

product is relatively small, and therefore, it is not

economical to train the engineers in 1D CAE that

is a specialized subject.

To promote the use of 1D CAE in the mechano-

electrical industry, it is necessary to resolve the issues

associated with the use of 1D CAE as much as possible,

and to reduce the cost of creating the model. We

consider that the following two methods are effective in

increasing the efficiency of creating a 1D CAE model.

1. Development of modeling guidelines: Creation of a

1D CAE simulation model is a complex task, and

therefore, a trial and error process is indispensable.

Accordingly, the cost of creating the model

increases. To reduce the cost arising out of the trial

and error process, we are developing guidelines for

creating the 1D CAE models especially for

mechano-electrical products. In the guidelines, the

desirable steps in the modeling process as well as

the important points to be noted in each step are

mentioned. Accordingly, the guidelines help reduce

the trials and thereby minimize the modeling cost.

2. Clarification of important points in the combined

use of Modelica, MATLAB/Simulink and

SystemC: A mechano-electrical product is

generally a complex system comprising mechanical,

electrical/controlling, and software components. In

the industry, Modelica and MATLAB/Simulink are

emerging as popular tools for modeling the

mechanical and electrical/controlling components,

respectively. Programming languages derived from

C are usually used for describing the software

necessary in the mechano-electrical product. For

example, SystemC (Müller 2003) is recognized as

a standard tool for describing a hardware behavior

in the design of electronic circuits to be

incorporated in the product. We are investigating to

consolidate the important points to consider in the

combined use of Modelica, MATLAB/Simulink,

and SystemC.

In this paper, we explain our guidelines that facilitate

efficient development of the mechano-electrical

products. We also explain our findings in our

experimental construction of the 1D CAE model of a

mechano-electrical product using Modelica,

MATLAB/Simulink, and SystemC simultaneously. In

the next section, the guidelines developed by us are

explained in detail. In Section 4, our findings on the

combined use of Modelica, MATLAB/Simulink, and

SystemC software are explained with an example. We

expected that FMI/FMU (functional mock-up interface

/ unit) (Modelica Association 2014)(Hirano 2018) is a

promising standard to connect the 1D CAE models and

software components, however, the expected effect

could not be realized in some cases due to some

restrictions and issues. We summarize our conclusions

in Section 5.

3 Guidelines for Creating 1D CAE

Models of Mechano-Electrical

Products

There are some researches are known on the guidelines

of modeling. For example (Yazdani 2011) gives a

guideline of modeling power system model.

(Mathworks 2018) provides several guidelines for

model construction using MATLAB/Simulink. In this

paper, we explain our guideline for modeling behaviors

of mechano-electrical products. Figure 5 presents an

overview of our 1D CAE modeling guidelines. It depicts

a flowchart of a typical model development process

comprising 7 steps. In this chapter, we explain these

steps briefly.

Step 1 Target selection: In this step, the design target

is defined, and the function of the target product is

clarified. It is desirable to perform functional

development and reduce the function to physical models

with proper input and output parameters. It is also

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

754 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157751

desirable to establish communications with the designer

in charge of the target product in advance so as to

understand the solutions expected from the 1D CAE

model.

Step 2 Modeling policy determination: In this step,

the modeling level of the components is defined based

on the results of the functional development. The

functional specifications, scope of modeling, design

parameters and their ranges, potential disturbance, and

modeling accuracy are also formulated. The modeling

method depends on the functional specifications of the

model. For example, in the case of a gear train, it is

adequate to model a simple gear ratio if the conveying

rotation needs to be analyzed. However, if the purpose

is the analysis of the vibration of the gear train, it is

necessary to model the rigidity of the teeth of the gear.

Figure 5. Flowchart for creating proper 1D CAE model.

Step 3 Model implementation: In this step, a model

is implemented according to the modeling policy

formulated. Modelica-based tools (OpenModelica or

other commercial tools) or MATLAB/Simulink are the

usually employed tools. Selection of the proper tool is

critical in this step. Many Modelica-based 1D CAE

systems such as Dymola and SimulationX are

commercially available in the market. Each of these

systems has its own unique characteristics. It is

important that the most appropriate tool is selected

according to the design target.

Step 4 Verification: The models constructed are

verified in this step. There are two types of verification:

operation and accuracy. The operation is verified by

evaluating the following questions:

⚫ Does the model involve physical movements of

any of the parts during the operation?

⚫ Does the model work properly with multiple design

variables within their specified upper and lower

limits?

Additionally, we strive to confirm that the

implemented model exhibits a stable motion with errors

within the specified limits with reference to the accuracy

verification.

Step 5 Validation: In this step, the model of the

complete subsystem is constructed by connecting the

component models. The model is subsequently verified

at the subsystem level by comparison with actual

measurement values. The results are checked for the

accuracy requirements formulated in Step 2. If they do

not meet the requirements, then the Steps 2–4 are

repeated to refine the model. The outcome is then

compared with the actual machines, including the past

models or experimental benches, to confirm the

accuracy of the model. Finally, the PDCA (plan-do-

check-act) cycles are executed to improve the accuracy

of the model.

Step 6 Promotion: The models constructed are

forwarded to the design department. To encourage the

designers to use them, various promotional measures are

necessary. These may typically include distribution of a

usage manual, formulation of a report explaining the

theoretical background of the model, accuracy reports,

and other relevant documents. It is important that the

designers use the model with confidence.

Step 7 Maintenance: When the model is deployed in

the design, new demands emerge, such as expansion of

functions, addition of new design parameters, and so on.

To respond to the demands, it is essential that a model

maintenance system with proper human resources is

realized. It is also necessary to establish the rules for the

control and reuse of the models.

Figure 6. Simplified model of the image fixing unit of a

plain paper copying machine.

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

DOI Proceedings of the 13th International Modelica Conference 755
10.3384/ecp19157751 March 4-6, 2019, Regensburg, Germany

Figure 7. Temperature control model of the heat roller and

the pressure roller.

To evaluate the applicability of the guidelines to the

construction of a 1D CAE model, we conducted

empirical studies on the modeling of typical components

of a mechano-electrical product. In our test case, several

components that simplified the functions of the plain

paper copying machine were studied by employing

OpenModelica (Open Source Modelica Consortium) as

the modeling tool. We constructed the model by

adhering to the method described in our guidelines as

much as possible.

Figure 6 illustrates a block diagram of the

implemented 1D CAE model. It shows a simplified

mechanism of the image fixing unit of a copying

machine (Ricoh 2018). To generate a stable image on a

paper, the image fixing unit melts the toner by heating

and pressurizing and fixes it on the paper surface. As

shown in the figure, the heating and pressurizing are

performed when the paper and toner pass between a heat

roller and a pressure roller. The portion of the paper in

contact with the heat roller and the pressure roller is

called as nip. An electric heater is contained inside the

heat roller. The temperature is controlled by a thermistor

and an electric circuit so that the surface of the heat

roller is maintained at a temperature within a limited

range.

An analysis model of the temperature control is

illustrated in Figure 7. This model consists of five

components: a heat roller, a pressure roller, a paper, a

thermistor circuit with a temperature controller, and a

heat exhausting fan of the housing. The components are

modeled by considering the design of the heating and

pressurizing mechanism of actual copying machine. The

heat generated by the heat roller is transmitted to the

surface of the heat roller, the nip, and the pressure roller,

in this order. In our model, the heat roller and the

pressure roller were divided into four parts, respectively.

In the rotation process of the rollers, the combination of

the heat roller part and the pressure roller part in contact

was calculated to realize the switching of the heat

transfer model. In this model, heat transfer between the

adjacent part of the heat roller and the pressure roller,

and the heat dissipation into the air are also considered.

Figure 8. Analysis result of the temperature change at the

nip.

Figure 8 shows the analysis results. We considered

that the paper conveyance would be repeated from the

start time to the end time of the copying process. The

roller performs an acceleration motion from the start of

the operation until the specified angular velocity is

reached. After that, the rotation was continued with a

constant angular velocity until the end of the operation.

At the end of the operation, the roller performs an

equiangular deceleration from the specified angular

velocity. In our model, the temperature of the heat roller

is correctly controlled, and the changes in the

temperature at the nip is accurately reproduced before,

during, and after the paper conveyance.

4 Combined Use of Modelica,

MATLAB/Simulink and SystemC

In the design of a mechano-electrical product, an analog

device was replaced with a digital device for

promotional purposes of achieving higher functions of

higher quality at low production cost. For similar

reasons, the function realization method of the product

was changed from a method using hardware to a method

using software.

To determine a proper function realization method

(analog or digital, hardware or software), the designer

must execute the 1D CAE simulation of the product with

the mechanical, electrical/controlling, and software

components at an early stage of the design. In recent

products, use of FPGA (Field-Programmable Gate

Array) and custom LSI is emerging as a common trend.

Since a longer time is necessary in the development of

FPGA and custom LSI, it is necessary to start the

function analysis with 1D CAE models earlier. The

increased use of IoT technology is further accelerating

this trend.

To start the collaboration of the mechano-electrical

design and the software design earlier, a suitable method
for the combined use of the 1D CAE models of the

mechanical, electrical/controlling, and software

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

756 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157751

components is required. For mechanical design,

Modelica is emerging as a popular tool for creating 1D

CAE models. On the other hand, most electrical as well

as controlling engineers use MATLAB/Simulink as a

modeling tool. For the software development related to

a mechano-electrical product, SystemC is adopted as a

standard language for describing a hardware of the

electronic circuit to be incorporated in the mechano-

electrical product. To realize the 1D CAE simulation of

the total mechanism, the method of data sharing

between the Modelica models, MATLAB/Simulink

models, and SysmteC software must be standardized.

Figure 9. A simple model of the paper transferring

mechanism of a copying machine.

Figure 10. Block diagram of unit A (Object transferring

mechanism with a belt).

We consider that a method based on the FMI standard

is promising for sharing the data between simulation

models using different implementation technologies. To

clarify the problems in the data sharing using FMI, we

performed several experiments implementing the 1D

CAE models with Modelica, MATLAB/Simulink, and

SystemC, and combined them using FMI for realizing

the total simulation. Figure 9 illustrates a test case. This

is a simplified model of a paper transferring mechanism

of a copying machine. This model has three basic units

that are denoted as unit A, unit B, and unit C.

Figure 10 shows a block diagram of unit A. This unit

is an object (paper) transferring mechanism with a belt.

This unit changes the motion as an object passes in front

of the light blocking sensor S1, S2, and S3.

1. When the power is turned on, the driving motor

rotates at speed M0.

2. When the object passes in front of the light

blocking sensor at S1, the speed of the drive motor

is switched from M0 to M1.

3. When the object is further conveyed and passed in

front of the light blocking sensor at S2, the speed of

the driving motor is switched from M1 to M2.

4. When the object is transported and passed in front

of the light blocking sensor S3, the speed of the

drive motor is switched from M2 to M0.

The unit C is a mechanism to identify the image of an

object (paper). This mechanism has two devices GS1

and GS2 for capturing an image on the object. GS1

captures the image in a region R1 on the object. Another

device GS2 obtains the image in a region R2 on the

object. The images captured are processed by an image

processing unit Ip. This unit outputs a signal according

to the captured image. The output signal is used in the

following object sorting operation.

Figure 11. Block diagram of unit B (Object sorting

mechanism).

Figure 11 illustrates a block diagram of unit B. This

unit is a mechanism to sort the transferred object. It

controls the inclination angle of a bridge according to

the signal given by the unit C, and it sorts the object to

tray1 or tray2. In the initial state, the bridge is in

horizontal orientation.

⚫ When the signal is 1, a solenoid S0 is rotated and

the bridge is connected to tray1. When the sorted
object is passed in front of the light blocking sensor

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

DOI Proceedings of the 13th International Modelica Conference 757
10.3384/ecp19157751 March 4-6, 2019, Regensburg, Germany

S5, the bridge is rotated back to the initial

horizontal orientation.

⚫ When the signal is 2, the bridge is connected to

tray2. When the sorted object is passed in front of

the light blocking sensor S4, the bridge is rotated

back to the initial orientation.

Figure 12. Combined use of Modelica,

MATLAB/Simulink, and SystemC for implementing

the paper transferring system.

Figure 13. Analysis result of unit A.

Figure 14. Analysis result of unit C.

In the implementation of the models, Modelica is

used for modeling the unit A and unit B. Behavior of the

electronic circuit of the image capturing and processing

unit (unit C) is implemented using SystemC. The control

softwares of the three units are realized using

MATLAB/Simulink. Using the export function of FMI,

unit A and unit B are incorporated into the control

software. Since FMI is not supported by SystemC, the

image capturing and processing software is integrated

with the control software using the S-function of the

MATLAB/Simulink. Figure 12 illustrates the

relationships between Modelica, MATLAB/Simulink,

and SystemC in our implementation.

By using the combined models, the engineers can

analyze the effect of the change of the design parameters

of the units on the behavior of the mechanism. The

following three issues were detected in the verification

result of our model.

1. Management of the simulation step time: Figure

13 shows the analysis result of the unit A. The three

curves in the graph represent the object displacement

(blue curve), distance between image sensor GS1 and

object (yellow curve), and signal output from GS1 (red

curve). Figure 14 shows the simulation result of the

operation of the unit C. As shown in the two graphs, the

time step of the simulations is much different between

the unit A (time step is in s) and unit C (ns). When the

total simulation is executed following the time step of

the unit A, the high frequency behavior of the unit C

cannot be detected. The simulation of the unit A must be

repeated a number of times when the total simulation is

executed according to the time step of the unit C. The

latter case causes an increase in the computation time

and the accumulation of the computation errors. In the

co-simulation of the mechanical system (unit A) and the

electronic circuit (unit C), the designer must pay

attention to the validity of the time step in the simulation.

Similar problem was discussed in (Centomo 2016).

2. Signal transmission between the models: In the

control process of the paper transferring mechanism,

various parameters of the physical quantities are

exchanged between the components and the FMUs. In

addition to the physical quantities, the signals that

trigger the events are also exchanged. For example, the

start and end of the operation of the units in our model

are triggered by mutual sending and receiving of the

signals. In our experiments, the signals were not

successfully transmitted between the software

components written in SystemC and the controlling unit

performed by MATLAB/Simulink. This problem is

expected to be resolved by incorporating the SystemC

unit into the controlling unit by using FMI.

3. Selection of proper design parameters: The

central purpose of the combined simulation is to

determine the optimal design parameters by executing

various simulations with different design parameters. In

the design of the electrical/electronic system, the clock

frequency is usually selected as a design parameter in

the time domain. On the other hand, the processing time

is usually adopted as a design parameter of the

mechanical system. In our demonstration of the paper

transferring model, the processing time is selected as a
common parameter in the time domain. The design

parameter of the electrical/electronic system is given by

Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products

758 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157751

converting the processing time to the time steps counted

in the clock frequency. An incorrect selection of the

design parameters would necessitate cumbersome

parameter conversions and thereby affect the work

efficiency in the simulation. Therefore, it is necessary to

the select the design parameters carefully.

5 Conclusions

To realize an efficient design of a mechano-electrical

product, it is important to utilize the 1D CAE

simulations effectively in the early functional and

performance consideration stage. In the automobile and

aerospace industry, the use of the 1D CAE model is

already a common practice. The model is considered to

be effective for assisting the functional and performance

design of the mechano-electrical products; however, it

has not been adopted as a design method for these

products in the past.

To promote the use of the 1D CAE model in the

mechano-electrical industry, it is necessary to resolve

the issues associated with the use of the model as much

as possible. In this paper, we propose the guidelines for

creating a proper 1D CAE model. In the guidelines, the

desirable steps in the modeling process as well as the

important points to be noted in each step are mentioned.

By following the guidelines systematically, we can

minimize the modeling cost.

In the 1D CAE simulation of a mechano-electrical

product, Modelica, MATLAB/Simulink, and SystemC

are used as the modeling tools. We investigated to

consolidate the important points to consider in the

combined use of these three tools. Through the

development of simplified models of the plain paper

copying machine, we found that there are three critical

issues in their combined use: 1) management of

simulation step time, 2) signal transmission between the

models, and 3) selection of proper design parameters.

It is a difficult task to quantify the effectiveness of the

developed guidelines and the points learnt in the

combined use of Modelica, MATLAB/Simulink, and

SystemC, but we strongly believe that these results are

helpful in creating the models without mistakes. We

plan to distribute our research results to the member

companies of the Standardization Committee of New

Digital Verification Technology so as to evaluate its

applicability thoroughly.

References

Centomo, S., Deantoni, J., De Simone, R., “Using SystemC

Cyber Models in an FMI Co-Simulation Environment:

Results and Proposed FMI Enhancements,” Proc. 2016

Euromicro Conference on Digital System Design (DSD),

2016. DOI: 10.1109/DSD.2016.86

Fritzson, P., “Introduction to Modeling and Simulation of

Technical and Physical Systems with Modelica,” Wiley-

IEEE Press, 2011.

Hayakawa, S., et al., “CAE Technology for Mechanical

Design,” Technical Report 18, Fuji Xerox Co., Ltd, 2008 (in

Japanese)

Hirano, Y., “Toward the model exchange by using FMI

(Functional Mockup Interface) JSAE WG Activities,” Proc.

FMI FORUM 2018 in Japan, 2018.

Mathworks, “Modeling Guidelines”,

https://jp.mathworks.com/help/simulink/modeling-

guidelines.html?lang=en.

Modelica Association, “FMI Version 2.0, FMI for Model

Exchange and Co-Simulation,” https://fmi-

standard.org/downloads/ 2014.

Müller, W., Rosenstiel, W., Ruf, J. (Eds.), “SystemC,

Methodologies and Applications”, Springer, 2003.

Open Source Modelica Consortium, “OpenModelica User’s

Guide, Release v1.13.0-dev-493-gddc51eb.”

Ricoh Company, Ltd,

https://jp.ricoh.com/kouken/science_caravan/QandA/scienc

e/qanda2_18.html, reviewed in Nov. 3, 2018. (in Japanese)

Tyagi, A. K., “MATLAB and Simulink for Engineers,”

Oxford University Press, 2012.

Yazdani, A. et al. “Modeling Guidelines and a Benchmark for

Power System Simulation Studies of Three-Phase Single-

Stage Photovoltaic Systems,” Proc. IEEE Transactions on

Power Delivery, Vol. 26, Issue 2, April 2011, pp. 1247-1264.

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

DOI Proceedings of the 13th International Modelica Conference 759
10.3384/ecp19157759 March 4-6, 2019, Regensburg, Germany

Advanced Modeling of Electric Components in Integrated Energy Systems with the
TransiEnt Library
Heckel, Jan-Peter and Becker, Christian

759

Advanced Modeling of Electric Components in Integrated Energy

Systems with the TransiEnt Library

Jan-Peter Heckel Christian Becker

Institute of Electrical Power and Energy Technology, Hamburg University of Technology, Harburger Schloßstraße 20,

21079 Hamburg, Germany, {jan.heckel,c.becker}@tuhh.de

Abstract
Integrated Energy Systems (IES) with the coupling of

electricity, gas and heat are assumed to be a suitable

concept for future energy systems. For the necessary

energy system analysis with respect to dynamics and

stability, powerful tools are needed. Such tools should

be provided in open toolboxes to make the research

more transparent, comprehensive and communicative. It

is aimed that scientists collaborate on models for

multimodal energy system analysis.

The dynamic simulation is a method that allows to

consider transient, non-linear effects and controller

design. The TransiEnt Library, developed and

established at Hamburg University of Technology

(TUHH), offers such a toolbox. Previous versions of the

library worked with limited electrical models. In this

paper, the extension of the TransiEnt Library with new

models, that allow to consider stability effects of the

electric grid, is described. To do so, features from

Modelica® and its specification are used to create an

advanced framework for the electrical part of IES. As a

result, IES with interconnected electric grids can be

modeled and simulated more precisely.

Keywords: Integrated Energy System, Electric Energy
System, Load Flow Calculation, Frequency Stability,
Voltage Stability, Renewable Energy

1 Introduction

The TransiEnt Library (Hamburg University of

Technology, 2018) is a Modelica® (Modelica

Association 2017) library for the simulation of an IES

with high share of renewable energies. The complete

library is open-source. The TransiEnt Library was

developed within the project TransiEnt.EE (BMWi

03ET4003) as a fundamentally new approach for

modeling IES with the method of dynamic simulation.

TransiEnt.EE was completed in 2017 and the successor

project ResilientEE (BMWi 03ET4048) has been started

subsequently. The TransiEnt Library is implemented in

the simulation environment Dymola® (Dassault

Systèmes, 2018). Within the Transient.EE project the

main focus of the entire system modeling was mainly
put on heat and gas system representation with a reduced

scope of the electrical system part. This paper presents

the extension of the TransientEE Library by increased

modeling and simulation capabilities concerning

dynamic and stability phenomena of meshed electrical

grids.

The paper starts with an illustration of the political,

technical and organizational background for IES. This

includes the goals and already existing results of the two

projects mentioned above. The new models’ purpose

and their level of detail is explained. In section 2, the

development and implementation of the new electrical

models are introduced and explained in detail. Section 3

contains three implemented example models including

the new features. The paper closes with a conclusion and

an outlook to further research work.

1.1 Energy Transition and Integrated

Energy Systems

The motivation of the projects TransiEnt.EE and

ResiliEntEE is the persisting transition of the German

energy supply known as Energy Transition. It is planned

to increase the share of renewable energies in the next

decades in order to decrease the carbon dioxide

emissions. Furthermore, the nuclear power phase-out

was decided after the Fukushima incident in 2011. In the

electrical sector, the renewable energies should have a

share of at least 80 % in 2050 (German Federal Ministry

of Justice und Consumer Protection, 2017).

The fluctuating generation of the renewable energies

must be balanced with the volatile consumption. This is

only possible by using storage technology. Electric

storages are considered, but their power output and

storage capacities are limited and costs per kWh energy

storage are high. Hence, the idea of IES to couple the

sectors electricity, gas and heat is considered. The

coupling is performed by primary coupling

technologies. These technologies are for example

Power-to-Gas (PtG), Combined-Heat-and-Power

generation plants (CHP), Combined Cycle Gas Turbine

(CCGT), Fuel Cells (FC) but also technologies like gas

boilers, gas turbines (GT), electric boilers, known as

Power-to-Heat technology. Figure 1 shows an example

of an IES with different technologies.

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

760 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157759

Figure 1. The three sectors with examples of primary

coupling technology (red), generation technology (blue),

storage technology (green) and civil sectors (yellow)

By multimodal sector coupling, the storage possibilities

in the non-electrical sectors can be used for

compensating the imbalance between renewable energy

generation and consumption. Gas and heat grids

themselves are assumed as distributed storages because

they can buffer failures much longer than the electric

grid. Gas and thermal storage technology are considered

to have higher energy capacity, power output and lower

costs per kWh energy storage than electric storages.

Nevertheless, future IES must be investigated in a

systematic way to estimate their opportunities and risks.

1.2 Project TransiEnt.EE

The project TransiEnt.EE investigated innovative

possibilities for an efficient energy supply by integrating

renewable energies in the existing grid infrastructure.

For this, the IES of the city of Hamburg was regarded.

The main innovation was the development and use of

dynamic simulation means for the entire energy system

analysis. Dynamic simulations facilitated to investigate

non-linear behavior of components, control strategies

and system stability.

It was shown that the sector coupling increases the

flexibility of the energy supply. The gained flexibility

allows a higher share of renewable energies (Andresen

et al, 2017).

1.3 Project ResiliEntEE

In the current ResilientEE project, the scope of IES

analysis and design is extended to Northern Germany.

With this new example region, the topologies of the

electric and the gas grid come into the focus of study to

a much higher level of detail. The stability of the electric

grid coupled with subsystems of the energy sectors and

the compliance of the demanded limits for characteristic

values are to be investigated.

Finally, the resilience of the IES should be

benchmarked. For this benchmark, it is planned to

introduce a quantified figure to compare different

scenarios. From this analysis, suggestions for further

improvement, i. e. an increase of the system’s resilience,
should be developed. Three predefined scenarios should

be regarded within the project: first, a centralized

scenario of larger power plants and a centralized control

scheme, secondly, a decentralized scenario and thirdly a

scenario according to the German grid development

plan (Netzentwicklungsplan) 2035.

1.4 Purpose of Models

In the frame of the TransiEnt.EE project, the electric

grid is modeled as a copper plate. Therefore, the

dynamic representation is limited to time-dependent

active power balance and system frequency as well as

power-frequency-control (Andresen et al, 2015).

Furthermore, the TransiEnt Library offers models for

unmeshed grids without branches. These models limit

the possibilities of electric grid modeling. Standard

methods for electric power systems like load flow

calculations, angle stability and voltage stability

examination are not possible with these models. The

modeling approach does not allow to compute voltages

and reactive power values.

Hence, it is necessary to develop and implement

extended model features that fit into the existing

framework of the TransiEnt Library. Components from

already existing Modelica Libraries for the modeling of

electric power systems are not compatible with this

framework. Detailed models for gas- and heat-

processes already exist in the TransiEnt Library. The

extension for the electric grid empowers the TransiEnt

Library to become a complete and unique toolbox for

universal steady-state and dynamic energy system

modeling and analysis.

The use of Modelica has many advantages even for

the new electrical models. Equations and system

structures can be implemented directly. Connectors

permit interfaces between sectors and their components

and combine the components mathematically to one

model.

The main advantage Modelica offers in this context

is its modularity. The modularity allows to replace

components easily. New features and models can be

added by different editors in a simple way.

The TransiEnt Library is designed for energy system

analysis performed by energy engineers and users in the

energy and power economy. Hence, the electric

component models are required to be easy to use for

those with different backgrounds as well.

1.5 Level of Detail

In complex, dynamic models of energy systems,

dynamics of the technologies from different energy

sectors are coupled in order to cover their interaction. In

general, the electric part of the coupled system has

higher dynamics than the processes in the gas and heat

sector. Consequently, the risk of a stiff problem occurs.

To deal with this risk, models are created in different

levels of detail for different time scales which can be
replaced by each other.

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

DOI Proceedings of the 13th International Modelica Conference 761
10.3384/ecp19157759 March 4-6, 2019, Regensburg, Germany

In the ResiliEntEE project, systemic concepts for

model reduction have to be used. Furthermore, it is

deemed to be reasonable to consider only dynamics with

time constants above 1 s in order to avoid stiffness.

2 Implementation of New Models

The new models represent interconnected grids with

components such as generators, transmission lines and

transformers. The basis for this modeling is the

complex, quasi-stationary calculation of alternating

current networks. The main part of electric grid

modeling is the connector which is described in the

following paragraph before the components will be

introduced.

2.1 New Connector Complex Power Port

In the electrical part of the energy system, connectors

called Power Ports are used to link several components

with each other. In the TransiEnt Library, there are three

Power Ports with different levels of detail.

 Active Power Port

 Apparent Power Port

 Complex Power Port

The three Power Ports only regard one phase of the

three-phase system assuming this to be symmetric. The

Active Power Port is the connector developed and used

in the TransiEnt.EE project. Because it just contains

active power and frequency, this port can only be used

for electric grids modeled as copper plates. The

Apparent Power Port is capable of modeling grids

without branches, arranged as one line. This is made

possible by adding voltage and reactive power to the

connector. For calculating the partition of power at

branches, another electrical quantity is necessary. The

Complex Power Port therefore adds the angle of the

complex voltage phasor to the connector quantities.

When regarding the Modelica specification, it

becomes clear that the Complex Power Port is

overdetermined by one quantity. There should not be

more than one potential variable per flow variable. In

this case, there are two flow variables, the active and the

reactive power, and three potential variables, voltage

magnitude, voltage angle and the frequency. The two

quantities of the complex voltage can be assigned to the

two power flows which all together build the complex

representation of the electric network. But the frequency

is an additional potential variable which cannot be

assigned to a flow variable. Physically, the frequency is

not an independent quantity. The frequency is part of the

models because of the quasi-stationary approach.

Additionally, the frequency is part of the Complex

Power Port and hence, an available information in all

parts of the electric grid in this modeling approach.

Within the model approach for the ResiliEntEE project,

it is intended to only have one grid frequency. This is a

justified simplification for the grid model of Northern

Germany as it is strongly meshed. For larger networks,

different local frequencies must be considered to take

care of power oscillations. In section 2.3, it is discussed

how to extend the concept to more than one frequency.

To avoid overdetermined Differential Algebraic

Equation Systems (DAE) in interconnected electric

grids, the procedure mentioned in the Modelica

Specification section 9.4 is followed. With this

procedure, the Complex Power Port is defined as

follows.

// Potential variables ("technical

connection conditions")

 Modelica.SIunits.Angle delta "Voltage

Angle";

 Modelica.SIunits.Voltage v "Voltage of

grid";

 TransiEnt.Basics.Units.Frequency2 f

"Frequency of net";

 // Flow variables ("Transmitted

information")

 flow Modelica.SIunits.ActivePower P

"Active Power in Connector";

 flow Modelica.SIunits.ReactivePower Q

"Reactive Power";

 The Type Frequency2 has the function

“equalityConstraint” as defined in the specification. The

algorithm is:

algorithm

 assert(f1-f2<1e-10,"Equal frequencies");

With this connector, electric grids can be connected via

one unipolar connector. This allows the well-known

unipolar representation of electric power systems which

facilitates the work with the components for users with

different backgrounds.

2.2 Steady-State Components

Stationary busses for single load flow calculations and

components for linking busses are available in the

TransiEnt Library as steady-state components.

Stationary busses are used as boundaries for different

quantities from the Complex Power Port. In electrical

power engineering, three kinds of stationary busses are

distinguished.

 Slack Bus: Voltage magnitude and angle are fixed;

the frequency is given for steady-state calculation

and the other quantities are calculated.

 PV Bus: Active power and voltage magnitude are

fixed; other quantities are calculated.

 PQ Bus: Active and reactive power are fixed; other

quantities are calculated.

The Slack Bus has the following code that defines it as

the root of the connection graph of Complex Power

Port’s frequency.

Connections.root(epp.f);

The PV Bus is defined as

Connections.potentialRoot for the frequency of the

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

762 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157759

Complex Power Port. These two functions are part of

the Modelica language. Slack and PV busses are

separate boundary models. For a PQ Bus, it is possible

to either choose a simple boundary model or the load

model with voltage and frequency dependency of active

and reactive power. The frequency is part of the

Complex Power Port due to the frequency dependency

of the load.

When performing load flow calculations, the nodal

voltages are determined. Because unknown quantities

are initialized by zero, all grid busses need to be

represented by one of these bus models. Even if no

generation or consumption is connected to a bus, a

boundary model must be chosen in order to prevent

division by zero and to speed up the initialization.

The main linking component is the transmission line.

Transmission lines are modeled using the Pi-network

representation which is valid for electrically short

transmission lines up to a length of approximately 150

km.

For modeling the behavior of a transmission line, the

n-port representation is a powerful way to build its

equations. When using admittance parameters in form

of an admittance matrix [𝑌], the transmission line with

its physical parameters Resistance 𝑅, Inductance 𝐿,

Capacitance 𝐶 and angular frequency 𝜔 can be

represented by the following equations.

(
𝐼1

𝐼2
) = [𝑌] ⋅ (

𝑉1

𝑉2
) (1)

[𝑌] =

[

1

𝑅 + 𝑗𝜔𝐿
+

𝑗𝜔𝐶

2

−1

𝑅 + 𝑗𝜔𝐿
−1

𝑅 + 𝑗𝜔𝐿

1

𝑅 + 𝑗𝜔𝐿
+

𝑗𝜔𝐶

2]

 (2)

𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖 = 𝑉𝑖 ⋅ 𝐼𝑖
∗ (3)

The port i has the voltage 𝑉𝑖, the current 𝐼𝑖, the complex

power 𝑆𝑖, the active power 𝑃𝑖 and the reactive power 𝑄𝑖.

The power quantities are balanced powers. In the

TransiEnt Library, the convention is that inflowing

powers are positive and outflowing powers are negative.

Consequently, generated power is assumed to be

negative and consumed power to be positive at electrical

connectors. With these equations, it is possible to

describe the transmission line in a numerically efficient

way that allows modeling of networks with up to

hundreds of busses. Transmission lines can be

parametrized by given values from literature or

customized values. The TransiEnt Library additionally

offers transformer models. Hence, electric networks

with several voltage levels can be modeled and

simulated.

Because of the overdetermined connector mentioned

in section 2.1, the linking components must be defined

as Connections.branch for the frequency of the

Complex Power Port for the elimination of the surplus

equation.

The load flow calculation function which has been

implemented in the TransiEnt Library has been

successfully validated with the commercial software

tool NEPLAN® (ABB, 2016).

2.3 Dynamic Components

The dominant dynamic components in electric grids that

are not fed by inverters are synchronous generators.

Their behavior can be modeled in different levels of

detail. Regarding the Complex Power Port, the simplest

way to model a generator is to couple the active power

with the frequency. The voltage is usually controlled

and therefore set to a fixed desired value and the reactive

power is calculated. The dynamic behavior is

represented by the mechanical swing equation.

�̈� = �̇� =
𝜔0

𝑇𝐴
⋅
𝑃𝑚𝑒𝑐ℎ − 𝑃𝑒𝑙

𝑆𝑟𝐺
 (4)

The generator and the turbine rotate at the angular

frequency 𝜔 that has the nominal value 𝜔0. The angle 𝜙

denotes the machine’s rotor wheel angle and the inertia

is described by the time constant 𝑇𝐴. The generator

which has the rated apparent power 𝑆𝑟𝐺 is driven by the

mechanical power 𝑃𝑚𝑒𝑐ℎ and generates the electric

power 𝑃𝑒𝑙. In the TransiEnt Library, the inertia of the

generator and turbine is described with an additional

component model for an inertia. Generator models are

offered in a slack as well as in a PV bus version. The

slack version fixes the voltage angle and therefore the

voltage angle reference for the quasi-stationary

consideration of the electric grid. The user can switch

between both versions by setting a Boolean parameter.

For a higher level of detail, the coupling between the

generator voltage magnitude and the active as well as

reactive power is considered. In general, synchronous

generators are typically modeled according to the Two

Axis Method (Arrillaga Arnold 1990, Milano 2010).

With the Two Axis Method, it is possible to describe the

non-symmetric design of the magnet wheel. Only

cylindrical rotor machines, which underlie slow

dynamic changes, can be modeled using the

synchronous reactance of just the direct axis which

corresponds to a single-phase schematic as shown in

Figure 2.

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

DOI Proceedings of the 13th International Modelica Conference 763
10.3384/ecp19157759 March 4-6, 2019, Regensburg, Germany

Figure 2. Steady-state model of synchronous generator as

electric circuit with alternating voltage source E and

synchronous reactance Xd.

The Two Axis Method is based on the Park

Transformation and not explained in detail (Park, 1929).

Models with this coupling between voltage

magnitude and the two forms of electric power need a

voltage controller for operation in electric grids.

Applied to the model in Figure 2, the voltage controller

determines a value for the excitation current which leads

to a voltage 𝐸 to obtain the desired nominal voltage at

the generator terminals. Models for voltage controllers

are combined with excitation system models. These

combined models are mainly linear time-invariant (LTI)

systems represented as transfer functions in feedback

loops. The Institute of Electrical and Electronics

Engineers (IEEE) recommends different types of such

models (IEEE, 2016). The TransiEnt Library offers DC

and AC excitation system models in accordance with the

IEEE recommendations.

Although the simulations in the ResiliEntEE project

will be done with a single overall system frequency, the

TransiEnt Library has the feature to compute different

frequencies for generators. It is possible to activate a

distinct frequency for every PV bus generator by a

Boolean parameter. This feature is implemented by the

following equation.

𝑑 𝜃𝑝𝑣

𝑑𝑡
= 𝜔𝑝𝑣 − 𝜔𝑠𝑙𝑎𝑐𝑘 (5)

The slack generator operates with the angular frequency

𝜔𝑠𝑙𝑎𝑐𝑘 while the PV bus generator operates with 𝜔𝑝𝑣

and has the polar wheel angle 𝜃𝑝𝑣. The polar wheel

angle of the slack bus is set to zero when using more

than one frequency. Different frequencies in electric

networks allow differently oscillating generators and

thus power oscillations in large electric networks.

Models for Power System Stabilizers (PSS) to damp

power oscillations can be implemented when using this

feature. With the consideration of more than one

frequency, it becomes necessary to determine a

frequency that is used as the overall grid frequency at

different places in the network for dynamic loads and

other models instead of the slack generator’s frequency.

This problem has not yet been faced by the TransiEnt

Library. Currently, this topic is worked at TU Ilmenau

by combining phasor-based and electromagnetic

transient (EMT) simulation to a hybrid simulation

model which can be assumed as an approach for this

problem (Jiang et al, 2018).

In existing models from the TransiEnt Library like

power plant models, Modelica’s modularity allows to

define generator models, power boundaries and

connectors as replaceable components. This allows the

reuse of proven models from the non-electrical sectors.

In addition, the replaceable components permit a

variation of the model’s level of detail.

3 Simulated Examples

To demonstrate the new features of the TransiEnt

Library, some example system models are presented in

this section.

3.1 Steady-State Example

First, there is a steady-state example for demonstrating

the performance of load flow calculations. A test grid

for Northern Germany has been created and

implemented for performance analyses.

This Modelica model consists of three submodels.

One model represents the electric high voltage grid of

Mecklenburg-West Pomerania, another one Schleswig-

Holstein and Hamburg. The third sub model contains the

high voltage grid of Lower Saxony and Bremen. Using

the transformer models mentioned in section 2.2, it is

possible to represent the three voltage levels 380 kV,

220 kV and 110 kV. The topology is established

manually from data published by the Transmission

System Operators (TSO) (TenneT TSO GmbH, 2018;

50Hertz Transmission GmbH, 2018). The model is only

capable of representing one switching status of the real

grid. Figure 3 shows the Schleswig-Holstein and

Hamburg part of the model.

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

764 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157759

Figure 3. Model of the electric power grid of Schleswig-

Holstein and Hamburg in Dymola (d-maps, 2018).

Three scenarios are considered. The first scenario is

the hypothetical operation of the Northern German grid

as an electric island grid. The second scenario represents

power transit from the direction of Denmark into the

direction of the Netherlands. The third scenario is the so

called Dunkelflaute scenario that assumes minimal wind

and photovoltaic generation as well has high

consumption. Especially, the third scenario shows a

high use of the transmission line capacities which can be

seen as an indication of congestion. Detailed results can

be provided by the authors on request.

3.2 Dynamic Example — Only Electrical

The next model shows how dynamic simulations of

electric power systems can be performed with the

TransiEnt Library. This example covers only electric

and some necessary mechanical components. It is purely

theoretical and represents a grid with four generators

supplying a load variation in active and reactive power.

The example is used as a reference model in the

TransiEnt Library for the test of the component models.

The model size and the short time horizon allows to

choose the most advanced generator model with Two

Axis description and differential equations describing

the magnetic effects. This does not increase the

computational time significantly in comparison to

generator models with more simplified equations.

Figure 4 shows an excerpt of this simulation model. The

turbine is modeled as a first order time delay and a

mechanical boundary. The turbine is actuated by a linear

system of the same type which represents the

measurement delay and the proportional controller. The

inertia of the whole rotating system is represented in an

inertia model. The generator model is coupled to the

electric grid by a transmission line and a transformer. A

standard DC voltage controller is used. The bus between

transmission line and transformer is initialized by a

power boundary.

Figure 5 is an exemplary plot from this simulation and

shows the reaction of the overall grid frequency to a load

step. It shows a decrease in frequency because only

primary control (proportional control) and no secondary

control (integral control) is applied in this example. The

bus voltages in this example are also variable and an

example bus voltage on the 380 kV level shows the time

behavior in Figure 6. The voltage controller neither has

an integral behavior. Consequently, the nominal voltage

Figure 4. Excerpt of dynamic simulation model with mainly electric components.

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

DOI Proceedings of the 13th International Modelica Conference 765
10.3384/ecp19157759 March 4-6, 2019, Regensburg, Germany

cannot be reached in steady-state before and after the

load step.

Figure 5. Time plot of grid frequency in dynamic

example model.

Figure 6. Time plot of bus voltage on the 380 kV level.

3.3 Dynamic Example — IES

The third example should give an outlook to further

planned simulations within the ResiliEntEE project. In

these simulations, the components of all three sectors

electricity, gas and heat constitute one simulation model

that is simulated without the drawbacks of Co-

simulation. Co-simulations typically need interfaces

between different partial simulations. These interfaces

handicap physical constraints such as mass and energy

conservation and reduce the numerical efficiency.

Figure 7 shows the implemented dynamic system

model. The model consists of two conventional power

plants, a wind park as a renewable generation plant and

a CHP plant. A natural gas grid is also part of the

simulation model. For the heat sector, the CHP plant

supplies a heat consumer. The feed-in-station feeds

hydrogen into the gas grid when an excess of renewable

energy generation in the right subpart of the model

occurs. A battery storage is used to demonstrate some

flexibility and is implemented as a voltage controlled

device which sets the bus voltage to a fixed value. This

sufficiently models the behavior of a power electronic

inverter for the given time resolution.

When performing small parameter-variations, the

overall system behavior changes noticeably, showing

the high non-linearity of the system model. The model

shows that a suitable operation management is

necessary for IES. Especially, the storages must be

controlled to have a beneficial effect on the electric grid.

It can be shown that the battery storage helps to hold the

electric grid frequency in the desired band of ± 50 mHz.

This is done by a simple frequency control of the storage

input and output power with a proportional controller.

The behavior can thus be considered as an additional

primary control by the battery storage. It can also be

shown that the voltage control is important for setting

the bus voltages to appropriate values to minimize

transmission line losses and to prevent the overload of

transmission lines. An insufficient choice leads to an

overload of TransmissionLine and

TransmissionLine4 in the simulation.

4 Summary and Outlook

In this paper, the extension of the freely available

TransiEnt Library for modeling IES with the method of

dynamic simulation is shown. Compared to the models

used until the end of the TransiEnt.EE research project,

the new electrical models allow much more detailed

dynamic modeling and analysis of electric power grids.

Load flow calculations can be performed. The stability

of the electric grid can be analyzed by considering

frequency, voltage and angle stability. This is enabled

by new models based on a new connector that allows

interconnected networks without overdetermined DAE.

Numerically efficient transmission line, transformer and

generator models are provided in the TransiEnt Library.

Generator models allow different levels of detail in

dynamic modeling of the electric grid, starting with

simple models that only regard active-power-frequency

behavior up to models with excitation systems, Two

Axis Method based equations and distinct frequencies.

The high modularity of Modelica allows the simple

adaption of existing models as well as the extension of

existing models.

As already mentioned, the TransiEnt Library can be

extended within the given framework. As extension,

models for On-Load Tap Changer (OLTC), Flexible

Alternating Current Transmission Systems (FACTS)

and High Voltage Direct Current (HVDC) transmission

are possible. The main goal is the simulation of a

representative coupled system of Northern Germany. A

strategy for the system configuration has already been

considered and research for designing this complex

simulation model is currently done. The idea is the

separation of the complete system model into regional

subsystems. In the ResiliEntEE project, this method is
called Superstructure. Parallel to this, it is investigated

which stability phenomena should be regarded in the

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

766 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157759

electric grid for the chosen time and scenario horizon in

order to investigate the overall system resilience.

The introduced features will be part of the upcoming

release of the TransiEnt Library on the project website

(University of Technology Hamburg, 2018).

Acknowledgements
The authors greatly acknowledge the funding from the

German Federal Ministry of Economic Affairs and

Energy for the project "ResiliEntEE - Resilience of

coupled energy networks with a high share of renewable

energies" (ResilientEE- Resilienz gekoppelter

Energienetze mit hohem Anteil Erneuerbarer Energien,

project number: 03ET4048).

References

ABB AG: NEPLAN® (Version V557). Available at:

https://www.neplan.ch/neplanproduct/electricity, Zürich,

Switzerland, 2016

L. Andresen, P. Dubucq, R. Peniche, G. Ackermann, A.

Kather, G. Schmitz: Status of the TransiEnt Library:

TransiEnt Simulation of Coupled Energy Networks with

High Share of Renewable Energy. Proceedings of the 11th

International Modelica Conference, Versailles, France,

2015.

L. Andresen, P. Dubucq, R. Peniche, G. Ackermann, A.

Kather, G. Schmitz. Transientes Verhalten gekoppelter

Energienetze mit hohem Anteil Erneuerbarer Energien.

Abschlussbericht. Technische Informationsbibliothek,

Hannover, Germany, 2017. doi: 10.2314/GBV:1002659345

J. Arrillaga, C. P. Arnold: Computer Analysis of Power

Systems. John Wiley & Sons Ltd, Chichester, United

Kingdom, 1990

d-maps: Schleswig-Holstein (Deutschland) Grenzen (weiß).

Available at: https://d-

maps.com/carte.php?num_car=6499&lang=de, Trets,

France, 2018

Dassault Systèmes: Dymola® (Version 2019). Available at:

https://www.3ds.com/de/produkte-und-

services/catia/produkte/dymola/, Vélizy-Villacoublay,

France, 2018

Hamburg University of Technology: TransiEnt Library.

Available at: https://www.tuhh.de/transient-ee/, Hamburg,

Germany, 2018

German Federal Ministry of Justice und Consumer Protection:

Gesetz für den Ausbau erneuerbarer Energien (EEG).

Available at: https://www.gesetze-im-

internet.de/eeg_2014/, Berlin, Germany, 2017

IEEE Power and Energy Society: IEEE Recommended

Practice for Excitation System Models for Power System

Stability Studies. The Institute of Electrical and Electronics

Engineers, Inc., New York, United States of America, 2016

T. Jiang, X. Song, S. Schlegel, D. Westermann: Hybrids-

Simulation using eMEGASIM and ePHASORSIM for

Converter Dominated Distribution Grid. NEIS Proceedings,

Hamburg, Germany, 2018

F. Milano: Power System Modelling and Scripting. Springer,

London, United Kingdom, 2010

Modelica Association: Modelica® — A Unified Object-

Oriented Language for Systems Modeling — Language

Specification. Version 3.4, Linköping, Sweden, 2017

R. H. Park: Two Reaction Theory of Synchronous Machines

— Part I. AIEE Transactions, Vol 48, pp. 716-727, 1929

TenneT TSO GmbH: Statisches Netzmodell. Available at:

https://www.tennettso.de/site/Transparenz/veroeffentlichu

Figure 7. Example model for all three energy sectors within one simulation model in Dymola

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

DOI Proceedings of the 13th International Modelica Conference 767
10.3384/ecp19157759 March 4-6, 2019, Regensburg, Germany

ngen/statisches-netzmodell/statisches-netzmodell,

Bayreuth, Germany, 2018

50Hertz Transmission GmbH: Statisches Netzmodell.

Available at: https://www.50hertz.com/de/Anschluss-und-

Zugang/Europaeischer-Stromhandel-und-

Engpassmanagement/Statisches-Netzmodell, Berlin,

Germany, 2018

Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library

768 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157759

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

DOI Proceedings of the 13th International Modelica Conference 769
10.3384/ecp19157769 March 4-6, 2019, Regensburg, Germany

Robust and accurate co-simulation master algorithms applied to FMI slaves with
discontinuous signals using FMI 2.0 features
Nicolai, Andreas and Paepcke, Anne and Hirsch, Hauke

769

Robust and accurate co-simulation master algorithms applied to
FMI slaves with discontinuous signals using FMI 2.0 features

Andreas Nicolai1 Anne Paepcke1 Hauke Hirsch1

1Faculty of Architecture, Technische Universität Dresden, Germany, andreas.nicolai@tu-dresden.de

Abstract
Error control in system simulation using co-simulation
techniques is a task for the employed simulation mas-
ter. With the availability of the FMI standard version 2.0
and rollback capabilities of simulation slaves, master al-
gorithms can be implemented with support of error con-
trolled integration. Particularly, for automated integration
tools, the problem-specific dynamic adjustment of com-
munication interval lengths becomes a necessity to obtain
reliable co-simulation results while maintaining calcula-
tion efficiency. The article discusses various master algo-
rithms and time step adjustment strategies using a test case
with discontinuous input/output signals. As expected,
fixed-step Gauss-Jacobi and Gauss-Seidel algorithms are
found to be generally unsuited for the task. Iteration-
based time step adjustment rules are an improvement,
yet cannot recognize discontinuities resulting from time-
event. Since the traditional Richardson/step-doubling er-
ror estimate also fails to recognize discontinuous signal
changes, a slope-based modified Richardson-test is intro-
duced and successfully applied. Finally, it is concluded
that a suitable master algorithm for such problems is
the non-iterating Gauss-Seidel with modified Richardson
communication interval adjustment.
Keywords: FMI, co-simulation, master algorithm, error
control, adaptive

1 Introduction to FMI Co-Simulation
The FMI standard is an established simulation run-
time coupling standard, implemented by many simulation
tools, already. The standard is maintained by the Modelica
Association and defines two operation modes; model ex-
change (single central integration core) and co-simulation
(each slave has its own time integration engine). In this
article we discuss the co-simulation approach. In this sim-
ulation coupling procedure, a simulation master requests
simulation slaves to integrate a part of the simulation time
interval, and communicate output variables to the master.
Hence, this part is termed communication interval.

In the version 2.0 of the standard, a new feature was in-
troduced that allows the master to trigger slaves to store
their current state and restore it later. This permits the
solver to rollback the state of an FMU to a previous state
and repeat an already calculated communication interval.
With that capability a co-simulation master has now sev-

eral different options at obtaining a fully coupled/implicit
solution of the coupled problem.

Typical choices for such co-simulation master algo-
rithms have already been investiged (Clauß et al., 2017;
Schierz et al., 2012). The authors also show that other
new features of the FMI standard, like input/output extrap-
olation, positively influence simulation performance and
stability. Further, communication step adjustment strate-
gies were discussed that take into account the mathemati-
cal characteristics of the coupled simulation slaves.

In this article a special subset of problems will be an-
alyzed: co-simulation slaves with discontinuous real sig-
nals.

1.1 Reference implementation MASTERSIM

The standard master algorithms discussed in aforemen-
tioned publications were implemented in an open-source
reference implementation of a co-simulation master. The
software MASTERSIM1 has been used successfully in the
scope of building energy performance and system sim-
ulation. In particular, the master was used for the co-
simulation of a Modelica control model coupled to the
building energy simulation model NANDRAD (Nicolai
and Paepcke, 2017), whereby the building energy system
FMU implemented already FMI v. 2.0 features (Nicolai
and Paepcke, 2016).

The implemented algorithms are, however, of generic
nature and can be applied to a wide range of physical prob-
lem domains. In many of such domains, discontinuous
signals and variables appear and shall be treated correctly
by the co-simulation master. With correctly we mean, that
the simulation results are accurate within a requested/ac-
cepted tolerance band.

In order to analyze behavior of systems with discontinu-
ous signals, we will use a dedicated test case to observe ef-
fects and results related to the chosen co-simulation mas-
ter algorithms.

2 Test Case and Reference FMUs
The investigated test case was designed by C. Clauß
(Clauß and Majetta, 2016):

1https://sourceforge.net/p/mastersim

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

770 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157769

x1 [ref]

Part1.x1

-0,5

0

0,5

1

1,5

Time [s]
0 1 2 3 4 5 6 7 8

x2 [ref]

Part1.x2

-0,5

0

0,5

1

1,5

Time [s]
0 1 2 3 4 5 6 7 8

x3 [ref]

Part2.x3 [Gauss-Seidel]

Part2.x3 [Gauss-Jacobi]

-4

-2

0

2

4

Time [s]
0 1 2 3 4 5 6 7 8

x4 [ref]

Part3.x4 [Gauss-Seidel]

Part3.x4 [Gauss-Jacobi]

-4

-2

0

2

4

Time [s]
0 1 2 3 4 5 6 7 8

Figure 1. Non-iterating, constant step, step size 0.1 s; Reference solution (black), GAUSS-JACOBI (red), GAUSS-SEIDEL (blue)

x1 =

{
0 t < 1 or 2≤ t < 5
1 else

(1)

x2 =

{
0 t < 3 or 4≤ t < 6
1 else

(2)

x3 =

3 x1 = 1 and x2 < 0.01 and x4 < 2.5
−3 x1 < 0.001 and x2 > 0 and x4 >−2.5
0 else

(3)

ẋ4 = 2x3 (4)

The solution shall be obtained for the variables
x1,x2,x3,x4 in the time interval t ∈ [0,10], with x4 (0) = 0.
Note, that the conditions for variable x3 are not formulated
as comparisons with 1 or 0 for the variables x1 and x2, but
instead allow for small tolerances that may appear through
use of difference-quotient approximations in Newton al-
gorithms2.

2.1 Reference Solution
The problem has an exact solution, with time and state
events at: t = 1+2.5/6, t = 3+5/6 and t = 5+5/6.

2Since the problem is linear, Newton algorithms are not meaningful
and are not discussed in this article.

2.2 FMI Co-Simulation Scenario

The problem shall be split into 3 parts (corresponding to
one FMU, each), where the first implements equations (1)
and (2), the second implements eqn. (3) and the third im-
plements eqn. (4). Only part 2 and 3 are coupled in a cy-
cle. Part 1 shall be always evalulated first. In iterative
algorithms for the cycle, part 2 shall be evaluated before
part 3. Only part 3 needs to implement time integration,
whereby an analytic solution is available.

2.3 FMI Slave Generation

Initially, the FMI slaves were generated by writing the
equations in Modelica and exporting co-simulation slaves.
However, small deviations from the requested solution ap-
peared. For example, when FMU 1 was requested to
take 20 communication steps with 0.1 s each, the end
time point of the last interval passed to the FMU was
2.0000000000000004 s. However, the Modelica-exported
FMU still returned x1 = 1, either due to internal round-
ing errors or because the variable x1 was evaluated at the
beginning of the interval [1.9. . .2.0]. This was in disagree-
ment with the formulated problem, so a direct implemen-
tation of the FMI slaves in C/C++ code was used instead,
see also source code from of the MASTERSIM test suite
(Nicolai, 2018b).

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

DOI Proceedings of the 13th International Modelica Conference 771
10.3384/ecp19157769 March 4-6, 2019, Regensburg, Germany

x3 [ref]

Part2.x3 [Gauss-Seidel]

Part2.x3 [Gauss-Jacobi]
-2

0

2

4

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

x4 [ref]

Part3.x4 [Gauss-Seidel]

Part3.x4 [Gauss-Jacobi]
-2

0

2

4

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

Figure 2. Non-iterating, constant step, step size 0.1 s, enlarged view; Reference solution (black), GAUSS-JACOBI (red), GAUSS-
SEIDEL (blue)

3 Master Algorithms without Error
Estimation

3.1 Constant-step Master Algorithm without
Iteration (FMI v1)

Two popular examples for non-iterative constant-step co-
simulation master algorithms are GAUSS-JACOBI and
GAUSS-SEIDEL, both applicable for FMI slaves imple-
menting only version 1 of the interface specification. With
GAUSS-JACOBI, all FMUs are requested to integrate a
time interval [t,t+h] using input signals from time t. With
GAUSS-SEIDEL, the FMUs are evaluated in sequence,
where results from a previous FMU evaluation (output sig-
nals at t + h) are passed as inputs to a later FMU. Fig-
ure 1 shows results obtained when using constant commu-
nication interval lengths of 0.1 s. Clearly, the information
propagation in the GAUSS-SEIDEL method leads to bet-
ter results compared to GAUSS-JACOBI.

Results of FMU part 1 (variables x1 and x2) are identical
for both methods, since they only depend on time. The
differences in variables x3 and x4 are clearly visible. While
in GAUSS-SEIDEL a change in variable x1 or x2 is already
noted in the same communication interval, with GAUSS-
JACOBI the information takes one more interval to reach
FMU part 2 (variable x3) and a further interval to influence
variable x4 (see Figure 2).

Of course, the accuracy of the solution can be increased
by using smaller communication interval lengths, at the
expense of computational (and mostly wasted) power.

3.2 Iterative Algorithm with Constant Steps
Once an FMU implements rollback capabilities, the co-
simulation master can use iterative algorithms. It can be
expected, that use of an iterative algorithm ensures in-
formation to propagate into all coupled FMUs in a cycle
within the same communication interval. This implies,
that the same communication interval is (re-)computed
multiple times.

For iterative methods, a criterion for stopping the itera-
tion is needed. In MASTERSIM the weighted-root-mean-

square norm (5) is used for all exchanged real input/output
variables. Variables of other types are ignored in the test.

|y|WRMS =
1
n

√
n

∑
i=1

(
ynew,i− yold,i

|ynew,i|rtol +atol

)2

(5)

Convergence is reached when |y|WRMS≤ 1, with rtol and
atol being relative and absolute tolerances, respectively. In
order to avoid stalling of iteration, a maximum number
of iterations is specified. Once this limit is exceeded, the
simulation continues with the results from the last itera-
tion, which may be potentially inaccurate.

Indeed, an iterative algorithm used in conjunction with
GAUSS-SEIDEL (and tolerances rtol = atol = 10−5), im-
proves the results as shown in Figure 3.

3.3 Iterative Algorithm with Adaptive Com-
munication Step Size

When encountering a state event3, the GAUSS-SEIDEL
method does not converge. This observation can be used
to adapt the communication step size and thus detect the
state event with a discontinuous first derivative reliably.
Whenever an iteration does not converge within the given
maximum number of iterations, the communication step
is reduced and the step is reattempted. If the iteration con-
verges, (in this test case with linear coupling usually after
one repeated step,) the step size is enlarged. This proce-
dure successfully captures the state event, i.e. the corre-
lated variables x3 and x4 (Figure 4).

The factors, by which the communication step is re-
duced or enlarged, determine to a large extend the over-
all simulation effort. Also, a lower limit for the time step
has to be specified, below which a step is accepted even
without convergence (limit to fall-back to non-adaptive
variant). Without such a criterion, the simulation will get
stuck at the first state event by continuously reducing the

3A state event describes a discontinuity in a variable or its deriva-
tive resulting from a condition that depends on the value of the variable
itself. In contrast to that, a time event indicates a similar discontinuity/-
condition that exclusively depends on the simulation time.

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

772 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157769

x3 [ref]

Part2.x3

Part2.x3 [no iter]

-4

-2

0

2

4

Time [s]
0 1 2 3 4 5 6 7 8

x4 [ref]

Part3.x4

Part3.x4 [no iter]

-4

-2

0

2

4

Time [s]
0 1 2 3 4 5 6 7 8

Figure 3. GAUSS-SEIDEL, iterating, max 2 iterationens, step size 0.1 s (blue), non-iterating GAUSS-SEIDEL (green)

x3 [ref]

Part2.x3

-4

-2

0

2

4

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

x4 [ref]

Part3.x4

-4

-2

0

2

4

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

Figure 4. GAUSS-SEIDEL, iterating, max 2 iterations, variable step sizes (max. 0.14 s, min 0.005 s)

time step until rounding errors prevent further progress.
Also, an upper limit of the time step is needed, to avoid
overshooting over significant events. This limit is problem
specific and for building simulation models, for example,
the time step shall not exceed 30 min, so that hourly cli-
mate data is correctly considered. The heuristic parame-
ters for this test case were set as follows: fred = 0.2, fexp =
2,h f allback = 0.005s,hmax = 0.14s.

Consider Figure 4, where the occurance of the first state
event is shown. We can observe the following:

• The time delay of the curves x3 and x4 results from
the delayed jump of variable x1 (occurs at time t =
1.12s).

• t = 1.344s is reached with maximum step size of
0.14s, the next step with same step size leads to
x4 > 2.5 and result in a convergence error.

• Hence, the step will be reduced by a factor of 5
(∆t = 0.0224s) and t = 1.366s is reached; with x3 = 3
and x4 < 2.5 same as previous step and successful
convergence, and step size is enlarged (doubled) to
∆t = 0.0448s afterwards.

• For the next interval, 0.0448s is again too long, a re-
duction of step size to ∆t = 0.00896s brings the so-
lution even closer to the point of state event. Once

again the step will be doubled after iteration has con-
verged.

• The interval 1.375s to 1.393s will be completed with
exactly one iteration; conditions x3 = 3 and x4 < 2.5
remain unchanged.

• In the next interval, the state event is reached. First
the step size is reduced to ∆t = 0.007168s. With this
time step, the state event is surpassed and the step
is again reduced to ∆t = 0.0014336s. Now, the step
size is below the assigned lower limit of 0.005s, and
the step is processed/accepted without iteration.

• Afterwards the step is doubled to ∆t = 0.0028672s,
which is still below the fallback limit, and results are
again accepted without iteration.

• Now, that the discontinuity has been surpassed, in
the next intervals only one iteration is needed and
the step sizes are doubled after the end of each inter-
val (see Figure 5 for variation of communication step
sizes).

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

DOI Proceedings of the 13th International Modelica Conference 773
10.3384/ecp19157769 March 4-6, 2019, Regensburg, Germany

Co

m
m

un
ic

at
io

n
st

ep
 s

iz
e

[s
]

0

0,05

0,1

0,15

0,8 1 1,2 1,4 1,6 1,8 2

x4 [ref]

Part3.x4

Va
ria

bl
e

x4

0

1

2

3

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

Figure 5. Accepted step sizes and resultant variable x4 for iter-
ative GAUSS-SEIDEL method.

Difference

Communication interval

Figure 6. Illustration of Richardson/Step-doubling error test

4 Algorithm with Error Control
4.1 Error Estimate
While the previous algorithm did resolve the state event,
it is not able to recognize discontinuities in variables that
only depend on time (in this case, variables x1 and x2).
Utilizing the rollback functionality of FMI v2.0, a straight-
forward approch is the use of Richardson-extrapolation
(step-doubling) error test (Shampine, 1985). In the ba-
sic variant of this method, the step is executed first in full
length, followed by a rollback to begin of the last step and
execution of two steps with half communication length.
The difference between the final results is an indicator for
the integration error (Figure 6).

However, this error estimation fails when discontinu-
ities appear within the interval, as in the case of variable
x1. In this case, the results of the full and the half-step are
identical, and consequently the error cannot be detected.

Communication interval

Jump in second half

Jump in first half

Figure 7. Inability of step-doubling/Richardson error test to rec-
ognize discontinuities in the solution; blue curve shows correct
solution, the points show the results after FMU evaluation

Figure 7 illustrates the problem for both cases, when the
discontinuity arises either before or after half of the inter-
val.

A solution to this problem is to construct the error es-
timate based both on function results and slopes of the
intervals, eqns. (6) and (7), respectively. Derivative in-
formation provided by FMUs themselves (a feature rarely
supported, yet) is of no use, since derivatives at the end of
the interval may well be the same for the full and a half
interval (see Figure 7, bottom). Hence, the derivatives of
the approximated solutions are constructed by difference-
quotients:

εRichardson =
∣∣∣y(t +h)h/2− y(t +h)h

∣∣∣ (6)

εslope = h
(

ẏ(t +h)h− ẏ(t +h)h/2

)
= h

(
y(t +h)h− y(t)

h
−

y(t +h)h/2− y
(
t + h

2

)
h/2

)
(7)

The value y(t +h)h/2 is obtained after executing two half-
steps and y(t +h)h is the value obtained with the one full
step. The derivatives ẏ(t +h)h and ẏ(t +h)h/2 at t +h are
approximated by backward finite differences using the full
step and the second half-step, respectively. For the final
error test, the worst-case of both error estimates is taken
to determine the communication step size.

The derivation and formal analysis of the robustness of
this error estimate is beyond the scope of this article. How-
ever, since the construction of the error estimate requires
a full step and two half steps just as the Richardson-test, it
is meaningful to always evaluate both error tests individ-
ually and take the more critical one. Hereby, the master
algorithm will detect any discontinuity and adjust com-
munication step sizes, accordingly.

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

774 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157769

x1 [ref]

Part1.x1

-0,5

0

0,5

1

1,5

0,8 1 1,2 1,4 1,6 1,8 2

x2 [ref]

Part1.x2

-0,5

0

0,5

1

1,5

0,8 1 1,2 1,4 1,6 1,8 2

x3 [ref]

Part2.x3

-4

-2

0

2

4

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

x4 [ref]

Part3.x4

-4

-2

0

2

4

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

Figure 8. Results obtained with step-doubling/Richardson-error estimate and slope-difference error estimate

4.2 Results with Step Adjustment based on
Richardson and Slope-Difference Error
Estimates

The communication step is now adjusted based on the
aforementioned error estimates, whereby the relative and
absolute tolerances are set to 10−5, each. The lower limit
of a communication step is set to be 10−5 s. This limit is
also necessary for error controlled integration, since it is
not possible to surpass a discontinuity otherwise. While
implementing a formal root-finding procedure within the
FMI co-simulation setup is possible with the FMI 2.0 roll-
back functionality, it will hardly be efficient. Thus, there
must be a mechanism implemented to disable the error
check, once time steps become too small.

The computed results (see Figure 8) appear to be almost
identical to the exact solution. Around the occurance of
the first time and state events many evaluations close to the
event’s locations become visible. This is due to reduced
step sizes because of error test failures.

After passing a discontinuity/event the communcation
step is quickly enlarged again (with max. factor 2). The
resulting characteristic spikes (see Figure 9) in the evolu-
tion of the communication step sizes are representative for
linear or mostly linear problems with discontinuities.

The algorithm can reproduce the exact solution suffi-
ciently well while maintaining the tolerance limit of max.
10−5 (see Figure 10). Apparently, the lower step size limit
(10−5s) was selected sufficiently small to avoid overshoot-
ing the tolerance band.

Co
m

m
un

ic
at

io
n

st
ep

 s
iz

e
[s

]

0

0,05

0,1

0,15

0,8 1 1,2 1,4 1,6 1,8 2

x4 [ref]

Part3.x4

Va
ria

bl
e

x4

0

1

2

3

Time [s]
0,8 1 1,2 1,4 1,6 1,8 2

Figure 9. Accepted step sizes and resultant variable x4 for the
variant with error estimates.

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

DOI Proceedings of the 13th International Modelica Conference 775
10.3384/ecp19157769 March 4-6, 2019, Regensburg, Germany

x4 [ref]

Part3.x4

Va
ria

bl
e

x4

2,4997

2,4998

2,4999

2,5

2,5001

2,5002

2,5003

Time [s]
2,9997 2,9998 2,9999 3 3,0001 3,0002 3,0003

Figure 10. Remaining error in computed solution due to lower
communication step limit

Further, the results are nearly the same for the iterative
and non-iterative GAUSS-SEIDEL variants. The iterative
variant typically requires two evaluations of each FMU per
step. The simulation effort for the non-iterative variant is
halved compared therewith.

5 Conclusions
Problems related to GAUSS-SEIDEL iteration methods
in conjunction with discontinuities are well known for
many decades, and presented stabilization techniques (it-
eration limit, lower time step limit, etc.) are state-of-the-
art. Interestingly, though, these problems appear anew
with the introduction of FMI for co-simulation, since
authors/providers of individual FMUs may not have the
global view necessary to identify such problems (or do
not pay attention to potential numerical problems arising
in the coupled simulation). Also, many straight-forward
implementations of control models will generate discon-
tinuous real signals, which should be handled in a robust
way by co-simulation masters.

Without the FMI v. 2.0 state rollback feature, a suffi-
ciently accurate solution of such problems cannot be guar-
anteed. Users of a co-simulation master would have to
estimate a sufficiently small communication step, likely
resulting in poor simulation performance. Still, the risk of
unwanted errors remains.

In the presented case, a constant step size of 10−5s
would have been necessary for FMU v. 1 algorithms,
resulting in 106 FMU evaluations. With the step adapt-
ing iterative GAUSS-SEIDEL algorithm, only 2639 FMU
evaluations were needed. Hence, we can only recommend
to implement FMI interface version 2.0 with rollback
functionality (see open-source project FMICodeGenera-
tor (Nicolai, 2018a) to assist in generating a minimal code
base of such FMUs).

Implementing an error test procedure is generally advis-
able. However, when dealing with FMUs emitting discon-
tinuous signals, a step-doubling error test method should
be complemented with the presented slope-based check.
Otherwise, the co-simulation master will not be able to re-

liably detect discontinuities arising from time-events. For
the presented test case, the variant without iteration and in-
cluded error test yields the best performance, i.e. smallest
number of FMU evaluations while maintaining accuracy.
A more in-depth analysis of the various algorithms tested
and the respective FMU evaluation counts can be found in
the german test case publication (Nicolai, 2018c).

One has to keep in mind that the upcoming FMI 3.0
standard will address such issues to some extend. It will
allow FMUs to detect discontinuities and return prema-
turely to the master and by this notify the master about the
exact location of the discontinuity. However, similarly to
the introduction of the FMI 2.0 standard, it will take sev-
eral years until simulation slaves and co-simulation mas-
ters implement support for such FMI 3.0 features. Until
then, the proposed algorithm and error detection method
will be an effective way of ensuring accuracy.

Lastly, the test case shows how much influence the
choice of master algorithm and heuristic parameters may
have on the results. Also, during development of the
MASTERSIM code, many bugs appeared that may invol-
untarily cause the coupled simulation to generate wrong
results, despite the fact that the stand-alone tests done with
test FMUs provided on fmi-standard.org ran successfully.
We conclude, that co-simulation masters should addition-
ally be tested with coupling scenarios and tested against
provided, algorithm-specific results.

6 Acknowledgements
We gratefully acknowledge the support and funding re-
ceived from the German Federal Ministery for Eco-
nomic Affairs and Energy in the research projects EnOB:
EnTool-CoSim (#03ET1215A) and SimQuality - Ent-
wicklung von Qualitätsstandards für die energetische
Gebäude- und Quartierssimulation als Planungswerkzeug
(#03ET1570F).

References
Christoph Clauß and Kristin Majetta. FMI Co-Simulation Test

Scenarios. personal communication, 2016.

Christoph Clauß, Kristin Majetta, and Richard Meyer. Appli-
cation of Richardson Extrapolation to the Co-Simulation of
FMUs from Building Simulation. In Proceedings of the 12th
International Modelica Conference, Prague, Czech Repub-
lic,, pages 79–88, 2017. doi:10.3384/ecp1713279.

Andreas Nicolai. FMI Code Generator project. Github Repos-
itory, 2018a. URL https://github.com/ghorwin/
FMICodeGenerator.

Andreas Nicolai. Open-Source Co-Simulation
Master MASTERSIM, 2018b. URL http:
//bauklimatik-dresden.de/mastersim.

Andreas Nicolai. Co-Simulations-Masteralgorithmen -
Analyse und Details der Implementierung am Beispiel
des Masterprogramms MASTERSIM. Qucosa,
2018c. doi:urn:nbn:de:bsz:14-qucosa2-319735. URL

Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using
FMI 2.0 features

776 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157769

http://nbn-resolving.de/urn:nbn:de:bsz:
14-qucosa2-319735.

Andreas Nicolai and Anne Paepcke. Transformation
der Gebäudeenergiesimulation NANDRAD mit variablem
Zeitschrittlöser in eine Co-Simulation. In Proceedings of the
BauSIM 2016 in Dresden, 2016.

Andreas Nicolai and Anne Paepcke. Co-Simulation between de-
tailed building energy performance simulation and Modelica
HVAC component models. In Proceedings of the Modelica
Conference 2017 in Dresden (DOI:10.3384/ecp17132), 2017.

Tom Schierz, Martin Arnold, and Christoph Clauß. Cosimula-
tion with communication step size control in an FMI com-
patible master algorithm. In Proceedings of the 9th Interna-
tional MODELICA Conference; September 3-5; 2012; Mu-
nich; Germany, 2012.

L. F. Shampine. Local error estimation by doubling. Com-
puting, 34(2):179–190, Jun 1985. ISSN 1436-5057.
doi:10.1007/BF02259844. URL https://doi.org/10.
1007/BF02259844.

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

DOI Proceedings of the 13th International Modelica Conference 777
10.3384/ecp19157777 March 4-6, 2019, Regensburg, Germany

Development of a General-purpose Analytical Tool for Evaluating Dynamic
Characteristics of Thermal Energy Systems
Watanabe, Yutaka and Takahashi, Toru

777

Development of a General-purpose Analytical Tool for Evaluating
Dynamic Characteristics of Thermal Energy Systems

Yutaka Watanabe1 Toru Takahashi1
1Energy Engineering Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Japan,

{yutaka,toru-tak}@criepi.or.jp

Abstract
We present an original tool for analyzing the

dynamics of a wide range of thermal energy systems
using Modelica, developed by the Central Research
Institute of Electric Power Industry in Japan. This tool
was originally developed to analyze thermal power
generation systems and has been validated against
several sets of operational data so far. This paper reports
the extension of the tool to the calculation of the
thermophysical properties of not only water/steam and
air/gas but also various refrigerants implemented by the
ExternalMedia library. This addition expands the range
of energy systems that can be analyzed with the tool. To
validate the simulation data, a comparison between
experimental and simulation data targeting a CO2 heat-
pump loop facility was drawn.

Keywords: Modelica, energy system, heat pump

1 Introduction
A great deal of renewable energy sources (REs)

must be introduced to electric power grids to reduce CO2
emissions in the future. However, the fluctuating and
unpredictable power output of REs like photovoltaic
generation and wind power generation can destabilize
an electric power grid. Therefore, it is necessary to
establish a realistic approach to compensate for REs
load fluctuation. Thermal Power Generation (TPG)
systems, which have high efficiency and excellent
flexibility, is promising as a power source that handles
load fluctuation. If the flexibility of TPG systems can be
improved furthermore, it would be possible to introduce
a large amount of REs in the electric power grid while
reducing CO2 emissions. In both the design phase and
during the operation of such systems, dynamic
simulation is an important for determining the limits of
flexibility and improving the operability of TPG
systems.

The Central Research Institute of Electric Power
Industry (CRIEPI) in Japan has developed a dynamic
analytical tool based on Modelica for evaluating the
dynamic characteristics of a new and an existing TPG
systems (Takahashi et al., 2016; Watanabe et al., 2017).
The usefulness of this tool has been demonstrated by
applying it to evaluate dynamic characteristics and
improve the operability of TPG systems (Watanabe et
al., 2017).

Meanwhile, another option that adjusts the power
demand at the customer-side such as automatic demand
response and virtual power plant schemes have been
considered to cope with load fluctuation of REs in Japan.
Therefore, a dynamic analysis tool will be also needed
to evaluate the performance of demand side resources
such as cogeneration systems, heat pumps and an air-
conditioners that are affected by load-changing
operations. Novel customer-side systems will be also
needed to facilitate demand management.

In this study, we aimed at improving our original tool
more generically to analyze both TPG systems and
customer-side equipment systems. Initially, efficiently
adding and handling new working fluids such as
fluorocarbon-based refrigerants and natural refrigerants
posed developmental bottle necks; however, there are
already useful open source libraries developed like the
External Media library (Casella and Richter, 2008) for
the calculation of thermophysical properties, and it was
shown that this library could be combined with other
libraries (Quoilin et al., 2014; Casella et al., 2013) and
proved to be useful. For efficient implementation, using
these libraries to incorporate in our tool is also an
effective option, but there was a problem about model
connection and management between these libraries and
our existing tool. Therefore, the External Library was
directly implemented and a new package handling a
refrigerant fluids was added in our original tool. These
changes improve the modeling tool so that it could be
used to analyze the dynamic characteristics of various
types of energy systems more generically, such as a
complex energy system combining existing TPG
systems and heat pump systems.

In this paper, the outline of our new developed tool
was shown firstly. And then, as a case study for testing
the newly added part, a simplified dynamic model of a
heat pump system was constructed using this tool. The
model results are then compared with experimental data
of the CO2 heat-pump loop facility at CRIEPI for
validation.

2 Outline of Analytical Tool
A tool for analyzing TPG systems dynamically was

developed at CRIEPI based on the Modelica language
using Dymola environment (Takahashi et al., 2016;
Watanabe et al., 2017). In this tool, various component

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

778 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157777

models (e.g. compressor, gas turbine, combustor, heat
exchanger, steam drum, etc) mainly for analyzing TPG
systems are already in place along with a node model for
calculating the pressure and enthalpy between
components, a valve model calculating flows between
components, and a control model (e.g., a proportional–
integral PI controller). The component models are
subjected to mass and energy conservation equations
based on physical laws. The models are packaged in a
way that makes it easy to construct a dynamic system
model.

The original analytical tool could not analyze the
dynamic characteristics of equipment that uses either
synthetic (e.g., chlorofluorocarbons) or natural (e.g.,
CO2 and ammonia) refrigerant as the working medium.
Therefore, to model customer-side equipment such as
heat pumps or air conditioners, the function that
calculates thermophysical properties of the working
fluid needs to be extended.

Fig. 1 outlies the newly extended dynamic analytical
tool, which is based on the previous tool for TPG
systems and now incorporates the ExternalMedia library
(Casella et al., 2008; Trapp et al., 2014) for the
calculation of thermophysical properties. By
implementing the ExternalMedia library, the range of

working fluids that can be handled by this tool is
extended. The ExternalMedia library is an open-source
library and includes interface functions to return
calculation results of the thermophysical property value
using external software to the analysis model. The
ExternalMedia library links to REFPROP of the
National Institute of Standards and Technology
(Lemmon et al., 2010), CoolProp (Bell et al., 2014), and
FluidProp (Colonna and Stelt, 2004) as reference
external databese. In the ExternalMedia library, the
thermophysical value is defined as a variable with the
same form as the ThermodynamicState variable as it is
defined in Modelica.Media. Therefore, the library is
relatively easy to inconnect with each model element.

Table 1 lists the packages included in the dynamic-
characteristics analytical tool. In addition to the group
of packages for TPG systems, the new version of the
tool includes the “REFRIGERANT MODEL” package
to represent customer-side equipment model and uses
the ExternalMedia library for calculating the physical
properties of the working fluids. The “REFRIGERANT
MODEL” package contains basic and simple modes of
dynamic-characteristics of a compressors, heat
exchangers, piping, and valves and so on.

Figure 1. Schematic of the developed tool.

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

DOI Proceedings of the 13th International Modelica Conference 779
10.3384/ecp19157777 March 4-6, 2019, Regensburg, Germany

Table 1. Outline of packages in the analytical tool.
Type Name Outline Model Example

Equipment model STEAMMODEL Models for fluid dynamics analysis of

water and steam instruments

Volume element, Pipe, Valve, Steam

turbine, Drum, Heat exchangers, Pump,

etc.

GASMODEL Models for dynamic analysis of equipment

using fluids containing gases other than

water vapor

Volume element, Pipe, Valve,

Compressor, Combustors, Turbine,

Heat exchanger, etc.

REFRIGERANT
MODEL

Models for dynamic analysis of Freon

refrigerant or natural refrigerants

Volume element, Pipe, Valve,

Compressor, Turbine, Heat

exchanger, etc.

SIGNAL Models for signals and control Step signal model, ramp signal model,

PI controller model, etc.

Functions of thermal
properties of working
fluid

STEAMTABLE Functions for thermodynamic properties of

water and steam based on International

Association for the Properties of Water and

Steam 1997

Calculation functions of physical

properties such as enthalpy, pressure,

and specific volume concerning

water/steam

GASTABLE Functions for thermodynamic properties of

gas. Based on IGTC-83 paper (Matsunaga,

1983) and Chemical Properties Hand Book,

McGraw-Hill (Yaws, 1999) , create

functions necessary for dynamic analysis

Calculation functions of enthalpy,

pressure, specific volume, etc. Physical

property value concerning gases such as

CO2, O2, and H2O and mixed gas

ExternalMedia
(Casella and
Richter, 2008)

Functions for accessing NIST

REFPROP, CoolProp, FluidProp and

calculating physical property values

necessary for dynamic characteristic

analysis.

Calculation functions of physical

properties of the refrigerant provided

by external software.

Models and functions
required for model
creation or internal
computation

CONNECTOR Models that regulates connection of a

device model and a control model

Composition of the working fluid,

physical property value, and real

number

UTILITY General functions for calculation Number sorting

※Text in bold and red describes components added in the present study

3 Case Study
In this section, the validity and applicability of the

tool are verified by comparing results obtained with the
dynamic model constructed with the present tool with
data obtained from actual machine operation.

3.1 Outline of CO2 Heat-pump Loop
The target system is the CO2 heat-pump loop test

facility at CRIEPI (Saikawa et al., 1998). Fig. 3 shows a
photograph of the experimental apparatus, and Fig. 4
shows a schematic of the equipment. The apparatus
includes a compressor, gas coolers, an electro-motion
expansion valve, and evaporators. The compressor is an
oil-free reciprocating model driven by a variable-speed
inverter driven motor and has two pistons and cylinders.
The temperature and flow rate of the fluid in each heat
exchanger are controlled automatically.

Figure 3. Photograph of the CO2 heat-pump loop.

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

780 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157777

Figure 4. Schematic of the CO2 heat-pump loop.

Table 2. Specifications of the CO2 heat-pump loop.

Cycle Single-stage compression cycle
Power input to

compressor
<3 kW

(variable by inverter)
Compressor Reciprocating two oil-free

cylinders (D48 × L70 [mm])
Heating
capacity

4 - 7 kW

Working
pressure

Low pressure: 3 - 4 MPa
High pressure: 8 - 12 MPa

Heat source Brine
Heat sink Water

3.2 Dynamic Model of CO2 Heat-pump
A system model of this facility was constructed using

the extended analysis tool. Fig. 5 shows an outline of the
dynamic model of the CO2 heat-pump loop facility. In
construction of the dynamic model, the refrigerant
circuit is used in the “REFRIGERATORMODEL”
package, the water side circuit of the heat exchanger is
used in the “STEAMMODEL” package, and the
controller model is used in the “SIGNAL” package. The
calculation equations of the main component models are
as follows.

Compressor model:

The flow of the working fluid and the output temperature
considering the adiabatic efficiency are calculated with
Eqs. (1) and (2), respectively, and the compressor power
is calculated as Eq. (3):

𝐹 = 𝑓൫𝑁൯, (1)

ℎ௨௧ = ℎ +
(ೌି)

ఎ
, (2)

𝑊 = 𝐹 ∙ (ℎ௨௧ − ℎ). (3)

Gas cooler and Evaporator model:

The mass and energy equations for the refrigerant side
pipe and the water side pipe are represented as Eqs. (4)-
(7) (e.g. (Quoilin,2011)). The energy-balance and heat
transfer equations for the metal wall on the heat transfer
side are represented as Eqs. (8)-(10). These models are
also divided vertically and into sections i and j.

Refrigerant side:

𝑉, ቆ
𝜕𝜌

𝑟,𝑖

𝜕𝑝

𝑑𝑝
𝑑𝑡

+
𝜕𝜌

𝑟,𝑖

𝜕ℎ

𝑑ℎ,
𝑑𝑡

ቇ = 𝐹,ିଵ − 𝐹, (4)

𝑉, ൬−
𝑑𝑝

𝑟

𝑑𝑡
+ 𝜌,

𝑑ℎ𝑟,𝑖

𝑑𝑡
൰

= 𝐹,ିଵ൫ℎ,ିଵ − ℎ,൯ + 𝑄,
(5)

Water side:

𝑉௪, ቆ
𝜕𝜌

𝑤,𝑗

𝜕𝑝

𝑑𝑝௪
𝑑𝑡

+
𝜕𝜌

𝑤,𝑗

𝜕ℎ

𝑑ℎ௪,

𝑑𝑡
ቇ

= 𝐹௪,ାଵ − 𝐹௪,
(6)

𝑉௪, ൬−
𝑑𝑝

𝑤

𝑑𝑡
+ 𝜌௪,

𝑑ℎ𝑤,𝑗

𝑑𝑡
൰

= 𝐹௪,ାଵ൫ℎ௪,ାଵ − ℎ௪,൯

− 𝑄௪,

(7)

Metal wall:

𝑐𝑝,𝑀,

𝑑

𝑑𝑡
𝑇, = 𝑄, − 𝑄௪, (8)

𝑄, = 𝐾, ∙ (𝑇, − 𝑇,) (9)
𝑄௪, = 𝐾௪, ∙ (𝑇௪, − 𝑇,) (10)

Expansion valve model:

The flow rate is calculated with Eq. (11). The coefficient
varies depending on the valve-opening signal:

𝐹 = 𝐶(𝑢) ∙ ൫ඥ𝜌 ∙ (𝑃 − 𝑃௨௧)൯. (11)

In this model, the controller model (PI controller) is

used to control (i) the opening rate of the expansion
valve in response to the difference between the inlet and
outlet temperatures of the evaporator and (ii) the flow
rate of the water in the heat exchangers.

3.3 Simulation Conditions
To assess the validity of the dynamic CO2 heat-pump

model, the calculation values were compared with
previously reported experimental data from the CO2
heat-pump loop (Saikawa et al., 1998). Fig. 6 shows the
scenario used to assess the validity of the dynamic model.
In this case, the inverter frequency of the compressor
was varied, which changes the flow rate of the CO2
working fluid is changing.

Gas CoolerEvaporator

Heat SinkHeat Source

Compressor

Expansion Valve

flow

F

T P

T

T

T

T

T

T

T

P

F

F

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

DOI Proceedings of the 13th International Modelica Conference 781
10.3384/ecp19157777 March 4-6, 2019, Regensburg, Germany

Figure 5. Dynamic model of CO2 heat-pump-loop facility.

Figure 6. Test scenario for validation: the inverter
frequency of the compressor is changing.

The unmeasured model parameters in the dynamic
model, such as the adiabatic efficiency of the compressor
and heat transfer coefficient of the heat exchanger, the
heat and mass balance calculation using measured
operational data of 40Hz (seen in Fig.6) was carried out
using the EnergyWin software (Koda and Takahashi,
1999), and these estimated values are set as the initial
conditions. The performance parameters of each
component set as a function depending on flow rate
using the calculation results from steady-state
operational data at 20, 30 and 40 Hz. The volume and
weight of each equipment and the heat capacity of the
heat exchangers were set with reference to the design
specifications.

3.4 Results and Discussion
Figs. 7–9 compare the experimental data with the

simulation results for the CO2 heat-pump loop. As shown,
the dynamic simulation reproduces the behavior of the
operational process. In Figs. 7 and 8, the experiment data
and simulation results from the compressor outlet
disagree when the frequency decreases. The
simplification of the compressor model likely decreased
the simulation accuracy, and the model leaves out some
phenomena such as volume elements and heat loss.
Therefore the model of the compressor characteristics
should be prepared with more detail. In Figs. 9(a) and (b),
the simulated flow rate shows greater error when the
frequency decreases, likely because of the above-
mentioned error of the compressor outlet temperature. In
addition, the delay factor of the water side-circuit
volume element is not considered in the model. Although
the inlet temperatures of water from the heat source and
heat sink fluctuate slightly in experimental data, the
setting parameter of constant inlet water temperature
also seems to affect the quantitative results of the
simulation, except when the compressor is driven at 40
Hz. The delay in the measuring instruments can be
explains this error because the responding speed of this
system is quickly. Regarding the quantitative difference
when the compressor is under a partial load, the state
quantity of working fluid in the heat exchanger and the
change of the heat transfer coefficient following the
phase change needs to be modeled in greater detail.

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160

F
re

qu
en

cy
H

z

Time min

Data acuisition point at 40Hz

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

782 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157777

(a) Compressor outlet

(b) Expansion valve inlet

(c) Evaporator inlet

(d) Evaporator outlet

(e) Difference in evaporator inlet/outlet temperature

Figure 7. Results of temperature behavior.

(a) Compressor inlet

(b) Compressor outlet

Figure 8. Results of pressure behavior.

(a) Heat source

(b) Heat sink

(c) CO2 working fluid

Figure 9. Results of flow rate behavior.

70

80

90

100

110

120

130

140

0 20 40 60 80 100 120 140 160

Te
m

pe
ra

tu
re

℃

Time min

experiment data

simulation

34

36

38

40

42

44

46

0 20 40 60 80 100 120 140 160

Te
m

pe
ra

tu
re

℃

Time min

experiment data

simulation

-8

-4

0

4

8

0 20 40 60 80 100 120 140 160

Te
m

pe
ra

tu
re

℃

Time min

experiment data

simulation

0

4

8

12

16

0 20 40 60 80 100 120 140 160

Te
m

pe
ra

tu
re

℃

Time min

experiment data

simulation

0

4

8

12

16

20

0 20 40 60 80 100 120 140 160

Te
m

pe
ra

tu
re

℃

Time min

experiment data

simulation

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160

Pr
es

su
re

M
P

a

Time min

experiment data

simulation

8

8.5

9

9.5

10

10.5

11

0 20 40 60 80 100 120 140 160

P
re

ss
ur

e
M

P
a

Time min

experiment data

simulation

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160

Fl
ow

 r
at

e
l/

m
in

Time min

experiment data

simulation

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

Fl
ow

 r
at

e
l/m

in

Time min

experiment data

simulation

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160

Fl
ow

 r
at

e
l/

m
in

Time min

experiment data

simulation

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

DOI Proceedings of the 13th International Modelica Conference 783
10.3384/ecp19157777 March 4-6, 2019, Regensburg, Germany

These results suggest that the accuracy of some

model elements needs to be improved, but it is useful for
evaluating the operating performance at the system level.

4 Summary and Future Work
A new function for modeling refrigerant working

fluids was added to the CRIEPI’s Modelica dynamic-
characteristics analytical tool by integrating the
ExternalMedia library. The innovations discussed above
yield an analytical tool that can be used to more general-
purpose energy systems. The validity of the tool was
assessed via comparison with experimental data
measured from a hot-water supply system with CO2
refrigerant. The model accuracy of some elements of the
system needs further improvement, though sufficiently
accurate results for constructing a dynamic model were
obtained. In future work, we plan to assess the validity
of the tool for other refrigerant types and systems,
develop more advanced tools, and challenge the
operability evaluation for complex systems that
comprise devices with various working fluids. In
addition, to promote application to real machines, data
calibration and data assimilation as a function to utilize
actual operational data will be carried out and models
will be developed for the purpose.

NOMENCLATURE

F Flow rate [kg/s]
h Specific enthalpy [J/kg]
P Pressure [Pa]
M Mass [kg]
V Volume [m3/kg]
Q Heat flow [W]
T Temperature [K]
K Global Heat transfer coefficient [W/K]
ρ Density [kg/m3]
W Power [W]
C Flow coefficient [-]
u Input
N Rotation signal
𝜂 Adiabatic efficiency [-]

Subscript
r Refrigerant
m Metal
w Water
comp Compressor
ad Adiabatic change

Acknowledgments
We thank the CRIEPI heat-pump research group for

providing us with the experimental data discussed above.

References
Eiichi Koda and Toru Takahashi. Development of general

purpose software to analyze the steady state of power
generation systems, Energy Conversion and Management
journal, Vol.43, pp.264-268, 1999.

Yutaka Watanabe, Toru Takahashi and Masashi Nakamoto.
Dynamic Simulation of Startup Characteristics for the
Advanced Humid Air Turbine System. Proceedings of
ASME Turbo Expo 2017, GT2017-64699, 2017.

Toru Takahashi, Masashi Nakamoto and Yutaka Watanabe.
Construction of dynamic analysis tool for thermal power
systems, CRIEPI Research Report, M15005, 2016.

Michiyuki Saikawa, Katsumi Hashimoto, Hiromi Hasegawa,
Tetsushiro Iwatsubo. Study on Efficiency and Control
Method of CO2 Heat Pump, CRIEPI Research Report,
W98004, 1998.

Francesco Casella and Christoph Richter. ExternalMedia: a
Library for Easy Re-Use of External Fluid Property Code in
Modelica, Proceedings of 6th International Modelica
Conference, pp.157-161, 2008.

Carsten Trapp, Francesco Casella, Teus can der Stelt and Piero
Colonna. Use of External Fluid Property Code in Modelica
for Modelling of a Pre-combustion CO2 Capture process
Involving Multi-Component, Two-phase Fluids,
Proceedings of 10th International Modelica Conference,
pp.1047-1056, 2014.

Eric W. Lemmon, Marcia L. Huber and Mark O. McLinden.
NIST Standard Reference Database 23 Reference Fluid
Thermodynamics and Transport Properties-REFPROP.
National Institute of Standards and Technology, Standard
Reference Data Program, 2010.

Ian H. Bell, Jorrit Wronski, Sylvain Quoilin and Vincent
Lemort. Pure and Pseudo-pure Fluid Thermophysical
Property Evaluation and the Open-Source Thermophysical
Property Library CoolProp. Industrial Engineering
Chemistry Research, 53(6), pp.2498-2508, 2014.

Piero Colonna and Teus van der Stelt. FluidProp: a program
for the estimation of thermos physical properties of fluids.
Energy Tecnology Section, Delft University of Technology,
2014.

Naoki Matsunaga, Tomohiko Hoshino and Akira
Nagashima.ga. Critical Assessment of Thermophysical
Properties Data of Combustion Gases for Calculating the
Performance of Gas Turbine. Proceedings of International
Gas Turbine Conference, pp. 321-328, 1983.

Carl Yaws. Chemical Properties Handbook. McGraw-Hill
Education, 1999.

Sylvain Quoilin, Adriano Desideri, Jorrit Wronski, Ian Bell
and Vincent Lemort. ThermoCycle: A Modelica library for
the simulation of thermodynamic systems. Proceedings of
the 10th International Modelica Conference 2014.

Sylvain Quoilin. Sustainable Energy Conversion Through the
Use of Organic Rankine Cyclesfor Waste Heat Recovery
and Solar Applications. PhD thesis, University of Liege,
Belgium, 2011.

Francesco Casella, Tiemo Mathijssen Piero Colonna and Jos
van Buijtenen. Dynamic modeling of organic rankine cycle
power systems. Journal of Engineering for Gas Turbines and
Power, 135(4), 042310, 2013.

Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal
Energy Systems

784 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157777

Daccosim NG: co-simulation made simpler and faster

DOI Proceedings of the 13th International Modelica Conference 785
10.3384/ecp19157785 March 4-6, 2019, Regensburg, Germany

Daccosim NG: co-simulation made simpler and faster
Evora, Jose and Cabrera, Jose Juan Hernandez and Tavella, Jean-Philippe and Vialle, Stéphane and Kremers,
Enrique and Frayssinet, Loïc

785

Daccosim NG: co-simulation made simpler and faster

José Évora Gómez1 José Juan Hernández Cabrera2 Jean-Philippe Tavella3 Stéphane Vialle4

Enrique Kremers5 Loïc Frayssinet6

1Monentia SL, Spain, jose.evora@monentia.com
2SIANI, Spain, josejuanhernandez@siani.es

3EDF Lab Paris-Saclay, France, jean-philippe.tavella@edf.fr
4CentraleSupélec - University Paris-Saclay & LRI, France, {Stephane.Vialle}@centralesupelec.fr

5EIFER, Germany, enrique.kremers@eifer.org
6CETHIL - BHEE, France, loic.frayssinet@insa-lyon.fr

Abstract
This paper introduces the last evolution of Daccosim co-
simulation environment, with Daccosim NG developed in
2018. Main features of Daccosim NG are described: en-
hanced Graphic User Interface and Command-Line In-
terface, algorithm and mechanism of co-simulation, co-
execution shell, software architecture designed for both
centralised and distributed architectures, aggregation of a
co-simulation graph into a Matryoshka FMU, and declar-
ative language to design large scale co-simulation graphs.
A new industrial use case in simulation of energetic sys-
tems is also introduced, and first performances of Dac-
cosim NG on multi-core architectures are analysed.
Keywords: co-simulation tool, multithreaded execution,
master algorithm, FMI standard, energy system, runtime
performance

1 Introduction
The study of Smart Grids, which are intelligent energy
systems enhanced by additional communication means
and modern IT features, requires a complex analysis of
many components considering different aspects. These
aspects are amongst others, the demand, production (in-
cluding renewable), stability of the power grid and flexi-
bility assessment. This is the case for Electricité de France
(EDF) and the European Institute For Energy Research
(EIFER), where Smart Grids and, more in general, Multi-
Energy System analysis are performed through simula-
tions representing the power grids considering multiple
aspects. To this end, EDF and EIFER are working in the
development of simulation models.

For instance, there are teams working in the modelling
and simulation of customers by representing how devices
consume energy at their homes: fridges, stoves, wash-
ing machines, etc. The analysis of the energy demand
of these devices also requires to study thermal dynamics,
since many of these devices produce heat or cold. Besides
of thermal dynamics, the sociotechnical behaviour of the
customers must also be represented as they are the ones
who operate the devices. There are also teams develop-

ing models for representing thermal gains and loses for
houses, buildings, districts, etc. Other teams are dedicated
to optimise the grid operation with massive renewable en-
ergy and storage units.

Some examples of these kinds of business models are
ThermoSysPro, BuildSysPro, PlantSysPro, TelSysPro and
EPSL. ThermoSysPro (Hefni et al., 2011) is a library de-
voted to the modelling and simulation of power plants and
energy systems. BuildSysPro (Plessis et al., 2014) is de-
signed to be used in several contexts including building
physics research, global performance evaluation, technol-
ogy development and impact assessment. PlantSysPro is
devoted to industrial processes like hot water system. Tel-
SysPro is a new Modelica library able to model the impact
of telecommunication networks on complex systems from
failure/repair rate of components and stochastic latency.

These teams develop their models using the tool that
is the most appropriate according to their work habit or
affiliation. There are many tools or programming lan-
guages that can be used for developing these models: Any-
logic (Borshchev, 2013), Dymola (Elmqvist et al., 1996),
Matlab (Guide, 1998), Java (Gosling et al., 2014), Python
(Rossum and al., 2007), etc. So, it happens very often that
teams want to collaborate by making their models inter-
operable with others. This is challenging since models are
developed in different tools. At this level, the interoper-
ability challenge is double: syntactic and semantic (Her-
nandez et al., 2016).

The syntax challenge consists in being able to techni-
cally communicate models that are developed in different
tools. For instance, this problem is equivalent to two peo-
ple trying to speak when they do not have a common lan-
guage. The semantic problem has several axis when talk-
ing about data exchange between two models: meaning of
the words, units that are used, data types, etc. The most
common semantic problem in models communication is
to have different words to express the refer to the same
concept.

The syntactic problem is addressed in FMI (Blochwitz
et al., 2011). FMI, the Functional Mock-Up Interface,
is a tool-independent standard that supports both model

Daccosim NG: co-simulation made simpler and faster

786 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157785

exchange and co-simulation of dynamic models using a
combination of XML-files and compiled C-code. In this
way, every model that is exported following this standard
can be inter-operated with other exported models (FMU -
Functional Mock-Up Unit). In the case of co-simulation,
an FMU contains a definition of the model expressed in a
standard format using XML and some binaries depending
on the platforms to which the FMU is compatible with.
These binaries are dynamic libraries that can be loaded by
a Master Algorithm (MA) and have a standard interface
that the MA knows. In this context, FMUs are considered
as slave components that are commanded by MAs. A MA
is a piece of software that coordinates the execution of
several FMUs (slaves). This coordination mainly regards
the data exchange between the different FMU models and
their scheduling (the way time is advanced).

The construction of the MA to engineer co-simulations
is the main challenge this paper addresses. To this end,
we present a new version of Daccosim (Distributed Ar-
chitecture for Controlled CO-SIMulation) (Galtier et al.,
2015; Tavella et al., 2016). This new version is called
New Generation (NG). Daccosim NG is a tool oriented
to facilitate the construction of co-simulations. To this
end, the MA behaviour can be easily defined using a very
simple interface. Through the Daccosim graphical user
interface (GUI), the user can drag-and-drop the different
FMUs that are desired to use and, through arrows, the
data exchanges among FMUs are defined. Data exchanges
are made from an FMU output with a given name to an
FMU input which may have a different name, address-
ing in this way the semantic interoperability challenge of
having different wording to refer concepts of the reality.
Additionally, Daccosim NG provides mechanisms to deal
with other semantic problems as data types or units mis-
match.

The new version, NG, is based on the same concept as
previous Daccosim versions but re-written from scratch
to get an industrialized code knowing that the first Dac-
cosim experience was achieved without professional soft-
ware developers. A new dramatically simplified installa-
tion procedure, a redesigned smarter interface and better
performances are the strongest points of this new version.

This paper firstly introduces some co-simulation use
cases that have been addressed using Daccosim NG. Then,
Dacossim NG is presented showing its capabilities and ex-
plaining how co-simulations are executed. After present-
ing Daccosim NG, the novelties with respect to the old
versions are highlighted. The performances of the new
version are then compared with Daccosim 2017 and the
conclusions and roadmap are discussed.

2 Co-simulation use cases
2.1 Available use-cases in Daccosim NG
From 2018, several demonstration cases are supplied in
Daccosim NG deliveries. Some are trivial examples while
others are business-oriented use cases. All the referenced

FMUs are license-free and have been built using the most
recent version of Dymola both for 32-bit or 64-bit ma-
chines. In addition all the Modelica source models are
supplied for a better understanding.

These demonstration use cases can be downloaded from
the Daccosim website (Evora et al., b) regardless Dac-
cosim NG releases. They are organised in three folders
named 1-coinit-only, 2-academic, and 3-industrial.

Cases located in 1-coinit-only are co-initialization ex-
amples where only a starting point is calculated (no time
integration). They illustrate how a system composed with
two or more coupled FMUs can be initialised solving alge-
braic loops between FMUs using a Newton-Raphson algo-
rithm. Incidentally, some cases also show how operators
can be used as objects dropped in co-simulation graphs in
addition to FMUs (section 3.3). One of these cases is more
deeply detailed in section 3.2.1.

Cases located in 2-academic are academic examples il-
lustrating different non-stiff and stiff cases, sometimes in-
cluding internal events in FMUs. Among other interesting
cases, we can emphasise on:
• A case defining a co-simulation graph with FMUs

exported from ControlBuild and Papyrus coupled
with Dymola FMUs (non-Modelica source models
are not supplied)

• Theoretical cases illustrating the capability to define
thousands of connections between two FMUs or to
instantiate hundreds of times the same FMU

• Two other cases showing how a stochastic behaviour
implemented in Modelica models can be useful at a
system level

Lastly, 3-industrial folder is dedicated to industrial
cases. At the time being, only one case is included in this
folder but we intend to enrich it next with for example a
distributed power flow.

The supplied use case is related to district heating and
cooling energy in buildings. The system represents a dis-
trict composed with 23 buildings (with only 2 adjoining
walls) with inter-building long-wave radiation coupling
and solar flux pre-processed per facade to account for
shadings and reflections. These FMUs have been built
with public components from the EDF BuildSysPro li-
brary (Plessis et al., 2014). It represents one of the four
variants of a business case more deeply described in sec-
tion 2.2.

2.2 Building heating and cooling power load
at district scale use cases

The heating and cooling energy consumption of buildings
is a critical target for current energy issues as its contribu-
tion to the overall energy consumption and related green-
house gases emissions is dominant, while its saving po-
tential is high (IPCC, 2014). Furthermore, district scale
implementation offers advantage for the integration of re-
newable energy sources, particularly in buildings, and no-
tably via Smart Grids.

Therefore, the modelling of the building heating and

Daccosim NG: co-simulation made simpler and faster

DOI Proceedings of the 13th International Modelica Conference 787
10.3384/ecp19157785 March 4-6, 2019, Regensburg, Germany

cooling power load at district scale is essential. However,
it faces two main challenges: the computational cost, that
becoming prohibitive when using detailed model, decreas-
ing the temporal scale and increasing the spatial scale;
and the lack of data at the district scale. To cope with
these constraints, the level of detail of the models has to
be adapted.

In order to quantify the adaptation suitability, the plat-
form MoDEM (standing from Modular District Energy
Model (Frayssinet, 2018)) has specifically been devel-
oped. This platform is able to generate building energy
model at district scale, with different level of detail, auto-
matically from geometrical data. The district scale model
is made of Modelica building models1, that are coupled
(common wall and long-wave radiative heat exchanges),
depending on the modelling variant, and co-simulated
with Daccosim NG after being converted in FMUs.

The use cases correspond to a district of Paris, France,
made of 23 buildings (with 2 adjoining walls)2 for the fol-
lowing variants:

1. Model–the most detailed–considering inter-building
long-wave radiation coupling and pre-processed so-
lar fluxes computed per facade to account for shad-
ings and reflections.

2. Model (1) but with a lower discretisation of the con-
ductive heat problem (fewer equations).

3. Model (2) but without long-wave coupling and and
specific solar fluxes (less external resources and no
connection between FMUs, excepted for the adjoin-
ing buildings).

4. Model (3) but with a simplified model for the con-
ductive heat problem (less equations).

These models were simulated for one year and a month,
with a constant time step of 900 s.

The present models focus on heating and cooling but
the FMI offers further opportunities to couple these mod-
els with energy system, occupant behaviour and energy
network models, toward integrated district energy model.

2.3 Urban energy planning use cases
Urban planning use cases are dedicated to the simulation
of the multi-energy system of one or more districts, up to a
whole town or city, consisting usually in several hundreds
or thousands of buildings. This use case is considered as
a prospective evolution and application for Daccosim NG,
and will thus not be directly analysed in this work. How-
ever, even if the time resolution of these models is rather
low in comparison to the previous ones (1h-15min), it is
a use case that has high requirements for scalability and
thus parallelisation, as it replicates the number of build-
ings of the use case 2.2, "Building heating and cooling
power load at district scale use cases", by a factor of 10-
500. Therefore it has been identified as relevant, and the
requirements and lessons learned by the prototypes being

1Using the BuildSysPro library.
2More information about the characteristics of the district can be

found in previous reference.

Figure 1. Daccosim interoperability example

done in this direction on the Anylogic platform by EIFER
are gently provided as inputs to drive and inspire the Dac-
cosim NG development to support such applications.

3 Daccosim NG
Daccosim NG is an environment to develop co-simulation
use cases supported by JavaFMI, a suite of tools for in-
teroperability using the FMI standard (Evora et al., 2013).
Daccosim allows the design, development and execution
of co-simulation graphs, providing mechanisms to repre-
sent co-simulation graphs.

Daccosim NG is able to integrate different simula-
tors exported as executable FMUs from various FMI-
compatible tools. An exported FMU is a simulator con-
tained in a FMU file, according to what is understood in
the FMI standard. This way, any simulation developed in
any programming language and deployed in any computer
could be imported in Daccosim NG.

In figure 1, an example of a co-simulation integrating
simulators from different sources is shown. On the upper
part of the figure, it can be seen how Dymola, Matlab or
ControlBuild simulators are integrated as FMUs. Same
way Java or C++ codes can be exported as FMU thanks to
the JavaFMI Builder tool (Evora et al., 2013).

Daccosim NG can be used through a graphical user in-
terface (GUI) or a command-line interface (CLI). In sub-
sequent sections, it is described how co-simulation graphs
are defined, initialised and executed. Besides, some fea-
tures are presented: the GUI, the CLI, FMI exposition,
the matryoshka FMUs construction, the Daccosim graph
declarative language. In a user’s guide available with the
tool distribution (Evora et al., a), more detailed informa-
tion about the usage of Daccosim NG is available.

3.1 Co-simulation graph design
A co-simulation graph is composed of nodes and arrows
that connect nodes. A connection defines which output
variables of a source node are connected to which in-
put variables of a target node. There are different types
of nodes that can be included in a co-simulation graph:

Daccosim NG: co-simulation made simpler and faster

788 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157785

FMU, operators, external inputs or external outputs:
• FMU: this node represents an FMU and it holds the

file path, the variables used as input and output, and
the initial values for variables and parameters.

• Operators: there are four operators: adder, multi-
plier, offset and gain. These operators allow to make
calculations using outputs of other nodes providing
the result in an output to be used. The adder and
multiplier have two or more inputs and one output.
The offset has only a fixed value and one input that
are summed. The gain is defined with a fixed value
that will multiply a given input. All of these nodes
can work with Reals, Integers and Booleans.

• External inputs/outputs: these nodes allow to provide
fixed values as input for other nodes (external input)
or to store values provided by an output (external out-
put). Both kind of nodes can have several variables.
For instance, an external input will hold several out-
puts that can be used for other nodes.

Once nodes are defined, arrows can be established to
define how variables are exchanged among them.

3.2 Co-simulation algorithm
Once the co-simulation graph is defined, the execution of
the co-simulation can be done. The execution consists
in the following steps: loading, co-initialisation (section
3.2.1), co-execution and exporting the results. The Dac-
cosim engine executes each step of this method in parallel
so that all cores of a machine are used, improving the per-
formance (section 6).

In listings 1 the co-simulation algorithm is described.
The procedure starts by opening the file in which the co-
simulation is defined and loading the graph in memory.
After opening this file and processing it, every FMU that
is used is also loaded. In this way, co-simulation graph is
ready for next steps: co-initialisation and co-simulation.

Listing 1. Co-simulation algorithm

public void execute() {
loadGraph();
coInit();
export(currentTime);
while (currentTime < stopTime) {

currentTime += doStep();
export(currentTime);

}
terminate();

}

After the co-initialisation process is executed (check
section 3.2.1 for more information about this process), the
initial values of the variables selected by the user for ex-
portation are written into the output file for being anal-
ysed afterwards. Then the co-execution process starts. For
this, the doStep method is called as many times as neces-
sary until the stop time of the simulation is reached. The
way the co-execution works is further described in section
3.2.2. After each successfully performed step, the values
to be exported are once more written in the output file.

Once the stop time is reached, the simulation is finished
by terminating all FMUs and closing the exportation file.

3.2.1 Co-initialisation

One of the difficulties of the kind of co-simulations we
are considering is the setting of consistent system-wide
initial values for all the components. The Daccosim co-
initialisation algorithm starts by building a global depen-
dency directed graph for the connected variables of the
FMUs. It uses the connections established by the user
to find external dependencies between the outputs from
source FMUs and the inputs from sink FMUs.

The key idea is that a topological sorting of the directed
acyclic graph (DAG) naturally gives the order in which the
variables must be initialised. Therefore, this led to study
how to convert a generic directed graph into a DAG. The
solution found is to build the graph of strongly connected
components (SCC) corresponding to cyclic dependencies.
The resulting graph in which each SCC has been con-
tracted into a single vertex is a DAG. We use Tarjan’s SCC
algorithm (Tarjan, 1972) (used in many Modelica tools) to
identify each SCC in the dependency graph (runs in lin-
ear time). Following the order obtained with a topological
sorting on the contracted SCC graph:

1. for nodes which were not contracted, simply propa-
gate their values

2. for nodes which were contracted (they correspond
to cyclic dependencies), we solve the initialisation
problem using an iterative algorithm called JNRA
(Jacobian based Newton-Raphson Algorithm) in-
spired by traditional Newton-Raphson algorithms of-
ten used for electric load flow computation.

The example in figure 2 illustrates the co-initialisation
of a system composed with two equations and two un-
knowns:
• equation1 model calculates x2 from x1 according to

the equation: 2x2
1 +5x2 = 42

• equation2 model calculates x1 from x2 according to
the equation: x1 −6x2 = 4.

As it can be seen in figure 2, equation1.x2 depends
on equation2.x1 while equation2.x2 depends on equa-
tion1.x2. In dotted lines it can be seen an algebraic loop
where modifications on equation1.x1 affects equation1.x2
and modifications in equation2.x2 affects equation2.x1.
Then, the co-initialisation procedure will then compute
this graph to provide a consistent initial value to all vari-
ables. To do this, it will detect one SCC and, after sev-
eral iterations, x1 and x2 will reach following values (x1
= 4.56, x2 = 0.09).

3.2.2 Co-execution

In Daccosim, it is possible to choose how the time is ad-
vanced when executing the co-simulation graph. There
are two main categories of time steppers: constant and
variable.

The constant stepper advances the simulation using a
fixed step size. That is, when the simulation is stepped,

Daccosim NG: co-simulation made simpler and faster

DOI Proceedings of the 13th International Modelica Conference 789
10.3384/ecp19157785 March 4-6, 2019, Regensburg, Germany

Figure 2. Calculation graph and dependency graph

the time that will be advanced is every time the same one.
Constant stepper may not present a good computation/ac-
curacy ratio: the choice of a small value for the step size
results in a large number of computation steps, while a
large value might fail to capture some variations in the
simulated variables.

Depending on FMU capabilities, Daccosim NG also
implements several variable stepping strategies. After the
simulation of step i, each FMU examines its outputs and
estimates how far they are from the exact value. Dac-
cosim NG implements two algorithms which do that: one
is based on the Euler’s method and a second one is based
on Adams Bashforth’s method. Their principle is to store
the values of the derivatives at consecutive communica-
tion points to infer an estimation at the next iteration. If
the error is found to be tolerable, the engine will propose
to perform the next step with a bigger step size. Other-
wise, the last step would be cancelled and redone with
a smaller step size value. The rollback is made possible
since version 2.0 of FMI which introduced the notion of
FMU state, allowing the serialisation of the FMU state be-
fore performing a simulation step, and the restoration of
the saved state if necessary.

Suppose FMU A provides inputs for FMU B and initial
step value is 10. At t10, it is decided that the step must
be redone with a step size of 6 and it does not send its
outputs to B. B, on the other hand, is satisfied with its
outputs and only awaits updated inputs from A to perform
its next step (from t10 to t20). When A reaches t6, it could
send its outputs to B but they would not make much sense
since B already advanced to t10 (and the next available
outputs from A could be time stamped t12, which is not
satisfactory either). To avoid this situation, all the FMUs
adopt the same pace and they will all redo the cancelled
step with the same new (smaller) step size. Conversely, if
all the FMUs agree on a bigger step size, it will be used
for the next steps.

It is also intended to implement another variable step-
ping method based on the concept of state quantiza-
tion used in the Quantized State Systems (QSS) methods
which are non-stiff QSS solvers of different orders de-
scribed by Ernesto Kofman in many publications (Kofman
and Junco, 2001; Kofman et al., 2001; Kofman, 2002).
QSS adaptations for FMI standard are being designed in
one work package of the French national project Modelis-
cale (2018-2020) leaded by Dassault Systèmes and whose

Figure 3. Daccosim NG GUI

goal is to provide the ability to model and simulate with
Modelica and FMI the behavior of very large energy sys-
tems.

3.3 Editor
This module provides a GUI to facilitate the design, devel-
opment and execution of co-simulation graphs. The editor
can be downloaded from (Evora et al., b). The editor is
distributed in three different formats: exe files for running
in Windows (32 & 64 bits exe files) and a jar file for execu-
tion in any operating system. All of these version require
to have a JVM installed in the system. In any of these three
formats, the editor can be launched by just double-clicking
it (it does not require any installation or configuration).

In the GUI (figure 3), aside from the menu and the
toolbar with the options to deal with the co-simulation
graph, the palette and the canvas are the main components
supporting the definition of co-simulation graphs (Evora
et al., a). The palette contains all the possible nodes that
can be set in the co-simulation graph (note that for space
constraints, not all blocks are visible in the figure). These
nodes can be dragged and dropped into the canvas.

Then, by dragging out from the centre of a node (source
node), an arrow can be created when dropping the mouse
in the target node. The variables that are to be exchanged
in that arrow can be configured by double-clicking it or in
the contextual menu: properties option. Each kind of node
has also its own configuration which can be accessed in
the same way: double-click on the node. In the case of an
FMU node, the label of the node and the initial values of
the FMU variables can be configured. For external inputs
and external outputs, the variables to be connected to other
nodes can be defined and their initial value set. In the
case of the operators, the data type to work with (either
Real, Integer or Boolean) and in the case of the adder and
multiplier, the amount of inputs to receive can be chosen.
In the case of the offset and the gain, the fixed value that
will be added or multiplied to the input can be set.

Daccosim NG: co-simulation made simpler and faster

790 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157785

Figure 4. simx and dngx files

Below the canvas and the palette, there is a blank empty
box in which the user can write a message to describe what
purpose is the model and any other extra information. And
below this box, there is a bar state in which some informa-
tion is contextually displayed to interactions made by the
user.

Up in the toolbar, commands are defined in menus to
create a new co-simulation graph, to open it (see section
4.1 to know more about file formats) or to save it. It is
also possible to cut, copy or paste parts of the graph and
to undo or redo some of the actions made. Then, once the
graph is defined, it can be validated, configured (start and
stop times, variables to export, etc) and executed.

For more information about how to use the editor,
please read the user’s guide (Evora et al., a).

4 Other Features
4.1 Shell
This module wraps the core and provides a command line
interface (CLI) to run co-simulation graphs (Evora et al.,
a). The shell can be downloaded from (Evora et al., b).
This utility allows users to develop script files to run co-
simulation graphs in a batch mode. The main argument
to provide to this CLI is the path to the file in which the
co-simulation graph is stored. With Daccosim NG there
are two main file formats:
• simx: this is an archive file (zip) containing a

folder named fmu with the fmu files used in the co-
simulation graph as well as the sim, dng and dsg files
(figure 4). The sim, dng and dsg files contain rep-
resentations of the co-simulation graph in different
formats. sim file contains the graph including the vi-
sualisation information to be presented in the Editor.
dng contains the graph in the declarative language
(section 4.4). dsg is a serialisation of the graph in
json format. This is the one that is effectively used as
a graph representation for starting the co-simulation
execution.

• dngx: this archive has the same structure and content
than the simx but sim and dsg files are not present
(figure 4). It allows to create a runnable file in which
the graph is defined using the declarative language
(section 4.4). The idea of this format is to allow
other tools or users with a text editor to create a co-

Figure 5. The FMU interface is used by the execution engine.
This way the engine works independently from where FMUs are
being executed

simulation graph compatible with Daccosim NG by
describing it in a dng file. This is especially interest-
ing to develop large-scale co-simulation graphs.

This CLI has also the possibility of parameterizing
some of the features of the execution. The idea is to make
simpler the GUI (editor) by avoiding this kind of param-
eterization and let for advanced users to play with them
using the CLI. For instance, one of the parameters that
can be changed in CLI is to run the co-simulation in sin-
glethread or multithread. In the editor, this option is not
available and all co-simulations are run in multithread by
default.

4.2 Designed for distributed executions
FMU nodes are normally performing costly processes
each time they are called in the doStep method (Blochwitz
et al., 2011). For this reason, the execution engine is also
prepared to be run in a distributed environment allowing
the execution of large-scale co-simulation scenarios. This
is made thanks to the use of abstraction mechanisms so
that the execution engine does not need to be aware of
where each FMU is being physically executed. To this
end, every time the engine interacts with an FMU, it uses
an abstracted interface. Based on this interface, there are
three implementations: FMULocal, FMUStub and FMU-
Soul. First one uses the FMU files from the filesystem
(normal case in a single machine). Second one uses a con-
nection to a Java Message Service (JMS) to interact with
an FMU that is being remotely executed. Third, and last
one, is the representation in the remote computer of the
FMU. This receives the queries from the FMUStub and
acts accordingly (figure 5).

In figure 6, the communication between different ma-
chines running a distributed simulation is exemplified. In
this example, there are three machines. In the first one,
an instance of Daccosim core is responsible for coordinat-
ing a distributed execution. The execution engine of this
instance uses the FMU interface to communicate with the
three FMUs to be coordinated. Two of them are being
executed remotely and one locally. However, as the en-
gine only depends on the interface, these details of where
they are being executed are not important for its execu-
tion. Whenever a command is asked by the engine, the
FMUStub will communicate to the FMUSoul to perform

Daccosim NG: co-simulation made simpler and faster

DOI Proceedings of the 13th International Modelica Conference 791
10.3384/ecp19157785 March 4-6, 2019, Regensburg, Germany

Figure 6. The communication of the execution engine with the
remote fmu (soul) is made through the stub

the command providing the answer back to the engine.
Note that, despite it is not represented, communications
are made through a JMS. The use of JMS gives flexibil-
ity to design different distribution architectures to support
large scale co-simulations.

4.3 Matryoshka
This feature(Galtier et al., 2017) allows to wrap a co-
simulation graph into an FMU for being used either in
other co-simulation environments like Dymola or in Dac-
cosim NG itself (Evora et al., a). The co-simulation graph
that is stored inside the FMU is seen as a single FMU
when opened by other tools. Every time a master algo-
rithm uses this FMU for any purpose, the Matryoshka
FMU will dispatch the command to the corresponding in-
ner FMU or FMUs.

For instance, if the master commands a simulation ad-
vancement through a doStep to the Matryoshka FMU, this
FMU will perform the doStep for all the FMUs contained
and will exchange the values between the FMUs as de-
scribed in the co-simulation graph. At the same time,
it is possible to embed one Matryoshka FMU inside an-
other co-simulation graph and export this graph into a Ma-
tryoshka FMU having in this way several levels of FMUs
embedded. Exported FMUs will be beneficial (Galtier
et al., 2017):
• FMU can be imported into any FMI compliant simu-

lation tool also able to handle non-FMI components
with which Daccosim NG is not able to directly in-
teract.

• Taking advantage of Daccosim NG efficient, multi-
threaded, step-size control solution helps simulating
faster larger models within traditional monothreaded
simulation tools.

• Initialization of complex graphs is taken care of
within the Matryoshka thanks to Daccosim NG gen-
eralized co-initialization algorithm.

• A complex simulation graph can be reused directly
without having to re-write anything and with no risk
of disclosing industrial and intellectual property.

• The co-simulation process can be finely tuned: when
typically a solver only uses one accuracy objective

for the whole model, Daccosim NG allows the user
to define different tolerance values for every output
and internal variable of each FMU.

Besides, new features have been developed:
• Added information in the modelDescription file

about dependencies of external outputs to external
inputs.

• Continuous inputs extrapolation and output deriva-
tives provision.

These improvements have been accompanied by a signif-
icant FMU size reduction of the order of 3MB. They will
be completed next year with two new features: improve-
ment in the performance when loading multiple instances
and the capability to make rollbacks.

4.4 Declarative language

The declarative language implemented in Daccosim NG
allows the user to define a co-simulation graph on a text
editor or to automatically generate it through a program
(Evora et al., a). To do so, a domain-specific language has
been designed to simply define a co-simulation graph. En-
joying a feedback from user experiences, this language has
been dramatically simplified regarding the previous ver-
sion named DSL in Daccosim 2017. As it can be seen
in listing 2, this language is very simple and can be eas-
ily understood. Its purpose is to create very wide graphs
that cannot be modelled in the GUI, in which there are
hundreds of interconnected nodes exchanging thousands
of variables. This feature allows pre-processing tools to
develop compatible models to be executed in Daccosim
NG. Note a textual form of a co-simulation is automat-
ically generated from the GUI once a valid graph is de-
fined. Conversely, a valid textual form of a co-simulation
can be opened in the GUI and the corresponding graph is
automatically drawn.

Listing 2. Declarative language example

FMU equation1 "fmu/equation1win3264.fmu"
Output equation1 x2 Real
Input equation1 x1 Real
FMU equation2 "fmu/equation2win3264.fmu"
Output equation2 x1 Real
Input equation2 x2 Real
Connection equation1.x2 equation2.x2
Connection equation2.x1 equation1.x1
CoInit 100 1.0E-5
ConstantStepper 1.0
Simulation 0.0 10.0

Listing 2 expresses the co-simulation graph defined in
figure 2 using this language. There are two FMUs decla-
rations followed by the label and the path to the file. Then
the outputs and inputs to be connected are described for
each of the FMUs and the connections defined. Finally,
the co-init, stepper method (constant step with step size
1.0) and simulation start and stop times are defined.

Daccosim NG: co-simulation made simpler and faster

792 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157785

5 Why NG?
In this last year and a half, we have rebuilt Daccosim from
the scratch. To this end, we have gotten rid of some strong
dependencies that made difficult the evolution and use of
the software. Prior version of Daccosim (2017) required
the installation of the Eclipse IDE (Eclipse, 2007) in a spe-
cific version with specific plugins. Then, the source code
of the project had to be imported into it and compiled to
be run. This was a tedious process that made harder to the
users their initial steps in Daccosim. In the new version,
just by downloading it and making a double click, the user
can start working in the design of a co-simulation graph
using a very comfortable GUI.

Since the GUI is detached from Eclipse IDE, the in-
terface is not contaminated by the style in which Eclipse
displays buttons, views, etc. This GUI is tailor made to fo-
cus on the design of the co-simulation graph and its execu-
tion. This way, the result is a very clean interface with two
main components, palette and canvas, in which the graph
is designed. The projects view has also been deleted as
Daccosim NG can be opened as many times as necessary
holding a project on each instance.

The performance has also been improved in many
aspects. Previous Daccosim versions used the co-
simulation graph designed by the user to generate tailor
made Java code for executing the graph. For this rea-
son, co-simulations made by the user were conceived as
”projects”, as they had the files containing the graph def-
inition, the fmus and the generated code for execution.
In this new version, co-simulation graphs are read an in-
terpreted so that no Java code is generated to execute a
specific graph. This makes the process much faster and
lighter, specially for wide co-simulations. This way, all
the information that concerns a co-simulation is stored in
a single simx file (section 4.1). The performance in run-
time is also compared in the following section 6.

From the point of view of the development, the most
important achievements are the removal of strong depen-
dencies (Eclipse and its plugins) and the code maintain-
ability which will make easier the correction of bugs and
the evolution of the software.

Finally, to make easier the experience of the user, a
daccosim-windows-installer has been built for a complete
and simple installation on windows 32-bit or 64-bit ma-
chines. This is available at (Evora et al., b).

6 Performance on parallel machines
6.1 Comparing previous and new Daccosim
In order to exhibit the performances of Daccosim NG, we
run the 4 variants of the case building energy system with
23 FMUs described in section 2.2. The runs have been
done on the same 4-core Windows machine both with
Daccosim 2017 (the previous version of Daccosim) and
with the new Daccosim NG (also called Daccosim 2018).

In order to get reliable results (summarized in table

Variant Model 1 Model 2 Model 3 Model 4
Dac. 2017 6150 s 1666 s 1660 s 2075 s
Dac. 2018 5217 s 1574 s 1562 s 1515 s
Speedup 1.18 1.06 1.06 1.37

Table 1. Performances of Daccosim 2018 vs Dacossim 2017

1), each variant has been done 3 times with strictly the
same co-simulation conditions (start time, stop time, step-
ping parameters,...). Based on the average of gotten time
durations, a speedup has been calculated (Speedup =
T2017/T2018) showing the performance improvement of
Daccosim NG (2018).

6.2 Benchmark on dual-processor Linux ma-
chines

In order to evaluate the performances of Daccosim NG on
a parallel multi-core machine, we needed a test applica-
tion with a large number of FMUs to spread on computing
cores, and with a significant total amount of computations
and disk IO. But most of our business use cases involve
FMUs handling resource files (e.g. temperature time se-
ries), and unhappily when exported from Dymola Linux
these FMUs are not working correctly unlike with export
from Dymola Windows. We go on investigations to iden-
tify the issue either at the Dymola side or as a side effect in
Daccosim NG. For this reason, we fell back to the demon-
stration case multiFMU supplied beside the Daccosim NG
distribution which was originally composed of 1000 in-
stances of the well-known stairBouncingBall model (Kof-
man, 2004). In order to mix logical instances and physical
FMUs, we have duplicated the original FMU 10 times to
get 10 different FMUs and then we have instantiates each
of them 100 times. However, all these FMUs model in-
dependent balls, and do not consume inter-FMU commu-
nication times. About IO, we have defined two variants,
the first one without any FMU output saved on disk and
the second one with 2 outputs per FMU written after each
step integration.

This test case has been run on a dual 10-core Intel Xeon
Silver 4114 at 2.2 GHz (Skylake architecture), with 96
GBytes of RAM. This machine is part of a PC cluster of
CentraleSupelec, managed with the OAR3 environnement.
OAR allows to allocate an entire PC or only a required
number of its cores, and runs all threads of an application
only on the allocated cores. We used this mechanism to
test our application from 1 up to 20 physical cores, and
then up to 40 logical cores on our dual 10-core Xeon ma-
chine.

When running our test case for 5000 steps on one core
of our test machine, the variant saving 2 outputs per FMU
generates an output file of 110 MBytes and elapses on
160 s We have chosen this configuration with easy to mea-
sure execution times (not too long but significant times).

Figure 7 left shows the co-simulation execution times
as a function of the number of allocated cores, in logarith-

3 s://oar.imag.fr/

Daccosim NG: co-simulation made simpler and faster

DOI Proceedings of the 13th International Modelica Conference 793
10.3384/ecp19157785 March 4-6, 2019, Regensburg, Germany

Figure 7. Execution times and speedup of multiFMU Daccosim NG benchmark on dual 10-core Xeon Silver 4114 machine

mic scale. A straight line with a −1 slope would mean
a perfect decrease of the execution time. Full lines illus-
trate performances of the benchmark with 2 FMU output
writing per time step, while dashed lines are related to
co-simulation runs without any IO (no FMU output was
saved on disk). We can observe a very regular and very
good decrease of co-simulation and total execution times
from 1 up to 10 physical cores, and a little bit less good
decrease from 10 up to 20 physical cores when using the
second CPU of the machine. As expected, execution time
is lower and exhibit better decrease when no FMU output
are written on disk (no IO). When writing all FMU out-
puts on disk at each time step, execution time is higher but
still exhibits a significant and almost regular decrease.

Beyond the 20 physical cores of our machine, the
threads are distributed also on the logical cores. As each
physical core hosts two logical cores, when allocating
20+n cores (with OAR), n physical cores host two threads
and 20− n host only one thread. Beyond 20 cores this
load unbalance leads to an execution time increase, as il-
lustrated on figure 7 left. However, when allocating 40
cores (all virtual ones) load balancing is achieved again
and performances appear a little bit better than on 20 phys-
ical cores when no FMU output is written on disk (dashed
lines). At the opposite, when writing 2 outputs per FMU
on disk (full lines) it appears better to use only the 20
physical cores. These IO remain sequential and partially
overlapped with the computations (depending on the OS),
but disturb parallel computations.

A single-threaded version of Daccosim NG (running
on one core), has exhibited execution times very close
to our multithreaded version run on one core. Then
we can define the speedup achieved by Daccosim NG
running on several cores: SU(p) = Tsingle/Tmulti(p) ≈
Tmulti(1)/Tmulti(p). Figure 7 right shows this speedup, and
we get:

SUmax
0write/FMU = SU0write/FMU(40) = 7.7

SUmax
2write/FMU = SU2write/FMU(20) = 5.2

Considering only the experiments with FMU output
saving (more realistic use case), experiments have shown
the execution time of the multithreaded implementation
of Daccosim NG has scaled on our benchmark. An al-
most regular decrease of the execution time has been mea-

sured up to all physical cores of our dual 10-core Xeon
machine. Moreover a significant speedup close to 5.2 has
been achieved compared to a sequential execution. The
current multithreaded implementation of Daccosim NG
appears ready to be the kernel of a distributed version on
PC clusters and clouds.

7 Conclusion and roadmap
In 2018, Daccosim NG is more robust, faster and simpler
to use than the previous version that was simply a proof of
concept for EDF to make sure that co-simulation is helpful
for the simulation of wide energetic systems.

To further improve it, the Daccosim NG team intends
to implement before the end of 2018 a new major version
including some Matryoshka evolutions (section 4.3) and
QSS-inspired variable stepping implementation (section
3.2.2). In addition, as EDF is participating to the Mod-
elica Association Project FMI, Daccosim NG is candidate
to implement the new hybrid co-simulation feature under
discussion in the WG ”clock hybrid co-simulation” in or-
der to accurately detect internal FMU events from a pro-
posal pushed by EDF in 2017.

We will also think about an implementation of
the System Structure and Parameterization Standard
(SSP)(Köhler et al., 2016) as a future standard way to ex-
port/import co-simulation graphs in Daccosim NG. Ad-
ditionally, and as mentioned in section 2.3, urban energy
planning requires large scale simulations of hundreds of
buildings, which can deliver valuable simulation results
taken as decision aid for large infrastructure investments
by municipalities. The following challenges arise in this
context:

1. Multiple layers: different energy vectors addressed
(heating, cooling, electricity, gas).

2. Bottom up simulation: large number of buildings that
on its own have an individual behaviour.

3. Connection through networks: energy flows are dis-
tributed via networks which have to be included and
are a model in itself to couple other models.

4. Data uncertainty and unavailability: in early plan-
ning stages, many parameters have not yet been
fixed, and furthermore, projections over several
decades allow for important assumptions in the de-
velopment of environmental parameters (future evo-

Daccosim NG: co-simulation made simpler and faster

794 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157785

lution of energy or fuel prices, etc).

The representation of such a complex system requires and
efficient coupling of different models, to avoid construct-
ing unmanageable complicated model couplings. Dac-
cosim NG shows excellent prerequisites to support these
kind of simulations, especially on points 1 & 2. A use case
in which Dymola and Anylogic energy system models are
co-simulated, is thus envisaged to proof the feasibility of
Daccosim NG towards requirement 3 & 4.

Finally, to go further than previous experiments in 2017
(Vialle et al., 2017), we also intend to co-simulate again
very wide complex systems to illustrate the new con-
straints EDF has to cope with in the context of the energy
transition and the renewal of the energy market landscape.
This will be done as soon as the problem we have encoun-
tered with Dymola FMUs exported from Linux is solved.
Acknowledgement. This work was partly supported by
the Paris-Saclay region through the FUI research project
“Modeliscale”.

References
T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist,

A. Junghanns, J. Mauß, M. Monteiro, T. Neidhold,
D. Neumerkel, and al. The functional mockup interface for
tool independent exchange of simulation models. In Proceed-
ings of the 8th International Modelica Conference; March
20th-22nd; Technical Univeristy; Dresden; Germany, 2011.

A. Borshchev. The big book of simulation modeling: multi-
method modeling with AnyLogic 6. AnyLogic North America
Chicago, 2013.

IDE Eclipse. Eclipse foundation, 2007.

H. Elmqvist, D. Brück, and M. Otter. Dymola-user’s manual.
Dynasim AB, Research Park Ideon, Lund, Sweden, 1996.

J. Evora, J-Ph. Tavella, JJ. Hernandez, and S. Vialle. Daccosim
NG User’s Guide. EDF, Monentia, CentraleSupelec, a.

J. Evora, J-Ph. Tavella, JJ. Hernandez, S. Vialle, and E. Kremers.
Daccosim ng web page, b. URL https://bitbucket.
org/simulage/daccosim.

J. Evora, JJ. Hernandez, and O. Roncal. Javafmi. URL
https://bitbucket. org/siani/javafmi, 2013.

L. Frayssinet. Adapting building heating and cooling power
need models at the district scale. PhD thesis, INSA de Lyon,
2018.

V. Galtier, S. Vialle, C. Dad, J-Ph. Tavella, J-Ph. Lam-Yee-Mui,
and G. Plessis. Fmi-based distributed multi-simulation with
daccosim. In Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium.
Society for Computer Simulation International, 2015.

V. Galtier, M. Ianotto, M. Caujolle, R. Corniglion, J-Ph. Tavella,
J.E. Gómez, JJ. Hernandez, V. Reinbold, and E. Kremers. Ex-
perimenting with matryoshka co-simulation: Building par-
allel and hierarchical fmus. In 12th International Modelica
Conference, 2017.

J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The
java language specification, java se 8 edition (java series),
2014.

MATLAB User’s Guide. The mathworks. Inc., Natick, MA, 5,
1998.

B. El Hefni, D. Bouskela, and G. Lebreton. Dynamic mod-
elling of a combined cycle power plant with thermosyspro.
In Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical University; Dresden; Germany,
2011.

JJ. Hernandez, J. Evora, and J-Ph. Tavella. Semantic interoper-
ability in co-simulation: use cases and requirements. Euro-
pean Simulation and Modelling Conference 2016 at Las Pal-
mas de Gran Canaria, Spain, 2016.

IPCC. Climate change 2014: mitigation of climate change:
Working Group III contribution to the Fifth Assessment Re-
port of the Intergovernmental Panel on Climate Change.
Cambridge University Press, 2014.

E. Kofman. A second-order approximation for devs simulation
of continuous systems. Simulation, 78(2), 2002.

E. Kofman. Discrete event simulation of hybrid systems. SIAM
J. Sci. Comput., 25(5), May 2004. ISSN 1064-8275.

E. Kofman and S. Junco. Quantized-state systems: a devs ap-
proach for continuous system simulation. Transactions of
The Society for Modeling and Simulation International, 18
(3), 2001.

E. Kofman, J. S. Lee, and B. P. Zeigler. Devs representation
of differential equation systems. review of recent advances.
Proceedings of ESS’01, 2001.

Jochen Köhler, Hans-Martin Heinkel, Pierre Mai, Jürgen
Krasser, Markus Deppe, and Mikio Nagasawa. Modelica-
association-project “system structure and parameterization”–
early insights. In The First Japanese Modelica Conferences,
May 23-24, Tokyo, Japan, number 124, pages 35–42, 2016.

G. Plessis, A. Kaemmerlen, and A. Lindsay. Buildsyspro: a
modelica library for modelling buildings and energy systems.
In Proceedings of the 10 th International Modelica Confer-
ence; March 10-12; 2014; Lund; Sweden, 2014.

G. Van Rossum and al. Python programming language. In
USENIX Annual Technical Conference, volume 41, 2007.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2), 1972.

J-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, Ch. Tan, G. Plessis,
M. Schumann, A. Cuccuru, and S. Revol. Toward an accu-
rate and fast hybrid multi-simulation with the fmi-cs standard.
In Emerging Technologies and Factory Automation (ETFA),
2016 IEEE 21st International Conference on. IEEE, 2016.

S. Vialle, J-Ph. Tavella, C. Dad, R. Corniglion, M. Caujolle, and
V. Reinbold. Scaling FMI-CS Based Multi-Simulation Be-
yond Thousand FMUs on Infiniband Cluster. In Modelica
Association, editor, 12th International Modelica Conference
2017, Czech Republic, May 2017.

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

DOI Proceedings of the 13th International Modelica Conference 795
10.3384/ecp19157795 March 4-6, 2019, Regensburg, Germany

Dynamic Parameter Sensitivities: Summary of Computation Methods for
Continuous-time Modelica Models
Elsheikh, Atiyah

795

Dynamic Parameter Sensitivities:
Summary of Computation Methods for

Continuous-time Modelica Models

Atiyah Elsheikh

Mathemodica.com , Egypt & Germany , Atiyah.Elsheikh@mathemodica.com

Abstract
Applications of Sensitivity Analysis (SA) encouraged
several Modelica platforms to independently provide
facilities for externally computing Dynamic Parameter
Sensitivities (DPS). FMI specifies an optional function
call for evaluating directional derivatives. On the other
hand, mathematical foundation for uniform represen-
tation of DPS at the Modelica language level has been
established. This has resulted in a platform-independent
approach demonstrated through example libraries. The
paper neutrally hints that already conducted efforts may
converge to the integration of language facilities for
DPS without neglecting to mention many mathematical
difficulties. Surprisingly, many of what could be thought
to be algorithmic obstacles have intuitive solutions along
a minimalist implementation approach.

Keywords: algorithmic differentiation, parameter sensi-
tivities, sensitivity analysis

1 Introduction
1.1 Motivation to DPS
In (Wiechert et al., 2010) one reads:

Simulation tools not only perform numerical
solutions based on the system equations but
also assist the modeler in systems analysis.
Doubtlessly the most important systems anal-
ysis tool is SA ... SA is required for parame-
ter fitting, statistical regression analysis, exper-
imental design, and metabolic control theory.

Analogously, common guidelines for model-based stud-
ies recommend SA to be performed in order to assist the
validity of the conclusions, for example demanded from:

1. Impact Assessment Guide, European Commission

2. Guidance on the development, evaluation and appli-
cation of environmental models, US Environmental
Protection Agency

Hence, facilities for SA are crucial for modelers if offered
by a modeling language or a simulation platform.

While many methods of SA are based on numerical
approaches (Saltelli et al., 2004) their applicability on
typically large-scale Modelica models is questionable. As
an attractive alternative, analytical derivatives of model
outputs w.r.t. model inputs can be exploited. Derivative-
based approaches usually lead to superior results in
terms of accuracy and computational complexity e.g.,
derivative-based global SA methods (Kucherenko and
Iooss, 2016). In Modelica-based terminologies, Dynamic
Parameter Sensitivities (DPS) are sought.

1.2 Applications of DPS
Despite of many applications of SA DPS enable, there
are not so many works conducted within the Modelica
community exploiting DPS. One possible reason for that
(up to the author knowledge) there is no comprehensive
literature focusing on general applications of DPS. In-
stead, their applications are splintered among thousands
of books and articles many of which belong to Chemical
and Bio-Engineering domains. In conjunction with this
paper, (Elsheikh and Kucherenko, 2019) provides a new
classification and initial summary of applications of DPS.
In this technical report1, three families of application sam-
ples are categorized:

1. Modeling-oriented applications:
Applications benefiting from the presence of DPS at
the model level without the need of mathematically
sophisticated post processing or leaving the GUI of
the simulation platform such as control coefficients
(Fell, 1992), local SA, parameter sweeping studies,
model simplification and error analysis

2. statistical-oriented applications:
Statistical tools benefiting from DPS for improved
efficiency in terms of accuracy and computational
complexity such as regression analysis, global SA,
uncertainty analysis and identifiability analysis

3. optimization-oriented applications:
high-level optimization problems with objective

1The technical report is subject to continuous modification from the
author. Interested readers are welcome to contribute.

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

796 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157795

functions expressed in terms of DPS such as experi-
mental design, optimal design and parameter estima-
tion in conjunction with identifiability analysis

Figure 1 demonstrates an application of a DPS-enabled
simulation. The underlying model is capable of addi-
tionally computing DPS. Consequently it was possible to
apply parameter sweeping studies using generic models
within the PSTools library.

Figure 1. Parameter sweeping study based on one DPS-enabled
simulation with two parameters. Instead of running multiple
simulations, Taylor series expansion is exploited

1.3 Methodologies for Computing DPS
Assume that a given continuous-time Modelica model
equivalently corresponds to an explicit ODE:

ẋ = f (x,q, t) = 0 , x0(q, t0) = x0(q) (1)

where:

• t : time

• q ∈ Rnq : set of model parameters

• x(q, t) ∈ Rnx : set of state variables

The chosen parameters (say p∈ Rnp) w. r. t. which deriva-
tives are sought are referred to as active parameters. This
work is summarizing some of the available methods for
computing DPS

∂x
∂ p

(p, t) ∈ Rnx×np

These methods are:

1. Finite Difference (FD) methods (Section 2): straight-
forward to implement with Modelica but subject to
serious accuracy issues

2. Specialized solvers (Section 3): provided by specific
simulation environments usually accessible by exter-
nal scripting capabilities

3. Equation-based Algorithmic Differentiation (AD)
(Section 4): a platform-independent approach allow-
ing DPS to be present at the language level but re-
quires additional implementation efforts

Section 5 discusses a potential enhancement to the Mod-
elica language by allowing the operator der to take a sec-
ond argument as a model parameter. The discussion in-
cludes some expected obstacles with a minimalist imple-
mentation approach highlighted in Section 6 and an out-
look given in Section 7.

2 Finite Difference Methods
2.1 Implementation
A straightforward way to compute DPS is realizable by a
first-order FD method. Assuming that simulation of Equa-
tion (7) leads to the approximated solution:

xi(p, tk) = xi,k(p) (2)

for i ∈ {1,2, ...,nx} & k = 0,1,2, ..

DPS are evaluated by post-processing additional np simu-
lations each with one slightly modified active parameter:

∂xi

∂ p j
(tk, p) ≈

xi,k (p+ e jδ j)− xi,k (p)
δ j

(3)

where:

δ j = ξ j · p j, ξ j : perturbation factor

and e j ∈ Rnp : the j-th unit vector. However, utilizing
Modelica capabilities, DPS can be implemented via one
simulation as follows:

model FDModel
parameter Real zeta = 0.01 "perturbation";
parameter Real p1=3.0,p2=0.3,p3=...;

MyModel M (p1=p1,p2=p2,...);
MyModel M1(p1=p1*zeta+p1,

p2=p2,
...);

MyModel M2(p1=p1,
p2=p2*zeta+p2,
...);

...
Real dxdp[nx,np] "DPS";
...

equation
dxdp[1,1] = (M1.x1-M.x1) / (p1*zeta);
dxdp[1,2] = (M2.x1-M.x1) / (p2*zeta);
...
dxdp[2,1] = (M1.x2-M.x2) / (p1*zeta);
dxdp[2,2] = (M2.x2-M.x2) / (p2*zeta);
...

end FDModel;

2.2 Performance
Theoretically, for a Modelica model with say nx nontriv-
ial equations and np active parameters, the previous im-
plementation results in a model with np(nx +1) nontrivial
equations. The current computation paradigms for Mod-
elica simulation environments (at least for the published

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

DOI Proceedings of the 13th International Modelica Conference 797
10.3384/ecp19157795 March 4-6, 2019, Regensburg, Germany

ones) imply that the above model translates to one sin-
gle block of an ODE / a DAE system of equations. This
causes performance drawbacks when considering large
number of active parameters. One may rather attempt
to consider fewer numbers of active parameters and addi-
tional models. However, by extending BLT-based speed-
up techniques (Cellier, 1991) to ODEs / DAEs level rather
than only algebraic equations, advanced compiler strate-
gies may allow independent simulation of smaller blocks
of ODEs / DAEs, even in parallel. Hence, run-time perfor-
mance of FD-methods should not be the main concern but
the accuracy. As mathematically justified in (Elsheikh and
Wiechert, 2012), the study shows that FD is non-reliable
in the context of large-scale nonlinear dynamics. Hence
FD, in the way implemented in this subsection, should not
be the chosen approach for computing DPS.

2.3 Applying FD within the PSTools Library
Employing FD for computing DPS can still be exploited
only as a first experimental step, in particular if advanced
FD strategies and more accurate formulas are employed.
This is also useful to validate other approaches for com-
puting DPS. The PSTools library provides modelers capa-
bilities for computing DPS of arbitrary Modelica models.
Given a Modelica model M, the first step is to parameter-
ize the model under consideration as follows2:
model ParM
extends PSTools.Utilities.Parameterized(
NP = 2,
_P = {0.4, 0.5 / 3600},
PNAME = {"p1", "p2"},
NX = 4,
_X = {_M.x1, _M.x2},
XNAME = {"x1", "x2"});

protected
M _M(p1 = _P[1], p2 = _P[2]);

end ParM;

In this way, the active parameters and the significant vari-
able of the model M are specified. Alternatively, exploit-
ing enumeration classes is also possible:
model ParM
extends

PSTools.Utilities.EnumParameterized(
redeclare type ActivePars =

enumeration(p1,p2),
_P = {0.4, 0.5 / 3600},
redeclare type SignificantVars =

enumeration(x1,x2));
protected
M _M(p1 = _P[ActivePars.p1],

p2 = _P[ActivePars.p2]);

equation

_X[SignificantVars.x1] = _M.x1;
_X[SignificantVars.x2] = _M.x2;

end ParM;

2other styles other than declaring the model under consideration in a
protected section are also realizable

Once a model under consideration is a subclass of
PSTools.Utilities.Parameterized, it is straightforward to
employ advanced capabilities within the PSTools library
for computing DPS as follows:

model FDParM
PSTools.PS.FD.CD2

PS(redeclare replaceable model
ParModel = ParM);

Real g_x1_p1, g_x1_p2, g_x2_p1, g_x2_p2;

equation

g_x1_p1 = PS.g_x[1,1];
g_x1_p2 = PS.g_x[1,2];
g_x2_p1 = PS.g_x[2,1];
g_x2_p2 = PS.g_x[2,2];

end FDParM;

In this way DPS are computed using a central difference
formula of order two. Figure 2 demonstrates the trajec-
tories of DPS for some chosen significant variables w.r.t.
some active parameters for a Modelica model in the Bio-
engineering domain with 10 significant variables and 9 ac-
tive parameters resulting in 90 trajectories for DPS.

Figure 2. Some trajectories of DPS of a Model from Bio-
Engineering domain

3 Specialized Solvers
3.1 Approach
There are specialized numerical solvers, e.g. Sundials
package (Hindmarsh et al., 2005) or DSPACK (Petzold
et al., 2006) that can be employed for computing DPS.
This is done by numerical integration of the sensitivity
system composed of the ODE (1) together with sensitivity
subsystems:

ẋp = fxxp + fp , xp(t0) = ∂x0(p)/∂ p (4)

obtained by differentiating ODE (1) w.r.t. p. Open-
Modelica and Wolfram SystemModeler exploit such
solvers with the help of external scripting capabili-
ties. Dymola can be coupled with the DSPack solver
as shown in (Wolf et al., 2008). FMI2.0 specifies a

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

798 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157795

functionality for evaluating partial derivatives of an
FMU (fmi2GetDirectionalDerivative). Due to appar-
ent implementation overhead this functionality is optional.

A common way to compute the required partial derivatives
fx and fp is to employ classical AD techniques (Naumann,
2012) (cf. www.autodiff.org). The simpler way to
accomplish that is via a computational approach for for-
ward differentiation, cf. next Subsection. Alternatively,
advanced heuristics based on FD schemes can be utilized.
Instead of direct numerical integration of a system of size
nx(np+1), couple of methods exist with improved perfor-
mance efficiency (Maly and Petzold, 1996; Feehery et al.,
1997). These methods attempt to exploit the linearized
form of a sensitivity system and the structure of its ex-
tended Jacobian.

3.2 Computation of Partial Derivatives
Given the equation system f from (1), an AD algorithm
in forward mode is capable of computing the s.c. tangent
linear model y corresponding to directional derivatives of
f w.r.t. a user-defined input. Formally, y is computed as:

y(u,s) =
∂ f
∂u
· s (5)

where u ∈ {x, p} and s ∈ R|u| is a seed vector. Several
works related to evaluation of the Jacobian (i.e. fx(t) ∈
Rnx×nx) via AD in Modelica compilers have been reported
(Olsson et al., 2005; Andersson et al., 2010; Braun et al.,
2011). Given that x = (x1,x2, . . . ,xnx)

T , the term fx is ac-
cumulated by letting s ranges over the Cartesian basis of
Rnx as follows:

fx =

[
y(x,ei)

]
i=1,2,...,nx

=

[
∂ f
∂x
· ei

]
i=1,2,...,nx

=

[
∂ f
∂xi

]
i=1,2,...,nx

(6)

where ei is the i-th unit vector in Rn and each iteration
i computes the i-th column in fx. If f is expressed as a
functional unit within a program P, AD produces another
program P′ that includes evaluation of f together with y.
This implies that the program P′ needs to get repeatedly
evaluated for nx (np) times in order to compute fx (fp)
with potentially common intermediate computations
being repeatedly performed.

A possibility to reduce such excessive evaluations is to ex-
ploit sparsity patterns of object-oriented Modelica models.
In this way, many directional derivatives can be simulta-
neously computed by compressing many unit vectors into
the seed vector s (Braun et al., 2012). However, even with
this technique, it is not a wonder that straightforward sym-
bolic differentiation outperforms AD w.r.t. runtime perfor-
mance as reported in (Åkesson et al., 2012). In the case of
np � nx, excessive computational efforts can be avoided

by following a backward AD approach as demonstrated
in (Braun et al., 2017). (Hannemann-Tamas et al., 2012)
shows another approach for computing first and second-
order DPS using adjoint sensitivity analysis applied to a
flattened Modelica model.

4 Equation-based AD for Modelica
So far demonstrated reliable approaches for computing
DPS are limited to external solutions (FMI) or non-unified
platform-dependent additional services. In contrary, a
platform-independent approach to realize DPS is to ex-
ploit equation-based AD technique with which DPS is
modeled using Modelica syntax. Given a Modelica model
(or a library) DPS are modeled by systematically extend-
ing every base component by another component addition-
ally including entities and equations for the sensitivity sys-
tem. Then, a top-level model is slightly changed by spec-
ifying the set of active parameters.

4.1 Example: The ADGenKinetics Library
The ADGenKinetics library (Elsheikh, 2012) an algorith-
mically differentiated library capable of modeling the dy-
namics of biochemical reaction networks together with
DPS, the major connection mechanism:

connector ChemicalPort
"reaction connector"

Units.Concentration c "concentration";
flow Units.VolumetricReactionRate r

"reaction rate";
end ChemicalPort;

is extended within another separate package Derivatives
as follows:

connector ChemicalPort
extends Interfaces.ChemicalPort;
outer parameter Integer NG

"dimension of the gradients";
Real g_c[NG] "gradients of c";
flow Real g_r[NG] "gradients of r";

end ChemicalPort;

The parameter NG specifies the number of active param-
eters that is first to be specified at a top-level model. The
array g_c (g_r) is a derivative object describing the deriva-
tives of the concentration (the reaction rate) w.r.t. active
parameters. Similarly a component providing basic inter-
faces for arbitrary chemical substances:

partial model BasicNode
"Basic declarations of any Metabolite"
extends

Interfaces.dynamic.NodeConnections;
parameter Units.Concentration c_0 = 0

"initial concentration";
Units.Concentration c(start = c_0)

"substance concentration";
Units.VolumetricReactionRate r_net

"net reaction rate";
equation
r_net = rc.r;
rc.c = c;

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

DOI Proceedings of the 13th International Modelica Conference 799
10.3384/ecp19157795 March 4-6, 2019, Regensburg, Germany

mc.c = c;

end BasicNode;

is extended as follows:

partial model BasicNode
"Basic declarations of any Metabolite"
extends Derivatives.Interfaces.

dynamic.NodeConnections;
extends NodeElements.dynamic.BasicNode;
outer parameter Integer NG

"# of gradients";
parameter Real g_c_0[NG] = zeros(NG)

"gradients of c_0";
Real g_c[NG](start = g_c_0)

"gradients of c";
Real g_r_net[NG](start = zeros(NG))

"gradients of r_net";
equation
g_r_net[:] = rc.g_r[:];
rc.g_c[:] = g_c[:];
mc.g_c[:] = g_c[:];

end BasicNode;

The extended equations are obtained by differentiating the
original equations w.r.t. arbitrary parameters. Note that
the differentiated component is now extending the differ-
entiated model of NodeConnections. To each variable and
parameter, a corresponding derivative object is associated,
e.g. g_c_0. In this way, derivatives w.r.t. start values can
be also represented. Obtaining derivative formulas as well
as the naming conventions of intermediate variables are
comprehensively explained in (Elsheikh, 2015). The algo-
rithm is also employed to manually derive partial deriva-
tives of complex formulas.

4.2 A Top-level Model
A top-level model is slightly modified from:

model Spirallusdyn "An abstraction TCA
cycle"

import NodeElements.dynamic.*;
import Reactions.convenience.dynamic.*;
..
Node A;
RevKinetic v1
(NS = 1, NP = 1,
Vfwdmax = 3.0, Vbwdmax = 1.0,
...);

...
equation
...
connect(A.rc, v1.rc_S[1]);
connect(v1.rc_P[1], B.rc);
...

end Spirallusdyn;
%

to:

model spirallusdynAll "Parameter
sensitivities"

import Derivatives.NodeElements.dynamic.*;
import Derivatives.Reactions.

convenience.dynamic.*;
import Derivatives.Functions.*;
// instead of

// import NodeElements.dynamic.*;
// ...

// additional declaration
inner parameter Integer NG = 24;
...
// the exisiting components
Node A;
RevKinetic v1

(NS = 1, NP = 1,
Vfwdmax = 3.0,

// declare the 4-th active
parameter

g_Vfwdmax = unitVector(4, NG),
Vbwdmax = 1.0,

// declare the 5-th active
parameter

g_Vbwdmax = unitVector(5, NG),
...);

...
equation
// connection equations remain the same
...
connect(A.rc, v1.rc_S[1]);
connect(v1.rc_P[1], B.rc);
...

end spirallusdynAll;

in order to additionally simulate DPS, cf. (Elsheikh, 2012)
Section 5 for simulation results. Imported differentiated
types are employed and input Jacobian is additionally de-
clared. Methodological details on the equation-based AD
method are demonstrated in (Elsheikh, 2014) illustrated
on a simple part of the MSL, the ADMSL library. Regard-
less of being platform-independent uniform approach, the
main advantage of this method is that DPS are already a
part of the model, profitable to many applications high-
lighted in (Elsheikh and Kucherenko, 2019).

5 Whispering about der(x,p)
5.1 der(x,p) !?
The established methodology for equation-based AD of
Modelica models / libraries inherits an implicit but intu-
itive proposal: der(x,p). This allows the operator der to
take a second argument as a parameter to represent DPS.
The equation-based AD approach can be viewed as an
equivalent prototype implementation of such an enhance-
ment. More or less, der(x,p) may provide all equivalent
activities a modeler currently needs to explicitly imple-
ment DPS at model level. For instance, a demonstration
may look as follows:
model MyModel
MyComp1 C1;
MyComp2 C2;
Real dxdp;
Real dydp;
Real dydq;

equation
dxdp = der(C1.x,C2.p);
dydp = der(C2.y,C2.p);
dydq = der(C2.y,C1.q);

end MyModel;

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

800 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157795

The above model is equivalently realizable by equation-
based AD at the model level.

5.2 What speaks for der(x,p)?
The demonstrated efforts for computing DPS of Modelica
models reveal that they unintentionally converge to pro-
vide DPS-capabilities at the language level:

1. If a Modelica simulation environment will eventu-
ally support (or are already supporting) DPS for FMI,
then it makes sense also to consider DPS at Modelica
level due to potentially duplicated efforts

2. Why should a Modelica modeler need to externally
employ FMI with additional overhead for reasons
FMI have not been apparently established for?

3. Representing DPS at model level is intuitive and re-
alizable for significant subset of Modelica models,
cf. Section 6

4. Regardless of a significant set of applications of DPS
where its advantageous to have DPS at the model
level (Elsheikh and Kucherenko, 2019), DPS can be
physically part of the model (Fell, 1992)

The last argument is referring to the s.c. control coeffi-
cients corresponding to scaled DPS allowing comparative
studies among parameters generally applicable to arbitrary
physical domains.

5.3 What speaks against der(x,p)?
While the demonstrated algorithmically differentiated li-
braries correspond to continuous-time physical models,
probably most of Modelica applications cover discrete
phenomena. It should be clear how to treat der(x,p) if x is
not continuous. Formally speaking: assume that the given
Modelica model corresponds to an explicit hybrid ODE:

ẋ = f (x,z,m,q, t) = 0 , x0(p, t0) = x0(p) (7)

where x, p and t as given in Equation (1) and

• m(q, t) ∈ Rnm set of discrete variables with constant
values between events

• z(q, t) ∈ Rnz set of event indicators where zi(t j)
changes sign implies that for a small ε > 0:

mk(t j− ε) 6= mk(t j + ε),

lim
t→t+j

xs(t j) 6= lim
t→t−j

xs(t j) or

lim
t→t+j

ẋr(t j) 6= lim
t→t−j

ẋr(t j)

for some k ∈ {1,2, . . . ,nm} , s ∈ {1, . . . ,nx} and r ∈
{1, . . . ,nx}

Similarly, assume that p are the active parameters. Some
justifiable questions, among others, on the validity of this
study on hybrid systems would include:

1. When does a unique solution for the trajectories of
sensitivities exist?

2. How to handle sensitivities when x jumps between
events?

3. What if a parameter pk is the time of event, i.e.
∂ pk/∂ t j = 1 with some zi(t j) = 0

4. Generally, what if z is a function of parameters, i.e.
z = z(p, t)?

5. How to handle the case where a parameter may even
influence the presence of an event?

6. How to treat the influence of parameter values on
event indicators z or even discrete variables m?

Definitely some of the above questions need to be ade-
quately addressed. On the other hand, there are plenty of
studies on SA of hybrid systems in literature e.g. (Galán
et al., 1999; Barton and Lee, 2002; Saccon et al., 2014)
some of which could be inspiring for addressing these
questions.

6 Evaluation, Compilation and Simu-
lation of Sensitivity Systems

Two AD approaches for generating a sensitivity system
out of der(x,p) specification can be imagined. The clas-
sical one is to generate the required derivatives needed
by specialized solvers for DPS, possibly using classical
AD tools as demonstrated in Section 3.2. Another naive
but attractive alternative is to self generate the sensitivity
system using symbolic differentiation capabilities, if not
equation-based AD. Afterwards the generated sensitivity
system is subject to the standard optimization techniques
of Modelica compilers (Murota, 1987; Cellier, 1991). In
many cases, compilation complexity does not need to be
overwhelmed due to the dimension of sensitivity system,
as revealed in Section 6.2.

6.1 Equation-based AD
In the following, an advanced equation-based AD ap-
proach following a forward-differentiation scheme is
demonstrated which

1. evaluates a sensitivity system in one single shot

2. overcomes the repetitive computations drawback

3. requires no additional memory for derivative objects
of intermediate computations

This is the same approach that has been applied to
compute partial derivatives of library components demon-
strated in Section 4. Technically speaking w.r.t. the
above mentioned first argument and partially the second
argument, symbolic differentiation results in similar
conclusions. The same applies to classical AD if the seed

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

DOI Proceedings of the 13th International Modelica Conference 801
10.3384/ecp19157795 March 4-6, 2019, Regensburg, Germany

vector s from Eq. (5) becomes a seed matrix and assigned
to the identity matrix Inx for computing the Jacobian.
However both methods were not satisfiable for computing
partial derivatives at Modelica language level (Elsheikh
et al., 2008).

On the other hand, equation-based AD combines the ad-
vantages of both approaches by employing algorithmic
capabilities borrowed from equation-based compilation
techniques for simplifying common sub-expressions. In
(Elsheikh, 2015) it is shown that equation-based AD does
not associate derivative objects for intermediate compu-
tation resulting in efficient memory management of large
equation systems of complex formulas. The proposed ap-
proach directly derives the sensitivity system by comput-
ing the rhs of Eq. (4) in one single shot as follows:

fx S1 + fp S2 (8)

where S1 =
∂x
∂v
∈ Rnx×q , S2 =

∂ p
∂w
∈ Rnp×q

S1 & S2 are seed matrices (vectors if q = 1) that are set
using the auxiliary vectors v,w ∈ Rq in the following way:

1. only fx required: let v = x ∈ Rnx , w = φnx ∈ Rnx

where φnx is a dummy vector with which ∂ ẋ/∂φnx =
0 ∈ Rnx×nx and ∂ p/∂φnx = 0 ∈ Rnp×nx

2. only Fp required: let w = p ∈ Rm , u = v = φm ∈ Rm

3. sensitivity subsystem required: set v = w = p ∈ Rnp

Despite the large size of sensitivity systems, they
can be compactly represented. Assuming that
x = (x1,x2, . . . ,xnx)

T , p = (p1, p2, . . . , pnp)
T and

f = (f1, f2, .., fnx)
T with

fi : Rnx+np+1→ R

s.t. fi ≡ fi(x, p, t) = eT
i · f (x, p, t) , i ∈ {1,2, . . . ,nx}

corresponds to the i-th equation in f , the corresponding
differentiated equation w.r.t. a parameter p j is derived
from Equation (8) as follows:

∂ ẋi

∂ p j
(x, p, t) =

n

∑
k=1

∂ fi

∂xk

∂xk

∂ p j
+

m

∑
k=1

∂ fi

∂ pk

∂ pk

∂ p j
(9)

By assigning a gradient object (i.e. array) to each partial
derivative, the sensitivity subsystem is compactly formu-
lated with nx equations as:

∂ ẋi

∂ p
(x, p, t) =

n

∑
k=1

∂ fi

∂xk

∂xk

∂ p
+

∂ fi

∂ p
(10)

6.2 Compilation of Sensitivity Systems
When computing the sensitivity system of a Modelica
model, an approach is to generate the sensitivity equation
after optimizing the flat representation of the model. How-
ever the other way around might not be significantly less
efficient. Naive generation of the sensitivity system of a
flat equation system is also subject to optimization tech-
niques of Modelica code. For instance, the differentia-
tion of simple equations from connections leads to simple
equations subject to removal at the optimized equation set.
Another significant remark is demonstrated in Figure 3,
the computational graph of an equation system describing
the motion of a free pendulum in the Cartesian space (cf.
(Fritzson, 2011)). The computational graph of the whole

Figure 3. Pendulum equation system

sensitivity system is shown in Figure 4.

Figure 4. Computational graphs of pendulum equation sensitiv-
ity system

Obviously both computational graphs of the equation sys-
tem and its sensitivity subsystems are isomorphic. This
argument is generally valid as one of the mathematical
foundlings proven in (Elsheikh and Wiechert, 2018). Con-
sequently one can utilize already existing compiler ca-
pabilities (Mattsson, 1995; Maffezzoni et al., 1996), in-
cluding index reduction (Pantelides, 1988; Mattsson and
Söderlind, 1993), to transform the sensitivity system into
a solvable optimized format. In many cases, there is no
need to apply Modelica compiler techniques to the sen-
sitivity subsystems. For example, the structural index
(Leitold and Hangos, 2001) of both systems are identi-
cal. The equations within a sensitivity subsystem selected

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

802 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157795

for differentiation towards index reductions are those cor-
responding to the equations within the original system se-
lected for differentiation towards index reduction.

6.3 Simulation of Sensitivity Systems
Similarly, numerical integration of sensitivity equations
with standard solvers can be slow for high-dimensional
systems. By exploiting the structure of sensitivity
systems, speed up can be achieved by exploiting the
Modelica-friendly method described in (Dickinson and
Gelinas, 1976). The original ODE / DAE system is nu-
merically integrated together with a sensitivity subsystem
corresponding to only one single active parameter. This
computation is repeated for each active parameter. A gen-
eralization of this approach is to allow larger sensitivity
subsystems corresponding to several active parameters.
Hardware-oriented heuristics can be employed for select-
ing the optimal number of active parameters. Moreover,
this approach is salable w.r.t. to parallelization (Elsheikh,
2015).

7 Summary and Outlook
This work summarizes some conducted efforts in the
Modelica community to provide a functionality for com-
puting DPS. In particular, equation-based AD allowing
DPS to be present at the model level is highlighted. The
study hints that these efforts may potentially converge
to the integration of DPS facilities for Modelica. One
possibility is to allow the operator der to have a second
argument as a model parameter. From one side, this
provides a uniform platform-independent solution for
representing DPS. From the other side, many applications
based on DPS are realizable. In order to promote the
presence of DPS at Modelica level, a new Modelica
library called PSTools is currently under development
from which the example in Figure 1 is taken.

Representation of DPS at model level has been demon-
strated in few application domains that are rather describ-
ing systems governed by continuous-time equation sys-
tems. While excessive triggering of events are not that
common in the field of Systems Biology in comparison
for instance with the field of Power Electronics, an ab-
solute justification of der(x,p) demands a proper treat-
ment of DPS in the presence of discontinuities and events.
The mathematical foundation for DPS of hybrid systems
have been extensively studied in literature which could be
mapped to a proper Modelica-based treatment.

Acknowledgement
I would like to thank and acknowledge

• Jan Peter Axelsson (Vascaia AB, Stockholm, Swe-
den) for the model on which Figures 1 and 2 are
based

• Hans Olsson (Dessault Systems, Lund, Sweden) for
valuable feedback regarding der(x,p)

References
Åkesson, J., Braun, W., Lindholm, P., and Bachmann, B. (2012).

Generation of sparse Jacobians for the function mock-up in-
terface 2.0. In Modelica’2012, Munich, Germany.

Andersson, J., Houska, B., and Diehl, M. (2010). To-
wards a computer algebra system with automatic differenti-
ation for use with object-oriented modelling languages. In
EOOLT’2010, Oslo, Norway.

Barton, P. I. and Lee, C. K. (2002). Modeling, simula-
tion, sensitivity analysis, and optimization of hybrid sys-
tems. ACM Transactions on Modling and Computer Simu-
lation (TOMACS), 12(4):256–289.

Braun, W., Kulshreshtha, K., Franke, R., Walther, A., and Bach-
mann, B. (2017). Towards adjoint and directional derivatives
in FMI utilizing ADOL-C within OpenModelica. In Model-
ica’2017, Prague, Czech Republic.

Braun, W., Ochel, L., and Bachmann, B. (2011). Symbolically
derived Jacobians using automatic differentiation - enhance-
ment of the OpenModelica compiler. In Modelica’2011,
Dresden, Germany.

Braun, W., Yances, S. G., Link, K., and Bachmann, B. (2012).
Fast simulation of fluid models with colored jacobians. In
Modelica’2012, Munich, Germany.

Cellier, F. E. (1991). Continuous System Modeling. Springer
Verlag.

Dickinson, R. and Gelinas, R. (1976). Sensitivity analysis of or-
dinary differential equation systems - a direct method. Jour-
nal of Computational Physics, 21:123–143.

Elsheikh, A. (2012). ADGenKinetics: An algorithmically differ-
entiated library for biochemical networks modeling via sim-
plified kinetics formats. In Modelica’2012, Munich, Ger-
many.

Elsheikh, A. (2014). Modeling parameter sensitivities using
equation-based algorithmic differentiation techniques: The
ADMSL.Electrical.Analog library. In Modelica’2014, Lund,
Sweden.

Elsheikh, A. (2015). An equation-based algorithmic differentia-
tion technique for differential algebraic equations. Journal of
Computational and applied Mathematics, 281:135 – 151.

Elsheikh, A. and Kucherenko, S. (2019). Dynamic parameter
sensitivities: Summary of applications – version 1.0. Techni-
cal report. to appear online.

Elsheikh, A., Noack, S., and Wiechert, W. (2008). Sensitivity
analysis of Modelica applications via automatic differentia-
tion. In Modelica’2008, Bielefeld, Germany.

Elsheikh, A. and Wiechert, W. (2012). Accuracy of parameter
sensitivities of DAE systems using finite difference methods.
In MATHMOD 2012, Vienna, Austria.

Elsheikh, A. and Wiechert, W. (2018). The structural index of
sensitivity equation systems. Mathematical and Computer
Modelling of Dynamical Systems, 24(6):553–572.

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

DOI Proceedings of the 13th International Modelica Conference 803
10.3384/ecp19157795 March 4-6, 2019, Regensburg, Germany

Feehery, W. F., Tolsma, J. E., and Barton, P. I. (1997). Effi-

cient sensitivity analysis of large-scale differential-algebraic
systems. Applied Numerical Mathematics, 25(1):41–54.

Fell, D. (1992). Metabolic control analysis: a survey of its theo-
retical and experimental development. Biochemocal Journal.

Fritzson, P. (2011). Introduction to Modeling and Simulation of
Technical and Physical Systems with Modelica. Wiley-IEEE
Press, 1 edition.

Galán, S., Feehery, W. F., and Barton, P. I. (1999). Parametric
sensitivity functions for hybrid discrete/continuous systems.
Applied Numerical Mathematics, 31(1):17 – 47.

Hannemann-Tamas, R., Tillack, J., Schmitz, M., Förster, M.,
Wyes, J., Nöh, K., on Lieres, E., Naumann, U., Wiechert,
W., and Marquardt, W. (2012). First and second order pa-
rameter sensitivities of a metabolically and isotopically non-
stationary biochemical network model. In Modelica’2012,
Munich, Germany.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban,
R., Shumaker, D. E., and Woodward, C. S. (2005). Sundials:
Suite of nonlinear and differential/algebraic equation solvers.
ACM Trans. Math. Softw., 31(3):363–396.

Kucherenko, S. and Iooss, B. (2016). Derivative-Based Global
Sensitivity Measures, pages 1–24. Handbook of Uncertainty
Quantification, Springer International Publishing, Cham.

Leitold, A. and Hangos, K. M. (2001). Structural solvability
analysis of dynamic process models. Computers & Chemical
Engineering, 25:1633–1646.

Maffezzoni, C., Girelli, R., and Lluka, P. (1996). Generating
efficient computational procedures from declarative models.
Simulation Practice and Theory.

Maly, T. and Petzold, L. R. (1996). Numerical methods and soft-
ware for sensitivity analysis of differential-algebraic systems.
Applied Numerical Mathematics: Transactions of IMACS,
20(1–2):57–79.

Mattsson, S. E. (1995). Simulation of object-oriented continu-
ous time models. Mathematics and Computers in Simulation,
39(5 – 6):513 – 518.

Mattsson, S. E. and Söderlind, G. (1993). Index reduction
in differential-algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3):677 – 692.

Murota, K. (1987). Systems Analysis by Graphs and Matroids.
Springer, Berlin.

Naumann, U. (2012). The Art of Differentiating Computer Pro-
grams, an Introduction to Algorithmic Differentiation. SIAM.

Olsson, H., Tummescheit, H., and Elmqvist, H. (2005). Using
automatic differentiation for partial derivatives of functions
in Modelica. In Modelica’2005, Hamburg, Germany.

Pantelides, C. C. (1988). The consistent initialization of
differential-algebraic systems. SIAM Journal on Scientific
and Statistical Computing, 9(2):213–231.

Petzold, L., Li, S. T., Cao, Y., and Serban, R. (2006). Sensitiv-
ity Analysis of Differential-Algebraic Equations and Partial
Differential Equations. Computers & Chemical Engineering,
30:1553–1559.

Saccon, A., van de Wouw, N., and Nijmeijer, H. (2014). Sen-
sitivity analysis of hybrid systems with state jumps with ap-
plication to trajectory tracking. In 53rd IEEE Conference on
Decision and Control, pages 3065–3070.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004).
Sensitivity Analysis in Practice: A Guide to Assessing Scien-
tific Models. Halsted Press, New York, NY, USA.

Wiechert, W., Noack, S., and Elsheikh, A. (2010). Modeling
languages for biochemical network simulation: Reaction vs
equation based approaches. Advances in Biochemical Engi-
neering / Biotechnology, 121:109 – 138.

Wolf, S., Haase, J., Clauß, C., Jöckel, M., and Lösch, J. (2008).
Methods of sensitivity calculation applied to a multi-axial test
rig for elastomer bushings. In Modelica’2008, Bielefeld, Ger-
many.

Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models

804 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157795

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation

DOI Proceedings of the 13th International Modelica Conference 805
10.3384/ecp19157805 March 4-6, 2019, Regensburg, Germany

Frequency Response Estimation Method for Modelica Model and Frequency
Estimation Toolbox Implementation
Bao, Bingrui and Guo, Junfeng and Zhang, Baokun and Zhou, Fanli

805

Frequency Response Estimation Method for Modelica Model and

Frequency Estimation Toolbox Implementation

Bingrui Bao1 Junfeng Guo1 Baokun Zhang1 Fanli Zhou1

1Suzhou Tongyuan Software&Control Tech. Co., Ltd. China, {baobr,guojf,zhangbk,zhoufl}@tongyuan.cc

Abstract
The frequency-response method is widely used because

of its convenience and applicability in the control

system analysis and design, and the premise of the

design based on this method is to obtain the frequency

response of the system. Aiming at the problem that the

strong nonlinearity is difficult to be linearized in

practical engineering systems, this paper presents a

method for estimating the frequency response based on

the time domain simulation data of Modelica models.

The spectrum of the appropriate IO data at the steady-

state operating point of the system is analyzed by

Fourier transform, and then converted into the

frequency response of the system. The proposed

method is applicable to the multi-domain Modelica

model, FMU, and the black box model. A frequency

response estimation toolbox is implemented and

integrated into the MWorks platform based on this

method, which provides important support for the

control design for Modelica model. Simulation

examples illustrated the validity of the proposed

method and the toolbox.

Keywords: Strong nonlinear system, Frequency

response estimation, Toolbox

1 Introduction

Compared with time domain analysis, the frequency

domain analysis can provide more intrinsic properties

of the system. The design of feedback control systems

in industry is probably accomplished using frequency-

response methods more often than any other (Dorf et al,
2016; Ogata, 2010). The frequency-response design is

popular primarily because it provides good design

ability in the case of uncertainty in the plant which is

difficult to describe with accurate mathematical model.

On the other hand, it is the easiest method to use for

designing compensation (Franklin et al, 2009). The

premise of feedback control design based on frequency

response method is to obtain the frequency response of

the system.

In Brief, the theoretical analysis and experimental

estimation are two fundamentally methods for
obtaining system frequency-response. As regards the

theoretical analysis method, which performs Laplace

transform on the mathematical model of the system to

obtain its transfer function, and then replaces the

Laplace operator 𝒔 with 𝒋𝝎 to obtain the frequency

response model. Speaking of the experimental method,

it could be introduced as estimating system frequency-

response by means of deeming system to be black box

and then processing time-domain IO signal which is

obtained from experiments.

The plant of industry systems are generally

characterized by multi-domain, high stiffness and

strong nonlinearity, thus Modelica has its natural

advantages in describing systems with these

characteristics (Fritzson, 2010). Meanwhile, plenty of

remarkable studies on method of frequency-domain

analysis of Modelica model have been conducted all

this time. Martin Otter introduced the LinearSystems

library in 2006, the library provides a definition of

linear systems and also can be used to analyze it,

including analysis of frequency response for linear

systems (Otter, 2006). Andreas Abel et al. proposed a

frequency domain analysis method for Modelica model

based on the periodic steady-state simulation by using

SimulationX, the transfer function and the frequency

domain related properties of the system can be

obtained by the models linearized in an operating point

(Abel, 2008). Loig Allain et al. performed the linear

analysis methods by the existing facilities in LMS

Imagine.Lab, which is essentially a linearization

method based on small perturbation theory (Allain et al,
2009). The LinearSystems2 library is an updated

version of the LinearSystems library was completed in

2009 by Marcus Baur, Martin Otter, etc., which

enhances and extends the functionality of the original

library (Baur et al, 2009), for example, a linearize

function for linearization of physical models is added.

Tilman Bünte proposed a frequency response

estimation method based on time-domain data (Bünte,

2011). However, for strongly nonlinear systems, time-

domain data acquired from Chirp signals have poor

performance in estimation. Based on the linearization

method provided by Dymola, Garron Fish et al.

analyzed the natural frequencies of powertrain systems，
the linearization function of Dymola is also based on

the small perturbation theory (Fish et al, 2012).

The research above of frequency-domain analysis
for Modelica model can be divided into two categories:

frequency-analysis based on linearization and

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation

806 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157805

frequency-response estimation based on IO data from

model. The shortcomings of the current researches can

be summarized as follows.

• For one, Linearization is generally based on the

small perturbation theory, which have to meet two

requirements. Firstly, there should be at least one

steady-state operating point in system. Secondly,

all-order derivatives of equations describing the

system at the operating point require to be existed.

It cannot be stressed enough that the second

requirement could be hardly met.

• For another, neither user-friendly process of

existing data-based frequency response estimation

has been standardized nor has method of obtaining

time-domain data with acceptable estimation

results been put forward.

• In addition, user-friendly time-domain data based

frequency response estimation toolbox has not

been formed yet.

Given the difficulties of frequency analysis on

Modelica model, the topics of study on obtaining the

appropriate time-domain data for estimating system

frequency response of a class of SIMO(single input

multiple output) Modelica model are as follows.

• A general process and key algorithm of data based

frequency response estimation for Modelica model.

• A time-domain data obtainment method suitable

for estimating the frequency response of strongly

nonlinear system.

• Frequency response estimation toolbox which is

developed on the basis of above method.

2 Frequency Response Estimation

Method for Modelica Model

Linear system response to sinusoidal inputs is named

as the system frequency response. Frequency of the

input signal is varied in a certain range for studying the

resulting response in the method of frequency response

estimation. The following state space models are used

to represent the general continuous-time nonlinear

Modelica model for the convenience of explaining the

problem.

�̇�(𝑡) = 𝑓[𝒙(𝑡), 𝒖(𝑡), 𝑡]

𝒚(𝑡) = 𝑔[𝒙(𝑡), 𝒖(𝑡), 𝑡]
(1)

In models above, 𝑡 is the time and 𝒙(𝑡) is the state

variables of the system. Besides, 𝒖(𝑡) is the input of

the system and 𝒚(𝑡) is the output. The frequency

response estimation for the system described in

equation (1) is performed near a certain steady-state

operating point of the system. It is assumed that the

system has a steady-state operating point 𝒙(𝑡𝑜𝑝) under

the input 𝒖(𝑡). As a result, the steady-state output of

the system at the operating point can be expressed as

𝒚(𝑡𝑜𝑝) = 𝑔[𝒙(𝑡𝑜𝑝), 𝒖(𝑡𝑜𝑝), 𝑡𝑜𝑝].

2.1 Principle of Frequency Response

Estimation

The designed small disturbance input signal ∆(𝑡) is

added to the existing input signal 𝒖(𝑡) at the

linearization input point in the method of frequency

response estimation. A new input signal excitation

system model for obtaining the output at the

linearization output point is described as follows.

𝒖𝑡𝑒𝑠𝑡(𝑡) = 𝒖(𝑡) + ∆(𝑡)

()u t
()t

y(t)
Linearization Input

Linearization Output

Estimation Frequency Response for the Model

Figure 1. Acquisition of time domain data

There is a transient portion and steady state portion

at each frequency of the simulated output 𝒚(𝑡). The

steady state portion is selected for sampling and

filtering, etc. FFT transform is applied to the processed

output signal to estimate the spectrum. Frequency

response near the operating point can be easily

calculated based on the spectrum of output signal.

2.2 Frequency Response Estimation

Algorithm

• Model encapsulation

The model to be analyzed is encapsulated as a separate

model. As is shown in Figure 1, linearized input point

and linearized output point is defined. The following

test signal will be added into the linearized input point.

In consideration of the convenience of adding the test

signal into input point, the type of the input interface is

set as RealInput.

• Create Estimation Input Signals

Chirp signal and Sinestream signal are commonly used

for frequency response estimation as disturbance

signals.

𝑐ℎ𝑖𝑟𝑝(𝜔, 𝑡) = 𝐴 ∙ sin(𝜔𝑡)

𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑒 , 𝜔𝑠 ≤ 𝜔 ≤ 𝜔𝑒
(2)

𝑠𝑖𝑛𝑒𝑠𝑡𝑟𝑒𝑎𝑚(𝑡) = {

𝐴0 ∙ sin(𝜔0𝑡) , 𝑡𝑠 ≤ 𝑡 < 𝑡0
𝐴1 ∙ sin(𝜔1𝑡) , 𝑡0 ≤ 𝑡 < 𝑡1

⋮
𝐴𝑛 ∙ sin(𝜔𝑛𝑡) , 𝑡𝑛−1 ≤ 𝑡 < 𝑡𝑛

(3)

As is shown in equations (2) and (3), The Chirp

signal and Sinestream signal are respectively expressed

in equations (2) and (3), in which it can be seen that

Chirp signal is a continuous signal while Sinestream

signal is a segmentation signal. Chirp signal is suitable

for system which is nearly linear in simulation range.

However, if there existed strong nonlinearity in system
and high accuracy of frequency response was required,

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation

DOI Proceedings of the 13th International Modelica Conference 807
10.3384/ecp19157805 March 4-6, 2019, Regensburg, Germany

Sinestream signal would be an excellent choice as

disturbance signal.

Sinestream signal chosen as excitation signal is

applied for time-domain data acquisition of system. To

begin with, the range of frequency estimation along

with number of the estimated points are defined

appropriately. Secondly, steady-state operating point of

the system needs to be set properly as well. Thirdly,

amplitude, period and number of sampling points

should be customized as attributes of each

corresponding sinusoidal signal with specific

frequency. The definitions of signal attributes are

shown in Figure 2.

Setting Periods

Ramp
Periods

Number Periods

Amplitude

A
m

p
li

tu
d

e

Time
ω1 ω2 ω3

Figure 2. Definition of sine-stream signal attribute

According to the definition of the Sinestream signal

above, model based on Modelica language can be

easily implemented. Code part is omitted for lack of

space.

• Time Domain Simulation

A Sinestream signal consists several adjacent sine

waves with varying frequencies. Each frequency

excites the system for a suitable time to ensure that the

system could enter steady state. The output at the

linearized output point is set as the original signal for

the following estimation.

• Signal Processing

In order to ensure the accuracy of the estimation results,

the output signal is divided into 𝑛 segments according

to the duration of different frequency components. 𝑛
represents the number of different frequency points

contained in the set frequency range. Figure 3 shows a

schematic diagram of the system input signal and

output signal at a specific frequency.

Input

Output

Filtered portionSetting Periods

Used for

Estimation

Figure 3. Signal selection

The simulated output at each frequency has a

transient portion and steady state portion. Settling

Periods corresponds to the transient components of the

output and input signals. The periods following

Settling Periods are considered to be at steady state.

Discards the Settling Periods portion of the output (and

the corresponding input) at each frequency. Sampling

the signal used for estimation, assuming that 𝐹𝑠 is the

sampling frequency and 𝑁 is the number of sampling

points.Two points need to be noted are as follows.

i. According to the sampling theorem, it is necessary

to ensure that 𝐹𝑠 is two times larger than the signal

frequency.

ii. In order to ensure the calculation speed of FFT

transform, the number of sampling points 𝑁 is

usually an integer power of two.

• Frequency Response Estimation

The discrete Fourier transform (DFT) is performed on

the processed output data. 𝒙[𝑛] is assumed to be the

processed output at a certain frequency of which length

is 𝑛. The DFT is performed as follows.

𝒀(𝑘) =∑𝒙(𝑗)𝑊𝑛
(𝑗−1)(𝑘−1)

𝑛

𝑗=1

,𝑊𝑛 = 𝑒
(−2𝜋𝑖)/𝑛

(4)

𝒀(𝑘) is the spectrum obtained by Fourier transform of

the signal. It is said that the specific DFT algorithm

described in detail in many literatures (Oppenhiem et

al,1997). However, it is omitted in this paper. The

amplitude and phase of each frequency could be

calculated from the corresponding signal spectrum.

Finally, the frequency response of the system could be

estimated.

3 Implementation of Frequency

Response Estimation Toolbox and

Application Examples

3.1 Introduction for the toolbox

Currently the proposed-method based frequency

response estimation toolbox has been developed and

integrated into MWorks.Sysplorer platform.

Figure 4 . Toolbox launch position

Main functions of the frequency response estimation

toolbox are made up of creation of test signals, setting

of linear input and output points along with graphical

representation of the results of frequency response

estimation.

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation

808 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157805

The creation of test signals is a highlight of the

toolbox that could create Sinestream signal flexibly via

UI interface.

Figure 5. The create sine-stream input dialog box

As can be seen in Figure 5, Sinestream signal could

be created visually by customizing system steady-state

point, range of frequencies along with point numbers

for estimation during it(logarithmically/linearly). In

addition, customized parameters of signals for each

frequency are as follows.

i. Amplitude;

ii. Number of periods;

iii. Settling periods;

iv. Ramp periods;

v. Number of samples at each period.

The estimation results of the system model can be

presented in the toolbox in spectral data or Bode

diagram.

Figure 6．The results of estimation

Meanwhile, toolbox supports that obtaining the

characteristics such as bandwidth of the system,

resonance peak, amplitude margin and phase margin

from estimation results.

3.2 Application of A Simple Example

Building model of a typical spring-damping-mass

system of which parameters is shown as below in
MWorks.Sysplorer. The model can be seen in Figure 7.

 𝑀1 = 6000𝑘𝑔

 𝑀2 = 160𝑘𝑔
 𝑘1 = 5000𝑁/𝑚
 𝑘2 = 10000𝑁/𝑚
 𝐷 = 1000𝑁/(𝑚/𝑠)

Figure 7. Spring-Damping-Mass system model

Estimating the frequency response of the system in

the range of [0.1, 100] rad/s with frequency response

estimation toolbox.

Figure 8. Estimation results of frequency response

The system of this example is actually a linear

system. Therefore, the transfer function can be derived

and then calculate the theoretical frequency response of

the system to verify the accuracy of the above

estimation results.

The transfer function of the system can be derived

as follows:

𝐺(𝑠) =
10𝑠 + 50

0.96𝑠4 + 6.16𝑠3 + 90.8𝑠2 + 10𝑠 + 50
(5)

The theoretical frequency response of the system is

calculated by MATLAB and compared with the results

of estimation.

As shown in Figure 9, the result estimated by the

proposed method is highly matched with the theoretical

analytical result, which verifies the effectiveness of the

proposed method and toolbox.

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation

DOI Proceedings of the 13th International Modelica Conference 809
10.3384/ecp19157805 March 4-6, 2019, Regensburg, Germany

Figure 9.Verification of frequency response estimation

3.3 Frequency Response Analysis of Electro-

Hydraulic Actuator

Taking the electro-hydraulic actuator of a certain type

of aircraft flight control system as the research object,

the actuator in the aircraft is usually called Power

Control Unit (PCU). The design requirements of PCU

includes the frequency response index. According to

the principle of this type of PCU, its Modelica model is

established as the following figure:

Figure 10. PCU model

Firstly, linearized function referred as

linearizeModel on Dymola is applied to the PCU

model which provide linearization process. The

linearization result is shown as follows.

Figure 11. Linearization results of PCU model

As is shown in Figure 11, the thirteenth-order linear

state-space model of the system could be obtained after

linearization. Matrix 𝑩 and 𝑫 are as follows.

𝑩 = [0 0 ⋯ 0⏞
13

]

𝑇

 ，𝑫 = 0 (6)

It can be concluded that input of the system has no

influence on state variables and system output.

Therefore, it is incorrect to linearize the PCU model as

many hydraulic components are contained of which

strong nonlinearity could not meet the linearization

conditions.

The frequency response is estimated in the

frequency range of [0.1,20] Hz given the same

conditions as those of frequency identification test of

this type of PCU. The estimation result can be seen in

the following figure.

Figure 12. Estimation Results Of The PCU Model

Comparison between result of the frequency

response estimation and result of the actual system

frequency identification test is shown in Figure 13.

Figure 14. Verification of estimation results of PCU

As can be seen in Figure 14, red curve is represented

as the frequency response range of the PCU defined in

the Systems Requirements Document (SRD) while

black curve is represented as the results of the

frequency identification test. As for blue curve, it is

defined as the results of estimation based on frequency

response estimation toolbox. In summary, results of

Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox
Implementation

810 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157805

estimation confirms to those of identification test,

thereby the validity and accuracy of the proposed

method and corresponding toolbox.

4 Conclusion

Considering that the system has the characteristic of

strong nonlinearity in the actual engineering, a method

for estimating the frequency response of multi-domain

Modelica model is proposed to copy with difficulty.

Generating appropriate signal to excite system model

and then estimating the system frequency response

counting on output data from time-domain simulation

to avoid stringent requirements for applying

linearization method on system model. It is worth

mentioning that frequency response estimation toolbox

for Modelica model has been integrated into

MWorks.Sysplorer platform to improve usability along

with flexibility of the method. Last but not least, the

viability of proposed method and toolbox could be

verified by way of taking simulation above for example.

Currently the frequency response estimation

introduced is applicable to single input multiple output

(SIMO) Modelica model. There is high potential that

this method could be widely used for multiple input

multiple output (MIMO) system and finalizing

promotion is established as target of next work.

Besides, analysis on the method is mainly introduced,

which is foundation for control system design

subsequently. It will be important further work that

guaranteeing availability of complete process of

designing control system for Modelica model.

References

Andreas Abel, Tobias Nähring, Frequency-Domain Analysis

Methods for Modelica Models, Proceedings of the 6th

International Modelica Conference, 2008.

Alan V.Oppenhiem, Alan S. Willsky, With S. Hamid Nawab,

Signals and Systems, Second Edition, Pearson, 1997.

Fritzson. Peter. Principles of object-oriented modeling and

simulation with Modelica 2.1. John Wiley & Sons, 2010.

Gene F. Franklin, J. David Powell, Abbas Emami-Naeini,

Feedback Control of Dynamic Systems, Fifth Edition.

Pearson Education US. 2009.

Garron Fish, Mike Dempsey, Juan Gabriel Delgado, Neil

Roberts, Natural frequency analysis of Modelica

powertrain models, Proceedings of the 9th International

Modelica Conference, 2012.

http://www.fftw.org/

Katsuhiko Ogata. Modern Control Engineering, Fifth Edition.

Pearson. 2010.

Loig Allain, Stéphane Neyrat, Antoine Viel, Linear Analysis

Approach for Modelica Models, Proceedings of the 7th

International Modelica Conference, 2009.

Marcus Baur, Martin Otter, Bernhard Thiele, Modelica

Libraries for Linear Control Systems, Proceedings of the

7th International Modelica Conference, 2009.

Martin Otter, The LinearSystems library for continuous and

discrete control systems, Proceedings of the 5th

International Modelica Conference, 2006.

Richard C.Dorf, Robert H.Bishop. Modern Control Systems,

12th Edition. Pearson. 2016.

Tilman Bünte, Recording of Model Frequency Responses

and Describing Functions in Modelica, Proceedings of the

8th International Modelica Conference, 2011.

The MathWorks Inc. https://ww2.mathworks.cn/help/

slcontrol/ug/frest.chirp.html

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

DOI Proceedings of the 13th International Modelica Conference 811
10.3384/ecp19157811 March 4-6, 2019, Regensburg, Germany

Modelica Models for the Control Evaluations of Chilled Water System with
Waterside Economizer
Fu, Yangyang and Lu, Xing and Zuo, Wangda

811

Modelica Models for the Control Evaluations of Chilled Water
System with Waterside Economizer

Yangyang Fu1 Xing Lu1 Wangda Zuo1

1Department of Civil, Architectural and Environmental Engineering, University of Colorado at Boulder, USA,
{yangyang.fu,xing.lu-1,wangda.zuo}@colorado.edu

Abstract
Chilled water system with waterside economizer is a com-
mon cooling system used for large commercial buildings
and data centers. To evaluate the design and control of the
cooling system, modeling and simulation techniques are
essential. This paper presents an equation-based model-
ing package for chilled water cooling system and a library
of system- and equipment-level control. Then a case study
is conducted to evaluate performance of the system-level
control under different climate zones. Simulation results
show that both temperature and humidity of the climate
zone have influences on the economizing hours of the sys-
tem, which thus influences the energy consumption.
Keywords: Chilled Water System, Waterside Economizer,
Control Evaluation

1 Introduction
Commercial buildings have large cooling loads that are re-
moved by Heating Ventilation and Air Conditioning sys-
tem. American Society of Heating Refrigeration, and Air-
Conditioning Engineers (ASHRAE) standards 90.1 states
the requirements of the cooling system with waterside
economizer for different climate zones.

Modeling and simulation is a cost-effective way to
evaluate of the design and operation of the cooling sys-
tems. Modeling refers to the process that the real phys-
ical system is represented as mathematical models. Dif-
ferent physical systems (thermal, electrical, and electro-
magnetic, etc.) with different time-scaled dynamics are
involved. This usually leads to high-indexed differential
algebraic equations. Simulation is then conducted to nu-
merically solve the mathematical equations in order to cal-
culate the unknowns, which involves computer represen-
tation of models, different numerical solvers, solution pro-
cedures etc.

Many tools have been developed in academia and in-
dustry to perform computer modeling and simulation of
the cooling systems in buildings. For example, eQuest
(Lee and Chen, 2013), EnergyPlus (Pan et al., 2008) (Ham
and Jeong, 2016), TRNSYS (Agrawal et al., 2016), and
some customized simulation tools such as Energy Model-
ing Protocol (Shehabi et al., 2008) have been used to study
the cooling systems with waterside economizers (WSEs)
and airside economizers (ASEs) in data centers. Most of

these traditional tools are based on imperative program-
ming languages such as FORTRAN, C/C++ etc.

These imperative programming language based tools
have exposed several challenges in the context of mod-
eling, simulation and optimization. They have limited ca-
pacity when it comes to control designs and evaluations.
For instance, EnergyPlus adopts idealized controls to re-
duce computation time(Fu et al., 2018). Although TRN-
SYS has dynamic control models, its constant time step
poses numerical challenges(Kim et al., 2013). Further,
conventional tools often intertwine model equations and
numerical solvers in their source codes; this makes it dif-
ficult to extend these programs to support control-oriented
cases.

Equation-based language such as Modelica (Elmqvist
et al., 1998) can provide solutions to the above-mentioned
issues. Modelica separates physical equations and numeri-
cal solvers wherever possible. The separation can mitigate
the risks of intertwinement, and can fully take advantages
of different expertise from different domains(Wetter et al.,
2016; Fu et al.). For example, model developers can con-
centrate on how to develop efficient high-fidelity physical
models, while computer engineers can focus on the devel-
opment of robust numerical solvers. Also, the State Graph
package in Modelica can be used to perform discrete con-
trol which contains dead band or delay time. The rich li-
brary of numerical solvers in Modelica can be chosen for
different systems and different use cases.

In this paper, we present a Modelica-based package for
the chilled water system with waterside economizers. The
cooling component models are built on Modelica Build-
ings library(Wetter et al., 2014), and the control logic of
the cooling system are adopted from engineers’ experi-
ence. We first introduce the chilled water system with wa-
terside economizers, and then discuss the Modelica mod-
els for the above-mentioned cooling and control system.
In Section 4, we perform an comprehensive evaluation of
the mentioned cooling mode control for different climate
zones. The conclusions are discussed in Section 5.

2 Chilled Water System with Water-
side Economizer

Chilled water system is usually used for commercial build-
ings. A typical chilled water system includes chillers,

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

812 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157811

Cooling Towers Condenser Water
Pumps

TCW,sup

Chillers Waterside Economizer

TCHW,sup,WSE

Primary
Pumps

TCHW,sup

Tair,sup

Computer Room
Air Handlers

Data Center Room

(a) Parallel

Cooling Towers Condenser Water
Pumps

TCW,sup

Chillers Waterside Economizer

TCHW,sup,WSE

Primary
Pumps

TCHW,sup

Tair,sup

Computer Room
Air Handlers

Data Center Room

(b) Series

Figure 1. Primary-only chilled water system with integrated
WSE

air handling units (AHUs), pumps, and cooling towers
(Huang et al., 2016). The heat generated in the building
is first transferred to the chilled water through AHUs, and
the chillers then transfer the heat in the chilled water loop
into the condenser water loop through a refrigeration sys-
tem. The cooling towers at last reject the the heat in the
condenser water loop to the outdoor environment.

Waterside economizers (WSE) can also be installed to
provide auxiliary cooling when outdoor condition allows.
It can be configured with chillers in different ways. For ex-
ample, the WSE can be integrated with chillers, meaning
that the economizer can meet all or some of the load while
the chiller meets the rest of the load, or non-integrated,
meaning the economizer can only operate when it can
meet the entire load.

Two common configurations of the chiller plant with in-
tegrated WSEs are shown in Figure 1. The WSE is located
on the load side of the common leg rather than plant side in
the chiled water loop, which can guarantee that the WSE

can meet the warmest return chilled water and maximize
the economizing hours. On the condenser water side, the
WSE can be installed in parallel (Figure 1(a)) or in series
with chillers (Figure 1(b)). The chiller plant with inte-
grated WSEs can operate in three modes: Free Cooling
(FC) mode when only WSEs are enabled for cooling, Par-
tial Mechanical Cooling (PMC) mode when the chillers
and WSEs are both triggered, and Fully Mechanical Cool-
ing (FMC) mode when only the chillers are activated. The
cooling mode of the cooling system is determined by a
cooling mode controller, and achieved by manipulating
the associated isolation valves and the bypass valves of
the chillers and the WSE.

3 Modelica Models
In the following section, Modelica models for the cooling
system and the controls are elaborated.

3.1 Cooling System
In this section, the implementation of equipment models
such as the chiller, WSE, and the cooling tower is first
presented. Then, the subsystem models for two system
configurations are illustrated.

3.1.1 Chiller

We developed a chiller model that supported the head
pressure control and could model numbers of identical
electric chillers. A group of identical chillers are mod-
eled by vectorising existing chiller models in the Moel-
ica Buildings library. The vectorized equipment model
is assigned with the same design parameters but differ-
ent performance curves if needed. A partial class of the
chiller model is instantiated through vectorization with a
number num by specifying the length of the array chiller,
which can be redeclared with a detailed chiller model later.
Medium used in the chillers, design parameters such as the
design capacity, and performance curves of each chiller
are specified. Note that although the chillers have iden-
tical nominal conditions, they can have different perfor-
mance curves specified in performance data per. In addi-
tion, we add isolation valves in the vectorized models to
avoid circulating flow among components.
The head pressure control in this model is achieved by
modulating the isolation valve on the condenser water side
to maintain a minimum temperature difference between
evaporator and condenser, such as 11◦C.

3.1.2 WSE

The waterside economizer model consists of a heat ex-
changer with outlet temperature control and two isolation
valves on both medium sides. This waterside economizer
model can be used in two different control scenarios: (1)
the outlet temperature at chilled water side is controlled by
a built-in PID controller and a three-way valve by setting
the parameter use_controller as true. (2) the outlet temper-
ature at chilled water side is NOT controlled by a built-in
controller by setting the parameter use_controller as false.

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

DOI Proceedings of the 13th International Modelica Conference 813
10.3384/ecp19157811 March 4-6, 2019, Regensburg, Germany

Hence, an outside controller can be used to control the
temperature. For example, in the free-cooling mode, the
speed of variable-speed cooling tower fans can be adjusted
to maintain the supply chilled water temperature around
the set point.
The user can select different heat exchanger models ac-
cording to the data availability and modeling requirement.
In this model, the heat exchanger model uses the nomi-
nal approach temperature and heat capacity as its critical
design parameters. The heat exchanger model has various
efficiency, which changes based on the UA value under off
design conditions. The part-load UA value in this model is
based on the ratio of the fluid mass flowrate to its nominal
flowrate. The principles of the heat exchanger model is
shown as the following equations,

PLR1 = ṁ1/ṁ0,1, (1)
PLR2 = ṁ2/ṁ0,2, (2)

UA =UA0 ∗PLRa
1 ∗PLRb

2, (3)
Cmin = min(ṁ1 ∗Cp1, ṁ2 ∗Cp2), (4)
Cmax = max(ṁ1 ∗Cp1, ṁ2 ∗Cp2), (5)

NTU =UA/Cmin, (6)

Cr =
Cmin

Cmax
, (7)

Qmax =Cmin ∗ (Ti1 −Ti2), (8)
e f f = f (NTU,Cr), (9)

Q = e f f ∗Qmax, (10)

where PLR is the part load ratio, expressed as normalized
flow rate, ṁ is the mass flow rate. The subscripts 0,1 and
2 represent nominal condition, fluid 1 and fluid 2 respec-
tively. Cmin, Cmax and Cr are the minimum, maximum and
ratio of the flow thermal capacity. Cp is the specific ther-
mal capacity. NTU and e f f denote the number of heat
transfer units and effectiveness. The function f expresses
the relationship between NTU ,Cr and e f f for different
flow configurations. Q is the heat transfer rate and Qmax
is the maximum possible heat transfer rate. The function
f is a formula related to the flow configuration of the heat
exchanger, which can be referred in (DoE, 2010). Ti is the
inlet temperature. The superscripts a and b are the curve
coefficients.

3.1.3 Cooling Tower

The model is based on the York regression model in the
Modelica Buildings library and it is integrated with an
electric heater to provide auxiliary heating for the cool-
ing tower when the weather is very cold. To compute the
thermal performance, this model takes as parameters the
approach temperature, the range temperature and the inlet
air wet bulb temperature at the design condition. Along
with the design mass flow rate (of the chiller condenser
loop) as parameter, these parameters define the rejected
heat. For off-design conditions, the model uses the ac-
tual range temperature and a polynomial to compute the

Figure 2. Implementation of the two piping configurations on
the condenser water side

approach temperature for free convection and for forced
convection, i.e., with the fan operating.
The heater is controlled by an on/off controller. The con-
troller is activated when the outlet temperature of cooling
tower is lower than the anti-freezing temperature setpoint
antFreTem. Otherwise, the heater is deactivated. For the
details of cooling tower and electric heater model, please
see the model in the Modelica Buildings library.

3.1.4 Subsystem

In the following section, we implemented two configura-
tions of integrated WSE on the load side of the primary-
only chilled water system, with both series and parallel
piping on condenser waterside and series piping on chilled
water side. A partial model is built which could link
the piping connection based on the condition whether it
is series or parallel configuration on the condenser side.
That said, the selection of the piping on the condenser
waterside is achieved by setting the Boolean variable
parallelCondenserWater by extending this partial model.
The implementation of this model is depicted in Figure 2.
The outputs of this model can be the temperature of leav-
ing condenser water in chillers, electric power consumed
by chiller compressor, chilled water supply temperature
in the waterside economizer and the electrical power con-
sumed by the pumps. Users can model multiple chillers
with only one integrated WSE.

Integrated in Series on Condenser Water Side The
series piping on condenser waterside is achieved by ex-
tending the partial model discussed in Section 3.1.4 and
setting parallelCondenserWater to false.

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

814 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157811

Integrated in Parallel on Condenser Water Side The
parallel piping on condenser waterside is achieved by ex-
tending the partial model discussed in Section 3.1.4 and
setting parallelCondenserWater to true.

3.2 Control System
In this section, the implementation of cooling model con-
trols and equipment-level local controls is described re-
spectively.

3.2.1 Cooling Mode Control
Based on the operational status of chillers and WSEs,
the chiller plant with WSEs can operate in three cool-
ing modes, including Free Cooling (FC) mode when only
WSEs are enabled for cooling, Partial Mechanical Cooling
(PMC) mode when both chillers and WSEs are triggered,
and Full Mechanical Cooling (FMC) mode when only
chillers are activated. To consider the condition when the
system is off, we introduce an unoccupied mode. Different
sets of implementable control sequences for transitioning
among different cooling modes are available in literature
and industry applications for the chiller plant with WSEs.
In this paper, we use one control logic from Meakins and
Griffin from their research to showcase the implementa-
tion of the cooling mode controller using state-graph pack-
age in Modelica. Figure 3 depicts the schematics of the
control sequence in the form of a state graph as well as
the implementation of this cooling mode controller. It is
noted that this general implementation approach could be
extended and applied to other sets of the cooling mode
controller.
As shown in Figure 3(a), the initial state of the cooling
system is in unoccupied mode, where the whole system is
off. When the system is operated, it will transition to the
FC mode. The chiller is switched on if

Tsup,CW,WSE > Tsup,CHW,set and ∆tchiller,o f f > ∆tthr, (11)

and switched off if

Tsup,CW,WSE < Tsup,CHW,set and ∆tchiller,on > ∆tthr, (12)

where Tsup,CW,WSE is the supply condenser water temper-
ature, Tsup,CHW,set is the supply chilled water tempera-
ture setpoint, ∆tchiller,on/o f f is the elapsed time since the
chillers were on/off, and ∆tthr is a waiting time threshold.
The WSE is enabled when

Tsup,CW,WSE < Tret,CHW,WSE −3oF and ∆tWSE,o f f > ∆tthr,
(13)

and switched off if

Tsup,CW,WSE > Tret,CHW,WSE +2.5oF and ∆tWSE,on > ∆tthr,
(14)

where Tret,CHW,WSE is the chilled water return temperature
upstream of WSE, ∆tWSE,on/o f f is the elapsed time since
the WSE was on/off, and ∆tthr is a waiting time threshold.

2.5oF or -3oF is an adjustable offset temperature differ-
ence.
Figure 3(b)shows the Modelica implementation of the
above control sequence. On the left are the connectors
for the control input signals expressed as real and boolean
number, such as T SupCWWSE (Supply condenser wa-
ter temperature at downstream of WSE), T RetCHWWSE
(Return chilled water temperature at downstream of
WSE), T SupCHWSet (Suppy chilled water temperature
setpoint) and occupancy mode uOcc (True if the room is
occupied). The modules timGre and timLes count and out-
put the time when the signal u is over/below the offset tem-
perature difference as shown in Eq.(11) - Eq.(14).In the
middle is the state graph implemented in Modelica State
graph 2. There are four states in this controller, indicated
by the squared block icons. The states are FC mode, PMC
mode, FMC mode, and the unoccupied mode. The initial
state is set to the unoccupied mode when simulation starts.
The transitions between the states are represented by the
horizontal black bars, and each transition has exactly one
preceding state and one succeeding state, and is set ac-
cordingly based on the transition conditions. On the right
are the mulSwi module which converts the stage number
to the output y.

3.2.2 Equipment-level Control

Chiller plants with WSEs require different equipment-
level local controls of components compared with conven-
tional chiller plants without WSEs. The selection of the
local controls for different components is critical to the
performance of the whole system. The local controls we
selected are based on the inputs from the dicussion with
the experienced industry engineers in this field. In this sec-
tion, the equipment-level control sequences are described.

Chiller Control The chiller control involves a load-
based stage control. Stage control of chiller is usually
based on the supply chilled water temperature, chiller
loads or partial load ratio (PLR), and chilled water pump
speed. In this logic, chillers are

• staged up if current stage has been active for at least
30 minutes and the PLR for any active chiller is
greater than 80 % for 10 minutes

• staged down if current stage has been activated for at
least 30 minutes and the PLR for any active chiller is
less than 25 % for 15 minutes.

It is noted that the threshold and delay time are adjustable.

Chilled Water Pump Controls The chilled water pump
controls involve a stage control and a speed control.
Chilled water pumps stage up or down based on measured
flowrate. The thresholds and delay time are also adjustable
as shown in the following logic. Pumps are

• staged up if current stage has been active for at least
15 minutes and the measured flowrate is larger than

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

DOI Proceedings of the 13th International Modelica Conference 815
10.3384/ecp19157811 March 4-6, 2019, Regensburg, Germany

（a） （b）

Figure 3. Implementation of the cooling mode control (a) Schematics (b) State-graph in Modelica

85% of the total nominal flowrate of the active pumps
for 2 minutes.

• staged down if current stage has been active for at
least 15 minutes and the measured flowrate is less
than 45% of the total nominal flowrate of the active
pumps for 15 minutes.

The chilled water pump speed is adjusted by a PID loop to
maintain the differential pressure (DP) signal at a setpoint.
All pumps receive the same speed signal. Minimum speed
setpoint is prescribed based on the system configuration.

Temperature Reset Control In this control logic, both
the chilled water supply temperature setpoint and the
chilled water loop DP setpoint are reset based on the dif-
ference between the actual and set temperature of the sup-
ply air in the part load condition. A single reset control
point should be used to control both setpoints. When the
plant includes a WSE, the reset should lead with pressure
to keep the water temperature as high as possible to max-
imize WSE operation (see Figure 4). The setpoint reset
strategy is to first increase the different pressure DP of
the chilled water loop to increase the mass flow rate. If
DP reaches the maximum value and further cooling is still
needed, the chiller temperature setpoint, Tsup,CHW,set is re-
duced. If there is too much cooling, Tsup,CHW,set and DP
will be changed in the reverse direction.

Cooling Tower Controls The local controls related to
the cooling tower are the cell stage control and fan speed
control.
In the cell stage control, the tower cells are staged based
on measured condenser water flowrate.

Figure 4. Principle of temperature reset control

• One additional cell stages on if average flowrate
through active cells is greater than a stage-up thresh-
old for 15 minutes

• One additional cell stages off if average flowrate
through active cells is lower than a stage-down
threshold for 5 minutes.

A minimum tower cell number reset control based on the
different cooling modes is commonly used to support the
stage control.

• In unoccupied mode, the minimum number is 0.

• In FC mode, the minimum number of active cooling
towers should be equal to the number of active con-
denser water pumps.

• In PMC mode, the minimum number of active cool-
ing towers should be equal to the total number of

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

816 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157811

cooling towers, which means all the cooling towers
should be commanded on.

• In FMC mode, the minimum number of active cool-
ing towers should be equal to the number of active
condenser water pumps.

The cooling tower fan speed is also controlled to satisfy
the requirement of temperature setpoint, and fan speed
shall not exceed the maximum speed.

• In unoccupied operation mode, the fan is turned off.

• In FC mode, the fan speed is controlled to maintain
a predefined chilled water supply temperature at the
downstream of the economizer, and not exceed the
predefined maximum fan speed.

• In PMC and FMC modes, the fan speed is controlled
to maintain the supply condenser water at its set-
point.

The maximum fan speed is reset based on cooling modes
and operation status.

• In unoccupied mode, the maximum speed is not re-
set.

• In FC mode, if all condenser pumps are enabled, the
maximum fan speed is reset to full speed 100%; oth-
erwise the maximum fan speed is reset to a lower
speed, e.g. 90%.

• In PMC mode, the maximum fan speed is set to a
high speed, e.g. 100%.

• In FMC mode, if all the condenser water pumps are
active, the maximum fan speed is reset to full speed
100%; otherwise it is reset to a lower speed, e.g.
90%.

Condenser Water Pump Controls The condenser wa-
ter pump controls include a pump stage control and a
speed control.
The condenser water pump stage control have different
logics according to operational mode. Here assume the
number of condenser pumps and that of the chillers are
identical.

• In unoccupied mode, the condenser pump should be
turned off.

• In FC mode, the number of operating condenser wa-
ter pumps is staged based on the cooling tower fan
speed signal.When the fan speed signal exceeds 80%
for 5 minutes, then stage up one condenser pump.
When the fan speed signal is below 45% for 10 min-
utes, then stage down one condenser pump.

• In PMC mode, if not all chillers are active, the num-
ber of active condenser water pumps should be one
less than the total condenser water pumps, else all the
condenser pumps are commanded to run.

• In FMC mode, the number of active condenser wa-
ter pumps should be equal to the number of active
chillers.

The condenser water pump speed control sequence is
shown as follows.

• In unoccupied mode, the pump is turned off.

• In FC mode, the condenser water pump speed is
equal to a high signal select of a PID loop output
and a minimum speed (e.g. 40%). The PID loop out-
puts the cooling tower fan speed signal to maintain
chilled water supply temperature at its setpoint.

• In PMC and FMC modes, the condenser water pump
speed is equal to a high signal select of the following
three: (1) a minimum speed (e.g. 40%); (2) highest
chiller percentage load; (3) CW system differential
pressure PID output signal.

Valve Controls Four local controls related to the valves
in the cooling system are considered. They are controls for
the modulating isolation valve, the two position valves, the
chiller bypass valve, and the WSE bypass valve.
Modulating Isolation Valve Control. The modulating iso-
lation valve is usually installed on the condenser water
side of a chiller to perform head pressure control during
cold climate. The modulating isolation valve is modulated
to control variables such as chiller temperature/pressure
lift between evaporator and condenser. The logics for dif-
ferent operational modes are as follows.

• When chiller is not enabled, the isolation valves are
closed.

• When chiller is enabled, the isolation valves on the
condenser side are fully opened at the beginning.
Then after a stable time delay, the valve is modu-
lated to control variables such as temperature lift or
pressure lift in a chiller.

Two Position Valve Control. The two position valve con-
trols the on/off of the equipment.
Chiller Chilled Water Bypass Control. Bypass valves are
used to switch the cooling system among different op-
eration modes, and maintain desired differential pressure
through the equipment such as evaporators or condensers.
The control sequence of chiller chilled water bypass is as
follows.

• In unoccupied operation mode, the bypass for
chillers and economizers are closed.

• In FC mode, the bypass valve on chiller side is fully
opened.

• In PMC mode, the chiller bypass valve is modulated
to maintain the differential pressure through the ac-
tive evaporators at its setpoint such as design differ-
ential pressure.

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

DOI Proceedings of the 13th International Modelica Conference 817
10.3384/ecp19157811 March 4-6, 2019, Regensburg, Germany

• In FMC mode, the chiller bypass is modulated to

maintain the differential pressure through the active
evaporators at its setpoint such as design differential
pressure.

WSE Chilled Water Bypass Control. Bypass valves for
economizers are used to switch the cooling system among
different operation modes, and maintain desired differen-
tial pressure through economizers. This model can be used
for both chilled and condenser water side. The control se-
quence of WSE chilled water bypass is as follows.

• In unoccupied operation mode, the bypass valves for
economizers are closed.

• In FC mode, the bypass valve on economizer side
is modulated to maintain differential pressure across
their respective economizers at a setpoint, such as de-
sign differential pressure.

• In PMC mode, the bypass valve on economizer side
is modulated to maintain the differential pressure
through the economizer at a setpoint such as design
differential pressure.

• In FMC mode, the bypass valve on economizer side
is fully opened.

4 Case Study
4.1 Case Description
We perform a case study utilizing Modelica models to
comprehensively evaluate performance of the cooling
mode control logic mentioned in Section 3.2.1 in all
ASHRAE climate zones. There are in total 19 thermal cli-
mate zones in ASHRAE Stanadard 169-2013, which cat-
egorizes different areas based on their historical weather
data such as heating degree days, average temperatures,
and precipitation. The climate zones and their representa-
tive cities are shown in Table 1. The index 0 means ex-
tremely hot area, while index 8 means arctic area. The
index A, B and C mean humid, dry and marine area.

Table 1. ASHRAE climate zones

Index City Index City

0A Singapore 4B Albuquerque
0B Riyadh 4C Salem-McNary
1A Miami 5A Chicago
1B Kuwait 5B Boise
2A Houston 5C Bremerton
2B Phoenix 6A Burlington
3A Memphis 6B Helena
3B EI Paso 7 Duluth
3C San Francisco 8 Fairbanks
4A Batimore

QQ

chiWSE

T

p
u
m
C
W

cooTow[]
York

cooTow[]
York

val[]

M

val[]

M

TCWRet

T

TCWSup

T

expVesCW

TCHWSup

T

TCHWRet

T
ahu

++

expVesChi

roo

TAirSup

T

weaDat

s
e
n
M
a
s
F
lo
C
H
W

m
_
flo
w

senRelPreAHU

p_rel

senRelPreCW

p_rel

re
s
C
H
W

re
s
C
W

cooModCon

staCel

minCel

staConPum

speFanmaxSpeFan proCooTow[]proCooTow[]

proConPum[]proConPum[]

speConPum

temConWatSupRes

aveMasCooTow

staLoaChi

temDifPreRes

chiOn[]
R

B

chiOn[]
R

B

staPum

bypChiCHWbypChiCHW

bypEcoCHWbypEcoCHW

twoPosIso[]twoPosIso[]

staEco ecoOn
R

B

TAirSupSet ahuValSig

PI

ahuFanSpeCon

PI

TAirRetSet

phiAirRetSet

TAppCooTow
occ

con

PI

proChiPum[]proChiPum[]

dpChiEvaSet

dpChiEvaMea

dpEcoEvaSet

dpEcoEvaMea

subsub

+
1

-1

dpCWSet

cooLoaTot

plrChi

aveMasPumChi

preTCWSuppreTCWSup

+
+1

+1

TWetBulDes

TAppDesCooTow

Control System Cooling System

Figure 5. Modelica implementation of a chilled water system
with waterside economizer

The Modelica model is built as shown in Figure 5. The
chilled water system with waterside economizer is de-
signed for a virtual data center. The data center room has
a nominal cooling load of 2000kW but operates at a part
load ratio 0.65. Two identical chillers with a cooling ca-
pacity of 1000kW for each, and one WSE that can pro-
vide 2000kW under the design condition are provided as
cooling sources. The waterside economizer is integrated
with chillers on the chilled water side, and in parallel with
chillers on the condenser water side. The pumps, cool-
ing towers and air handling units are sized accordingly
based on the design cooling load. The cooling mode and
equipment-level control are described in Section 3.2.

4.2 Simulation Results
An annual simulation is performed for each climate zone.
The energy consumption of the cooling system are shown
in Figure 6. The economizing hours in different climate
zones when the WSE is activated to provide cooling are
shown in Figure 7.

Both the dry bulb temperature and humidity can influ-
ence the energy consumption of the chilled water system
with WSEs. In the humid area (A), as the dry bulb tem-
perature decreases from 0A to 6A, the total energy de-
creases from 151 MWh to 139 MWh. This means with,
similar humidity, the higher the dry bulb temperature is,
the more energy is consumed by the cooling system. The
reason is with a higher outdoor dry bulb temperature, the
cooling system has less economizing hours during annual
operation, as shown in Figure 7. In hot climate zone 1,
as the humidity reduce, the cooling system operates under
more economizing hours. The reason is that given simi-
lar dry bulb temperature, dryer air means lower wet bulb
temperature. As a consequence, the cooling towers can

Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer

818 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157811

0A 0B 1A 1B 2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 5C 6A 6B 7 8

ASHRAE Climate Zone

0

20

40

60

80

100

120

140

To
ta

l E
ne

rg
y

Co
ns

um
pt

io
n

[M
W

h]

Figure 6. Total energy consumption for the cooling system in
all climate zones

0A 0B 1A 1B 2A 2B 3A 3B 3C 4A 4B 4C 5A 5B 5C 6A 6B 7 8

ASHRAE Climate Zone

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ho

ur
s

FC PMC FMC

Figure 7. Normalized economizing hours in all climate zones

produce cold condenser water temperature for a longer pe-
riod, which then can help extend the economizing hours.

5 Conclusions
We presented a Modelica-based tool for the modeling
and simulation of the chilled water system with waterside
economizers. The cooling component models and con-
trol models are also discussed in details. These Modelica
models are then used to perform a case study to evaluate
the energy and control performances of the cooling mode
control in different climate zones. Simulation results show
that the cooling mode control has different performances
in different climate zones. Both the temperature and the
humidity can influence the system performance.

6 Acknowledgement
This research was supported by the American Society of
Heating, Refrigeration, and Air-conditioning Engineers
under the research project TRP-1661, and the National

Science Foundation under Award No. IIS- 1633338.

References
Aayush Agrawal, Mayank Khichar, and Sanjeev Jain. Transient

simulation of wet cooling strategies for a data center in world-
wide climate zones. Energy and Buildings, 127:352–359,
2016.

US DoE. Energyplus engineering reference. The reference to
energyplus calculations, 2010.

Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Model-
ica: The new object-oriented modeling language. In 12th Eu-
ropean Simulation Multiconference, Manchester, UK, 1998.

Yangyang Fu, Wangda Zuo, Michael Wetter, James VanGilder,
Xu Han, and David Plamondon. Equation-based object-
oriented modeling and simulation for data center cooling: A
case study. accepted by Energy and Buildings.

Yangyang Fu, Michael Wetter, and Wangda Zuo. Modelica mod-
els for data center cooling systems. In 2018 Building Perfor-
mance Analysis Conference and SimBuild, Chicago, Illinois,
United States of America, 2018.

Sang-Woo Ham and Jae-Weon Jeong. Impact of aisle contain-
ment on energy performance of a data center when using
an integrated water-side economizer. Applied Thermal En-
gineering, 105:372 – 384, 2016.

Sen Huang, Wangda Zuo, and Michael D Sohn. Amelioration
of the cooling load based chiller sequencing control. Applied
Energy, 168:204–215, 2016.

Donghun Kim, Wangda Zuo, James E Braun, and Michael Wet-
ter. Comparisons of building system modeling approaches
for control system design. In Proceedings of the 13th In-
ternational Conference of the International Building Perfor-
mance Simulation Association (Building Simulation 2013),
pages 3267–3274. Citeseer, 2013.

Kuei-Peng Lee and Hsiang-Lun Chen. Analysis of energy saving
potential of air-side free cooling for data centers in worldwide
climate zones. Energy and Buildings, 64:103–112, 2013.

Yiqun Pan, Rongxin Yin, and Zhizhong Huang. Energy model-
ing of two office buildings with data center for green building
design. Energy and Buildings, 40(7):1145–1152, 2008.

Arman Shehabi, Srirupa Ganguly, Kim Traber, Hillary Price,
Arpad Horvath, William W Nazaroff, and Ashok J Gadgil.
Energy implications of economizer use in california data cen-
ters. Technical report, Lawrence Berkeley National Labora-
tory, 2008.

Michael Wetter, Wangda Zuo, Thierry S Nouidui, and Xiufeng
Pang. Modelica buildings library. Journal of Building Per-
formance Simulation, 7(4):253–270, 2014.

Michael Wetter, Marco Bonvini, and Thierry S. Nouidui.
Equation-based languages – a new paradigm for building en-
ergy modeling, simulation and optimization. Energy and
Buildings, 117:290 – 300, 2016.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

DOI Proceedings of the 13th International Modelica Conference 819
10.3384/ecp19157819 March 4-6, 2019, Regensburg, Germany

Predicting the Vehicle Performance at an Early Stage of Development Process via
Suspension Bushing Design Tool
Park, Sooncheol and Jeon, Yonggwon and Kang, Dae-Oh and Hyun, Min-Su and Heo, Seung-Jin

819

Predicting the Vehicle Performance at an Early Stage of

Development Process via Suspension Bushing Design Tool

Sooncheol Park
1
 Yonggwon Jeon

1
 Dae-oh Kang

2
 Min-su Hyun

3
 Seung-jin Heo

3

1
Hyundai Motor Company, Republic of Korea, {testdrv,yonggwon.jeon}@hyundai.com

2
Institute of Vehicle Engineering, Republic of Korea, bigfive@ivh.com

3
School of Automotive Engineering, Kookmin University, Republic of Korea, {slay,sjheo}@kookmin.ac.kr

Abstract
This paper describes a method for verifying vehicle

performance when applying a new suspension bushing

at the concept phase of vehicle development. At the

concept phase, it is difficult to obtain the nonlinear

characteristics of the bushing, which plays an

important role in the performance of the vehicle. Thus,

a tool to design bushing has been developed.

A method that designers can intuitively and easily

design a bush is proposed. It combines the results of

the developed bushing design tool with a Modelica

system model to evaluate NVH, R&H, and durability

performance. Designers can create a new bushing using

the bushing design tool and check the vehicle

performance at an early stage of development process.

The developed bushing design tool allows designers to

evaluate vehicle performance by reflecting bushing

characteristics without actual products.

Keywords: suspension bushing, bushing design, vehicle
dynamics, parameter identification.

1 Introduction

The vehicle development cycle in the automotive

industry is getting shorter and shorter. To cope with

shorter development cycle, it is important to achieve

vehicle performance such as NVH (Noise, Vibration

and Harshness), R&H (Ride and Handling) and

durability performance in the concept phase as shown

in Fig. 1. Each performance must be designed in

harmony with each other. To be able to verify this

performance, it must be possible to carry out test

without actual vehicles and parts, because tests using

actual vehicles and parts are time-consuming, costly

and effort-intensive. In other words, a simulation

model that can reflect actual phenomena must be

constructed in the concept phase.

For the vehicle model, a variety of force elements

and material properties are needed. For example,

vehicle performance is affected by static stiffness,

dynamic stiffness and loss angle of suspension bushing

and engine mount, shock absorber properties, boll-join

properties and tire properties. Thus, the reliability of

the results is determined by the consistency of the force

components that make up the model. These

components have nonlinear properties and usually can

be obtained through component tests. However, it is

difficult to obtain physical properties at the concept

stage. Also, since there is no actual component, it is

difficult to apply it to various characteristics.

In this paper, new characteristics of suspension

bushing are determined using a bushing design tool

written in-house code. To verify vehicle performance,

the results of the bushing design tool and a Modelica

system model are used.

2 Bushing design tool

Suspension bushing is described briefly. It is explained

the bushing design tool for designers. It is included the

bushing model, parameter identification, and bushing

design method. Based on relevant technology, bushing

design tool has been made with in-house code.

2.1 Suspension bushing

The suspension components are connected to each

other, to the subframe, and to the body structure via

rubber bushings. They are a key element in designing

desired static and dynamic behavior of suspension

system. The dynamic characteristics of a rubber

bushing are often very complex and nonlinear because

the response is dependent on several variables, such as

frequency, amplitude, preload, and temperature.

Figure 1. Vehicle development cycle and concept phase.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

820 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157819

2.2 Bushing model & Parameter identification

A generalized linear elastic viscoelastic elastoplastic

model (generalized Maxwell model) is used as a

bushing model. It contains several Maxwell elements

and frictional elements as shown in Fig. 2. Each

element is called as a cell. This component model is

able to model both frequency and amplitude dependent

rubber behavior such as dynamic stiffness and phase

angle.

The bushing model has several unknown parameters.

In order to obtain the unknown parameters,

optimization algorithm is applied to the bushing model.

Optimization is searching process to find a minimum

value for a certain function which expresses the sum of

the relative error compared to the target value.

Figure 2. Generalized linear elastic viscoelastic

elastoplastic model with n-cells and its parameters.

2.3 Bushing design method

The interface of the developed bushing design tool is

shown in Fig. 3. It consists of target setup, model setup,

optimization, and model parameters as an output.

At the target setup, designers use test data of original

bushing as an input of bushing design tool. Next,

designers determine the number of cells for the bushing

model at the model setup. Then, the bushing design

tool proceeds with the parameter identification through

an optimization process based on the input test data

and the number of cells of the bushing model. It is

observed that the optimized results are within 10%

error.

Designers then determine the new bush characteristics

which have the desired value based on original bushing

model. They modify static and dynamic stiffness curve

as shown in Fig. 4 and Fig 5. The bushing design tool

calculates the parameters of the model according to the

new bushing characteristics as shown in Fig. 6. When

verifying vehicle performance, it is used the bushing

model parameters from bushing design tool.

3 Modelica based model

It is explained how to apply the new bushing

characteristics calculated by the bushing design tool to

a Modelica system model. A bushing model which has

six degrees of freedom is constructed. Vehicle

performance is verified by applying the bushing model

to the suspension model. Also additional test rigs were

constructed.

3.1 Suspension bushing model

The unidirectional bushing model was explained in

section 2. However, a bushing has six degrees of

freedom actually. Therefore, the model for three

translational and three rotational directions is

constructed as shown in Fig. 7. Each directional model

is composed of generalized Maxwell model.

Figure 3. Interface of suspension bushing design tool.

Figure 4. Determination of new static characteristics.

Figure 5. Determination of new dynamic characteristics.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

DOI Proceedings of the 13th International Modelica Conference 821
10.3384/ecp19157819 March 4-6, 2019, Regensburg, Germany

Figure 7. Six degrees of freedom suspension bushing model connected to each link.

Figure 6. Characteristics of original bushing model (left side) and new bushing model (right side).

Figure 7. Six degrees of freedom suspension bushing model connected to each link.

Figure 8. Upper arm and bushing model.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

822 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157819

3.2 Suspension system model

The Vehicle Dynamics Library (VDL) of Modelon is

applied as a suspension system model. The bushing

models that make up the suspension are replaced with

the generalized Maxwell model from the Kelvin-

Voight model that is provided as standard. As shown in

Fig. 8, the bushing is connected to the arm. Bushings

and arms combine with other components to form a

linkage model as shown in Fig. 9. The configured

linkage model is coupled to the suspension model as

shown in Fig. 10.

Figure 9. Trailing arm type multilink suspension linkage.

Figure 10. Trailing arm type multilink suspension model.

4 Simulation

Using the results of bushing design tool in section 2

and the models mentioned in section 3, the vehicle

performance is evaluated in the view of durability,

NVH and R&H.

4.1 Model for Durability and NVH

In order to verify vehicle performance in the view of

durability and NVH, a model is constructed as shown

in Fig. 11. The wheel load measured on the Belgian

road is used as the input drive signal for the durability

test. To verify NVH performance, white pink noise

with a border frequency of 250 Hz and a cutoff

frequency of 300 Hz is given as vertical displacement.

Figure 11. Trailing arm type multilink suspension linkage.

4.2 Model for R&H

For the step steer test, the model is constructed as

shown in Fig. 12. Test conditions are applied based on

ISO-7401 standard. A constant velocity value and the

ramp type steering value with duration time of 0.15 sec

are used as inputs.

Figure 12. Step steer test model.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

DOI Proceedings of the 13th International Modelica Conference 823
10.3384/ecp19157819 March 4-6, 2019, Regensburg, Germany

For the constant radius cornering test, the model is

constructed as shown in Fig. 13. Test conditions are

applied based on ISO-4138 standard. Closed loop

steering input and velocity profile with duration time

600 sec are used as input values to make a turn radius

of 50m.

For the four-post test, the model is constructed as

shown in Fig. 14. ISO C-class road surface profile is

used as drive signal.

Figure 13. Constant radius cornering test model.

Figure 14. Four-post test model.

4.3 Simulation results

These are the simulation results while changing the

characteristics of the suspension bushings such as

lower arm bushing, upper arm bushing, assist arm

bushing and trailing arm bushing.

For each result, the blue line is the result of the

original bushing. The red line indicates the larger

dynamic stiffness value than the original one. The

green line indicates the smaller dynamic stiffness value

than the original one.

4.3.1Durability and NVH

In the view of durability performance, the change in

load applied to each bushing can be confirmed from

the values of the time domain and the power spectral

density of the frequency domain as shown in Fig. 15.

Figure 15. Durability performance

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

824 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157819

Similarly, the change of the load of each bushing and

the acceleration of the vehicle body can be checked in

the view of NVH as shown in Fig. 16.

4.3.2R&H

Fig. 17 depicts constant cornering test and step steer

test results. The performance of handling can be

confirmed by the changed values of the understeer

gradient, response time and overshoot value as the new

bushing is applied. From Fig. 18, ride performance can

be checked through vehicle body acceleration analysis.

Figure 16. NVH performance

Figure 17. Handling performance.

Figure 18. Ride performance.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

DOI Proceedings of the 13th International Modelica Conference 825
10.3384/ecp19157819 March 4-6, 2019, Regensburg, Germany

5 Conclusion

In this paper, vehicle performance is verified at the

concept stage by using the results of the developed

bushing design tool and a Modelica system model.

Designers can make various bushing characteristics in

an intuitive and easy way using the bushing design tool.

First, designers use original model’s test data as an

input of bushing design tool and determine the number

of cells for the bushing model. The bushing design tool

proceeds with the parameter identification through an

optimization process based on the input test data and

the number of cells of the model. The designers then

determine the new bushing characteristics to get the

desired static and dynamic characteristics in the

original characteristics. The bushing design tool

calculates the parameters of the bushing model

according to the bushing characteristics changed to the

result value. From simulation results, the vehicle

performance is changed according to the characteristics

of the suspension bushing. The designers can confirm

the vehicle performance at the concept stage if the

bushing, determined by the designers, is applied.

The optimum bushing specification will be

determined by optimizing the vehicle performance with

the bushing characteristics in the future.

References

Fredrik Karlsson and Anders Persson. Modelling non-linear

dynamics of rubber bushings –Parameter identification and

validation . Master’s thesis, 2003.

Jun Nakahara, Koji Yamzaki, Yusuke Otaki. Rubber bushing

model for vehicle dynamics performance development that

considers amplitude and frequency dependency. SAE Int. J.

Commer:Veh, 8(1):117–125, 2015. doi: 10.4271/2015-01-

1579.

Kai Sedlaczek , Sven Dronka and Jochen Rauh. Advanced

modular modelling of rubber bushings for vehicle

simulations. Vehicle system dynamics 49(5):741–759,

2011. doi: 10.1080/00423111003739806.

Michael Fleps-Dezasse Jakub Toboláˇr Johannes Pitzer.

Modelling and parameter identification of a semi-active

vehicle damper. Proceedings of the 10th International

ModelicaConference, 2014. doi: 10.3384/ECP14096283.

Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing
Design Tool

826 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157819

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles

DOI Proceedings of the 13th International Modelica Conference 827
10.3384/ecp19157827 March 4-6, 2019, Regensburg, Germany

Modelica-Based Modeling and Application Framework on the Hybrid Electric
Vehicles
Liu, Yuhui and Chen, Liping and Zhao, Yan and Liu, Shanshan and Zhou, Fanli and Shangguan, Duansen

827

Modelica-Based Modeling and Application Framework on Hybrid

Electric Vehicles

Yuhui Liu 1 Liping Chen 1 Yan Zhao 2 Shanshan Liu 3 Fanli Zhou2 Duansen Shangguan1
1School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China,

{yuhuiliu, chenlp,Shanggds}@hust.edu.cn
2Suzhou Tongyuan Software & Control Technology Co., Ltd. Suzhou, China, {zhaoy,zhoufl}@tongyuan.cc

3Jianghuai Automobile Co., Ltd., Hefei, China, xjs-js@jac.com.cn

Abstract
In order to meet low-emissions criteria outlined in

Chinese regulations, which require a progressively

increasing percentage of automobiles to be ultralow or

zero emissions, in this paper a sort of light hybrid

electric drivetrain is studied and modeled in detail using

Modelica. An application framework is also designed to

improve the usability and the efficiency of the models.

Performance of the whole vehicle and some key

components are analyzed.. Comparison between

simulation results and experiment results is performed,

which validates the effectiveness of the models. Based

on the comparison, we conclude that, the methods

presented in this paper can support a rapid design of

hybrid electric vehicles and further optimization.

Keywords: hybrid electric vehicles, Modelica,
MWorks, application framework, signal bus

1 Introduction

Hybrid electric vehicles (HEVs) have attracted a great

deal of attentions due to its high efficiency and less fuel

consumption, which combines the advantages of both

conventional internal combustion engine (ICE) and pure

electric vehicles (Liang et al, 2016; Jionas et al, 2002).

HEVs can be classified into Micro hybrid system, light

hybrid system, medium hybrid system and complete

hybrid system depending on the degree of colloquial in

the hybrid system (Liu, 2014). Light hybrid system has

been widely used due to its relatively simple structure

and braking energy recovery (Zhang et al, 2014).

Basically, modeling and simulation methods of

HEVs can be classified into the following three types.

The first type is the traditional calculation method using

excel where static results are obtained and

characteristics of key components are rendered. The

second type is that simulation models have already been

realized based on commercial software such as advisor,

AVL Cruise or Matlab libraries Toolbox (Karen et al,
1999; Meradji et al, 2016), where these models are

focused on general and complex predefined. The third

type is Modelica, which is suitable for dynamic analysis

and developing components or function modules

because of its support for multi-domain unified

modelling, object-oriented physical modelling, non-

causal modelling, and continuous discrete mixed

modeling (Xiong et al, 2016).

In this paper, the structure of light hybrid drivetrain

architecture of HEVs, is firstly studied and modeled in

detail using Modelica, and an application framework is

designed. Subsequently, the simulation results of the

performance parameters of the whole vehicle and the

key parts are obtained. Finally, the results are verified

by experiment results.

2 System Descriptions

Before modeling the HEVs drive train represented in

Fig.1 some characteristics of each element composing

the system need to be mentioned:

Engine

Clutch Transmission Final Gear

Brake

Wheel

BatteryControllerBSG Motor

Belt

Differential

Figure 1. HEVs drive train structure.

Internal combustion engine characterized by torque-

speed curve with optimal torque TICE, opt=252 N·m, The

main indicator of the internal combustion engine is

power output.

BSG(Belt Driven Starter Generator) motor is a belt

drive integrated power generation integrated machine.

Its function is to achieve fast start engine, electronic idle

speed and boost when outputting positive torque, and to

obtain high efficiency intelligent power generation and
braking energy recovery when negative torque.

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles

828 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157827

Battery of Nickel-Metal-Hydride (NiMH) having a

discharge power Pbat,dis=33700 W and a charge power

Pbat,dis=26040 W, is responsible for outputting or storing

electrical energy, connected to BSG and DC/DC

converter. The main indicators of the battery module

include SOC, the state of battery charge and discharge,

battery output power, and the temperature impact on the

battery module.

Transmission having five forward gears are used to

transmit torque and speed, which should be gear ratio

and efficiency, represented in Table 1.

Table 1. Speed ratio and efficiency of transmission.

Gears 1 st 2 st 3 st 4 st 5 st
Gear Ratios 3.769 1.862 1.298 1 0.765

Efficiency 0.87 0.89 0.91 0.93 0.95

Differential for distribute torque, is a mechanical

transmission device capable of associating three shafts

with the following rotation speed and torque relations:

𝜑𝑖𝑛 =
𝜑𝑜𝑢𝑡,𝑟

1 + 𝜆
+

𝜆

1 + 𝜆
∙ 𝜑𝑜𝑢𝑡,𝑙 (1)

𝑇𝑜𝑢𝑡,𝑙 =
𝑇𝑖𝑛
1 + 𝜆

 (2)

𝑇𝑜𝑢𝑡,𝑟 = 𝜆 ∙ 𝑇𝑜𝑢𝑡,𝑙 (3)

With 𝜆 representing torque split factor, usually its

value is 1.

Clutch used to transmit and cut off engine power,

have a maximum transferable torque of 350 N·m.

3 Models

In this section, model interfaces are presentation firstly,

and then introduce in detail the components and system

model of HEVs developed by MWorks/Modelica.

3.1 Interfaces

The development is focused on standardizing the

assemblies interface definitions without enforcing a

standard vehicle model architecture, so that the same

assembly models can be reused in different model

architectures (C. Schweiger, 2005). The PowerTrain

Library based on Dymola software uses expandable bus

interface to facilitate the transfer of variable

informations between different components, but this

also leads to excessive connections and unclear

connections. On the basis of PowerTrain, this paper

introduces the inner/outer mechanism, which can make

the variable information of each component pass

through the inner component without an additional

connection bus. The principle is each component

contains a component signal bus pointing to the outside.

The signal bus contains an expandable connector called

as bus connector that sends or receives data to the bus

connector within each component of the system. All

components point to the same external component,

allowing implicit connection of system components.

The schematic diagram is shown in Fig.2.

expandable connector

Inner:

signalBus

Outer:

signalBus1 Engine

Outer:

signalBus2 Clucth

Figure 2. Bus connector design diagram.

3.2 Component Models

The BSG motor model consists of an internal heating

model, inertia and BSG Core including both generator

and motor modes. The internal heating model is used to

calculate the BSG Motor temperature based on the law

of conservation of energy. The BSG Core calculates the

output torque and operating current of the motor, and the

inertia model is used to calculate angular velocity and

angular acceleration, represented in Fig.3.

BSG Core

Internal Heating

Current

Figure 3. BSG Motor model.

Voltage SourceInternal Resistance

Internal Heating

Figure 4. Battery model.

The battery model consists of a voltage source,
battery internal resistance, SOC, and an internal heat

module. The battery voltage is obtained by interpolation

of SOC and temperature while the interpolation data

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles

DOI Proceedings of the 13th International Modelica Conference 829
10.3384/ecp19157827 March 4-6, 2019, Regensburg, Germany

obtained by experiments. The SOC characterizes the

remaining capacity of the battery and is obtained by

integration of current. The internal resistance of the

battery is obtained by interpolation of temperature,

current and SOC. The internal heating module is used to

calculate battery temperature. (Fig. 4)

The hyboost controller model includes several

function modules such as electronic idle, the brake

energy recovery, power train torque demand

management and the intelligent charging and

discharging module (Crolla et al, 2012; Zou et al, 2015;

Sanz et al, 2012). The electronic idle determines

whether the engine should be dragged by the BSG motor

to maintain the idle speed. The brake energy recovery is

used to recover the energy by BSG power generation

during braking. Power train torque demand management

is used to calculate the demand torque of the driving

vehicle. The function of the intelligent charging and

discharging module is whether the BSG should be

charged or discharged to make the engine work in an

efficient area as much as possible according to factors

such as the optimal operating point of the engine and the

current battery capacity. The results of each hybrid

control module are combined to calculate the torque and

finally provide for the engine and the BSG, respectively.

The engine model provides a power output based on

driving needs. Engine torque is interpolated from engine

speed and throttle opening, taking into account the

effects of dragging. The fuel consumption of the engine

is obtained by interpolating the engine speed and the

engine output torque, considering the effects of idle fuel

consumption and engine temperature on fuel

consumption. In this model, the engine external

characteristic curve and the universal characteristic

curve should be provided, represented in Fig.5.
Full Cahracteristic

Mapping Cahracteristic

Inertia

Figure 5. Engine model.

Driver model represented in Fig. 6, will determine the

reference position of accelerator pedal, brake pedal and

clutch pedal. Desired gear requested by comparing the

vehicle speed to the desired one.

Brake Ctrl

Throttle Ctrl

Desired Speed

Clutch and Gear Ctrl

Figure 6. Driver model.

The vehicle body model is used to determine the

resistant forces applied to the transmission. This is

realized through a modular approach to determine

different kinds of resistant forces applied to a vehicle,

physical and aerodynamic drag force which provides

four calculation methods. The force on the vehicle body

is transmitted to the tires through the inner/outer

mechanism of Modelica, represented in Fig.7.

Vehicle Body

Physical Resistance

Wind Resistance 1

Wind Resistance 2

Resistance with Ref

Resistance without Ref

Figure 7. Vehicle body model.

The clutch, brake, final gear, transmission, and belt

drive models are based on principles of the second

chapter and derived from the Modelica Standard Library

(version 3.2.1).

3.3 System Models

According to the model established in subsection 3.2 the

system model of a light HEV constructed by building

blocks and connecting lines, represented in Fig.8.

Wheel

Environment

Engine Clutch Transmission Final Gear Differential

Driver

Battery Loads BSG Motor

Controller

Belt
Brake

Car Body

Figure 8. The light hybrid electric vehicles system model.

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles

830 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157827

4 Framework Design

In order to improve the usability of the software, this

paper designs a general software framework for vehicle

dynamics and economic simulation based on MWorks

software. The workflow is shown in Fig.9, The

framework can also be easily used in other domain

model libraries. The software's workflow is divided into

6 steps:

 Model Loading

Parameter Import

Editing Task

Simulation Calculation

Result Review

Start

End

Report Generation

Figure 9. Flow chart of framework.

Step 1: Model loading. Select a model from the

vehicle model library, for example, a manual

transmission vehicle model or a Hyboost-equipped

vehicle model, as shown in Fig.10;
Tool (T) Window (W) Help (H)File (F) View (V)

Navigation

Open SaveNew

Cars

Tasks

Simulations

Results

Reports

Note:Double-click the component to modify the parameters

Next(Task Configuration)

Parameter Import Parameter Export

Figure 10. Model Loading.

Step 2: Parameter import. It can be set by using the

parameter dialog box or importing the whole vehicle or

component parameters from Excel;

Step 3: Editing task. Select tasks that need to be

calculated, such as 0-100 km/h acceleration experiment,

or NEDC experiment, and then set experimental

parameters, such as shift speed, as shown in Fig.11;
Tool (T) Window (W) Help (H)File (F) View (V)

Navigation

Open SaveNew

Cars

Tasks

Simulations

Results

Reports

Next(Task Configuration)

Parameter Import Parameter Export

Basic parameters Cycle condition Driving control Solving settings

Environmental parameters

Cycle parameters

Adhesion coefficient

Circulation type

True: use standard loop false: user-defined curve

Cycle name

Gravity acceleration

Back Next (Simulations)

Figure 11. Editing Task.

Step 4: Simulation calculation. Three simulation

methods are provided with single simulation, matrix

simulation and composite simulation. Single simulation

refers to the simulation of all active experimental tasks

defined in the above steps. Matrix simulation means that

some adjustment parameters in the model can be

selected to be added to the matrix list, and then all

parameters and their optional values are arranged, and

then simulation is performed to all tasks for simulation.

Composite simulation refers to adding components in

the model to the composite simulation list, setting

different batches of simulation parameters for the

component, and then arranging and combining for

simulation.

Step 5: Result review. The simulation results are

displayed through the general and special curve

windows, and the general curves are the MWorks

simulation result curves, and the special curves are pre-

configured curves using the xml method, such as the

engine universal characteristic map.

Step 6: Report generation. The result report is

automatically generated according to the configured

Word template.

5 Results and Discussion

In this part, Modeling parameters is firstly explained

based on the light hybrid vehicle (M4) of JAC, and then

analyze the main performance indicators of the whole

vehicle and parts on the acceleration condition from 0 to

100 km/h and the NEDC condition. Finally, the

simulation results are compared with the experiment

results. Modeling parameters are shown in Table 2.

Table 2. Parameter of HEVs system model.

Engine Specifications Final Specifications

Idle speed 700 rpm Speed ratio 3.273

Maximum

speed

6000

rpm
Wheel Specifications

Idle fuel

consumption
1.2 L/h

Rolling

radius
0.333 m

Fuel density 0.75g/m3
Moment of

inertia

1.5

kg.m2

Response 2 s Adhesion 0.95

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles

DOI Proceedings of the 13th International Modelica Conference 831
10.3384/ecp19157827 March 4-6, 2019, Regensburg, Germany

time coefficient

Heating

Value

4400000

0 J/kg
Cluth Specifications

Vehicle Specifications
Maximum

Torque
350 N.m

Curb Weight 2082 kg Input Inertia
0.0315

kg.m2

Wheelbase 2.7 m
Output

Inertia

0.0047

kg.m2

Battery Specifications BSG Secifications

Rated

capacity
8 Ah

Motor

Inertia

0.005

kg.m2

number of

cells
15

Maximum

Speed

6000

rpm

5.1 The acceleration condition from 0 to 100

km/h

The velocities of the simulation and the experiment are

shown in Fig.12. It can be seen that simulation velocity

tracks that of the experimental result well. The

acceleration time from 0 to 100 km/h is 16.2 s.

Figure 12. Results for velocities of the simulation and the

experiment under condition of acceleration from 0-100

km/h.

Fig.13 and Fig.14 show variations of engine speed

and engine torque respectively where simulation results

are basically consistent with the experiment results. In

Fig. 10, it is difficult to keep speed of model consistent

with the actual engine speed in the starting phase

because the throttle and the clutch need to be cooperated

by controller , and in fact it is difficult to predict the

driver's operation for the driver model.

Figure 13. Results for engine speed of simulation and

Experiment under condition of accelerated from 0-100

km/h.

Figure 14. Results for engine torque of simulation and

experiment under condition of accelerated from 0-100

km/h.

5.2 The NEDC condition

The vehicle velocities of the simulation and the

experiment are shown in Fig.15. It can be seen that

simulation velocities tracks that of the experiment well.

Figure 15. Results for vehicle velocity of simulation and

Experiment under NEDC condition.

Fig.16 and Fig.17 show variations of engine speed

and engine torque respectively where simulation results

are basically consistent with the experiment results. The

reason for having different results during the parking

stages is that the simulation models consider the control

strategy when the vehicle is idling, the fuel supply is cut

off. For real vehicle experiment, while the engine is still

running leading that energy is consumed due to friction

during the experiment.

Figure 16. Results for engine speed of simulation and

Experiment under NEDC condition.

Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles

832 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157827

Figure 17. Results for engine torque of simulation and

Experiment under NEDC condition.

Finally, Fig.18 and Fig.19 show variations of SOC

and fuel consumption over the defined time period. The

SOC is set as 56% initially, and the value becomes 56%

at last. During the whole process of SOC is in a range

from 45% to 75%, which is beneficial to battery health.

The fuel consumption is 0.95 gasoline. Since the last

battery’s charge is equal to the initial charge, the fuel

consumption per hundred kilometers is approximate

9.64 L/ (100 km).

Figure 18. Results for battery SOC of simulation and

Experiment under NEDC condition.

Figure 19. Results for fuel consumption of simulation

and Experiment under NEDC condition.

6 Conclusions

In this paper a system model of a kind of light HEVs is

developed, and an application framework is designed to

simplify the simulation process. By using this

application framework, the performance of the whole
vehicle and components has been analyzed, and finally

compared with the experimental results. The

conclusions are as follows:

1) The application framework proposed can

improve the usability of the models and the simulation

efficiency.

2) The simulation results are basically consistent

with the experimental results, which shows the

effectiveness of the Modelica based multiphysical

modeling method.

3) Through the analysis of the performance of the

whole vehicle and key components such as BSG, battery,

engine and vehicle body, it helps the whole vehicle

matching optimization and the rapid design and

verification of the system.

References

C. Schweiger, M. Dempsey, And M. Otter, The PowerTrain

Library: New Concepts and New Fields of Application, in

Proceedings of the 4th International Modelica Conference,

Hamburg–Harburg, March 2005, The Modelica

Association and Hamburg University of Technology, pp.

457–466.

D. Crolla, D. Cao. The impact of hybrid and electric

powertrains on vehicle dynamics, control systems and

energy regeneration. Veh. Syst. Dyn.20:95-109, 2012.

Jionas H. Modeling of hybrid electric vehicles in Modelica for

virtual prototyping. 2nd International Modelica Conference,

Proceedings, 2002, pp.247-256.

Karen L, Mehrdad Ehsani, Preyas Kamath. A Matlab-Based

Modeling and Simulation Package for Electric and Hybrid

Electric Vehicle Design. IEEE Transations on Vehicular

Technology, 48 (6):1770-1778, 1999.

Liang L, Xiangyu W, Jian S. Fuel Consumption Optimization

for Smart Hybrid Electric Vehicle during a Car-following

Process. Mechanical Systems and Signal Processing, 87:17-

29, 2017. doi.org/10.1016/j.ymssp.2016.03.002.

Liu W. Introduction to hybrid vehicle system modeling and

control. China Machine Press, China, 2014.pp.25-28.

M Meradji, C Cecati, G Wang, D Xu. Dynamic modeling and

optimal control for hybrid electric vehicle drivetrain. IEEE

International Conference on Industrial Technology, 1424-

1429, 2016.doi: 10.1109/ICIT.2016.7474967.

Sanz V, Urquia A, Cellier, Francois E. Modeling of hybrid

control systems using the DEVSLib Modelica library.

Control Engineering Practice, (1):24-34, 2012.

Xiong H Y. Zhan S, Yu L M, Zhou Y S. Modelica-based

Modeling and Simulation of Electric Vehicle Brake System

and Parameter Optimization. Basic Research, 2:33-37, 2016.

Zhang S J, Wu Y. Hu J N, Huang R K. Zhou Y, Bao X F. Can

Euro V heavy-duty diesel engines, diesel hybrid and

alternative fuel technologies mitigate NOX emissions? New

evidence from on-road tests of buses in China. Applied

Energy, 132:118-126, 2014.

doi.org/10.1016/j.apenergy.2014.07.008.

Zou. Y, X. Hu. M S Li. Combined state of health estimation

over lithium-ion battery cell cycle lifespan for electric

vehicles. Power Source, 273:793-803, 2015.

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

DOI Proceedings of the 13th International Modelica Conference 833
10.3384/ecp19157833 March 4-6, 2019, Regensburg, Germany

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in
Modelica
Webster, John and Bode, Carsten

833

Implementation of a Non-Discretized Multiphysics PEM
Electrolyzer Model in Modelica R©

John Webster Carsten Bode

Institute of Engineering Thermodynamics, Hamburg University of Technology, Germany,
jcwebster@edu.uwaterloo.ca, c.bode@tuhh.de

Abstract
In this paper a multi-physics model of a proton exchange
membrane electrolyzer with selectable physics submod-
els is developed in Modelica R©. It will be included in
the open-source TransiEnt Library for future studies on
the efficiency of energy storage for intermittent renewable
sources and the coupling of power, gas, and heat grids.
The model is derived almost explicitly from a previous
research paper by (Espinosa-López et al., 2018) but uses
different models for cooling system power and anode/-
cathode gas pressures. The model is then demonstrated in
an application with wind speed records and corresponding
power generation over the course of one year at a wind
farm in northern Germany. It produces results similar to
experimental results in other papers for use in general ap-
plications of further study.
Keywords: renewable energy, PEM electrolyzer, Power-
to-Gas, TransiEnt Library, energy storage, efficiency

1 Introduction
As society becomes more and more reliant on renewable
energies in efforts to reduce carbon emissions in accor-
dance with the Paris Agreement (United Nations, 2015),
the optimization of sustainable energy systems becomes
increasingly important. One method of increasing en-
ergy efficiency is by coupling the energy and gas grids
through Power-to-Gas (PtG) systems, which typically in-
volve electrolyzers. To study the efficiency of using
electrolyzers to harvest energy from intermittent power
sources and store it in the form of hydrogen gas, a soft-
ware model is developed to complement an existing pro-
ton exchange membrane (PEM) electrolyzer model. This
new model increases the scope of applications of the Tran-
siEnt Library created at the Hamburg University of Tech-
nology (Hamburg University of Technology, 2018b; An-
dresen et al., 2015). The existing model uses an efficiency
curve to simulate the transformation of energy from power
to gas. The new model is to be used in future studies on the
efficiency of this technology for long term energy storage
for the energy produced by renewable sources, as well as
for studying performance behavior under different operat-
ing conditions, such as overload operation, or waste heat
capture and reuse.

1.1 Software Used
Modelica is a declarative programming language used for
mathematical modeling across many physical realms, al-
lowing for pressure, temperature, electrochemical effects,
and any other numerical relationships to be easily coupled.
It is able to solve acausal systems of equations, thus one
can use a graphical editor to model systems as they appear
in real life, allowing for simpler development in many ap-
plications. There are many open-source libraries available
for Modelica, such as TransiEnt Library and ClaRa. Tran-
siEnt allows for the modeling of coupled energy networks
with high shares of renewable energies (Hamburg Univer-
sity of Technology, 2018a). ClaRa is a library of power
plant components which can be used to simulate transient
behavior of power generating machines and technology
(Hamburg University of Technology et al., 2018; Brunne-
mann et al., 2012). A LimPID block has been used from
ClaRa to control the cooling heat flow rate. Dymola is
a common tool that allows for the modeling and simula-
tion of complex systems in Modelica, and is the primary
tool used to develop the electrolyzer model (Dassault Sys-
tèmes, 2018).

Modelica variables can be declared using the keywords
inner and outer, which are modifiers that allow vari-
ables to be communicated between classes. inner and
outer variables are used in the new Electrolyzer Model
(EM) for variables shared between physics submodels,
which means that they can be interchanged and defined
differently in different models while maintaining the same
overall model structure.

All variables and parameters are defined in SI units un-
less stated otherwise.

1.2 Literature Review
PEM electrolyzers have been studied and modeled by sev-
eral authors to date, using similar physical relationships
each time with slight modifications (Abdin et al., 2015;
Agbli et al., 2011; Awasthi et al., 2011; Espinosa-López
et al., 2018; García-Valverde et al., 2012; Han et al.,
2015; Lee et al., 2013; Martinson et al., 2014; Rozain
and Millet, 2012; Shen et al., 2011; Zhang et al., 2012).
(Olivier et al., 2017) performed a thorough study of all
published research to date and compared physical expres-
sions used in various papers. It was from this review that
the electrolyzer was decidedly modeled using ODEs (ordi-

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

834 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157833

nary differential equations) for efficiency characterization.
(Olivier et al., 2017) note that ODEs are most commonly
used for practical applications of electrolyzers, such as in
an industrial environment, as opposed to some papers us-
ing PDEs (partial differential equations), which are more
commonly used for characterization of mass transport be-
havior and discretized thermodynamics within each cell.
PEM technology is chosen over alkaline for its faster re-
sponse to load changes (Letcher, 2016).

The TransiEnt Library would benefit most greatly from
having an accurate efficiency characterization model of an
industrial electrolyzer, which authors have modelled us-
ing PEM physics in (Abdin et al., 2015; Agbli et al., 2011;
Awasthi et al., 2011; Espinosa-López et al., 2018; García-
Valverde et al., 2012; Han et al., 2015; Lee et al., 2013;
Martinson et al., 2014; Rozain and Millet, 2012; Shen
et al., 2011; Zhang et al., 2012). (Espinosa-López et al.,
2018) include the most recent thorough review of popular
papers in the characterization of electrolyzer physics and
develops a detailed model of an industrial electrolyzer tak-
ing pressure, temperature, and current effects into consid-
eration. This paper is chosen as the basis for development
of the new EM since the appropriate ranges for most pa-
rameters in PEM electrolyzer modeling have been defined
and used in the process of validation, explained in Section
2.2. The heat exchange model of the cooling system is
omitted from their paper, and is derived in Section 2.5, for
which DLR’s Optimization Library (DLR, 2018) has been
used to assist in the fitting of the model to correlate the
new EM with the model in (Espinosa-López et al., 2018).

In the validation process, curves are digitized from
(Espinosa-López et al., 2018) and used in Com-
biTimeTable source blocks as inputs. The EM behavior is
validated in a temperature range of 20-60 ◦C and anode/-
cathode pressures of 15-35 bar in (Espinosa-López et al.,
2018).

2 PEM Electrolyzer Modeling
2.1 New Model Structure
The new electrolyzer model consists of components
shown in Figure 1.

The physics are separated into submodels of replace-
able voltage, temperature, pressure, and mass flow mod-
els, and shared variables are declared in the root model us-
ing the keyword inner. Each submodel contains outer
variables that are shared with one or more other sub-
models. This forms a kind of tree structure of the elec-
trolyzer with the main class as the root and physics mod-
els as branches/leaves (Figure 2). The main class is named
PEMElectrolyzer_L2 where L2 represents the level of
detail in accordance with TransiEnt Library conventions
(Brunnemann et al., 2012). The variables that each sub-
model must define in order for the electrolyzer model to
work are noted in each submodel’s base class.

In addition to the physics submodels, there is also a re-
placeable Specification record containing a set of five

parameters (described in Section 2.2) experimentally de-
termined for any electrolyzer system following the pro-
cedure outlined in (Espinosa-López et al., 2018), as well
as other system specific parameters, like number of PEM
cells per stack, membrane thickness, and membrane area.
The replaceable submodels allow for other characteristic
systems to be developed and swapped with ease. Cost and
power consumption tracking models as well as fluid prop-
erties are imported from TransiEnt and TIL Media (Ham-
burg University of Technology, 2018b; Institut fur Ther-
modynamik, Technische Universitat Braunschweig and
TLK-Thermo GmbH, 2018). The new EM has inputs of
desired operating current, current density, power supply,
or hydrogen mass output profiles that can be created by
the user, with options for the user to define a tempera-
ture profile as well. Pressure can be defined through a
gasPortOut interface component (Hamburg University
of Technology, 2018b). The unknown variables of volt-
age, temperature, power consumption, or hydrogen output
are calculated by the model according to the input profile
and selected physics.

2.2 System Configuration

The electrolyzer system uses the same parameters as the
46 kWel PEM Electrolyzer studied by (Espinosa-López
et al., 2018) by default. This system consists of a Giner
Inc. electrolyzer with 60 PEM cells in series, each with
an active cell area of 290 cm2. Areva Energy Storage
assembled the electrolyzer with all of its auxiliary com-
ponents, including an AC/DC converter, a water vessel, a
water pump, a heat exchanger, gas separators, a gas purify-
ing system, and multiple sensors and actuators for control,
supervision and data measurement (Espinosa-López et al.,
2018). Different current profiles were used to validate the
operation of the EM, although the nominal operating cur-
rent is 400A across the stack electrodes (which equates to
a current density of close to 1.4 A/cm2). The characteri-
zations of the default submodels is detailed in the follow-
ing sections. Five parameters have been determined ex-

Figure 1. Graphical model of the Electrolyzer Model.

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

DOI Proceedings of the 13th International Modelica Conference 835
10.3384/ecp19157833 March 4-6, 2019, Regensburg, Germany

PEMEl ect r ol yzer _L2

model
el ect r ol yzer Vol t age

model
el ect r ol yzer Pr essur es

model
el ect r ol yzer MassFl ow

model
el ect r ol yzer Temper at ur e r ecor d Speci f i cat i on

i nner V_el _st ack;
i nner T_op;
. . .
i nner i _el _st ack;
. . .
E_pr o =
Speci f i cat i on. E_pr o;

out er V_el _st ack;
. . .
out er T_op;

out er T_op;
. . .

out er T_op;
. . .
out er i _el _st ack;

out er i _el _st ack;
. . .

E_pr o=10536;
. . .

Figure 2. Modelica electrolyzer model structure showing inner/outer relationships between selected variables. Variables in the
same color of text refer to the same object.

perimentally by (Espinosa-López et al., 2018): the charge
transfer coefficient of the anode (αan), the exchange cur-
rent density on the anode at standard temperature (i0,an,std),
the activation energy required for electron transport in the
anode (Eexc), the membrane conductivity at standard tem-
perature (σmem,std), and the activation energy required for
the proton transport in the membrane (Epro).

2.3 Neglected Model Components
Some components modeled in other papers such as con-
centration overvoltage have been omitted from the current
EM. This overvoltage, known also as diffusion overvolt-
age, is often neglected in industrial applications because of
its minimal effects at the operating current densities. It has
a much more significant effect at high pressure and higher
current densities than the typical 1.4 A/cm2 maximum in
industrial applications. Mass flow across the membrane
due to diffusion, which contributes to the concentration
overpotential, has also not been accounted for in the cur-
rent model. In industrial studies and applications, these
physical effects are not predicted to have any significant
impact on the resultant hydrogen produced.

2.4 Voltage Submodel
The operating PEM cell voltage (Vcell) can be expressed
as the sum of multiple overpotentials (overvoltages) due
to different material inefficiencies and natural physical ef-
fects, and multiplied by the number of cells to get the over-
all stack voltage. Equation (1) shows the total cell voltage
as the sum of the open-circuit voltage (Vocv), activation
overvoltage (Vact), and ohmic overvoltage (Vohm).

Vcell =Vocv +Vact +Vohm (1)

The open-circuit voltage is calculated by using the re-
versible cell voltage (Vrev) in the Nernst equation. Vocv is
the voltage required to initiate the water electrolysis re-
action under ideal conditions. Vrev is often expressed as
Equation (2) (Espinosa-López et al., 2018) or (3) (García-
Valverde et al., 2012) with Top expressed in K. Top repre-
sents the temperature of the water in contact with the cell

membrane, and is assumed to be uniform throughout the
stack for simplicity. For the EM, Equation (2) is used by
default. Vstd is 1.23 V for water electrolysis, and standard
temperature Tstd is defined as 298.15 K.

Vrev(Top) =Vstd −0.0009(Top −Tstd) (2)

Vrev(Top) =1.5184−1.5421 ·10−3 ·Top

+9.523 ·10−5 ·Top · lnTop

+9.84 ·10−8 ·T 2
op (3)

The open-circuit voltage is then calculated using the
Nernst equation (Equation (4)), where variables ppH2 ,
ppO2 , and ppH2O refer to the partial pressures of hydrogen
at cathode, oxygen at anode, and water vapor, respectively.

Vocv =Vrev +
R ·Top

2 ·F
· ln

(
ppH2 · pp0.5

O2

ppH2O

)
(4)

F and R represent Faraday’s and gas constants, respec-
tively. The partial pressures must be converted to atm units
for use in Equation (4). The partial pressures of gases are
described in Section 2.5.

The activation overvoltage comes from the energy re-
quired to start the electrochemical reaction through the
electrodes, but has been reduced to only consider a contri-
bution from the anode, as in (Espinosa-López et al., 2018).
αan is determined experimentally to be 0.7353 (Espinosa-
López et al., 2018).

Vact =
R ·Top

2 ·αan ·F
· asinh

(
idens

2 · i0,an

)
(5)

idens represents the current density on the PEM stack elec-
trodes in A/m2. The exchange current density i0,an is mod-
eled from the expression used by many authors, shown in
Equation (6).

i0,an = i0,an,std · exp
(
−Eexc

R
·
(

1
Top

− 1
Tstd

))
(6)

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

836 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157833

i0,an varies with temperature and by reference exchange
current density (i0,an,std = 1.08 ·10−4 A/m2), which has
been measured on different orders of magnitude by sev-
eral authors. For the sake of consistency, values from
(Espinosa-López et al., 2018) have been used (Eexc =
52994J).

The ohmic overpotential is due to resistance of ion flow
in the cell components. It can be expressed as simply as
Ohm’s law, using the inverse of membrane conductivity to
determine the resistance of the cell, as in Equation (7).

Vohm = Rmem · idens (7)

The membrane resistance Rmem (Ωm2) is calculated from
the membrane conductivity σmem (S/m) and membrane
thickness δmem (m) using Equation (8), and in conjunction
with the current density on the electrodes, the voltage can
be calculated.

Rmem =
1

σmem
δmem (8)

The default membrane has specifications of a Nafion 117
membrane, with a thickness (δmem) of 178 ·10−6 m. The
membrane conductivity expression is selectable in the EM
as Equation (9) (Espinosa-López et al., 2018), Equation
(10) (Biaku et al., 2008), or Equation (11) (Awasthi et al.,
2011; Han et al., 2015; Zhang et al., 2012) and is always
expressed in S/m.

σmem =σmem,std · exp
(

Epro

R
·
(

1
Top

− 1
Tstd

))
(9)

σmem =4.8 ·10−4 +8.15 ·10−6 ·Top

+5.12 ·10−9 ·T 2
op (10)

σmem =(0.005114 ·λmem −0.00326)

· exp
(

1268 ·
(

1
303

− 1
Top

))
(11)

λmem is the degree of humidity of the membrane, which is
equal to 14 by default. The default model is Equation (8),
with Epro = 10536J/mol and σmem,std = 10.31S/m.

2.5 Temperature Submodel
Similar to many papers, (Espinosa-López et al., 2018) im-
plement a lumped thermal capacitance model, so that the
temperature of the entire electrolyzer system can be sim-
plified in one equation, as shown in Equation (12).

Cth
dTop

dt
=Q̇electrolysis,heat +Ẇpump,loss − Q̇cooling

− Q̇loss −∑
j

ṅ j ·∆h j (12)

The thermal capacity of the electrolyzer stack, Cth, is de-
termined experimentally by (Espinosa-López et al., 2018)
to be 162116J/K. The other terms in the equation (all
positive, expressed in W) are Q̇electrolysis,heat for the heat

generated by the electrolysis reaction, Ẇpump,loss for the
work contributed by the pump in the water supply net-
work, Q̇cooling for the heat removed by a cooling system
in a separate pipe network, Q̇loss for the heat lost to am-
bient environment by convection, and finally, a term for
enthalpy lost with H2 and O2 products leaving the system.

Q̇electrolysis,heat is generated when operating the elec-
trolyzer at voltages above the thermoneutral voltage.
Thus, it can be expressed as Equation (13),

Q̇electrolysis,heat = (Vcell −Vtn) · I ·ncells (13)

where Vtn = 1.48V is the thermoneutral voltage of water
electrolysis used in (Espinosa-López et al., 2018). I is the
current across the stack electrodes, and ncells is the number
of cells in the electrolyzer stack.

The work that the pump contributes to the system is
considered to be proportional to the electrical energy con-
sumed, which is simplified from the implementation in
(Espinosa-López et al., 2018), using the rated electric
power consumption of the pump, Ẇpump,elec = 1100W,
and the pump efficiency, ηmotor,elec = 0.75 (Equation (14)).

Ẇpump,loss = Ẇpump,elec ·ηmotor,elec (14)

Since Q̇cooling is not published in their paper, a new ex-
pression is derived for it by using a similar procedure to
that which (Espinosa-López et al., 2018) describes. A
simulation is run with the input current set to 400A and
Top is allowed to rise until it reaches a nominal operat-
ing temperature of 328.95 K, at which point the deriva-
tive of operating temperature is set to 0, such that Q̇cooling
attains the value of the excess heat at that operating cur-
rent. The value of Q̇cooling is seen to be 6911 W at 30
bar (or 6039 W at 5.86 bar; the cooling power required
varies with pressure), which is considered to be the max-
imum cooling power of the heat exchanger in order to
match the model in (Espinosa-López et al., 2018). A
LimPID block (Hamburg University of Technology et al.,
2018) is implemented within the Temperature1 thermal
model, acting as a PI controller, activated only when Top
surpasses Tset = 318.95K, and only cools (does not heat
the system). use_activateInput becomes true when
Top > Tset. To choose appropriate tuner values for the
LimPID kp and τi, DLR’s Optimization Library (DLR,
2018) is used to compare the temperature output of the
EM with constant 400A current driven temperature out-
put in (Espinosa-López et al., 2018), and calculate kp and
τi to minimize the deviation between the models. The op-
timized values are τi = 7.741 · 10−4 and kp = 500. If the
electrolyzer operates at currents or pressures greater than
400A or 30 bar, respectively, the operating temperature of
the system will increase past 60 ◦C because of the cooling
power limit.

Q̇loss is calculated using the convective cooling relation-
ship in Equation (15), and the thermal resistivity Rth is
taken from experimental results in (Espinosa-López et al.,
2018) as 0.0668 K/W. The ambient temperature Tamb is

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

DOI Proceedings of the 13th International Modelica Conference 837
10.3384/ecp19157833 March 4-6, 2019, Regensburg, Germany

set to 296 K by default to match the starting temperature
in experiments from (Espinosa-López et al., 2018).

Q̇loss =
1

Rth
·
(
Top −Tamb

)
(15)

The final component of the energy balance equation
comes from enthalpy lost with the products leaving the
system, as calculated using two empirical equations for
molar heat capacities from (Cengel and Boles, 2008).
The expressions use coefficients of molar specific heat
(J/(molK)) for H2 and O2 (cp,m,H2 and cp,m,O2 , from
Equations (16) and (17), respectively) as a function of
Top, and are summed as Equation (18) (Espinosa-López
et al., 2018). The moles generated/consumed of each fluid
(ṅH2O, ṅH2 , ṅO2) are explained in the mass flow submodel.

cp,m,H2 =(29.11−1.92 ·10−3 ·Top

+4.0 ·10−6 ·T 2
op −8.7 ·10−10 ·T 3

op) (16)

cp,m,O2 =(25.48+1.52 ·10−2 ·Top

−7.16 ·10−6 ·T 2
op +1.31 ·10−9 ·T 3

op) (17)

∑
j

ṅ j ·∆h j =ṅH2 · cp,m,H2 ·
(
Top −Tamb

)
+ ṅO2 · cp,m,O2 ·

(
Top −Tamb

)
(18)

2.6 Pressure Submodel
The pressure exerted by water vapour (ppH2O) in the cell
is calculated in atm using Equation (19), from (Espinosa-
López et al., 2018). The partial pressures of H2 and O2
gases are calculated from Dalton’s law of partial pressures
which assumes ideal gas behavior in Equations (20) and
(21), after ppH2O, pcat and pan are converted to Pa.

ppH2O =6.1078 ·10−3

· exp
(

17.2694 ·
Top −273.15
Top −34.85

)
(19)

ppH2 =pcat − ppH2O (20)
ppO2 =pan − ppH2O (21)

pcat and pan are the pressures of the hydrogen and oxy-
gen storage tanks, respectively. A 1 bar negative pres-
sure gradient from cathode to anode side is used, which
(Espinosa-López et al., 2018) explain is to reduce the me-
chanical stress on the membrane.

2.7 Mass Flow Submodel
The molar production rates of hydrogen and oxygen
(mol/s) can be defined using Faraday’s Law, as in Equa-
tions (22) and (23). Water molar flow is calculated as well
(Equation (24)).

ṅH2 =
ncells · I

2 ·F
·ηf (22)

ṅO2 =
ncells · I

4 ·F
·ηf (23)

ṅH2O =
ncells · I

2 ·F
·ηf (24)

ηf is the Faraday efficiency of reaction, which is equal to
1 as in (Espinosa-López et al., 2018).

3 Validation
To validate the electrolyzer model, figures are taken from
(Espinosa-López et al., 2018), digitized and plotted along-
side the EM output plots. The voltage and temperature
curves are compared first with a constant current input of
400A in Figure 3. The EM curves match closely to the
experimental results in (Espinosa-López et al., 2018).

Two more validation models are created, showing dy-
namic current profiles from a solar photovoltaic (PV) array
starting up (Figure 4) and from 7AM to 9PM on a cloudy
day (Figure 5). The current profiles, voltage and tempera-
ture curves from experimental results in (Espinosa-López
et al., 2018) are shown alongside the output of the EM.

In Figures 3 and 4, it is observed that the temperature
of the EM rises slightly more quickly than in (Espinosa-
López et al., 2018), but that the voltage and temperature
do not deviate by much when the current fluctuates below
400A. For the cloudy day PV current profile, the normal-
ized integrated squared deviation is calculated between the
resultant voltage and temperature curves and with those
from (Espinosa-López et al., 2018). In the central region
of operation, after start up and before shutoff, the resultant
temperature and voltage curves have deviations of 2.66 ◦C
and 0.853V, respectively. This deviation rises outside a
simulation time of 1750s to 28550s because of differently
implemented voltage values when the electrolyzer is pow-
ered off. In the EM, the default voltage when current is
0A is 0V. The deviations between the EM and (Espinosa-
López et al., 2018) are due to a few factors. One source
of error is due to the digitization of the original curves,
where the accuracy relies on the user selecting data points
manually. A second source of error is due to the inter-
polation of the Modelica CombiTimeTable blocks used to
generate the input and reference output curves. It is also

0 200 400 600 800 1000 1200
Time (s)

0

20

40

60

80

100

120

V
ol

ta
ge

 (
V

),
 T

em
pe

ra
tu

re
 (

°C
)

200

250

300

350

400

450

C
ur

re
nt

 (
A

)

Experimental-V
EMVoltage
Experimental-T
EMTemp
Current

Figure 3. Temperature and voltage models compared for 400A
constant input current.

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

838 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157833

0 500 1000 1500 2000 2500 3000 3500
Time (s)

20

40

60

80

100

120

V
ol

ta
ge

 (
V

),
 T

em
pe

ra
tu

re
 (

°C
)

0

50

100

150

200

250

300

350

400

450

C
ur

re
nt

 (
A

)

Experimental-V
EMVoltage
Experimental-T
EMTemp
Current

Figure 4. Temperature and voltage models compared for PV
startup current profile.

0 0.5 1 1.5 2 2.5 3
Time (s) 104

0

20

40

60

80

100

120

V
ol

ta
ge

 (
V

),
 T

em
pe

ra
tu

re
 (

°C
)

0

100

200

300

400

500

C
ur

re
nt

 (
A

)

Experimental-V
EMVoltage
Experimental-T
EMTemp
Current

Figure 5. Temperature and voltage models compared for cloudy
day PV current profile, starting at 7AM.

observed that the temperature models behave differently
around the equilibrium temperature, which is due to the
different implementations of the PID cooling system and
tank storage pressure controls for the electrolyzer. De-
spite this, the deviation becomes visibly smaller as the
operating current fluctuates below the nominal 400A. It
is observed that the operating pressure has a significant
effect on the stack voltage, and the deviations between
voltages can be greatly reduced if operating cathode pres-
sure is reduced from 30 bar, although the default pres-
sure is kept at 30 bar to stay consistent with (Espinosa-
López et al., 2018). Espinosa-López has explained that
the pressure model would differ for each electrolyzer sys-
tem, and that they have implemented a pressure model that
changes pressure relative to the amount of hydrogen pro-
duced (Espinosa-López, 2018), whereas in the EM the an-
ode and cathode side pressures are static.

4 Applications
An experiment is conducted to inspire further research
coupling electrolyzers with intermittent renewable power

sources. A current profile is generated from a Vestas112-
3.0MW wind turbine power curve with wind speed
records from Wrohm-Osterrade Wind Farm in the north
of Germany from 2015 (Deutscher Wetterdienst, 2018). In
this application, all of the wind power is used to produce
hydrogen instead of being channelled into the grid. Given
the wind speeds in m/s at various heights, the "driving
wind speed," defined as the average wind speed across the
diameter of a rotor in (Brown, 2012), is calculated first. A
linear interpolation is then used to map the driving wind
speed to a power output of a single turbine of the seven at
Wrohm-Osterrade using the power curve given by (Kopp,
2018), which is then used as the power input for the one
year operation of 66 electrolyzers in the Areva configu-
ration. The wind speeds, resulting power output (gener-
ated by one turbine) and hydrogen output from 66 theo-
retical electrolyzers connected to the turbine are shown in
Figure 6. The average efficiency calculated using the net
calorific value of the hydrogen produced is 75.3% over
the course of the year, while the efficiency using the gross
calorific value is 89.0%. A single electrolyzer produces
approximately 4125kg in a single year.

A total of 1.906t of hydrogen could be theoretically
produced if 66 electrolyzers were installed for each of
the seven wind turbines at Wrohm-Osterrade, which is
enough hydrogen to fill over 400000 tanks of the Toyota
Mirai sedan (Toyota, 2018).

5 Conclusions and Outlook

A new electrolyzer model has been developed with de-
tailed physics which can be developed and substituted
with ease, accounting for physical effects of temperature,
pressure, operating current and electrochemistry. In ad-
dition, multiple inputs have been created so that the user
is able to control new parameters of the electrolyzer op-
eration, including operating temperature and current. The
model is in good agreement with (Espinosa-López et al.,
2018) experimental and simulated data and is thus suitable
for practical use. The model has been used with data from
the Wrohm-Osterrade Wind Farm to calculate a theoreti-
cal quantity of hydrogen produceable by a wind farm over
the course of one year.

The future should focus on obtaining parameters spe-
cific to more electrolyzer systems in use today. Using
the procedures outlined in (Espinosa-López et al., 2018),
any electrolyzer system can be characterized in a Model-
ica record and imported as a Specification in the EM
for an accurate simulation of the system’s behavior at dif-
ferent temperatures, pressures, and powers. Further stud-
ies can use the EM to model overload behavior of elec-
trolyzers for use during peak demand for nominal electric
power, and simultaneously examine the excess heat flows
generated in the system to increase the overall efficiency
and profitability of the system.

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

DOI Proceedings of the 13th International Modelica Conference 839
10.3384/ecp19157833 March 4-6, 2019, Regensburg, Germany

0 50 100 150 200 250 300 350
0

10

20

30
D

ri
vi

ng
W

in
d

Sp
ee

d
(m

/s
)

0 50 100 150 200 250 300 350
0

2

4

W
in

d
Po

w
er

G
en

er
at

ed
 (

M
W

)

0 50 100 150 200 250 300 350
Days from Jan. 1st, 2015

0

0.01

0.02

M
as

s
Fl

ow
of

 H
yd

ro
ge

n
(k

g/
s)

Figure 6. Driving wind speed and corresponding power and hydrogen mass flow output over the course of one year, from one
Vestas112-3.0MW wind turbine powering 66 electrolyzers.

Acknowledgements
The authors would like to acknowledge the German Fed-
eral Ministry for Economic Affairs and Energy for its
funding for the project "ResilientEE - Resilience of in-
tegrated energy networks with a high share of renewable
energies" (03ET4048).

References
Z. Abdin, E. MacA. Gray, and C.J. Webb. Modelling and simula-

tion of a proton exchange membrane (PEM) electrolyzer cell.
International Journal of Hydrogen Energy, 40(39):13243–
13257, 2015. doi:10.1016/j.ijhydene.2015.07.129.

K. S. Agbli, I. Doumbia, D. Hissel, M. C. Péra, O. Rallières,
and C. Turpin. Multiphysics simulation of a PEM electrol-
yser: Energetic macroscopic representation approach. In-
ternational Journal of Hydrogen Energy, 36(2):1382–1398,
2011. doi:10.1016/j.ijhydene.2010.10.069.

L. Andresen, P. Dubucq, R. Peniche, G. Ackermann, A. Kather,
and G. Schmitz. Status of the transient library: Tran-
sient simulation of coupled energy networks with high
share of renewable energy. Proceedings of the 11th In-
ternational Modelica Conference, pages 695–705, 2015.
doi:10.3384/ecp15118695.

A. Awasthi, S. Basu, and Keith Scott. Dynamic model-
ing and simulation of a proton exchange membrane elec-
trolyzer for hydrogen production. International Jour-
nal of Hydrogen Energy, 36(22):14779–14786, 2011.
doi:10.1016/j.ijhydene.2011.03.045.

C. Y. Biaku, N. V. Dale, M. D. Mann, H. Salehfar, A. J. Peters,
and T. Han. A semiempirical study of the temperature depen-
dence of the anode charge transfer coefficient of a 6 kw PEM
electrolyzer. International Journal of Hydrogen Energy, 33:
4247–4254, 2008. doi:10.1016/j.ijhydene.2008.06.006.

Cameron Brown. Fast verification of wind turbine power curves:
Summary of project results. Technical report, Technical Uni-
versity of Denmark, Kongens Lyngby, 2012.

Johannes Brunnemann, Friedrich Gottelt, Kai Wellner, Ala
Renz, André Thuering, Volker Roeder, Christoff Hasenbein,
Christian Schulze, Gerhard Schmitz, and Joerg Eiden. Sta-
tus of ClaRaCCS: Modelling and simulation of coal-fired
power plants with CO2 capture. Proceedings of the 9th
International Modelica Conference, pages 609–618, 2012.
doi:10.3384/ecp12076609.

Y. A. Cengel and M. A. Boles. Thermodynamics: an engineer-
ing approach, sixth ed. Sea, 2008. ISBN 9789814595292.

Dassault Systèmes. Dymola – Dassault Systèmes, 2018. URL
https://www.3ds.com/products-services/
catia/products/dymola/.

Deutscher Wetterdienst. Pamore – Abruf archivierter Daten der
Vorhersagemodelle, 2018. URL https://www.dwd.de/
DE/leistungen/pamore/pamore.html.

DLR. Commercial Modelica Libraries developed by DLR-
SR, 2018. URL https://www.dlr.de/rm/en/
desktopdefault.aspx/tabid-9281/.

Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica

840 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157833

Manuel Espinosa-López. Personal communication. November

2018.

Manuel Espinosa-López, Philippe Baucour, Serge Besse,
Christophe Darras, Raynal Glises, André Rakotondrainibe
Philippe Poggi, and Pierre Serre-Combe. Modelling and ex-
perimental validation of a 46 kw PEM high pressure wa-
ter electrolyser. Renewable Energy, 119:160–173, 2018.
doi:10.1016/J.RENENE.2017.11.081.

R. García-Valverde, N. Espinosa, and A. Urbina. Simple PEM
water electrolyzer model and experimental validation. In-
ternational Journal of Hydrogen Energy, 37(2):1927–1938,
2012. doi:10.1016/j.ijhydene.2011.09.027.

Hamburg University of Technology. ResiliEntEE – Wel-
come, 2018a. URL https://www.tuhh.de/
transient-ee/en/index.html.

Hamburg University of Technology. TransiEnt Library, 2018b.
URL https://www.tuhh.de/transient-ee/en/.

Hamburg University of Technology, TLK-Thermo GmbH, and
XRG-Simulation GmbH. ClaRa 1.3.0, 2018. URL https:
//www.claralib.com/.

Bo Han, Jinkge Mo, Stuart M. Steen III, and Feng-Yuan Zhang.
Electrochemical performance modeling of a proton exchange
membrane electrolyzer cell for hydrogen energy. Interna-
tional Journal of Hydrogen Energy, 40(22):7006–7016, 2015.
doi:10.1016/j.ijhydene.2015.03.164.

Institut fur Thermodynamik, Technische Universitat Braun-
schweig and TLK-Thermo GmbH. TILMedia 1.3.0
ClaRa, 2018. URL https://www.tlk-thermo.
com/index.php/en/software-products/
tilmedia-suite.

Stefan Kopp. Leistungskurven von modernen Binnenland-
Windenergieanlagen, 2018. URL http://www.
windenergie-im-binnenland.de/powercurve.
php.

Bonghwan Lee, Hyung-Man Kim, and Kiwon Park. Dynamic
simulation of PEM water electrolysis and comparison with
experiments. International Journal of Electrochemical Sci-
ence, 8:235–248, 2013.

Trevor Letcher. Storing Energy, 1st Edition, with Special Ref-
erence to Renewable Energy Sources. Elsevier, 2016. ISBN
9780128034491.

C. A. Martinson, D. Bessarabov, G. van Schoor, and
K. R. Uren. Characterisation of a PEM electrolyzer us-
ing the current interrupt method. International Jour-
nal of Hydrogen Energy, 39(36):20865–20878, 2014.
doi:10.1016/j.ijhydene.2014.09.153.

Pierre Olivier, Pr. Belkacem Bouamama, and Cyril Bourasseau.
Low-temperature electrolysis system modelling: A review.
Renewable and Sustainable Energy Reviews, 78:280–300,
2017. doi:10.1016/j.rser.2017.03.099.

C. Rozain and P. Millet. Electrochemical characteriza-
tion of polymer electrolyte membrane water electroly-
sis cells. Electrochimica Acta, 131:160–167, 2012.
doi:10.1016/j.electacta.2014.01.099.

Muzhong Shen, Nick Bennett, Yulong Ding, and Keith Scott.
A concise model for evaluating water electrolysis. Inter-
national Journal of Hydrogen Energy, 36(22):14335–14341,
2011. doi:10.1016/j.ijhydene.2010.12.029.

Toyota. 2017 Mirai Product Information, 2018. URL
https://ssl.toyota.com/mirai/assets/
core/Docs/Mirai%20Specs.pdf.

United Nations. Paris Agreement, 2015.

Houcheng Zhang, Jincan Chen, Guoxing Lin, and Shanhe Su.
Efficiency calculation and configuration design of a PEM
electrolyzer system for hydrogen production. International
Journal of Electrochemical Science, 7:4143–4157, 2012.

Translating Simulink Models to Modelica using the {\NSP} Platform

DOI Proceedings of the 13th International Modelica Conference 841
10.3384/ecp19157841 March 4-6, 2019, Regensburg, Germany

Translating Simulink Models to Modelica using the {\NSP} Platform
Chancelier, Jean-Philippe and Furic, Sébastien and Weis, Pierre

841

Translating Simulink Models to Modelica using the Nsp Platform

Jean-Philippe Chancelier1 Sébastien Furic2 Pierre Weis2

1Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée 2, France,
jean-philippe.chancelier@enpc.fr

2 Inria Paris, 2 rue Simone Iff, 75589 Paris, France & Université Paris-Est, CERMICS (ENPC), 77455
Marne-la-Vallée 2, France {sebastien.furic,pierre.weis}@inria.fr

Abstract
We present a new Simulink (Simulink) to Modelica (Mod-
elica) translation chain embedded into Nsp. Translated
models can be edited (original Simulink diagrams are pre-
served through translation) and simulated. This transla-
tion chain makes use of the Simport tool, originally de-
signed to translate Simulink models to Scicos models, and
also relies on Modelicac, i.e. Scicos’ Modelica companion
compiler.

Using some examples, we demonstrate the effective-
ness of the translation process and detail some techni-
cal aspects of it. This new Nsp feature extends Nsp’s
simulation capabilities and makes it a reference platform
for users looking for means to simulate Simulink models
within a Modelica framework. Resulting Modelica code
can even be exported to other Modelica compatible tools.
Keywords: Nsp; Simulink; Modelica

1 Introduction
Nsp is a Matlab-like numerical environment which can run
the Scicos modeling environment, a Simulink-like block
diagram editor and simulator.

From 2003 to 2008, in the course of funded projects
SimPA and SimPA2, a Modelica compiler named Modeli-
cac has been developed allowing Scicos to handle genuine
Modelica models. This integration of Modelica within
Scicos has been the subject of several papers published
at the Modelica conference (Nikoukhah and Najafi, 2008;
Nikoukhah and Furic, 2009). The purpose of using Mod-
elica is to serve as a high-level description language to
extend Scicos expressiveness: Modelica allows users to
compose “acausal” models where the original environ-
ment forced users to describe their models as block dia-
grams.

In this paper we focus on a new application of Modelica
within Scicos under Nsp, that is as a target language for
Simulink model translation.

Several Simulink to Modelica translation tools have al-
ready been proposed in the past, we mention in partic-
ular Mike Dempsey’s Simelica and AdvancedBlocks li-
brary (Dempsey, 2003) and Dirk Reusch’s Coselica ini-
tiative (Reusch). AdvancedBlocks was a fairly complete
library of Modelica blocks which allowed users to use
Modelica blocks as a one-to-one replacement for Simulink

blocks. Up to our knowledge this work remains the
most advanced effort in that direction. It is however no
longer maintained. In the Scicos software environment,
the Coselica library offers signal models to allow users
to better exploit Modelica from within Scicos by propos-
ing a large set of Modelica submodels in the same spirit as
the standard Modelica library (MSL). Many Simulink-like
blocks are also available in Coselica.

The approach presented here differs from Mike
Dempsey’s and Dirk Reusch’s approaches in that trans-
lation of original blocks is not attempted on a one-to-one
basis. Instead, we use a two steps translation process: the
first step translates the Simulink model into an equivalent
Scicos native model; the second step translates the Scicos
native model to Modelica code.

To handle the initial Simulink to Scicos translation,
we use an external tool named Simport: it translates a
Simulink model by translating each block in the original
Simulink model with one or several blocks of the Scicos
native block library, so that original semantics is preserved
with a high degree of confidence.

For the second step, we developed a set of Nsp special
purpose compilation routines to translate Scicos blocks to
genuine Modelica blocks. When a Scicos block has a di-
rect Coselica equivalent, the compilation routine simply
emits thre corresponding Coselica block; when there is
no Coselica equivalent, the compilation routine generates
an entirely new block containing ad-hoc Modelica code
to handle the Scicos block behavior. Using this compile-
time Modelica code generation and the two steps transla-
tion process was the key ideas to fill the huge semantic gap
between Simulink and Modelica.

We give in this paper a detailed description of this new
translation chain hosted by the Nsp environment.

2 Involved Tools
As mentioned above, the translation chain relies on a com-
bination of several tools. We give hereafter a short de-
scription of each of them.

2.1 Nsp, a Programming Environment for Nu-
merical Applications

Nsp (Nsp) is a mature Matlab-like Scientific Software
Package developed under the GPL license. Nsp features
a high-level, safe imperative programming language with

Translating Simulink Models to Modelica using the {\NSP} Platform

842 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157841

automatic memory management. This language can be
used interactively, giving users an easy access to efficient
numerical routines; It can also be used as a more conven-
tional programming language to extend Nsp’s capabilities.

Nsp contains internally a class system with simple in-
heritance and interface implementation. When used as an
interactive computing environment, it comes with online
help facilities and an easy access to GUI facilities and
graphics.

A large set of libraries are available and it is moreover
easy to implement new functionalities. External libraries
can also be used: this requires writing some wrapper code
(also called interface) to live in harmony with Nsp’s inter-
nal state. The interface mechanism can be either static or
dynamic. By using dynamic functionalities one is able to
build toolboxes.

Nsp shares many traits with other Matlab-like Scientific
Softwares such as Matlab, Octave, ScilabGtk (ScilabGtk;
Campbell et al., 2006), and also with scripting languages
such as Python.

The main toolbox used in this work is Scicos that we
describe now.

2.2 Scicos, a Block Diagram Modeler and Sim-
ulator

Scicos (Scicos) is a graphical dynamical system modeler
and simulator originally developed in the Metalau project
at INRIA, Paris-Rocquencourt center. With Scicos, users
can create block diagrams to model and simulate the dy-
namics of hybrid dynamical systems and compile models
into executable code. Scicos is used for signal process-
ing, systems control, queuing systems, and to study phys-
ical and biological systems. Extensions allow generation
of component-based modeling of electrical and hydraulic
circuits using the Modelica language.

We consider in this paper the Scicos/Nsp version of Sci-
cos maintained and developed at ENPC. Scicos/Nsp is a
Nsp toolbox and runs in the Nsp environment. Having ac-
cess to Nsp functions when designing simulation models
is of great importance.

Scicos users often needs to use Nsp functions such as
those dedicated to filter design for signal processing or
controller design in the construction of simulation mod-
els. Nsp’s programming language can be used for batch
processing of multiple simulation tasks, and more gener-
ally, models designed by Scicos can be used as functions
in Nsp. Nsp’s graphical facilities can be used for post pro-
cessing simulation results. But the integration of Scicos
and Nsp goes beyond that. The Scicos editor is entirely
written in Nsp’s language. This provides many advan-
tages and was in particular of tremendous importance in
the current work, indeed: Scicos model data structure is
a Nsp structure and thus Scicos models can be program-
matically manipulated and build using Nsp scripts. We
use this facility in two ways. First to obtain Scicos mod-
els from Simulink models, using the fact that the Simport
converter produces a Nsp script whose execution in Nsp

produces a Scicos model data structure. Second, using
Nsp scripts we are able to convert, in a Scicos model data
structure, some Scicos blocks to Modelica blocks.

In the conversion process from Simulink to Modelica,
the scicos compiler/scheduler also plays a key role. It
infers dimensions and types used in the Modelica blocs.
This is quite an exciting feature since it gives the possibil-
ity to have Modelica blocks for which the associated Mod-
elica model is not a fixed Modelica class but a specific one
adapted to specific dimensions and types generated on the
fly.

2.3 Modelicac, a Simple Yet Useful Modelica
Compiler

Development of Modelicac started in 2003 as a joint work
between Inria and TNI-Valiosys (now Dassault Systèmes)
in the course of the SimPA (SIMulation pour le Procédé
et l’Automatique) french funded project. The goal was to
make Scicos compatible with a significant subset of the
Modelica language in order for users to be able to de-
scribe complex hybrid models without having to resort to
low-level block diagram descriptions. Indeed, building a
block diagram from a physical model requires 1)perform-
ing a complete analysis of physical phenomena into play
(to determine which elementary blocks to use in the dia-
gram), and 2)determining how data flows between blocks
(to connect elementary blocks together). On the other
hand, Modelica tools considerably ease physical model
construction by automatically analysing the overall struc-
ture of physical models described in a much more user-
friendly way: familiar physical components (e.g. springs,
transistors, hydraulic pumps, etc.) can be used to build
models. Translation from this high-level description to
low-level data flow is performed automatically in a quite
satisfactory way, which frees users from a painful work.
Moreover, even slight modifications of physical models
may require considerable changes in corresponding block-
diagram descriptions; this is not the case with a high-level
description.

In its initial version, Modelicac essentially focussed on
the “continuous part” of hybrid models. This mainly com-
prises differential equations and event-trigerring mecha-
nisms (e.g. , “when equations”). Difference equations
were however also be described, although with many re-
strictions, because the idea was to discourage users from
writing discrete equations in Modelica. Indeed, Scicos is
primarily a hybrid modelling environment and, in particu-
lar, it handles discrete, event-trigered changes, much more
robustly than Modelica because of its synchronous roots.

In the course of the SimPA project, the Scicos editor has
been extended to enable graphical handling of Modelica,
native Scicos, as well as hybrid Modelica-Scicos blocks in
the same design (see Figure 1).

This combination of synchronous and Modelica-based
features offered enough modelling expressiveness to en-
able useful libraries to be developed. Coselica is one
of these libraries, and is one of the ingredients of our

Translating Simulink Models to Modelica using the {\NSP} Platform

DOI Proceedings of the 13th International Modelica Conference 843
10.3384/ecp19157841 March 4-6, 2019, Regensburg, Germany

Mux

MScope

Q

Q

D.

u1<=u2
MScope

Continuous
Fix Delay

Figure 1. A mixed Scicos-Modelica model as displayed by Sci-
cos’s editor

Simulink to Modelica translation chain.
In 2005, the funded project SimPA2 started, having as

objective the enhancement of the original Modelicac com-
piler. Among others, support of multiple-file Modelica
libraries and interactive initialization of complex hybrid
systems have been added.

As a result, the new Modelicac compiler was able to
compete with industrial compilers (it even ranked number
two in terms of performance on an industrial thermohy-
draulic benchmark proposed by EDF in 2009).

Today, the Scicos toolbox with its Modelica-compatible
extension is freely available under several environments
including Scilab, ScicosLab and Nsp.

2.4 Simport, a Simulink Model Importer for
Scicos

2.4.1 Capabilities

The Simport (Chancelier et al., 2016, 2015) development
started in 2007 at Inria: it has now turned into a compre-
hensive Simulink import assistant for the Scicos and Altair
Activate block system modelers: Simport reads a textual
representation of a Simulink model (MDL or SLX file for-
mat) and generates the corresponding equivalent Scicos
model.

Based on compilation techniques, Simport is a fast and
reliable translator from Simulink models to Scicos or Al-
tair Activate models.

Simport is a free software distributed with Nsp Sci-
cos (Scicos) and Activate (Altair Activate).

2.4.2 Capabilities

Simport aims at preserving the original Simulink model
semantics: simport performs passes of semantic analysis
to explicit the Simulink model meaning and translate it
into an equivalent Scicos model.

In any case, the resulting Scicos model preserves the

model hierarchy and diagram topology, and the visual as-
pects of the original model.

Simport also supports both the MDL and SLX formats
as input for Simulink models.

2.4.3 Simulink block translation

Simport maps Simulink bloks to Scicos blocks using the
block translation library. More precisely, each Simulink
source block is translated either into

• a single basic block, if there exists an equivalent Sci-
cos block,

• a super-block that implements the Simulink block via
a combination of Scicos blocks,

• an empty super-block for user completion, if the
Simulink block translation is unsupported

The Simport translation library covers a large subset of
Simulink basic blocks, in particular the so-called action
blocks.

2.4.4 Simport generated code

The Simport back-end translates explicit semantics of
Simulink models to concrete code of the Scicos host lan-
guage (Nsp or Oml). In addition, the concrete code pro-
vides the definition of simulation parameters and embeds
various outputs to the host language (e.g. Matlab support-
ing M-files).

2.4.5 Example

Given the Simulink model described in Figure 2 and saved
as file model.mdl.

Figure 2. Segway controller as a Simulink model

We translate it into Nsp using the command
simport -tl nsp model.mdl. We now get file
model.nsp whose execution in Nsp produce build the
Scicos model displayed in Figure 3.

2.4.6 Limitations

Simport indeed supports a large subset of Simulink basic
blocks, but exotic blocks from specific Simulink libraries
cannot be translated since they have no Scicos equivalent;

Translating Simulink Models to Modelica using the {\NSP} Platform

844 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157841

1
Mm

PhiUndX2

[-11..

PhiUndX1

[-11..

Phi2

[-10..

Phi1

[-12..

Mux5

Mux
Mux4

MuxMux3

Mux
Mux2

Mux

Msw

control

M_Port
switch

C
o
n
tro

lle
rS
e
le
c
t

3

4d
X

3X
2d
P
h
i

1P
h
i

Figure 3. Segway controller as a Scicos model

in such a case, Simport generates an empty Scicos super
block to incorporate the mandatory hand written Simulink
block translation.

3 Translation from Simulink to Mod-
elica

The Translation from Simulink to Modelica is imple-
mented as a two step process. First, as already described,
using Simport, we translate a Simulink model into a Sci-
cos model. Second, using Nsp scripts we convert the Sci-
cos model into an hybrid Modelica-Scicos model. Conver-
sion is obtained by 1) translation of Scicos blocks to Mod-
elica blocks, and 2) addition in the model of converters
along the links which connect Scicos Blocks to Modelica-
Scicos blocks. The hybrid Modelica-Scicos models can be
edited and simulated in Scicos editor; thus, even if during
the Translation process we cannot obtain a full Modelica
model1, the resulting hybrid model may still be used for
simulation because users have the possibility to complete
untranslated parts thanks to the Scicos editor.

Figure 4 is a Scicos model simulating the Lorenz dy-
namical system. The same model after conversion to Mod-
elica is shown in Figure 5. As it can be seen in Figure 5 the
Scopes are not translated to Modelica blocks and convert-
ers from Modelica signals to Scicos signals are inserted in
the links connected to the entry ports of scopes.

When converters are available, Scicos blocks are re-
placed by Modelica blocks as a one-to-one process. We
have developed a specific library of Modelica blocks
to ease the replacement. For example Scicos integra-
tor blocks are replaced by MB_Integral Modelica
blocks. For some translation we rely on the already
available library Coselica (Reusch), but for many blocks
a direct Coselica translation fails because of size lim-

1In case some blocks are unknown to Simport. Indeed, Simulink
blocks are black boxes, so Simport cannot translate blocks or combina-
tions of blocks that are not already described in its translation tables.

Figure 4. A Scicos model as displayed by Scicos’s editor

Figure 5. Scicos model after Modelica conversion as displayed
by Scicos’s editor

Translating Simulink Models to Modelica using the {\NSP} Platform

DOI Proceedings of the 13th International Modelica Conference 845
10.3384/ecp19157841 March 4-6, 2019, Regensburg, Germany

itations of Coselica blocks. For example the Coselica
Integrator is limited to 1-dimensional signals while
the Scicos INTEGRAL_m block may have n-dimensional
entries. One way to encompass that difficulty is to gen-
erate super blocks for enabling n-dimensional block oper-
ations from 1-dimensional basic blocks (See Figure 7 for
an example with adder). We have chosen this approach
for the converter blocks (See Figure 6) as explained be-
low, but we also implemented specific blocks to deal with
n-dimensional signals. For example, the MB_Integral
block is a special purpose Modelica-Scicos block which
produces at compile time a new Modelica model for each
instance of the block in a specific model. As an example,
in Figure 5 each MB_Integral Modelica block inte-
grate a 4-dimensional variable without saturation and thus
the generated code will be given by

model integral2
parameter Real xinit[4,1] = {{ 20 },{ 19.9900 },{

20.0100 },{ 20.0110 }};
RealInput u[4];
RealOutput y[4](signal(start=xinit[:,1]));

equation
der(y[1].signal) = u[1].signal;
der(y[2].signal) = u[2].signal;
der(y[3].signal) = u[3].signal;
der(y[4].signal) = u[4].signal;

end integral2;

Most of the one-to-one block conversion follows the same
mechanism. Building a library of Modelica-Scicos blocks
is an on-going work and for the time being it only contains
about 20 blocks. Indeed, this Library can also be used to
directly build models in the Scicos editor, it complements
the set of Modelica block available in Scicos giving access
to Modelica counterpart of known Scicos blocks.

The one-to-one block conversion is in fact also a multi-
step process. We proceed as follows.

First block-to-block conversions are performed but con-
verted Modelica-Scicos blocs are not fully usable because
they lack local information (for example the final matrix
sizes are unknown at first step). Notice that this first step
requires Nsp evaluation of block parameters since they
may be used to infer types and dimensions. For example
the sizes of a Gain block parameter gives the input/output
port sizes of the block, except when the parameter size if
1. But in order to obtain the sizes of a given Gain block
parameter we need to evaluate Nsp expressions, since pa-
rameters can be given through context (produced by Sim-
port from Matlab companion files).

In a second step, links are modified and converters are
inserted where appropriate. Notice however that convert-
ers sizes are also unknown.

In a third step, sizes and types are obtained by call-
ing the Scicos model compiler. However, since the Sci-
cos model compiler only infers types and dimension for
Scicos blocks this step requires a hidden conversion of the
hybrid Modelica-Scicos model into a pure Scicos model
before trying to infer sizes and types. When sizes and
types are inferred for a Modelica-Scicos block, its internal
Modelica code can be generated. The code is thus consis-
tent with respect to sizes, types and parameters.

Figure 6. Scicos internal model of a 4-dimensional Modelica to
Scicos converter

1

1

2

3

4

5

1

1

+

1

1

-1

1

+

1

-1

1

1

+

1

1

-1

1

+

1

-1

Figure 7. Scicos internal model of a generated 5-dimensional
addition block

The fact that models can be manipulated and gener-
ated programmatically is also used in the conversion pro-
cess. We illustrate this point by describing more precisely
MB_MO2Sn the block used to convert Modelica signals
to Scicos Signals. The communication between Scicos
and Modelica can only be realized using scalar links (for
historical reasons, not because of limitations of any of
the languages), thus to have converters on links which
transfer n-dimensional signals we have implemented a
block named MB_MO2Sn as a super-block. That is, the
MB_MO2Sn block contains a model and this model is gen-
erated dynamically when the link signal size is known.
We give in Figure 6 the internal model of a 4-dimensional
Modelica to Scicos converter as used in the model dis-
played in Figure 5. It contains four 1-dimensional Mod-
elica to Scicos converters. To illustrate the possibility to
generate models by program, we give in Figure 7 an exam-
ple of a model which performs a 5-dimensional addition
of Modelica signals. Implementing a n-dimensional adder
block could be implemented that way, even if we chose to
directly embed the Modelica n-dimensional adder block in
a unique block.

As already pointed above, during the conversion from
Scicos models to Modelica-Scicos models, inferring types

Translating Simulink Models to Modelica using the {\NSP} Platform

846 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157841

~

2

R= 0.2

-
+

C
=

 0
.1

L
=

 0
.0

0
0

1

A

V

MScope

Figure 8. A mixed Scicos-Modelica model of a RLC circuit

and sizes is of utmost importance and it partially relies on
Nsp block parameter and context expression evaluation.
This is mostly why the conversion cannot completely be
performed by Simport. Indeed, inferring types and sizes
could have been implemented directly in Simport, if eval-
uation of Matlab expression were not required in the pro-
cess.

3.1 Translation from Modelica to C
Modelica source code is translated to C thanks to the Mod-
elicac compiler. The idea is as follow. Once the model is
being run by the user, Scicos gathers all the blocks whose
execution semantics is described by means of Modelica
code into a unique Modelica program whose source code
is given to Modelicac. This program is actually a high-
level description of the Modelica part of the model. The
following listing illustrates what such a description looks
like. It contains the Modelica description generated by
Scicos for the model of Figure 8:
model RLC_circuit_test_im

parameter Real VA_VsourceAC_(fixed=false) =
2.000000e+00 "VA_VsourceAC_";

parameter Real f_VsourceAC_(fixed=false) =
1.000000e+00 "f_VsourceAC_";

parameter Real R_Resistor_(fixed=false) =
2.000000e-01 "R_Resistor_";

parameter Real C_Capacitor_(fixed=false) =
1.000000e-01 "C_Capacitor_";

parameter Real v_Capacitor_(fixed=false) =
0.000000e+00 "v_Capacitor_";

parameter Real L_Inductor_(fixed=false) =
1.000000e-04 "L_Inductor_";

VsourceAC VsourceAC_(VA=VA_VsourceAC_,
f=f_VsourceAC_);

Resistor Resistor_(R=R_Resistor_);
Capacitor Capacitor_(C=C_Capacitor_,

v(start=v_Capacitor_));
Inductor Inductor_(L=L_Inductor_);
CurrentSensor CurrentSensor_;
Ground Ground_;
VoltageSensor VoltageSensor_;
OutPutPort OutPutPort_;
OutPutPort OutPutPort_1;

equation
connect (CurrentSensor_.n,VoltageSensor_.n);
connect (Capacitor_.p,VoltageSensor_.n);
connect (Inductor_.p,VoltageSensor_.n);
connect (Ground_.p,VsourceAC_.n);
connect (CurrentSensor_.p,VsourceAC_.n);
connect (VoltageSensor_.p,Resistor_.p);
connect (Inductor_.n,Resistor_.p);
connect (Capacitor_.n,Resistor_.p);
connect (Resistor_.n,VsourceAC_.p);

CurrentSensor_.i = OutPutPort_.vi;
VoltageSensor_.v = OutPutPort_1.vi;

end RLC_circuit_test_im;

Modelica programs generated by Scicos contain five (pos-
sibly empty) sections declaring respectively:

• the parameters of the model,

• the components appearing in the model (i.e. Model-
ica “blocks” used to build the model),

• the connectors to and from the Scicos world (de-
clared as InPutPorts and OutPutPorts),

• the connection equations (corresponding to links
between components of the model, introduced by
means of the connect keyword), and

• the correspondence between some Scicos ports and
some Modelica connectors used to exchange infor-
mation between both worlds (introduced by means
of an equal sign).

From such Modelica programs Modelicac generates na-
tive, C-based Scicos blocks. It starts by resolving the
names appearing in the Modelica description and instanti-
ates required classes (found in libraries) to form the set of
all equations governing the dynamics of the Modelica part
of the model. It then flattens the structure of the Modelica
model, simplifies equations, and generates C code. The
following listing is the result of calling Modelicac with
previous Modelica code:
/* Scicos block’s entry point */

void RLC_circuit_test_im(
scicos_block *block,
int flag)

{
int *ipar = GetIparPtrs(block);
double *rpar = GetRparPtrs(block);
double *z = GetDstate(block);
double *x = GetState(block);
double *xd = GetDerState(block);
double *res = GetResState(block);
double **y = GetOutPtrs(block);
double **u = GetInPtrs(block);
double **work= GetPtrWorkPtrs(block);
double *g = GetGPtrs(block);
double *alpha= NULL;
double *beta = NULL;
int *jroot = GetJrootPtrs(block);
int *mode = GetModePtrs(block);
int nevprt = GetNevIn(block);
int *xprop = GetXpropPtrs(block);

/* Intermediate variables */
double v0;

if (flag == 0) {
res[0] =

(x[1]+x[0]*
(*GetRealOparPtrs(block,3))+
sin(6.28318530718*

GetScicosTime(block)*
(*GetRealOparPtrs(block,2)))*

(*GetRealOparPtrs(block,1)))*(1.0);
res[1] = x[2]+ xd[1]*(*GetRealOparPtrs(block,4))-x[0];
res[2] = xd[2]*(*GetRealOparPtrs(block,6))-x[1];

} else if (flag == 1) {
if (!areModesFixed(block)) {

y[0][0] = x[0]; /* OutPutPort_.vo */
y[1][0] = -x[1]; /* OutPutPort_1.vo */

} else {
y[0][0] = x[0]; /* OutPutPort_.vo */
y[1][0] = -x[1]; /* OutPutPort_1.vo */

}
} else if (flag == 2 && nevprt < 0) {
} else if (flag == 4) {

Translating Simulink Models to Modelica using the {\NSP} Platform

DOI Proceedings of the 13th International Modelica Conference 847
10.3384/ecp19157841 March 4-6, 2019, Regensburg, Germany

x[0] = 0.0; /* Resistor_.i */
x[1] = (*GetRealOparPtrs(block,5)); /* Capacitor_.v */
x[2] = 0.0; /* Inductor_.i */
if (GetNopar(block)<6){

SetBlockError(block,-21);
return;

}
SetAjac(block,1);

} else if (flag == 5) {
} else if (flag == 6) {
} else if (flag == 7) {

xprop[0] = -1; /* Resistor_.i (algebraic) */
xprop[1] = 1; /* Capacitor_.v (state) */
xprop[2] = 1; /* Inductor_.i (state) */

} else if (flag == 9) {
} else if (flag == 10) {

alpha=GetAlphaPt(block);
beta =GetBetaPt(block);
res[0] = (*GetRealOparPtrs(block,3))*(1.0)*alpha[0];
res[1] = -alpha[0];
res[3] = (1.0)*alpha[1];
res[4] = (*GetRealOparPtrs(block,4))*beta[1];
v0 = -alpha[1];
res[5] = v0;
res[7] = alpha[2];
res[8] = (*GetRealOparPtrs(block,6))*beta[2];
res[9] = alpha[0];
res[12] = v0;

}

return;
}

Finally, a new native Scicos block running the gener-
ated C code is created by Scicos and connected to the Sci-
cos part of the original model in place of the Modelica
blocks. Scicos then performs the simulation of the result-
ing model.

4 Working with Acausal Models
Although supported Simulink models are limited to ex-
plicit input-output blocks, one should not conclude that
our tool chain only deals with “causal” modeling. In-
deed, Scicos provides a powerful editor (written in Nsp’s
language) by means of which imported Simulink mod-
els can be graphically connected to Modelica “acausal”
models. This allows, for instance, control models writ-
ten in Simulink to be imported in Nsp and connected
to Modelica models (handled by Modelicac). Complete
models featuring both “causal” and “acausal” aspects can
then be simulated and possibly exported as Modelica
code (Figure 1 and Figure 8 show examples of Model-
ica “acausal” models with control and displays modeled
as block-diagrams).

5 Conclusion and Future Work
In this paper we have shown that NSP can be used as a
powerful environment to translate, possibly edit, and sim-
ulate some Simulink models. The tool chain comprises
two external tools, namely Simport and Modelicac, and
the Scicos toolbox with its hybrid Scicos-Modelica library
Coselica.

This addition to NSP allows users to simulate many
Simulink models with few changes, if any. Moreover,
original models can be edited after translation, and pos-
sibly connected to native Scicos models, or to Modelica
models. This opens many interesting perpectives for users
willing to run heterogeneous models at a very high level,
using the graphical editor provided by Scicos as the sole
GUI.

Several enhancements can be made to this preliminary
work. The most significant enhancement would probably
consists in enriching the Scicos to Modelica translation
table, to allow more Simulink models to be translated au-
tomatically.

6 Acknowledgements
We would like to thank Ramine Nikoukhah from Altair for
his considerable help in the design and implementation of
the tools we used, in particular Scicos of course, but also
Modelicac and Simport.

References
Altair Activate. Multi-Disciplinary System Simulation.

URL https://solidthinking.com/product/
activate.

Stephen Campbell, Jean-Philippe Chancelier, and Ramine
Nikoukhah. Modeling and Simulation in Scilab/Scicos.
Springer, 2006. ISBN: 978-0-387-27802-5.

Jean-Philippe Chancelier, Fraņois Delebecque, Clément Fran-
chini, Ramine Nikoukhah, and Pierre Weis. Simport: A
Simulink Model Importer for Scicos. In The 3rd International
Workshop on Simulation at the System Level, École Normale
Supérieure de Cachan, France, 2015.

Jean-Philippe Chancelier, Fraņois Delebecque, Clément Fran-
chini, Ramine Nikoukhah, and Pierre Weis. Simport. In
ISC’2016 Bucharest, 2016.

Mike Dempsey. Automatic translation of simulink models into
modelica using simelica and the advancedblocks library. In
Proceedings of the 3rd International Modelica Conference,
Linköping, Sweden, pages 115–124, 2003.

Modelica. The modelica language specification. URL https:
//modelica.org/documents.

Ramine Nikoukhah and Sébastien Furic. Towards a full inte-
gration of modelica models in the scicos environment. In
Proceedings of the 7th International Modelica Conference,
Como, Italy, pages 641–645, 2009.

Ramine Nikoukhah and Masoud Najafi. Initialization of mod-
elica models in scicos. In Proceedings of the 6th Interna-
tional Modelica Conference, Bielefeld, Germany, pages 37–
46, 2008.

Nsp. A Numerical computing environment (GPL). URL
http://cermics.enpc.fr/~jpc/nsp-tiddly/
mine.html.

Dirk Reusch. Coselica toolbox für scicoslab. URL
http://www.kybdr.de/software#coselica_
toolbox_fuer_scicoslab.

Scicos. Block diagram modeler/simulator. URL http://
www.scicos.org/.

ScilabGtk. Gtk+ version of Scilab. URL http://www.
scilabgtk.org.

Simulink. System modeling and simulation. URL https://
www.mathworks.com/products/simulink.html.

Translating Simulink Models to Modelica using the {\NSP} Platform

848 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157841

DOI Proceedings of the 13th International Modelica Conference 849
10.3384/ecp19157 March 4-6, 2019, Regensburg, Germany

.

SPONSORS & EXHIBITORS

Bronze Sponsors & Exhibitors

Silver Sponsors & Exhibitors

.

siemens.com/simcent

ersiemens.com/simcent

Electrical Engineering and Information Technology
practical, future-oriented and versatile

www.oth-regensburg.de

Gold Sponsors & Exhibitors

.

Download a free trial at
altair.com/Activate

An Open Integration
Platform for

Multi-Disciplinary
System Simulation

Download a free trial at

tAn Open In
orm fftPla

ulti-Disciplinary M
em SimulatysS

Download a free trial at

tion aegr
or orm f

ulti-Disciplinary
tionem Simula

SPICE

Download a free trial at
altair.com/Activate

Download a free trial at
altair.com/Activate

Platin Sponsors & Exhibitors

	Preface
	Welcome
	Modelica News
	Keynote: Modelica and virtual education
	Keynote: Simulation Guided Design for New Automotive Applications

	Organizing Committees
	Conference Chair
	Conference Board
	Program Committee
	Organizing Committee

	Contents
	Index of Authors
	Session 1A: Buildings 1
	A virtual test-bed for building Model Predictive Control developments
	Characterization of Linear Reduced Order Building Models Using Bode Plots
	BIM2Modelica – An open source toolchain for generating and simulating thermal multi-zone building models by using structured data from BIM models

	Session 1B: Power & Energy 1
	Open Source PhotoVoltaics Library for Systemic Investigations
	Python-Modelica Framework for Automated Simulation and Optimization
	Demand oriented Modelling of coupled Energy Grids

	Session 1C: FMI 1
	OMSimulator – Integrated FMI and TLM-based Co-simulation with Composite Model Editing and SSP
	FMU-proxy: A Framework for Distributed Access to Functional Mock-up Units
	Standardized Integration of Real-Time and Non-Real-Time Systems: The Distributed Co-Simulation Protocol

	Session 1D: Automotive 1
	Anti-Roll Bar Model for NVH and Vehicle Dynamics Analyses
	System level heat pump model for investigations into thermal management of electric vehicles at low temperatures
	Diesel Cooling System Modeling for Electrification Potential

	Session 2A: Buildings 2
	Dynamic Simulation of Residential Buildings Supporting the Development of Flexible Control in District Heating Systems
	Integrated Modelica Model and Model Predictive Control of a Terraced House Using IDEAS
	An Extended Luenberger Observer for HVAC Application using FMI

	Session 2B: Power & Energy 2
	A Modelica-Based Framework for District Heating Grid Simulation
	Optimization of District Heating Systems: European Energy Exchange Price-Driven Control Strategy for Optimal Operation of Heating Plants
	Automated model generation and simplification for district heating and cooling networks

	Session 2C: FMI 2
	Non Linear Dimension Reduction of Dynamic Model Output
	Relative Consistency and Robust Stability Measures for Sequential Co-simulation
	Energy balance based Verification for Model Based Development

	Session 2D: Electrical Power 1
	Parametrization Of A Simplified Physical Battery Model
	Modeling of transformer-rectifier sets for the energization of electrostatic precipitators using Modelica
	A Model Predictive Control Application for a Constrained Fast Charge of Lithium-ion Batteries

	Session 3A: HVAC
	Modeling Heat Pump Recharge of a Personal Conditioning System with Latent Heat Storage
	Real-time optimization of intermediate temperature for a cascade heat pump via extreme seeking
	Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions
	Coupled Simulation of a Room Air-conditioner with CFD Models for Indoor Environment

	Session 3B: Language
	Modelica language extensions for practical non-monotonic modelling: on the need for selective model extension
	MetaModelica – A Symbolic-Numeric Modelica Language and Comparison to Julia
	Controller Design for a Magnetic Levitation Kit using OpenModelica's Integration with the Julia Language
	Towards a High-Performance Modelica Compiler

	Session 3C: Mechanics & Transport
	Overview on the DLR RailwayDynamics Library
	Using Baumgarte's Method for Index Reduction in Modelica
	Modeling of Rotating Shaft with Partial Rubbing
	Aspects of Train Systems Simulation

	Session 3D: New Applications
	Modeling Supply and Demand in Modelica
	Modelica Modelling of an Ammonia Stripper
	Algorithms for Component-Based 3D Modeling
	Model visualization for e-learning, Kidney simulator for medical students

	Session 4A: Power & Energy 3
	Platform for Microgrid Design and Operation
	Influence of Excess Power Utilization in Power-to-Heat Units on an Integrated Energy System with 100 % Renewables
	Model-Based Controls Development and Implementation for a Hydroelectric Power System

	Session 4B: Automotive 2
	Fault Insertion for Controller Calibration in a Range of Engine Models
	Enhanced Motion Control of a Self-Driving Vehicle Using Modelica, FMI and ROS
	Systematic Simulation of Fault Behavior by Analysis of Vehicle Dynamics

	Session 4C: Aerospace
	Modeling and Simulation of Dual Redundant Electro-Hydrostatic Actuation System with Special Focus on model architecting and multidisciplinary effects
	A Modelica-based environment for the simulation of hybrid-electric propulsion systems
	Advances in Flight Dynamics Modeling and Flight Control Design by Using the DLR Flight Visualization and Flight Instruments Libraries

	Session 4D: Numerical Methods
	DAE Solvers for Large-Scale Hybrid Models
	Adaptive Step Size Control for Hybrid CT Simulation without Rollback
	Steady State Initialization of Vapor Compression Cycles Using the Homotopy Operator

	Session 5A: Buildings 3
	Co-Simulation Through Exchange of Time-Series Data Applied to an Energy System Model and Detailed Ground Heat Exchanger Model
	Greenhouses: A Modelica Library for the Simulation of Greenhouse Climate and Energy Systems
	Modeling of Low Temperature Thermal Networks Using Historical Building Data from District Energy Systems

	Session 5B: Power & Energy 4
	Robust Calibration of Complex ThermosysPro Models using Data Assimilation Techniques: Application on the Secondary System of a Pressurized Water Reactor
	Coupling Power System Dynamics and Building Dynamics to Enabling Building-to-Grid Integration
	Modelling of the Central Heating Station within a District Heating System with Variable Temperatures

	Session 5C: Thermodynamic 1
	Towards Hard Real-Time Simulation of Complex Fluid Networks
	Thermodynamic Property and Fluid Modeling with Modern Programming Language Constructs
	Simulative Potential Analysis of Combined Waste Heat Refrigeration using Ammonia in an Intercity Bus on dynamic route

	Session 5D: Electrical Power 2
	Modeling of PMU-Based Automatic Re-synchronization Controls for DER Generators in Power Distribution Networks using Modelica and the OpenIPSL
	A Fundamental Time-Domain and Linearized Eigenvalue Analysis of Coalesced Power Transmission and Unbalanced Distribution Grids using Modelica and the OpenIPSL
	Towards Pan-European Power Grid Modelling in Modelica: Design Principles and a Prototype for a Reference Power System Library

	Session 6A: Buildings 4
	The WaterHub Modules: Material and Energy Flow Analysis of Domestic Hot Water Systems
	Comparison of a usual heat-transfer-station with a hydraulic modified version under the aspect of exergy saving
	Evaluating the Resilience of Energy Supply Systems at the Example of a Single Family Dwelling Heating System

	Session 6B: Thermodynamic 2
	Application of a Real Gas Model by Van-der-Waals for a Hydrogen Tank Filling Process
	Modeling of the Flow Comparator Prototype as New Primary Standard for High Pressure Natural Gas Flow Metering
	Transient modelling and simulation of a double-stage Organic Rankine Cycle

	Session 6C: Tools
	A New OpenModelica Compiler High Performance Frontend
	OMJulia: An OpenModelica API for Julia-Modelica Interaction
	“hello, (Modelica) world”: Automated documentation of complex simulation models exemplified by expansion valves

	Session 6D: Automotive 3
	Integration and Analysis of EPAS and Chassis System in FMI-based co-simulation
	Virtual Proving Ground Testing: Deploying Dymola and Modelica to recreate Full Vehicle Proving Ground Testing Procedures
	Hierarchical Coupling Approach Utilizing Multi-Objective Optimization for Non-Iterative Co-Simulation

	Poster Session
	Flow Network based Diagnostics for Incorrect Synchronous Models
	Study on Efficient Development of 1D CAE Models of Mechano-Electrical Products
	Advanced Modeling of Electric Components in Integrated Energy Systems with the TransiEnt Library
	Robust and accurate co-simulation master algorithms applied to FMI slaves with discontinuous signals using FMI 2.0 features
	Development of a General-purpose Analytical Tool for Evaluating Dynamic Characteristics of Thermal Energy Systems
	Daccosim NG: co-simulation made simpler and faster
	Dynamic Parameter Sensitivities: Summary of Computation Methods for Continuous-time Modelica Models
	Frequency Response Estimation Method for Modelica Model and Frequency Estimation Toolbox Implementation
	Modelica Models for the Control Evaluations of Chilled Water System with Waterside Economizer
	Predicting the Vehicle Performance at an Early Stage of Development Process via Suspension Bushing Design Tool
	Modelica-Based Modeling and Application Framework on the Hybrid Electric Vehicles
	Implementation of a Non-Discretized Multiphysics PEM Electrolyzer Model in Modelica
	Translating Simulink Models to Modelica using the {\NSP} Platform

