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The 1st Japanese Modelica Conference, which takes place in Tokyo, is the first of hopefully many 

more to come. With this effort, we hope to create an arena in Japan and Asia for sharing knowledge 

and learning about the latest scientific and industrial progress related to Modelica and FMI (Functional 

Mockup Interface). Ultimately we also hope to see enough momentum to motivate an International 

Modelica Conference organized in the region. We are surprised but very glad to see the overwhelming 

interest to both join and contribute to the conference. Instead of originally planned 8 paper 

presentations and one key-note during one day, we have had to extend the scope and are now proud to 

present a conference with: 

• 2 Keynote speeches  

• 18 paper presentations 

• A fully booked exhibition area featuring 8 exhibitors 

• Concurrent interpretation between Japanese and English 

• Great venue location in the heart of Tokyo at the Swedish Embassy 

• A conference mingle dinner at the Ambassador’s residence  

According to Modelica Association standards, all papers are peer-reviewed and will be freely available 

for download. 

We want to acknowledge the support we received from the conference board and program committee. 

Special thanks to our colleagues at Modelon K.K. for taking care of all the practical matters, and to the 

Swedish Embassy in Tokyo for hosting the event. Support from the conference sponsors is gratefully 

acknowledged. Last but not least, thanks to all authors, keynote speakers, and presenters for their 

contributions to this conference. 

We wish all participants an enjoyable and inspiring conference! 

Tokyo and Susono, April 30, 
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Keynotes 

 

 

Yasuhiro Harada 

Mazda 

What should Model Based Development aim 

for? 

Vehicle systems have become vast and 

complex to attain a high level of functionality. 

It is expected to evolve at an even more 

accelerated rate. Model Based Development 

(MBD) has become essential to accomplish 

such a high level of manufacturing process in a 

short term. I will show what has been targeted 

and realized in MBD to date, by giving some 

examples of past developments, and will look 

into an ideal manufacturing process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scott A. Bortoff 

Mitsubishi Electric Research Laboratory 

Using Modelica Effectively in Industrial 

Research and Development 

In this talk we will highlight some uses of 

Modelica in the context of industrial research 

and development. Beyond time-domain 

simulation, these uses include control system 

design and realization, computation of open-

loop optimal control that is useful to establish 

fundamental limitations of performance, 

system inversion which is useful to compute 

unmeasured system inputs in real-time, state 

estimation and data assimilation.   

We also want to point out some of the 

challenges in using large-scale models 

specifically in the context of product 

development.  These include model calibration, 

which is often a chicken-and-egg problem, 

model reduction, incorporation of tabular data, 

and limited scalability of existing 

solvers.  These highlight some interesting 

research opportunities for the academic 

community and are key enablers to even more 

effective use of Modelica in industry. 

We conclude with some advice for new users 

and some personal experiences with 

introducing the technology into use at large 

companies.   
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Dynamics Modeling of the Arc Spring 
for Powertrain NVH Prediction 

Yoshihiro Yamakaji1 
1Exedy Corporation, Japan, y-yamakaji@exedy.com 

 
 
 
 

Abstract 
The key value of Model Based Development is to 
realize capability of quick performance design and 
simulation at the early phase of development. In this 
paper, we modeled an arc spring type torsional damper, 
which has an impact on the torsional vibration 
characteristics of powertrain in a vehicle. To predict 
non-linearity of the arc springs, we took a discrete 
modeling approach using MODELICA and compared 
its simulation results with the physical test results. We 
also developed a user-friendly interface with FMIE 
(Modelon FMI Add-in for Excel) so that a non-expert 
of physical modeling can run performance design 
easily and precisely on their own. 
Keywords:    Powertrain, Arc Spring, Modelica, FMI, 
Nonlinear Vibration 

1 Introduction 
These days, as a car gets more complex than ever, 
Automotive Original Equipment Manufacturer (OEM, 
hereafter) are asking Parts Suppliers to deliver   
performance proposals at the very early phase of 
development. To do that, it is imperative for Parts 
Suppliers such as EXEDY to realize performance 
design with accurate and quick performance prediction. 

Recently, Model Based Development (MBD, 
hereafter) has widely been spread out in Automotive 
Industry. MBD is an approach to model and simulate 
systems behaviors taking multiple physical domains 
into account even before starting the detailed design. 
To meet the OEM requirements described above, we 
applied MBD to the development of torsional damper 
products. The problem here is how to model the arc 
spring type torsional damper with a high non-linear 
characteristic. Therefore, we focus on modeling and 
validation of the arc spring component in a torsional 
damper. 

In EXEDY, we chose some MBD tools capable of 
handling physical modeling, such as Dymola, for 
Prediction and Validation phases in V-process shown 
in Fig. 1. To accelerate its deployment, it is important 
to build simulation models for better performance and 
accuracy, and to establish workflow to utilize MBD 
tools efficiently. 

The paper comprises following chapters. First, we 
explain the basic structure of the torsional damper. 
Second, we focus on the arc spring and illustrate its 
physical models. Third, we show Modelica 
implementation and the comparison with the physical 
tests. Then we present our interface program on top of 
Microsoft EXCEL by using FMIE which enables a 
non-expert of physical modeling to work on the 
performance design of arc springs based on Modelica.  

 
Figure 1. Model-Based-Development Process 

2 Description of Target Systems 

2.1 Functions of Launch Devices 
Launch devices of a car must provide following four 
functionalities. 
1. Transfer and cut off power 
2. Smooth connection 
3. Noise-proof and vibration-proof 
4. Fuse of drivetrain 

In this paper we focus on a torsional damper which 
plays a key role for the functionality 3 above, noise-
proof and vibration-proof.  

Torsional damper mitigates the torque fluctuation 
from a motor such as ICE (Internal Combustion 
Engine) and delivers only smoothed driving torque to 
downstream transmission (T/M, hereafter) (Fig. 2). It 
reduces the torsional vibration of drivetrain which 
leads to the elimination of gear noise and booming 
noise. Adoption of recent advanced environmental 
technology (such as fewer cylinders or turbo chargers) 
causes more torque fluctuation, which requires the 
torsional damper to be more effective. 
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Figure 2. Function of Torsional Damper 

2.2 Torsional Damper 
Torsional dampers typically consist of multiple straight 
springs or arc springs. When torque input comes in 
from ICE side, the springs absorb and release torques 
repeatedly. Through this mechanism, torque fluctuation 
is rectified to reduce the drivetrain torsional vibration 
after T/M. 

To optimize drivetrain torsional vibration, it is an 
effective means to optimize the eigenvalues of 
torsional vibration of drivetrain. Those eigenvalues are 
dominated by torsional stiffness of torsional dampers. 
By setting eigenvalues lower than the driving range 
(for instance, for Automatic Transmission, under the 
lock-up lower-limit rotation), silence characteristics 
during driving is assured (Fig. 3). 

However, reducing torsional damper stiffness leads 
to a constraint on space, because torsional angle range 
has to be set wider. Also, there is a trade-off by 
excessive low stiffness, that is, for instance, low-
frequency vibration on the vehicle. Therefore, it is 
necessary to determine design specifications optimally 
to satisfy all target performances from OEM. 

 
Figure 3. Powertrain Torsional Vibration Mitigation by 
Torsional Damper Stiffness Reduction 

2.3 Characteristics of Arc Springs 
Arc springs, which are included in the torsional damper, 
have non-linear damping characteristics. Fig. 4 shows 
the torque fluctuation against relative torsional angles 
when we apply certain amplitude of torque to the arc 

spring. We see by those figures that the hysteresis 
curve resembles a leaf, which means equivalent 
stiffness and damping coefficients dynamically change 
depending on rotational speed or input torque 
amplitude. It is necessary to develop a highly accurate 
and predictive model to virtually reproduce such 
hysteresis curves. 

 
Figure 4. Dynamic Characteristics of Arc Springs 
Torsional torque over the relative angle at 1000rpm and 
2000rpm on Component Level Test(Experimental data) 

3 Modeling Arc Springs 
To understand the measured characteristics (hysteresis 
curve) of arc springs, we use 𝑛𝐸𝐸𝐸 -number of linear 
spring elements 𝑘𝑛 and mass elements 𝑚𝑛 to discretize 
a continuous spring element (Fig. 5). Here, 𝑛  is the 
element number counted from the input torque side, 𝑘𝑛 
is the discretized stiffness which is the overall spring 
ratio multiplied by 𝑛𝐸𝐸𝐸, 𝑚𝑛 is the discretized spring 
mass which is the overall mass divided by 𝑛𝐸𝐸𝐸.  

We also define that an arc spring is stored in a 
cylindrical container in which the inner diameter is the 
same size as the arc of the spring’s outer diameter. One 
end of the arc spring is connected to the input element, 
and the end of the other side is coupled to the 
cylindrical container so as not to rotate relatively. The 
cylindrical container is connected to the output element. 
The angle limitation is not included in this modeling. 

Considering that a torsional damper is rotating at 
some speed, centrifugal force is applied onto the mass 
element which is consequently pressed against the 
cylindrical container. If a mass element rotates 
relatively to the cylindrical container because of the 
input torque to the arc spring, friction torque 𝑇𝐹𝑛  
would be caused not only by the centrifugal load but 
also by the reaction force of the arc spring.  
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Figure 5. Discretized Model for Arc Springs 

3.1 Mechanism Identification 
Figure 6 shows the relation of torque and the relative 
torsional angle between input and output elements and 
the estimated mechanism, when torque  𝑇𝑖𝑛 is added to 
a discretized model of a torsional damper. From the 
figures, we define the relation between 𝑇𝑖𝑛 and output 
torque 𝑇𝑜𝑜𝑜  in several steps.  
1. 𝑇𝑖𝑛 <  𝑇𝐹1: 

𝑇𝑖𝑛 is transmitted to the output side by the friction 
torque 𝑇𝐹1 from a mass element 𝑚1. Torque is 
transmitted in a state where mass element 𝑚1 and 
the output element are coupled, hence 𝑇𝑜𝑜𝑜 =  𝑇𝑖𝑛. 

2. 𝑇𝑖𝑛 >  𝑇𝐹1𝐴𝐴𝐴 𝑇𝑘1 <  𝑇𝐹2 
𝑇𝑖𝑛 is transmitted by 𝑇𝐹1 and friction torque  𝑇𝐹2 
of 𝑚2. Here 𝑚1 slips relative to the output 
element, but 𝑚2 is coupled to the output element. 
Input torque on  𝑚2 is torsional torque on the 
spring element 𝑘1; 𝑇𝑘1 = 𝑇𝑖𝑛 − 𝑇𝐹1;. At this step, 
the torsional stiffness is composed of 𝑘1. 

3. 𝑇𝑖𝑛 >  𝑇𝐹1 + 𝑇𝐹2  AND 𝑇𝑘2 <  𝑇𝐹3 
𝑚1 and 𝑚2 slip relatively to the output element, 
then 𝑘1 and  𝑘2 work.  At this step, the torsional 
stiffness is composed of the direct stiffness by 𝑘1 
and 𝑘2, so the slope represented the relation 
between torque and angle (= torsional torque) 
becomes smaller than condition 2. 

4. For other elements, elements gradually move 
relative to the output elements by the relation 
between input torque and friction torque. When 
input torque becomes larger than all mass 
elements’ friction torque, all spring elements will 
move. Every time the relative torsional direction is 
reversed caused by the fluctuation of the input 
torque, the motion is reset and restarts from the 
step 1. 

By the mechanism identified above, we consider 
that the measured characteristics (a leaf shape 
hysteresis curve) appear. 

Now we define the force equation based on the 
identified mechanism. The friction torque of one mass 
element is defined as the equation below: 

𝑇𝐹𝑛 = 𝜇𝐷 ∙ 𝑟𝐹 ∙ 𝐹𝑅𝑛, 𝑛 = 1, … ,𝑛𝐸𝐸𝐸  (1) 

Here,  𝑇𝐹𝑛  is friction torque associated with each 
mass element,  𝜇𝐷 is a dynamic friction coefficient, 𝑟𝐹 
is a friction radius, 𝐹𝑅𝑛  is a pressing force to the 
friction surface.  

The pressing force to the friction surface is 
distributed as shown in Fig. 7, and defined per the 
equations below: 

𝐹𝑅𝑛 = 𝐹𝐶𝑛 + 𝐹𝑆𝑆𝑛 + 𝐹𝑆𝑆(𝑛−1) 

Where: 

𝑛 = 2, … ,𝑛𝐸𝐸𝐸  

𝐹𝐶𝑛 = 𝑚𝑛 ∙ 𝑟𝐴 ∙ 𝜔2 

𝐹𝑆𝑆𝑛 = 𝐹𝑆𝑛 ∙ 𝑠𝑠𝑛 𝜑𝑆𝑛 

𝐹𝑆𝑛 = 𝑘𝑆𝑛 ∙ 𝑟𝐴 ∙ 𝑠𝑠𝑛 𝜃𝑆𝑛 

Also: 

𝐹𝑆𝑆1 =
𝑇𝑖𝑛
𝑟𝐴
𝑠𝑠𝑛 0 = 0 

(2) 

 

 
Figure 6. Momentary Behavior of Arc Springs 

 
Figure 7. Modeling of Pressing Force on Mass Element 
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3.2 Study of Discretization Level 
The arc spring is wound up dozens of times. Therefore 
it is important to determine the number of elements for 
discretization. If we take the actual number of turns for 
discretization, the simulation model will have several 
degrees of freedom only with an arc spring. This may 
lead to high accuracy but slower calculation speed. 
When the discretization number is too small, the 
problem comes into calculation accuracy and vice 
versa (because the detail behavior shown in 3.1 is not 
reproduced). 

So we investigate how much  𝑇𝐹  will be impacted 
depending on the change of 𝑛𝐸𝐸𝐸, with representative 
torsional damper design variables to equation (1) and 
(2). Fig. 8 shows prediction accuracy versus numbers 
of elements; here, when 𝑛𝐸𝐸𝐸  is set as an actual 
winding number, prediction accuracy of 𝑇𝐹  is defined 
as 100%. By the figure, prediction accuracy is expected 
more than 98%, when the number of elements is more 
than 6. 

 
Figure 8. Relation between prediction accuracy and 
discretization level  
When 𝒏𝑬𝑬𝑬 is set as an actual winding number, 
prediction accuracy of 𝑻𝑭 is defined as 100%. 

4 Modeling & Verification 
Modelica was chosen to implement the considered 
mechanism. The reason for this is that compared to 
other physical modeling tools, we get the following 
benefits:  
• Straightforward description with equations 
• Simple mixing of equations and physical models 
• Reuse and extension of models due to 

expressiveness of the source code 
• In-house built package can be integrated 

4.1 Modeling Arc Spring Components 
First, the spring and mass elements modeled using the 
SpringDamper and Inertia component are already 
available in the Mechanics.Rotational package 
included in the Modelica Standard Library (MSL). 
Internal variables are then bound to output signals so 
they can be used in the friction torque equations. 

Next, the observer component computing the friction 
torque is created. Equation (1) is rewritten in Modelica 
code. The spring element information to be used as 
variables are retrieved from the MSL component 
outputs. Once computed, the friction torque is also 
exposed as an output.  

When friction torque occurs, internal friction torque 
component is used. It generates the friction torque 
according to the output value computed by the observer 
component. 

The arc spring component is based on these 
subcomponents. In order to validate the estimation 
accuracy depending on the variation of 𝑛𝐸𝐸𝐸, we create 
several arc spring modules based on different values 
for 𝑛𝐸𝐸𝐸. 

 
Figure 9. Arc spring component implementation in 
Modelica 
The component is made of 4 subcomponents 
(SpringDamper , Inertia extended with extra outputs, 
Friction Torque Observer with the mechanism equations, 
and FrictionTorque). 

4.2 Component Level Verification 
In order to confirm the arc spring module correctness 
and precision, simulations reproducing unit test 
equivalent to Fig. 4 are run and we compared the 
obtained results.  

On Fig. 10 and Fig. 11, results from a simulation run 
with 𝑛𝐸𝐸𝐸 = 8  are compared with experimental 
measurements from Fig. 4. We can observe that the 
data is mostly matching, and that the input torque 
oscillations are varying according to a non-linear 
pattern.  
Comparisons for 𝑛𝐸𝐸𝐸 = 1 … 10  are shown on  

Fig. 12. When 𝑛𝐸𝐸𝐸 is below 6, the non-linearity is not 
well-preserved and the precision loss observed on  
Fig. 8 is confirmed.  

When comparing the number of generated equations 
and the overall computation time, it appears that time 
grows quadratically with the number. To keep 
reasonable simulation times it is important to have the 
discretization that would give us a good balance 
between accuracy and computation cost.  

Confronting those results, we can validate the model 
we built.  
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Figure 10. Arc spring model validation (1) 
Simulated vs. experimental data for 𝑛𝐸𝐸𝐸 = 8 at 1000rpm 

 
Figure 11. Arc spring model validation(2) 
Simulated vs. experimental data for 𝑛𝐸𝐸𝐸 = 8 at 2000rpm 

 
(a) Simulated torsional characteristic (colored lines) 

compared by measurement data (black line) 

 
(b) Relation between calculation time and number of 

equations 

Figure 12. Comparison with each discretized level 

5 Physical model deployment 
To make highly accurate physical models accessible to 
a larger number of engineers, a consistent and easy-to-
use interface is required. If the operation varies 
depending on physical modeling tools, it is ineffective 
in total because all the work must be done by physical 
modeling experts.  

The capability of having a model run in black-box is 
also essential. Physical modeling tool seems easy to 
users and they might carelessly connect components in 
an unintended way. Behaviors and errors which are not 
intended by model developers must be avoided at all 
cost.  

By using the Functional Mock-up Interface (referred 
as FMI from below) as a standard to connect models, 
we established a process which enables everyone to 
conduct performance prediction by physical models. 
Users may only interact with a generic Microsoft Excel 
interface using the Modelon FMI Add-in for Excel 
(FMIE). We choose Co-Simulation to export the arc 
spring model because the binary export license of 
Dymola is not needed. 

FMIE can read FMI 1.0 models exported from 
MODELICA-based tools such as Dymola, can choose 
input or output variables, set up scenarios to be run, 
and execute the simulation, and return the results. 
However, going through these steps every time is 
inefficient. So we developed a VBA macro (Fig. 14) to 
partially automate the process. Once we provide design 
variables and simulation parameters and press a button, 
all the relevant simulations are performed and result 
graphics generated (Fig. 15). With this, anyone can 
simply run quality simulations only interacting with 
Excel, without any physical modeling tool even 
running in the background. 
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Figure 13. Fast Simulation Method using FMIE 

 
Figure 14. Screenshot of FMIE embedding VBA 

 
Figure 15. Example of prediction results using FMIE 

6 Conclusion 
• We developed a discretized model with 

MODELICA which represents non-linearity of arc 
springs 

• We verified the model accuracy by comparing the 
dynamic simulation results with measured results 
of physical tests at component  level 

• We developed an intuitive interface to design arc 
spring performance easily and accurately 

Those outcomes enable non-experts of physical 
modeling to run performance design easily with high 
accuracy. It will lead to the cost reduction of human 
resources and speed up product development. 
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Abstract 

In this paper, model-based development of a control of 

torque vectoring differential (TVD) gear system is 

described. A new control logic was developed using 

model matching control to let the vehicle yaw rate and 

vehicle slip angle follow the desired dynamics. 

Simulation results using a single track model of vehicle 

dynamics are shown to prove the efficacy of the 

proposed control. Modelica was useful to express time-

varying state space system such as the single track 

model of vehicle dynamics. Also full vehicle model 

considering all of the vehicle dynamics and drive train 

motion using Modelica clarified the characteristics of 

this method in actual driving cases.  

Keywords: Model Based System Development, Vehicle 

Dynamics, Torque Vectoring, Model Matching Control 

1 Introduction 

To satisfy needs for future low-carbon mobility society, 

development of many new electric vehicles (EVs) is 

increasingly active in recent years. Additionally many 

new proposals about integrated electric power train 

which also has torque vectoring capability are 

presented. Authors had made an integrated model of 

the total vehicle system of such an EV using Modelica 

(Hirano, 2014) (Hirano, 2015).  

In the paper (Hirano, 2014), the authors showed the 

capability of new construction of the new EV using 

new type of tire based on ‘Large and Narrow concept’ 

and torque vectoring differential (TVD) gear. For the 

model based development of the new EV, various kind 

of running resistance, vehicle dynamic performance 

and proper design of electric regeneration system were 

studied. In another previous research (Hirano, 2015), a 

multi-physics full vehicle model of the new EV is 

expanded to consider the detailed loss of motors and 

inverters. Also front and rear suspension model which 

has same 3D mechanical design as the real 

experimental vehicle was made and verified. By 

technical investigations using this full vehicle model, 

structure, specifications and control of the new EV 

system were researched about vehicle dynamics and 

energy consumption. However, the control logic of the 

TVD gear was only simple PI feedback control in the 

previous papers. In this paper, model based control of 
TVD gear system is developed using model matching 

control technique. Single track model of vehicle 

dynamics is used to derive and verify the new control. 

At the same time, detailed design parameter of vehicle 

dynamics was obtained from the analysis of Modelica 

full vehicle model using detailed suspension model. 

Finally the developed controls were verified by using 

both the single track model and the full vehicle model. 

2 Specification of Experimental EV 

Table 1. Specifications of new experimental EV 

 New EV 
Conventional 

car 

Vehicle Weight 750 kg 1240 kg 

Yaw Moment Inertia 869 kgm
2
 2104 kgm

2
 

Wheelbase 2.6 m 2.6 m 

Front : Rear Weight 

Distribution 
0.48 : 0.52 0.62 : 0.38 

Height of CG 0.38 m 0.55 m 

Aerodynamic Drag 

×Frontal Area 
0.392 m

2
 0.644 m

2
 

Tire RRC 5×10
-3

 8.8×10
-3

 

Tire Normalized CP 16.1 20.4 

 

The proposed experimental EV has specifications as 

shown in Table 1 (Hirano, 2015). Compared with a 

conventional small-class passenger car, the new EV 

has characteristics of lighter vehicle weight, smaller 

yaw moment of inertia, lower height of the center of 

gravity (CG) and lower rolling resistance coefficients 

(RRC) of tires. Because of these characteristics, this 

new EV is expected to have better handling and lower 

energy consumption than conventional vehicles. On the 

other hand, because of lighter weight and lower value 

of tire normalized CP (Cornering Power), this new EV 

seems more sensitive against external disturbances 

such as crosswind and road irregularity than the 

conventional cars. To cope with this problem, direct 

yaw moment control (DYC) was applied by using a 

new integrated transaxle unit for rear axle which has a 

main electric motor and also TVD gear unit with a 

control motor. 
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3 Vehicle Model for Controller Design 

3.1 Single Track Vehicle Model 
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Figure 1. Expanded single track vehicle model 

 

Figure 1 shows an expanded single track vehicle 

dynamics model to derive the control logic. The 

simplified equations of motion by this model become 

as follows. 

)(cos)( rlrrfflfr XXXXF
dt

dV
M    (1) 

  rrrlfrfl YYYYVV
dt

d
M  1tan   (2) 

NYYlYYl
dt

d
I rrrlrffrflfz  )(cos)( 

  (3) 

)(cos)( rlrrrfflfrf XXdXXdN    (4) 

Here, 

β : Vehicle slip angle, 

γ : Vehicle yaw rate,  

M : Vehicle mass, 

V : Vehicle velocity, 

Iz : Vehicle yaw moment of inertia, 

lf (lr) : Distance from the CG to front (rear) axle, 

   (CG: Center of Gravity) 

df (dr) : Tread of front (rear) axle, 

X** : Longitudinal force of each tire, 

Y** : Lateral force of each tire, 

δf : Steering angle of front tire, 

F : Vehicle driving force, 

N : DYC moment by TVD. 

 

3.2 Equation of Motion for Vehicle Dynamics 

To derive the equations of motion for the target vehicle, 

equations (1) to (4) were further simplified. The lateral 

force at left and right tires were assumed to be equal 

and let 
ffrfl YYY  ，

rrrrl YYY  . Also we 

assume cos𝛿𝑓 ≈ 1 when front tire steering angle is not 

so big, and tan−1 𝛽 ≈ 𝛽  when 𝛽  is small. Also by 

considering the TVD power unit is equipped only in 

the rear axle, the equations of motion become as 

follows. 

)( rlrr XXF
dt

dV
M     (5) 

rf YY
dt

d
MV 22 








 

    (6) 

NYlYl
dt

d
I rrffz  22


   (7) 

where 











 f

f

ffff
V

l
KKY    (8) 









 

V

l
KKY r

rrrr
   (9) 

)( rlrrr XXdN      (10) 

Here, Kf and Kr are the equivalent cornering power of 

front and rear tire respectively. These values are 

calculated by using the full-vehicle model described in 

the section 5.1 to consider the effects of elasticity and 

friction of suspension and steering.  

If driving force F and DYC moment N can be 

calculated by some control logic, then the target 

longitudinal forces of left and right rear wheel to be 

realized by TVD power unit become as follows from 

equation (5) and equation (10). 











r

rr
d

N
FX

2

1     (11) 











r

rl
d

N
FX

2

1     (12) 

 

3.3 Longitudinal Driving Force Controller 

Let us suppose the desired value of vehicle speed, 

vehicle yaw rate and vehicle slip angle as refV , ref  

and ref  respectively.  

The desired vehicle driving force F can be 

calculated as below by PI feedback control and 

equation (5). 

  dtVVKVVK
dt

dV
MF refIFrefPF

ref
)()(  

      (13) 

Here KPF is a proportional feedback gain and KIF is an 

integral feedback gain. 

 

3.4 Model Matching Controller of Lateral 

Dynamics 

3.4.1 Dynamic Model of Vehicle Lateral Dynamics 

For the lateral dynamics, the state space form of the 

vehicle dynamics with TVD control becomes as follow 

from equation (6) and (7). 
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Here, δ𝑓 = δ𝑠/G𝑠  (δs: steering wheel input angle, Gs: 

steering gear ratio). 

Now the matrix form of the state space system of 

equation (14) can be written as follows. 

sEBuAxx      (15) 
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Please note that the elements of the matrix A of the 

equation (15) as shown in the equation (16) are 

dependent on the vehicle velocity V, namely time-

varying variables. 

 

3.4.2 Desired Dynamics Model for Lateral Motion 

The desired dynamics of vehicle yaw rate and 

vehicle slip angle are assumed as the first order lag 

function of steering wheel input as below. 
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Here, G and G are steady state gain of slip angle 

and yaw rate respectively from the steering input. k 

and k are gain of desired slip angle and desired yaw 

rate from the steady state gain of each state variables. 

 and  are time constant of desired slip angle and 

desired yaw rate as the first order lag function. Each 

state variables of slip angle and yaw rate at steady state 

can be calculated by solving the following equation 

sEAx  00      (20) 

and be obtained as follow. 
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      (21) 

Thus, G and G can be calculated as follows. 
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      (22) 

The state space form of the desired dynamics can be 

written as below from the equation (19). 

sdddd ExAx      (23) 

Here, 
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3.4.3 Model Matching Control of TVD 

A state equation of the error between desired values 

and actual values of state variables can be obtained as 

below by subtracting equation (23) from equation (15). 

sddd EExAABuAee )()(   (24) 

e x xd   

Let’s assume the virtual control input U as below. 

sddd EExAABuBU )()(    (25) 

Then the equation (24) can be transformed as below. 

BUAee       (26) 

Now we can design the feedback control gain K as  

KeU       (27) 

by using various linear control theories for the equation 

(26). Though, as mentioned above, the matrix A is 
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time-varying and dependent on vehicle velocity. To 

cope with this problem, an analytical solution using 

pole placement technique was used. By combining 

equation (26) and equation (27), the following equation 

is obtained. 

eBKABKeAee )(     (28) 

If we specify the pole of the dynamic system of the 

error e of equation (28) as p1 and p2 (p1, p2 <0) and K = 

[k1, k2], following equation can be derived. 

))(()( 21 pspsBKAsI    (29) 

Here, s is the Laplace operator and I is the unit matrix. 

Above equation can be rewritten as follow. 
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Thus, the following simultaneous equation can be 

obtained. 
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By solving the equation (30) analytically, we can 

obtain following solutions of k1 and k2. 
















21

12

21111121
1

2122112

)(

)(

a
a

ppaapp
Ik

ppaaIk

z

z

  (31) 

Please note that the above solution of K = [k1, k2] is 

also dependent on vehicle velocity. (See equation 

(16).) 

Finally, from the equation (25), the following 

solution of u (= N) can be calculated. 

})()({ sddd EExAABKeBu    (32) 

Here, B
+
 is a quasi-inverse matrix of B, and 

consequently B
+ 

= [0  Iz]. (B
+
B = 1.) Finally we obtain 

the following solution of u. 

sddd EEBxAABKeu )()(    (33) 

It is understood from equation (33) that the control 

input of the model matching controller consists of a 

feedback term of the error between desired value and 

actual value of state variables and also feedforward 

terms evoked from desired state variables and also 

steering input. 

Figure 2 shows a plot of the feedback gain k1 and  

k2 by pole placement (p1 =-20, p2 =-21) according to 

the vehicle velocity. 

Though we used analytical solution using pole 

placement in this paper, it is also possible to design the 

feedback gain K by gain scheduling method using other 

linear control techniques according to the change of 

vehicle velocity. 

 
Figure 2 Plot of feedback gain by pole placement 

4 Simulation Results by Single Track 

Vehicle Model 

To confirm the validity of above mentioned model 

matching control, simulation test based on single track 

vehicle model was performed by using Modelica.  

First of all, we should handle time-varying linear 

state space system such as that of equation (15) to (18). 

To cope with this problem, a new class of time-varying 

linear state space system was defined. To achieve this, 

the standard class of the state space system of 

Modelica Standard Library (MSL) was modified to 

release the constraint of variability of variables (i.e. by 

eliminating ‘parameter’ qualifier). The definition of the 

new class becomes as follow. 

 
block StateSpace_Variable  
… 

extends Modelica.Blocks.Interfaces.MIMO(fi

nal nin=size(B, 2), final nout=size(C, 1)); 
  Real A[:, size(A, 1)]; 
  Real B[size(A, 1), :]; 
  Real C[:, size(A, 1)]; 
  Real D[size(C, 1), size(B, 2)]=zeros(siz

e(C, 1), size(B, 2)) ; 
  output Real x[size(A, 1)](start=x_start)

 "State vector"; 

equation  

  der(x) = A*x + B*u; 
  y = C*x + D*u; 
end StateSpace_Variable; 

 

 
model SingleTrackModel 
… 

  Real c0 = 2*(kf+kr); 
  Real c1 = 2*(lf*kf-lr*kr); 
  Real c2 = 2*(lf*lf*kf+lr*lr*kr); 
… 

 StateSpace_Variable Actual_x( 

    A=A, 

    B=B, 

    C=identity(2)); 

 StateSpace_Variable Desired_xd( 
    A=Ad, 
    B=Ed, 
    C=identity(2)); 
… 

equation  

  a11=-c0/m/v; 
  a12=-1-c1/m/v/v; 
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  a21=-c1/iz; 
  a22=-c2/iz/v; 
  A={{a11, a12}, 
     {a21, a22}}; 
  B={{cf/m/v, 0}, 
     {cf*lf/iz, 1/iz}}; 
  Gb0=-m*iz*v*v/(cf*cr*l*l-m*v*v*c1)*(-

cf*cr*lr*l/m/iz/v/v + lf*cf/iz); 
  Gr0=-m*iz*v*v/(cf*cr*l*l-m*v*v*c1)*(-

cf*cr*l/m/iz/v); 
  Ad={{-1/t_b, 0}, 
      {0, -1/t_r}}; 
  Ed={{k_b*Gb0/t_b}, 
      {k_r*Gr0/t_r}}; 
  … 
end SingleTrackModel; 

 

For comparison, the definition of the standard class of 

the state space system in MSL is as below. 
block StateSpace "Linear state space syste

m" 
… 

  parameter Real A[:, size(A, 1)]=[1, 0; 0

, 1]; 
  parameter Real B[size(A, 1), :]=[1; 1]; 
  parameter Real C[:, size(A, 1)]=[1, 1]; 
  parameter Real D[size(C, 1), size(B, 2)]

=zeros(size(C, 1), size(B, 2)) ; 
… 

equation  

  der(x) = A*x + B*u; 
  y = C*x + D*u; 
  … 
end StateSpace; 

 

Also a new class of time-varying matrix gain to 

express the feedback gain by the equation (31) can be 

made by similar way. 

Figure 3 shows a diagram of an example of a single 

track vehicle model combined with the desired vehicle 

dynamics model and the model matching controller.  

Figure 4 shows a plot of vehicle speed and steering 

angle input used in the simulation by single track 

model. The vehicle accelerates from 10km /h to 

100km/h between time 1 sec to 10sec. The steering 

angle moves as 1Hz sinusoidal curve. For comparison, 

simple PI feedback of desired yaw rate and that of 

desired slip angle were also tested. The control law of 

both PI controllers became as follows respectively. 

PI feedback of desired yaw rate: 

  dtKKN refIrefP )()(  
  (34) 

PI feedback of desired slip angle: 

  dtKKN refIrefP )()(  
  (35) 

Desired dynamics was settled as k = 0.3, k 

and  are settled as corresponding value of cut-off 

frequency of 1.3 Hz as shown in the equation (19). 

 

 
Figure 3. Modelica model of a single track model of 

vehicle and a controller 

 

 
Figure 4. Plot of vehicle velocity and steering angle input 

 
Figure 5 shows comparison of each control. The 

model matching control showed the best tracking 

performance of desired slip angle and desired yaw rate. 

Though, the control input N was bigger than other 

controls and also the tracking error of yaw rate was 

bigger especially at the low vehicle speed. Also, it was 

impossible to let both of the vehicle slip angle and the 

yaw rate to exactly track the desired value 

simultaneously. This is because that there are two 

independent state variables while there is only one 

control input.  

Robustness of the model matching control (MMC) 

was also checked. Figure 6 shows comparison of the 

simulation results of single track model when there are 

perturbation for the vehicle mass M and tire cornering 

power CP. For comparison, the result of yaw rate 

feedback control is also overlaid. MMC showed a good 

robustness against such parameter perturbations. 

It is of course necessary to check the robustness of 

the control when parameter error of the plant and also 

other additional effects such as non-linearity and losses 

exist in the actual world. To do this, simulation tests 

using full vehicle model was also done as mentioned in 

the following section. 
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Figure 5. Simulation results by single track model 

5 Simulation by Full Vehicle Model 

5.1 Construction of the Full-Vehicle Model 

The similar full vehicle model as previous research 

(Hirano, 2015) was used for full-vehicle simulation. 

The model was developed based on Vehicle Dynamics 

Library (Modelon, 2014) and was built as a full 3 

dimensional (3D) multi-body-dynamic system (MBS) 
model. Component models of control systems such as 

TVD gearbox, electric motor and inverter were added 

with the full vehicle model. Figure 7 shows the top 

level of the model hierarchy of the full vehicle test 

model and also the power train model with the 

controller. 

 

 

 
Figure 6. Robustness check by single track model 
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Figure 7. Structure of full vehicle test model 

 

  

Figure 8. Torque vectoring differential (TVD) driveline 

 

For the TVD gear train, a driveline structure 

referencing the MUTE project of the Technische 

Universität München (TUM) (Höhn et al., 2013) was 

selected. The TVD model was constructed using Power 

Train Library (DLR, 2013). Figure 8 shows the 

configuration of the gear trains. Torque from the main 

motor is distributed equally to the left wheel and the 

right wheel through the differential gear. The torque 

distribution between the left wheel and the right wheel 

can be controlled by changing the torque input of the 

control motor. 

3D MBS model of suspension, steering and body 

were installed to calculate vehicle dynamics 

characteristics. Suspension model was constructed as 

an assembled model of each suspension linkage, joints 

and force elements such as spring, damper and bushing. 

Non-linear tire model based on ‘Magic Formula’ 

model (Pacejka02) was used to calculate combined 

lateral force and longitudinal force of each tire.  

Steering model considered the characteristics of 

viscous friction of steering gear box and steering shaft 

as well as steering shaft stiffness. By these detailed 

models, it became possible to analyze the effects of 

steering angle change and camber angle change caused 

by vehicle roll, side force and tire aligning torque. 

  

Figure 9. Effect of suspension characteristics to cornering 

compliance coefficient. (Normalized by the effect of tire 

slip angle.) 

 
Figure 9 shows an analysis result about the effect of 

suspension characteristics to cornering compliance 

coefficient for an example of front double wish-born 

suspension. The coefficients are normalized by the 

effect of tire slip angle change. The equivalent 

cornering power coefficients were calculated by 

following equation. 
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Here, Cf and Cr are the cornering power of tire itself. 

The terms in the curly brace of the denominator of the 

above equation indicates each effect shown in Figure 9 

respectively. Those are the effects by side force steer, 

side force camber, aligning torque steer, roll steer and 

roll camber respectively. Finally, the equivalent 

cornering power coefficients of front tires and rear tires 

were calculated as εf and εr respectively. These values 

are used to calculate the equivalent cornering power of 

each wheel shown in the equation (8) and equation (9) 

as bellows.  

fff CK   

rrr CK   
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5.2 Results of Full Vehicle Simulation 

Figure 10 shows the results of a double lane change 

test by the full vehicle model. Steering angle was given 

as a series of sinusoidal curves at a constant vehicle 

velocity of 100[km/h]. The model matching control 

showed better performance of tracking desired slip 

angle than the yaw rate feedback control. On the other 

hand, the yaw rate feedback control showed better 

performance for tracking the desired yaw rate, though 

this result can be expected naturally. Additionally, it 

became clear that the result of the vehicle motion by 

the model matching control was smoother than that by 

the PI yaw rate feedback control of desired yaw rate. 

The reason of this is assumed that feedforward part of 

model matching control works to improve the response. 

On the other hand, PI feedback control of the desired 

slip angle became unstable. 

Figure 11 shows the result of full vehicle model 

simulation for the side wind test. Here, side wind of 

20[m/s] blows while Time=2 [s] to 3.5 [s]. The vehicle 

runs at 120[km/h] and the steering wheel angle is kept 

to zero. Here, the similar result as the side wind test 

was obtained. The model matching control was good at 

tracking performance of the desired slip angle, and the 

PI feedback control of the desired yaw rate was good at 

tracking performance of the desired yaw rate. Also it is 

indicated that the control ability against steady 

deviation for the model matching controller is not 

enough. This indicates the necessity of modifying the 

model matching controller to introduce first order 

servo control by considering the integral of the error. 

Anyway both controls showed good performance of 

vehicle stabilization against the side wind than when 

no control was applied. 

6 Conclusions 

Model matching control of TVD was researched by 

using both linear single track model of vehicle 

dynamics and multi-physics large-scale full vehicle 

model. The following conclusions were obtained.  

(i) Proposed model matching control showed a 

good performance especially for the tracking 

of the desired slip angle.  

(ii) On the other hand, simple PI feedback control 

of desired yaw rate was good at tracking the 

desired yaw rate than the model matching 

control.  

(iii) Improving the model matching controller to 

realize servo control of steady error deviation 

is necessary for future work. 

Also for future work, the effect of drive shaft 

stiffness for TVD control should be investigated. More 

sophisticated control of tire slip and drive train 

oscillation should be researched also satisfying the 
requirement for the vehicle dynamics performance. 
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Figure 10. Simulation result of double lane change test by 

full vehicle model 

 

 

 
Figure 11. Simulation result of side wind test by full 

vehicle model 
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Abstract 

In this paper we describe how ZF is using existing and 

upcoming Modelica standards for simulating a variety 

of systems in automotive industry. In particular, 

Modelica is employed for driveline modeling. The FMI 

standard is used to transport models over tool 

boundaries. The novel SSP standard will contribute 

towards interconnecting FMUs and defining complete 

system architectures. 

Keywords:     Longitudinal vehicle dynamics, FMI, 
SSP, Parameterization, system architecture, 

autonomous driving 

1 Introduction 

ZF is a major automotive supplier, with an extensive 

product portfolio ranging from driveline and chassis 

technologies to active and passive safety systems for 

autonomous driving. In this context, detailed 

simulation models mimicking vehicle dynamics and 

the involved actuators/sensors are vital for developing 

reliable control software as well as for supplementing 

time- and cost-intensive test bed measurements. 

Simultaneously, in order to optimize the interplay 

between these components, the demand for holistic 

simulation approaches is steadily increasing. Complete 

system analysis is becoming recognized as an 

important factor for fast and robust system engineering 

activities as it allows for directly examining the global 

system behavior and for identifying relevant feedback 

loops. Modelica is especially suited to this task due to 

its inherent multi-physics capabilities. Furthermore, the 

associated Functional Mock-up Interface (FMI) 

standard facilitates an efficient integration and 

coupling of specialized sub-models (possibly 

developed in other tools), thereby going beyond an 

isolated analysis of single components.  

 

2 Modeling drivelines with Modelica 

Facing an enormous variety of driveline concepts and 

continuously decreasing innovation cycle times, 

simulation has become a backbone for developing 

gearbox control software at ZF. In particular, Modelica 

was introduced in our company over ten years ago and 

nowadays represents a standard approach for modeling 

a wide range of distinct transmission and related 

actuator concepts. Building on the freely available 

Modelica Standard library, more than ten context-

specific ZF Modelica libraries have been created so far. 

These in-house libraries are made accessible 

throughout the company and preserve corporate 

modeling know-how in several highly relevant areas, 

such as 

 Transmission and driveline components 

(Köhler, 2005) 

 Extensions for hybrid and electrical 

powertrains (HEV/PEV/EV), including 

complete hybrid driving strategies (Köhler et. 

al., 2006) 

 Model parameterization tools and export 

templates to other platforms (Kellner, 2006) 

 Combustion engine dynamics and exhaust 

after-treatment (Kuberczyk, Köhler, 2013) 

 General mechatronic solutions, hydraulic and 

pneumatic actuators (based on Modelica 

Fluid) (King et. al., 2014) 

 

The above-mentioned central libraries are 

consequently re-used within distinct modeling projects, 

thereby generating thoroughly tested component 

models characterized by a high degree of reliability and 

robustness. Also, many component models are 

available in varying levels of detail and function, from 

highly resolved descriptions encompassing all relevant 

physical effects to simplified formulations optimized 

for real-time use (King et. al., 2014).  

A major advantage of the object-oriented modeling 

approach underlying Modelica is that it allows for an 

easy exchange of such component variants without 

having to modify other parts of the global model, 

thereby offering the possibility to quickly switch 

between different model configurations. Furthermore, 

Modelica models directly reflect the physical structure 

of the system under scrutiny. This fact enables a rapid 

transfer of system knowledge into model equations. On 

the other hand, also some shortcomings have to be 

mentioned. Due to the symbolic simplification of the 
system equations by the Modelica front-end tool, 

efficient debugging is difficult and the transparency of 
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the generated run-time C-Code is limited. This 

hampers the development of complex functions as 

compared to scripting languages. Moreover, to the 

authors’ experience, Modelica is not yet widely known 

among young engineers. For all these reasons, further 

efforts are necessary to improve the interaction 

between Modelica models and models/methods 

originating from other tools. The Functional Mock-up 

Interface (FMI) offers great promise in this regard. 

3 Using FMI to modularize system 

components 

Modelica models can be exported to a wide range of 

simulation tools – usually via C-Code. At ZF this 

process has been extended to support even tools 

developed internally. To enhance the flexibility for the 

usage of simulation tools and to reduce the effort for 

maintaining this process there is a need to use 

established standards. 

 

FMI satisfies this need since there is a broad list of 

tools supporting FMI. We also enriched internally 

developed tools to support FMI, which are used for 

system simulations, e.g. in case of CO2 analysis or 

software development and test. They are able to handle 

FMI 1.0 and 2.0 both in model-exchange and co-

simulation mode. The verification of this FMI interface 

is done by applying the FMI cross-check rules. 

 

In the past mostly monolithic models have been 

used as FMU, but recently the demand for a modular 

setup is increasing, internally and with customers of 

ZF. This is motivated by two requirements on virtual 

product development: efficiency and quality. Both 

requirements can be fulfilled if models, once built up 

by a modeling expert reflecting all needed physical 

effects, are reused and exchanged amongst different 

departments or even companies. 

A crucial point here is a feasible definition of the 

simulation architecture for all relevant use cases. 

Therefore one needs to think about a proper definition 

of the interface signals, in order to 

 enable an easy integration of existing models 

 replace models of different levels of details 

 regard existing solutions (e.g. within other 

simulation tools) inside the company and with 

customers. 

The usability must not be neglected; therefore our 

aim is to decompose the overall system to smaller, but 

still reasonable sub-systems. These sub-systems mostly 

represent the components developed by the 

collaborating partners, e.g. in the case of analyzing 

longitudinal dynamics models of a combustion engine, 

a transmission system and vehicle dynamics, as shown 
in Figure 1. 

When cutting tightly coupled systems to modules 

also numerical issues such as algebraic loops or stiff 

systems must be considered. FMI for model-exchange 

might be an option for such a simulation setup, but 

FMI for co-simulation is in focus because it enables the 

comparability of the simulation results and shows a 

feasible performance in most tools. 

Figure 1 shows an example of a modular setup used for 

software development and test. The focus of the 

modular setup currently is on physical or simplified 

logical models but will also be extended on virtual 

ECUs.  

 

Figure 1. Structure of a driveline 

 

This definition of interfaces needs discussions and it is 

good to take all parties into account. Therefore parts of 

those discussions are also handled in a cross-company 

approach, e.g. the “Smart Systems Engineering” 

project of the ProSTEP iViP Association (cf., 

http://www.prostep.org/en/projects/smart-systems-

engineering.html).  

 

Figure 2. Model structure of the BEREIT range extender 

transmission concept in Dymola 

The use of FMI to exchange behavioral simulation 

models has become an official standard in ZF. A 

prototypic example is the joint research project 

“BEREIT” (Bezahlbare Elektrische Reichweite durch 

Modularität und Skalierbarkeit – Affordable Electric 

Range by Modularity and Scalability), supported by 

the German Federal Ministry of Economics and 

Technology (cf., http://pt-em.de/de/1508.php). The 

goal here was to develop gearbox control software for 

a modular range extender concept for electric vehicles, 

featuring three possible operation modes: a purely 
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electric mode, a hybrid mode with load point shifting, 

and an “EDA” mode, which allows for charging the 

battery while the vehicle is in standstill or driving at 

low speeds (Roske et. al., 2006). In order to minimize 

transmission losses, only dog clutches (which are 

synchronized by the electric motor) are used as 

switching elements for shifting gears.  

Figure 2 shows the top-level model in 

Modelica/Dymola, including blocks for loading ZBF 

parameterization data as explained below (see chapter 

5), as well as two connectors containing all input and 

output signals for communicating with the control 

software. This minimal interface remains the same for 

all model configurations, while the driveline modules 

may be freely exchanged. Typically, either the whole 

model or the gearbox part is then compiled as a co-

simulation FMU to be imported into the in-house SiL-

platform SOFTCAR (see below), which has been 

enabled to handle both FMI 1.0 and 2.0.   

In Modelica an extensive use of expandable 

connectors is used to exchange measured signals e.g. 

between controller and plant model. Unfortunately this 

approach analog to a CAN-Bus in real vehicles 

currently cannot be obtained when switching to FMI. 

Therefore wrapper models and mapping functionalities 

are needed for the seamless integration of those FMUs, 

which will be addressed by the Modelica SSP project, 

as mentioned below. 

Establishing FMI as the all-in-one solution for 

model exchange in ZF is still on-going since all the 

processes need to be mature enough and all issues 

which arise with the use of FMI need to be solved. 

One major drawback so far is the lack of proper 

protection of the intellectual property within the 

exported FMU. To overcome this we established a 

post-procedural encryption with the following options: 

 selection of signals and parameters to hide 

 definition of a period of validity 

 checksum usage to guard against manipulation 

 

Another main issue is the consistent 

parameterization of a system simulation setup by a 

bunch of modular sub systems, which  motivated the 

SSP (“system structure and parameterization”) project. 

 

4 Using “SSP” to specify system 

architectures 

4.1 Motivation 

Same as for the products itself that ZF offers, each 

simulation model has to be provided to several 

customers. The goal is to reuse the same simulation 

model of a certain product as a FMU. The challenge 

here is the adoptions that are needed for any customer, 

because there is no standard way to couple things 

especially in the area of personal cars. One could think 

of including the “kernel” FMU into a wrapper with all 

the signal modifications but this means quite an 

overhead, because usually these modifications are quite 

simple (linear manipulation or mapping tables for 

discrete values). 

In Addition to that it has to be taken into account 

that also the receiver of the simulation model (e.g. the 

customer but also another department in ZF) has to 

integrate this FMU into his complete system. 

Assuming that the complete system is built from 

several FMUs as component representation the main 

additional information that defines the system 

architecture is the connection of all FMUs and a 

possible hierarchical arrangement. This requirement 

isn’t focused by the FMI standard.  

As a consequence a new Modelica Association 

project called “System Structure and Parameterization” 

(abbreviation SSP) was initiated after the Modelica 

Conference 2014 in Lund. One main goal of this 

project is to define a tool independent format to be able 

to specify the structure of a simulated system. So one 

has to define this structure only once in any (authoring) 

tool and can transfer it to any (integration) tool to 

include the system components and simulate the 

system. This is especially interesting when a system is 

simulated on different platforms like MIL, SIL or HIL. 

First results of the project were presented 2015 at 

the Modelica Conference in Paris. There is a first draft 

for defining system structures. A XML schema was 

developed therefore. Three prototypes of tools were 

presented that are able to read and write such files. 

ZF is developing its own software for integration of 

physical models of driveline with ECU software code 

called SOFTCAR in parallel to commercial ones. On 

top of that another tool is being developed that 

generates complete simulation models for the 

simulation platforms SOFTCAR and dSpace® out of 

selected FMUs, several (CAN-)bus specifications and 

parameterization definitions. For handling all these 

system architectures and parameterization data, the 

SSP approach will be used.  

 

 

Figure 3 Sketch of mapping tool 

The element in the SSP XML schema called “signal 

dictionary” is here very useful for connecting inputs 

and outputs of FMUs not directly but with a separate 

instance where you can define project independent 
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signal names that can be reused in many projects. 

Signal dictionaries can also be thought as “special” 

version of FMUs without any dynamics. Another 

useful feature is that the signal dictionaries can be used 

easily for visualization of these signals. 

 

4.2 SSP for simulation of autonomous vehicles 

Usage of SSP is also intended in ZF for developing 

reusable system architecture for ADAS (advanced 

driver assistance systems) and autonomous vehicles. In 

these systems there’s a lot of feedback and 

interdependencies between all involved components. 

So the need of being able to simulate not only the 

isolated components but also the complete system is 

evident for a fast development process.  

The system architecture is quite complex and the 

variety of combining components is very high. ZF 

offers a lot of components needed for autonomous 

driving: 

 Sensors 

o Radar 

o Cameras 

 Actuators 

o Steering 

o Braking 

o Transmission 

o Electric Machines for traction 

 (Active) chassis components 

 High performance ECUs 

 Functions for autonomous driving 

There’s a little gap to end up with a complete virtual 

system by adding the missing parts. 

 Engine 

 Car body 

 Driver 

 Environment 

The first three parts can be modeled quite simple for 

the purposes here. Having a model of the environment 

is very important and this is probably provided by a 

tool vendor. 

4.3 Requirements 

The system architecture to be defined has to fulfill the 

following requirements: 

 It must fit to real systems. 

 Defined modules have to correspond to real 

components. 

 Variations of modules can be exchanged – also 

by real components on HiL-platforms. 

 It must be possible to include also modules from 

OEM / other suppliers. 

 The numeric coupling of modules must be 

robust for efficient and stable simulations. 

 It must be possible to both simulate the 

complete systems and fragments of it. 

 It must be usable on a variety of platforms 

(MiL, SiL, HiL). 

Having this system architecture also allows 

extracting single components as empty template. You 

can give this template to somebody else for 

implementing. When finished, this new component 

model can be easily integrated in the complete system.  

Of course this work just starts now. But it gives a 

good overview of the opportunities by using the SSP 

approach. 

5 Using SSP for parameterization 

The project “System Structure and Parameterization” 

also focuses to parameterization of components. In the 

FMI standard, the dynamics of a component and its 

parameterization is not separated. We experienced that 

this approach can be inconvenient sometimes. Another 

problem of this entity is our requirement to use the ZF 

internal standard for parameterization called “ZBF”. 

This is a simple format of ASCII files to specify 

simulation parameters separately from simulation 

models and tools. Already before using FMI we used it 

to be able to parameterize models just during the 

initialization.  

The advantages are: 

 A Model can be provided with multiple 

parameter sets without the need to rebuild it. 

 The parameter sets can be either readable or 

encrypted. 

 Parameter definitions can be used for multiple 

components without duplication (“single 

source” pattern). 

 Parameters can be hided to the model user if 

wanted. 

 Parameters can be modified by the model user 

even though the model is a black box, if wanted 

(Intellectual property issues) 

SSP can be used to have all these features without 

being forced to give up the internal standard because 

there will be a functionality to implement your own 

adapters to the SSP API. The part of parameterization 

of SSP is under development at the moment. As soon 

as there is a first version, ZF will implement its own 

adapter. So it’s possible to take benefit of the other 

coming features of SSP: 

 The possibility to handle parameters within any 

authoring tools that support SSP seamlessly. 

 Use same parameterization approach also for 

entire system models with many components 

(either FMUs or proprietary models) 

 Enrich parameterization data by meta data 

 Handle IP issues for parameterization 
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 Efficient handling of complex parameters 

(lookup tables etc.) 

SSP brings its own data format as a XML definition. 

But with the possibility to implement your own adapter 

it’s also possible to transfer proprietary formats to the 

SSP standard format. 

6 Outlook 

For ZF it is important to contribute to Modelica 

projects like FMI and SSP to be sure to get powerful 

standards and reliable tools supporting them in order to 

do the jobs that have to be done. The number of 

simulation tasks will grow rapidly in future, so it’s 

inevitable to be efficient in this context.  

Also the cooperation of industrial users on these 

projects benefits everybody; industry gets tools that fit 

their needs and tool vendors can offer more attractive 

software. 

Especially the work on SSP is not finished yet. 

Some effort has to be made to bring the upcoming 

standard to a mature status so it can be used in daily 

business. We try hard to make this happen quickly by 

evaluating the results very early to get experience with 

it. Another important point is the close cooperation 

with the FMI project group.  
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Abstract 

This paper presents a virtual kinematics & compliance 

(K&C) test rig, also known as a Suspension Parameter 

Measurement Machine, SPMM. The focus is to explain 

the requirements and implementation of the rig model is 

built to be a virtual equivalent to the physical test rig, 

capable of reading the same input and producing the 

same output.  

The virtual test rig is implemented as a Modelica 

model that is plug compatible with any vehicle model 

using the standard interface from the Modelica Vehicle 

Dynamics Library. The operation of the virtual test rig 

is done from a scripting environment that executes a co-

simulation FMU.  

An example test case is also shown where results 

from a virtual test is compared with the corresponding 

run on the physical test rig. 

Keywords:     virtual testing, kinematics and compliance 

(K&C), FMI, vehicle dynamics 

1 Introduction 

A kinematics and compliance (K&C) test rig, Figure 1, 

is one of the most common way to benchmark and 

fingerprint cars today. A model which can reproduce the 

excitations and generate output in exactly the same 

fashion as an established physical rig presents several 

advantages:  

The most obvious one is the time reduction in the 

execution of the complex tasks of the K&C test rig, 

measurable in terms of orders of magnitude.  Carefully 

considering the testing efficiency, the level of 

confidence and relative importance of each, the K&C 

test rig owner can choose to allocate the testing 

resources more selectively. For instance, a batch of 

lower priority tests could be skipped and replaced with 

simulation, provided the data available and/or measured 

from the fundamental tests is enough to generate a high 

fidelity base vehicle model. 

Most of the OEMs are pursuing a strategy of creating 

multiple derivatives of the same vehicle platform which 
in turn generate a need for extensive testing. Again, 

provided a reliable base model, the K&C simulation of 

these derivatives present a major time and cost saving in 

terms of vehicle availability and testing resources can be 

significant. 

Very connected to this, the utilization of the virtual 

environment makes as well possible to perform system 

identification in order to achieve higher fidelity of the 

model to study, especially important if there’s a 

significant amount of unknown parameters on the initial 

model. A more precise parametrization can be used for 

the optimization of the base vehicle model and all its 

derivatives according to the desired elasto-kinematic 

targets. Similarly, quick and inexpensive virtual 

sensitivity analysis of the model can help to quantify the 

robustness of the base performance and to study 

potential performance improvements instead of 

replacing chassis components with limited criteria. 

The ownership of complete K&C test rigs is restricted 

to big or specialized corporations. On top of the reasons 

exposed above, sharing a common simulation rig can 

enhance the cooperation significantly between different 

industry or academia partners for every effort on chassis 

optimization. In this joint effort the authors have 

targeted a full replication of the excitations and 

Figure 1. Kinematics and Compliance (K&C) rig in 

operation at Toyota. The vehicle body is clamped (1) so 

that the rig can induce roll, pitch and bounce motion of 

the body. Under each wheel, there is a pad (2) that can 

move and rotate to induce tire forces and moments. On 

each wheel, sensors (3) that measure wheel center motion 

are attached.  
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workflow of an existing K&C test rig with the highest 

fidelity possible, in order to make it a useful tool in the 

vehicle development cycles. Additionally, to make it 

deployable throughout the organization, the following 

requirements are identified: 

1. The operation of the virtual test rig should mimic 

the real one, especially it should be compatible 

with the data formats used  

2. It should be possible to operate the virtual test rig 

without knowing the model and/or how to 

operate the modeling environment. 

Figure 2 gives an overview of the developed 

toolchain and its connection to the physical test rig and 

related tools. The core of the toolchain is a Modelica 

model that is compiled as a co-simulation FMU that is 

able to pull parameter data from a data base 

(Andreasson, J. et. al., 2016). This is then executed from 

the deployment environment according to the test 

specification. The input to and the output from the 

virtual test rig are compatible with the corresponding 

real test rig signals. This allow data to be exchanged at 

(1) and (2). Additionally, there is a tuner that can be used 

to fit parameters to measurement (or other simulation) 

data. 

The deployment environment is MATLAB with FMI 

support (FMI Toolbox for MATLAB, 2016) and it is 

chosen since the platform is widely available for the 

target engineers to meet requirement 2 listed above. 

However, the deployment could just as well be carried 

out in for example Python (Andersson C., 2013), 

(Nilsson, T., 2013) and (pyFMI, 2016) or MS Excel 

(FMI Add-in for Excel, 2016). 

2 Vehicle Test Rig Model 

Testing a vehicle in a test rig as opposed to on a test 

track is beneficial for a number of reasons. The rig can 

accurately reproduce load cases while iterating on 

suspension setups or part changes which is critical when 

evaluating how these changes affect vehicle 

performance. Furthermore, the rig can produce load 

cases which are difficult, dangerous or even impossible 

to achieve in driving scenarios. 

Evaluating the kinematics and compliance of vehicle 

suspensions gives good insight into how the wheel and 

tire will move relative to the chassis and thus also what 

forces will be generated for different vehicle states. 

Essentially, the K&C curves for a chassis is the 

fingerprint of the suspension which can readily be 

compared between different setups or competitor 

vehicles to predict performance. 

The results from a K&C test are usually expressed in 

the form of curves or gradients. The curves describe how 

for example the toe angle changes with wheel travel, 

known as bump steer. These curves give vehicle 

dynamics engineers a good idea of the performance of 

the vehicle and are important in defining and evaluating 

requirements. 

The main independent quantity for K&C curves is 

normally vertical wheel travel. For a non-steered, 

independent suspension, the kinematics can be 

completely defined as a function of wheel travel. For 

steered suspensions, steering wheel angle or steering 

rack displacement is normally used as the second 

independent quantity. Suspension where there is a 

coupling between left and right sides (dependent or 

semi-dependent suspensions) need the wheel travel of 

the opposite wheel as an additional independent 

quantity. 

Toe/steer and camber/inclination angles are key 

dependent quantities to study as they greatly affect the 

tire force generation. The change in lateral and 

longitudinal position are also important as this gives 

additional information about the momentary center of 

rotation of the suspension. 

The compliance properties of the suspension are key 

to vehicle handling since these affect how the wheel 

angles and position changes with load, e.g. during 

cornering or braking. While typically measured in rigs 

capable of higher frequency excitation than described 

here, compliance also has large effect on how noise and 

vibration is transmitted through the chassis. Details of 

suspension kinematics and compliance effect on vehicle 

performance can be found in standard literature, see e.g. 

(Bastow, 2004) or (Milliken, 1995). 

2.1 Physical Test Rig 

The virtual test rig is based on an off-the-shelf physical 

test rig capable of exciting the vehicle chassis as well as 

the in plane motion of the wheels (Anthony Best 

Dynamics Ltd, 2014). 
Before a test is performed, the vehicle is driven onto 

the test rig and the body is clamped to the rig table. The 

Figure 2. Toolchain overview. The real test rig receives 

information on execution (1) from the operator interface 

and then output measurement results (2) that is used for 

plotting. The virtual test rig is designed to be able to read 

and write compatible data. 
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table is able to move vertically as well as roll and pitch 

the vehicle body relative to the ground plane. The 

wheels of the vehicle are positioned on wheel pads 

which can move in the ground plane and rotate around 

the vertical axis to generate planar forces and torque at 

ground level. By changing the wheel clamping method, 

forces and moments can also be applied in all directions 

at the wheel hubs. 

The rig can perform many different test cases 

including the basic roll, pitch and heave movements of 

the chassis as well as force sweeps at the tires and/or 

hubs at varying ground heights. 

2.2 Virtual Test Rig 

The virtual test rig is designed to mimic the functionality 

of the physical test rig and to allow them to be operated 

in a consistent way by sharing parameterization for 

configuration as well as data formats. This has some 

important implications on the test rig model 

implementation. Figure 3 shows a screenshot of a 

vehicle model on the virtual test rig. The large yellow 

plate corresponds to the table to which the body is 

clamped and the four circular pads are used to actuate 

the wheels. 

 

Figure 3. Animation screenshot of a vehicle in the virtual 

test rig. The vehicle is equipped with an independent 

steerable front suspension of MacPherson type and a 

dependent rear suspension of twist beam type. 

 

Since the model is deployed as FMUs in a non-Modelica 

environment, care is taken to design the virtual test rig 

so that it does not have to be recompiled for the different 

operating modes. Additionally, since typical test 

procedure contain a sequence of events, it must be 

possible to chain these events together while 

maintaining states and other properties of the FMU. 

Figure 4 shows the diagram layer of the rig model 

including the tested vehicle model. Note the inputs, both 

real and Boolean signals which are used to control the 
rig. The test rig model is built using the Vehicle 

Dynamics Library (Andreasson et. al., 2006) and is 

compatible with the corresponding interface and 

template structure.  

Each test starts with an initialization phase. Usually, 

the table is set to be released during this phase to let the 

vehicle settle. A flag coord_system_set is switched to 

true at an appropriate time, usually when the vehicle has 

settled, which then locks the vehicle coordinate system 

relative to the chassis and the ground coordinate system 

relative to ground. References for vertical load control 

and wheel travel are also stored for use in the test 

procedure. While the coord_system_set flag is set to 

false these coordinate systems will float in the ground 

plane to be centered w.r.t. to the wheelbase and track 

width of the vehicle. The coordinate systems are used 

for output signals and need to be stored after the vehicle 

is settled to mimic the physical procedure. 

The table can then move to generate bounce, roll and 

pitch motion of the body relative to ground. Each of 

these degrees-of-freedom can be prescribed by an input 

signal or be controlled to maintain a fixed level of 

vertical load or wheel travel.  

To allow these different modes to be contained in one 

FMU, the model is equipped with inputs that allow for 

each degree-of-freedom to be set independently from 

the others. By having these as inputs, the modes can be 

switched during a simulation that makes it possible to 

conveniently describe complex sequences as described 

further in Section 3. 

Controllers are built to handle several different 

modes by using appropriate scaling parameters so a 

single set of controller parameters can be used for both 

force and position control. The control error for each 

wheel (force or travel) is multiplied by a coefficient 

contained in a 4x3 matrix which controls how the 

control error for each wheel affects each of the 3 table 

Figure 4. Diagram layer of the complete rig model. 
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degrees-of-freedom. Figure 5 shows the controller block 

for a single degree of freedom of the chassis table. The 

bottom inputs are vertical load and wheel travel vectors 

for the wheels, each multiplied by scaling parameters. 

The Boolean input on the top left triggers storing of the 

control reference on its positive flank. The bottom left 

Boolean input switches between force and position 

control. On the top, the left input is k, a vector 

corresponding to one column of the matrix mentioned 

above.  

By setting the control parameters individually for 

each degree-of-freedom, it is for example possible to 

have a prescribed roll angle applied by the table while 

adjusting table bounce and pitch motion to maintain a 

constant total vertical load on each axle. Table 1 shows 

how the settings required to achieve this. The roll 

column has only zeroes as this is prescribed motion. The 

bounce column states that if load is too high, the chassis 

should be lifted. The pitch column state that the pitch 

angle should be increased if the front load is too low 

and/or the rear load is too high and vice versa. 

The wheel pads can also be either force or position 

controlled. In order for the pads to be able to generate 

force in the tires, a tire model capable of windup in all 

in-plane directions is required. Typically, state-of-the-

art single contact point tire models do not have this 

capability. Therefore, a dedicated stand-still tire model 

is provided which acts as a linear spring-damper in the 

six degrees of freedom between the wheel and the pad. 

The model has different operating modes depending on 

how forces should be applied. For example, all forces 

and torques except pure vertical force can be disabled.  

There are also inputs available to change the 

suspension behavior. The stabilizer and tie rods can be 

individually disconnected, power steering can be switch 

on or off and the steering rack motion can be locked. 

 

Table 1. Table controller table for roll test with constant 

axle load. 

 Roll Pitch Bounce 

Left front 0 -1 1 

Right front 0 -1 1 

Left rear 0 1 1 

Right rear 0 1 1 

 

3 MATLAB Environment 

A user interface based on the MATLAB scripting 

language has also been developed. This interface uses 

functions from the FMI Toolbox for MATLAB/ 

Simulink to import a co-simulation FMU.  

A set of standard test setups is stored in an excel 

spreadsheet. This spreadsheet mimics the one used for 

parameterizing tests on the physical test rig. There is a 

column for each parameter that needs to be set in the rig 

model and each test is defined in one row. To run a 

specific test, the specification for that test is read from 

the corresponding row in the spreadsheet based on a 

unique test number. The test specification is then loaded 

into a test object in the MATLAB environment which is 

sent as an argument when running the test using the test 

rig. The test specification can be modified after it is read 

from the spreadsheet by changing variables in the test 

Figure 5. Controller block for one degree of freedom of 

the chassis table. 

Figure 6. Excerpt from the spreadsheet containing test specifications. Each column corresponds to a parameter setting 

for the rig model, each row corresponds to a test. 
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object. shows a small section of the test specification 

spreadsheet. 

When comparing results from the physical rig to 

simulation results for K&C correlation work, the 

measurement files coming from the physical test rig can 

be read in and presented on the same format as is 

produced by the virtual test rig functions. This makes it 

easy to compare virtual test runs to the corresponding 

tests performed on the physical rig. 

A typical set of commands to run a rig test from 

Matlab looks like this: 

test_rig = VirtualKCTestRig('FMUfile.fmu'); 

test_setup = CreateKCTest('3.3.1'); 

result = test_rig.run(test_setup); 

plot(result.time,result.get_channel(57)); 

result.save_xml('resultfile.xml'); 

The first command, VirtualKCTestRig(), 

initializes the test rig object, test_rig, by loading the 

FMU. CreateKCTest() is then used to pull the 

relevant test parameters from the excel parameter sheet 

and store it in test_setup. The run() command of the 

test rig object is then called with the test setup object as 

an argument to run the test. The results can then be 

plotted directly or stored in an xml file compatible with 

the format of the real test rigs.  

4 Application Example 

An example of a test run in the virtual rig is shown here. 

The vehicle used for the example has an elasto-

kinematic McPherson front suspension and a twist beam 

rear suspension with bushing mounts. During the work 

with the virtual rig, a new twist beam suspension model 

was also developed. The following plots focus on the 

kinematics of this rear suspension model. 

Parameterization is based on hard point data and other 

known quantities as far as possible, but some are 

estimated.  

The test shown is a roll test with constant axle load.  

Figure 7 shows the roll angle measured from the 

physical test rig as well as the simulated roll angle in the 

virtual test rig. As the roll motion is directly prescribed 

for the test, the two signals match very well. 

The vertical motion of the chassis table is used to 

maintain a constant total vertical load on the four wheels 

during the test. Figure 8 shows the measured and 

simulated values for the total vertical load.  

The kinematics of the rear suspension for the roll test 

are illustrated by the following plots. Magnitudes of the 

signals are hidden for confidentiality reasons. Figure 9 

shows the bounce motions of the two rear wheels plotted 

against their respective longitudinal displacement. 

Figure 10 shows the corresponding lateral displacement.  

Wheel angle, toe and camber, correlation is shown in 

Figures 11 and 12. The hysteresis and asymmetric 

behavior in the real suspension that can be seen in the 

measurements is not accounted for in the model which 

limits the accuracy that can be achieved. 

Compared to the real test rig, the virtual version 

provides some important advantages. The user is free to 

change parameters in quick iterations. Depending on 

complexity level and length of test sequence, the 

execution of a complete cycle on a standard laptop 

normally ranges between 2 and 10s. This allow for rapid 

execution of DOE, and also allow for parameter tuning 

either to reach desired characteristics or to match with 

measurement data from the real test rig. 

Additionally, the test rig can be used to excite any 

vehicle that is compatible with the standard interfaces of 

the Vehicle Dynamics Library, which allow the user to 

conveniently change vehicle configuration and model 

fidelity level so that the K&C behavior can be predicted 

at any time during the design process. 

5 Conclusions 

With the newly developed test rig model, it is possible 

to run physical and virtual test rig experiments in 

parallel. This simplifies correlation work since equal 

circumstances are ensured in both environments. Also, 

it facilitates moving certain tests completely to the 

virtual rig since specifications and output formats are 

equivalent. Finally, the virtual version allows for rapid 

iterations due to the fact that simulation and setup time 

is significantly less then real-time, the virtual 

representation allow for changes in the model that is 

very time consuming/expensive/impossible on real 

prototypes, and that simulations can be distributed onto 

several machines with little effort. 
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Figure 7. Roll angle, blue curve is from physical test rig, 

red curve is from simulation. 

 

Figure 8. Total vertical force during test, blue curve is 

from physical test rig, red curve is from simulation. 

 

Figure 9. Vertical bounce at the two rear wheels plotted 

vs the corresponding longitudinal displacement, blue 

curve is from physical test rig, red curve is from 

simulation.  

 

 

Figure 10. Vertical bounce at the two rear wheels plotted 

vs the corresponding lateral displacement, blue curve is 

from physical test rig, red curve is from simulation.  

 

Figure 11. Camber angle at the two rear wheels plotted on 

the x axis with bounce motion on the y axis, blue curve is 

from physical test rig, red curve is from simulation. 

 

Figure 12. Toe angle at the two rear wheels plotted on the 

x axis with bounce motion on the y axis, blue curve is 

from physical test rig, red curve is from simulation. 
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Abstract 

Starting with the motivation to invent the new standard 

SSP (“System Structure and Parameterization”) within 

the Modelica Association and the need to have one 

more standard beyond the mature Modelica language 

and the already well established Functional Mockup 

Interface (FMI) proposed in Modelica Association 

(Blochwitz et al, 2011), the main use-cases are 

presented were SSP can help. As SSP relies on XML, 

the schemas and in consequence the main features for 

defining system structures and parameterization of 

models are described. The need to be able to transport 

complex networks of FMUs between different 

simulation platforms like MIL, SIL and HIL is 

emphasized as a motivator for SSP. 

A variety of prototypes are shown that support the 

early version of SSP. This gives a good impression 

how the standard can be used for quite different tasks 

and proofs, that system structures can be exchanged 

between them seamlessly. 

Finally the next steps for the ongoing development 

of SSP are outlined. 

Keywords: FMI, System Structure, Parameterization, 
Collaboration, Standardization 

1 Introduction 

It’s still a very big challenge for different kinds of 

industry areas to build up simulation models for 

behavioral simulation of complex systems consisting of 

multiple domains. In the engineering process we are 

used to separate a system into its components and do 

all the necessary simulations for one component in a 

tool that fits best to the specific problem. Good results 

can be achieved in this way if the dynamic behavior of 

one component has no large impact on the other parts 

of the system. But as the systems to be developed 

become more complex and the interaction between all 
components becomes more important or is even 

essential for the product value the simulation of the 

connected parts is inevitable. Figure 1 shows a typical 

example from the automotive industry, where 

component models have to be combined for overall 

simulation in different environments. 

 

 

Figure 1. System simulation in automotive industry 

The attempt to model all physical domains within 

one tool could be a potential solution, e.g. modeling 

languages like Modelica can handle this quite well. 

One large benefit here is the possibility that during 

the translation process of the complete system a lot of 

mathematical simplification mechanisms can be used 

to optimize the mathematical problem and make it 

easier to solve the DAE during simulation with one 

single solver. However due to the complexity of the 

language and the fact, that other simulation tools are 

quite more established in certain domains it is very 

hard to enforce this approach in a company, or for 

collaborative development across companies. 

The second best approach came with FMI. The 

standardized Functional-Mockup-Interface gives the 

possibility to export an FMU (Functional mockup unit) 

of a component from the authoring tool that was used 

to build it and integrate it in another environment to 

simulate it. Of course in this integration environment 

other component FMUs can be integrated as well to 
connect them all into a complete virtual system. But 

once again this can be done only in a proprietary way 
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for this single integration tool and the built-up system 

structure cannot be transferred to another environment. 

However, this is a common use case when the modeled 

system has to be used in different targets like MIL, SIL 

or HIL. 

Another issue when simulating complex systems is 

parameterization. FMUs can be parameterized in an 

isolated way but there is no convenient way to handle 

these parameters e.g. exchanging complete parameter 

sets or handling any associated intellectual property 

concerns. To parameterize complete systems a “global” 

instance has to exist to handle all the parameters that 

are not part of a component or have to be used in 

several components at the same time. These features 

are quite relevant when models of components are 

interchanged between different departments in one 

organization or - even more important – between 

different companies. 

These should not be considered as disadvantages of 

the FMI approach because FMI does not have these 

issues in its scope. 

These thoughts were presented first at the Modelica 

Design Meeting in 2014 in Lund by BMW, Bosch and 

ZF and there was a commitment to instantiate a new 

Modelica Association project called “System Structure 

and Parameterization” to develop mechanisms and 

standards to enhance the existent FMI standard. It is 

important to emphasize that this new standard is 

developed in close cooperation with the FMI project 

group to secure a perfect fit of both standards. 

In the last months there was quite good progress 

starting with the definition of different use-cases to 

describe various scenarios handling system structures 

and parameters. Derived from that a number of XML 

schemas have been developed to describe both system 

structures and the parameterization of complete 

systems in a standardized way that can be used 

independently of specific tools. 

First evaluation of this could be shown at the 

Modelica Conference 2015 in France where three 

different tools were presented that were able to read in 

the same XML representation of a simulation model 

and handle it in their specific ways. 

The next sections give detailed insights into the use 

cases, the actual status of the XML schemas and a 

short presentation of the already existing tool 

prototypes that make use of this upcoming standard. 

2 Use Cases 

In the following chapter the basic use cases and the 

principal solutions by the SSP-project are described 

2.1 Parameter Exchange 

In future, updates and effective variant handling for 

models will be done predominantly by parameter sets. 

To do this effectively in a heterogeneous environment, 

we need a tool independent standard. Figure 2 and 

Figure 3 show the use cases and possible solution for a 

single model and for a structure of models 

 

Figure 2. Exchange of one FMU/model with multiple 

different parameter sets 

 

Figure 3. Describing parameter sets for system 

architecture 

2.2 Model Structure 

As shown in Figure 1 the multiple use of (sub-) 

structures of models in heterogeneous environments 

get more important.  For the seamless and tool 

independent usage of networks of components, we 

need a standardized format for the connection structure, 

which also support basic mathematical manipulation of 

signals (for manual unit conversion or mapping of 

discrete signals ). Figure 4 shows the approach of the 

SSP project. 

  

 

Figure 4. System architectures with signal modifications 

2.3 Model Structure and Parametrization 

Use case 2.3 is the combination of use case 2.1 and 

2.2 (Figure 5). The structure and the according 

parameter sets have to be handled in a tool independent 

standard. 

 

 

Figure 5. System architectures with signal adoption layer 

and parameter sets 
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3 XML Schemas 

The file formats defined for the MAP-SSP project are 

intended to provide a minimal interchange format 

between different tools, not as a replacement for tool-

specific formats, and are focused on the exchange of 

information on systems needed for their execution or 

integration into other systems. The interchange of 

architectural information between architecture tools 

(e.g. SysML-based tools, for which XMI already 

provides an interchange format) is out of focus of the 

current efforts, 

The formats try to duplicate as little information as 

possible from any referenced component formats, like 

FMUs, and try to be agnostic as to the detailed 

semantics of the connections being described, 

submitting to the semantics definitions of the relevant 

standards for e.g. FMUs for actual connection 

semantics. In this way the format should be useful for 

many different purposes and should potentially be 

compatible with currently envisaged FMI standard 

developments, like e.g. structured ports. 

By defining both a basic system structure file format 

(SSD) and a format for packaging the SSD and its 

related resources, including referenced SSDs/SSPs and 

FMUs into an easily transportable archive (SSP), the 

proposal tries to offer flexibility in the way system 

structure is being exchanged in different contexts, e.g. 

within companies using PLM systems or between 

companies in a customer/supplier context. 

Currently XML schemas have been defined for the 

description of the system structure itself (System 

Structure Definition – SSD, file extension .ssd), of 

parameter sets (System Structure Parameter Values – 

SSV) and their mapping to system/component 

parameters (System Structure Parameter Mapping – 

SSM). Additionally the System Structure Package 

format (SSP, file extension .ssp) is defined, which 

constitutes a ZIP-archive that packages together a set 

of system structure definitions and any referenced 

parameter sets, mappings, components and sub-

systems into one easily handled and transferable unit. 

A SSP must contain at least one SSD file, but can 

contain multiple such files at top-level, which give the 

ability to package multiple variants of a system into 

one SSP, allowing the importing user/tool the selection 

of which variant to process. This enables the efficient 

exchange of systems/sub-systems with varying system 

topology, e.g. for vehicle models with different 

propulsion systems and architectures, while being able 

to reuse commonly shared resources like sub-systems, 

FMUs, or parameter sets. 

The SSD file defines the structure of a system: Its 

external interface (if any), i.e. the system input, output 

and parameter connectors as exposed to the outside, 

and the internal structure, including instantiated 
components, like FMUs or referenced external 

systems, subsystems, as well as connections between 

components and between components and the external 

interface. 

For each component any referenced inputs, outputs 

and parameters are specified as connectors as well. 

Connections between connectors that are physical 

quantities will perform unit conversions by default. 

Connections can also apply linear transformations (for 

continuous quantities) or mapping transformations (for 

discrete quantities) in order to adjust values between 

components as needed. 

 The system description also assigns parameter sets 

(SSV) to components or complete (sub-)systems, either 

with a natural 1:1 mapping or by specifying explicit 

parameter mappings in the SSM format. See Figure 6 

for a simplified overview of the data model behind the 

XML schema and Figure 11 for a simple example file. 

               

Figure 6. Simplified Class Diagram for SSD Schema. 

In order to support exchange of system structure 

between tools that offer a graphic view of a system, 

optional geometric information for systems, 

components, connectors and connections is supported. 

The SSV format defines a parameter set, consisting 

of a set of parameter definitions, including parameter 

values and related meta-information (like data type, 

physical unit), as necessary to aid in the exchange of 

parameter sets and their use in parametrizing systems 

and components. A core set of meta-information is 

likely to be included in the final standard with 

extension mechanisms to support the exchange of user-

specific meta-information as needed. Parameter sets in 

the SSV format can be contained directly in the 

relevant parameter binding element of the SSD file or 

referenced as an external .ssv file. 

The SSM format, as illustrated in Figure 7, defines a 

mapping between the parameters in a parameter set and 

class SSD

«interface»
System

«interface»
Element

+ name  :string

«interface»
Component

+ source  :URI
+ type  :string

«interface»
Connector

+ name  :string
+ kind  :enum

«interface»
Connection

+ suppressUnitConversion  :boolean

«interface»
SystemStructureDefinition

«interface»
ParameterBinding

+ source  :URI
+ type  :string

«interface»
ParameterMapping

+ source  :URI
+ type  :string0..*

ParameterMappings

0..*

ParameterBindings

0..*

end

1

1

0..*

Connections

0..*

Connectors

0..*

Elements

0..*

start

1
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the parameters of a component or system (potentially 

including subsystems and components) by mapping the 

names of parameters between the two namespaces and 

optionally providing further transformations on 

parameter values, like mapping of enumerations or 

linear transformations of continuous values. Like the 

SSV format this mapping can be contained within an 

SSD file or referenced as an external .ssm file. 

All formats offer easy extensibility for specific tool 

or user needs through optional tool- or usage-specific 

annotations on all modeling elements. This also allows 

the simple addition of layered standards on top of the 

current formats. 

References between SSD files and related resources, 

like components, parameter sets or parameter 

mappings are implemented as (relative) URIs. This 

allows the integration of these formats into larger 

resource management systems like PLM systems, so 

that e.g. SSD and/or referenced parameter sets or 

component FMUs can be located via HTTPS or PLM-

specific URI schemes, in addition to the default file-

based access mechanisms.  

               

Figure 7. Simplified Class Diagram for SSM Schema. 

Currently design discussions are on-going on the 

support of additional connection constructs, like signal 

dictionaries or bus-like connections, which aid in the 

maintenance of component and system 

interconnections with many, frequently changing 

signals, like those employed by bus communication 

mechanisms between controller models. It is expected 

that the initial release of the SSP standard will include 

such mechanisms. 
While the work in the SSP project was initially 

focused on FMU-based systems, the SSD and 

SSV/SSM formats are intentionally also suitable for 

describing systems containing other component types, 

like models or controller code, if relevant definitions 

are implemented for these component types. 

 

4 Hardware-in-the-Loop Simulation 

In order to cope with the growing complexity of 

modern electronic control units (ECUs), Model-Based 

Design (MBD) is used throughout the embedded 

software development process. The result is an 

increasing number of models designed for various 

purposes. During the MBD process different methods 

are applied to test the software of an ECU. In early 

stages PC-based model-in-the-loop (MIL) and 

software-in-the-loop (SIL) simulations are commonly 

used to validate the software. Additionally hardware-

in-the-loop (HIL) simulation based testing is applied as 

the tried-and-tested method for function, component, 

integration and network tests of an entire system. HIL 

simulation is an integral part of the development 

process of many OEMs and suppliers across different 

industries. Due to the inclusion of real hardware in the 

test setup, HIL test systems have special requirements 

that do not allow the same free choice of simulation 

methods as for MIL/SIL use cases. Usually specialized 

HIL simulation systems with optimized hardware and 

real-time operating systems (e.g., QNX, Linux-RT) are 

necessary. These systems have to meet real-time 

requirements and handle the system dynamics and 

timing of the ECU computation timing loops. Common 

HIL applications typically require hard real-time, 

fixed-step solvers with sampling times of 1ms or less. 

FMUs for co-simulation are a good basis for the 

tool- and platform-independent exchange of simulation 

models in HIL environments. The lean co-simulation 

interface reduces possible compatibility issues in a tool 

chain that includes various FMI supporting tools. 

Moreover, it systematically separates the FMU 

functions from the tool functions. This separation 

enables efficient FMU internal implementations of e.g. 

tunable parameter support and internal multi-rate 

subsampling. These co-simulation FMUs can transport 

verified combinations of solver and model code. 

Additionally the communication point concept can 

separate internal solver steps from external 

communication steps. FMUs may include ANSI-C 

source code, which is important for platform-

independent reuse, but often conflicts with modelers’ 

and tool vendors’ interest in protecting their IP. 

Exported FMUs therefore often only contain 

precompiled binaries and are consequently limited to 

specific pre-selected target platforms. 

class SSM

«interface»
ParameterMapping

«interface»
MappingEntry

+ source  :string
+ target  :string
+ suppressUnitConversion  :boolean

«interface»
Transformation

«interface»
LinearTransformation

+ factor  :double
+ offset  :double

«interface»
IntegerMappingTransformation

«interface»
MapEntry

+ source  :int
+ target  :int

«interface»
EnumerationMappingTransformation

«interface»
MapEntry

+ source  :string
+ target  :string

0..*

0..1

1..* 1..*
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Figure 8. Integration of FMUs for HIL Testing. 

Today single FMUs are imported into HIL 

configuration tools to integrate them with other FMUs, 

Simulink-based models, Virtual-ECUs or real ECUs 

(Figure 8). HIL simulation tests with real-time capable 

FMUs can rely on the full functionality of a tool chain 

including test automation and visualization. 

Additionally newer Model-Based Design Test and Data 

Management environments provide capabilities for 

managing model compositions, handling variants of 

models and systems-under-test and managing the 

parameter and signal interfaces of the different model 

systems. These functions are necessary in order to 

optimize the usage of models and associated data assets 

throughout the lifecycle of development and validation. 

Especially for managing complex simulation scenarios 

resulting from the use of models from various 

modeling environments such capability is crucial. 

Environment models are often developed and 

specially designed for certain use cases. However, 

there is an increasing desire to reuse these models to 

provide proven, consistent solutions for the validation 

of controller models in different projects and 

development stages (e.g., for virtual validation and HIL 

simulations). A reuse of models increases productivity 

and saves time by eliminating the duplication of design 

efforts. The environment models that are exchanged – 

e.g., based on FMI – need to be suitable for all the 

intended MIL/SIL/HIL simulation use cases. Modular 

design of models and particularly clear identification of 

interfaces pertaining to real or simulated components, 

are necessary to allow an exchange of simulated 

components by a real hardware component at various 

points in the development and testing processes. In co-

simulation scenarios, a model structure should be 

chosen that separates the overall model into weakly 

coupled model parts that can be computed concurrently 

and are insensitive to input delays due to co-simulation 

effects. 

 

Figure 9. Potential ways to exchange the System 

Structure Description. 

Once a reasonable model structure is designed there 

is no standardized way so far to exchange it among 

tools from different vendors especially if no overall 

integration model exists. The SSP approach allows to 

share a standardized system structure description 

between data management, integration and 

configuration tools for SIL, MIL and HIL scenarios 

(Figure 9). Hence, the SSP interchange format helps to 

improve the consistent simulation and interchange of 

complex models in the MBD process. 

 

5 Prototypes 

The specifications of SSD are investigated with some 

prototype tools assuming various co-simulation 

environments. 

5.1 Integration Tool 

Model.CONNECT
TM

, a product of AVL List GmbH, is 

a tool to set up and execute system simulation models 

which are composed of subsystem and component 

models from multiple model authoring environments. 

Models can be integrated based on standardized 

interfaces (FMI) as well as based on specific interfaces 

to a wide range of well-known simulation software. 

In order to validate the SSP specification, we 

implemented a prototype plug-in for the tool that 

supports the export and import of system 

configurations.  

During the prototype development we particularly 

explored the capabilities of SSP to pack variants of 

system configurations into one archive. We found that 

the very basic variant support in SSP could be mapped 

to/from the sophisticated variant management 

capabilities in the tool, which is designed to describe 

both different configurations of the system under 

investigation as well as different testing scenarios and 

testing environments. It is important to mention, that 

the variant handling in SSP is deliberately and by 

design not expressive enough to support loss-less 

export-import roundtrips (e.g. Model.CONNECT
TM→ 

SSP →  Model.CONNECT
TM

) with respect to variant 

management. We plan to address this in future by 
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enriching the export/import plug-in based on tool-

specific annotations in the SSP. 

This prototype SSP export/import plug-in was also 

used to test the specifications of SSP with regards to 

the graphical representation (as 2D block model) of 

system configurations. Also here we did not encounter 

any major issues mapping between SSP and the tool-

specific geometry handling. This is again a result of 

SSP design principle to keep the specification as 

simple as possible: SSP allows to transfer component 

and connector positions as well as connection way-

points. Thus, SSP allows to re-construct the main 

aspects of a layout, but it makes no attempt towards a 

pixel-by-pixel identical rendering of systems in the 

exporting and importing systems. 

 

Figure 10 eDrive example in Model.CONNECT
TM

. The 

subsystem “Drivetrain” is displayed in transparent mode 

to see its internal structure. 

Future work on the plug-in will be focusing on the 

support of parameter values and mappings. Workflow-

wise, we will explore using SSP to transfer system 

information from SysML-based MBSE tools to 

Model.CONNECT
TM

. 

 

5.2 Co-Simulation Browser 

FMI has become a common model exchange and co-

simulation standard. However the master-level runtime 

verification and validation of the virtual system made 

of many slave models are still difficult for FMI users. 

The integration of multi-domain expertise is required 

to analyze the multi-FMU complexity and the large 

scale virtual system simulation results. In order to 

facilitate the system-level FMU user collaboration, a 

light weight FMI/SSP Co-Simulation browser is 

prototyped. This co-simulation browser includes the 

simulation player and the parser of SSP defined System 

Structure XML such as in Figure 11 .  

   

Figure 11.  Example of  eDrive.ssd. 

This light-weight co-simulation player is easy to 

extend for the pursuit of ‘X-In-the-Loop’ methodology.  

The ‘X’ stands for ‘model’', ‘software’', ‘hardware’, 

and ‘human’. By connecting various abstract models 

and devices, our FMI/SSP virtual system would be 

widely expanded. With the flash-based integration of 

co-simulation browser, users can easily access mobile 

simulations and visualizations of FMI models in the 

cloud environment. The FMI co-simulation slaves 

would be executed on network distributed servers. The 

control of co-simulation master can be included 

through the brand-new smart devices with some 

intuitive multi-touch operations. 

The co-simulation browser was applied to check the 

project example of eDrive.ssd test case. The XML 

parser reads the FMU connections and interprets the 

FMI-compliant simulation parameters. The layout of   

FMU slaves is automatically adjusted in a circular 

configuration to show the complex connections as 

compact as possible (see r.h.s in Figure 12). Before 

starting the system-level simulation, the co-simulation 

browser can run the unit tests of each FMU with 

manually added test I/O functions to fit into the FMI 

input ports.  

The system parameter dataset/database could also be 

distributed on the network servers. There is a process 

integration tool Optimus® that can export a parameter 

database wrapped as a portable FMU. For example, the 

parameters compiled as ResponseSurfaceModel.fmu is 
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easily imported to our co-simulation test bed, namely, 

‘FMI/SSP Stage’. 

               

Figure 12.  Connection UI on FMI/SSP Stage. 

The FMI/SSP stage master manages the simulation 

context which contains time integration scheme, 

simulation clock, event handling, and parameter 

input/output functionalities. In a master-slave co-

simulation, the master algorithms can define the quality 

and performance of the co-simulation. The clock 

functions setup the master timestep sizes to optimize 

the simulation efficiency. The way how to share such 

simulation parameters would be discussed further in 

the ongoing SSP project. 

When we complete the definition of System 

Structures and System Parameters on this SSP test bed, 

we can extend the co-simulation environment, to that 

of ‘Co-Optimization’. A FMI co-optimization case 

with the sequential tool chain process is reported 

(Batteh et al, 2015). The Co-Optimization stands for 

the paradigm such that every model is gathering as 

FMU modules on the virtual system stage of SSP.  The 

simulation result could be reflected onto the system 

parameter set such as Response Surface Model to 

refine the next co-simulation trial in the optimization or 

calibration cycle.  The SSP-based environment will 

enhance the co-optimization paradigm and speed up 

the parameter exploration in virtual systems. 

 

5.3 FMI Bench 

FMI Bench is a product of PMSF IT Consulting that 

provides a workbench for manipulating and integrating 

FMUs into assembled systems which can then be 

exported as new complex FMUs for use in other 

simulations or complete executable simulations for 

stand-alone use. 

As part of the work on SSP a prototypical 

implementation of the SSP drafts has been undertaken, 

allowing the importation and exportation of complete 

SSP packages from FMI Bench. 

Special consideration was placed on the ability of 

SSP to describe systems with external interfaces that 

would allow exportation as complex FMUs so that 

systems packaged as SSPs could be re-exported as 

complex FMUs for use as subsystems in other 

simulation systems while still making use of the FMI 

Bench features, such as automatic multi-threading of 

complex FMUs or remote FMU execution. 

The experiences with the SSP drafts showed that 

this usage was indeed possible, as seen in Figure 13, 

showing both the imported eDrive example SSP in the 

upper window and the generated native FMI Bench 

project, which allows direct code-generation, in the 

lower window. 

Future work is intended to track the progress of the 

SSP project work in the areas of parameters and 

complex communication primitives, while integrating 

SSP/SSD support into the core product. 

               

Figure 13. eDrive example in the FMI Bench SSP 

prototype showing imported SSP and derived native FMI 

Bench project. 

6 Outlook 

As shown SSP is a valid approach to make the work 

with FMUs and their parameterization easier especially 

when complex systems with several components have 

to be simulated and interchanged. The way to define 

system structures is derived from daily work in 

industry so it can be easily adapted to existing working 

processes. The close cooperation with the FMI project 

group guarantees, that both standards work well 

together, even if SSP is not solely restricted to working 

with FMUs as components. 

In the first stage the project group concentrated on 

defining system structures. That work is currently 

mature enough to enable first practical evaluations of 

it. Parameterization is the second stage to go into in 

more detail in 2016. The overall goal is to have a first 

version of the standard rather early to be able to get 

experience quickly by evaluating it with running 

prototypes which are developed in parallel. Therefore it 

is very appreciated if many tool vendors and key users 

contribute to the project. If you are interested in more 

information or if you want be get involded in our work, 
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feel free to contact us: map-ssp@modelica.org 

[Maybe add contact information to SSP working group 

for vendors/users to join]. 
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Abstract 
Automotive control systems, such as modern 
Advanced Driver Assistance Systems (ADAS), are 
becoming more complex and prevalent in the 
automotive industry. Therefore, a highly-efficient 
design and evaluation methodology for automotive 
control system development is required. In this paper, 
we propose a closed-loop simulation framework that 
improves ADAS design and evaluation. The proposed 
simulation framework consists of four tools: Dymola, 
Simulink, OpenMETA and Unity 3D game engine. 
Dymola simulates vehicle dynamics models written in 
Modelica. Simulink is used for vehicle control software 
modeling. OpenMETA provides horizontal integration 
between design tools. OpenMETA also has the 
capability to improve design efficiency through the use 
of PET (Parametric Exploration Tool) and DSE 
(Design Space Exploration) tools. Unity provides the 
key functionality to enable interactive, or closed-loop 
ADAS simulation, which contains sensor models for 
ADAS, road environment models and provides 
visualization. 
Keywords:     ADAS, Efficient Design, Game Engine, 
Modelica, Simulink 

1 Introduction 
The number of installations of Advanced Driver 
Assistance Systems (ADAS) is rapidly growing in the 
automotive industry. In the case of Toyota cars, Toyota 
Safety Sense, which is a type of ADAS package, will 
be available in most passenger cars released by Toyota 
Motor Corporation in Japan, North America, and 
Europe by the end of 2017 (Toyota Motor Corporation, 
2014). This emerging market of ADAS poses difficult 
system design problems. That is, we cannot use a 
traditional development methodology that considers 
only a target vehicle. We need to derive a new 
methodology which allows us to take its environment 
into account, e.g., road, other vehicles, pedestrians, etc. 
With the announcement that the majority of cars will 
contain an ADAS, it is apparent that the design space 
of future cars will be vast. Moreover, the complexity of 

these systems is also increasing along with their 
extended features, e.g., communication with other 
vehicles, cooperation with a navigation system, etc. 

The above problems imply that a highly-efficient 
design and evaluation methodology for ADAS 
development is required. Van Waterschoot and van der 
Voort have recognized this same need for efficient 
design when looking at ADAS as a human factors 
problem (van Waterschoot et al, 2009). Simulation-
based verification and validation can be a key 
technology in such a methodology as shown by Gruyer 
et al. (Gruyer et al, 2011). More precisely, closed-loop 
simulation including vehicle dynamics and road 
environments is essential. 

Our work addresses the need for closed-loop 
simulation by using Simulink to model software 
components and Modelica to model physics 
components. Simulink is currently the state-of-the art 
tool for developing and analyzing automotive software 
models. Modelica is well suited to describe and 
simulate physics which includes vehicle dynamics. 
However, the task of describing complex conditions 
around the vehicle, such as traffic events, pedestrian 
activity and weather activity is complex and results in 
simulations not amenable to interactive simulation. Our 
work uses Unity to model complex environmental 
conditions. Unity is a video game development tool 
which is well suited to describe complex road 
situations. Our proposed framework consists of a co-
simulation-based solution for ADAS development 
challenges by using OpenMETA to integrate Simulink, 
Modelica and Unity, and provide some features which 
aid in the design of complex systems. 

Generally, game engines provide sophisticated 
virtual reality environments, and can be used to allow 
users to collaborate.  These game engine advantages 
support valuable features in ADAS development such 
as gamified and crowd-sourced vehicle testing, and 
virtual dealership, which are described below. 

 Section 2 provides a background on existing design 
tools. Section 3 describes our tool framework. Section 
4 describes our case study and Section 5 presents our 
conclusions and possible directions for future work. 
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2 Background 

2.1 Existing Tools 
Modelica is a multi-physics, multi-domain, acausal 
modeling language. Dymola, developed by Dassault 
Systèmes, is a powerful tool as an editor and simulator 
of Modelica models (Dassault Systèmes, 2015). 

Simulink is a graphical modeling tool produced by 
MathWorks. It provides a graphical modeling editor, a 
customizable set of block libraries, and solvers for 
simulations (Mathworks, 2015). Designers can edit 
models by deploying blocks from the libraries and 
adding causal connections between blocks. Simulink is 
widely used in the automotive industry for vehicle 
control system software design, such as ADAS 
systems, engine control systems, transmission control 
systems, etc. This is the reason why we selected 
Simulink for control system software modeling. 

The OpenMETA toolchain was developed by 
Vanderbilt University in conjunction with the Adaptive 
Vehicle Make program of DARPA (Sztipanovits et al, 
2014; Sztipanovits et al, 2015). OpenMETA is a tool 
infrastructure with the goal of enabling development of 
cyber-physical systems. This is accomplished by 
providing horizontal integration between external 
software tools.  A model in OpenMETA references 
component models which exist in external tools such as 
Dymola, Creo, or ADAMS. In order to interface with 
an external tool, an interpreter is created for 
OpenMETA which transforms the model into a format 
the external tool can use. Typically OpenMETA is 
setting parameters which are then used to provide 
inputs into a detailed model that exists in the external 
tool. Once the interface is in place, then any parametric 
changes made to the model in OpenMETA will also 
appear in the external tool. Additionally, if the internals 
of any tool specific model are changed, as long as the 
interface remains, the models will function as they 

would if the model had been generated entirely in the 
external tool. 

In the case of Simulink integration, a Simulink 
model is wrapped as a C library which is referenced in 
OpenMETA. The representation of this library in 
OpenMETA includes the interfaces exposed in the 
original Simulink model.  

Additionally, OpenMETA has other features for 
highly-efficient design, such as the Parametric 
Exploration Tool (PET) and Design Space Exploration 
(DSE). Automotive control software generally has 
many parameters that should be calibrated in the 
development phase. PET enables a designer to explore 
the interactions between parameters in an automated 
fashion and then displays the results in a way which 
allows the designer to make tradeoffs and select the 
parameter set which is most suited to the design 
criteria. Since OpenMETA has this feature, there is 
interest in applying OpenMETA to ADAS 
development. In this paper, we focus more on utilizing 
the PET in OpenMETA to calibrate system parameters 
with the simulation models. 

A growing challenge with the design of complex 
systems is that each system may be designed using a 
variety of architectures and each architecture is 
comprised of components which also have variations 
as shown in Figure 1. This information is represented 
in OpenMETA through the use of design spaces. A 
design space is a set of design containers which contain 
a family of components which share a common 
interface. Alternate design architectures are similarly 
represented except rather than alternative components 
there are alternative architectures where the 
architecture is in turn made up of components. This 
results in an explosion in the number of configurations 
that could be considered. OpenMETA provides a tool, 
which is called DSE, to list all of the candidate design 
configurations and simulate those that meet the static 

Standard architecture with 
variants of components 

Parallel architecture with 
parametric variants of 
components 

Series architecture with 
parametric variants of 
components 

Engine Generator Converter Battery 

Motors Brakes 

Engine Transmission Drivetrain Brakes 

Engine Generator Converter Battery 

Motors Brakes 

Engine Generator Converter Battery 

Motors Brakes 

Engin
e 

Transmiss
ion 

Drivetr
ain 

Brake
s Engine Transmission Drivetrain Brakes Engine Transmission Drivetrain Brakes 

Standard architecture with 
parametric components 

Engine 
(Hp=200,cyl=4
, .) 

Transmission 
(gears=4, ratio = [a,b,]) 

Drivetrain 
(l=10, r=2.5 ) 

Brakes 

Engine Transmission 

Motor Converter Battery 

Drivetrain Brakes 
Engine Transmission 

Motor Converter Battery 

Drivetrain Brakes 
Engine Transmission 

Motor Converter Battery 

Drivetrain Brakes 

Figure 1. An example of multiple architectures with component alternatives. 
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constraints which are specified by the designer. 
OpenMETA also provides a visualization tool that 
allows a designer to compare the designs which meet 
system requirements from DSE simulation results. 

 
Although existing tools mentioned above allow us to 

build a vehicle model with cyber components and 
physical components, the proposed integration with 
Unity allows us to provide a far richer, virtual reality 
testing environment, including traffic, pedestrians, 
sensor models and effects of weather and the 
environment, such as those due to fog, heavy rain, and 
icy road conditions. These effects are important, 
because they can potentially compromise the correct 
functionality of ADAS systems. 

2.2 Unity
Instead of commercial tools of ADAS simulation, e.g., 
PreScan, CarMaker, etc. we use Unity (Unity 
Technologies, 2015), which is a 3D game engine for 
video game development, for road environment 
modeling, and sensor modeling. The primary reason 
that we selected a game engine was to leverage the 
capability to involve users from all over the world in 
our ADAS evaluation tests. This concept is referred to 
as “gamified and crowd-sourced virtual testing”. 
Generally, many situations would need to be 
considered in order to evaluate an ADAS 
implementation such as driver input, other vehicle 
behaviors, road geometry and so on. By using a game 
environment populated by human and virtual users, the 
ADAS software can be tested more extensively than 
with traditional static test scenarios.  

In addition to providing a multi-user platform, Unity 
has a user friendly GUI editor, 3D physics engine, 
animation engine, 3D model import, and scripting in 
C# or JavaScript. These features help a simulation 
designer model cities which contain road models and 

other dynamic objects, such as vehicles, pedestrians, 
motorcycles, and bicycles. Although other 3D game 
engines are available, Unity was selected because of its 
large asset library, multiplatform support, and large 
community support.. Many assets are available through 
the Unity Asset Store which accelerates development 
and would not be available in other tools. For example, 
road editors, vehicle physics, and car traffic simulators 
are available as ready-to-use assets with Unity. 

3 Methodology 

3.1 Simulation Architecture 
We integrated the four tools for the simulation 
framework: Dymola, Simulink, OpenMETA and 
Unity. The architecture is shown in Figure 2. 
OpenMETA integrates the Dymola and Simulink 
models. The Dymola model has some vehicle physical 
components, including the engine, transmission, 
driveshaft, and differential from Vehicle Dynamics 
Library. The Vehicle Dynamics Library is developed 
by Modelon (Modelon, 2014). Other components, such 
as wheels, are modeled in Unity. The interfaces 
between Unity and Dymola are wheel torques and 
wheel rotation speeds. The Dymola simulation sends 
wheel torques to the Unity simulation, and the Unity 
simulation sends wheel rotation speeds to Dymola. 
These interfaces are implemented by UDP socket 
communication. The Modelica Device Drivers 
(Bernhard et al, 2015) library provides UDP 
communication blocks used in Dymola. 

The Unity model also has road environments, other 
vehicle models, and sensor models for ADAS systems. 
The sensor data in Unity is also sent to the Simulink 
controller via UDP. The list of UDP interfaces is 
shown in Table 1. In the Unity model, some assets 
from Unity Asset Store were used for modeling. For 
example, EasyRoad3D Pro is used for road building, 

Figure 2. Simulation architecture 

OpenMETA 

Dymola Modelica model 
(Library which is used) 

Legends: 

Simulink model 

Unity 

Control Software Model 

Vehicle Dynamics Model 
(Vehicle Dynamics Library) 

•  Engine 
•  Transmission 
•  Drive Shaft 
•  Differential 

UDP Socket Communication Model 
(Modelica_DeviceDrivers) 

UDP 
•  Vehicle Dynamics 

  Tire-road Interaction 
•  User Interface 

  Gas Pedal 
  Brake Pedal 
  Steering 
  Cruise Control Switches 

•  Roads 
•  Other Vehicles 

UDP data are shown in Table 1 
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and the Urban Construction Pack for building city 
models. 

 

Table 1. UDP Communication data list 

Direction Data 

Dymola → 
Unity 

Wheel torques 

Vehicle status (ADAS status, etc.) 

Unity → 
Dymola 

Wheel rotation speeds 

Sensor data (Millimeter wave radar, etc.) 

User operation (Pedals, steering, etc.) 

 

4 Case Study 
In this paper, we show simulation results with PET in 
OpenMETA to illustrate the advantages of this 
simulation framework. The PET is a highly-efficient 
methodology for calibrating control software 
parameters.  

As the first case study for this simulation toolchain 
with PET, we decided to model the Adaptive Cruise 
Control (ACC) system. The ACC is one of the ADAS 
systems. This system helps mitigate driver fatigue by 
assisting accelerator operations. Toyota’s ACC system 
has 2 modes: constant speed control mode and vehicle-
to-vehicle distance control mode. Constant speed 
control mode is the same as a conventional cruise 
control system. While this mode is active the system 
works to maintain a target velocity. Vehicle-to-vehicle 
distance mode works with sensors, such as millimeter 
wave radar sensor that detects the presence of lead 
vehicles. Upon detecting a vehicle, the ACC adjusts the 
speed in order to maintain a safe following distance. 
The control flow is shown in Figure 3. The driver can 
choose the following distance:  Long, Middle or Short. 
Actual distances are determined based on the velocity 
of the vehicle. 

For the ACC case study in this paper, we defined 
following scenario as shown in Figure 4. There is an 
ACC installed in host vehicle A, which has initial 
speed of v0 and a lead vehicle B, which has constant 
speed vfront. Vehicle A is initialized with the ACC 
active and velocity set point vset. The initial distance 
between two vehicles was set so that vehicle A 
accelerates to the speed vset. After some time vehicle A 
senses vehicle B and transitions to vehicle following 
mode. Vehicle A decelerates to maintain the distance 
between two vehicles dset. In this paper, we used values 
in Table 2. 

 
Figure 3. Adaptive cruise control diagram (Shiraishi et al, 
2011) 
 
 
 

 
 
 
 

 
Figure 4. Case study of ACC system 

 
Table 2. Parameters used in the simulation 

Parameters Values 

v0 0 km/h 

vset 70 km/h 

vfront 50 km/h 

d0 150 m 

dset 40m 

1 2 3 

v0 

vfront 

vset 

v 

t 

Maintain 
set distance 

1 

2 

3 

Vehicle A Vehicle B 

d0 

vfront 

vset 

v0 vfront 

vfront 

vfront 
dset 
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4.1 Controller Model 
The controller1 developed for this experiment is 
bimodal. The first mode utilizes vehicle-to-vehicle 
distance as the desired value and the second mode uses 
a velocity set point as the desired value. Both 
controllers were implemented using PD controllers. 
The controller behavior is to maintain a safe following 
distance if there is a lead vehicle. Otherwise, it keeps 
vehicle speed to the set speed. The PD gains are 
calibrated by using PET which is discussed below. The 
ACC is always activated during the simulations so that 
the simulation does not need any driver inputs. 

4.2 Unity Model
For the ACC case study, we added a long straight road, 
two vehicles and a millimeter wave radar sensor 
model. The sensor model obtains a distance between 
two vehicles and their relative speed. These signals are 
communicated to Dymola via UDP and are used as 
inputs to the controller. The sensor model was built by 
using “Ray” class in Unity scripting C# API which is 
often used in shooting games. 

4.3 Parametric Exploration Tool and Test 
Bench 

To run the simulation from OpenMETA with PET, 
designers have to set up some Dymola parameters, 
such as simulation time, solver, etc. in the OpenMETA 
Test Bench as shown in Figure 5. Additionally, 
metrics, which are used for evaluations of the models, 
need to be described in the Test Bench.  The metrics in 
the ACC case study are velocity and gap distance 
overshoot. Settling time and rise time are also major 
metrics of this kind of system, but have not been 
included in this case study. 

Next step toward parameter design is building a PET 
test bench. PD gains, which are speed control P, D 
gains and distance control P, D gains, are target 
parameters to be calibrated. In the PET test bench, 

                                                
1 The ACC controller model in this paper is not a real 
ACC model 

designers need to assign parameters, their ranges, and 
testbench outputs or metrics. The PET test bench is 
also shown in Figure 5.

4.4 Simulation Results 
We ran the PET of the ACC case study with 
parameters which are shown in Table 2. The result of 
the PET simulation results can be visualized as a  
“Constraint Plot” in the OpenMETA dashboard, which 
is shown in Figure 6. The horizontal axis and vertical 
axis of this plot are the PD gains mentioned above. The 
plots show boundaries, which represent which 
combinations of parameters that meet the overshoot 
requirements. Thresholds are adjustable in the 
dashboard. The threshold values in Figure 6 are 
overshoot < 0. 

A designer can find PD gains by clicking on a point 
in a plot. We picked gains which are close to the 
boundary which meets both overshoot requirements. 
The graphs in Figure 7 are Dymola simulation results 
using gains selected by examining the constraint plot 
shown in Figure 6. The upper graph in Figure 7 
represents distance between two vehicles; the lower 
graph in Figure 7 represents the velocity of vehicle A. 
The red line represents the target value and the blue 
line represents the current value. This plot shows that 
there is no overshoot in either graph, demonstrating 
that the PET was useful in selecting design parameters.  
  

Figure 5. OpenMETA models for PET 

PET Test Bench 
•  Target parameter range 
•  Metrics 

Test Bench 
•  Simulation settings 

  Simulation Time 
  Solver 
  Input parameters 
  Metrics 

Model Integration 
•  Controller model 
•  Vehicle dynamics model 
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5 Conclusions 
This paper described the methodology of integrating 
OpenMETA and Unity. The foundation of an 
integrated simulation framework, which includes PET 
for ADAS evaluation, has been built. As a result, 
designers may calibrate control software parameters 
more efficiently. Next steps include developing high 
quality and multi-fidelity models which would allow 

for greater flexibility in the design process and 
developing additional case studies including the 
addition of driving scenarios such as: curves, 
intersections, etc. Additionally, it is also planned to 
consider driver-in-the-loop simulation which 
incorporate user input from Unity clients. These 
simulations would allow for some interesting 
applications. One such application is developing a 

Figure 6. PET result: Constraint Plot 

Figure 7. Waveform results of PET 
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virtual dealership concept in which customers 
participate in the design of their vehicles, and test-drive 
their creations. This test environment would also be 
used to crowd-source vehicle testing allowing for 
improvements to systems like ADAS and resulting in 
designs that have better performance and reliability. 
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Abstract 

Voluntary and reflexive muscle activation of human 

elbow joint is investigated by both subject tests and 

numerical simulations. A jerk loading is applied to 

extend the elbow joint with different muscle tensing and 

pre-recognition conditions. Inter- and Intra-subject 

variations of hand displacement are analyzed for an 

objective assessment of the active response at the elbow 

joint to the external perturbation. Both Modelica and 

finite element mesh models are developed using passive 

kinematic joint element and active torque which has PID 

close loop control. The simulation result from these two 

models are compared with test results and shows a good 

correlation. 

Keywords:     Digital human body model, Voluntary and 
reflexive muscle activation 

1 Introduction 

Digital human body models (DHBM) have been 

widely adopted in various CAE processes of vehicle 

design, e.g., car crash simulation for the prediction of 

injury risk and riding comfort simulation for the 

assessment of occupant discomfort. For most of such 

cases, the DHBM is in 3D finite element mesh shape so 

that it can mechanically interact with vehicle structures 

such as seat, safety belt and airbag. Thanks to efforts 

from many researchers, there is a significant 

advancement in human body modeling 

(www.ghbmc.com), e.g., mechanical behavior of 

biological tissue but the active human response with 

voluntary and reflexive muscle activation that affects 

occupant kinematics are still remaining as a great 

challenge. 

 

Muscle tensing of bracing occupant produces larger 

axial forces, stress redistribution within bones, increase 

in effective mass and stiffness, altered kinematics, and 

less excursion and smaller joint rotations (Choi, 2005). 

Voluntary and reflexive muscle activation of a vehicle 

occupant is modeled by active joint element at each 

anatomical joint position (e.g., shoulder, knee, spine, 

and etc.). There are two basic elements at each joint, i.e., 

passive kinematic joint elements and torque actuators. 

Assuming that a co-contraction of agonist and 

antagonist muscles stiffens the joint articulation, spring 

constant and damping coefficient of the passive 

kinematic joint element are adjusted for the different 

level of co-contraction, which is considered as a major 

mechanism of voluntary muscle activation. A vestibular 

reflexive muscle activation for the posture stabilization 

is modeled by active torque with PID close loop control. 

Active torque, the control signal is a sum of proportional, 

integral, and derivative terms between current and 

reference states of the joint angle.  

 

Test of jerk loading applied to elbow joint which is 

relatively simple one dimensional articulation is 

performed with live human subjects to identify and 

quantify the active response with different muscle 

conditions. Two kinds of numerical elbow models, i.e., 

3D finite element mesh and Modelica models are built 

to reproduce the active response to the jerk loading and 

further to elucidate those kinesiologic behavior of 

bracing human joint. 

2 Jerk loading to elbow joint extension 

During the vehicle driving or just riding, external 

loadings are often applied to the occupant as 

perturbations, e.g., vertical bumping on rough road, 

lateral G force at cornering, and autonomous braking 

with ADAS (Advanced Driver Assistant System). It 

would be quite natural that the occupant spontaneously 

brace to keep his (or her) upright sitting posture. In order 

to mimic this kind of perturbation of vehicle in motion 

and bracing behavior of the occupant, jerk loadings to 

elbow joint extension are performed as follows. 

2.1 Anthropometry of test subjects 

Five male subjects are recruited and their average age 

and anthropometric data are listed in Table 1. 

 

Table 1 Average data (SD) of five test subjects 

age height 
Weight 

(kg) 
Fat Free 

Mass(kg)* 
forearm 

weight(kg)** 

28 
(2.3) 

172 

(4.6) 

72.8 

(5.1) 

53.9 

(2.1) 

1.714 

(0.11) 

*: from inbody analysis 

**: calculated from GEBOD (Huaining Cheng, 1996) 
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2.2 Jerk loading test 

The elbow joint with simple 1-DOF is selected. Upper 

body and upper arm of test subject are restrained and the 

elbow joint angle is to maintain its initial position, i.e., 

keeping the forearm levelled before and after the jerk 

loading. There are two kind of loadings, 5kgf static 

loading on hand and 3kgf jerk loading on wrist which is 

initially carried by a string and just becomes a jerk load 

when string is cut. (See Fig. 1). The subject has two test 

conditions, 1) co-contraction versus single contraction 

and 2) recognition versus unrecognition of jerk loading. 

Co-contraction or single contraction is respectively 

attempted by contracting both agonist (e.g., biceps) and 

antagonist (e.g., triceps) muscles or only agonist 

muscles.  Recognition of the jerk loading to test subject 

is made by letting him to make his own observation of 

the action of string cut, i.e., open eye condition. On the 

contrary, the closed eye condition does not allow the test 

subject to become aware of the precise moment string 

cut. There are thus a total four cases of test conditions, 

“open eye tensed” (recognized with co-contraction), 

“closed eye tensed” (unrecognized with co-contraction), 

“open eye relaxed” (recognized with single contraction), 

and “closed eye relaxed” (unrecognized with single 

contraction). All five test subjects have two trials for 

each case of four test conditions. 

 
Figure 1 Test setup for jerk loading at elbow joint 

2.3 Measurement of hand motion 

Hand displacements, digitized from video, are shown in 

Fig. 2. Intra-subject variations are quantitatively 

assessed by CORA (CORrelation and Analysis, 

http://www.pdb-org.com/de/information/18-cora-

download.html) score as listed in Table 2. All five test 

subjects showed high CORA scores with “open eye 

relaxed” condition, i.e., good repeatability between two 

trials at recognized with single contraction muscle 

condition. It is speculated that the cases with low CORA 

score are due to the poor coordination of muscle tensing 

condition of the subject, e.g., closed eye relaxed case with 

test subject #1. 

 

 
(a) Open Eye Tensed 

 

 
        (b) Close Eye Tensed 

 

 
(c) Open Eye Relaxed 

 

 
(d) Close Eye Relaxed 

Figure 2 Typical hand displacements in vertical 

direction (y) due to the jerk loading from subject #2 (●: 

1st try, ▲: 2nd try) 

 

Table 2 CORA score for intra-subjects variation 
Sub. 

# 

Open eye 

Tensed 

Close eye 

Tensed 

Open eye 

Relaxed 

Close eye 

Relaxed 

1 0.699 0.967 0.957 0.493 

2 0.746 0.732 0.948 0.768 

3 0.962 0.642 0.955 0.898 

4 0.365 0.828 0.720 0.851 

5 0.546 0.766 0.795 0.914 

Mean 
(S.D.) 

0.693 

(0.21) 

0.787 

(0.11) 

0.875 

(0.10) 

0.785 

(0.15) 

 

The inter-subject variation is also represented by test 

corridors with mean hand displacements as shown in Fig. 

3. The open eye tensed condition shows the least width 

between upper and lower corridors while the open eye 
relaxed condition has largest. 
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(a) Open Eye Tensed     

 

 
    (b) Close Eye Tensed   

 

 
(c) Open Eye Relaxed        

 

 
 (d) Close Eye Relaxed 

Figure 3 Test corridors and mean hand displacements 

of three subjects. 

3 Three dimensional finite element mesh 

versus Modelica models 

Both FE mesh and Modelica models are shown in Fig. 

4. Two rigid bodies, i.e., upper and lower arms 

articulated by one dimensional kinematic joint element 

that represents the elbow joint. The dynamic properties 

of two rigid body are assigned from the average data of 

five test subjects. It is confirmed that the outcome of 

both model, i.e., elbow extension and hand displacement 

from the jerk loading is identical to each other. 

 

 

 
Figure 4 3D finite element mesh (top) and Modelica 

(bottom) models of active elbow joint 

3.1 Modeling of active elbow joint 

The numerical modeling of elbow joint and its active 

response to the jerk loading is designed by 

implementing two mechanical components, a passive 

1D kinematic joint element and a torque actuator. The 

linear stiffness and damping coefficient of the passive 

1D kinematic joint element present the level of co-

contraction that stiffens the elbow joint articulation. 

Voluntary and reflexive muscle activation responding to 

the jerk loading is modeled by the torque actuator with 

a PID close loop feedback control. Considering that the 

test subject tries to keep the initial elbow joint angle, 

torque (Mz) is activated to minimize the error which is 

the difference between the initial and current elbow joint 

angles. Meijer et al (2013), and Brolin et al (2015) 

presented successful applications of the active torque 

with PID control to their active human body models. 

Gain values for the PID control, i.e., Proportion, Integral, 

and Derivative terms determine the rates of torque 

generation. Faster torque generation with larger gain 

values stands for the recognition of jerk loading, i.e., 

“open eye” condition in the subject test. On the other 

hand, “closed eye” condition for unrecognized and thus 

more reflexive response that is modeled by smaller gain 

values. Comparison of hand displacements between 

subject test and simulation for four cases are shown in 

Fig. 5.  The comparison of hand position at the 

maximum elbow extension between subject test and 

simulation is also shown in Fig. 6. 
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Figure 5 Comparison of hand displacements between 

subject test and simulation. 

 

 
(a) Open Eye Tensed 

 
(b) Close Eye Tensed 

 
(c) Open Eye Relaxed 

 
(d) Close Eye Relaxed 

Figure 6. Comparison of hand position at the maximum 

elbow extension between subject test (1st trial of Subject 

#4) and simulation  

 

3.2 Hypothesis on the modeling of active elbow 

response 

Table 3 lists modeling parameters of active elbow joint 

for all four cases. The derivative term in PID close loop 

control turns out to be insensitive in this simulation of 

active response to the jerk loading and thus excluded. 

Those parameters were estimated by heuristic method 

(trial and error) and based on following hypotheses; 

1. Muscle condition e.g., co-contraction (tensed 

condition) vs. single contraction (relaxed condition) is 

modeled by damping coefficient of K-joint as shown in 

Fig. 7. 

 

 
           Co-contraction                       Single contraction  

        (Tensed condition)                  (Relaxed condition) 

Figure 7 Damping coefficients for different muscle 

tensing conditions 

2. Stiffness of K-joint is dependent on inter subject 

variations, e.g., muscular structure, gender, etc. 

- Muscular build (stronger) arm ↑, male > female, and 

so on. 

3. Recognition of perturbation (Open eye vs. closed eye) 

is controlled by gains of PID close loop control 

- Relaxed condition (single contraction) has decreased 

gains by factor of 0.35 than tensed condition (co-

contraction) 

4. Muscle reflex latency (delay), 30ms is given to the 

closed eye condition  

 

Table 3 Modeling parameters and CORA score of active 

elbow joint model  

Modeling  
parameters 

Open eye 

Tensed 

Close eye 

Tensed 

Open eye 

Relaxed 

Close eye 

Relaxed 

Damping C. 

(kNms/rad) -1.5/1.5 -1.5/1.5 -1.5/0.5 -1.5/0.5 

Stiffness 
(kNm/rad) 0.1 0.1 0.1 0.1 

Kp 

(kNm/rad) 80 50 80*0.35 50*0.35 

Ki 
(kNms/rad) 0.015 0.015 0.015*0.35 0.015*0.35 

PID Control 

Latency(ms) 0 30 0 30 

CORA 

Score* 0.916 0.897 0.950 0.892 

* Calculated between test and simulation in Fig. 5 

The correlation between test and simulation results 

for all four cases are qualitatively analyzed by CORA 
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score as in Table 3. Open eye condition, i.e., recognition of 

jerk loading, shows better correlation slightly for both tensed 

and relaxed muscle conditions than closed eye condition. 

(0.916, 0.950 > 0.897, 0.892) 

4 Whole body modeling 

The same modeling scheme of active response at elbow 

joint is extensively applied to the whole body model.  

The version of multi-body model (c.f., deformable body 

model) consists of 15 rigid body segments and 14 

articulated joints (Fig. 8). Each articulated joint has 

either 1 DOF (e.g., elbow, knee, etc.) or 3 DOF (e.g., 

shoulder, hip, spine, etc.) depending on its 

biomechanical characteristics. Same kind of passive 

kinematic joint element and active torque as in the active 

elbow joint model are implemented but its mechanical 

characteristics, e.g., the moment-angle curve and 

damping coefficient are dissimilar to each other. The 

errors to be removed by active torques at articulated 

joints are a composite function of joint angle changes at 

every body segments. Human driver voluntarily and/or 

reflexively braces to maintain upright sitting posture 

against various kinds of G-forces during vehicle 

maneuvering such as emergency braking, lane change, 

cornering, etc. Validation of active human body model 

against the test data from open literature (Huber, 2015) 

is now in progress. 

 
Figure 8 Whole body model with 15 rigid body 

segments and 14 articulated joint  

5 Discussion 

The SISO (Single-Input Single Output) problem with 

1D active elbow joint model becomes MIMO (Multiple-

Input Multiple Output) problem with the whole body 

model. Human driver’s muscle recruitment strategy of 

active response to brace against external perturbations 

belong to the quite complicated behavioral kinesiology. 

Also inter and intra subject variations make the active 

human body model as one of exciting challenges. 

References 

Karin Brolin, et al. Development of an Active 6 Year Old 

Child Human Body Model for Simulation of Emergency 

Events, IRCOBI 2015. 

Huaining Cheng et al. (1996) The development of the GEBOD 

program, Biomedical Engineering Conference, Proceedings 

of the 1996 Fifteenth Southern 

Hyung Yun Choi, et al, Experimental and numerical studies 

of muscular activations of bracing occupant, ESV 2005 

Phillip Huber, et al, Passenger kinematics in braking, lane 

change and oblique driving maneuvers, IRCOBI 2015 

Riske Meijer, et al. Modelling of Bracing in a Multi‐Body 

Active Human Model, IRCOBI 2013. 

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

54 DOI 
10.3384/ecp1612450

____________________________________________________________________________________________________________



Modelingandsimulationforleg-wheelmobilerobots
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Abstract

Modelingofcomplexrobotswhichconsistofmechani-
calandelectricelementshasattractedalotofattentionto
beutilizedforanalysis,simulationanddevelopment.In
thispaper,wemodelthespaceexplorationrobotwhich
hasleg-wheelmechanismsusingModelica,whichisan
equationbasedlanguageandconvenienttocopewitha
complexphysicalsystem.Inaddition,toevaluatethe
performanceofplanetaryexplorationrobots,weconduct
simulationsconsideringthespaceenvironmentusingthe
fundamentalcontrolsystemandtherobotmodel.The
simulationresultsindicatethatconsideringloadshiftdue
tocentrifugalforceisimportantunderlowgravitational
acceleration.Keywords:leg-wheelmobilerobots,mod-
eling,spacerobots,controlsystem

1 Introduction

Leg-wheelmobilerobotsdipictedinFigure1attractalot
ofattentionandarewidelydeveloped,becausetherobots
achievehighstabilityutilizinglegmechanismandhigh
mobilityusingwheelmechanism. Leg-wheelhybrid
platformQuattroped,whichhastwodegree-of-freedom
legs,isdeveloped(Shenetal.,2009).Inordertoclimb
upontothesteps,thecontrolmethodforlimbmech-
anismrobotASTERISKisstudied(Fujiietal.,2006).
Theactionplanningalgorithmforaplanetaryexplorer
robotLEONisproposed(Rohmeretal.,2010).Since
theserobotscanmoveonuneventerrain,itisexpected
toworkinplanetaryexploration.However,conducting

Figure1.Leg-wheelmobilerobots.

experimentsinspaceenvironmentrequiretoomuchcost
andtime. Therefore,simulatingtherobotbehaviorin
spaceenvironmentappearsasapracticalchoice.
EquationbasedlanguageModelicaisveryefficacious

tomodelcomplexsystemswhichhavemechanicaland
electricalelements. Severalstudieshavereportedthe
modelingandsimulationresultsofseveralindustrialap-
plicationsusing Modelica(Otteretal.,2015)(Hirano
etal.,2015).Inthispaper,wemodelandsimulatethe
behaviorofaleg-wheelmobilerobotmodeledusinggeo-
metricparametersofATHLETEwhichhastheleg-wheel
mechanismdevelopedbyNASA(Wilcoxetal.,2007)in
thespaceenvironmentusingModelica.

2 Modelingleg-wheelmobilerobot

2.1 Outline

Table1showsthecharacteristicsofthelegandthewheel
mechanism. Themovingspeedandefficiencyofthe
wheelmechanismsishigherthanthatofthelegmecha-
nisms.Therobotsequippedwiththelegmechanismscan
moveonuneventerrain.Moreover,thelegrobotswhich
havetheredundancyinlegarrangementcancontrolthe
wheelpositiontoavoidoverturn. Theleg-wheelmo-
bilerobotspossessbothcharacteristicswhichenhance
therobotmobility.Inthispaper,wefocusontheATH-
LETEasatypicalexampleofleg-wheelmobilerobot.
TheATHLETEisalunarexplorationrobotdeveloped

byNASA.Theleg-wheelmechanismswithsixdegree-
of-freedomconsistingofthewheelmechanismandthe
sixjointsaremountedoneachvertexofthehexagonal
body.TheATHLETEisabletoallocateloadsandmove
onuneventerrainwhilemaintainingthebodyhorizon-
tally.Theseleg-wheelmechanismsareutilizedinorder
toaccommodateawiderangeoftasks.

Table1.Characteristicsofleg-wheelmobilerobots

Leg Wheel leg-wheel
Climbingsteps Good NG Good
Loadsharing Good NG Good
Movingspeed OK Good Good
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Figure2.Top-endofModelicamodelinDymola.

Figure3.Leg-wheelmobilerobotmodel.

2.2 Modeling

Wemodeltheleg-wheelrobotwhichconsistsofbody
andlimb-partsusingModelicainordertosimulatethe
behaviorofthewheelmechanismandanalyzethemo-
bilityofATHLETE.TheATHLETEmodeldescribedby
ModelicaisshowninFigure2and3.Therobotmodelis
designedasarigidhexagonalbody(orangeframe)and
links(greenframe),asFigure2indicates.Thebodymass
pointwhichisthegravitycenterofthehexagonissetas
theoriginoftherobotcoordinatesystem(blackarrows
inFigure3).Aleg-wheelmechanismpartconsistsofsix
revolutejoints,sevenlinksandthewheelmechanism.
Thelimbmasspointsaresetonthecenterofthewheel
andthemiddleofeachlink.ThetiremodelofVehicle
DynamicsLibrary(VDL)ofDymolaisintroducedtore-
producetheactualwheelbehavior.

3 Structureofthecontroller

3.1 Outline

Wheels torque

Steering angle
Wheels angular velocity

Limbs joint angle 

Limbs joint torque

ATHLETEmodel

Guidancecontrol

Path planning 

Motioncontrol 

Plant

)5~1(=jji,θ

ji,τwτ

wω 6,iθ

xu yu φu

AsFigure4indicates,thecontrollerconsistsofthreelay-
ers:pathplanninglayer,guidancecontrollayer,andmo-
tioncontrollayer.Inthispaper,thefundamentalcontrol
systemisproposedtoachievethereferencevehicleve-
locityinthemotioncontrollayer.Themotioncontrol

Figure4.Controlsystemflow.

layerconsistsoftwoparts.Firstoneisthecontrolsys-
temfordrivingandsteeringofeachwheel.Anotherpart
determinesthepostureoftherobot.Detailsofeachblock
areexplainedinthefollowingsections.

3.2 Motioncontroller

Inthissection,weexplaintheleg-wheelmobilerobot
modelandacalculationmethodofthecontroller.Fig-
ure5depictsthemodeloftheleg-wheelrobot.X0 Y0
istheinertialcoordinatesystemandx yisthecoordi-
natesystemfixedtotherobot.(Xg,Yg)isthepositionof
therobotcenterofgravity(CoG)ontheX0 Y0coordi-
natesystemandϕistheorientationoftherobot.ux,uy
arethecommandtranslationalvelocityatCoGanduϕ
isthecommandangularvelocityonthex ycoordinate
system.
Figure6showstheconfigurationoftheleg-wheel

mechanismoftheATHLETEandthedefinitionofthe
angleandtorqueofthelegjoints.θi,jaretherotationan-
gleofeachjointwheresubscripti=1 6indicatesthe
legsnumberandj=1 6indicatesjointnamesofHip
Yaw,HipPitch,KneePitch,KneeRoll,AnklePitch,and
AnkleRoll,respectively.Inthispaper,theAnkleRoll
angleθi,6iscontrolledconsideringmovingdirectionand
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Figure6.ConfigurationoflimbjointsofATHLETE.

theotheranglesθi,1•••θi,5arecontrolledtomaintainthe
referenceposture.
Figure7showsthewheelandtheAnkleRollangle

correspondingtothesteeringangle.θi,0istheanglefrom
theCoGpositiontothewheel.
Thetranslationalvelocitiesofthewheelvx,iandvy,i

arecalculatedbasedonthecommandvelocityatCoG
ux,uyanduϕasfollows:

vx,i=ux yiuϕ, (1)

vy,i=uy+xiuϕ. (2)

Referenceangleθ̂i,6andangularvelocityofwheelω̂wi
arecalculatedasfollows:

θ̂i,6 = tan1
(
vy,i
vx,i

)

θi,0, (3)

ω̂wi = Vi/Rw, (4)

Vi = vx,icoŝθi,6+vy,isin̂θi,6, (5)

whereRwisaradiusofthewheelandVi

6,iθ

xu

0,iθ

yu

φu

y

x
ix

iy

iV

xiv

yiv

Wheeli

CoG

l

istranslational
angularvelocity.Inordertoachievethereferenceangle

Figure7.Velocityvectorofwheel.

θ̂i,jandangularvelocityω̂wi,weintroducethePDandP
controlasfollows:

τi,j=Pth(̂θi,j θi,j)+Kd(̇̂θi,j θ̇i,j), (6)

τwi=Pw(̂ωwi ωwi), (7)

wherePthandPwareaproportionalgainandKdisa
derivativegain.
Zeromomentpoint(ZMP)isaoneofconceptwhichis

anindexofstability.WhentheZMPpositionoftherobot
iskeptinsidethesupportpolygon,thestabilityofthe
robotbodyisassured.Weintroducetheturninglimitra-
diusrmaxconsideringrollingmomentandZMPposition
inordertoevaluatetherelationshipbetweentheheight
ofCoGandcentrifugalforce.IftheZMPpositionco-
incideswiththetipofthewheelposition,thesituation
oftherobotisregardedasalimitationofoverturn.In
thissituation,theturninglimitradiusrmaxiscalculated
asfollows:

rmax=
ux
2zc
gl
, (8)

wherezcistheheightoftherobotCoG,l=
√
xi2+yi2is

thelengthfromCoGpositiontothewheelpositionand
gisgravitationalacceleration.

4 Simulation

4.1 Conditions

Toanalyzerobotbehaviorinthespaceenvironment,we
conductthreesimulationswiththefollowingconditions:

∼Case1:Turningunderthelunargravitywiththe
heightofCoGhigh(ZCoG=1.45m)

∼Case2:Turningunderthelunargravitywiththe
heightofCoGlow(ZCoG=0.866m)
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∼Case3:Turningundertheearthgravitywiththe
heightofCoGhigh(ZCoG=1.45m)

Comparingcase1with2,weanalyzetheeffectofheight
ofCoGzCoG.TheATHLETEisabletochangetheheight
ofCoGzCoGbytakingadvantageoftheredundancyof
thelegjoints.Inthesesimulations,theheightofCoGis
changedsothatthepostureoftheATHLETEismain-
tained. Comparingcase1with3,weanalyzethein-
fluenceofthegravitationalaccelerationwhileturning.
PhysicalparametersoftheATHLETEaredetermined
basedonthereferencethesis(Wilcoxetal.,2007).Com-
mandedvelocitiesarêux=2.5m/s,ûy=0.0 m/s,and

ûϕ=
√
û2x+û

2
y/R.TheturningradiusRisdesigned

tochangesmoothlyusingthird-orderpolynomialfrom
R=1000mtoR=2.5min30s.Thesecommandedve-
locitiesgenerateaspiraltrajectorythattheturningradius
isgraduallydecreased.

4.2 ResultsandDiscussion

Figure8,9,and10showsimulationresultsofcase1,2
and3,respectively.Figure8(a)and9(a)depictthetra-
jectoryoftherobot,(b)depictthetranslationalandro-
tationalvelocity,(c)depictbodysideslipangleand(d)
depictaverticalloadofeachwheelFz.Figure10(a)de-
pictstranslationalandrotationalvelocityand(b)depicts
averticalloadofeachwheelFz.
AsshowninFigure8(a),whentheheightofCoGis

high,therobotcanturnwithoutoverturn,however,the
robotvelocityhastheerrorbetweencommandedandac-
tualvelocity,asFigure8indicates.Itisreasonablethat
thesideslipangleisgenerated,asFigure8(c)indicates.
Sincethevelocityuyiscausedbycentrifugalforces,the
bodysideslipanglearises.Figure8(d)indicatesthatthe
verticalloadisdistributedtoeachwheelununiformly.
Amongthem,limb5supports70 %ofthetotalload.
Theverticalloadoflimb1and4areequaltozero.It
indicatesthattherobotisrunningusingonlyfourlimbs.
AsshowninFigure9(a),whentheheightofCoGis
lowerthanincase1,therobotalsocanturnsuccessfully.
Figure9(b)(c)indicatethatthetendencyofvelocityand
bodysideslipanglearesimilartocase1.Itisnoteworthy
thattheloadshiftduetocentrifugalforceissuppressed,
asFigure9(d)indicates.Thereasonisreducingtheef-
fectofrollingmomentcausedbythecentrifugalforces.
AsshowninFigure10(a)(b),whengravitationalacceler-
ationissmallerthanincase1and2,thevelocitiesarere-
alizedbythecommandvelocity;therobotdoesnotgen-
eratethesideslipangle.Incase3,theinfluenceofrolling
momentgeneratedbythecentrifugalforcesissmaller
thancase1and2.Itisbecausethegravitationalacceler-
ationworkstosuppresstherollrotationalmovement.
Toevaluatethesesimulationresults,wediscussthe

limitturningradiusrmax.Attheturningradiusofrmax=
3.03m,therobotwillfalldownduetocentrifugalforce
inthecase1.Therobotisnotoverturnbutsomewheels

arefloatingatthetargetturningradiusofR=2.5m
whichissmallerthanthelimitturningradiusrmaxin
case1. Ontheotherhand,whenthetargetturningra-
diusismodifiedtoR=3.1mincase1,allwheelscontact
withtheloadsurface.Thereislittleerrorbetweenthe
limitandtargetturningradiuswithin0.1minthiscase,
eventhoughEq.(8)assumessimplifiedmodel.Thus,we
obtaintheadequatesimulationresults. Wecanusethe
relationshipofbalanceofmomentforthecontrol.Itis
expectedthattheturningabilityincase2and3isbetter
thanthatofcase1byEq.(8),becausethelimitturning
radiusdecreasesasgravitationalaccelerationincreases
andtheheightofCoGdecreases.Accordingly,thesimu-
lationresultsindicatethattheZMPpositionclosetothe
CoGposition(Xg,Yg)bysuppressingtheloadshiftofthe
robot.
Therobottendstogenerateskidinlunarspacewhere

theeffectsofgravitationalaccelerationaresmallerthan
thatoftheearth.Theseresultsindicatethatinorderto
achievehighmobilityunderthelunarenvironment,con-
sideringthesideslipangleandloadshiftisimportant,
becausetherobottendstooverturnunderlowgravita-
tionalacceleration.Tosuppressloadshiftbycentrifugal
forces,leg-wheelmobilerobotscanlowertheheightof
CoGusingthelegmechanism.Inaddition,arrangingthe
wheelposition,theleg-wheelmobilerobotscanachieve
highmobilityutilizingtheredundancyofthelegmecha-
nism.

5 Conclusions

Inthispaper,wemodeltheleg-wheelmobilerobots
whichhavetheleg-wheelmechanismusing Modelica
andconductthesimulationconsideringthelunarenvi-
ronment.Thesimulationresultsindicatethattherobots
tendtogeneratethevehiclesideslipwhichisthecause
forloadshiftandoverturnbecauseoflowgravityaccel-
eration.Therefore,themotioncontroller,whichconsid-
ersvehicleslippage,isrequiredtoachievehighmobility.
Thefuturedirectionsofthisstudyaredesigningguid-

ancecontroller,modelingmotordynamics,andconsider-
ingaterramechanicswhichexpresstheeffectsbetween
wheelandsandcalledregolith.

6 Acknowledgments

TheauthorsgratefullyacknowledgethesupportofGrant
inAidforScientificResearch(C)No.15K06155of
Japan.

References

ShotaFujii,TomohitoTakubo,andTatsuoArai. Climbing
upontostepsforlimbmechanismrobot"ASTERISK".In
InternationalAssociationforAutomationandRoboticsin
Construction,pages225–230,2006.

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

58 DOI 
10.3384/ecp1612455

____________________________________________________________________________________________________________



−1

 0

 1

 2

 3

 10  15  20  25  30  35  40u x
, u
y 
[
m/
s]
 ,
 u
φ
 [
ra
d/
s]

Time [s]
uxhat
uyhat

uφhat
ux

uy
uφ

(a)Torajectory(until40s).

−1

−0.5

 0

 0.5

 1

 10  20  30  40

Si
de
 
Sl
ip
 
An
gl
e 
[r
ad
]

Time [s]

(b)Transrationalandrotationalvelocity.

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

 10  20  30  40

F
z 
[
N]

Time [s]
limb1
limb2

limb3
limb4

limb5
limb6

(c)Bodysideslipangle. (d)Verticalloadofeachwheel.

Figure8.Case1-HighCenterofgravitywiththelunargravitationalacceleration-(R=2.5,zCoG=1.45,g=1.65)

−1

 0

 1

 2

 3

 10  15  20  25  30  35  40u x
, u
y 
[
m/
s]
 , 
u φ
 [
ra
d/
s]

Time [s]
uxhat
uyhat

uφhat
ux

uy
uφ

(a)Torajectory(until40s).

−1

−0.5

 0

 0.5

 1

 10  20  30  40

Si
de
 
Sl
ip
 
An
gl
e 
[r
ad
]

Time [s]

(b)Transrationalandrotationalvelocity.

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

 10  20  30  40

F
z 
[
N]

Time [s]
limb1
limb2

limb3
limb4

limb5
limb6

(c)Bodysideslipangle. (d)Verticalloadofeachwheel.

Figure9.Case2-LowCenterofgravitywiththelunargravitationalacceleration-(R=2.5,zCoG=0.886,g

−1

 0

 1

 2

 3

 10  15  20  25  30  35  40u x
, u
y 
[
m/
s]
 , 
u φ
 [
ra
d/
s]

Time [s]
uxhat
uyhat

uφhat
ux

uy
uφ

=1.65)

 0
 400
 800
 1200
 1600
 2000
 2400
 2800

 10  20  30  40

F
z 
[
N]

Time [s]
limb1
limb2

limb3
limb4

limb5
limb6

(a)Transrationalandrotationalvelocity. (b)Verticalloadofeachwheel.

Figure10.Case3-HighCenterofgravitywiththeearthgravitationalacceleration-(R=2.5,ZCoG=1.45,g=9.81)

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

DOI 
10.3384/ecp1612455

59
____________________________________________________________________________________________________________



YutakaHirano,ShintaroInoue,andJunyaOta. Modelbased
developmentoffuturesmallelectricvehiclebymodelica.
In11thInternationalModelicaConference,pages143–150,
2015.

MartinOtter, NguyenThuy, DanielBouskela,LenaBuf-
foni,HildingElmqvist,PeterFritzson,AlfredoGarro,Au-
dreyJardin,HansOlsson,MaximePayelleville, Wladimir
Schamai,EricThomas,andAndreaTundis.Formalrequire-
mentsmodelingforsimulation-basedverification.In11th
InternationalModelicaConference,pages625–635,2015.

EricRohmer,GiulioReina,andKazuyaYoshida. Dynamic
simulation-basedactionplannerforareconfigurablehybrid
leg-wheelplanetaryexplorationrover.AdvancedRobotics,
24,2010.

Shuan-YuShen,Cheng-HsinLi,Chih-Chungcheng,Jau-
ChingLu,Shao-FanWang,andPei-ChunLin. Designof
aleg-wheelhybridmobileplatform.InIEEE/RSJInterna-
tionalConferenceonIntelligentRobotsandSystems,pages
4682–4687,2009.

Brian H. Wilcox, Todd Litwin,Jeff Biesiadecki,Jaret
Matthews, MattHeverly,JackMorrison,JulieTownsend,
NormanAhmad,AllenSirota,andBrianCooper. ATH-
LETE:Acargohandlingandmanipulationrobotforthe
moon.JournalofFieldRobotics,27(5):421–434,2007.

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

60 DOI 
10.3384/ecp1612455

____________________________________________________________________________________________________________



System-Level Design Trade Studies by Multi Objective Decision 
Analysis (MODA) utilizing Modelica 

Joshua Sutherland, Kazuya Oizumi, Kazuhiro Aoyama1     Naoki Takahashi2     Takao Eguchi3 
1Department of System Innovation, The University of Tokyo, Japan, 
{joshua,oizumi,aoyama}@m.sys.t.u-tokyo.ac.jp 

2Dassault Systèmes K.K., Tokyo, Japan naoki.takahashi@3ds.com 
3Shinko Research Co. Ltd, Tokyo, Japan eguchi.takao@kobelco.com 

 
 
 
 

Abstract 
This paper describes an approach and tool to conduct 

System-Level Design Trades Studies utilizing Modelica 
by way of Multi Objective Decision Analysis (MODA). 
Requirements for this being identified from the 
problems experienced on student Solar-Boat project. 

The proposed approach and tool utilizes Modelica to 
predict performance of different competing alternative 
designs and MODA as a way to consistently compare 
those alternatives subject to a range of Assessment 
Scenarios. 

To enable alternative designs to be created with low 
effort the replaceable feature of Modelica components 
is used such that the alternatives can share common 
architectures subject to a defined hierarchy which 
includes the Assessment Scenario itself. 

A tool was created to automate the placement of 
alternative designs into the Assessment Scenarios, run 
the simulations and consolidate the results via MODA. 
Examples utilizing the approach and tool to predict 
performance of competing Solar-Boat designs and 
compare them is provided. 

Keywords:     Trade Studies, Assessing Alternative 
Designs, System-Level Design 

1 Introduction 

System-Level Design is defined in (Ulrich et al, 2011) 
to “include the definition of the product architecture and 
the decomposition of the product into subsystems and 
components”. Expanding to describe what an engineer 
must achieve with the System-Level Design, it is 
expected that there is sufficient level of detail to enable 
the system being designed to be assessed from the 
perspective of predicting its performance and the cost 
sufficiently accurately while simultaneously informing 
what is acceptable to be designed at the detailed design 
stage, as such bounding the number of alternatives at the 
detailed design stage to a reasonable level. 

Further the development of a System-Level Design 
should involve the comparison of alternative competing 
designs from which one or many might be selected for 
further detailed design. 

As described by (Parnell et al, 2014) trade studies (or 
tradeoff studies) play a central role in decision 
management and can be applied throughout a systems 
lifecycle. With the term “tradeoff” implying that there 
may be the need to forgo one objective to obtain a 
desired level in another. As such trade studies are 
suitable for usage in System-Level Design which 
includes the selection of a design from a set of 
competing alternatives.  

1.1 Solar-Boat Project Description 

Every summer on Japan’s Lake Biwa multiple 
university teams participate in a competition to race 
fully automatous solar powered boats over a 20km 
course which they have designed, manufactured and 
tested over the previous year. The University of Tokyo, 
Department of Systems Innovation regularly 
participates in this event, where all boats are subjected 
to the following rules: Maximum 2m2 solar panels, 
25Wh lead based batteries and ability to carry a 64g 
payload. Figure 1 shows an example from 2014 of the 
hydro foiling craft constructed by University of Tokyo 
students. 

 

Figure 1. 2014 University of Tokyo Solar-Boat. 

1.2 Problems with Previous Solar-Boat Projects 

In (Sutherland et al. 2015) a detailed analysis of the 
activities conducted on the Tokyo 2014 Solar-Boat 
project was conducted, the resulting summary of 
problems mapped to Lifecycle Stages (LS) is listed in 
Table 1. Reviewing the listed problems, the lack of 
design exploration and performance prediction at LS3: 
System-Level Design focused on a design target 
identified in LS2: Concept Development resulted in 
further problems downstream where alternatives 
generation and simulated performance prediction were 
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not the norm. As such much trial and error based on 
physically realized components was performed wasting 
resources. 

Table 1. Solar-Boat Lifecycle Stages, 2014 problems and 
some proposed solutions. 

 
Given that design exploration and performance 

prediction were conducted inadequately on the 2014 
project it is important to survey work products generated 
and used related to early lifecycle stage numerical 
simulation. The work products which did exist were 
numerical models in Excel and MATLAB/Simulink. 
These models while somewhat useful for predicting 
performance suffered from the following problems: 

1. Lack of modularity, preventing: Reuse of 
existing model components in new situations; 
generating alternative designs out of different 
module combinations; different students 
developing models independently and 
subsequently virtually integrate. 

2. Lack of adequate libraries, resulting in: 
inaccurate approximations to complex 
components (e.g. a solar panel array is a “power 
generator” of a particular efficiency, rather than 
a component which interacts with a circuit 
current and voltage). 

3. Lack of holistic model resulting in subsystems 
being designed in isolation (e.g. Powertrain 
designed separately to the main system 
structure). 

4. Lack of infrastructure to assess and compare 
alternative designs consistently with each other 
making it unclear as to what design has been 
selected for what reason. 

5. Lack of access to variables which the models 
were not “designed” to provide. Much 
modification is required to Excel and 
MATLAB/Simulink to expose a new variable of 
interest. 

1.3 Proposing Solutions 

Based on these problems identified at the early lifecycle 
stages some high level solutions were proposed in 
(Sutherland, 2016) to help alleviate these problems (also 
shown in Table 1) by: 

1. Providing knowledge in models. 

2. Completing trade-off analysis of multiple designs 
using models to simulate performance. 

Given the different types of knowledge required to be 
stored and mechanisms to explore alternative designs it 
is proposed by (Sutherland, 2016) to utilize a conceptual 
modeling language (OPM, Object Process Methodology 
(ISO, 2015)) for LS2: Concept Development and 
numerical modeling language with subsequent 
simulation (Modelica) for LS3: System-Level Design. 
In this paper the proposed usage of an automation 
framework for expediting the completion of trade 
studies utilizing Modelica for LS3: System-Level 
Design is explored. 

2 Developing Requirements for the Tools 
and Approach while Reviewing Existing 
Literature 

Table 2 details a set of requirements for a trade study 
tool and approach which aims to address the issues with 
the previous Solar-Boat projects approach. A brief 
comparison to existing tools and methodologies is 
provided in the following sections which the focuses on 
an adequate numerical modeling and simulation 
language (Section 2.1) and systematic approach 
(Section 2.2). 

2.1 Modelica 

The use of Modelica subject to a logical approach can 
address many of the requirements identified in Table 2. 
Describing this explicitly: 
1. The replaceable keyword enables subsystems and 

components to be replaced subject to a defined 
interface. 

2. Large libraries of standard components exist and 
new ones can be developed based on equations 
quickly. 

3. Components integrate across multiple domains. 
4. Simulations provide access to all the variables of 

the equations which describe the components 
behavior. 

Lifecycle Stage 
(LS) 

2014 problems 
Proposed 
solutions 

LS1: Clarify Slow to acquire 
initial 
knowledge. 

Provide 
knowledge in 
models. 

LS2: Concept 
Development 

Unclear of the 
design target. 

Complete 
trade-off 
analysis of 
multiple 
designs using 
models to 
simulate 
performance. 

LS3: System-
Level Design 

Little 
exploration of 
alternatives or 
their predicted 
outcomes. 

LS4: Detail 
Design 

Little prediction 
of performance. 

 

LS5: 
Production, Test 
and Refinement 

Based on trial 
and error. 

 

LS6: Race Lost race due to 
faults which 
could have been 
predicted with 
modeling. 

 

LS7: 
Knowledge 
Transfer 
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Table 2. Solar-Boat previous numerical modeling 
problems and requirements for the proposed system. 

 

2.2 Trade Study Approaches 

The International Council of Systems Engineering 
(INCOSE) provides by way of description in (INCOSE, 
2015) and (SEBoK, 2015) a decision management 
process which is intended for trade studies. Two 
implementations of this process are provided in (Cilli et 
al, 2014) and (Edwards et al., 2015). In these 
implementations a common architecture of subsystems 
is defined for the system of interest, variation of the 
subsystems within this architecture enables alternative 
System-Level Designs to be generated. Each of these 
alternatives are then assessed by a common set of 
performance metrics which have been mapped to the 
functional objectives of the system of interest. In the 
case of (Cilli et al, 2014) this involved mapping the 
amount of value derived for a particular functional 
objective from a prediction of its performance by way 
of a value function. Multiple objectives are then 
combined by way of weighting to enable Multi 
Objective Decision Analysis (MODA). In (Cilli et al, 
2014) performance prediction is provided by subject 
matter experts, while in (Edwards et al., 2015) 
simulation is used, but the simulation model does not 
use acausal interactions between the individual 
components which make up the model. Instead subject 
matter experts define the interaction between 
components based on the equations and data they wish 
to utilize. This process is somewhat opaque. 

As such, while the approaches used by (Cilli et al, 
2014) and (Edwards et al., 2015) to implement the 
INCOSE decision management process can form a basis 

of an approach, it is proposed for this paper and the 
Solar-Boat project to utilize Modelica as the numerical 
modeling tool such that the benefits described in Section 
2.1 can be realized when completing a trade study. 

3 Proposed Tools and Approach 

A high level flow diagram of the proposed tools and 
approach, developed and demonstrated is shown in 
Figure 2. It is described as having three important 
processing elements (in green on Figure 2) listed as: 
Model Builder, Simulation Runner and Results 
Processor. 

The required initial inputs of the tools and approach 
(in orange on Figure 2) take the form of 
Comparison.xml detailing what Assessment Scenarios 
and alternative System-Level Designs to consider and a 
library of Modelica models which are the Assessment 
Scenarios and alternative System-Level Designs 
referenced by the Comparison.xml. With the 
Assessment Scenario describing how to assess a design 
alternative subject to a set of stated conditions. 

Ultimately the aim of running through the approach 
is to generate insight (in black on Figure 2) into the 
performance and cost characteristics of alternative 
designs, which can occur through the reviewing 
consolidated Multi Objective Decision Analysis 
(MODA) results or reviewing detailed raw results of 
the .mat file (in blue on Figure 2) generated during the 
simulation of the model associated with each design 
alternative for each Assessment Scenario (blue on 
Figure 2). 

More detailed descriptions are provided in 
subsequent sections for the items in Figure 2: Inputs to 
the approach described in Section 3.1 while processing 
elements and their subsequent outputs are described in 
Section 3.2. 

 

Figure 2. Proposed trade study approach utilizing 
Modelica. Green: System processing elements. Orange: 
Inputs. Blue: Intermediate results. Black: Final results. 

2014 numerical 
modelling problems 

Requirement for proposed 
system 

1) Lack of modularity Can replace components 
and subsystems with any 
other which is compliant to 
a defined interface. 

2) Lack of adequate 
libraries 

Access to a range of library 
components. 
Can develop new library 
components quickly. 

3) Lack of holistic 
model 

Integrate multiple 
engineering domains 
concurrently. 

4) Lack of 
infrastructure to 
assess and compare 

Can assess and compare all 
alternative designs 
consistently and 
automatically. 

5) Lack of access to 
variables which the 
model was not 
“designed” to provide 

Can review the details of 
individual components 
performance. 
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3.1 Inputs 

3.1.1 Comparison.xml 

Comparison.xml is an input to the approach, it is an 
XML file listing and describing what Assessment 
Scenarios to complete (including time to simulate and 
how to processes its results, described in more detail in 
Section 3.2.3) followed by a listing of alternative 
System-Level Designs to assess. A code snippet is 
provided below of an example file (truncated and 
modified for simplicity). 

 

3.1.2 Library – Structure and Conventions 

To manage complexity the library and the models 
utilized are divided into distinct hierarchy levels which 
are outlined in Table 3. Figure 3 pictorially depicts how 
Level 4 models ultimately combine to form a Level 1 
model which can be simulated. Each level of this 
hierarchy is discussed in the subsequent sections. 

In addition assumptions made about the Solar-Boat 
are explicitly listed to enable a consistent library to be 
developed by way of setting rules for how these 
assumptions are implemented in the library. To 
generalize, these assumptions stem from the bottom up 
approach used to develop the models, where for 
example Subsystems are defined by their interface and 
internal Subsystem-Components. Assumptions 

associated cost are described in Table 4, assumptions 
associated with  mass are described in Table 5, and those 
regarding fluid interaction are described in Table 6. 

Table 3. Hierarchy levels utilized in the models and 
libraries. 

 

 

Figure 3. Representation of the different hierarchy levels 
combining. 

Table 4. Assumptions associated with cost and how the 
assumptions are implemented in the library. 

 

<system_name="solarBoat"/> 
<scenario name="Floating"> 

        <variable="z_top_of_hull"/> 
        <variable_units name="m"/> 
        <value_func_direct name="neg"/> 
        <min_accep_perform val="-0.1"/> 
        <stretch_goal val="-0.4"/> 
        <weight val="0.5"/> 
        <sim_length val="70"/> 
        <extract_data_type name="mean"/> 
   </scenario> 
   <scenario name="StraightLineAvSun"> 
        <variable="x_velocity"/> 
        <variable_units name="m/s"/> 
        <value_func_direct name="pos"/> 
        <min_accep_perform val="1.5"/> 
        <stretch_goal val="3"/> 
        <weight val="0.5"/> 
        <sim_length val="3"/> 
        <extract_data_type name="max"/> 

</scenario> 
<scenario name="Cost"> 

<variable="cost_money"/> 
<variable_units name="yen"/> 
<value_func_direct name="neg"/> 
<min_accep_perform val="300000"/> 
<stretch_goal val="0"/> 
<sim_length val="1"/> 

   <extract_data_type name="max"/> 
</scenario> 
<design name="Ideal"/> 
<design name="Boat_Alternative_01"/> 
<design name="Boat_Alternative_02"/> 

Hierarchy 
Level 

Name Example 

Level 1 Assessment 
Scenario 

Straight line good 
weather 

Level 2 System of 
Interest 

Solar-Boat 

Level 3 Subsystems Electrical to 
Thrust 

Level 4 Subsystem-
Components 

DC Motor 

 

Assumption / 
Design process 
decision 

Implementation in Library  

All objects of the 
Solar-Boat have 
cost. 

All models at Level 2-4 extend 
“PartialProcurementAttributes” 
with the single variable 
cost_money_computed. As such 
they must expose/compute their 
cost. 

Cost properties 
of the System of 
Interest occur 
from the sum its 
Subsystem-
Components cost 
properties. 

Every Subsystem-Component 
defines a cost parameter. The 
cost of the subsystem is the sum 
of the cost of its components. 
The same logic follows up the 
levels. 
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Table 5. Assumptions associated with mass and degrees of 
freedom and how the assumptions are implemented in the 
library. 

 

Table 6. Assumptions associated with fluids and their 
implementation in the library. 

 

3.1.3 Library Level 1 – Assessment Scenario 

The Assessment Scenario is a Modelica model which 
aims to provide the necessary infrastructure around a 
replaceable partial model of the System of Interest 
(Solar-Boat) the necessary inputs to represent the 
scenario for simulation. Figure 4 shows an example of 
one such of these for driving in a straight line subject to 
average sun conditions. With Figure 4 (left) showing 

prior to population with a valid alternative and Figure 4 
(right) showing this after having been populated with a 
valid alternative Solar-Boat design. 

   

Figure 4. Assessment Scenario: Straight line average sun. 
Left: Before being populated with a valid Solar-Boat 
design alternative. Right: After being populated with a 
design alternative such that it can be simulated. 

3.1.4 Library Level 2 – System of Interest 

This level describes the system which is being attempted 
to be designed and assessed (i.e. Solar-Boat). As such 
all valid alternative designs should be compliant with 
the interface used for the System of Interest in the 
Assessment Scenarios. In addition the variables of 
interest defined in the Comparison.xml (e.g. x_velocity) 
must be declared such that they can be extracted by the 
Results Processor. Figure 5 shows the partial model 
interface, while Figure 6 (left) shows an example 
architecture created by the population with partial 
replaceable Subsystems interfaces. In this case four 
Subsystems are utilized: Solar to Electrical, Electrical to 
Thrust, Buoyancy generation and Overhead mass 
components. This architecture is then populated with 
Subsystem models to generate a Solar-Boat alternative 
as shown in Figure 6 (right). 

  

Figure 5. Partial model defining the interface of the 
System of Interest (Solar-Boat). 

  

Figure 6 Left: Extending the partial model of the System 
of Interest (Solar-Boat) and subsequently defining an 
architecture by placing partial Subsystems on it. Right: 
Populating this architecture with Subsystems. 

Assumption / Design 
process decision 

Implementation in Library  

All objects of the 
Solar-Boat have 
mass. 

All models at Level 2-4 
extend 
“PartialMassAttributes” 
with the single variable 
mass_computed. As such 
they must expose/compute 
their mass. Which might be 
the sum of lower level 
component masses. 

Mass properties of 
the System of Interest 
occur from the sum 
its Subsystem-
Components mass 
properties. 

Every Subsystem-
Component attaches a mass 
component from the 
Mechanics.MultiBody 
library to its Frame_a 
connector. 

System of Interest is 
a single rigid body in 
a 3D world. 

All Subsystems and 
components expose a 
Modelica.Mechanics. 
MultiBody.Interfaces. 
Frame_a connector. 

The number of 
degrees of freedom in 
motion required at 
different times if the 
lifecycle varies. 

The use of 
Modelica.Mechanics. 
MultiBody.Joints. 
Prismatic to prevent motion 
on degrees of freedom 
which are not going to be 
considered. 

 

Assumption / Design 
process decision 

Implementation in Library  

All objects 
immersed in a fluid 
generate a 
drag_force and 
buoyancy_force. 

Any models Level 2-4 
expected to be immersed in a 
fluid extend 
“PartialInAFluidAttributes” 
with the variables drag_force 
and displaced_volume 
exposed. As such these must 
be computed. 
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3.1.5 Library Level 3 – Subsystems 

Subsystems have an interface to define their interaction 
at the System of Interest level. An example is shown in 
Figure 7 for an electrical to thrust Subsystem. A 
Subsystem architecture (Figure 8 left) can then be 
defined for the interface (Figure 7) by the population 
with partial replaceable Subsystem-Component 
interfaces. Subsequent population with Subsystem-
Components results in an alternative Subsystem being 
defined (Figure 8 right). 

  

Figure 7. Partial model defining the interface of a 
Subsystem (electrical to thrust). 

  

Figure 8. Left: Extending the Electrical to thrust partial 
model and subsequently defining an architecture by 
placing partial Subsystem-Components on it. Right: 
Populating this architecture with Subsystem-Components. 

3.1.6 Library Level 4 – Subsystem-Components 

The lowest level of the defined hierarchy are 
Subsystem-Components. Similar to the other levels an 
interface is used to define their interaction at the higher 
levels, as shown in Figure 9. However architecture 
implementation takes a different form, generally being 
made of additional models (custom and standard library) 
which have their parameters provided by way of 
redeclaring a partial record. The aim of this approach is 
to create a large library of components based on the 
specification sheets of commercial products which can 
be transferred to a record in the Modelica language. As 
per the assumptions discussed in Section 3.1.2 each 
Subsystem-Component must declare a mass and cost 
which can then be used to compute the mass and cost of 
the Subsystem it is included in. Further as shown at the 
bottom of Figure 10 each Subsystem-Component 
includes a mass component from Mechanics.MultiBody 
library. 

  

Figure 9. Interface of Subsystem-Component (Electrical to 
rotation). 

  

Figure 10. Left: Implementing the Electrical to rotation 
component with a partial record. Right: Populating the 
partial record to create a Subsystem-Component. 

3.2 Processing Elements 

In this section the processing elements of the approach 
proposed (shown in Figure 2) which process inputs to 
generate output are discussed. This was implemented 
with Python code as Dymola and OpenModelica were 
unable to automate the variation of Modelica blocks or 
the consolidation of multiple results. 

3.2.1 Model Builder 

The Model Builder processing element generates a 
Modelica model for each combination of Assessment 
Scenario and System of Interest (Solar-Boat) alternative 
described in the Comparison.xml file. The Model 
Builder requires that the Assessment Scenarios and 
System of Interest (Solar-Boat) alternatives named in 
the Comparison.xml are available from the library. This 
is achieved programmatically by duplicating existing 
model for the Assessment Scenario and manipulating 
the .mo text file to change the Solar-Boat alternative to 
the one for assessment. 

3.2.2 Simulation Runner 

Simulation Runner subsequently simulates all the 
models created by Model Builder for the simulation 
length specified in the Comparison.xml file. This is 
achieved programmatically by utilizing Dymola’s 
python interface. The subsequent results (in the .mat 
file) can then be further reviewed by the engineer if they 
wish. 
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3.2.3 Results Processor 

The results processor extracts for each model simulated 
(Assessment Scenario and design alternative pair) the 
time series of the raw simulation results the variable of 
interest for each Assessment Scenario to measure the 
System of Interest’s performance (e.g. max x_velocity). 
This extraction is enabled by Dymat python package 
(Dymat, 2015). For simplicity weighted sum MODA 
scheme described in (Cilli et al, 2014) was used which 
is explained as follows. 

The extracted variable (e.g. max x_velocity) is used 
to compute unweighted value by the utilization of the 
value function (see Figure 11 for an example) which is 
defined in Comparison.xml and maps performance on a 
particular scenario to unweighted value (minimum 
acceptable performance corresponding to zero value and 
stretch goal corresponding to value of 1). The 
unweighted value is then multiplied by the weight 
assigned in Comparison.xml to create weighted value 
for that scenario. Summing the for all the scenario runs 
for an individual alternative design results in the total 
weighted value for that particular alternative design. 
With the “ideal system” having a value of 1 as its 
performance is assumed to always be at the stretch goal 
and the weights sum to 1. 

 

Figure 11. Example linear value function. 

These results can then be consolidated on to a single 
dashboard (example shown in Figure 12). On all charts 
the y-axis displays the total weighted value for the 
alternative. For the top chart and middle chart the x-axis 
indicates the alternatives being considered. With the 
middle chart further displaying a breakdown of the 
weighted value contributions from each Assessment 
Scenario. For the bottom scatter chart, each point on the 
bottom chart indicates a design alternative of the System 
of Interest and the x-axis indicating cost in yen for that 
particular design alternative. 

 

Figure 12. Example output of the Results Processor. Top: 
Total weighted value (y-axis) computed for all the 
Assessment Scenarios (x-axis) for all the Alternative 
System of Interests. Middle: Breakdown of the weighted 
value contributions from each assessment scenario. 
Bottom: Weighted value (y-axis) compared to cost in yen 
(x-axis) for each alternative design. (Results are from 
Section 4.3 comparison of the introduction of new solar 
panels). 

4 Demonstration 

This section provides examples of the utilization of the 
approach to demonstrate how it can rapidly enable the 
fast comparison of alternative Solar-Boats. The 
assessment scenarios used are described in Table 7, 
which are used to define a Comparison.xml and library 
of Level 1 models. For simplicity all weights were set 
equally to 0.25 in all the demonstrations, the Solar-Boat 
architecture of Figure 6 (left) is utilized. 

4.1 Component Variation 

An initial set of Solar-Boat alternative designs are 
outlined in Table 8 and created as models by populating 
the Solar-Boat architecture of Figure 6 (left). These 
designs are identical other than the variation in the 
Subsystem-Components used for a direct drive 
electrical to thrust Subsystem. The Subsystem-
Component variation involves motor variation (high 
mass and low mass variants) and propeller variation. By 
following the flow diagram of Figure 2 for the 
Assessment Scenarios of Table 7 and alternative designs 
of Table 8, it is possible to generate the results as shown 
in Figure 13 automatically. Reviewing these results it is 
possible to see three alternatives fail to meet the 
minimum acceptable performance on at least one 
scenario (red ring on Figure 13). The complex 
interaction between boat mass, water line, thrust, drag 
and velocity has simplified into a single chart. 

Stretch 
goal 

Minimum 
acceptable 

performance 
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Table 7. Assessment Scenarios used in the demonstration. 

 

Table 8. Alternative Solar-Boat designs created by 
electrical to thrust Subsystem variation (H = High mass 
motor, L = Low mass motor). 

 

 

Figure 13. Multi Objective Decision Analysis results for 
Solar-Boat alternatives of Table 8. 

4.2 Subsystem – Architecture Variation 

Given the approach makes use of a common architecture 
for the Solar-Boat it is possible to rapidly compare 
alternative Solar-Boat designs utilizing different 
Subsystem architectures. As such Figure 14 displays an 
alternative electrical to thrust Subsystem architecture 
(incorporating a gearbox) to the one used previously 
(Figure 8). As such it is possible to create alternative 
Solar-Boats utilizing this architecture. Creating several 
alternatives by varying the Subsystem-Components in 
this model and simulating results in Figure 15 (where 
the designs have significant performance increase over 
the results of Section 4.1). 

  

Figure 14. Left: Extending the electrical to thrust partial 
model but defining a different Subsystem architecture to 
that in Figure 8 by incorporating a gearbox. Right: 
Populating this architecture with Subsystem-Components. 

Measure 
of 
interest 

Scenario 
conditions 

Min 
accep 
perform 

Stretch 
goal 

Data 

type 

Top of 
hull z 
position 
(m) 

Floating -0.1 -0.4 Mean 

x 
velocity 
(m/s) 

Best ever 
insolation 
(870 
Wm2) 

2 4 Max 

x 
velocity 
(m/s) 

Average 
insolation 
(550 
Wm2) 

1.5 3 Max 

x 
velocity 
(m/s) 

Worst 
ever 
insolation 
(260 
Wm2) 

0.5 2.5 Max 

 

Alternative 
name 

Buoyancy 
Generation 

Solar 

To 

Elec 

Elec 

To 

Thrust 

HM_160m
m 

Single hull FT-
136SE 

H motor: 
No gearbox: 
160mm 
prop 

HM_200m
m 

Single hull FT-
136SE 

H motor: 
No gearbox: 
200mm 
prop 

HM_220m
m 

Single hull FT-
136SE 

H motor: 
No gearbox: 
220mm 
prop 

LM_160m
m 

Single hull FT-
136SE 

L motor: No 
gearbox: 
160mm 
prop 

LM_200m
m 

Single hull FT-
136SE 

L motor: No 
gearbox: 
200mm 
prop 

LM_220m
m 

Single hull FT-
136SE 

L motor: No 
gearbox: 
220mm 
prop 
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Figure 15. Multi Objective Decision Analysis results for 
Solar-Boat alternatives incorporating a gearbox. 

4.3 Cost Benefit of a New Component 

Further component exploration of interest could involve 
the performance evaluation associated with 
incorporating higher efficiency, high mass and high cost 
solar panels (solar to electrical Subsystem). Creating 
alternatives based on these and simulating results in 
Figure 12. The bottom chart clearly displays the large 
cost of the new solar panels (exceeding the project 
budget). While the weighted total value of alternatives 
incorporating the panels is not significantly different to 
those utilizing existing panels. Indicating they are not a 
wise purchase. 

5 Discussion 

The proposed approach described in this paper has a 
number of benefits when compared to other approaches. 
By clearly describing each Assessment Scenario and 
processing the results formally by way of Multi 
Objective Decision Analysis (MODA) each alternative 
design is compared consistently and decision making is 
simplified. Further, the utilization of defined interfaces 
and common architectures based on them enables 
alternative designs compliant with the Assessment 
Scenarios to be created quickly. By using Modelica as 
the modeling language the engineer benefits from 
accessibility to the rich simulation results of many 
variables and can compose System-Level Designs using 
extensive existing libraries.  

However the approach and tool has further work to 
be done to it to make it more useful including: 
automation of the generation of alternative designs, 
support for parameter variation and implementation on 
a more complex design. 

6 Conclusions 

This paper has described an approach and tool for 
performing System-Level Design trade studies using 
Modelica. In the form of a Model Builder, Simulation 
Runner and Results Processor which take a suitable 
library and XML description file as input. 

The aim of the approach was to consistently assess 
multiple design alternatives and summarize their results 
for fast comparison. 

This was achieved by defining a common interface 
for the System of Interest (Solar-Boat) and placing it in 
an Assessment Scenario as a replaceable partial model 
into which programmatically, different SolarBoat 
alternatives were placed by the Model Builder. Each of 
these was then simulated and the results processed by 
Multi Objective Decision Analysis (MODA).  

The rapid automated assessment of the alternatives 
and processing of results by MODA enables engineers 
to quickly understand the benefits of different designs, 
but by retaining the rich results associated with 
Modelica simulation further (manual) analysis can be 
performed to gain greater insight into how individual 
components are performing. 

This was demonstrated for some simple examples of 
several Solar-Boat alternative System-Level Designs 
being subject to the same four different assessment 
scenarios. 
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Abstract

Increased complexity of cyber-physical systems within
the maritime industry demands closer cooperation be-
tween engineering disciplines. The functional mockup
interface (FMI) is an initiative aiding cross-discipline in-
teraction by providing, a widely accepted, standard for
model exchange and co-simulation. The standard is sup-
ported by a number of modelling tools. However, to im-
plement it on an existing platform requires adaptation.
This paper investigates how to adapt the software of an
embedded control system to comply with the FMI for
co-simulation standard. In particular, we suggest a way
of advancing the clock of a real time operating system
(RTOS), by overwriting the idle thread and waiting for
a signal to start execution until return to idle. This ap-
proach ensures a deterministic and temporal execution
of the simulation across multiple nodes. As proof of
concept, a co-simulation is conducted, showing that the
control system of an SCR (selective catalyst reduction)
emission reduction system can be packed in a functional
mockup unit (FMU) and co-simulated with a physical
model, built in Ptolemy II. Results show that FMI can be
used for co-simulation of an embedded SCR control soft-
ware and for control software development. Keywords:
Co-Simulation, RTOS, FMI, FMU, Embedded Systems

1 Introduction

Designing the next generation of embedded cyber-
physical systems (CPS) requires close collaboration be-
tween physical model developers and the engineers im-
plementing the computation, communication and con-
trol. The amount of sub-systems, deviation in the tool
chain and standards are often barriers between these dis-
ciplines. Teams are divided into different departments
within organisations or in cross-company collaborations,
further complicating the cooperation. One of the re-
cent initiatives to lower this barrier is the functional
mockup interface (FMI) (Blochwitz et al., 2009). It is
a tool-independent standard for model exchange and co-
simulation. FMI was initiated by the automotive industry

and released in a version 1.0 in 2010 followed by a 2.0
version in 2014. This paper does not explain the stan-
dard, but aims to show the process of adapting an embed-
ded system to comply with FMI. Implementing the FMI
standard on an existing modelling platform is straightfor-
ward, especially since many of the open-source and com-
mercial tools already support it. Forcing a specialised
embedded system to comply is, however, a demanding
task that requires adaptation.

At MAN Diesel & Turbo, legislation on pollution and
a demand for support of alternative fuel types are in-
creasing the amount of distributed sub-systems and the
complexity of the traditional two-stroke diesel engine.
The increased distributed complexity makes the coop-
eration between cyber and physical parts of the system
even more crucial. Currently, simplified physical models
are used for control algorithm development, and only es-
timations of the control system dynamics is considered
when modelling the physical behaviour. The objective
of this project is to enhance the modelling development
and distribution at MAN Diesel & Turbo by introducing
a more comprehensive system simulation. We wish to
simulate both physical behaviour and control dynamics,
combined with a model of the software. The software
model will enable us to investigate system behaviour
such as alarm handling, IO scaling and network com-
munication/protocols. The main challenge is to adapt
the embedded engine control system into a functional
mockup unit (FMU). The process of this adaptation is
what will be presented in this paper. As use case, a
simple model of the SCR (Selective Catalyst Reduction)
emission reduction system and its control software will
be co-simulated.

FMI 2.0 for co-simulation has been chosen due to its
strict type/execution structure combined with its freedom
of implementation. The standard is highly recognised
and applied within the automotive industry (Abel et al.,
2012; Stoermer and Tibba, 2014), which has many simi-
larities with the maritime. Recently, applications within
energy and grid systems (Vanfretti et al., 2014; Elsheikh
et al., 2013) and HVAC systems (Nouidui et al., 2014)
are emerging as well. FMI applications within the mar-
itime industry, like this, is limited (Pedersen et al., 2015).
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This project uses the heterogeneous simulation software
framework Ptolemy II (Liu et al., 2001; Brooks et al.,
2010) to co-simulate a simple physical model with an im-
ported FMU. Ptolemy II has been used for various FMI
applications (Broman et al., 2013; Liu et al., 2001; Lee
et al., 2015) Much attention has been put on implement-
ing the standard, such as FMI++ (Widl et al., 2013) the
FMI Library from (Modelon) and the FMU SDK from
(QTronic). Examples of how to build an FMI master al-
gorithm has been provided as well (Bastian et al., 2011;
Broman et al., 2013). In (Bertsch et al., 2015) a pro-
totypical realisation of an FMU executing on a Bosch
electronic control unit was presented. However, the non-
trivial process of adapting the software of an embedded
system, with at real-time operating system (RTOS), into
a co-simulation FMU, has not yet been described, but
will be in this paper.

First the cyber-physical system at hand will be intro-
duced in Section 2. Section 3 shows how to move from
a target embedded application to an FMU running in a
regular Linux environment. A use-case implementation
is presented in Section 4 and conclusions are drawn in
Section 5

2 Cyber-Physical System

Cylinder Control Unit
Tacho Interface Unit

Engine Control Unit

Engine Interface Unit

SCR Control Unit

Scavenge Air Control Unit

Network

SCR Interface Unit

Figure 1. An MAN Diesel & Turbo two-stroke low-speed
diesel engine with the SCR and the engine control system il-
lustrated

MAN Diesel & Turbo designs large-bore diesel en-
gines and turbomachinery for marine propulsion systems
and stationary applications, such as power plants. With
the introduction of the electronically controlled line of
ME engines in 2002, MAN Diesel & Turbo moved into
the development of Cyber-Physical System. In recent

years, the demand for new emission reduction systems
and alternative fuel types have made the core engine
even more dependent on the surrounding control system.
This dependency demands a more advanced simulation
environment including co-simulation. The engine con-
trol system consists of numerous distributed controllers
with each their specific control objective connected by
a wired network. Figure 1 illustrates a 6-cylinder two-
stroke ME-engine with an SCR system and engine con-
trol system. The main controllers are the engine interface
units communicating with the operator, and the scavenge
air control unit ensuring that pressures are balanced be-
tween the turbocharger and scavenging. The engine con-
trol units ensure that the cylinder control units perform
the correct temporal injection ect. according to the infor-
mation about the crankshaft position from the tacho in-
terface units. Finally, if the engine is fitted with an auxil-
iary system e.g. an SCR system, it will be controlled and
monitored by its own SCR units.

3 From Embedded Target to FMU

Figure 2. A multi-purpose controller of the MAN Diesel &
Turbo engine control system

To achieve the objective of co-simulating the soft-
ware control system together with a physical model, in
a different environment(Ptolemy II), we need to make
our target application code run in a functional mockup
unit 0(FMU). It should be noted that the main objection
of this solution is to aid physical modelling and con-
trol algorithm development. The solution will therefore
demonstrate a deterministic simulation of both compu-
tational execution and network. Despite the previously
described system behaviour investigation benefits, of in-
cluding a software model in the FMU, the decision is
also based on future ambitions and the current control
system development at MAN Diesel & Turbo. Future
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plans include a stochastic network model and HIL-nodes
combined with FMI nodes.

3.1 Configuration Abstractions

Ptolemy Envorinment

Ptolemy Envorinment

FMU_1

Node_1

Ptolemy Model

M_In_1

FMU_2

Node_2

M_Out_1
M_In_2

M_Out_2

X_1
X_2
Y_1
Y_2

FMU

Ptolemy Model

ModelDescribtion.xml

  - X_1 : Ouput
- X_2 : Input

  - Y_1 : Ouput
- Y_2 : Input

  - M_Out_1 : Ouput
- M_In_1 : Input

ModelDescribtion.xml

  - X_1 : Input
- X_2 : Ouput
  - Y_1 : Input
- Y_2 : Ouput

  - M_Out_2 : Ouput
- M_In_2 : Input

Node_1 Node_2

X_1
X_2
Y_1
Y_2

M_Out_1

M_In_1

M_In_2

M_Out_2

ModelDescribtion.xml

  - M_Out_1 : Ouput
- M_In_1 : Input

  - M_Out_2 : Ouput
- M_In_2 : Input

Figure 3. It is possible to change the level of configuration
complexity exposed to the user. The top figure shows how each
control system node can be packed in an FMU for maximal
configuration flexibility. The bottom figure shows how multi-
ple nodes can be packed and configured in a single FMU for a
simpler user configuration setup.

One of the most important concerns when introduc-
ing FMI was the configuration complexity. The system
is to be used by different disciplines, and it is impor-
tant that the configuration level can be abstracted to fit
the user objective - meaning that if a hydraulic engineer
wishes to investigate the dynamic effects of the control
system on his model, he should not have to connect all
the wires of the control system to get started, but rather
have one FMU with only relevant variables and parame-
ters exposed. We found it beneficial to maintain the pos-
sibility of interconnecting multiple nodes of the control
system before wrapping them into the functional mockup
interface. As shown in Figure 3, this allows for different
levels of configuration complexity. If we are interested
in both the interaction between two nodes and a physi-
cal model, we can provide all variables, parameters and
IOs through multiple FMUs and connect them in our en-
vironment, see top Figure 3. However, if we are only

interested in the variables interacting with our external
model, it is possible to connect the nodes internally, and
only expose the relevant variables, bottom figure 3. The
latter option provides a much simpler configuration and
"ModelDescription.xml" for the user and lets the control
system experts ensure that nodes are connected correctly.

3.2 Target to PC simulation

The target controllers used are multi-purpose, meaning
e.g. that cylinders and SCR-control units are identi-
cal. The only deviation determining the specific con-
troller objective is the software executed on the embed-
ded system. A controller interfaces with sensors and
other computational units, using the information to in-
teract with the system through actuators. A controller
contains a CPU module with an FPGA-based embedded
system utilising a real-time operating system. The strat-
egy for simulating our embedded system is to model the
entire embedded system from the operating system and
up, wrapping this into an FMU. Conclusively, our model
is not simulating the behaviour of the embedded proces-
sor, but builds the target code for an x86 architecture in
a so called PC-simulation application (PCSIM).

3.3 FMI implementation of PC simulation

To implement FMI 2.0 for co-simulation, we need fur-
ther access to some main functionality embedded in the
PCSIM. Looking at the FMI co-simulation state machine
(Blochwitz et al., 2009), we need to access relevant data
for f mi2Set() and f mi2Get() and a way of stepping
the simulation according to the f mi2DoStep() function.
Furthermore, the network communication is to be recon-
nected and the FMI functions implemented.

3.3.1 Hook to OS clock

For the co-simulation to work correctly, we need to con-
trol the execution between the discrete communication
points on each node. The approach is to access the
clock of the operating system and let a simulation man-
ager control the temporal execution. This is made possi-
ble by building the target code as a shared library and
overwriting the idle thread method of the RTOS. The
RTOS used in this project supports an x86 architecture
and provides the board support package, which includes
a bsp_idle_thread to be manipulated. The solution pro-
posed will require customisation to work with different
RTOS versions, however, the concept is generic. Be-
sides the idle thread hook, we need to be able to start and
stop the application by calling the main function through
the library. The main function is executed in a separate
thread until we force it to stop, having the main func-
tion return. The new idle thread function has an idle
callback function that implements ticking of the RTOS
clock. Each tick lasts for a simulated 1 ms, implemented
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Figure 4. The implementation of FMI on the MAN engine
control system

by assuming unlimited CPU power - thus an execution
time of zero for every node, followed by a 1 ms delay. A
node will run until it returns to idle, meaning for every
tick, all task will finish and never be interrupted. This
guaranties a common perception of time across nodes.
The assumption of unlimited processing power will ob-
viously make the simulation results deviate slightly from
a real stochastic execution. However, it ensures a de-
terminism which is important during control algorithm
development and regression testing. All interrupts are
currently software simulated and scheduled as regular
tasks. Further work will aim to implement a more tem-
poral scheduling of especially high frequency interrupts.

Having a hook to the clock and a joint time perception
makes it possible for a manager to call the f mi2DoStep()
function and orchestra a correct temporal execution of
the co-simulation.

3.3.2 Connecting variables, parameters and IO
channels

On the target application all variable, parameters and
IO channels are organised in a component-oriented data
tree structure with unique IDs. Using a factory method
design, we make it possible to create proxies for both
variables, parameters and IO channels, providing a
Proxy.Get() and Proxy.Set() function that will effect the
source on the specific node. For IO channels, we com-
municate on micro-ampere level, so prober conversion is
needed.

The f mi2Set() and f mi2Get() functions will write
and return the value of the proxies. The instantiation
of proxies are done in the f mi2Instantiate() function
and is based on the ”ModelDescription.xml”. One of
the advantages of FMI is the strict data type definition.
However, the target application utilises more data types
than the ones allowed by FMI, such as fix-point and un-
signed short. As a result, a type conversion layer had to
be added.

3.3.3 Solving network communication

To simulate the network communication between nodes,
we replace the RTOS network driver with a determin-
istic input/output queue implementation. Each node is
given an address corresponding to the unique node_id
already provided by the controller. Through the factory
design from 3.3.2 input and output lists are made avail-
able across nodes. A network manager then redirects
packages from output to input queues according to net-
work address. The network manager support both uni-
cast, multicast and broadcast. Communication is done
at every discrete communication point, and the network
driver is activated every ms tick of the OS clock, if any
data is available in the input or output queue. Currently,
the network is only available with interconnected nodes
and not as an output through the FMU. However, this is
something we are working on.

3.3.4 FMI implementation

Target.cpp

PCSIM.SO

GCC–PC x86 

RTOS

Cross – Compiler 

GCC

Cross – Compiler 

GCC

FMI.SO

GCC–LINUX

FMI_model.cpp

fmi_model.fmu

MODEL SOLVER

Dynamic Load

Figure 5. The compiling routine from target to functional
mock-up unit.
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According to the FMI standard the application should
be compiled into a shared library with the FMI functions
exported. As described, we are able to build each of
our control nodes into PC shared libraries (PCSIM.so)
including a, x86 RTOS. We now need to wrap these
into a Linux shared library (FMI.so) implementing the
FMI application interface. One or more PCSIM.so are
loaded into the FMI.so which is the main binary in the
co-simulation FMU, see figure 5. A MAN Diesel &
Turbo FMU will have the 2.0 FMI for Co-simulation
API. The f mi2Instantiate() will load the PCSIM.so’s
required for the specific scenario and create the rele-
vant parameters, inputs and outputs according to the
ModelDescription.xml and start each node executing.
The f mi2DoStep() is able to call the idle callback func-
tion on each node, signalling the idle thread to tick the
RTOS. If an FMU contains more than one node the net-
work will be updated at every communication point. The
remaining FMI functions have been implemented but not
illustrated in Figure 4.

4 Use Case: SCR Temperature Dy-
namics and Control

Figure 6. Diagram of the SCR system

As a simple use case, we look at the dynamics and
control of heating up the SCR reactor. When a vessel is
to comply with the Tier III emission limits (IMO, 2008)
for NOx reduction, a command is sent from the opera-
tor to activate the SCR control. The SCR control unit
will then redirect the exhaust gas through the reactor by
opening the reactor sealing valve (RSV) and the reac-
tor throttle valve(RTV). The controller has to balance the
RTV opening, to ensure that the flow to the turbine inlet
of the turbocharger is sufficient. As soon as the reac-
tor is properly heated, the reactor bypass valve (RBV)
can be closed; consequently, only cleaned air from the
reactor leaves the system as exhaust. A diagram of the
SCR control is illustrated in Figure 6. The SCR con-
troller uses the difference between the reactor input and

output temperature as a reference residual signal for con-
trolling the position of the RTV valve. By modelling the
time delay of heating the reactor and passing the result-
ing output temperature back to the SCR controller, we
will show that it is possible to investigate the dynamic
interaction between a physical model and the actual con-
trol software.

Many additional observations regarding the engine
physics are required for all aspects of the SCR controller
to perform correctly. An advantage of being able to con-
nect more nodes within a single FMU is that the so-called
engine simulation unit (ESU) used for hardware in the
loop test can be included. The ESU contains numer-
ous physical models executing within the embedded con-
troller environment. Model execution on the ESU must
comply with real-time requirements and should therefore
not be too complex. With FMI, it is possible to make a
hybrid simulation of the engine physics where ESU mod-
els can be combined with Ptolemy models. In this use
case, the reactor heating model provides physical insight
into the SCR controller together with the ESU.

4.1 SCR Heating Model
The reactor heating model chosen as proof of concept is
described below. The output temperature can be mod-
elled as the relationship between the RTV position, the
flow through the reactor and the input temperature, re-
sulting in two low-pass filters with a significant time con-
stant. The inputs to the model is provided by the SCR
controller and ESU.

The mass flow into the reactor Ṁ is estimated from the
engine load L.

Ṁn = Ṁn−1 +
L− Ṁn−1

1+ τScavenge ·T
(1)

where T is the sampling frequency.
The time constant of the reactor output temperature, is

estimated as the RTV valve opening with the mass flow
plus a time constant, converted into seconds.

τout = (Ṁn ·RTV + τreactor) ·3600 (2)

Finally, the output temperature is calculated as

Toutn = Toutn−1 +
Tin+Toutn−1

1+ τout ·T
(3)

This is naturally a simplified approach, however, it
goes to show, that it is possible to distribute the control
system and co-simulate with other thermodynamic mod-
els regardless of the abstraction level.

4.2 Ptolemy II as simulation framework
As simulation framework, the open-source Ptolemy II
was chosen due to its heterogeneous actor-oriented
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Figure 7. FMU import in Ptolemy II and simple physical
model implementation

design and comprehensive support for different soft-
ware components and the FMI interface as described
in (Broman et al., 2013). The FMU is imported as
a co-simulation actor automatically configured by the
”ModelDescribtion.xml”. Using ”Vergil”, the graphical
user interface shipped with Ptolemy, the equations from
4.1 are created and connected to the FMU outputs. A
simulation scenario is likewise defined in Vergil and con-
nected to the input ports of the FMU, see Figure 7. The
scenario sets a reactor start temperature and an engine
speed set point. After 700 seconds, a simulated bridge
command is send to the SCR controller, activating the
SCR control strategy.

To execute the simulation, a synchronous dataflow
(SDF) director was chosen. The SDF director is appro-

priate because we have a predictable and regular exe-
cution (firing) of the FMU. At regular communication
points, inputs/outputs are updated in a predefined order.

4.3 Results

Figure 8. The use-case example of a functional mock-up unit
containing the MAN SCR control nodes

To run the simulation, an FMU was build as seen
in Figure 8. Here four PCSIM.so corresponding to
the code of four embedded controllers, are packet
into ”resources/lib”. The engine simulation unit
(esu_target.so) models the entire engine, except the SCR
heating model, using the target solver ect. An SCR Con-
trol Unit (scrcu_target.so) containing all the control al-
gorithms for the reactor control and two SCR interface
controllers (scri1_target.so,scri2_target.so) redirecting
all the sensor values connected as simulated cables from
the ESU to the SCRCU by network. Configuration of the
PCSIM applications are provided via the MAN parame-
ter files located at ”resources/par”

Figure 9. The in- and output temperature of the simulated SCR
heating
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The simulation of the FMU and reactor heating model
is presented in Figure 9. Here we see that the SCR
reactor out temperature start to increase after 700 sec-
onds when the SCR start command is sent. The heating
has the expected low-pass behaviour and takes approxi-
mately 1.5 hours to heat up.

Figure 10. Valve feedback from the SCR simulation

In Figure 10, we clearly see that the SCR control
works as intended, even though we have replaced the
SCR heating model from the original ESU and replaced
it by a Ptolemy implementation. As soon as the SCR ac-
tivation occurs, the RTV and RSV valves start to open.
The RTV valve is clearly controlled to balance the flow
to the turbocharger. This actuation is filtered from the
temperature by the low-pass behaviour of the reactor, as
expected. As soon as the RTV valve is fully open the
RBV valve can be closed, and output temperature keeps
increasing until it eventually reaches the inlet tempera-
ture.

Each node in the simulation executes an application
task running on top of the RTOS, updating variables at a
specific sampling frequency. From Figure 11, we clearly
see how the SCR control unit runs at 5 Hz and the engine
control unit at 10 Hz. The SCR temperature is calcu-
lated in Ptolemy, resulting in the same frequency as the
simulation time step of 1 ms.

5 Conclusion

This paper showed the non-trivial process of implement-
ing FMI for co-simulation of an embedded system. We
proposed to compile a target platform RTOS into an x86
architecture, which most RTOS systems support. By re-
placing the idle thread of the RTOS, a hook for the sys-
tem clock can be provided and used to advance through
the application. To match the ”Get()/Set()” structure of
the standard, the same was implemented through sim-

Figure 11. Illustration of the different sub-system sampling
frequencies

ulation proxies identified by unique ID numbers of tar-
get variables. The FMI API is wrapped around the x86
RTOS by loading it as a shared library, with the FMI
step function ” f mi2DoStep()” activate the RTOS clock
through a callback function. The configuration of an en-
tire control system results in a vast amount of connec-
tions, not necessary relevant for all modelling purposes.
One of the advantages of the proposed method is that the
configuration abstraction can be varied. If relevant, each
node of the control system can be packed in individual
FMUs, or all nodes can be enclosed in a single FMU,
with all configuration and data/network exchange done
internally. We have provided a use case where part of the
engine control system is packed in an FMU and imported
into Ptolemy II. By connecting the FMU to a physical
model, we proved that the system could be co-simulated
with an external tool, resulting in correct control system
behaviour.
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Abstract 

In the effort to shorten development cycles and with 

the reduced ability to test in real life, driver-in-the-

loop simulators are increasingly used by automotive 

OEMs and in Motorsports to enable engineers and 

drivers to experience a new vehicle design in a realis-

tic environment before it is built. With the right level 

of accuracy, the same model can be applied in other 

real-time vehicle dynamics applications to allow for 

testing and verification in the development of new ve-

hicle functions.  

This paper gives and overview of the requirements 

for automotive real-time application and the solution 

chosen. Emphasis is given on the model definition and 

real-time configuration as well as parameterization 

from existing data sources and integration of third 

party subsystem models. 

Keywords: vehicle simulators, vehicle dynamics, real-

time, hardware-in-the-loop, driver-in-the-loop 

1 Introduction 

Virtual representations that can predict a vehicle’s 

real life behavior have become more and more im-

portant in the development process. There are some 

well-known reasons for this, such as overcoming the 

cost, time, safety and repeatability issues with physi-

cal prototypes (Rauh, 2003).  

Recently, deployment of real-time vehicle dynam-

ics simulation for hardware-in-the-loop testing and 

driving simulators has gained significant attention 

(Yasuno, 2014). This trend is largely driven by the de-

mand for shorter development cycles that also should 

result in better products. 

Figure 1 illustrates three typical applications that 

drive the use of real-time models. The ability to per-

form early assessment of drivers’ perception of the ve-

hicle being designed is one of the key driving factors 

(top).  

Another common use is for the integration of Elec-

tronic Control Units (ECUs) from suppliers where the 

actual implementation is often hidden or partly hidden 

as a so called black box (bottom left). A third case is 

to include parts of the vehicle as hardware to provide 

realistic boundary conditions for component testing 

(bottom right).  

Ultimately, all these applications can be combined, 

with the virtual vehicle representation as the glue to 

be able to assess the complete driver-vehicle system 

at any point during the development process. Here, we 

 

Figure 1. Applications of real-time capable models: 

Driver-in-the-loop simulator, Yasuno (2014) (top), ECUs 

(bottom left) and component hardware testing (bottom 

right). 
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try to give a brief overview of the requirements a mod-

ern engineering tool chain should meet and pointers 

to where in the paper the topics are addressed. 

1.1 Accuracy and real-time capability 

The late testing, tuning work and potential design it-

erations associated with physical prototypes are 

known to not just be expensive, but also to extend the 

development time with associated risks to delay mar-

ket introduction. To be able to reduce physical testing 

further, the required simulation accuracy increases, 

which in turn typically increases the computational ef-

fort which is in conflict with real-time requirements. 

For vehicle dynamics, multi-body representations 

of the vehicle mechanics are a standard approach in 

the automotive industry as they are able to capture the 

relevant phenomena for vehicle dynamics, while 

providing a straight-forward parameterization. 

For motorsports applications, the vehicle chassis is 

traditionally close to an ideal kinematic behavior.  As 

such, the number of degrees-of-freedom (DOF) can be 

kept to around 30-50. Such multi-body representa-

tions have been used successfully in real-time appli-

cations for a long time. Applications include driver 

training, driver perception evaluation of new designs 

and complete driver-vehicle systems integration, see 

e.g. (Toso, 2014). 

For passenger vehicles the vehicle design is gener-

ally different, especially due to the many elastic ele-

ments that are used to enhance comfort and tune vehi-

cle attributes. This leads to more complex representa-

tions with typically 150-300 DOF that traditionally 

were not possible to execute in real-time. Therefore, 

the current industry practice is to use a vehicle model 

with significantly reduced complexity that results in a 

lower computational load. Unfortunately, this means 

lower accuracy, a limited valid frequency range and 

additional pre-processing of the model to generate the 

required parameterization, which slows down itera-

tion time.  

With the introduction of new technology for paral-

lelizing vehicle models (Andreasson et al., 2014) and 

(Elmqvist et al., 2014), the high model fidelity used 

offline (see Section 2) is made executable in real-time 

applications, as explained further in Section 5.  

1.2 Inter-operability 

In the context of shorter lead-times, no tool can be an 

island, they must connect to form an efficient tool 

chain. With the amount of legacy tools and methods 

used by OEMs today, this puts some additional re-

quirements on any new model:  

1. The model must be able to share data, mean-

ing reading and writing existing formats.  

2. It must also be possible to plug the model into 

the tool chain in such a way that it can use ex-

isting tools for pre- and post-processing.  

3. Additionally, subsystem models from differ-

ent sources need to be included in the com-

plete vehicle model to allow for incremental 

improvement, multi-fidelity and use of herit-

age/legacy code.  

These topics are further described in Sections 3 and 4. 

2 Model overview 

The vehicle in this example is a production vehicle 

featuring a front double wishbone suspension, a rear 

multi-link suspension, front engine, rear wheel drive, 

and an automatic transmission, Figure 2. The models 

are based on the (Vehicle Dynamics Library, 2015) 

and largely implements the template and interface 

structure provided, Figure 3. 

 

 

 

 

Figure 2 Vehicle model used in the presented work. 

 

For each component or sub-system, the vehicle 

model can be reconfigured by replacing subsystems 

with plug-in compatible variants. This allow for 

changing both configuration (e.g. from automatic to 

manual transmission) and fidelity (e.g. from multi-

body to tabular suspension). 

For each subsystem or component, there is a well-

defined interface that specifies the boundaries and 

provides an established framework to connect pieces 

from existing various simulation tools as described in 

the next section. 
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Figure 3. Architecture of the complete vehicle model. Ve-

hicle (top), brake system (second), chassis (third) and rear 

suspension (bottom). 

 

3 Deployment 

To ensure convenient interoperability with subsystem 

models from different sources, these models connects 

either from within the Modelica framework or from 

the tools originally used. This section illustrates the 

two cases as well as the final integration of the com-

plete real-time model. 

3.1 Multi-physics brake model 

To include higher detail in the brake simulation and 

get more realistic brake pedal feel, the pneumatic vac-

uum booster and the hydraulic master cylinder are 

modelled as physical components (Hydraulics Li-

brary, 2015) and (Pneumatics Library, 2015). Figure 

4 shows the layout of the brake system model. 

 
Figure 4. Diagram layer of the brake system model. Com-

ponents are; pedal actuator (a), vacuum booster (b), mas-

ter cylinder (c) and brake lines and calipers (d). 

The core of the booster model is a double acting 

pneumatic cylinder corresponding to the booster dia-

phragm. Based on the pedal actuating the poppet 

valves, vacuum and atmosphere pressure is applied to 

the different sides of the diaphragm to boost the pedal 

force acting on the master cylinder piston. 

The force characteristics of the vacuum booster are 

affected by elasticies and gaps in the mechanisms that 

open and close the valves to the diaphragm. High stiff-

ness in combination with low mass in these compo-

nents can result in fast dynamics. This is typically not 

relevant for the application, and may also be too fast 

for the desired integrator time step. To handle this, the 

spring-mass combinations are replaced with elements 

where the bandwidth can be explicitly defined. 

The master cylinder is a two circuit variant with a 

mechanical gap connecting the two cylinders. As long 

as the first circuit is pressurized, the gap is open and 

the hydraulic pressure also activates the second cylin-

der. If the pressure in the first circuit is lost, the gap 

will close so the pedal force is still transferred to the 

second cylinder though with changed pedal travel. 

a. b. c. 

d. 

d. 
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To show the more detailed function of the booster 

in combination with the hydraulic system can give a 

more refined accurate prediction of the driver’s per-

ception, Figure 5 illustrates how the brake system re-

sponds to a press-and-release cycle of the pedal force. 

The upper plot shows the brake line pressure which 

also will affect the actual and experienced retardation 

generated. The lower plot shows the pedal stroke 

which provides the driver with feedback through the 

foot.  

 

Figure 5. Top plot: Brake line pressure (vertical axis) as a 

function of brake pedal force (horizontal axis). This shows 

the knee points where the booster engages and disengages. 

Bottom plot: Corresponding pedal travel (vertical axis) for 

the same pedal force excitation. For confidentiality reasons, 

the numerical values have been removed. 

3.2 External steering model 

External subsystem models not implemented in Mod-

elica can either be imported into the Modelica frame-

work, or the vehicle model is exported without the 

corresponding subsystems for integration on an exter-

nal platform. 

External models are brought into the Modelica 

model using external functions or objects, or to in-

clude so called Functional Mock-up Units (FMUs) ad-

hering to the Functional Mock-up Interface (FMI, 

2015). In either case, these are wrapped into the sub-

system interfaces to ensure plug-in compatibility. A 

variety of external models, including (OpenCRG, 

2015), (DelftTyre, 2015) and (FTire, 2015) are prede-

fined and ready to use. 

Correspondingly, when exporting the vehicle 

model, the systems that should be external are re-

placed with models that provide no contents. Figure 6 

illustrates a Modelica steering system model (top), an 

external steering model included in the vehicle model 

(middle) and an empty steering model with external 

inputs and outputs (bottom).  

 
 

 

 

 

 

 

Figure 6. Modelica steering model (top), steering model 

imported as and FMU (middle), empty steering model re-

quiring rack motion and providing rack force.  
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3.3 Complete real-time model integration 

After configuring the vehicle model to allow for ex-

ternal subsystems, it can be exported in different for-

mats (such as FMI, C, etc.) for system integration 

elsewhere. For deployment, the system integration is 

currently done in SIMulationWorkbench (Concurrent, 

2015).  

The system architecture is shown in Figure 7. The 

shaded area indicates what is handled by the real-time 

host. It contains the models (2) of chassis (2a), brake 

system (2b), steering (2c), power train (2d), control-

lers (2e) and I/O devices (3) for interaction with the 

motion platform (3a) and driver interface (3b).  

The Communications between the models (2) and 

the I/O devices (3) is handled through shared memory 

interconnection (1) called Real Time Data Base 

(RTDB), Concurrent (2015). RTDB allows access to 

any variables stored in RTDB for any of the included 

models and is achieved to wrap the inputs and outputs 

of each of the model with dedicated read/write func-

tionality.  

The real-time host then communicates with the op-

erators through a set of clients that provides a Graph-

ical User Interface (GUI) for configuration of I/O 

(5a), data recording (5b), playback (5c) and configu-

ration of RTDB (5d). 

 

 

Figure7. Software architecture of the real-time simulation 

host. 

 

To allow for communication through the RTDB, each 

model must contain its own numerical integrator and 

can only expect to share information at each commu-

nication point. So, effectively, the real-time host 

works like a co-simulation platform. A benefit with 

this approach is the ability to let each model integrate 

at multiples of the communication interval, so called 

multi-rate integration.  

Multi-rate integration is suitable as it allows for 

models from tools that only supports explicit integra-

tion schemes to be executed at small enough time step 

to ensure numerical stability. Correspondingly, the 

method allows for plant models to be integrated at 

shorter time steps than the controllers. 

With co-simulation, there is also inherent support 

to distribute the integration of each model to its own 

set of cores. Additionally, the chassis model is paral-

lelized on multiple cores as described further in Sec-

tion 5. 

4 Parameterization 

For the real-time model to be an efficient tool, it is 

crucial that it can access the latest state of develop-

ment. Therefore, the model is designed to read the 

same data set that is used in existing offline tools, in 

this case the TeimOrbit format. 

4.1 Accessing data 

The data management is accomplished using a gen-

eral-purpose data management method to read and 

write external data called DataAccess. This method 

can handle a variety of different file formats such as 

.xml, .json and .mat.  Since DataAccess is compiled 

into the simulation code, it is well suited for model 

export as it allows users to conveniently change model 

parameters in a consistent way regardless of how and 

to what format the model is exported, Figure 8.  

For this work, the handling of the TeimOrbit for-

mat was added to allow data sharing with the offline 

tools.  Initially, the real-time model was parameter-

ized by manually accessing a data value required for 

a particular attribute, such as the mass of a part.  This 

resulted in significant effort and duplication of code 

to read the necessary data.  As the project progressed, 

it became evident that duplicate coding could be elim-

inated by creating data-aware components, Figure 9.  

A data-aware component is responsible for reading 

all the data that it requires from the data file.  For ex-

ample, a data-aware part is responsible for reading all 

of the mass and inertia data associated with it; and a 

data-aware bushing is responsible for reading all the 

force and torque characteristics that describe it.   Data-

aware components are also easier to validate because 

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

82 DOI 
10.3384/ecp1612478

____________________________________________________________________________________________________________



correlation occurs at the component-level and the only 

configuration work is to point the component to the 

right data source.  

 

 

 

Figure 8. The data management (DataAccess) is compiled 

into the executable model. This ensures that the parameters 

are read from the same source regardless of the deployment 

scenario. 

 

 

 

 

Figure 9. Linkage topology view (left) configured with 

data aware components that read TeimOrbit data and result-

ing 3D view (right). 

 

4.2  Validation against offline tool 

To ensure consistent behavior between offline tool 

used in development and the new real-time model, a 

validation procedure was carried out. This procedure 

included comparison on different levels, from compo-

nents to chassis on road. For the suspension level, the 

standard offline procedure was replicated in Model-

ica, and configured to read the test specifications pro-

duced by the offline tools. Figure 10 shows the result-

ing test model that contains three main components; 

the test rig, the suspension, and the signal source. 

The test rig provides a constraint between vehicle 

body and ground. The wheel centers are excited 

through moving the wheel pads which induces forces 

through the tires. Additionally, forces and torques can 

be applied either at the wheel center, or at the tire con-

tact patch. For the front suspension, either steering 

wheel position or steering wheel torque is given. 

The suspensions are the same suspension that is used 

in the complete vehicle (Figure 3). The source block 

is configured using DataAccess to read the configura-

tion information used by the off-line tool eliminate 

manual reconfiguration of test scenarios. Figure 10 

shows some example correlation plots from the front 

suspension for parallel wheel travel. 

 

  
 

Figure 10. Suspension test model implementation showing 

the tested suspension, the boundary conditions, and the 

source block that reads the test specification. 

5 Realtime configuration 

The Vehicle Dynamics Library have been used to 

model real-time capable multi-body vehicle models 

for more than a decade, (Elmqvist et al., 2004). These 

models are heavily adopted in the Motorsports indus-

try for various applications, see e.g. (Toso, 2014). 

With recent development (Andreasson et al., 2014), it 

is now possible to execute high fidelity vehicle mod-

els with more than 150 DOF (300 states). This allows 

the models used for vehicle development at CAE de-

partments to be executed directly in real-time applica-

tions. Key methods to achieve the performance is the 

inlining of the real-time solver and parallelization of 

the executable code. 
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Figure 11. Comparison of results generated from offline 

tool (blue) and real-time model (green) for a parallel wheel 

travel. Plots show lateral (top) and camber (bottom). Each 

plot shows the curves overlaid and error, respectively.  

5.1 Inlining 

So called inlining (Elmqvist et al., 1995), has proven 

to be a successful way of achieving real-time perfor-

mance of stiff systems, (Elmqvist et al., 2004). Inlin-

ing essentially means that the discretization formulas 

of the integration methods are substituted into the dif-

ferential equations of the model, and then structural 

analysis and computer algebra are applied on the aug-

mented system of equations. The method can be com-

bined with both explicit and implicit discretization 

schemes. The explicit scheme is straight-forward but 

requires small enough steps to ensure stability. The 

implicit scheme has better stability properties but typ-

ically results in non-linear system of equations that 

need to be solved iteratively.  

5.2 Parallelization 

Solving large systems of non-linear equations is 

O(n^3), meaning cost to solve the problem grows with 

the third power of the number of equations.  For the 

model in this work, the size of the manipulated inlined 

implicit integration system is 178 (n1=178), which 

would be difficult to solve robustly in any real-time 

application without further manipulation.  

As described in (Elmqvist et al., 2014), parallel-

ized code can now be generated from Modelica mod-

els according to the (OpenMP, 2015) standard. The 

real-time model takes advantage of this functionality 

to distribute the workload of solving the systems of 

equations across multiple cores according to the fol-

lowing principle:  

After the implicit integration scheme has been in-

lined with the model, the resulting system of equa-

tions is then divided into several smaller systems cor-

responding to the dynamics of the rear and front left 

and right suspension linkages, the powertrain, the 

steering and the wheels. The resulting impact on the 

structural side is that one large system of equations is 

now reduced to several smaller systems after manipu-

lation, here n2={40, 40, 32, 32, 12, 11, 1, 1, 1, 1, 1, 1, 

1, 1}.  

This split gives two advantages, first several 

smaller systems solve significantly faster than one big 

system due to the cubic growth described above. In 

this particular case the reduction corresponds roughly 

to n1^3/n2^3, which is about 30 times. 

The second advantage is that the parallelization of 

the code allows the execution to be distributed on 

multiple cores. This also means that as long as there 

are cores available to distribute the calculations onto, 

any added model complexity will have a limited effect 

on the overall turn-around time as long as it does not 

add to any of the largest systems of equations. 

5.3 Simulation accuracy and performance 

The real-time configuration has been validated both 

with respect to accuracy and performance. To ensure 

robustness to high amplitude and high frequency in-

puts, the test suite contains a broad range of excita-

tions such as jump and police turn in addition to the 

more traditional simulation set-ups. Figure 12 shows 

the vertical acceleration of the body while the car ac-

celerates over an uneven ground surface. 

The performance of the real-time model is defined 

by the time it takes to solve for each time step, so 

called turn-around time. Indications of the perfor-

mance can be done directly on a desktop or laptop us-

ing timers, and on a Windows laptop (i7-3520M @ 

2.90 GHz) the performance is roughly real-time. In 

Figure 13, the timing plot on the hardware-in-the-loop 

platform (Concurrent Xeon E5-2687w v2) is shown.  
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Figure 12. Time trace of vertical acceleration while accel-

erating over an uneven road. Reference trajectory generated 

with Dassl solver using relative tolerance 1e-6 (blue), and 

real-time solver (red). For confidentiality reasons, the nu-

merical values of vertical axis have been removed.  

 

 
Figure 13. Execution time on the hardware platform. Each 

time step is 1ms. 

6 Conclusions 

This paper presents a real-time capable, high-fidelity 

model of a production vehicle. It is shown how this 

model can add real-time capability to the existing 

toolchain without having to replace or re-implement 

existing functionality. This is achieved by combining 

an open architecture with the ability to read and write 

legacy data formats. It is also shown how to enable 

real-time simulation of high-fidelity vehicle models 

using inlining and parallelization.  

All-in-all, the model presented in this paper can re-

spond accurately to inputs and realistically predict the 

vehicle behavior as of the latest state of the develop-

ment process. The deployment in real-time environ-

ments such as driver-in-the-loop and hardware-in-the-

loop simulators enables both subjective and objective 

evaluation. This in turn allow for early assessment of 

the human-vehicle interaction and the integration of 

vehicle safety systems. 
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Abstract 

In systems which are sourcing their electric energy from 

a battery system, such as electric or hybrid electric 

vehicles, it is of crucial importance to monitor the 

battery’s condition in order to ensure its usability and 

longevity. The battery management system (BMS) is a 

control unit which supervises the physical variables in 

order to assess the condition of the battery. 

For the development and testing of control units in 

the automotive industry, such as the BMS, the 

AUTOSAR standard was introduced, which separates 

application code from platform-specific software. By 

using AUTOSAR tools and the model exchange via the 

Functional Mock-up Interface (FMI), this paper shows 

how BMS algorithms can be validated and tested in 

several abstraction layers. A sub-function of the 

algorithm is tested first in the Modelica-based system 

simulation tool Dymola on a personal computer and then 

on Hardware-in-the-Loop (HiL) platform which 

emulates the hardware of an automotive ECU. 

In order to provide realistic inputs of the physical 

variables, a battery model in Modelica is built using the 

Dymola add-on Battery Library by Dassault Systèmes. 

In order to run on the HiL platform the battery model is 

implemented such that it is real-time compliant. 

For both, the BMS algorithm and the battery model, 

it is described along the process which adjustments need 

to be made when switching from the simulation 

framework to the HiL platform. 

Keywords: battery model, battery management system, 
AUTOSAR, FMI, ASim, MiL, SiL, HiL, XiL, Co-

Simulation 

1 Introduction 

Today’s system- and software development teams 

work quite isolated from one another. Information 

exchange is usually limited on written specifications. 
With the example of the battery management system 

(BMS) we will show a method in which information can 

effectively be exchanged through a model based on the 

Functional Mock-up Interface (FMI) as executable 

specification. This allows both parties closed-loop 

simulation at different stages of the V-Cycle. This way, 

software developers can more thoroughly test their 

software in a virtual environment. At the same time the 

system simulation teams can simulate their whole 

system without the need to manually re-implement the 

software algorithms of the ECU code. 

This paper illustrates how based on FMUs 

(Functional Mock-up Units) source code from an 

AUTOSAR Battery Management Algorithm can be 

simulated on different abstraction levels in order to 

verify the algorithm for a failure mode. 

At first, in section 2, the physical battery model will 

be introduced along with example battery module which 

it represents. In a second step, the function and tasks of 

a battery management system will be explained. The 

focus will shift on the specific algorithm, the charging 

status estimation, which is chosen as an example in 

order to demonstrate the process for the overall BMS. In 

section 3, the AUTOSAR standard and the used tool 

chain will be described. 

2 Battery Simulation and Battery 

Management 

Proper battery modelling plays an important role in this 

context. On the one hand, the model needs to provide a 

proper representation of the inner workings of the 

battery so the battery management system receives a 

realistic and complete set of signals. 

On the other hand, the battery model needs to be 

performant enough in order to be compliant with real-

time requirements. In the following two sections, the 

battery model will be introduced. 

2.1 Battery Simulation Model 

The battery pack which is modelled is a 48 V module. It 

could be deployed in micro-hybrid systems for the on-

board electric power supply or as part of a traction 
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battery system. The module features two parallel-

connected rows of each 13 battery cells in serial electric 

connection. Their combined capacity of the 26 battery 

cells amounts to 140 Ampere hours. 

Table 1. Battery Cell Parameters. 

Parameter Unit Value 

Nominal Cell Capacity  Ah 2.7 

Nominal Cell Voltage V 3.6 

Maximum Voltage V 4.2 

Minimum Voltage V 2.5 

Maximum Internal Resistance mΩ 30 

Shape - round 

 

The battery module is modelled in Modelica using the 

Battery Library from Dassault Systèmes (Gerl, et al. 

2014). The physical battery cell models is made up of 

the physical domains relevant for the batteries behavior: 

electric and thermal. 

The main requirement for cell models used in system 

simulation is to provide accurate information on the 

macroscopic characteristics (e.g. voltage, current and 

state of charge) combined with reasonable computation 

time. This way, the impedance characteristics of the real 

cell are replicated. In many applications models using 

an electrical equivalent circuit fulfill these requirements 

The voltage of a battery U can be described as the 

difference between the open circuit voltage UOCV and a 

number of over potentials ηi caused by different 

electrochemical effects: 

𝑈 = 𝑈𝑂𝐶𝑉 + ∑ 𝜂𝑖 (1) 

These over potential can be modelled with equivalent 

electric circuit networks. In Figure 2 the voltage 

characteristic for the step current discharge of a NiMH 

cell is shown. The effect is similar for Lithium-Ion based 

cells, such as the ones used for this example. 

 

Figure 1 Voltage characteristic of an electrochemical cell 

(NiMH) (Jossen und Weydanz 2006) 

The over potential is divided into an ohmic over 

potential ηohm, over potential caused by charge transfer 

and the electrical double layer ηtrans and over potential 

due to diffusion ηdiff. An electrical equivalent circuit 
capable of reproducing the voltage characteristic from 

Figure 1 is shown in Figure 2, whereas the dynamic 

behavior of the over potentials are modelled using RC-

circuits. 

 

Figure 2 Voltages in the equivalent circuit model  

In order to determine the influence of varying temperatures 

on electrical and aging behavior a thermal model of the cell 

and its surrounding environment is required. The heat 

inside the cell is generated mainly due to Joule effects, 

while the chemical reactions are exothermic or even 

endothermic to a minor degree. Thus the generated heat 

corresponds to the calculated power losses of the resistors 

of the equivalent electric circuit which are therefore 

connected to the thermal model. 

 

Figure 3 Representation of the thermal cell model 

At the module level, where several cells form an 

electric, geometric and thermal entity, the major 

advantage in this context is that the battery pack can be 

adjusted according to the performance needs. In 

practical terms, this results in the question whether the 

battery cells are each represented as a Modelica object. 

A simplified approach would be modelling just one cell 

and scaling up the results to module size by multiplying 

the inputs and outputs by the cell numbers in accordance 

with their electrical wiring. Also, the thermal 

representation of the cells can be adjusted in the number 

of discretized elements. In the case of a round cell these 

elements are vertically slices which help to calculate the 

cell internal flow, as sketched in Figure 3. 

Of practical importance is the fact that the Hardware-

in-the-loop platform usually does not feature a data 

system. Modelica models in industrial environments 

might be parameterized by external parameter files. 

When exporting the model for the HIL environment, the 

data needs to be placed within the model without any 

external dependencies. 
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2.2 Battery Management System 

The battery management system has to process sensor 

data and on-board model simulation results in order to 

obtain information about the state of the battery. Tasks 

of the battery management system (BMS) include the 

determination whether the monitored variables are still 

within the acceptable limits. Apart from state-of-charge 

(SoC) and the state-of-health (SoH) usually the cell 

temperature, the cell voltage and the system voltage are 

monitored. In case one of these variables appears to be 

out of the operational limits, the battery management 

system sends a signal to the overall power management 

control unit which restricts the power usage of the 

consuming components. 

Especially the SoC and the SoH are variables, which 

need to be monitored to ensure overall system 

availability at any given moment (He, Wei and Brian 

2010). When the SoC reaches a critically low level in 

general in the range of 5-10%, the electrodes of the 

battery take severe damage and the battery voltage 

might drop below a level at which the battery system 

cannot provide the required power anymore. On the 

other hand, when the SoC exceeds 100% by too much, 

the battery cell stores excessive amounts of energy 

beyond a level which it can safely handle. In severe 

cases, this might even a cause a “thermal runaway”, a 

strong exothermal reaction after which the battery 

system is completely dysfunctional. 

Therefore in any case the battery management system 

should encompass a SoC estimation algorithm. In the 

following, the realization of such an algorithm will be 

discussed. 

2.3 Estimation of Battery State-of-Charge  

In a battery simulation model the change of the SoC can 

be calculated by balancing the electric charge and 

discharge current such as in equation (2). The SoC is by 

definition part of the overall amount of electric charge 

available for discharge with Cn being the nominal 

battery capacity in Ampere seconds (He, Wei and Brian 

2010).  

∆𝑆𝑜𝐶 =
∫ 𝐼 𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

𝐶𝑛
 (2) 

 However the SoC determination is more complex when 

being implemented on a battery ECU.  

First, integration is a mathematical operation which 

requires more resources in terms of on-board memory 

and computational time compared to other mathematical 

operations.  

Secondly, current sensors do not necessarily deliver 

a constantly precise measurement output. Calibration 

errors result in constant drifts of the recorded battery 

current. This drift might not significantly influence the 

quality of the estimation during a short period such as a 

short inner city ride. However during longer trips such 

as an inter-city highway tour the drift in the charging 

status estimation might accumulate to a point where the 

battery is depleted while the battery management system 

assumes the charging status as being sufficient. 

In order to ameliorate the quality of the SoC 

estimation, corrective back-up algorithms need to be 

included. A viable alternative is measuring the voltage 

of the battery when the battery is in electrochemical 

equilibrium, meaning that no electric load or charging is 

applied and excitation of previous electric load has 

faded. In this state the over potentials are negligible 

leaving the open circuit voltage as the dominant factor 

determining the cell voltage: 

As a matter of fact, the open circuit voltage is usually 

measured during the initial rating of new cell type and 

also typically used for the parameterization of 

equivalent circuit cell models as shown in Figure 2. 

Implementing the relationships presented in 

equations (2) and (3) in Modelica code could be drafted 

as followed: 

der(SoC_count) * C_n = current + error; 

SoC_est = SoC_count; 

when zeroCurrentTimer > fadingTime then 

  reinit(SoC_est, SoC_ocv); 

end when; 

 

In the first code line the charge counter (SoC_count) is 

implemented after the fashion of equation (2) with the 

error signal applied on the current signal. The output 

SoC_est is directly loaded with the result of the 

integration over the current and standardization with the 

nominal capacity C_n. 

The when-clause representing equation (3) becomes 

active at the time point at which the current has been 

close to zero for a time period, implementation shown 

in Figure 4, with the influence of charge transfer over 

potential has most likely faded, in this case more than 

the time constant fadingTime. The calculated SoC will 

be replaced then with a charging status which has been 

extracted from a look-up-table describing SoC over 

OCV. 

 

Figure 4 Counting time with current close to zero 

During the verification phase of the system 

engineering process, the battery management system 

needs to be verified if it lives up to battery safety 

requirements, i.e. if the variables describing the battery 

state are recorded properly, the operational limits are 

correctly determined and their violations duly signaled. 
 In context of this paper, the ability of the charging 

status estimation algorithm to correct an erroneous 

tableOCV 

NoCurrentTimeCounter 

0.1 

< 

absoluteCurrent 

abs 

socReset 

in_current 

in_voltage 

soc_estimation 

𝑆𝑜𝐶 = 𝑓(𝑈) = 𝑓(𝑈𝑂𝐶𝑉) for 𝜂𝑖 → 0 (3) 

  

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

DOI  
10.3384/ecp1612487

89
____________________________________________________________________________________________________________



current measurement signal will be verified. For 

demonstration purposes the implementation is limited to 

charge counter and correction by voltage comparison as 

laid down in this chapter. A typical question answered 

during this process might be whether an estimation 

correction via cell voltage is sufficient to ensure that the 

battery management system and the driver are provided 

with the correct battery charging status. 

3 Virtual Testing of AUTOSAR compliant 

controller software using FMI 

3.1 What is AUTOSAR? 

AUTOSAR (AUTomotive Open System ARchitecture) 

is a well-accepted standard for developing software for 

automotive electronic control units (ECU), as 

documented by (Bertsch, et al. 2015) for Bosch ECUs. 

It defines a layered architecture, separating hardware, 

application software and basic software through 

standardized interfaces.  

 

Figure 5 AUTOSAR Layered Architecture 

As shown in Figure 5 the interface between 

application software components and the interfaces 

between application software and basic software (BSW) 

is handled through the runtime environment (RTE), 

which implements different types of communication 

mechanisms (AUTOSAR 2016). 

3.2 AUTOSAR Unit Test 

One essential part in the AUTOSAR software 

development is the testing of individual software 

components and the whole software architecture (top 

level composition). Ideally those tests should be 

executable without any hardware-dependencies to 

enable testing as soon as possible in the development 

cycle. AUTOSAR addresses this through the Virtual 

Function Bus (VFB) Abstraction Level. The 

AUTOSAR test environment ASim from Dassault 

Systèmes is also applying this concept taking a real 

AUTOSAR compliant operating system (OS) and RTE 

into account. This allows testing of software 

components on a very granular level, also considering 

effects through the OS, e.g. scheduling, or through the 

RTE, e.g. synchronize queued and non-queued 

communication. Even fixed-point arithmetic is taken 

into account using AUTOSAR datatypes. 

3.3 FMI-based Export of virtual AUTOSAR 

ECUs 

Unit tests are in general open-loop tests, which means 

the user has to define sufficient and reasonable test-

vectors and test-constraints, which is often quiet 

challenging and time-consuming. Hence integrating the 

software “model” in a virtual environment which closes 

the loop through a plant-model would make the 

conditioning of many of the software component-ports 

obsolete, as they will be fed directly through the 

connected plant model. In addition to that timing effects 

and delays could also be taken into account by a plant 

model. ASim opens this possibility through FMU export 

the extraction of a virtual AUTOSAR ECU which can 

then be integrated into other simulation platforms 

supporting the FMI-Standard. 

3.4 FMI-based XiL Tool Methodology 

The Modelica-based simulation tool Dymola supports 

the import, export and simulation of FMUs (FMI for 

Model Exchange and Co-Simulation, (Blochwitz, et al. 

2011)). Software- and plant-models can be simulated on 

different abstraction levels, which allows MiL- and SiL-

testing. FMUs can also be exported via the source-code 

generation capabilities. These can then be compiled for 

different HiL platforms. Based on a Battery 

Management Unit it is illustrated, how XiL-tests can be 

performed using the FMI-standard. 

4 Results and Discussion 

4.1 Model-in-the-Loop 

In general, system simulation starts at an earlier stage in 

product development than the software development. In 

this context both battery model and BMS algorithm are 

implemented as models to evaluate system behavior and 

the response algorithm together in a Model-in-the-Loop 

(MiL) simulation. One could argue that the BMS 

algorithms could be coded from the beginning in a 

software development platform for the ECU software 

instead of being implemented in the same simulation 

environment as the model itself. However when taking 

a closer look at the model equations and the required 

solvers, the advantage of this method will become 

obvious: 

Using an acausal object-oriented Modeling language 

like Modelica for modeling physical systems often 

results in a higher-order differential algebraic equation 

system (DAE) with slow dynamics, looking at the 

thermal behavior of the battery case and fast dynamics 

caused by the electrical cell behavior. An implicit solver 

like DASSL is designed to deal with those type of 

systems. As only explicit fixed-step solvers can be used 

in a real-time environment, numerical stability for the 
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sampling rate of the ECU has to be ensured. Testing the 

battery model in the modeling environment with the 

step-size matching the sampling rate reduces the use of 

generally much more expensive real-time hardware.  

In addition by using this approach the functionality of 

the battery model can be verified in parallel to the 

development of the battery management system by the 

functional development engineer resulting in an 

acceleration of the design phase. Moving forward in the 

product development, this procedure allows early 

simulation experiments.  

 

 

Figure 6 Model-in-the-Loop Simulation: SoC (top) and 

power load (bottom) over time in seconds. Negative power 

indicates discharging of the battery module. 

When coupling the Modelica implementation of the SoC 

estimation algorithm with the Battery Library model and 

applying a load cycle and environmental conditions, the 

following results are obtained as shown in Figure 6. The 

load power cycle consists of a discharge phase of 1 kW, 

an immediate recharge of 500 W and a subsequent 

unstressed time period at room temperature. One can 

observe that due to the forced condition offset error of 

+0.5 A on the current sensor, the output of the charging 

status estimation drifts away from the actual SoC up to 

the point where the divergence amounts to over one 

percentage point. A short time period later the power 

load is stopped. The cell voltage is largely no longer 

influenced by the electrochemically induced 

overpotentials but only by the open circuit voltage. The 

corrective algorithm steps into action, looks up the SoC 

value which matches the measured voltage. At second 

250 the reinit command is ignited and replaces the 

calculated SoC value with the one based on the 

measured cell voltage. 

 

 

Figure 7 Model-in-the-Loop Simulation: Different 

Methods of SoC over the course of the battery load cycle 

A comparison in Figure 7 between the SoC values also 

shows at this early software design stage why charging 

status based on the measured cell voltage cannot serve 

as a lone signal source, and why a certain time period 

needs to pass before the correction is applied. 

As the focus is the evaluation of the concept per se, 

the simulation is performed on a high-performing 

workstation with characteristics described in Table 2. 

Table 2 Technical Characteristics of the workstation 

(Intel Corporation 2016)  

Parameter Value 

CPU Type i7-4810MQ 

Instruction Set 64 Bit 

Number of CPU Cores 4 

Base Frequency 2.8 GHz 

L2 Cache size 1 MB 

L3 Cache size 6 MB 

RAM 16 GB 

 

With summoning such computing power while using a 

language which is native for the Dymola solver shows a 

satisfying result for simulation time: The 17671 

equations of the Modelica are integrated in 110 seconds 

while the CPU-time for one GRID interval is 0.365 

milliseconds. 

4.2 Software-in-the-Loop 

Once the algorithms of the BMS have been drafted and 

evaluated during the MiL testing, they are implemented 

as software functions for the ECU. Using the ASim 

plugin of the Autosar Builder, the BMS algorithm can 

be exported as FMU and coupled with the physical 

battery simulation model in Dymola. As the algorithm 

is now in the same format as on the ECU, this stage is 

called Software-in-the-Loop (SiL) simulation. 
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Figure 8 AUTOSAR Software Component of BMS. The 

interfaces for I/O and calibration are marked in blue, the 

internal behavior is marked green (presented in Figure 9). 

In this stage of the process, the stability is first 

verified with the ECU code coupled with the battery 

model in Modelica in Dymola and in a second step as in 

FMU both again imported in Dymola. Taking into 

account the sampling. time of the Hardware-in-the-Loop 

platform, it is to be tested whether coupled entities are 

running stable when being operated with a fixed-step 

solver with a sampling time of one millisecond. 

When implementing the charge status algorithm as 

sketched out in Modelica for the MiL simulation, some 

methods need to be altered in order to ensure a sufficient 

performance on an ECU for implementing the charging 

status estimation algorithm: 

As mentioned before in 2.3, the integration operation 

used in equation (2) would use too much on-board 

memory and is not always available in the ECUs 

instruction set, so it needs to be replaced by a discrete 

sum operation which accumulates the measured current 

with each time step. 

 

Figure 9 AUTOSAR Builder Screenshot of the internal 

behavior of BMS. The supervision algorithm for the 

operational limits is in the upper block FuncBmsControl, 

while the charging status estimation is in bottom block 

FuncBmsSocEstimate. 

 

 

 

As shown in Figure 10, in both cases the system of 

physical model and algorithm works stable with 

reasonable results similar as obtained in the Model-in-

the-Loop simulation in chapter 4.1. 

 

Figure 10 SiL Simulation: Results AUTOSAR-FMU and 

Modelica Model in Dymola.  

In the SiL simulation, the Dymola solver is now slowed 

down by processing the FMU. The integration time 

amounts now to 187 seconds with a 0.618 milliseconds 

per grid intervall. 

4.3 Hardware-in-the-Loop 

In the final stage of the verification of the charging 

status algorithm, the battery model in Modelica and the 

BMS algorithms in AUTOSAR C-code are exported as 

FMUs and executed on a platform which emulates the 

hardware of an ECU of the target system. This stage is 

therefor called Hardware-in-the-loop. At this point, the 

stability of the software in a real-time environment can 

verified. Additionally, hardware specific effects, such as 

the influence of signal propagation delays, limited 

memory, cache and processing speed are playing out as 

well.  

 

Figure 11 Toolchain and process for creating an FMU for 

a HiL platform. 

The battery model FMU and the Autosar FMU are 

both set on the HiL platform. For this purpose, a dSpace 

DS1006 Processor Board is employed as specified in 

Table 3. 

For being executed on the HiL platform, the 

AUTOSAR FMU had to be equipped with operating 

system functionalities such as scheduling. The toolchain 

is visualized in Figure 11 Toolchain and process for 

creating an FMU for a HiL platform.Figure 11. 

 

 

 

 

 
 

 

0 50 100 150 200 250 300 
0.740 

0.745 

0.750 

0.755 

0.760 

0.765 

0.770 

0.775 

0.780 

0.785 

0.790 

0.795 

0.800 

0.805 

0.810 

time [s] 

SOC (estimated) 
SOC (real)  

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

92 DOI 
10.3384/ecp1612487

____________________________________________________________________________________________________________



 

Table 3 Technical Characteristic HiL platform’s CPU 

(dSpace GmbH 2016) 

Parameter Value 

CPU Type Opteron 

Instruction Set 64 Bit 

Number of CPU Cores 4 

Base Frequency 2.6 GHz 

L2 Cache size 1 MB 

L3 Cache size - 

RAM 128 MB 

 

For the virtual validation of the charging estimation 

algorithm, the output signals are compared to the results 

in the MiL simulation in chapter 4.1, as shown in Figure 

12. 

 

The important characteristic for ensuring real-time 

requirements is the turnaround rate in percentage points. 

It states which fraction or multiple of the fixed-step 

sample time interval is consumed for the execution of 

the software code. 

The turnaround time of the combined BMS FMU 

exported from AUTOSAR and battery model FMU 

exported from Dymola on the HiL platform is below 0.4 

milliseconds. With the HiL platform processing 

according to a step time of 1.0 millisecond, the 

turnaround indicating a performance fast enough in 

order to be real-time capable. 

 

Figure 13 HiL Simulation: Turnaround time when 

executing the combined FMUs on the HiL platform. 

 

5 Conclusion and Outlook 

In this paper, it could be shown that the detailed battery 

model based on Dassault Systèmes Battery Library can 

be used for real-time applications as the derived system 

could be solved using a fixed-step integration method 

with a step-size of one millisecond. The BMS 

functionalities developed in AUTOSAR could be 

validated using the battery model as a FMU on the HiL 

platform. 

With the example of the charging status estimation 

algorithm, it has been shown how BMS functions could 

be developed from draft to real-time verification using 

FMI across all stages of the process from MiL over SiL 

up to HiL. 

As outlook from the perspective of the tool chain it 

should be noted that currently the FMU generated from 

the ASim in the AUTOSAR Builder uses the VFB level, 

which doesn’t take the Basic Software or Complex-

Device Drivers (CCDs) into account. In a next step, 

parts of the AUTOSAR Basic Software or CDDs could 

be also modelled and exported with the FMU. This 

would then also allow the consideration of propagation 

delays induced by the Basic Software Layer. 
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Abstract

The numerical simulation of non-smooth hybrid systems
exhibiting chattering behavior requires high computa-
tional costs. In the worst case, the simulation appears to
come to a halt, since infinitely many discrete transitions
would need to be simulated. In this paper we present an
FMI-based framework and prototypical implementation
for robust and reliable detection and elimination “On
the Fly” of chattering behavior in run-time simulation
of non-smooth hybrid systems. The main benefit of the
developed framework is that it establishes solvability
requirements and theorems for simulating hybrid sys-
tems while performing the chattering path avoidance
internally in the master algorithm of the interface.
This increases the efficiency of the chattering-free
simulation as no enumeration of modes is required
during the chattering detection and elimination process.
The developed FMI-based framework can generate
a chattering-free simulation for any generic chat-
tering Functional Mockup Unit (FMU) conforming to
the FMI standard v2.0 Specification for model exchange.

Keywords: Functional Mockup Interface (FMI), Func-
tional Mockup Unit (FMU), Non-smooth Hybrid sys-
tems, Discontinuity mappings, Chattering

1 Introduction

In the literature, the term “hybrid systems” is used to de-
scribe a very wide class of dynamical systems with in-
teracting continuous and discrete dynamics. The state
variables in such systems are capable of evolving contin-
uously (flowing) and/or evolving discontinuously (jump-
ing). That is, the presence of two different behaviors,
continuous and discrete, is the cause of heterogeneity
(Zhang et al., 2001; Cai et al., 2008). However, even
simple hybrid systems can exhibit many unique phe-
nomena, such as chattering behavior. The interaction
between time-driven continuous variable dynamics (i.e.
ODEs, DAEs) and event-driven discrete logic dynamics
(i.e. If-then-else) may lead to this non-smooth be-

havior, which can be intuitively thought of as involving
infinitely fast and continuous switching between differ-
ent control actions or modes of operation (Aljarbouh and
Caillaud, 2015b). Models of physical hybrid systems
may be chattering due to modeling over-abstraction, ac-
tuators limitations, time discretization, or unmodeled dy-
namics (usually from servomechanisms, sensors and data
processors with small time constants).

1.1 Problem Statement

As in physical hybrid systems there is no chattering, it is
not reasonable then to assume that the control signal time
evolution can chatter or switch at infinite frequency. This
undesirable significant oscillation with an infinitely fast
frequency components of the control propagate through
the system, because of chattering, affects the system out-
put. In particular, chattering control is harmful because
it leads to low control accuracy, and once applied, can
lead to high wear of moving mechanical parts, as well as
high heat losses in electrical power circuits. In addition,
the numerical simulation of hybrid systems exhibiting
chattering behavior requires high computational costs as
small step-sizes are required to maintain the numerical
precision. For both non-adaptive and adaptive time step-
ping with event localization, root finding to locate the
exact time of occurrence of the chattering event causes
continuous integration to become dramatically and ex-
cessively slow. The system converges fast to the point in
time at which infinitely many discrete transitions need to
be simulated, and the simulation then appears to come
to a halt. Chattering behavior has to be treated in an
appropriate way to ensure that the numerical integration
progress terminates in a reasonable time. This has been
investigated by means of different methods. A smooth
sliding motion can be induced on the switching mani-
fold on which the chattering occurs (Leine and Nijmei-
jer, 2004; di Bernardo et al., 2008; Biák et al., 2013;
Weiss et al., 2015). Filippov Differential inclusion ap-
proach (Filippov, 1988) can be used in this case to define
equivalent sliding dynamics on the switching manifold
on which the chattering occurs. Another approach (the
so-called equivalent control) proposed by Utkin (Utkin,
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1992) can also be used. However, the computation of the
equivalent dynamics turns to be difficult whenever the
system chatters between more than two dynamics. This
arises when the chattering behavior occurs in dynami-
cal systems having multiple discontinuous control vari-
ables. In the Functional Mock-up Interface (FMI) spec-
ification, Functional Mockup Units (FMUs) should add
a small hysteresis to the event indicators to avoid chat-
tering (Blochwitz et al., 2012). This approach has the
following disadvantages: I) A Modelica tool will also
add a hysterisis when handling state events, to ensure
that the zero crossings happen with non-zero values of
the input arguments of the event functions at the integra-
tion restart. Therefore, when calling the FMI function
fmi2GetEventIndicators from the Modelica model,
it will introduce the hysteresis twice to the event indica-
tors, and as a result, the resulting event triggered by the
imported FMU is slightly inaccurate. II) Adding hys-
terisis to the event indicators does not guarantee an effi-
cient treatement of the chattering behavior, as the physics
in chattering hybrid systems make the solution xε(·) be
a saw-toothed, or zigzag function, i.e., a function that
oscillates around the switching surface, with peaks at
−ε < 0 and +ε > 0, with ti+1− ti = 2ε (see Example
1 in Section 2.3). III) The size of the small value ε shall
be related to the size of the event indicator z j. The inter-
face then would become more complicated, because, in
order to determine the size of ε in the simulation envi-
ronment which imports an FMU, the “nominal” value of
z j has to be reported by the FMU, which requires more
information from the tool that generated the FMU, but
cannot be handled efficiently in the simulation environ-
ment that calls the FMU. IV) If this would be handled in
the simulation environment, there is always the danger
that the environment does not handle it properly, but the
FMU would be blamed for a failure.

1.2 Contribution

In this paper, we present methods and techniques for
treating chattering behavior of non-smooth hybrid
dynamical systems in the context of the Functional
Mock-up Interface (FMI), and a prototypical imple-
mentation. In particular we discuss technical issues and
implementation of a generic FMI which rigorousely
detects and eliminates chattering behavior in run-time
simulation without modes enumeration, and without any
need to add a small hysteresis to the event indicators in
the FMUs. The developed chattering-free FMI localizes
the non-smooth structural changes in the system in
an accurate way and allows sliding mode simulation
when the chattering occurs. It treats the chattering
non-smoothness in the trajectory of the state variables
by a smooth correction after each integration time-step.
Furthermore, our chattering-free FMI can robustly han-
dle the case of chattering on the intersection of finitely
many switching manifolds iteratively without any need

to solve stiff nonlinear equations for the computation
of the chattering-free coefficients. In addition, this
paper provides a guidance for development of a hybrid
chattering-free version of the Functional Mockup Inter-
face (FMI) standard, giving a computational framework
for an ideal manipulation of chattering behavior.

The paper is organized as follows: Section 2 gives
a closer look into how the chattering behavior occurs
in hybrid systems, as well as the challenges when
simulating hybrid systems with chattering executions.
Afterwards, we present in Section 3 the chattering-free
semantics for reliable detection and elimination of
chattering behavior in run time simulation. In Section 4,
a prototype implementation is sketched for applying
the chattering-free computational framework from
Section 3 to the Functional Mock-Up Interface v2.0
for Model Exachange. Finally, the simulation results
and conclusions of the work are given in Section 5 and
Section 6 respectively. We illustrate the concepts with
examples throughout the paper.

2 Chattering in Hybrid Systems
Formally we define chattering executions as solutions
to hybrid systems having infinitely many discrete tran-
sitions in finite time. This happens when nearly equal
thresholds for the transitions conditions of different
modes are satisfied and the system start to oscillate
around them. Numerical errors may also be the source
of chattering as transitions conditions can be satisfied be-
cause of local errors. In chattering behavior, the system
moves back and forth between modes, that is, the gradi-
ent of continuous-time behavior in each one of two ad-
jacent modes is directed towards their common switch-
ing surface. When in either of the two adjacent modes
on the common switching surface, an infinitesimal step
causes a mode change. In the new mode, the gradient
directs behavior to the previous mode and after another
infinitesimal step a change to the previous mode occurs.

2.1 Chattering Execution
An execution χ of a hybrid system is chattering if there
exist finite constants τ∞ and C such that

lim
i→∞

τi =
∞

∑
i=0

(τi+1− τi) = τ∞ (1)

∀i≥C : τi+1− τi = 0 (2)

where {τi}i∈N is a set of strictly increasing time instants
represents discontinuity points (state events instants).

2.2 Chattering and Simulation
An essential element of numerical simulation of a hybrid
dynamical system is the generation of discrete events
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from continuous variables that exceed thresholds. Gen-
erating these events is generally implemented using re-
lational operations (e.g. >, >=, <, <=). For an accu-
rate simulation, the point in time at which these relations
change their truth value has to be located within a small
tolerance. A zero-crossing function g(t,x) can be used
to identify the boundary at which the change takes place.
Usually state variables x are used as argument to the
event indicator g(t,x). The nature of zero-crossing detec-
tion and location is to compare the sign of the function
value g(t,x) at the beginning and the end of each time
integration step, and if it changes, declare that it crossed
zero and then bracketing the zero-crossing event (i.e. bi-
sectional search) to locate the zero-crossing. During the
search process, the values of state variables x, needed for
the computation of g(t,x), are evaluated by interpolation,
using the values x(ti) and x(ti+1). Because of the nature
of finite precision arithmetic on digital computers, the
time that the event occurred can only be located within
an interval [Tle f t ,Tright ] that corresponds to machine pre-
cision. During each iteration of the zero-crossing loca-
tion, the zero-crossing function is evaluated twice: at the
left and the right side of the reducing interval. After the
event is bracketed by Tle f t and Tright , the ODE solver first
advances integration time from ti to Tle f t . The solver is
then reset before advancing to Tright followed by switch-
ing the mode. In doing so, the assumption of continu-
ity holds throughout the numerical integration. However,
this approach may fail if the system exhibits a chattering
execution. The zero crossing function g(t,x) is a func-
tion of the model state, but it does not contribute to its
continuous dynamics f (t,x). Therefore, the numerical
integration can proceed without taking the dynamics of
g(t,x) into account, and when these are faster than the
dynamics f (t,x), the chattering execution then causes
the previous Tright to become the Tle f t of the next time
step, and the integration will move with the minimum
step size allowed. In order to illustrate the simulation of
a chattering execution, a simple example shall be given.

2.3 Example 1: Relay Feedback

The relay feedback system is a good candidate to show
the chattering behavior of a hybrid dynamical sys-
tem (Aljarbouh and Caillaud, 2015a). The relay feed-
back system consists of a dynamical system and a sign
function connected in feedback. The sign function
leads to a discontinuous differential equation (Johans-
son et al., 2002). Consider the following example for
x = (x1, · · · ,xn)

T ∈ Rn:

ẋ(t) = Ax(t)+Bu(t) (3)
y(t) =Cx(t) (4)
u(t) =−sgn(y(t)) (5)

A =

 −3 1 0
−3 0 1
−1 0 0

 B =

 −1
−2β

β 2

 (6)

C = [1 0 0] (7)

The system in this example is represented as a hybrid
system with two control modes q1 and q2 where the
phase space of the system is split by a single switch-
ing manifold Γ = {x ∈ Rn : g(t,x) = 0} into two do-
main: D1 = {x ∈ Rn : g(t,x) < 0} and D2 = {x ∈ Rn :
g(t,x)> 0} so that opposed zero crossing of the switch-
ing function g(t,x) = x1(t) defines the switching from
q1 to q2 and vice-versa (e.g. a switching from D1 to D2
occurs when g(t,x) changes its domain to g(t,x) ≥ 0).
It is important to recognize that the “zero crossing” ap-
proach defined by available integrators, for detecting
state events, requires that the event function variables are
non-zero at the event instant and after initialization. So,
suppose one integrates the differential equation 3 with
some delay in the control switch between +1 and −1
because some kind of hysteresis function implemented
around the switching surface x1 = 0. In addition to use it
for handling the non-zero domain change of event func-
tions, such a procedure is sometimes used in order to
avoid too many switches. Even with adding such hys-
terisis, the physics in this system, because of chattering,
makes the solution x1ε(·) to be a saw-toothed, or zigzag
function, i.e., a function that oscillates around x1 = 0,
with peaks at −ε < 0 and +ε > 0, where ti+1− ti = 2ε .
Let the hysteresis size go to zero, i.e., ε→ 0. Then x1ε(·)
converges uniformly towards the zero function. Clearly
the number of “events” goes to infinity on any interval of
time with positive measure.
Hybrid systems simulation tools struggle even with such
naive chattering hybrid system. For example, consider
OpenModelica, and Acumen. In OpenModelica, for
a data set β = 0.5 and x0 = [0.5 3 0.1]T , the solver
gets stuck and the simulation terminates with a halt
when the execution of the hybrid system start to ex-
hibit a chattering. OpenModelica reports the follow-
ing error message: Chattering detected around time
1.88743591101..1.88743593454 (100 state events in a
row with a total time delta less than the step size).

model Example1
parameter Real x10 = 0 . 5 ;
parameter Real x20 = 3 . 0 ;
parameter Real x30 = 0 . 1 ;
Real x1 , x2 , x3 , u ;
i n i t i a l equat ion
x1 = x10 ;
x2 = x20 ;
x3 = x30 ;
equat ion
der ( x1 ) = −3 ∗ x1 + x2 + u ;
der ( x2 ) = −3 ∗ x1 + x3 − u ;
der ( x3 ) = −x1 + 0 . 2 5 ∗ u ;
when x1 < 0 then
u = 1 ;
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elsewhen x1 > 0 then
u = −1 ;
end when ;
end Example1 ;

Acumen language was developed as an extension of
event-driven formalisms that have a similar flavor to syn-
chronous languages. In Acumen, models are simulated
by a fixed time stepping with fine interleaving of a se-
quences that can consist of multiple discrete computa-
tions followed by a single computation updating the val-
ues that should evolve continuously (i.e. global fixed
point semantics). Thus, simulating what is happening
at any single instance in time consists of zero or more
discrete steps followed by a single continuous step. The
Acumen model of the system in Example 1 can be writ-
ten as following:

Figure 1 shows the fixed time step simulation of Exam-
ple 1 in Acumen language without events localization.
With a fixed step size of 0.0001, the solution trajectory
exhibits an undesirable oscillations around the switching
surface Γ, with high frequency components of the control
switching propagate through the system.

3 Detection and Elimination of Chat-
tering

We consider a hybrid system H with a finite set of dis-
crete states q ∈ Q with transverse invariants (Lygeros
et al., 2008), where the state space is split into differ-
ent regions (invariants) Dq ∈ Rn by the intersection of
p transversally intersected Rn−1 switching manifolds Γ j
defined as the zeros of a set of scalar functions g j(t,x)
for j = 1,2, ..., p,

Γ j = {x ∈ Rn : g j(t,x) = 0 ; j = 1,2, ..., p} (8)

All switching functions g j(t,x) are assumed to be an-

alytic in their second arguments, (i.e. ∂g j(t,x)
∂x 6= 0), so

that, for each one of the intersected switching manifolds

Γ j, the normal unit vector ⊥ j =
∂g j(t,x)

∂x

||
∂g j(t,x)

∂x ||
, orthogonal to

the tangential plane Tx(Γ j), is well defined. Moreover,
the normal unit vectors are linearly independent for all

the R(n−r) swicthing intersections where r ∈ {2,3, ...,n}.
The flow map vector field f (t,x) of the hybrid system is
discontinuous on all the switching surfaces Γ j. There-
fore, we can associate to each discontinuity surface Γ j a
discontinuous vector field of the form:

ẋ = f j(t,x) =
{

f j1(t,x) f or x ∈ D j1
f j2(t,x) f or x ∈ D j2

}
(9)

D j1 = {x ∈ Rn : g j(t,x)< 0} (10)
D j2 = {x ∈ Rn : g j(t,x)> 0} (11)

so that opposed zero crossing of g j(t,x), defines the
switching from D j1 to D j2 and vice versa. Note that,
equation 9 represents the necessary condition for the hy-
brid system to accept a chattering execution between D j1
and D j2. If this necessary condition is satisfied for all
j = {1,2, · · · ,k} with k ≤ p, then the hybrid system is
said to accept a chattering on switching intersection. As
each discontinuity surface Γ j splits the phase domain
into two different invariants D j1 ∈ Rn and D j2 ∈ Rn,
the entire continuous domain of the hybrid system H
is then partitioned into 2p open convex regions Dq ∈ Rn,
in which the solution trajectory flow is governed by the
dynamics fq(t,x), where q = 1, · · · ,2p, and p is the total
number of the intersected switching manifolds Γ j. It is
assumed that fq are smooth in the state x for all Dq. For
more details on how the chattering occurs on switching
intersection, we refer the reader to (Aljarbouh and Cail-
laud, 2015b).

3.1 Chattering Detection
Upon crossing a switching manifold Γ j, the behavior of
the solution trajectory can uniquely be characterized by
the gradients of the continuous-time behavior according
to the dynamics f j1 and f j2 in a small neighborhood on
the both sides of Γ j. This is given by the normal projec-
tions of the dynamics f j1 and f j2 onto Γ j (i.e. directional
derivatives or Lie derivatives L f g j(t,x)), given by

f
⊥ j
j1 (t,x) = L f j1g j(t,x) =

(
∂g j(t,x)

∂x

)
· f j1(t,x) (12)

f
⊥ j
j2 (t,x) = L f j2g j(t,x) =

(
∂g j(t,x)

∂x

)
· f j2(t,x) (13)

The sufficient condition for the hybrid system H to ex-
hibit a chattering back and forth between the two do-
mains D j1 and D j2 requires that the necessary condition
of chattering is satisfied (equation 9), as well as the fol-
lowing two constraints:

1. a zero crossing on Γ j (state event) is detected in the
integration time interval [ti, ti+1], that is,

g j(ti,xi) ·g j(ti+1,xi+1)< 0 (14)

2. the scalar inner porduct of the normal projections
f
⊥ j
j1 (ti,xi) and f

⊥ j
j2 (ti+1,xi+1) is strictly negative,

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

98 DOI 
10.3384/ecp1612495

____________________________________________________________________________________________________________



0 1 2 3 4 5 6 7 8 9 10
time 

-1

-0.5

0

0.5

1

th
e 

st
at

e 
x1

, t
he

 c
on

tro
l i

np
ut

 u

A plot of the state x1 and control input u versus time t.

Control Input versus t
The state x1 versus t

2.6 2.8 3 3.2 3.4 3.6 3.8
time 

-5

0

5

th
e 

de
riv

at
iv

es
 d

er
(x

1)

×10-3 A plot of the derivatives of state x1 versus time t.

der(x1) versus t

Figure 1. Fixed time step simulation of Example 1 in Acumen without event localization for β = 0.5 and x0 = [0.5 3 0.1]T :
Up: time evolution of the event function and the control input with high chattering oscillation. Down: zoom on the first chattering
window around the switching surface x1(t) = 0.

that is, the projctions of the two different dynam-
ics (normal onto Γ j), before and after the zero-
crossing, have opposed signs (Figure 2),

f
⊥ j
j1 (ti,xi) · f

⊥ j
j2 (ti+1,xi+1)< 0 (15)

A chattering takes place on the intersection of k ∈ N
switching manifolds Γ j if the necessary condition of
chattering is satisfied, and for all j = 1,2, · · · ,k ≤ p, the
following three constraints are satisfied:

g j(ti,xi) ·g j(ti+1,xi+1)< 0 (16)
g j(ti+1(σ)) = κ; σ ∈ (0,1); κ ∈ (−ε,ε) (17)

f
⊥ j
j1 (ti,xi) · f

⊥ j
j2 (ti+1,xi+1)< 0 (18)

In this case of chattering on the intersection of finitely
many switching manifolds, the excution of the hybrid
system H chatters back and forth between all the do-
mains Dq in the neighborhood of the intersection.

3.2 Chattering Elimination
One way to prevent the chattering is to keep the solu-
tion trajectory in a sliding motion on the switching man-
ifold/intersection on which the chattering occurs. An ad-
ditional mode, sliding mode, can be inserted into the sys-
tem to represent the equivalent chattering-free dynam-
ics. For all the switching manifolds Γ j, the dynamics

Figure 2. The chattering between two dynamics along a
switching surface.

ẋ = f j(t,x) can be replaced by a differential inclusion
ẋ ∈ η(x) given as a convex set containing all the limit
values of f j(x) for small neighbor x(t,x) 6∈ Γ j approach-
ing Γ j from the both sides (Biák et al., 2013). Equation 3
can be replaced then by:

η j ∈
1−δ j(g j(t,x))

2
· f j1(t,x)+

1+δ j(g j(t,x))
2

· f j2(t,x)

(19)
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where δ j(·) is a multi-valued sign function given by:

δ j(g j(t,x)) =

 (−1, 1) f or g j(t,x)< 0
(−1, 1) f or g j(t,x) = 0
(−1, 1) f or g j(t,x)> 0

 (20)

Roughly speaking, when a chattering occurs on Γ j, we
seek a smooth function δ j, taking the value δ j(g j(t,x))∈
(−1,1), so that the new equivalent chattering-free dy-
namics f jCHF is given for δ j(g j(t,x)) ∈ (−1,1) by:

f jCHF =
1−δ j(g j(t,x))

2
· f j1(x)+

1+δ j(g j(t,x))
2

· f j2(x)

(21)

The idea behind forcing the solution trajectory to stay
on the swicthing manifold during chattering execution
is by forcing the normal projection of the equivalent
chattering-free dynamics onto the swicthing manifold Γ j
to be tangential to Γ j, that is,

f⊥jCHF
(t,x) =

(
∂g j(t,x)

∂x

)
· f jCHF (t,x) = 0 (22)

which implies[
1−δ j(g j(t,x))

2
1+δ j(g j(t,x))

2

]
·
[

f⊥j1(t,x)
f⊥j2(t,x)

]
= 0

(23)

and then

δ j(g j(t,x)) =
f⊥j1(t,x)+ f⊥j2(t,x)

f⊥j1(t,x)− f⊥j2(t,x)
(24)

where f⊥j1(t,x) and f⊥j2(t,x) are given in equation 12 and
equation 13, respectively.
By the substitution of equation 24 in equation 21, the
equivalent chattering-free dynamics is given then by:

f jCHF (t,x) =
f⊥j1(t,x) · f j2(t,x)− f⊥j2(t,x) · f j1(t,x)

f⊥j1(t,x)− f⊥j2(t,x)
(25)

A smooth exist from sliding takes place instantly at
the time instant at which the sufficient condition of
chattering is no longer satisfied, that is, when either
f⊥j1(t,x) or f⊥j2(t,x) starts to change its signs (i.e. when
either f⊥j1(t,x) = 0 or f⊥j2(t,x) = 0).
Once a chattering execution is detected during the sim-
ulation process, the following Algorithm 1 is employed
to generate the chattering-free dynamics internally in
the simulation loop of the simulator. The number of
iterations need to be performed by Algorithm 1 to
compute the chattering-free dynamics is equal to the
total number of the switching manifolds Γ j on which
the chattering occurs instantly. That is, when the system
chatters between two dynamics, i.e. a chattering onto

a single switching manifold (as in Example 1), the
equivalent chattering-free dynamics will be generated
by Algorithm 1 in one iteration.
The main benefit of the iterative approach of Algo-
rithm 1 is that it allows us to eliminate chattering
efficiently in run-time simulation without any need
to modes enumeration, even when the chattering is
occurring on the intersection ∆ =

⋂
j(Γ j), j = 1,2, ..., p

of a large number p of intersected switching man-
ifolds. Another benefit is that there is no need to
solve stiff nonlinear equations for the computation
of the chattering-free coefficients δ j(g j(t,x)) in case
of chattering on switching intersection with p > 1.

Data: Discontinuous dynamics f (t,x), swicthing
functions g j(t,x).

Result: f∆CHF (t,x) = f jCHF (t,x)
Initialization:
j = 1;
f (x(t)) = f j(x(t)) (equation 9);
while j ≤ p do

Use f j(x(t)) to build a differetial inclusion η j
(equation 19);
Compute f jCHF (t,x) (equations 21 to 25);
Set f j(x(t)) = f jCHF (t,x);
j = j+1;
Repeat;

end
Algorithm 1: How to generate the equivalent
chattering-free dynamics f∆CHF (t,x).

In the following two simple examples we illustrate the
functionality of Algorithm 1 in case of chattering on
switching intersection.

Example 2:
Consider the simplest case of chattering onto the inter-
section of two switching manifolds, Γ1 and Γ2, defined
as the zeros of a set of scalar functions g1(t,x) = x1(t)
and g2(t,x) = x2(t), respectively.
ẋ1 = 0 init -sgn(g10) reset [-1;1] every up[g1;-g1]
ẋ2 = 0 init -sgn(g20) reset [-1;1] every up[g2;-g2]
g1 = x1 init g10; g2 = x2 init g20
where the zero-crossing is described as an expression
of the form up(z) that becomes true when the sign of
the event function z(t,x) switches from negative to
positive during an execution, that is, up(z)= True if
z(ti−1,xi−1) ≤ 0 ∧ z(ti,xi) > 0 (Schrammel, 2012). In
this example, the trajectories initialized outside the
origin reach the origin in finite time and with an infinite
number of crossings of the switching surfaces x1(t) = 0
and x2(t) = 0. The finite time convergence is easy to
establish as the time intervals between two switches
satisfy a geometric series and consequently have a finite
sum. This system has also an infinity of spontaneous
switches from the origin, that is, there is an infinity of
trajectories which start with the initial data (0,0), and
except for the trivial solution that stays at the origin,
they all cross the switching surfaces an infinity of times.

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

100 DOI 
10.3384/ecp1612495

____________________________________________________________________________________________________________



To generate the intersection chattering-free dynamics
f∆CHF (t,x) on the intersection (the origin ) ∆ = Γ1 ∩Γ2,
Algorithm 1 performs two iterations:

• In Iteration1, the algorithm computes the equiva-
lent chattering-free dynamics on Γ1 (equation 26).

• In Iteration2, the algorithm computes the equiv-
alent chattering-free dynamics on the intersection
∆ = Γ1∩Γ2 (equation 27).

f1CHF (t,x) =

 0{
−1 f or x2(t)> 0}
−1 f or x2(t)< 0}

}  (26)

f∆CHF (t,x) =
[

0
0

]
(27)

Example 3: Stick-Slip Frictional System
Consider the following non-smooth mechanical system
with friction elements.

f (x) =



ẋm1 = vm1

v̇m1 =
1

m1
F1

ẋm2 = vm2

v̇m2 =
1

m2
(u− kxm2 −F1−F2)

ẋm3 = vm3

v̇m3 =
1

m3
F2


(28)

In this example, the entire disontinuity region is given
as the union of two transversally intersected swicthing
manifolds Γ1 and Γ2 defined as the zeros of a set
of the scalar functions g1(t,x) = vm2(t)− vm1(t) and
g2(t,x) = vm2(t)− vm3(t), respectively.

F1 = 0 init Fc1sgn(g10) reset [Fc1 ;-Fc1] every up[g1;-g1]
F2 = 0 init Fc2sgn(g20) reset [Fc2 ;-Fc2] every up[g2;-g2]
g1(t,x) = vm2(t)− vm1(t) init g10
g2(t,x) = vm2(t)− vm3(t) init g20

We have p = 2 intersected swicthing manifolds.
The algorithm, then, performs two iterations to generate
f∆CHF (t,x).

The output of Iteration1:

f1CHF (t,x) =



ẋm1 = vm1

v̇m1 =
1

m1+m2
(u− kxm2 −F2)

ẋm2 = vm2

v̇m2 =
1

m1+m2
(u− kxm2 −F2)

ẋm3 = vm3

v̇m3 =
1

m3
F2


(29)

The output of Iteration2:

f∆CHF (t,x) =



ẋm1 = vm1

v̇m1 =
1

m1+m2+m3
(u− kxm2)

ẋm2 = vm2

v̇m2 =
1

m1+m2+m3
(u− kxm2)

ẋm3 = vm3

v̇m3 =
1

m1+m2+m3
(u− kxm2)


(30)

4 Generic Implementation Scheme in
FMI 2.0

In this section, a prototype implementation is sketched
for applying the chattering-free computational frame-
work from the previous section to Functional Mock-Up
Interface v2.0 for Model Exachange. The goal is to pro-
vide in FMI, a rigorous chattering-free simulation, in
run-time, without modes enumeration, for any chattering
FMU which may be either generic or generated from a
modeling environment in which chattering models can
not be simulated rigorously, whenever the compliance
with FMI specification for model exchange is fulfilled.
The FMI chattering-free implementation has been per-
formed by embeding the chattering detection and elimi-
nation algorithm in the Event Mode of the FMI.

4.1 The Functional Mock-Up Interface FMI

FMI is an open standard for model exchange and co-
simulation between multiple software systems. This
new standard, resulting from the ITEA2 project MOD-
ELISAR, in 2010, is a response to the industrial need to
connect different environments for modeling, simulation
and control system design. It is used to create an instance
of a model which can be loaded into any simulator pro-
viding an import function for FMI. A software instance
compatible to the FMI is called an FMU. An FMU is
distributed as a compressed archive with a .fmu file ex-
tension. It contains a concrete mathematical model de-
scribed by differential, algebraic and discrete equations
with possible events of a dynamic physical system. An
FMU consists basically of two parts:

• an XML format for model interface information,

• C API model interface functions according to the
FMI specification, for model execution.

The XML format, specified by an XML schema con-
forming to the FMI specification, contains all static in-
formation about model variables, including names, units
and types, as well as model meta data. The C API, on the
other hand, contains C functions for data management, as
setting and retrieving parameter values, and evaluation of
the model equations. The implementation of the C API
may be provided either in C source code format or in bi-
nary forms (e.g. in the form of Windows dynamic link li-
brary .dll or a Linux shared object library .so files) to pro-
tect the model developer’s intellectual property. Addi-
tional parts can be added and compressed into the FMU,
as the documentation and the icon of the model. FMUs
can be written manually or can be generated automati-
cally from a modelling environment.
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4.2 Chattering-Free Support in FMI

In this section we explain the functionality of our
chattering-free FMI framework as well as how the
chattering behavior is treated internally in the main
simulation loop of interface without any need to add
hysterisis to the event indicators in the FMU.
Prior to a simulation experiment, the model has to be
instantiated. This includes extracting the files in the
FMU, loading the DLL and XML files and calling the
instantiation function available in the DLL. A model
can be instantiated multiple times for which the function
fmi2SetupExperiment is provided.
Simulating an FMI model means to split the solution
computation process in three different phases, catego-
rized according to three modes: Initialization Mode,
Continuous-Time Mode, and Event Mode.
In the Initialization Mode, the model is initial-
ized with finit(· · ·) by calling the FMI function
fmi2EnterInitializationMode in order to com-
pute the continuous-time states and the output variables
at the initial time t0. There are FMI functions used in
this Mode as fmi2GetContinuousStates as well as
functions for setting and getting values for Type Real,
Integer, String, and Boolean values, of the form
fmi2(Get/Set)(Type). The input arguments to the
Initialization Mode functions consist of the all variables
that are declared with "input" and "independent" causal-
ity in the FMU XML files, as well as all variables that
have a start value with initial = "exact". Once the model
is instantiated and initialized it can be simulated.
The main simulation loop starts once the FMI function
fmi2ExitInitializationMode is called. The
simulation is performed by calculating the deriva-
tives and updating time and states in the model via
the FMI functions fmi2SetContinuousStates,
fmi2SetTime, fmi2GetContinuousStates,
fmi2GetDerivatives, as well as the four
fmi2(Get/Set)(Type) functions mentioned above.
To retrieve or set variable data during a simulation,
value-references are used as keys. All variables are
connected to a unique number defined and provided in
the FMU XML-file. This number can then be used to
retrieve information about variables via functions in the
interface or can be used to set input values during a
simulation. During the simulation, events are monitored
via the functions fmi2GetEventIndicators and
fmi2CompletedIntegratorStep. Events are always
triggered from the environment in which the FMU
is called, so they are not triggered inside the FMU
(Blochwitz et al., 2012). Step-events are checked in
the model after calling the completed step function
fmi2CompletedIntegratorStep when an integra-
tion step was sucessfully completed. A step event occurs
if indicated by the return argument nextMode = Event-
Mode. For capturing state events during continuous
integration, the algorithm monitors, at every completed

integrator step, the set of event indicator functions z j(t,x)
provided in the function fmi2GetEventIndicators.
All event indicators z j(t,x) are piecewise continuous
and are collected together in one vector of real numbers
(Blochwitz et al., 2012). A state event occurs when the
event indicator changes its domain from z j(t,x) > 0
to z j(t,x) ≤ 0 or from z j(t,x) ≥ 0 to z j(t,x) < 0. If
a domain change of one of the indicator functions is
detected, a state event has occurred and the simulation
environment then informs the FMU by calling the
function fmi2NewDiscreteStates.
During the continuous integration, we distinuiush, for
each time integration step, the following cases:

1. If z j(ti,xi) · z j(ti+1,xi+1) > 0 for all j = 1,2, ..., p
where p is the total number of the event indicators,
then we continue integrating the system with the
same dynamics.

2. If there exist j ∈ {1,2, ..., p} for which: ∀τ ∈
[ti, ti+1[: z j(τ,x) < 0 ∧ ∃ m ≤ margin : ∀τ ∈
[ti+1, ti+1 + m] : z j(τ,x) ≥ 0, or ∀τ ∈ [ti, ti+1[:
z j(τ,x)> 0 ∧ ∃m≤margin : ∀τ ∈ [ti+1, ti+1+m] :
z j(τ,x) ≤ 0, a zero crossing in the time interval
[ti, ti + 1] is then detected. The algorithm performs
an iteration over time between the previous and the
actual completed integrator step, in order to deter-
mine the time instant of the switching point up to
a certain precision. In this case we have a contin-
uous smooth switching function z j(ti+1(σ)) taking
opposed signs at σ = 0 and σ = 1 and therefore
there exist a zero at σe ∈ (0,1) which defines the
state event xe = xi+1(σe) ∈ Γ j, where Γ j = {x ∈
Rn| z j(t,x) = 0} is the switching surface.

3. The case in which there exist finitely many event
indicator functions z j(t,x), j ∈ {1,2, ..., p}, all sat-
isfy: ∀τ ∈ [ti, ti+1[: z j(τ,x)< 0 ∧ ∃ m≤ margin :
∀τ ∈ [ti+1, ti+1 +m] : z j(τ,x) ≥ 0, or ∀τ ∈ [ti, ti+1[:
z j(τ,x)> 0 ∧ ∃m≤margin : ∀τ ∈ [ti+1, ti+1+m] :
z j(τ,x) ≤ 0, and z j(σe) = 0 for all j = 1,2, ...,k
where k≤ p and σe ∈ (0,1), indicates that the solu-
tion trajectory has reached the intersection of k≤ p
of transvrsally intersected R(n−1) switching mani-
folds Γ j.

At an event, the function fmi2NewDiscreteStates
has to be called. This function updates and re-initializes
the model in order for the simulation to be continued. In-
formation is also given about if the states have changed
values, if new state variables have been selected and in-
formation about upcoming time events.
In our chattering-free semantics, the master algorithm
has to decide, at the state event, whether the solution tra-
jctory should cross the switching surface transversally or
slide on it (to eliminate chattering). The computation of
the chattering-free solution is split in two phases: i) chat-
tering detection, and ii) chattering elimination.
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The chattering detection phase starts once a state event
is detected and located. The algorithm inspects whether
the state event is a chattering event or not. This implies
checking, at the state event, whether or not the sufficient
condition of chattering is satisfied, by analyzing the gra-
dients of the continuous time behavior before and after
the state event. For doing so, the directional derivatives
of the dynamics (the normal projection of dynamics onto
the switching surface) should be computed and evalu-
ated at the beginning and at the end of the completed
integration step at which the state event has been de-
tected. A state event xe ∈ Γ j detected in the time inter-
val [ti, ti+1] is said to be a chattering event if the condi-
tion: NPj(ti,xi) ·NPj(ti+1,xi+1) < 0 is satisfied, where

NPj(ti,xi) = f
⊥ j
j1 (ti,xi), respectively NPj(ti+1,xi+1) =

f
⊥ j
j2 (ti+1,xi+1), is the normal projection of the dynam-

ics f j1 (before the state event), respectively f j2 (after
the state event), onto the switching manifold Γ j = {x ∈
Rn| z j(t,x) = 0}, at ti, respectively ti+1. A chattering
occurs on a switching intersection ∆ =

⋂
j Γ j (i.e. inter-

section state event), detected in the time interval [ti, ti+1],
if for all j = 1,2, ...,k: NPj(ti,xi) ·NPj(ti+1,xi+1) < 0,
where as mentioned in Section 4 (equation 12 and equa-
tion 13), the normal projection NPj(ti,xi), respectively
NPj(ti+1,xi+1), is computed as a scalar product of the dy-
namics f (ti,xi), respectively f (ti+1,xi+1), with the par-
tial derivatives the event indicator function z j. The par-
tial derivatives of z j are computed numerically in the
integration step [ti, ti+1] at which the state event is de-
tected. As the nature of our chattering detection seman-
tics is to compare the sign of the directional derivatives
(normal projections) at the beginning and the end of the
time integration step [ti, ti+1] in which a state event is
occurred, and if it changes, declare a chattering event,
the environment then should be able to have an access
to the dynamics at ti (i.e. in the previous domain before
the event) and at ti+1 (i.e. in the next domain after the
event). For doing so, we use two arrays, xdotpre and
xdotpost , where during the continuous integration, and
for each time step [ti, ti+1] in which a state event has
been detected, the dynamics f (ti,xi), and f (ti+1,xi+1)
are computed and evaluated via fmi2GetDerivatives
and then stored in xdotpre, and xdotpost , respectively. In
the chattering elimination phase, Algorithm 1 (Section 3)
is employed in the environment’s master algorithm in or-
der to compute the smooth equivalent chattering-free dy-
namics internally giving the dynamics before and after
the state event, f j1 and f j2, repectively, as well as the
event indicators z j(t,x). Once the solution is at the fi-
nal time of a simulation, the function fmi2Terminate
is called to terminate the simulation. After a simulation
is terminated, memory has to be deallocated. The func-
tion fmi2FreeInstance is then called to deallocate all
memory that have been allocated since the initialization.

5 Simulation Results
Figure 3 shows the chattering-free simulation of the
system in Example 1 for the data set: β = 0.5, x0 =
[0.5,3,1]T . During a simulation time t = 10, 241685
chattering events have been detected and replaced by
two sliding windows. The first chattering event is de-
tected at t = 2.649 (Figure 4), the algorithm switches
to integrate the the system with the chattering-free dy-
namics generated internally. In Figure 5 and Fig-
ure 6, the Stick-Slip frictional systm in Example 3
was simulated for m1 = m2 = m3 = 1[kg], k = 0.88[N ·
m−1], Fc1 = 0.01996[N] Fc2 = 0.062[N], and x0 =
[0.8295 0.8491 0.3725 0.5932 0.8726 0.9335]T . The
external force u was simulated as a sine wave of fre-
quency of ω = 0.073[rad/sec]. The sliding bifurcations
depend on the effect of the external force u and the level
of Coulomb frictions Fc1 and Fc2 . At the time instant t =
32.69 sec, two masses m2 and m3 stick together and the
solution trajectory start a sliding motion on the switch-
ing manifold Γ2 = {x∈Rn : (vm2(t)−vm3(t) = 0)} (Fig-
ure 5). A smooth exit from sliding on Γ2 to evolve into q3
was detected at the time instant t = 77.23 sec. A transver-
sality switching from the discrete state q3 to the discrete
state q1 = {x ∈ Rn : (vm2(t)− vm1(t) > 0) ∧ (vm2(t)−
vm3(t)> 0)} at the intersection ∆ = Γ1∩Γ2 was detected
at t = 92.04 sec.
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Figure 3. The time evolution of the continuous state x1 with
chattering-free simulation.

6 Conclusions
In this paper we presented an FMI-based computa-
tional framework, and a prototypical implementation of
a generic chattering-free FMI for robust and reliable de-
tection and elimination "On the Fly" of chattering behav-
ior in run-time simulation of non-smooth hybrid systems,
without modes enumeration, and without any need to add
a small hysteresis to the event indicators in the FMUs.
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Figure 4. A smooth entering to sliding: First chattering state
event detected at t = 2.649.

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1
A plot of the relative velocity vr2 versus time t.

time (t): [sec]

Th
e 

re
la

tiv
e 

ve
lo

ci
ty

 v
r2

: [
m

/s
ec

]

 

 

vm3 versus t
vm2 versus t
vr2 versus t
events

Figure 5. A chattering-free simulation of Example 3: The time
evolution of the relative velocity vm2(t)− vm3(t).

The developed chattering-free FMI switches between the
transversality modes and the sliding modes simulation
automatically, integrates each particular state appropri-
ately, and localizes the non-smooth structural changes in
the system in an accurate way. It treats the chattering
non-smoothness in the trajectory of the state variables
by a smooth correction after each integration time-step.
Our chattering-free FMI can robustly handle the case of
chattering on switching intercsetion without any need to
solve stiff nonlinear equations for the computation of the
chattering-free coefficients. Furthermore, a guidance for
development of a hybrid chattering-free version of the
FMI standard, was provided in this paper. Finally, the
simulation results on a set of representative examples
have demonstrated that our FMI-based chattering-free
framework is efficient and precise enough to provide a
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Figure 6. A chattering-free simulation of Example 3: The time
evolution of the relative velocity vm2(t)− vm1(t).

rigorous chattering-free simulation for any generic chat-
tering Functional Mockup Unit (FMU) conforming to the
FMI standard v2.0 Specification for model exchange.
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Abstract

The design of cyber-physical systems is a complex pro-
cess and relies on the simulation of the system behavior
before its deployment. Co-simulation allows system de-
signers to simulate a whole system composed of a num-
ber of interconnected subsystems. Traditionally, these
models are modeled by experts of different fields using
different tools, and then integrated into one environment
to perform simulation at the system-level. This results
in complex and heavy co-simulations and requires ade-
quate solutions and tools in order to reduce the execu-
tion time. Unfortunately, most modeling tools perform
only mono-core simulations and do not take advantage
of the omnipresent multi-core processors. This paper
addresses the problem of efficient parallelization of co-
simulations. It presents a multi-core scheduling heuris-
tic for parallelizing FMI-compliant models on multi-core
processors. The limitations of this heuristic are high-
lighted and two solutions for dealing with them are pre-
sented. The obtained speed-up using each of these so-
lutions is illustrated and discussed for further improve-
ments.
Keywords: FMI, co-simulation, multi-core, scheduling,
heuristic

1 Introduction

Cyber-physical systems incorporate a combination of
computational elements which collaborate in order to
control physical processes. The complex nature of such
systems requires cost, time and effort-effective design
methodologies; therefore predicting their behavior and
functioning scenarios before testing the real system is
becoming more and more an indisputable step. Co-
simulation aids in achieving these requirements as it al-
lows the assessment of the design of the system by imi-
tating its behavior. It consists mainly in simulating, on a
computer, the global behavior of a multi-physics system
composed of a number of interconnected subsystems.
System designers can then identify potential design flaws
and correct them before deploying the system.

Co-simulation faces however a number of challenges.

Actually, the simulated system is described by several in-
teracting models which are often developed by experts of
different fields using different tools and following differ-
ent design approaches. The diversity of modeling tools
and involved teams makes the coupling of the models
a complex task. In fact, co-simulation necessitates effi-
cient synchronized communications between the models
where each model must be able to detect and respond to
events of other models. Thanks to the FMI (Functional
Mock-up Interface) standard (Blochwitz et al., 2011), it
is now possible to easily couple diverse models origi-
nating from different developers and tools. Neverthe-
less, executing FMI-compliant models raises some is-
sues, which unless well handled, may reduce the co-
simulation performance and limit the benefits of FMI.

One major issue is the question of how to reduce the
co-simulation execution time. Integrating heterogeneous
models into one environment usually results in a com-
plex and heavy to execute co-simulation which increases
the demand of processing power.

As is well-known, increasing CPU frequency by
means of silicon integration has reached its possible lim-
its and semiconductor manufacturers switched in last
years to building multi-core processors, i.e. integrating
multiple processors into one chip allowing parallel pro-
cessing on a single computer. Multi-core processors can
reduce the execution time of a computational task by di-
viding it into several subtasks and assigning a subset of
subtasks to each core to be processed in parallel. Most
simulators, however, have mono-core simulation kernels
and do not take advantage of the computation power
brought by multi-core architectures. Therefore, enabling
parallel execution of heavy co-simulations on multi-core
processors is keenly sought by the developers and the
users of simulation tools. However, fulfilling this objec-
tive is not trivial and appropriate parallelization schemes
need to be applied on co-simulation models in order to
accelerate their execution on multi-core processors. It is
worth noting that in this paper the term co-simulation is
generic and is used to refer to the simulation of FMUs
generated from FMI for Co-Simulation as well as FMI
for Model Exchange.

FMI gives information about inputs and outputs re-
lationships inside a model that is exported as an FMU
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(Functional Mock-up Unit). An FMU is a package that
encapsulates an XML file containing among other data
the definitions of the model’s variables, and a library
defining the equations of the model as C functions. Input,
output and state variables are updated by what we name
"operations" which may call different functions provided
by the FMU.

Given these features, various execution possibilities
can be realized and the parallelization of co-simulation
models on a multi-core processor can be seen as the fol-
lowing problem: Find an allocation of the different oper-
ations to the different cores and define an execution or-
der, i.e. schedule the operations that are allocated to each
core. When solving this problem, the utilization of the
available cores has to be optimized in order to achieve the
best acceleration. Using parallel computing terminology,
the problem consists in finding a schedule for all the op-
erations of the co-simulation on a multi-core processor.
This paper deals with the problem of scheduling opera-
tions of heavy complex co-simulation models on multi-
core processors in order to accelerate the simulation exe-
cution. It follows the approach presented in (Ben Khaled
et al., 2014) by addressing two limitations of the previ-
ous work. First, an efficient multi-core scheduling can
not be obtained without taking into account a good esti-
mation of each operation’s execution time. Second, the
non-thread-safe implementation of FMUs prevent full
exploitation of the potential parallelism of co-simulation
graphs. Techniques for dealing with these limitations are
here compared.

The rest of the paper is organized as follows. Next
section presents related work on multi-core execution of
simulations. Then our parallelization approach, firstly
presented in (Ben Khaled et al., 2014), is described
in section 3, including a discussion about its present
limitations. The fourth section presents our contribu-
tion, including the use of a toolchain for profiling co-
simulation graph parallelism and explores the theoreti-
cal gain in execution speed-up over different architec-
tures. Theoretical results are discussed and compared
to real co-simulation executions in xMOD1. xMOD is
a co-simulation and a virtual experimentation platform,
which allows mixing stand-alone and tool coupling co-
simulations and the optimization of complex models ex-
ecution. It provides a user-friendly interface in order to
extend the simulation use to non-experts and ensure the
continuity from Model-in-the-Loop to Hardware-in-the-
Loop simulations. The last section concludes the paper
and gives an outlook into our ongoing and future work.

2 Related Work
In order to achieve simulation acceleration using multi-
core execution, different approaches are possible and
were already explored. From a user point of view, it is

1http://www.xmodsoftware.com/

possible to modify the model design in order to prepare
its multi-core execution, for example by using marked
functions or Modelica extensions as in (Elmqvist et al.,
2015; Gebremedhin et al., 2012). From a modeling tool
provider point of view, if providing OpenMP ready li-
braries is possible, the key feature for simulation ac-
celeration is to provide techniques which offer speed-
up whatever the model is. Proposing parallel solvers or
automatic parallel executions of model equations as in
(Elmqvist et al., 2014; Sjölund et al., 2010) is also an ef-
ficient way. In this paper, we address the problem from a
co-simulation tool provider point of view. In such a tool,
the user connects different FMUs, embedding solvers or
not. In this case, it is not possible to change the mod-
els, the solvers, or the modeling tools. Such FMU as-
sembly defines a graph of operations and the main op-
portunity to improve the co-simulation execution is con-
sequently to accomplish an automatic parallelization of
this graph. As shown in (Ben Khaled et al., 2012), split-
ting a model into several FMUs, by isolating discontinu-
ities, may reduce the simulation time, even in the case
of a mono-core execution. (Ben Khaled et al., 2014)
presented the RCOSIM approach. It consists in using
each FMU information on input/output causality to build
a graph, with an increased granularity and then exploit-
ing the potential parallelism by using a heuristic to build
an off-line multi-core schedule. This method has been
tested on a real industrial model and significant speed-
up was obtained. This approach was implemented in the
co-simulation tool xMOD and is available in its 2015 re-
lease.

3 Parallelization approach

3.1 Principle

The parallelization concept of xMOD is based on a task
DAG (Directed Acyclic Graph) scheduling approach.
Thanks to FMI, it is possible to access information about
the internal structure of a model encapsulated in an
FMU. In particular, FMI allows the identification of Di-
rect Feedthrough and Non Direct Feedhrough outputs of
a model. Since connections between different models of
the co-simulation are also known, all data dependencies
between the operations are known. Figure 1 shows an
example of two models and their inter and intra-model
dependencies.

The co-simulation can be described by a DAG where
each vertex represents one operation and each edge de-
scribes a precedence constraint between two operations.
The approach proceeds in two steps: First, the co-
simulation DAG is constructed and then, the operations
are allocated to the available cores in such a way to min-
imize the makespan of the graph. The makespan corre-
sponds the execution time of the whole DAG.

The transformation of each model into an operation
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graph allows the parallelization of the model instead of
considering it as an atomic block. Consequently the po-
tential parallelism of the entire co-simulation is increased
and can be better adapted to the hardware parallelism
(number of cores in the case of a multi-core processor).
The potential parallelism of a graph corresponds to ver-
tices that are not dependent which characterize the partial
order of the graph.

Model B

YA1

UB1

YB2

UA1

Model A

UA2
YA2
YA3

YB1

UB3

UB2

Figure 1. Inter and intra-model dependencies of two models.

3.2 Multi-core scheduling heuristic
The co-simulation DAG is built by exploring the rela-
tions between the models and between the operations of
the same model. The operations are either updateout put ,
updateinput or updatestate. An updateout put operation
corresponds to an FMI Get function that allows get-
ting the value of an FMU output and an updateinput op-
eration corresponds to an FMI Set function which al-
lows setting the value of an input. An updatestate op-
eration corresponds to calling FMI functions needed to
perform an integration step (SetTime, GetDerivatives,
and SetContinuousStates, etc., in the case of Model Ex-
change or DoStep in the case of Co-Simulation) (FMI
development group, 2014). A vertex is created for each
operation and edges are then added between vertices if a
data dependency exists between the corresponding op-
erations. This information can be extracted from the
model’s FMU. When using FMI 1.0 which does not give
information about the dependencies between the state
variables computation and the input and output vari-
ables computations, it is necessary that edges connect
all updateinput operations and the updatestate operation
of the same model, since all inputs at instant k need to
be updated before updating the state to Xk+1. Further-
more, edges are placed between all updateout put oper-
ations and the updatestate operation of the same model,
because the computation at instant k of an output Yk must
be performed with the same value of the state as for all
the outputs belonging to the same model. Running the
co-simulation consists in executing the graph repeatedly.

At each co-simulation step the whole graph is executed
and a new execution of the graph cannot be started unless
the previous one was totally finished. Figure 2 illustrates
the graph constructed from the two models of Figure 1.

In order to achieve fast execution of the co-simulation
on a multi-core processor, an efficient allocation and
scheduling of the DAG vertices has to be performed.
xMOD uses an off-line scheduling heuristic similar to the
one proposed in (Grandpierre et al., 1999). (Ben Khaled
et al., 2014) presented the use of this heuristic and the
speed-up obtained by applying it on an industrial com-
bustion engine model. The heuristic considers the exe-
cution time of each operation and aims at computing a
schedule that minimizes the makespan of the graph.

Using the execution time Ci of each operation OPi, the
heuristic computes first the earliest start and end dates
from the graph start denoted Si and Ei, then the critical
path CP := maxEi (Algorithm 1). After that, the latest
start and end dates from the graph end denoted Si

∗ and
Ei
∗ and then the flexibility Fi = CP−Ei−Ei

∗ are com-
puted (Algorithm 2).

Initialization;
Set Ω the set of all the operations;
Set O the set of operations without predecessors;
foreach OPi ∈ O do

Si := 0; Ei := Si +Ci;
end
Set O′ the set of operations whose all immediate predecessors

were treated;
while O′ 6= /0 do

foreach OPi ∈ O′ do
Si := max(Eh : OPh→ OPi);
(OPh are the immediate predecessors of OPi);
Ei := Si +Ci; Remove OPi from the set O′;
Add to the set O′ all successors of OPi for which all

predecessors were already scheduled;
end

end
CP := 0;
foreach OPi ∈Ω do

if CP < Ei then
CP := Ei;

end
end

Algorithm 1: Computation of Si, Ei and CP

At each step, the heuristic computes for a given opera-
tion the schedule pressure on a specific core. The sched-
ule pressure is the difference between the makespan in-
crease, by allocating this operation to this core, and the
operation’s flexibility. The heuristic updates the set of
candidate operations to be scheduled at each step. An
operation is added to the set of candidate operations if it
has no predecessor or if all of its predecessors have al-
ready been scheduled. The set of candidate operations
holds the partial order associated to the graph. Then, for
each candidate operation, the schedule pressure is com-
puted on each core in order to find its best core, the one
that minimizes the pressure. After this step, a list of can-
didate operation-best core pairs is obtained. Finally, the
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Figure 2. Dependency graph of the models of Figure 1.

Initialization;
Set Ω the set of all the operations;
Set O the set of operations without successors;
foreach OPi ∈ O′ do

E∗i := 0; S∗i := E∗i +Ci;
end
Set O′ the set of operations whose all immediate successors were

treated;
while O′ 6= /0 do

foreach OPi ∈ O do
E∗i := max(S∗h : OPi→ OPh);
(OPh are the immediate successors of OPi);
S∗i := E∗i +Ci; Remove OPi from the set O′;
Add to the set O′ all predecessors of OPi for which all

successors were already scheduled;
end

end
foreach OPi ∈Ω do

Fi :=CP−Ei−E∗i ;
end

Algorithm 2: Computation of S∗i , E∗i and Fi

operation with the largest pressure on its best core is se-
lected and scheduled. The heuristic repeats this proce-
dure until all operations are scheduled (Algorithm 3).

This heuristic has originally been used to implement
critical hard real-time applications where the execution
times are usually estimated as the WCET (Worst Case
Execution Time). On the contrary, co-simulation is not
safety critical and the main goal here is to achieve fast
execution, so average computation times can be used. So
far, execution times in xMOD are estimated based on the
observation of practical examples as follows: updatestate
operations are by far more costly so they are assigned
significantly higher execution times then updateout put
operations, whereas updateinput operations are just data
copy whose cost is negligible.

3.3 Limitations of the approach

Although the presented scheduling heuristic resulted in
interesting co-simulation speed-ups, it has some lim-
itations that have to be considered in the multi-core

Initialization;
Set Ω the set of all the operations;
Set Γ the set of all the available cores;
Set O the set of operations without predecessors;
while O 6= /0 do

foreach OPi ∈ O do
Set costi to ∞; (cost of OPi is set to the maximum

value);
foreach Core j ∈ Γ do

S′i := max(Si,TCore j ); (new start date of OPi when
executed on Core j);

costi, j := S′i +Ci +E∗i −CP; (cost of OPi when
executed on Core j);

if costi, j < costi then
Set costi := costi, j;
Set BestCorei := Core j;

end
end

end
Find OPi with maximal costi in O;
Schedule OPi on its core BestCorei;
Set k := BestCorei;
TCorek := TCorek +Ci; (Advance the time of Corek);
Remove OPi from the set O;
Add to the set O all successors of OPi for which all

predecessors are already scheduled;
end

Algorithm 3: Multi-core scheduling heuristic

scheduling problem in order to obtain better perfor-
mances. First, so far, the multiprocessor scheduling
heuristic uses empiric operations execution times. By
using realistic execution times for each operation, the
multi-core execution of the simulation should be im-
proved. In this paper, we present some results, based
on a profiling technique.

Second, FMI standard does not presently require that
FMU functions have to be thread-safe, i.e. they cannot
be executed simultaneously as they may share some re-
source (variables for example) that might be corrupted
if two operations try to use it at the same time. This
implies that at any instant during the execution of the
co-simulation, one and only one operation of the same
FMU can be executed. Consequently, if the scheduling
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heuristic allocates two or more operations belonging to
the same FMU to different cores, a mechanism that en-
sures these operations are executed in strictly different
time intervals must be set up.

4 Proposed solutions

This section presents a theoretical study of the achiev-
able speed-up on a use-case, using the SynDEx2 soft-
ware (Sorel, 2004, 2005). Then, these theoretical results
are compared with xMOD co-simulation runs, with two
different implementations for guaranteeing a mutual ex-
clusion between different operations of the same FMU.

4.1 Toolchain

A toolchain is proposed to assist the developer in paral-
lelizing co-simulations. Using this toolchain, it is pos-
sible to assess new solutions before implementing them
in xMOD thanks to the SynDEx software. SynDEx is
a system level CAD software based on the Algorithm-
Architecture Adequation (AAA) methodology (Sorel,
1996). It was developed to optimize the implementation
of real-time distributed applications onto multicompo-
nent architectures. The workflow is illustrated in Figure
3. When different FMUs are imported into xMOD and
connected together, a file which describes inter-model
connections is generated. This file and the XML files
of the different FMUs of the co-simulation are passed to
a converter which parses the files and produces equiva-
lent files (.sdx) compliant to the SynDEx format. The
co-simulation code is profiled in order to obtain the exe-
cution times of the different operations which are intro-
duced in SynDEx. SynDEx offers the possibility to use
the multi-core scheduling heuristic outlined in this pa-
per , as well as other kinds of heuristics, and therefore
makes it possible to study the achievable co-simulation
speed-up before implementing the heuristic in xMOD.

4.2 Use-case description

In this work, experiments have been carried out on
a Spark Ignition (SI) RENAULT F4RT engine co-
simulation using 5 FMUs. It is a four-cylinder in line
Port Fuel Injector (PFI) engine in which the engine dis-
placement is 2000 cm3. The air path is composed of
a turbocharger with a mono-scroll turbine controlled
by a waste-gate, an intake throttle and a downstream-
compressor heat exchanger (Figure 4). The engine model
was developed using ModEngine library (Benjelloun-
Touimi et al., 2011). ModEngine is a Modelica library
that allows for the modeling of a complete engine with
diesel and gasoline combustion models. The engine
model was imported into xMOD using the FMI export

2http://www.syndex.org/

features of the Dymola3 tool. This use-case has over
100 operations which are scheduled by the multi-core
scheduling heuristic.

 

AirPath

 

Cylinders

 

Figure 4. Spark Ignition (SI) RENAULT F4RT engine model.

4.3 Results and Discussions

Using the toolchain, a .sdx file of the use-case was gen-
erated in order to evaluate, in SynDEx, the theoretical
speed-up obtained by parallelizing the model on differ-
ent numbers of cores, using the multi-core scheduling
heuristic of section 3.2. For each schedule the speed-
up is computed by dividing the mono-core schedule
makespan by the schedule makespan. Figure 5 gives
the different theoretical speed-ups. The best speed-up
is close to 3,6 and is reached with 6 cores. Finding
the minimal number of cores which offers the maximum
speed-up is interesting if a large number of simulation
runs (possibly with different parameters) have to be per-
formed: If a large number of cores is available, multi-
ple runs could be launched in parallel with the adequate
number of cores dedicated to each run. This research
of the minimal number of necessary cores to reach the
maximum speed-up could be scripted and automatically
performed before the simulation.

In order to tackle the constraint of non thread-safe
FMU functions, two mutual exclusion strategies have
been implemented in xMOD and the performance ob-
tained using each of them has been evaluated. The first
one does not modify the multi-core scheduling heuris-
tic result and uses a dedicated mutex (system object that
guarantees mutual exclusion) for each FMU: Every time
an FMU function call is made at runtime, the associ-
ated mutex have to be acquired before the execution of

3http://www.3ds.com/products-services/catia/products/dymola

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

110 DOI 
10.3384/ecp16124106

____________________________________________________________________________________________________________



 

Co-simulation FMUs

 

 

DLL files

 

xMod file

 

Durations file

 

SDX

 

file

 

Parser/Converter

 

XML files

 

SynDEx

 

xMOD/Profiler

 

Figure 3. Proposed toolchain to assist in the development and assessment of scheduling heuristics.
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Figure 5. Theoretical speed-up.

the function code can be started. The second solution
is explained in (Ben Khaled et al., 2014) and consists
in modifying the multi-core scheduling heuristic to al-
ways allocate the operations of a same FMU to the same
core (constrained allocation). If constrained allocation is
used, the search space of the scheduling heuristic is re-
duced, i.e. at each step, for a given candidate operation,
if there is another operation of the same FMU that has
already been allocated to a specific core, the candidate
operation is allocated to this same core without the need
to test it on the other cores. Thanks to SynDEx, it is eas-
ily possible to theoretically estimate the impact of using
the constrained allocation in the multi-core scheduling
heuristic. Results are given in Figure 5. It shows that
the expected speed-up in the case of constrained alloca-
tion is less than the one using unconstrained allocation,
when the number of cores is less than 5, but similar when
5 cores or more are available. When using less than 5
cores, the large number of updateout put operations can
be efficiently allocated only if the unconstrained alloca-
tion is used: The speed-up difference between the con-
strained and unconstrained allocation cases is due to this
restriction on the allocation. Five is the minimal number
of cores for enabling the execution of each updatestate
operation on a different core. Due to the predominant ex-
ecution times of the updatestate operations, their impact
on the speed-up overrides the possibility of optimizing

the allocation of the other operations. This explains why
the speed-up difference between the unconstrained and
the constrained allocation cases becomes very small with
5 cores or more.

In order to compare the two mutual exclusion strate-
gies, we implemented them in xMOD. Execution times
measurements were performed by getting the system
time stamp at the beginning of the simulation and af-
ter 30 seconds of the simulated time. As previously, we
compare the speed-up by dividing the mono-core simu-
lation execution time by the simulation execution time
on a fixed number of cores. Figure 6 sums up the re-
sults, where unconstrained allocation corresponds to the
use of mutex objects. It shows the impact of mutex
overhead on the speed-up. Whatever the number of the
available cores, the speed-up remains close to 1,3. On
the contrary, the implementation in xMOD of the con-
strained allocation gives similar results in terms of speed-
up improvement when increasing the number of cores
until 5. Nevertheless, the maximum measured speed-up
(2,4) remains smaller than the theoretical one (3,5). In
fact, the theoretical speed-up computation considers the
makespan ratio without estimating any synchronization
cost between cores. The real implementation in xMOD
contains synchronization objects between operations to
ensure the consistency of data dependencies which cer-
tainly have an important impact on the speed-up.
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Figure 6. Measured speed-up.
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5 Conclusion and Future Work
The work presented in this paper dealt with the problem
of co-simulations acceleration by means of paralleliza-
tion on multi-core processors. We proposed to extend
our previous work by taking into account operations exe-
cution times in the multi-core scheduling heuristic. This
allows the optimization of the number of the dedicated
cores to the simulation, by performing architecture ex-
ploration with SynDEx. Our experiments in xMOD on
an industrial use-case, gave important speed-up results
(2,4). Nevertheless, it also shows the impact of the mu-
tual exclusion constraint on the co-simulation accelera-
tion. Providing thread-safe FMU implementation could
offer important simulation acceleration opportunities. In
our ongoing work, we are exploring graph transforma-
tion techniques to improve the handling of the mutual
exclusion problem of FMUs. We also envision to extend
these results to the multi-rate co-simulation of FMUs by
developing an efficient multi-core scheduling heuristic to
handle it.
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Abstract

As the need for increased energy efficiency grows, the
use of new energy sources is a topic of investigation for
research and industrial applications. The ability to use
low temperature heat sources via a Rankine or organic
Rankine cycle is one of the options. In this paper such a
cycle is modelled and simulated using a Modelica based
thermal management library suite as well as the simula-
tion tool Dymola. Experimental test bench data provided
by Hanon Systems allowed calibration and verification
of the simulation results. Simulation results shows good
agreement with experimental data. Additional dynamic
simulations are performed to illustrate potential applica-
tions of the model for system optimization and control
development.
Keywords: Rankine cycles, organic Rankine cycles, mod-
eling, dynamic simulations, Modelica, Dymola, ther-
mofluid

1 Introduction

1.1 Rankine Cycle

A Rankine cycle is a thermodynamic cycle which uti-
lizes heat to create mechanical power, harvested by an
expander that can drive a generator. The medium of the
Rankine cycle, usually water, is pressurized in a pump,
evaporated in a heat exchanger, subsequently passed
through an expander and finally condensed in condenser.
The process and essential components in the cycle can
be seen in Figure 1. By choosing a medium with appro-
priate properties, different heat source temperatures can
be used.

1.2 Purpose

This paper is a result of an academic collaboration with
the Faculty of Engineering (LTH) of Lund University.
The purpose of the project was to model and simulate an
industrial use-case: a Rankine cycle that utilizes waste
heat from a combustion engine vehicle to generate me-
chanical power. The project scope was defined by Mod-

Figure 1. Essential components in a Rankine cycle.

elon, a company specialized in simulation and optimiza-
tion using open standard technology. The aim of the
project was to model or use existing models of compo-
nents, parameterize the components, build the complete
cycle, implement appropriate control and gain knowl-
edge of the cycle’s behavior.

1.3 Thermofluid Modeling

The models were implemented in Modelica, an
open standard modeling language (ModelicaAssocia-
tion, 2015), using a 1-D thermofluid approach. The prin-
ciples of thermofluid modeling using Modelica are laid
out in (Tummescheit, 2002; Eborn, 2001).

The different components were either selected from
preexisting model libraries or modeled. A specialized
thermal management suite was used, based on three com-
patible model libraries: Vapor Cycle library (Modelon,
2015c), Heat Exchanger Library (Modelon, 2015a; Bat-
teh et al., 2014) and Liquid Cooling Library (Modelon,
2015b; Batteh et al., 2014).

The modeling was performed in the simulation envi-
ronment Dymola 2016 FD01(DassaultSystèmes, 2015).

1.4 Method

After the physical components were either selected or
modeled and calibrated, they are connected to create
the complete cycle. Simulations with different control
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strategies and conditions were tested. In order to ver-
ify results, data received from Hanon Systems was used.
Hanon Systems is formerly known as Halla Visteon Cli-
mate Control and specializes in thermal management so-
lutions for automotive applications. The components and
cycle were parameterized according to 11 experimental
data sets.

2 System Presentation

2.1 Refrigerant

A refrigerant called R134a, also known as 1,1,1,2-
tetrafluoroethane, is the working fluid of the cycle. While
utilizing low grade waste heat is most commonly done
using an organic refrigerant, the waste heat temperature
is sufficiently high in Hanon System’s test setup to use a
conventional refrigerant.

Results are repeatedly represented in the specific en-
thalpy - pressure diagram of the working fluid. The di-
agram for R134a can be seen in Figure 2. Within the
thumb-like shape, the refrigerant is a two-phase fluid,
a mixture of both liquid and gas. To the left and right
of the dome, only liquid respectively vapor exists. The
isotherms transverse the two-phase dome horizontally.

Figure 2. Pressure/enthalpy diagram for R134a.

2.2 Components

All but one component used for the Rankine cycle were
readily contained in one of Modelon’s thermal manage-
ment libraries suite. Hanon Systems’ test bench utilizes
a positive displacement machine, more specifically a di-
aphragm pump that was implemented as a custom com-
ponent.

A diaphragm pump operates conceptually similar to a
human diaphragm does - a chamber and a membrane that
moves outward sucking working fluid into the space or
move inwards in order to push out the working fluid. The
pump has a 4.46 kW power output at 1750 rpm. Its losses

can be described through three distinct efficiencies; vol-
umetric, isentropic and mechanical. The volumetric ef-
ficiency describes ratio of the volume in the pump that
is displaced to the geometric volume. The isentropic ef-
ficiency describes how much energy is lost during the
process of pressuring, and the mechanical efficiency de-
scribes losses in shaft and other components of the pump.
The efficiencies of the pump were estimated with the ex-
perimental data, partly relying on assumptions since data
for the fluid at the outlet of the pump was missing.

The expander used in Hanon Systems’ cycle is a posi-
tive displacement machine: a scroll turbine. It has two
intertwined spirals, one stator and one rotor. The hot
high pressured gas enters in the middle, pushing the rotor
around as it makes its journey between the spirals until it
at last exits the positive displacement machine. Similar
to the pump, the expander is subject to losses and they are
described using equivalent efficiencies; volumetric, isen-
tropic and mechanical. Again, these efficiencies were
calculated from the data provided by Hanon Systems.

The cycle includes a plate heat exchanger which acts
as evaporator, using glycol on the secondary side. Not
all geometry parameter data was available, and the miss-
ing parameters were estimated or set to typical values. A
detailed geometry-based plate heat exchanger model ex-
ists in the model libraries, with a higher number of states
due to its flow configuration. A less complex counter-
flow heat exchanger model with equivalent parameteri-
zation was used assuring fast solver convergence but less
accurate behavior representation. In Table 1 some geom-
etry data provided by Hanon Systems for the plate heat
exchanger can be seen.

Item Value
Type MCV Plate

# plates 36 rows
Fin N.A.
Path 6-12-18

Effective size mm 93.1*170.5*70.4

Table 1. Plate heat exchanger data

The condenser of the cycle is a flat tube heat ex-
changer using ambient air to cool down the working
fluid. A detailed geometry-based heat exchanger model
was used, parameterized with both available geometry
data and typical geometry data. In Table 2 some geome-
try data provided by Hanon Systems for the flat tube heat
exchanger can be seen.

A tank is integrated in the cycle between condenser
and pump. The purpose of the tank is twofold: (1) ensure
only liquid entered the pump as gas would damage it and
(2) balance the amount of working fluid in the cycle. A
static head of 1 m was introduced between condenser and
pump to confirm that the dynamic pressure at the inlet of
the pump was sufficiently high to avoid the creation of
bubbles in the fluid. The tank has a 8 L volume.
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Item Value
Type SC 20t

# tubes 54 rows
Fin 80 fpdm
Path 44-10

Effective size mm 570*383

Table 2. Flat tube heat exchanger data

2.3 Control
Based on the cycle configuration different control strate-
gies are relevant. The following strategies were consid-
ered:

• Adequate super heating to let only gas into the tur-
bine

• Adequate sub cooling or other measure to avoid gas
entering the pump

• Preferred power or torque from the turbine

• Optimal evaporation temperature

• Low condenser pressure

• Appropriate amount of refrigerant in the cycle

Except for choosing appropriate components that will
match the requirements, it is possible to change the fol-
lowing variables (Quoilin et al., 2011):

• The speed of the turbine

• The speed of the pump

• Add tanks after condenser/evaporator

• Drain or charge the cycle with WF

• Change the temperature of the heat source for the
evaporator

• Change the temperature of the cooling air in the
condenser

The temperature of the heat source in the evaporator as
well as the cooling air in the condenser are typically not
entities that can be controlled in automotive applications
as the heat source typically is the heat from the engine
and the temperature of the air is dependent on ambient
conditions. It is however of interest to gain knowledge
about the behavior of the cycle under different condi-
tions.

The speed of the pump has a direct consequence on
the amount of superheat of the working fluid leaving
the evaporator. Decreasing the speed of the pump, the

amount of superheating is increased. Effective superheat
control is important to ensure no two-phase fluid enters
and potentially damages the expander. The speed of the
expander was varied in order to achieve desired power or
torque as they are correlated according to Equation 1.

Torque(Nm) =
Power(W )

Speed(rad/s)
(1)

For both superheat and torque control PI-controllers
were used.

In this project the heat source and temperature of cool-
ing air were kept constant. The overall efficiency is cal-
culated according to Equation 2.

ηoverall =
Wturbine −Wpump

Qevaporator
(2)

2.4 Initialization
Initialization is important to ensure a fast solver conver-
gence. In this cycle, the most complex components are
the heat exchangers. Since the heat exchangers contain
the majority of continuous time states, their initializa-
tion is key. Additionally, it is necessary to set the PI-
controller parameters correctly in order to achieve robust
control.

The amount of working fluid in the cycle can be
changed either by:

• Changing the initialization of the cycle, i.e. the
continuous times states of the thermofluid model,
which results in a refrigerant mass.

• Directly setting the tank level.

• Adding a charge component that can either charge
or drain the cycle to a desired amount of working
fluid during simulation.

2.5 Data
Hanon Systems provided 11 data sets that varied in the
amount of working fluid and super heating. For every
data set the speed, power and torque were measured for
pump and turbine, and inlet and outlet pressure and tem-
perature were measured for all the components (with ex-
ception of outlet of pump).

On the test bench test conditions such as speed of the
pump, ambient temperature, air velocity, mass flow and
boiler coolant temperature were controlled. The speed
of the expander was controlled such that the torque re-
mained constant at 9 Nm, and a tank was placed between
the condenser and the pump. Controls for dynamic op-
eration of the cycle weren’t implemented at the time of
the measurements. However, the maximum power of the
expander was determined by changing expander brake
torque for different pump speeds and air temperatures in
the condenser.
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2.6 Test Scenarios

The following control strategies or conditions were
tested for the cycle:

• The different data sets were simulated.

• The cycle was tested with different torques on the
turbine to match the maximum power point tracking
diagram Hanon Systems had implemented. Hanon
Systems concluded from experimental data that
maximum power is achieved at 9 Nm brake torque.

• Superheat control was tested.

• The cycle was tested with varying amounts of re-
frigerant.

3 Creating the Model

3.1 Expander

The isentropic efficiency for the expander was calculated
using the data. For all the data sets it varied between 43-
55% depending on pressure ratio and speed. No correla-
tion could however be demonstrated, likely due to mea-
surement errors and thus a mean value was used. When
calculating the mechanical efficiency, only 3 of the 11
data sets give values under 100%. For 9 of the data sets
the mass flow was too low, and it was assumed that an
error in either the data or the measuring of data had oc-
curred. Consequently a mean value of the mechanical
efficiency from the three good data sets was used and re-
sulted in a base value of 87%.

3.2 Pump

Unlike the expander, the pump’s efficiencies were
mapped in a grid depending on speed and pressure ratio.
Since it was known that the mass flow was inconsistent
for 9 of the data sets, only the three data sets with con-
sistent data were used to calculate the efficiencies. The
mechanical efficiency was set to 73%, and the isentropic
ranged between 58% and 70% depending on speed and
pressure ratio over the pump.

Figure 3. The model of the pump as seen in Dymola.

The top level class of the pump in the Dymola di-
agram layer is illustrated in Figure 3. The model is
based on a generic pump model from the Liquid Cool-
ing Library, in which a function prescribes the pump’s
behavior. Through an interface, this function can be ex-
changed. The speed of the shaft, density at the inlet and
pressure at the inlet, and at the outlet are inputs to the
interface. Outputs of the interface are isentropic and me-
chanical efficiencies, as well as mass flow. To create a di-
aphragm pump, appropriate behavior-prescribing tables
dependent on speed and pressure ratio were inserted in
the interface, and the efficiencies are then extrapolated
from the tables. The interface additionally calculates the
mass flow based on the density at the inlet, speed, maxi-
mum displacement volume, and volumetric efficiency.

3.3 Heat Exchangers

In order to calibrate the heat exchangers, virtual test
benches were set up. In these virtual test benches, the
heat exchanger was connected to mass flow and pressure
source components (Figure 4). After setting geometry
parameters, applying correct boundary conditions, and
selecting appropriate heat transfer and pressure drop cor-
relations, the calibration factors were used to calibrate
the heat exchanger model. The calibration factors tune
the pressure drop as well as the heat transfer coefficients.

3.4 Complete Cycle

The complete assembled cycle in the Dymola diagram
layer is illustrated in Figure 5. The cycle contains a sim-
ple evaporator, a tank between the condenser and pump,
and includes all necessary control for dynamic simula-
tion.
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Figure 4. Virtual testbench for the condenser. It was
based on a template with a default heat exchanger
and boundary condition parameterization (HeatEx-
changer.HeatExchangers.FlatTube.Experiments. Test-
Benches.AirTwoPhaseHomogeneous).

4 Results

The result section is composed of two parts. The first
part validates the model by comparison with the experi-
mental data and demonstrates that the model can mimic
its physical counterpart under static conditions. A com-
parison of a relevant cycle metric is performed: a power
tracking diagram is plotted. Secondly, the dynamic ca-
pabilities of the model are shown through a set of simu-
lation experiments. Simulations took between 2 and 10
min for a cycle with the simple evaporator, and 0.5-1.5 h
with the complex one.

4.1 Simulation of Different Data Sets

All 11 data sets, each with different boundary conditions,
matched the simulation results well. The sets with coher-
ent data resulted in the best match as expected. In Figure
6 two specific enthalpy - pressure diagrams with ther-
modynamic cycle are depicted; on the left is the cycle
constructed with experimental data of data set 10 and on
the right the cycle as obtained from the simulation using
data set 10 boundary conditions.

In Table 3 and 4 simulation results as well as experi-
mental data are compared. The simulation of data set 10
is more accurate than the one of set 9; data set 10 had
coherent data and set 9 did not.

Data set 9 Simulation
Power W 834 836

Overall efficiency % 2.2 1
Mass flow kg/s 0.12 0.12

SH ◦C 2.5 2.5
Speed of turbine rpm 885 886
Speed of pump rpm 350 343

Torque of turbine Nm 9 9
Turbine pressure ratio 1.87 2.03
Pressure ratio error % - 8.6

Isentropic efficiency turbine - 61

Table 3. Simulation results for data set 9.

Data set 10 Simulation
Power W 820 827

Overall efficiency % 1.7 1.8
Mass flow kg/s 0.138 0.138

SH ◦C 0.5 0.5
Speed of turbine rpm 870 879
Speed of pump rpm 400 406

Torque of turbine Nm 9 9
Turbine pressure ratio 1.89 1.84
Pressure ratio error % - 2.6

Isentropic efficiency turbine - 60

Table 4. Simulation results for data set 10.

4.2 Maximum Power Tracking Diagram

The graph in Figure 7 illustrates the behavior of the
power harvested by the expander as a function of the
torque applied to the expander. Experimental and simu-
lation data match well. The largest difference is approx-
imately 3%.

4.3 Superheat Control

Dynamic superheat control setpoint control response is
plotted in Figure 8. The super heating was measured by
the sensor component in Figure 5. The output was then
sent to the PI-controller which compares the measured
value with the desired value and subsequently adjusted
the pump speed.

4.4 Refrigerant charge

The refrigerant source components allows charging or
draining the cycle during the simulation. It was demon-
strated that overcharging the cycle results in any increase
of pressure in all components with a ultimately a loss of
pressure difference between evaporator and condenser.
Similar observations could be made for a starved cy-
cle where the pressure in components decreases as illus-
trated in Figure 9. Expander power loss was significant,
ranging from approximately 850 W with sufficient re-
frigerant charge, to 137 W for a starved cycle.
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Figure 5. The whole Rankine cycle as seen in Dymola.

Figure 6. Simulation result for data set 10, on a pressure/enthalpy diagram to the left, data to the right.

5 Discussion and Conclusion

A Rankine cycle was modeled and parameterized ac-
cording to data from Hanon Systems, and control strate-
gies were implemented to gain insight into the behavior
of the cycle and for controls virtual prototyping. Some

variables had to be estimated since data was missing or
inaccurate.

Steady state simulation results matched experimental
data well. Additional geometrical information on indi-
vidual components as well as the piping between com-
ponents would allow to create a more trustworthy model,
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Figure 7. Maximum power point diagram, comparison of ex-
perimental and simulation data

Figure 8. Superheat control. Setpoint and system response.

with an accurate total volume and all pressure drops in-
cluded. The power point tracking diagram measured out
by Hanon Systems is created with the model with only
small deviations of the expander power output.

The control strategies that were implemented and the
initialization worked effectively. At the point of comple-
tion of the model, no control was specified for the system
test bench. Dynamic simulations were carried out based
on typical control mechanisms for Rankine cycles.

The cycle created in this project was a generic and
simple one intended for automotive applications. In or-
der to gain more knowledge about industrial Rankine cy-
cles different setups should be modeled and simulated.
The overall efficiency of the cycle varied between ap-
proximately 1.7 and 2.2 %. Hanon Systems’ primary in-

Figure 9. Thermodynamic cycle after drain to a specific charge
of 300kg/m3 - turbine power output is at 137 W.

tention with the test bench was to focused on the devel-
opment and testing of an expander. Higher efficiencies
can be achieved with state-of-the-art Rankine cycles.
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Abstract 
This paper presents a thermal deformation analysis 
method fully utilizing the non-causality of the 
Modelica language as a means of solving large scale 
simultaneous equations including equilibrium 
equations related to stresses, stress-strain relations and 
strain-displacement relations. As an illustrative 
example, a model for thermal deformation analysis of a 
cylindrical object in the two-dimensional circular polar 
coordinate system is described. Simulations are 
performed for a cylindrically shaped object under a 
uniform temperature distribution and a radial 
temperature distribution. The results of the simulations 
show that the differences in displacements between the 
proposed model and a model based on finite element 
(FE) methods are less than 9% while the number of 
elements that compose the proposed model is about 1/8 
compared to that of the FE model. 

Keywords:     thermal deformation, stress-strain 
relation, strain-displacement relation, equilibrium 
equations, displacement gradient, physical modeling, 
finite volume method, non-causality, Modelica, Dymola  

1 Introduction 
Thermal deformation is conventionally analyzed by FE 
methods. Conventional FE methods supply highly 
precise outputs; however they require a lot of work and 
time. In order to conveniently analyze thermal 
deformation without using FE methods, analytical 
solutions have been extensively reported in the 
literature (see for example, Gere, 2006). These 
analytical solutions can only be used for simple 
geometries such as blocks and round bars and simple 
temperature distributions such as steady-state 
conditions. This is because it is difficult to analytically 
solve large scale simultaneous equations including 
equilibrium equations related to stresses, stress-strain 
relations and strain-displacement relations. 
   In this paper, a method to loosen these restrictions of 
simple geometries and simple temperature distributions 
is presented. The non-causality of the Modelica 
language (Elmqvist and Mattsson, 1997a, 1997b; 
Elmqvist et al, 1998a, 1998b; Fritzson and Engelson, 

1998; Fritzson, 2003, 2011) is fully utilized as a means 
of formulating and solving the large scale simultaneous 
equations of thermal deformation analysis. The main 
feature of the proposed method is that the positions of 
displacements and forces are defined based on a finite 
volume method (Ferziger and Peric, 2002; Voller, 
2009) to effectively describe these complex physical 
phenomena in non-causal manner and also to 
implement them as a network of Modelica component 
models. 

2 Thermal deformation model 
Here a model for the thermal deformation analysis of a 
cylindrical object in the two-dimensional circular polar 
coordinate system is described. 
   A cylindrical object represented by one quarter as 
illustrated in Figure 1 is discretized the 9 control 
volumes (referred to as elements in this paper) by 
dividing the object in the r and  directions into 3×3 
elements. A graphical image of the Modelica 
component models interacting with each other for 
analyzing thermal deformation of the cylindrical object 
is shown in Figure 2. There are 3 types of component 
models; a model for calculating the force balances 
inside the element (element model), a model for 
calculating the interactions of forces and deformations 
between elements (linkage model), and a model for 
calculating the boundary conditions (BC model). There 
are also connectors designed to connect these 
component models so that structural analysis of the 
entire object is performed (SA connector). 
   In the following, the SA connector (Sec. 2.1), the 
element model (Sec. 2.2), the linkage model (Sec. 2.3) 
and the BC model (Sec. 2.4) are described, and then 
the method to calculate the displacements at the 
vertices of the elements (Sec. 2.5) is given.  
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Figure 1. A cylindrical object and its discretization. 

  

 

Figure 2. A graphical image of the Modelica component 
models for analyzing thermal deformations of the 
cylindrical object in Figure 1. 

 
Table 1. Declarations of variables in the SA connector  

Type Name Description 
Length ur displacement in the r direction 
Length ut displacement in the  direction 
Real durdr displacement gradient ∂ur/∂r 
Real dutdr displacement gradient ∂u/∂r 
Real durdt displacement gradient ∂ur/∂ 
Real dutdt displacement gradient ∂u/∂ 
flow Force Fr force acting in the r direction 
flow Force Ft force acting in the  direction 
  
  

2.1 SA connector 

The SA connector passes the information of forces, 
displacements, and displacement gradients between the 
component models. Each SA connector has 6 variables 
as shown in Table 1: 2 variables representing 
displacements at the center position of the element; 4 
variables representing displacement gradients; and 2 
variables representing forces acting on a boundary 
surface of the element which are the flow variables. 

2.2 Element model 

In this model, (1) the balance of the forces acting on 
the boundary surfaces of an element is calculated, and 
also (2) the displacement gradients at the center 
position of the element are calculated and passed to the 
SA connectors, then (3) the information of the 
displacements at the center position is passed to the SA 
connectors. 
   Each element model has 6 dynamic variables as 
shown in Table 2: 2 variables representing 
displacements at the center position of the element; and 
4 variables representing displacements gradients at the 
center position of the element. The information of 
displacements and displacement gradients are passed to 
the linkage models located on the boundary surfaces of 
the element via the 4 SA connectors Crb, Cra, Ctb 
and Cta for interacting with neighbor elements (The 
connections between the element model and the 
linkage models via the SA connectors are shown in 
Figure 3). 
    
(1) The balance of the forces acting on the boundary 
surfaces of an element is calculated by 

0FFFF  )4()3()2()1(  (1)

where F(1), F(2), F(3) and F(4) are representing the forces 
acting on boundary surfaces 1, 2, 3 and 4 (Figure 1). 
This equation is described by the following Modelica 
code. 
Crb.Fr+Cra.Fr+Ctb.Fr+Cta.Fr=0; 
Crb.Ft+Cra.Ft+Ctb.Ft+Cta.Ft=0; 
    
(2) The displacement gradients at the center position of 
the element are calculated by 
















































 )2((1)

2

1

r

u

r

u

r

u 
 (2)
















































 )4()3(

2

1


 uuu

 (3)

where u denotes the displacements ur and u. The 
displacement gradients in the r direction (∂u/∂r) are 
calculated as the averages of (∂u/∂r) on boundary 
surfaces 1 and 2. The displacement gradients in the  
direction (∂u/∂) are calculated as the averages of 
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(∂u/∂) on boundary surfaces 3 and 4. These equations 
are described by the following Modelica code. 
durdr=(Crb.durdr+Cra.durdr)/2; 
dutdr=(Crb.dutdr+Cra.dutdr)/2; 
durdt=(Ctb.durdt+Cta.durdt)/2; 
dutdt=(Ctb.dutdt+Cta.dutdt)/2; 
   The displacement gradients with respect to r or  axis 
are passed to the linkage models located on the 
boundary surfaces along the other axis via the SA 
connectors. The Modelica code to form these 
information flows is as follows. 
Ctb.durdr=durdr; 
Ctb.dutdr=dutdr; 
Cta.durdr=durdr; 
Cta.dutdr=dutdr; 
Crb.durdt=durdt; 
Crb.dutdt=dutdt; 
Cra.durdt=durdt; 
Cra.dutdt=dutdt; 
    
(3) The displacements at the center position of the 
element are determined by the interactions of forces 
and displacements between the neighbor elements 
calculated by the linkage models mentioned in section 
2.3. The Modelica code to share the information of the 
displacements among the surrounding linkage models 
is as follows. 
Crb.ur=ur; 
Cra.ur=ur; 
Ctb.ur=ur; 
Cta.ur=ur; 
Crb.ut=ut; 
Cra.ut=ut; 
Ctb.ut=ut; 
Cta.ut=ut; 
    

Table 2. Declarations of variables in the element model  

Type Name Description 
Length ur displacement in the r direction 
Length ut displacement in the  direction
Real durdr displacement gradient ∂ur/∂r 
Real dutdr displacement gradient ∂u/∂r 
Real durdt displacement gradient ∂ur/∂ 
Real dutdt displacement gradient ∂u/∂ 
  

Table 3. Declarations of variables in the linkage model 
and the BC model 

Type Name Description 
Stress tau rr stress in the r direction 
Stress tau rt stress in the  direction 
Real epsilon rr strain in the r direction  
Real epsilon rt shear strain 
Real epsilon tt strain in the  direction 
Real durdr displacement gradient ∂ur/∂r 
Real dutdr displacement gradient ∂u/∂r 
Real durdt displacement gradient ∂ur/∂ 
Real dutdt displacement gradient ∂u/∂
  
 

 

Figure 3. Enlarged illustration of Figure 2. 

  

2.3 Linkage model 

In this model, (1) the forces acting on the boundary 
surfaces, (2) the stress-strain relations, (3) the strain-
displacement relations, and (4) the displacement 
gradients on the boundary surfaces between the 
elements are calculated, and then the resulting 
displacement gradients are passed to the SA connectors. 
   There are several types of linkage model according to 
the number of coordinates: in this paper, the first is for 
dealing with the relations between the adjacent 
elements in the r direction and the second is for dealing 
with those in the  direction. Here the model 
concerning boundary surface 1 located in the r 
direction (Figure 3) is described as an example. 
   The linkage model has 9 dynamic variables as shown 
in Table 3: 2 variables representing stresses acting on 
boundary surface 1; 3 variables representing strains on 
boundary surface 1; and 4 variables representing 
displacement gradients on boundary surface 1. This 
information on displacement gradients is passed to the 
element models adjacent to the linkage model via the 2 
SA connectors Crb and Cra. 
    
(1) The force acting on boundary surface 1 is 
calculated by 
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This equation is described by the following Modelica 
code. 
Crb.Fr=tau_rr*r*omega*Lz; 
Crb.Ft=tau_rt*r*omega*Lz; 
Cra.Fr=-Crb.Fr; 
Cra.Ft=-Crb.Ft; 
where r is the radius at this boundary surface, omega 
is the angle of the element, and Lz is the axial length 
of the element. 
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(2) The stress-strain relations on boundary surface 1 
are calculated by the following equations. 
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Equation (5) is used for the plane stress problem in 
which the whole vertical stress on the r- plane is zero, 
and equation (6) is used for the plane strain problem in 
which the whole vertical strain on the r- plane is zero 
(Voller, 2009). For example, the Modelica code to deal 
with the plane stress problem is as follows. 
tau_rr=E/(1-nu^2)*(epsilon_rr+ 
nu*epsilon_tt-(1+nu)*alpha*(Temp-Temp0)); 
tau_rt=E/2/(1+nu)*epsilon_rt; 
where E is Young’s modulus, nu is the Poisson ratio, 
alpha is the coefficient of thermal expansion, Temp0 
is the initial temperature, and Temp is the temperature. 
 
(3) The strain-displacement relations on the boundary 
surface 1 are calculated by 
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where ur
(1) and u

(1) denote the displacements on 
boundary surface 1 and they are approximated by the 
averages of the displacements of the adjacent elements. 
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Here u means the displacements ur and u. These 
relations are described by the following Modelica code. 
epsilon_rr=durdr; 
epsilon_tt=(Crb.ur+Cra.ur)/2/r + dutdt/r; 
epsilon_rt=durdt/r+dutdr- 
(Crb.ut+Cra.ut)/2/r; 
    
(4) The displacement gradients perpendicular to 
boundary surface 1 are approximated from the 
displacements of the adjacent elements. 
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This equation is described by the following Modelica 
code. 
durdr=(Crb.ur-Cra.ur)/(r_b-r_a); 
dutdr=(Crb.ut-Cra.ut)/(r_b-r_a); 
where r_b and r_a are the radii at the center positions 
of the adjacent elements. 

   The displacement gradients are passed to the element 
models adjacent to boundary surface 1 via the SA 
connectors. The Modelica code to form these 
information flows is as follows. 
Crb.durdr=durdr; 
Cra.durdr=durdr; 
Crb.dutdr=dutdr; 
Cra.dutdr=dutdr; 
   The displacement gradients tangential to boundary 
surface 1 are interpolated using the values at the center 
positions of the adjacent elements. 
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This equation is described by the following Modelica 
code. 
durdt=(Crb.durdt+Cra.durdt)/2; 
dutdt=(Crb.dutdt+Cra.dutdt)/2; 
    

2.4 BC model 

This model is located on the boundaries of the entire 
object (Figure 2). The BC model is similar to the 
linkage model; however it is different in that it deals 
with either a restraint or a loading condition that has to 
set the boundaries of the entire object.  
   Here the model concerning boundary surface 5 
located in the r direction (Figure 3) is described as an 
example. 
   The BC model has 9 dynamic variables as shown in 
Table 3, and the information of displacement gradients 
is passed to the element model adjacent to boundary 
surface 5 via the SA connector Cra. 
    
(1) The restraint condition is represented using the 
displacement gradients. 
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Here u denotes the displacements ur and u, u
BC is the 

displacements of boundary surface 5, and rBC is the 
radius on boundary surface 5. These equations are 
described by the following Modelica code. 
durdr=(ur_bc-Cra.ur)/(r_bc-r); 
dutdr=(ut_bc-Cra.ut)/(r_bc-r); 
durdt=Cra.durdt; 
dutdt=Cra.dutdt; 
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(2) The loading condition is represented by 
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where FBC is the force acting on boundary surface 5. 
This equation is described by the following Modelica 
code. 
Fr_bc=tau_rr*r_bc*omega*Lz; 
Ft_bc=tau_rq*r_bc*omega*Lz; 
durdt=Cra.durdt; 
dutdt=Cra.dutdt; 
    

2.5 Calculation of the displacement at the 
vertices of the elements 

In this section, a method for calculating the 
displacements at the vertices of the elements (○ marks 
in Figure 4) is described using an example illustrated in 
Figure 4. Here the displacements at the center positions 
(◇ marks in Figure 4) have already been obtained by 
the models described in the previous sections. 

   The displacements at the vertices are calculated using 
the positons, the displacements and the displacement 
gradients of the surrounding elements. First, the 
displacement of the position r1 is obtained using the 
information of the position r2 as follows.  

    21221 2
rruuu r  gradf (18)

Also the same displacement of the position r1 is 
obtained using the information of the other positions r3, 
r4, and r5, in the same manner. The displacement of 
this point is defined as the average of these values 
obtained using the information of the surrounding 
elements. 
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Figure 4. Vertices and center positions of the elements. 

 
 

3 Simulation examples 
The simulations were performed for a cylindrically 
shaped object using Dymola and the results were 
compared with those obtained by FE analyses.  

3.1 Simulation target and conditions 

Figure 5 shows the simulation target and examples of 
its FE analyses. The object consisted of the separate 
upper and lower halves of cylindrically shaped parts, 
and the upper half was placed on the lower half. Since 
this object was symmetrical between the left and right 
sides, the left half was analyzed. The analyses were 
performed for two cases of temperature conditions: a 
uniform temperature under which the object was 
thermally expanded in a uniform manner (Figure 5 (a), 
Case 1), and a radial temperature distribution under 
which both the upper and lower halves were deformed 
(Figure 5 (b), Case 2). To deal with the original three 
dimensional deformation by the two dimensional 
model, the deformation was analyzed in several r- 
planes on which the plane stress problem was applied. 
   Figure 6 (a) shows the discretization of the 
simulation target for the proposed method. A quarter 
was analyzed assuming that the upper and lower halves 
having the same geometries deformed symmetrically. 
The original shape (not exactly a cylinder) used in the 
above FE analyses was simplified into an exact quarter 
cylinder; the inner and outer radii were determined so 
that the volume was kept equal to the original. The 
object was discretized into 60 elements (4×15 in the r 
and  directions). For the boundary conditions, the 
circumferential displacements on one side of the 
circumferential boundary surfaces were restrained. The 
length Ly in the y direction between the positions A and 
B was used to evaluate the accuracy of the proposed 
method. 
   Figure 6 (b) shows the temperature conditions for 
Case 1 and 2. In Case 1, the object was maintained at a 
uniform temperature of 486°C. In Case 2, the inner 
surface of the object was maintained at 486°C and the 
outer surface at 342°C. The initial temperature before 
the occurrences of the thermal deformations was 
determined to be 15°C. 
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(a) A uniform temperature distribution (Case 1) (b) A radial temperature distribution (Case 2)

Figure 5. Simulation target. 

    

(a) Discretization of the simulation target 
 for evaluating the proposed model 

(b) Temperature conditions 

Figure 6. Simulation conditions. 

    

(a) A uniform temperature distribution (Case 1) (b) A radial temperature distribution (Case 2)

Figure 7. Simulation results. The displacements were magnified 20 times. 
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Table 4. Differences in the number of elements and the simulation results between the proposed model and the FE model. 

 Proposed model FE model Difference 
Number of elements in the x-y plane 60 500 ― 
Length of initial condition (Ly0) 1(-)*1 1(-)*1 ― 
Displacment of Case 1 (Ly1= Ly1－Ly0) 6.0×10-3(-)*1 6.5×10-3(-)*1 -7.6(%)*2

Displacment of Case 2 (Ly2= Ly2－Ly0) 3.1×10-3(-)*1 3.7×10-3(-)*1 -9.0(%)*2

*1: Dimensionless value using the length of the initial condition Ly0 
*2: Difference(%) = (Ly_Proposed – Ly_FE)/Ly_FE×100 
  
 
  

3.2 Simulation results 

Figure 7 (a) and (b) show the initial positon and the 
positions after thermal deformations in Case 1 and 2, 
respectively. The positions after thermal deformations 
were compared those calculated by an FE model. The 
number of elements in the x-y plane of the FE model 
was about 500 (The total number of elements in three 
dimensions was 26335). The simulation results 
obtained by the proposed model were in good 
agreement with those obtained by the FE model in both 
Cases 1 and 2. 
   The differences in the number of elements and the 
simulation results between the proposed model and the 
FE model in both Cases 1 and 2 are summarized in 
Table 4. The differences in simulated displacements 
were less than 9% while the number of elements that 
compose the proposed model was about 1/8 (≈60/500) 
compared to that of the FE model. 

4 Summary and discussion 
A thermal deformation analysis method was proposed 
that fully utilizes the non-causality of the Modelica 
language as a means of formulating and solving large 
scale simultaneous equations including equilibrium 
equations related to stresses, stress-strain relations and 
strain-displacement relations. The main feature of the 
proposed method is that the positions of displacements 
and forces are defined based on a finite volume method 
to effectively describe these complex physical 
phenomena in a non-causal manner and also to 
implement them as a network of Modelica component 
models. 
   As an illustrative example, a Modelica model for 
thermal deformation analysis of a cylindrical object in 
a two-dimensional circular polar coordinate system 
was presented. Simulations were performed for a 
cylindrically shaped object under a uniform 
temperature distribution and a radial temperature 
distribution. The results of simulations showed that the 
differences in the displacements between the proposed 
model and the FE model were less than 9% while the 
number of elements that compose the proposed model 
was about 1/8 compared to that of the FE model.  
 

 
   The proposed method can deal with more complex 
thermal deformation analyses than presently used 
analytical solutions and can obtain precise outputs 
comparable to that of FE methods with a fewer number 
of elements. These advantages make it possible to 
perform thermal deformation analyses in system level 
Modelica simulations containing structural objects and 
control devices. Furthermore, the method should be 
applicable to optimizations of geometries of such 
objects or control systems.    

Nomenclature 
A position [-]
B position [-]
E Young‘s modulus [Pa]
F force vector [N]
G shear modulus( =E/2/(1+) ) [Pa]

Ly length between positions A and B [m]
Ly0 length of Ly in the initial condition [m]
Ly1 length of Ly in case 1 [m]
Ly2 length of Ly in case 2 [m]
Lz axial length of an element [m]
r position vector [m]
r radius [m]
T temperature [°C]
T0 temperature at the initial condition [°C]
u displacement vector [m]
ur displacement in the radial direction [m]

u displacement in the circumferential 
direction 

[m]

 coefficient of linear expansion [1/°C]

rr strain in the radial direction [-]

r shear strain [-]

 strain in the circumferential 
direction 

[-]

rr stress in the radial direction [Pa]

r shear stress [Pa]

 Poisson‘s ratio [-]

 angle of an element [rad]
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Subcripts 
f(r) calculated using the positions, displacements 

and displacement gradients of position r  
i number of elements in the radial direction 
j number of elements in the circumferential 

direction 

 in the radial and circumferential directions 
Supercripts 
BC boundary surface of simulation target 
(1)-(4) boundary surface of element 
(5) between boundary surface 5 and center 

position  
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Abstract

This paper introduces the work and application of the
Modelica IBPSBuilding package which has been devel-
oped at TU München. The aim of the package is to sim-
ulate building energy performance, especially the ther-
mal behaviour of buildings. Its application is focused
on research and education in order to help application-
oriented researchers and students to understand the phys-
ical processes of a building performance simulation and
gain persuassive simulation results. The package de-
scribes all basic processes including conduction, convec-
tion, radiation and ventilation, and it is validated with
German VDI-Guidelines.
Keywords: building modeling, energy simulation, adap-
tive façade

1 Introduction

The teaching module “Building Performance Modeling
and Simulation” was established at TU München in 2006
which is based on a formerly created block course about
simulation modeling using Maple. It consists of a lec-
ture with the same name as the module and the practical
exercise “Implementing a Building Performance Simula-
tion”. The lecture explains the physical basics of thermal
building simulation including heat conduction, convec-
tion, short- and longwave radiation processes, but also
introduces mathematical and numerical aspects of simu-
lation.

Theories explained in the lectures are applied in the
exercise, in which Modelica is used to create models of
all the involved processes (van Treeck, 2010). These
models evolved over the years and new ideas with a
whole building model that had been developed in master
theses and exercises were implemented. The develop-
ment was conducted with OpenModelica since 2012 and
then several functional enhancements and adaptations to

research projects were conducted with ITI SimulationX.
The actual state of the model package and the relative
development is shown in this paper. Additionally, the
methodology and results of a validation of the model
package according the a German technical guideline is
presented.

2 The Library IBPSBuilding

The aim of the IBPSBuilding library is to have a ther-
mal simulation tool, in which every single process re-
lated to building thermal performance is fully understood
and can be modified in any desired way in order to have
maximal flexibility. Especially for the aspect of under-
standing every detail, it is necessary to create a library
from scratch and not to use existing libraries.

The main structure (in Figure 1) of this model li-
brary meets the lecture syllabus, and contents are com-
plemented and explained to students step by step along
the pace of the lecture. Taking advantage of the polymor-
phism in Modelica language, complicated physical pro-
cesses and building elements are designed to be based
on abstract concepts and structures. Base classes for
interfaces, functions and records for materials are ar-
ranged into sub-packages, which are provided as mod-
ules that students can use to create their own elements
for heat transfer processes and construction elements.
The methodology of development of the standard com-
ponents of heat transfer processes provided in this library
is introduced in section 2.1. At the end of each semester,
typical rooms should have been created and simulated by
the students with support of the lecturers. The simulation
results of these test cases can be used to get insights on
the most responsive proccesses and indicators of thermal
building performance.

In order to let the library structure be commensurate
to the domain structure of a BIM data format like IFC, a
skeletal framework is provided by a master thesis for de-
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Figure 1. main structure of IBPSBuilding-package

velopment of appropriate interfaces in research accord-
ing to this library (Hua, 2014).

2.1 Implementation of heat transfer pro-
cesses

The heat transfer processes described in this library can
be classified into two groups: the heat transfer processes
determined by temperature difference, and the shortwave
radiation unrelated to temperature. All the building el-
ements are simplified into one-node thermal mass with
capacity models of the material and the key positions,
e.g. surfaces. Each building element is integrated into a
chain of connections of various physical processes (Fig-
ure 2). Coefficients and properties for concretization
of those physical processes are given as parameters or
calculated dynamically in the construction component
model.

In order to reduce the complexity of modeling and to
increase the simulation efficiency on the building level,
several restrictions are contained in the development and
modeling:

1. Currently, thermo fluid processes are not consid-
ered in the teaching version. For any adoption with
fluid materials, simulations are conducted under
ideal conditions with a single heat capacity, convec-
tion and steady state mass transfer - pressure losses,
change of density and enthalpy are disregarded in
the current phase of development. So no interac-
tion with elements in the ‘Modelica.Fluid’ library
is adopted.

2. The discretization follows a nodal approach for cal-
culating heat transfer through the building fabric in
a one-dimensional manner, i.e. where heat transfer
perpendicular to the main direction of heat flow is
neglected. Multi-dimensional effects such as cold
bridges are accordingly disregarded.

2.1.1 Conduction and convection

The modules for conduction and convection process are
based on the same abstract partial model:

Q̇ =C · (Ti −Te)

Basic properties like the temperature difference between
the two sides of a layer, the inlet / outlet heat flow etc. are
declared as prescribed in the abstract model, so that pro-
gramming effort can be minimized, especially if the con-
cretized modules would be coded by students in practical
fields, who are less familiar with programming. The co-
efficient C is first specialized in different successors from
the abstract model, e.g. in a conduction module for half
of a solid material layer, C = A*lambda/d/2, here A
is the net area of a material layer, lamda is the material
conductance, and d is the layer thickness.

Concretization of values of heat transfer coefficients
for convection depends on the boundary condition of the
building element very much. Within the concept of flex-
ibility and full controllability, a bunch of parameters are
added, so that it can be chosen if fixed values for the heat
transfer coefficients should be assigned for validation or
conceptual design phases, or the values should be calcu-
lated dynamically and internally according to geometry,
wind velocity, temperature differences etc. A theoreti-
cal reference of most of the physical processes described
in this package is from Clarke (2001). Chances are
given to students who are taking part into the seminar to
create new functions and codes to implement other theo-
retical methods. An example is to calculate the convec-
tion coefficients according to boundary conditions and
tilt angle. A function calConvectionCoeff is im-
plemented like this:

i f u s e F i x C o n v e c t i o n C o e f f then
a lphaC_e : = f ixAlphaC_e ;
a l p h a C _ i : = f i x A l p h a C _ i ;

e l s e
i f t i l t >=−p i / 4 and t i l t <= p i / 4 then

a l p h a C _ i : =1 . 6 3 ∗ abs ( dT_i ) ^ ( 1 / 3 ) ;
a lphaC_e : = i f c o n n e c t T o A d i a b a t then

9999 . 9 e l s e i f i s E x t e r n a l then
1 . 8 + 4 . 8 ∗ windSpeed e l s e
0 . 6 ∗ ( abs ( dT_e ) / L^2 ) ^ ( 1 / 5 ) ;

e l s e i f t i l t > p i / 4 and t i l t < p i ∗ 3 / 4 then
. . .

where the values of Boolean parame-
ters such as useFixConvectionCoeff,
connectToAdiabat and isExternal are as-
signed by high-level modelers from input-windows.
The variable tilt is transmitted from the geometric
parameter-set of the building element, and serves as
the arbiter of which formula should be taken into
consideration.
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Figure 2. An opaque building element and its accessible connectors

2.1.2 Radiation and window modeling

By contrast with heat transfer models like conduction
and convection, a shortwave radiation process is not
based on HeatPorts1 with temperature as the poten-
tial variable because of its independence of the temper-
ature difference, therefore the direction of the heat flow
by radiation is given explicitly. Besides the heat flow
variable, a factor is stored in a connector SwPort for
distributions of radiation to its parent model. A short-
wave radiation module has four SwPorts: one as input
to receive incoming radiation, and the other three stand
for the outputs through transmission, reflection and ab-
sorption processes. Calculation methods of the factors
are first assigned either in inheritance or in instantiation
process.

A transparent construction element should have four
shortwave radiation modules because shortwave radia-
tion takes place on a plane between two mediums (in case
of window are glass and gas). Moreover, each glass pane
includes two surfaces, and each of them conducts radia-
tion from both sides, that is to say, from glass to gas, and
from gas to glass. Intermediate connections are shown in
the following figure 3.

Within this structure, radiation inside a glass plane
between the two surfaces are taken into account in nu-
merical handling process by simulation solver. It can
be solved less efficiently than an analytical method, but
more clearly represented for non-programmers to help
them understand actual physics behind the model. Ab-
sorbed energy is summed up into a hub, and converted
into a thematic adaptable format into HeatPort, which
can be connected to the layer heat capacitor. (connected
with P_a, Figure 2)

1The connector HeatPort is inherited from the Modelica stan-
dard library - Modelica.HeatTransfer.Interfaces. It con-
sists of a potential variable temperature and a flow variable heat flow
rate.

Figure 3. Connections between radiation inside a glass pane
and between glass panes and gaps

2.2 Room-modeling

Thermal space or room is considered to be the basic unit
of building energy performance simulation. Different
rooms can be connected by using shared building ele-
ments, general boundary conditions and central service
systems. Connections inside one room between building
elements and other components such as internal loads
could be more complicated, and require special atten-
tions. Therefore, a template RoomEmpty is available
to help students and engineers build a simulative room
model by using “drag-and-drop”. In this template, indoor
air mass, internal load, radiation distributors and hub-
connectors are given. This structure can also provide
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support for automatic generation of a Modelica room
model from building information models.

Figure 4. An example room model with six walls (1 of these
is an external wall) and a window

2.3 Heating system
As part of a master thesis, the existing IBPBuilding li-
brary was extended by components for simulation of hot
water central heating systems, which are the most im-
portant plant types in Germany. The implemented com-
ponent models are widely accepted best practice mod-
els and are primarily taken from existing Modelica li-
braries, such as the Annex60 library (Wetter and van
Treeck, 2016) and the Modelica Buildings Library 2.0
from Lawrence Berkeley National Laboratory (Wetter
et al., 2013). The library contains all essential compo-
nents of pipes, fittings, pumps, heat generators, storages,
expansion tanks, transfer systems, control strategies and
domestic hot water (DHW) systems to simulate a wide
range of complex heating and DHW systems. The newly
implemented heating system models of IBPSBuilding li-
brary should therefore be seen as a basis for further de-
velopments.

2.4 Compatibility and external connections
In the framework of a public license, the library is con-
sidered to be compatible with the Modelica standard li-
brary:

1. The heatports of the sub-package Interface
are inherited from the HeatPort of the stan-
dard Modelica library. Connectors in the mod-
els of IBPSBuilding can be connected directly
with standard modules such as with heat sources
in Modelica.HeatTransfer package or indi-
rectly through converter-modules.

2. Variables are defined using Modelica.SIunits
types.

3. Use of external functions are minimized. Models
and functions are verified with test rooms in the en-
vironment of OpenModelica and ITI SimulationX.

2.4.1 Compatibility by encapsulating the parameter
sets

To enhance the compatibility and adaptability of this li-
brary, instantiation of room or building models should be
conducted automatically by using interfaces or under co-
ordination by platform-software. Automated Modelica-
code generation has restrictions such as that no new vari-
ables and equations should be constructed, so that the
generated graphical representation of models should be
readable for engineers. Furthermore, it should be proved
that the generated model can be simulated without errors
which could be produced by incomplete interpretation
and partly combination with manually inserted compo-
nents.

For this purpose, parameters that essentially can come
from an exchangeable data format are encapsulated into
records as a property of appropriate building element.
The following example shows the instantiated and con-
cretized parameter-set in a concrete wall:

C o n s t r u c t i o n s . C o n s t r u c t i o n C o m p o n e n t e x t W a l l (
p a r c (

az imu th = 0 , h e i g h t = 3 , l e n g t h = 5 ,
nLaye r s = 2 , nWindows=1 ) ,

p a r L a y e r 1 (
r e d e c l a r e r e p l a c e a b l e

M a t e r i a l L i b r a r y . B u i l d i n g M a t e r i a l s .
P l a s t e r _ g i p s mat ,

t h i c k n e s s =0 . 0 2 ) ,
p a r L a y e r 2 (

r e d e c l a r e r e p l a c e a b l e
M a t e r i a l L i b r a r y . B u i l d i n g M a t e r i a l s .

C o n c r e t e mat ,
t h i c k n e s s =0 . 2 ) , . . . )

2.4.2 Weather reader and external CombiTables

The IBPSBuilding-package uses CombiTable(e.g.
Modelica.Blocks.Tables.CombiTable1D)
for indicator-related properties of components
(e.g. temperature-related fluid density, wavelength-
related refractive index or spectral sensitivity) and
schedules. An Excel-Macro is developed to convert
any data-sheets into Modelica-readable format or time
table. A reader of weather data based on the appropriate
component in ITI GreenBuilding-package of Simu-
lationX (Unger et al., 2012) is implemented for semantic
analysis of CombiTables of weather data according
to date and site location, and provides connectors for
other components. It is designed to be compatible
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with components of GreenBuilding-package and
standard Modelica libraries.

2.5 Collaboration with students

Since 2015, for version management the software re-
vision system Git was applied for code organization in
teaching activities. Creating modules in different student
groups and merging these development trees was the
main motivation. In the exercise of the winter semester
2015/16 this idea was realized by creating a Github
repository with a basic version of the source code of the
IBPSBuilding library and establishing student develop-
ment groups for the topics convection and longwave ra-
diation processes. This repository is created under the
Github-Education program2, which is held in private use,
and can at the moment only be published with the scope
of a virtual ‘classroom’ with access control of tutors in
the lecture. As most of the students with background of
architecture and civil engineering had never been work-
ing before with software development environments, a
lot of technical problems arouse. One of the biggest chal-
lenges was to motivate the use of Github, which in the
end was only used by the students for downloading the
basic version of the library. Pushing new source code
versions created by the student groups and merging the
development trees had to be done by the supervisors. In
the next course Github will be used again, but with more
introduction examples to increase the usage of Git as a
collaboration platform in and between the groups. Ad-
ditionally Git will be used in future Master’s theses on
the library, as in such a thesis more time can be spend on
clarifying technical problems. The repository is under
GNU GPL license.

3 Validation

Thermal building simulation models should be tested to
eliminate model errors and to state the quality of the
results in relation to calculation accuracy and reality.
Quantitative testing can be done with a relative or a phys-
ical validation. By a physical validation the simulation
model is tested with measured values from a real sys-
tem, e.g. a well-documented real experiment. In prac-
tice, however, a relative validation often is the more con-
venient choice. In the case of a relative validation a
new simulation model is compared to existing simulation
models, e.g. by evaluation parameters of national and
international validation standards or guidelines. They
usually provide different test cases to verify the imple-
mented algorithms and models of certain areas of the
program. To evaluate the calculated results comparison
values are specified. In this paper, the German guideline

2More information: https://education.github.com/.

VDI 20783 from the German Association of Engineers
(VDI) has been used.

3.1 Selection of the validation case
The thermal solver of the IBPS Building library is not
based on the 2-capacity (2-K) model by Rouvel and Zim-
mermann (Rouvel, 2015) as described in the VDI 6007-
1. For simulation programs with another thermal solver
than described in VDI 6007-1 and / or radiation model
as in VDI 6007-3 the VDI 2078 prescribes a validation
according to “Case B”(VDI 2078). This validation case
includes:

1. Validation according to test examples 1 to 16 (ex-
cept 11) of VDI 6020-1 (implicitly included in the
test examples of VDI 6007-1 and VDI 2078)

2. Validation of test examples of VDI 6007-1 (Test
Example 1-12)

3. Validation of test examples of VDI 2078 (Test Ex-
ample 1-16)

For this validation case the guideline specifies limit-
ing values for the mean values of the hourly and standard
deviation from the reference results of VDI 6020-1. The
reference results are based on the n-K model by Rouvel
and were calculated using the building simulation pro-
gram GEBSIMU (Rouvel, 2015). The simulation pro-
gram results must lie in these limits.

Though, a complete validation of the IBPSBuilding
library according to VDI 2078 is not expedient. Part of
the test examples of VDI 6020-1 and VDI 2078 require
expensive whole-year simulations which clearly compli-
cate the assessment and analysis of test results. Further-
more, features such as window ventilation and daylight
calculation, are required in these test examples which are
not yet included in the existing library. Therefore, a vali-
dation with the test examples of VDI 6007-1 and limiting
values according to VDI 2078 is of primary importance
for an evaluation of the thermal solver.

3.2 Type rooms
For the calculation of the test examples, a simple test
room (type room) is defined in the guideline VDI 6007-
1. The construction of the room corresponds, depending
on the test example, either to a lightweight construction

3The guideline VDI 2078 “Calculation of cooling load and room
temperatures of rooms and buildings (VDI Cooling Load Code of
Practice)” is used to determine the cooling load, the ambient air tem-
perature and the operative room temperature for rooms of all kinds,
with and without air conditioning(VDI 2078). The guideline summa-
rizes selected test examples of VDI 6007-1 (“Calculation of transient
thermal response of rooms and buildings - Modeling of rooms”) and
VDI 6020-1 (“Requirements on methods of calculation to thermal and
energy simulation of buildings and plants - Buildings”). These should
serve both the validation as well as support for programming.
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(room type L) or a massive construction (room type S).
The resulting two different amounts of thermal mass al-
low to examine the corresponding reactions of the room
to these differences. The test room is defined as part of
a building and therefore has adiabatic boundaries. From
case to case, the outer wall is adjacent to different exter-
nal climate.

3.3 Test cases

The guideline VDI 6007-1 comprises a total of twelve
test examples (VDI 6007). The test examples 1 to 7 cor-
respond to the guideline VDI 6020-1 and examine reac-
tions of the room to internal loads and setpoint changes.
The test examples 8 to 12 contain important functions
of the extended 2-K model by Rouvel, e.g. surface heat-
ing or cooling, non-adiabatic internal components, air
exchange and several external components.

The thermal reaction of the test room is calculated
over a period of 60 days in hourly increments. The pre-
determined external and internal heat sources and sinks
are in temporal pattern of a day the same for the whole
period of 60 days. Thus, the transient and the steady state
can be compared to the reference results in the guideline.

The kernel of VDI 6007-1 is based on the 2-K model
by Rouvel and Zimmermann (Rouvel, 2015). Since the
IBPS Building library is designed for the simulation of
detailed room models, as suggested by Clarke (Clarke,
2001), the test examples are created accordingly. The
basic structure corresponds more to the n-capacity (n-K)
model of VDI 6020-1. However, there are some basic
differences to the reference n-K model of the building
simulation program GEBSIMU, as described below.

With the existing components of the IBPS Building
library it is not possible to calculate all of the test ex-
amples of the VDI 6007-1. It is therefore necessary to
implement some additional components or extend exist-
ing components that are comprised in the kernel of VDI
6007-1.

3.4 Component model

The n-K model (of the building simulation program
GEBSIMU ) uses a simplified model suggested in VDI
6020-1 for capacitance and resistance of the individual
components of a room (VDI 6020). For each single or
multilayer component a substitute model is calculated
using a chain matrix from concentrated thermal resis-
tances and capacitances. These capacitances and resis-
tances reflect the thermal mass of room components that
can be activated. By this, the common solution meth-
ods such as Fourier or Laplace transformation can be
avoided. The active thermal mass is described by the
aperiodic depth of penetration and is calculated regard-
ing the considered period duration.

A substitute model for a wall with any number of dif-
ferent layers can be combined into an equivalent resistor–

capacitor (RC) circuit with a maximum of three resistors
and two capacitors. Asymmetric thermally loaded com-
ponents, such as external components or internal com-
ponents to different tempered neighboring spaces are de-
scribed by two resistors and one capacitor. Symmetri-
cal thermally loaded components, i.e. adiabatic internal
components are modeled as a damped heat storage with
one resistor and one capacitor (see Figure 5).

Figure 5. Equivalent circuit for a symmetrical (left) and asym-
metrical (right) loaded component (Rouvel, 2015)

The IBPS Building library’s equivalent models for
single- or multi-layer components are based on the
Beuken model. The Beuken model is based on the agree-
ment between the differential equation of the thermal
conduction and the processes in an idealized electrical
cable (VDI 6020), as shown in Figure 6.

Figure 6. Component as Beuken model (VDI 6020)

In the Beuken model any wall layer is represented by
an RC circuit with two resistors and one capacitor. A
component (e.g. a wall) can basically be divided into
any number of layers with an equivalent circuit. The de-
gree of subdivision of the wall layers is normally chosen
based on the required calculation accuracy but in prin-
cipal any required calculation accuracy is possible. No
requirements are stipulated regarding the boundary con-
ditions (such as linearity etc.). In the IBPS Building li-
brary the spatial discretization of component models is
limited to one RC circuit per component layer, i.e. per
material layer. This allows a significantly faster compu-
tation time.

In the IBPSBuilding library based detailed models
components to adiabatic boundaries, that is, interior
walls, door, floor and ceiling, are approximated by only
half of the input thickness. In VDI 6020-1, the “cor-
rected heat storage capacity” of the symmetrically loaded
components, i.e. those to adiabatic boundaries, are cal-
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culated in dependence of the aperiodic depth of penetra-
tion. The simplified assumption in the detailed model
leads to overall smaller heat capacities, whose impacts
can be observed in the simulation results. The windows
are modeled in accordance with VDI 6020-1 as opaque
component with thermal resistance but without heat stor-
age.

3.5 Longwave radiation

Longwave radiation exchange between different sur-
faces in the building simulation program GEBSIMU is
assumed to be calculated by the approach for “more
complicated” geometrical conditions of the VDI 6020-
1 (VDI 6020). This simplified linear approach assumes
that all surfaces of the room are involved in the radiation
exchange relative to their size:

Q̇ = A ·αstr · (T1 −T2)

In VDI 6007-1 the heat transfer coefficient is defined
as αstr = 5 W/(mK) (VDI 6007). According to ISO
6946:2007 “Building components and building elements
- Thermal resistance and thermal transmittance - Calcu-
lation method“ this value corresponds to a temperature
of Tm = 10◦C. Thus, it is assumed that this value is also
used in the GEBSIMU model. The IBPS Building library
uses an approach based on the Stefan-Boltzmann law:

Q̇ = A ·σ · ε · (T 4
1 −T 4

2 )

This leads to higher radiative heat flows between the
walls for temperatures over 10◦C. Therefore, the indoor
air temperature on day 60 in the guideline is higher than
in our model. This originates in the radiative heat flow
from the inner to the outer wall, which is underestimated
in the guideline and leads to lower heat losses to the out-
side.

3.6 Simulation

After entering all data the test cases are simulated over
the base period of 60 days. The output is given in hourly
steps as specified in the directive. By evaluating the re-
sults, programming errors in the IBPSBuilding library
could be detected and eliminated.

The reference results of validation “Case B” are based
on the n-K model by Rouvel which is included in
VDI 6020-1 (VDI 6020). These were calculated us-
ing the building simulation program GEBSIMU version
7.30.0011. The basics of the n-K model were outlined
by Rouvel in 1972 based on the detailed Beuken model.
The compliance of both models calculation results has
been proved by Rouvel (Rouvel, 2015).

3.7 Results analysis and discussion

The simulation results of the test cases of VDI 6007-1
are compared to the reference results of validation “Case
B” according to the specifications of VDI 2078. The ref-
erence results are in this case based on the n-K model as
included in VDI 6020-1.

For analysis of the test examples, day 1, 10 and 60 of
the base period are compared in respect to room air tem-
perature, operative temperature, and for test examples 6,
7 and 11, to heating and/or cooling load. By this, ini-
tial values, transient response and consistency in steady
state can be examined. Figure 7 exemplarily shows the
transient response of Test Example 1 over the whole base
period of 60 days.

Figure 7. Development of the room air temperature over the
simulation period

Figure 8 exemplifies the diurnal variations of the in-
door temperatures of Test Example 1. The increase in air
temperature due to the internal loads in office hours (6.00
- 18.00 o’clock) can be clearly seen. Compared are the
reference results of the 2-K model of VDI 6007-1 and the
reference results of the n-K model of VDI 6020-1 with
the simulation results of the IBPS Building Library. The
maximum standard deviation of the hourly variations of
the simulation results from the reference results occurs
for the room air temperature and the operative tempera-
ture on day 1 with 0.28 K. The maximum absolute de-
viation is about 1.0 K and occurs on day 60. The test
example shows an overall good compliance with the ref-
erence results. However, differences in the calculation
engine between the n-K model and the IBPS Building
library’s model result in significant variations in all test
examples.

It is apparent that the indoor air temperature shows
a wider fluctuation range on all days than the reference
results. This can be justified by the smaller overall ef-
fective heat capacity of the zone. As described before,
the heat capacity of the reference model is calculated
in accordance with VDI 6007-1, i.e. in dependence of
the aperiodic depth of penetration. The heat capacity to
adiabatic boudaries of the IBPSBuilding library model
is simply estimated by half the wall thickness. In this
way the total heat capacity of the IBPS Building model
is smaller and the room air temperature is responding
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Figure 8. Results of test example 1

faster to heat sources and heat sinks on every day, un-
til it reaches the upper limit in steady state.

Furthermore, the room air temperature of the IBPS-
Building model increases slower during the simulation
period than in the reference model. This is attributable
to the heat flow from the inner to the outer wall by long-
wave radiation, which is considered too small in the ref-
erence model. As described before, in contrast to the
n-K model, the IBPSBuilding library does not use the
simplified linear approach for the long-wave radiation
exchange, but a model based on the Stefan-Boltzmann
law. This leads to higher radiative heat flows between
the walls at temperatures above 10◦C and thus to higher
thermal losses through the exterior walls. The room air
temperature is therefore, on day 60 lower than in the ref-
erence results. The two behaviors described above occur
in all test examples.

Minor discrepancies at all considered days can be at-

tributed to slight differences in the calculation results by
using different calculation programs (VDI 6007). De-
pending on the programming, programming language,
compiling, etc. slight differences are inevitable.

In heating and cooling load significantly higher devia-
tions from the reference results are conveyed. In Test Ex-
ample 11 the room air temperature is in good consistence
with the reference results with a maximum standard de-
viation of 0.47 K on the 1st day. Though the system load
has high standard deviations from the reference results
of 65.6 W on day 1 and approximately 56.4 W on day 10
and 60. The maximum absolute deviation occurs on day
1 with about 190 W.

This is primarily due to the low spatial discretiza-
tion which aggravates the correct identification of the
activated thermal mass. Another factor is the use of a
PID (proportional-integral-derivative) controller to de-
termine the required heating and cooling load. Here,
the n-K model of GEBSIMU according to VDI 6020-
1 uses a discrete analytical approach to determine sys-
tem loads, which leads to fundamentally different results
(VDI 6020).

Evaluation is performed as a statistical analysis by
mean value and standard deviation corresponding to VDI
6007-1 (VDI 2078). The mean value is the mean of
the hourly variation, i.e. simulation result minus refer-
ence result, in the evaluation period. The evaluation pe-
riod includes day 1, 10 and 60 of the simulation period.
The standard deviation is the standard deviation of the
hourly variation in the evaluation period. The discrep-
ancies between the program to be validated and the ref-
erence results are also compared to the deviations of the
2-K model of VDI 6007-1 to the reference results (see
Table 1 4).

A successful validation requires the maximum values
of the mean values and the standard deviation of the eval-
uation period to be within the applicable limiting values.
The limiting values are 1.0 K for the mean value and 1.5
K for the standard deviation of the room air temperature
and the operative temperature and 50 W for the mean
value and 60 W for the standard deviation of the heating
or cooling load.

The overall results for room air temperature and oper-
ative temperature of the test examples are continuously
within the limiting values. However, with heating and
cooling load calculation limiting values are not always
respected. Although the mean value of the hourly devia-
tion is within the limiting value of 50 W in all test exam-
ples, the standard deviation exceeds the limiting values
of 60 W in Test Example 6 with 60.0 W and significantly
in Test Example 11 with 65.6 W. This can primarily be
refered to the low spatial discretization of building com-
ponents which aggravates the correct identification of the
activated thermal mass. Thereby, this problem can be

4The table includes only the maximum values of the evaluation pe-
riod. The respective higher values are underlined and are those which
apply for validation according to VDI 2078.
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easily remedied by expanding the number of RC circuits
per component layer of the IBPS Building library’s com-
ponent model.

Table 1. Maximum values of validation results

4 Conclusion and outlook

4.1 Adoption to IEA EBC Annex 60 frame-
work

As a complement of other Modelica libraries for build-
ing energy performance simulation, the development of
the IBPSBuilding library is focused on building model-
ing and simulation with Modelica mainly for educational
and teaching purposes. The main structure of this model
library and its compatibility is emphasized in this work,
so that it can be easily adopted into learning work and
used by non-programmers.

Further activities shall link the activities on hand with
the ongoing work of the international IEA EBC An-
nex 60 project. The Annex within the International En-
ergy Agency (IEA) in Buildings and Communities pro-
gramme (EBC) is a project to promote research and de-
velopment of new computational methods for energy
efficient buildings and communities. The focus is to
develop and demonstrate next-generation computational
tools for buildings and energy systems within buildings
based on Modelica and the Functional Mockup Interface
standards (Wetter and van Treeck, 2016).

One of the subtasks of the Annex framework fo-
cuses on harmonizing and unifying model development
in Modelica. As a result of the Annex work, fragmented
developments were merged into a common and open set
of Modelica base classes for the various libraries such
as the AixLib from RWTH Aachen University, see e.g.

(Remmen et al., 2015), (Fuchs et al., 2015) and the refer-
ences therein, or the Building library from LBNL Berke-
ley (Wetter et al., 2013) and others. It is therefore the
intention to merge the developments on hand which pri-
marily focus on educational issues with the research- and
application-oriented models of the Annex.

4.2 Validation

The validation of the IBPSBuilding Library on the basis
of VDI Directive 6007-1 with the limit values according
to VDI 2078 shows overall good results. Thus demon-
strating the resilience of the thermal calculation kernel.
By evaluating the results programming errors were de-
tected and remedied, e.g. the incorrect definition of the
heat transfer coefficient. In addition, existing compo-
nents were expanded to include useful additional func-
tions. With the successful validation, the basis for the fu-
ture development of requested complementary functions
has been made, e.g. moisture transport processes, multi-
zone modeling, detailed window models, etc..

4.3 FLUIDGLASS

The IBPSBuilding-Package is adopted in the EU-project
FLUIDGLASS to support validations of the new façade
construction and the integrated control system for fluid
and its technical systems. It is a research project co-
ordinated by University of Liechtenstein and funded by
European Commission with the seventh Framework Pro-
gram (EU-FP7 Grant Agreement No. 608509).5 In this
new façade system in development, two fluidized layers
are implemented and proposed to be regulated by an in-
telligent control system, in order to improve the build-
ing energy efficiency by acting as a replacement to cover
the functions of shading device, solar thermal collector,
heating and cooling elements (Stopper et al., 2013).

In order to accomplish the detailed validation process
for the performance of various construction configura-
tions of FLUIDGLASS, an extended version of IBPS-
Building is implemented, which includes:

1. consideration of glass coating and its different op-
tical performances according to direction of irradi-
ation and incident angles;

2. consideration of different behavior with light in dif-
ferent wavelengths;

3. free or enforced convection in a gap between
glass panes with detailed calculation method and
temperature-related material properties;

4. shading of reveal and its geometric interpretation
according to incident solar angles;

5More information: http://www.fluidglass.eu/
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5. visual indicators such as illuminance and lumi-
nance;

6. improvement of interactions with 3rd-party li-
braries, MEP-models and modeling optimization

Additionally, a group of modules are created to help
building a detailed FLUIDGLASS model in Modelica,
which is compatible with the IBPSBuilding-Package and
most of the standard Modelica libraries (mainly SIunits
and HeatTransfer). The theoretical numerical parts, es-
pecially the behavior according to wavelengths, refer to
the former research works and their equation system in
the equation solver program EES from F-Chart Software
(Gstoehl et al., 2011). The FLUIDGLASS components
with IBPSBuilding modules are tested in ITI Simula-
tionX, and are also validated with the EES model and
sample measurements.

The extended version of the library is planned to be
adopted in network simulations on district level in fur-
ther steps of FLUIDGLASS project. Approaches of co-
simulation are in research. It can collaborate with Mat-
lab and Simulink at the moment in practice by using the
COM-interface of SimulationX. Furthermore, the library
is adopted in Hardware-in-Loop simulations by interact-
ing with LabVIEW to improve the smart controlling of
mechanical systems with FLUIDGLASS. The compati-
bility of the FLUIDGLASS add-on is also going to be
tested with the standard Annex60 Buildings Library.
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Abstract

This paper describes recent advances in simulation of
zero flow conditions based on work with Daimler using
the Air Conditioning Library from Modelon. The Air
Conditioning Library is based on the open standard mod-
elling language Modelica. Simulating refrigerant loops
at (near) zero flow for large vapor compression cycles is
challenging, due to the fast dynamics in the model un-
der those conditions that drastically reduce the step size
of the solver. Findings on solver selection and pressure
drop correlations are presented. An approach to improve
zero flow simulation based on a systematic analysis of
heat transfer coefficients is suggested and demonstrated
to increase simulation robustness under (near) zero flow
conditions.
Keywords: air conditioning systems, zero flow, 1-D fluid
modelling, dynamic simulation, numerical issues

1 Introduction

Operating modes with low and zero refrigerant mass
flow rates in air-conditioning refrigeration systems have
gained significance in the past years. Additional con-
sumers of cooling power, such as batteries, evaporators
for multi-zone air cooling or other integrated parts of the
thermal management system have become more com-
mon.

Naturally, not all branches of the refrigeration cycle
are active at all times but may be switched off during
given operation modes. In addition, for the purpose of
complete vehicle simulation, the entire cycle may be
switched off at any time. The refrigeration system model
is expected to handle these conditions smoothly and effi-
ciently.

Characteristic for air conditioning cycles is the small
total volume, often less than 1 [l]. In addition, the cycle
traverses the two-phase dome, and as a consequence a
wide and rapidly varying set of fluid properties.

1.1 Thermofluid Modelling and the Air Con-
ditioning Library

Thermofluid models in Modelica are 1-D models which
are effectively a string of control volumes and control
surfaces (referred to as volume and flow components re-
spectively in the Modelica community). Control vol-
umes account for the conservation of energy and con-
servation, whereas the control surfaces incorporate the
conservation of momentum (Figure 1). (Tummescheit,
2002) explains this concept in detail.

Figure 1. The balance equations. Conservation of mass (1)
and energy (2) occurring in the control volume and the conser-
vation of momentum (3) defined across an control surface.

In the Air Conditioning Library the models are dis-
cretized using an upwind discretization scheme, intended
for (strong) convective flows with suppressed diffusion
effects.

Both the above concepts are essential in this article
and will be referred to at a later stage.

The Air Conditioning Library contains a set of pre-
defined components focused on air conditioning appli-
cations and is developed by Modelon AB. It is cur-
rently mostly used by automotive OEM’s and suppliers
(Tummescheit et al., 2005).

1.2 Test Models

All investigations in the paper are based on a large sys-
tem model, provided by Daimler. The system uses
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R134a refrigerant and contains 2 evaporator branches as
depicted in Figure 2. Five use cases of the system model
were described by Daimler:

1. Normal operation

2. Evaporator branch #1 shutdown

3. Evaporator branch #2 shutdown

4. Compressor shutdown through reduction of posi-
tive displacement volume. A complete simulation
contains three shut-down - start-up cycles.

5. Compressor shutdown through reduction of shaft
speed. Only one shut-down is performed and the
system remains at rest for the rest of the simulation.

At the beginning of the investigation use cases 4-5
experienced significant increase in CPU time right after
compressor shut-down, which prevented the simulation
to complete within a reasonable time frame.

Figure 2. Schematic representation of the refrigeration system

1.3 The Zero Flow Problem

Close to zero flow, some oscillations appear due to the
fast dynamics in the model. These dynamics are caused
by the mathematical description that at nominal flow
rates has reasonable time constants, but at low flow rates
become very small. Hence, the solver reduces drastically
its step size. A reduced solver step size during a pro-
longed period results in a dramatic increase in CPU time
which makes it infeasible to compute the model within a
reasonable time.

The fast dynamics can be observed in the simulation
results by oscillations of a given set of variables, in par-
ticular the mass flow as is illustrated in Figure 3.

Figure 3. Oscillations in mass flow are a typical symptom of
the zero flow problem.

The (simulation time, CPU time) graph is used repeat-
edly throughout this paper, as an illustration the progress
the solver is making. The gradient of the graphs is an
indication of the progress of the solver. Figure 4 shows
the the graph for use case 4 before any improvements to
the model, where the vertical graph gives a clear indi-
cation of the zero-flow problem. 3600 [s] is considered
the limit of a reasonable simulation time. All simula-
tions are automatically stopped at 3600[s] - a reasonable
computation time for a system with approximately 270
continuous time states and many transients.

Figure 4. This graphs shows CPU time as a function of sim-
ulation time for use case 4. The vertical line at t = 500 [s]
indicates the zero flow problem.

2 Pressure Drop Correlation Regu-
larization

The pressure drop correlation presents in essence the re-
lationship between pressure drop and mass flow, which
is approximately a quadratic function (1) :

ṁ = f (4P)∼
√
4P (1)
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Figure 5. A regularized pressure drop

Note that the derivative of this function approaches
zero when approaching a zero mass flow. This will dis-
rupt the search algorithm as very small pressure differ-
ences correspond to very large variations in mass flow,
causing the solver to jump between different solutions
which are beyond solver tolerance. Regularized pres-
sure drop correlations address this issue by increasing
the derivative within a user specified region (Figure 5)
(Tummescheit, 2002) . All pressure drop correlations in
the Air Conditioning Library can be regularized with a
parameter.

Operation point based pressure drop correlations, as
opposed to geometry based pressure drop correlations
where the pressure drop is specified by thermodynamic
properties and the pipe geometry, allow the user to spec-
ify the nominal mass flow and pressure drop to define the
pipe’s behaviour. Note that depending on how the user
sets the nominal mass flow and pressure drop, the corre-
lation will be less or more sensitive to zero flow issues.
A small pressure drop for a large mass flow will increase
the region in which the derivative of the pressure drop -
mass flow function is beyond solver tolerance. It is thus
beneficial to lump small pressure drops into one larger
pressure loss.

A regularized pressure drop correlation is a necessary
requirement for a complex thermo-fluid model to com-
pute under zero flow conditions.

3 Solver selection

Using an appropriate solver is critical to ensure fast con-
vergence of models that experience (near) zero flow op-
eration. Three popular solvers are integrated in the sim-
ulation environment Dymola: Dassl, Lsodar, RadauII.

The former two are multi-step algorithms whereas the
latter one is a one-step algorithm. One-step algorithms
are more efficient at handling stiff problem formulations,
which is the case for a (near) zero flow simulation, there-
fore RaduaII is the preferred solver.

A solver tolerance of 10e-6 was used in Dymola
2016FD01.

4 Heat Transfer To Control Volumes
at Zero Flow

As explained in Section 1.1, each control volume has an
associated energy balance. For heat exchangers, a large
contributor to the overall energy balance of the two phase
channel is the heat transfer from or to the secondary
channel governed by the heat transfer coefficient corre-
lation.

4.1 Observations
In use case 4, oscillations are localised in an evaporator
component. One can observe significant oscillations in
mass flow and large oscillations in two phase fractions,
in the control volumes located within the heat exchanger
model. To address the problem, all heat transfer corre-
lations are replaced by a constant (α = 1500

[
W/m2K

]
)

to investigate a potential improvement in the simulation
progress. The result is remarkable; it does not improve
the simulation at zero-flow, on the contrary, it reduces
its robustness. The oscillations for this case occur for
the control volumes located at the boundaries of the heat
exchanger models.

Based on these observations, the fast dynamics are at-
tributed to the (large) difference in heat transfer coeffi-
cients between adjacent control volumes:

1. Caused by to the difference in heat transfer between
one-phase and two-phase flow, as is observed for
use case 4.

2. Caused by the difference in heat transfer between
heat exchangers and adiabatic pipe, as is observed
when the heat transfer coefficient is set constant, i.e.
without any mass flow dependency.

These hypotheses are strengthened by the result of a
simulation run where all heat transfer coefficient cor-
relations are replaced by a function for which the heat
transfer coefficient is linearly dependent of the mass
flow. The heat transfer coefficient is zero for zero mass
flow and takes a given value at nominal flow rate (e.g.
α = 1500

[
W/m2K

]
). Consequently, at zero-flow con-

ditions no difference in heat transfer coefficient between
adjacent control volumes exists, neither due to differ-
ent phases nor at the interface heat exchanger - adiabatic
pipe. Using this substitute correlation, all use cases com-
pute effortlessly to the end.
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4.2 Reduce the Difference in Heat Transfer
Coefficient Between One-Phase and Two-
Phase at Zero-Flow

To accommodate for observation 1, heat transfer coef-
ficients of one-phase and two-phase should converge to
identical values at zero flow (Figure 6). Key points that
were considered are:

• What value should the heat transfer coefficient con-
verge to for zero flow? Since all two-phase heat
transfer coefficient correlations that are used in this
context are not valid at low flow rates but the one-
phase heat transfer coefficient correlations is, it is
judicious to let the former converge towards the lat-
ter. However, its actual value is likely influenced by
the droplets and bubbles.

• At what mass flow should such an transition be-
gin? Two options are considered to set the transi-
tion threshold. In this section, (a fraction) of the
nominal mass flow rate is used as limit. In the
next section we explore the possibilities of using
the Reynolds number instead.

Figure 6. The heat transfer coefficient for one- and two-phase
flow in function of the mass flow. To address the zero flow
problem, the coefficient is smoothly interpolated between dif-
ferent phases

Note that this effectively not only addresses observa-
tion 1 but also applies to observation 2, since the heat
transfer coefficient for one-phase flow is generally lower
than for two-phase flow. This in turn decreases the differ-
ence between the heat transfer coefficients between con-
trol volumes located at the border of a heat exchanger
and an adiabatic pipe.

Figure 7. This graphs shows CPU time as a function of simu-
lation time for use case 4, with smoothing based on mass flow.
At 500 [s] the first compressor shut-down occurs. The simula-
tion is stopped after 3600[s] CPU time, which allows for one
complete compressor restart and another shut-down.

Performing this change proved to be highly beneficial
to improve zero-flow behaviour. The simulation contin-
ues to make progress where it previously got stuck, as
is demonstrated in Figure 7. The initial transients take
approximately 800 [s] CPU time. Subsequently there a
is plateau up to 500 [s] simulation time, where the cycle
reaches steady state operation and the solver makes fast
progress. The transients for cycle shut-down and restart
are located between 500 - 600 [s] simulation time and
take approximately 1600 [s] CPU time, which is consid-
ered reasonable given the cost of the initial transient. The
plateau located at approximately 600-700 [s] simulation
time indicates a fast solver progress and coincides with
normal refrigerant cycle operation.

4.3 Filtering the Heat Transfer Coefficient

While complete compressor shut-down and restart can be
achieved without stalling the simulation, distinct steps in
the (simulation time, CPU time) graph can still be ob-
served (see Figure 7). These steps are caused by small
variations of the two-phase fraction in a control volume,
in its turn causing large variation in heat transfer coeffi-
cient between adjacent control volumes. The two-phase
fraction indicates what the ratio of one-phase and two-
phase within a control volume is. The fast and local vari-
ations of heat transfer coefficient contribute to density
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variations and thus oscillating flow. A first order filter is
applied to the heat transfer coefficient, with time constant
τ , as illustrated in Equation (2). Note that Fuser and y are
a calibration factor and the interpolation factor described
in Section 4.2 respectively. This introduces an additional
state in each control volume, which in principle will in-
crease simulation time.

dαi

dt
=
−αi +Fuser

[
yiα

2ph
i +(1.0− yi)α

1ph
i

]
τ

(2)

Figure 8. This graphs shows CPU time as a function of simu-
lation time in compressor shut-down (case 4) using mass flow
smoothing and a filter in heat transfer correlation. At 500 [s]
the first compressor shut-down occurs. In this image, one can
clearly see the different consecutive compressor shut-downs,
2-3 are achieved within 3600 [s] simulation time. The blue
line corresponds to τ = 0.01, and the red τ = 0.001.

Applying the filter has a recognizable effect on the
simulation robustness. In Figure 8, within 3600[s]
of CPU time, between 1-2 compressor shut-downs are
achieved. The value of the time constant was varied
τ = 10−2− 10−6[1/s]; the concept was beneficial in all
cases but no universally optimal value could be deter-
mined.

4.4 Reynolds Number Smoothing

In order to achieve a more physically correct result,
it was suggested to set a Reynolds number as thresh-
old value for the two-phase heat transfer coefficient to
converge towards the one-phase heat transfer coefficient
when approaching zero mass flow. The Reynolds num-
ber is a more meaningful measurement, independent of
the pipe geometry and as it is an indication of the flow
regime, a metric often used to describe the validity of
heat transfer correlations.

Figure 9. This graphs shows CPU time as a function of sim-
ulation time in compressor shut-down (case 1) using Reynolds
based smoothing and a filter in heat transfer correlation. At 500
[s] the first compressor shut-down occurs. A complete com-
pressor shut-down and restart cycle is completed within 3600
[s] CPU time.

As default value, Re = 3000[−] is used, located in the
transition between laminar (Re < 2300[−]) and turbulent
flow (Re > 4000[−]). Using this threshold the simula-
tion proceeds steadily, however at a slower rate as the
previously used nominal mass flow threshold (Figure 9).

4.5 Physical Behaviour at Zero Flow

The suggestions for improved zero flow robustness de-
scribed above rely on altering the heat transfer coeffi-
cients from existing heat transfer coefficient correlations
when approaching zero flow. This has consequences on
the model behaviour at zero flow but not in the nominal
operation range, provided the threshold value of the mass
flow or Re is correctly set. If the time constant τ is set
sufficiently low, it has no significant impact on the result
in nominal operation mode.

Topics for future consideration are:

1. What is the value of the heat transfer coefficient at
zero flow? All two-phase correlations implemented
in the Air Conditioning Library cease to be valid at
Re = 3000[−]. One-phase correlations however, re-
main valid to a much lower Reynolds number well
into the laminar region. It appears therefore justi-
fied to converge towards the one-phase heat transfer
coefficient correlation. However, for a more accu-
rate value an advection correlation would need to
be included in the overall heat transfer coefficient
calculation.

2. What is the effect of gravity on the system? The
models in the Air Conditioning Library do not take
into account the effect of gravity nor introduce a
slip factor between phases. At low flow rates, phase
separation will occur.
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3. How do these two items above interact? If we as-
sume that at zero flow, after the system has come
to rest, the channels are filled up with either liquid
or vapour only, the one-phase correlation is more
likely to mimic the physics better. However, boil-
ing is likely to occur in given sections of the cycle.

5 Considerations for Future Work

The discretization scheme currently implemented only
accounts for convective flow as previously specified. At
zero flow, the energy balances of adjacent control vol-
umes are not linked and the only relationship between
adjacent control volumes is the momentum balance. By
altering the heat transfer coefficient, the need for linking
the energy balances is reduced, as the the energy accu-
mulation/dissipation is more uniform.

Instead, one could imagine creating a thermal link
between adjacent control volumes. Diffusion-like dis-
cretization schemes can be included in the energy conser-
vation equations of each control volume. This has been
done previously however did not yield satisfactory re-
sults. While diffusion is beneficial to the zero flow prob-
lems, it cannot offset the very large energy accumulation
differences between adjacent control volumes that have
very different heat transfer coefficients, unless the diffu-
sion factors are unreasonably high.

And alternative method to link the energy balances of
the control volumes is to define a discretized (metal) wall
along side the thermo-fluid model, through which the
control volumes can indirectly interact. The additional
states will increase simulation time under nominal con-
ditions but may likely improve model robustness under
zero flow conditions.

6 Conclusion

The approach for improved zero flow behaviour of de-
tailed air conditioning system models uses the heat
transfer coefficient correlations which prescribe the heat
transfer from the refrigerant control volumes to the sec-
ondary side. The implementation requires that the value
of these coefficients for adjacent control volumes ap-
proach each one another for (near) zero flow simulation.
In refrigeration simulation, the two natural occurrences
of large variations of heat transfer coefficients exist be-
tween adiabatic pipes and heat exchangers and between
one- and two-phase coefficients within heat exchang-
ers. An approach to numerically smooth these transitions
based on nominal mass flow and Reynolds number for
the latter suggested. The approach is tested with large
system models and demonstrated to increase simulation
robustness under (near) zero flow conditions. Systems
simulations during which the compressor is repeatedly
shut-down previously got stuck but now run to the end.
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