

The First Japanese Modelica Conferences is sponsored by:

The first Japanese Modelica Conference is organized by Modelon and Modelica Association

Proceedings of the 1
st
 Japanese Modelica Conference

Tokyo, Japan, May 23-24, 2016

Editors:

Dr. Yutaka Hirano and Dr. Johan Andreasson

Published by:

Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7685-749-6

Series: Linköping Electronic Conference Proceedings, No 124

ISSN: 1650-3686

eISSN: 1650-3740

DOI: http://dx.doi.org/10.3384/ecp16124

Organized by:

Modelon K.K.

Embassy of Sweden Compound

1-10-3-901 Roppongi, Minato-ku, Tokyo 106-0032

Japan

in co-operation with:

Modelica Association

c/o PELAB, Linköpings Univ.

SE-581 83 Linköping

Sweden

Conference location:

Embassy of Sweden Compound

1-10-3-901 Roppongi, Minato-ku, Tokyo 106-0032

Japan

Copyright © Modelica Association, 2016

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

2 DOI
10.3384/ecp16124

__

http://dx.doi.org/10.3384/ecp16124

The 1st Japanese Modelica Conference, which takes place in Tokyo, is the first of hopefully many

more to come. With this effort, we hope to create an arena in Japan and Asia for sharing knowledge

and learning about the latest scientific and industrial progress related to Modelica and FMI (Functional

Mockup Interface). Ultimately we also hope to see enough momentum to motivate an International

Modelica Conference organized in the region. We are surprised but very glad to see the overwhelming

interest to both join and contribute to the conference. Instead of originally planned 8 paper

presentations and one key-note during one day, we have had to extend the scope and are now proud to

present a conference with:

• 2 Keynote speeches

• 18 paper presentations

• A fully booked exhibition area featuring 8 exhibitors

• Concurrent interpretation between Japanese and English

• Great venue location in the heart of Tokyo at the Swedish Embassy

• A conference mingle dinner at the Ambassador’s residence

According to Modelica Association standards, all papers are peer-reviewed and will be freely available

for download.

We want to acknowledge the support we received from the conference board and program committee.

Special thanks to our colleagues at Modelon K.K. for taking care of all the practical matters, and to the

Swedish Embassy in Tokyo for hosting the event. Support from the conference sponsors is gratefully

acknowledged. Last but not least, thanks to all authors, keynote speakers, and presenters for their

contributions to this conference.

We wish all participants an enjoyable and inspiring conference!

Tokyo and Susono, April 30,

Johan Andreasson and Yutaka Hirano

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

3DOI
10.3384/ecp16124

__

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

4 DOI
10.3384/ecp16124

__

Keynotes

Yasuhiro Harada

Mazda

What should Model Based Development aim

for?

Vehicle systems have become vast and

complex to attain a high level of functionality.

It is expected to evolve at an even more

accelerated rate. Model Based Development

(MBD) has become essential to accomplish

such a high level of manufacturing process in a

short term. I will show what has been targeted

and realized in MBD to date, by giving some

examples of past developments, and will look

into an ideal manufacturing process.

Scott A. Bortoff

Mitsubishi Electric Research Laboratory

Using Modelica Effectively in Industrial

Research and Development

In this talk we will highlight some uses of

Modelica in the context of industrial research

and development. Beyond time-domain

simulation, these uses include control system

design and realization, computation of open-

loop optimal control that is useful to establish

fundamental limitations of performance,

system inversion which is useful to compute

unmeasured system inputs in real-time, state

estimation and data assimilation.

We also want to point out some of the

challenges in using large-scale models

specifically in the context of product

development. These include model calibration,

which is often a chicken-and-egg problem,

model reduction, incorporation of tabular data,

and limited scalability of existing

solvers. These highlight some interesting

research opportunities for the academic

community and are key enablers to even more

effective use of Modelica in industry.

We conclude with some advice for new users

and some personal experiences with

introducing the technology into use at large

companies.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

5DOI
10.3384/ecp16124

__

Program Committee

General Chair

Dr. Johan Andreasson, Modelon K.K., Japan

Program Chair

Dr. Yutaka Hirano, Toyota Motor Corporation, Japan

Program Board

Dr. Yutaka Hirano, Toyota Motor Corporation, Japan

Prof. Peter Fritzson, Linköping University, Sweden

Prof. Martin Otter, DLR, Germany

Dr. Hilding Elmqvist, Mogram, Sweden

Dr. Michael Tiller, Xogeny Inc., USA

Program Committee

Dr. Johan Andreasson, Modelon K.K., Japan

Christian Bertsch, Robert Bosch GmbH, Stuttgart, Germany

Torsten Blochwitz, ITI GmbH, Dresden, Germany

Peter Bunus, ESI-Group, Sweden

Dr. Hilding Elmqvist, Mogram, Sweden

Prof. Peter Fritzson, Linköping University, Sweden

Dr. Rui Gao, Modelon K.K., Japan

Prof. Anton Haumer, Technical consultant, OTH Regensburg, Regensburg, Germany

Dr. Yutaka Hirano, Toyota Motor Corporation, Japan

Dr. Lee Johanson, ANSYS Inc., USA

Jochen Köhler, ZF AG, Friedrichshafen, Germay

Prof. Hidekazu Nishimura, Keio University, Japan

Prof. Shigeru Oho, Nippon Institute of Technology, Japan

Prof. Koichi Ohtomi, University of Tokyo, Japan

Prof. Martin Otter, DLR, Germany

Prof. Stefan-Alexander Schneider, Hochschule Kempten, Kempten, Germany

Dr. Martin Sjölund, Linköping University, Sweden

Dr. Michael Tiller, Xogeny Inc., USA

Dr. Hubertus Tummescheit, Modelon Inc., West Hartford, USA

Conference Organization Team:

Dr. Johan Andreasson, Modelon K.K., Japan

Dr. Yutaka Hirano, Toyota Motor Corporation, Japan

Tomohide Hirono, NewtonWorks Corporation, Japan

Masanori Kobayashi, IPG Automotive K.K., Japan

Eiji Nakamoto, ANSYS Japan K.K., Japan

Hideyuki Okabe, Dassault Systèmes K.K., Japan

Hiroshi Watanabe, CYBERNET SYSTEMS Co. Ltd., Japan

Noriko Yudahira, IPG Automotive K.K., Japan

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

6 DOI
10.3384/ecp16124

__

Contents

Session 1: Automotive Applications

Dynamics Modelling of the Arc Spring for Powertrain NVH Prediction 9

Research of Model Matching Control of Torque Vectoring Differential Gear System 15

Simulation of Complete Systems at ZF using Modelica Standards 24

Session 2: Model Based Development

Virtual Vehicle Kinematics and Compliance Test Rig 29

Modelica-Association-Project “System Structure and Parameterization” – Early

Insights

35

ADAS Virtual Prototyping using Modelica and Unity Co-simulation via OpenMETA

43

Session 3: Mechanical Applications

Active Elbow Joint Model 50

Modeling and simulation for leg-wheel mobile robots using Modelica 55

System-Level Design Trade Studies by Multi Objective Decision Analysis (MODA)

utilizing Modelica

61

Session 4: Real Time Simulation, HILS

FMI for Co-Simulation of Embedded Control Software 70

Deployment of high-fidelity vehicle models for accurate real-time simulation 78

Validation of a Battery Management System based on AUTOSAR via FMI on a HiL

platform

87

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

7DOI
10.3384/ecp16124

__

Session 5: Simulation Technologies

Chattering-Free Simulation of Hybrid Dynamical Systems with the Function Mock-

Up Interface 2.0

95

Acceleration of FMU Co-Simulation On Multi-core Architectures 106

Rankine Cycles, Modeling and Control 113

Session 6: Thermal System Applications

Thermal Deformation Analysis Using Modelica 121

Validated Modelica Building Package for Energy Performance Simulation with

Educational Purposes

129

Advances of Zero Flow Simulation of Air Conditioning Systems using Modelica 139

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

8 DOI
10.3384/ecp16124

__

Dynamics Modeling of the Arc Spring
for Powertrain NVH Prediction

Yoshihiro Yamakaji1
1Exedy Corporation, Japan, y-yamakaji@exedy.com

Abstract
The key value of Model Based Development is to
realize capability of quick performance design and
simulation at the early phase of development. In this
paper, we modeled an arc spring type torsional damper,
which has an impact on the torsional vibration
characteristics of powertrain in a vehicle. To predict
non-linearity of the arc springs, we took a discrete
modeling approach using MODELICA and compared
its simulation results with the physical test results. We
also developed a user-friendly interface with FMIE
(Modelon FMI Add-in for Excel) so that a non-expert
of physical modeling can run performance design
easily and precisely on their own.
Keywords: Powertrain, Arc Spring, Modelica, FMI,
Nonlinear Vibration

1 Introduction
These days, as a car gets more complex than ever,
Automotive Original Equipment Manufacturer (OEM,
hereafter) are asking Parts Suppliers to deliver
performance proposals at the very early phase of
development. To do that, it is imperative for Parts
Suppliers such as EXEDY to realize performance
design with accurate and quick performance prediction.

Recently, Model Based Development (MBD,
hereafter) has widely been spread out in Automotive
Industry. MBD is an approach to model and simulate
systems behaviors taking multiple physical domains
into account even before starting the detailed design.
To meet the OEM requirements described above, we
applied MBD to the development of torsional damper
products. The problem here is how to model the arc
spring type torsional damper with a high non-linear
characteristic. Therefore, we focus on modeling and
validation of the arc spring component in a torsional
damper.

In EXEDY, we chose some MBD tools capable of
handling physical modeling, such as Dymola, for
Prediction and Validation phases in V-process shown
in Fig. 1. To accelerate its deployment, it is important
to build simulation models for better performance and
accuracy, and to establish workflow to utilize MBD
tools efficiently.

The paper comprises following chapters. First, we
explain the basic structure of the torsional damper.
Second, we focus on the arc spring and illustrate its
physical models. Third, we show Modelica
implementation and the comparison with the physical
tests. Then we present our interface program on top of
Microsoft EXCEL by using FMIE which enables a
non-expert of physical modeling to work on the
performance design of arc springs based on Modelica.

Figure 1. Model-Based-Development Process

2 Description of Target Systems

2.1 Functions of Launch Devices
Launch devices of a car must provide following four
functionalities.
1. Transfer and cut off power
2. Smooth connection
3. Noise-proof and vibration-proof
4. Fuse of drivetrain

In this paper we focus on a torsional damper which
plays a key role for the functionality 3 above, noise-
proof and vibration-proof.

Torsional damper mitigates the torque fluctuation
from a motor such as ICE (Internal Combustion
Engine) and delivers only smoothed driving torque to
downstream transmission (T/M, hereafter) (Fig. 2). It
reduces the torsional vibration of drivetrain which
leads to the elimination of gear noise and booming
noise. Adoption of recent advanced environmental
technology (such as fewer cylinders or turbo chargers)
causes more torque fluctuation, which requires the
torsional damper to be more effective.

Requirements

Implementation

Component Level
Validation

Unit Level
Validation

System Validation

Vehicle Validation

Final Product

Requirements
Analysis

Detailed System
Design

Component
Requirements

Analysis

Detailed
Component

Design

Feed back

Feed back

Validation

Validation

MBDPrediction

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp161249

9
__

Figure 2. Function of Torsional Damper

2.2 Torsional Damper
Torsional dampers typically consist of multiple straight
springs or arc springs. When torque input comes in
from ICE side, the springs absorb and release torques
repeatedly. Through this mechanism, torque fluctuation
is rectified to reduce the drivetrain torsional vibration
after T/M.

To optimize drivetrain torsional vibration, it is an
effective means to optimize the eigenvalues of
torsional vibration of drivetrain. Those eigenvalues are
dominated by torsional stiffness of torsional dampers.
By setting eigenvalues lower than the driving range
(for instance, for Automatic Transmission, under the
lock-up lower-limit rotation), silence characteristics
during driving is assured (Fig. 3).

However, reducing torsional damper stiffness leads
to a constraint on space, because torsional angle range
has to be set wider. Also, there is a trade-off by
excessive low stiffness, that is, for instance, low-
frequency vibration on the vehicle. Therefore, it is
necessary to determine design specifications optimally
to satisfy all target performances from OEM.

Figure 3. Powertrain Torsional Vibration Mitigation by
Torsional Damper Stiffness Reduction

2.3 Characteristics of Arc Springs
Arc springs, which are included in the torsional damper,
have non-linear damping characteristics. Fig. 4 shows
the torque fluctuation against relative torsional angles
when we apply certain amplitude of torque to the arc

spring. We see by those figures that the hysteresis
curve resembles a leaf, which means equivalent
stiffness and damping coefficients dynamically change
depending on rotational speed or input torque
amplitude. It is necessary to develop a highly accurate
and predictive model to virtually reproduce such
hysteresis curves.

Figure 4. Dynamic Characteristics of Arc Springs
Torsional torque over the relative angle at 1000rpm and
2000rpm on Component Level Test(Experimental data)

3 Modeling Arc Springs
To understand the measured characteristics (hysteresis
curve) of arc springs, we use 𝑛𝐸𝐸𝐸 -number of linear
spring elements 𝑘𝑛 and mass elements 𝑚𝑛 to discretize
a continuous spring element (Fig. 5). Here, 𝑛 is the
element number counted from the input torque side, 𝑘𝑛
is the discretized stiffness which is the overall spring
ratio multiplied by 𝑛𝐸𝐸𝐸, 𝑚𝑛 is the discretized spring
mass which is the overall mass divided by 𝑛𝐸𝐸𝐸.

We also define that an arc spring is stored in a
cylindrical container in which the inner diameter is the
same size as the arc of the spring’s outer diameter. One
end of the arc spring is connected to the input element,
and the end of the other side is coupled to the
cylindrical container so as not to rotate relatively. The
cylindrical container is connected to the output element.
The angle limitation is not included in this modeling.

Considering that a torsional damper is rotating at
some speed, centrifugal force is applied onto the mass
element which is consequently pressed against the
cylindrical container. If a mass element rotates
relatively to the cylindrical container because of the
input torque to the arc spring, friction torque 𝑇𝐹𝑛
would be caused not only by the centrifugal load but
also by the reaction force of the arc spring.

Engine
(ICE)

Transmission
(T/M)

Torsional Damper

Engine Speed

To
rs

io
na

l V
ib

ra
tio

n

Stiffness
Reduced

Torsional Damper with
Conventional Stiffness

NV Target Level

40

80

120

160

200

240

10 15 20 25 30
D

am
pe

r t
or

qu
e

[N
.m

]

Damper angle [degree]

1000rpm

2000rpm

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

10 DOI
10.3384/ecp161249

__

Figure 5. Discretized Model for Arc Springs

3.1 Mechanism Identification
Figure 6 shows the relation of torque and the relative
torsional angle between input and output elements and
the estimated mechanism, when torque 𝑇𝑖𝑛 is added to
a discretized model of a torsional damper. From the
figures, we define the relation between 𝑇𝑖𝑛 and output
torque 𝑇𝑜𝑜𝑜 in several steps.
1. 𝑇𝑖𝑛 < 𝑇𝐹1:

𝑇𝑖𝑛 is transmitted to the output side by the friction
torque 𝑇𝐹1 from a mass element 𝑚1. Torque is
transmitted in a state where mass element 𝑚1 and
the output element are coupled, hence 𝑇𝑜𝑜𝑜 = 𝑇𝑖𝑛.

2. 𝑇𝑖𝑛 > 𝑇𝐹1𝐴𝐴𝐴 𝑇𝑘1 < 𝑇𝐹2
𝑇𝑖𝑛 is transmitted by 𝑇𝐹1 and friction torque 𝑇𝐹2
of 𝑚2. Here 𝑚1 slips relative to the output
element, but 𝑚2 is coupled to the output element.
Input torque on 𝑚2 is torsional torque on the
spring element 𝑘1; 𝑇𝑘1 = 𝑇𝑖𝑛 − 𝑇𝐹1;. At this step,
the torsional stiffness is composed of 𝑘1.

3. 𝑇𝑖𝑛 > 𝑇𝐹1 + 𝑇𝐹2 AND 𝑇𝑘2 < 𝑇𝐹3
𝑚1 and 𝑚2 slip relatively to the output element,
then 𝑘1 and 𝑘2 work. At this step, the torsional
stiffness is composed of the direct stiffness by 𝑘1
and 𝑘2, so the slope represented the relation
between torque and angle (= torsional torque)
becomes smaller than condition 2.

4. For other elements, elements gradually move
relative to the output elements by the relation
between input torque and friction torque. When
input torque becomes larger than all mass
elements’ friction torque, all spring elements will
move. Every time the relative torsional direction is
reversed caused by the fluctuation of the input
torque, the motion is reset and restarts from the
step 1.

By the mechanism identified above, we consider
that the measured characteristics (a leaf shape
hysteresis curve) appear.

Now we define the force equation based on the
identified mechanism. The friction torque of one mass
element is defined as the equation below:

𝑇𝐹𝑛 = 𝜇𝐷 ∙ 𝑟𝐹 ∙ 𝐹𝑅𝑛, 𝑛 = 1, … ,𝑛𝐸𝐸𝐸 (1)

Here, 𝑇𝐹𝑛 is friction torque associated with each
mass element, 𝜇𝐷 is a dynamic friction coefficient, 𝑟𝐹
is a friction radius, 𝐹𝑅𝑛 is a pressing force to the
friction surface.

The pressing force to the friction surface is
distributed as shown in Fig. 7, and defined per the
equations below:

𝐹𝑅𝑛 = 𝐹𝐶𝑛 + 𝐹𝑆𝑆𝑛 + 𝐹𝑆𝑆(𝑛−1)

Where:

𝑛 = 2, … ,𝑛𝐸𝐸𝐸

𝐹𝐶𝑛 = 𝑚𝑛 ∙ 𝑟𝐴 ∙ 𝜔2

𝐹𝑆𝑆𝑛 = 𝐹𝑆𝑛 ∙ 𝑠𝑠𝑛 𝜑𝑆𝑛

𝐹𝑆𝑛 = 𝑘𝑆𝑛 ∙ 𝑟𝐴 ∙ 𝑠𝑠𝑛 𝜃𝑆𝑛

Also:

𝐹𝑆𝑆1 =
𝑇𝑖𝑛
𝑟𝐴
𝑠𝑠𝑛 0 = 0

(2)

Figure 6. Momentary Behavior of Arc Springs

Figure 7. Modeling of Pressing Force on Mass Element

Arc Spring Friction Contact

Contact
Force

m2

m2

k1 k2

k1 k2

k1 k2

Twist angle(θ)

To
rq

ue
(T

)

1.)

2.)

3.)

TF2

TF2

Tk1

TF1 Tin

TF2

TF3

TF1

TF2

TF1

Tk2

Tin

TinTk1

Tin<TF1

Tin>TF1 AND Tk1<TF2

Tin>TF1 +TF2 AND Tk2<TF3

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp161249

11
__

3.2 Study of Discretization Level
The arc spring is wound up dozens of times. Therefore
it is important to determine the number of elements for
discretization. If we take the actual number of turns for
discretization, the simulation model will have several
degrees of freedom only with an arc spring. This may
lead to high accuracy but slower calculation speed.
When the discretization number is too small, the
problem comes into calculation accuracy and vice
versa (because the detail behavior shown in 3.1 is not
reproduced).

So we investigate how much 𝑇𝐹 will be impacted
depending on the change of 𝑛𝐸𝐸𝐸, with representative
torsional damper design variables to equation (1) and
(2). Fig. 8 shows prediction accuracy versus numbers
of elements; here, when 𝑛𝐸𝐸𝐸 is set as an actual
winding number, prediction accuracy of 𝑇𝐹 is defined
as 100%. By the figure, prediction accuracy is expected
more than 98%, when the number of elements is more
than 6.

Figure 8. Relation between prediction accuracy and
discretization level
When 𝒏𝑬𝑬𝑬 is set as an actual winding number,
prediction accuracy of 𝑻𝑭 is defined as 100%.

4 Modeling & Verification
Modelica was chosen to implement the considered
mechanism. The reason for this is that compared to
other physical modeling tools, we get the following
benefits:
• Straightforward description with equations
• Simple mixing of equations and physical models
• Reuse and extension of models due to

expressiveness of the source code
• In-house built package can be integrated

4.1 Modeling Arc Spring Components
First, the spring and mass elements modeled using the
SpringDamper and Inertia component are already
available in the Mechanics.Rotational package
included in the Modelica Standard Library (MSL).
Internal variables are then bound to output signals so
they can be used in the friction torque equations.

Next, the observer component computing the friction
torque is created. Equation (1) is rewritten in Modelica
code. The spring element information to be used as
variables are retrieved from the MSL component
outputs. Once computed, the friction torque is also
exposed as an output.

When friction torque occurs, internal friction torque
component is used. It generates the friction torque
according to the output value computed by the observer
component.

The arc spring component is based on these
subcomponents. In order to validate the estimation
accuracy depending on the variation of 𝑛𝐸𝐸𝐸, we create
several arc spring modules based on different values
for 𝑛𝐸𝐸𝐸.

Figure 9. Arc spring component implementation in
Modelica
The component is made of 4 subcomponents
(SpringDamper , Inertia extended with extra outputs,
Friction Torque Observer with the mechanism equations,
and FrictionTorque).

4.2 Component Level Verification
In order to confirm the arc spring module correctness
and precision, simulations reproducing unit test
equivalent to Fig. 4 are run and we compared the
obtained results.

On Fig. 10 and Fig. 11, results from a simulation run
with 𝑛𝐸𝐸𝐸 = 8 are compared with experimental
measurements from Fig. 4. We can observe that the
data is mostly matching, and that the input torque
oscillations are varying according to a non-linear
pattern.
Comparisons for 𝑛𝐸𝐸𝐸 = 1 … 10 are shown on

Fig. 12. When 𝑛𝐸𝐸𝐸 is below 6, the non-linearity is not
well-preserved and the precision loss observed on
Fig. 8 is confirmed.

When comparing the number of generated equations
and the overall computation time, it appears that time
grows quadratically with the number. To keep
reasonable simulation times it is important to have the
discretization that would give us a good balance
between accuracy and computation cost.

Confronting those results, we can validate the model
we built.

80%

85%

90%

95%

100%

105%

0 2 4 6 8 10 12 14 16

Pr
ed

ic
tio

n
Ac

cu
ra

cy
 [%

]

Discretization Number

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

12 DOI
10.3384/ecp161249

__

Figure 10. Arc spring model validation (1)
Simulated vs. experimental data for 𝑛𝐸𝐸𝐸 = 8 at 1000rpm

Figure 11. Arc spring model validation(2)
Simulated vs. experimental data for 𝑛𝐸𝐸𝐸 = 8 at 2000rpm

(a) Simulated torsional characteristic (colored lines)

compared by measurement data (black line)

(b) Relation between calculation time and number of

equations

Figure 12. Comparison with each discretized level

5 Physical model deployment
To make highly accurate physical models accessible to
a larger number of engineers, a consistent and easy-to-
use interface is required. If the operation varies
depending on physical modeling tools, it is ineffective
in total because all the work must be done by physical
modeling experts.

The capability of having a model run in black-box is
also essential. Physical modeling tool seems easy to
users and they might carelessly connect components in
an unintended way. Behaviors and errors which are not
intended by model developers must be avoided at all
cost.

By using the Functional Mock-up Interface (referred
as FMI from below) as a standard to connect models,
we established a process which enables everyone to
conduct performance prediction by physical models.
Users may only interact with a generic Microsoft Excel
interface using the Modelon FMI Add-in for Excel
(FMIE). We choose Co-Simulation to export the arc
spring model because the binary export license of
Dymola is not needed.

FMIE can read FMI 1.0 models exported from
MODELICA-based tools such as Dymola, can choose
input or output variables, set up scenarios to be run,
and execute the simulation, and return the results.
However, going through these steps every time is
inefficient. So we developed a VBA macro (Fig. 14) to
partially automate the process. Once we provide design
variables and simulation parameters and press a button,
all the relevant simulations are performed and result
graphics generated (Fig. 15). With this, anyone can
simply run quality simulations only interacting with
Excel, without any physical modeling tool even
running in the background.

40

80

120

160

200

240

10 15 20 25 30

D
am

pe
r t

or
qu

e
[N

.m
]

Damper angle [degree]

1000rpm

Simulation

Test

nELM=8

40

80

120

160

200

240

10 15 20 25 30

D
am

pe
r t

or
qu

e
[N

.m
]

Damper angle [degree]

2000rpm

Simulation

Test

nELM=8

Element numbers(nELM)

Accuracy HighLow

1 2 3 4 6 8 10

0

1

2

3

4

5

0 200 400 600 800

C
al

cu
la

tio
n

Ti
m

e
t R

ea
l
/ t

Si
m

ul
at

io
n

[s
/s

]

Number of Equations

= 1
2

3
4

6

8

10

FAST

SLOW

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp161249

13
__

Figure 13. Fast Simulation Method using FMIE

Figure 14. Screenshot of FMIE embedding VBA

Figure 15. Example of prediction results using FMIE

6 Conclusion
• We developed a discretized model with

MODELICA which represents non-linearity of arc
springs

• We verified the model accuracy by comparing the
dynamic simulation results with measured results
of physical tests at component level

• We developed an intuitive interface to design arc
spring performance easily and accurately

Those outcomes enable non-experts of physical
modeling to run performance design easily with high
accuracy. It will lead to the cost reduction of human
resources and speed up product development.

Acknowledgements
We gratefully acknowledge the support of Mr. Okabe
from Dassault Systèmes and Mr. Gao from Modelon to
complete this paper with their technical advices and
translation.

References
Dr.-Ing. Albert Albers. Advanced Development of Dual

Mass Flywheel, LuK Symposium book, 1994.
Shinji Hounoki, Katsuyuki Kobayashi, Mitsuhiro Umeyama,

Toshihiro Otake. Study of the Two-Mass Flywheel with
the Torsional Damper. Society of Automotive Engineers of
Japan (JSAE) Proceedings, 902138-1:157-160 , 1990.

Ulf Schaper, Oliver Sawodny, Tobias Mahl and Uti Blessing.
Modeling and torque estimation of an automotive Dual
Mass Flywheel. 2009 American Control Conference, 978-
1-4244-4524-0/09 (WeB16.6 1207-1212), Hyatt Regency
Riverfront, St. Louis, MO, USA, June 10-12, 2009.

Yasuo Shimizu, Nobutaka Tsujiuchi, Akihito Ito, Satoshi
Yamamoto. Reduction of Low Frequency vibration at
Acceleration/Deceleration by Optimization of Flywheel
Damper for Passenger Car. Society of Automotive
Engineers of Japan (JSAE), 19-15A:454–459, 2015.

Yamakaji Yoshihiro. Approaches to quick prediction for
Powertrain NVH. 9th International CTI Symposium North
America, Novi, USA, 2015-05-20/21

FMU
Angle of Arc Spring

Torque of Arc Spring

SPEC. of Arc Spring

Simulation Environments

Physical Models

Simulation ResultsFMI add-in for Excel

Physical Modeling Experts

Users (Ex. Component Designer)

D
am

pe
r T

or
qu

e

Damper Angle

Case 1 Case 2 Case 3

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

14 DOI
10.3384/ecp161249

__

Research of Model Matching Control of Torque Vectoring

Differential Gear System

Yutaka Hirano
 1

1
Toyota Motor Corporation, Japan, yutaka_hirano@mail.toyota.co.jp

Abstract

In this paper, model-based development of a control of

torque vectoring differential (TVD) gear system is

described. A new control logic was developed using

model matching control to let the vehicle yaw rate and

vehicle slip angle follow the desired dynamics.

Simulation results using a single track model of vehicle

dynamics are shown to prove the efficacy of the

proposed control. Modelica was useful to express time-

varying state space system such as the single track

model of vehicle dynamics. Also full vehicle model

considering all of the vehicle dynamics and drive train

motion using Modelica clarified the characteristics of

this method in actual driving cases.

Keywords: Model Based System Development, Vehicle

Dynamics, Torque Vectoring, Model Matching Control

1 Introduction

To satisfy needs for future low-carbon mobility society,

development of many new electric vehicles (EVs) is

increasingly active in recent years. Additionally many

new proposals about integrated electric power train

which also has torque vectoring capability are

presented. Authors had made an integrated model of

the total vehicle system of such an EV using Modelica

(Hirano, 2014) (Hirano, 2015).

In the paper (Hirano, 2014), the authors showed the

capability of new construction of the new EV using

new type of tire based on ‘Large and Narrow concept’

and torque vectoring differential (TVD) gear. For the

model based development of the new EV, various kind

of running resistance, vehicle dynamic performance

and proper design of electric regeneration system were

studied. In another previous research (Hirano, 2015), a

multi-physics full vehicle model of the new EV is

expanded to consider the detailed loss of motors and

inverters. Also front and rear suspension model which

has same 3D mechanical design as the real

experimental vehicle was made and verified. By

technical investigations using this full vehicle model,

structure, specifications and control of the new EV

system were researched about vehicle dynamics and

energy consumption. However, the control logic of the

TVD gear was only simple PI feedback control in the

previous papers. In this paper, model based control of
TVD gear system is developed using model matching

control technique. Single track model of vehicle

dynamics is used to derive and verify the new control.

At the same time, detailed design parameter of vehicle

dynamics was obtained from the analysis of Modelica

full vehicle model using detailed suspension model.

Finally the developed controls were verified by using

both the single track model and the full vehicle model.

2 Specification of Experimental EV

Table 1. Specifications of new experimental EV

 New EV
Conventional

car

Vehicle Weight 750 kg 1240 kg

Yaw Moment Inertia 869 kgm
2
 2104 kgm

2

Wheelbase 2.6 m 2.6 m

Front : Rear Weight

Distribution
0.48 : 0.52 0.62 : 0.38

Height of CG 0.38 m 0.55 m

Aerodynamic Drag

×Frontal Area
0.392 m

2
 0.644 m

2

Tire RRC 5×10
-3

 8.8×10
-3

Tire Normalized CP 16.1 20.4

The proposed experimental EV has specifications as

shown in Table 1 (Hirano, 2015). Compared with a

conventional small-class passenger car, the new EV

has characteristics of lighter vehicle weight, smaller

yaw moment of inertia, lower height of the center of

gravity (CG) and lower rolling resistance coefficients

(RRC) of tires. Because of these characteristics, this

new EV is expected to have better handling and lower

energy consumption than conventional vehicles. On the

other hand, because of lighter weight and lower value

of tire normalized CP (Cornering Power), this new EV

seems more sensitive against external disturbances

such as crosswind and road irregularity than the

conventional cars. To cope with this problem, direct

yaw moment control (DYC) was applied by using a

new integrated transaxle unit for rear axle which has a

main electric motor and also TVD gear unit with a

control motor.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612415

15
__

3 Vehicle Model for Controller Design

3.1 Single Track Vehicle Model





N

df

W

u

v

V

lf

lr

Xfl

f f

r

Fx(fr)

Yfl

Xfr

Yfr

Yrl Yrr

dr

W

v

V

V

u

v

V

Xrl
Xrr

Figure 1. Expanded single track vehicle model

Figure 1 shows an expanded single track vehicle

dynamics model to derive the control logic. The

simplified equations of motion by this model become

as follows.

)(cos)(rlrrfflfr XXXXF
dt

dV
M   (1)

  rrrlfrfl YYYYVV
dt

d
M  1tan (2)

NYYlYYl
dt

d
I rrrlrffrflfz )(cos)(

 (3)

)(cos)(rlrrrfflfrf XXdXXdN   (4)

Here,

β : Vehicle slip angle,

γ : Vehicle yaw rate,

M : Vehicle mass,

V : Vehicle velocity,

Iz : Vehicle yaw moment of inertia,

lf (lr) : Distance from the CG to front (rear) axle,

 (CG: Center of Gravity)

df (dr) : Tread of front (rear) axle,

X** : Longitudinal force of each tire,

Y** : Lateral force of each tire,

δf : Steering angle of front tire,

F : Vehicle driving force,

N : DYC moment by TVD.

3.2 Equation of Motion for Vehicle Dynamics

To derive the equations of motion for the target vehicle,

equations (1) to (4) were further simplified. The lateral

force at left and right tires were assumed to be equal

and let
ffrfl YYY  ，

rrrrl YYY  . Also we

assume cos𝛿𝑓 ≈ 1 when front tire steering angle is not

so big, and tan−1 𝛽 ≈ 𝛽 when 𝛽 is small. Also by

considering the TVD power unit is equipped only in

the rear axle, the equations of motion become as

follows.

)(rlrr XXF
dt

dV
M  (5)

rf YY
dt

d
MV 22 








 

 (6)

NYlYl
dt

d
I rrffz  22


 (7)

where











 f

f

ffff
V

l
KKY  (8)









 

V

l
KKY r

rrrr
 (9)

)(rlrrr XXdN  (10)

Here, Kf and Kr are the equivalent cornering power of

front and rear tire respectively. These values are

calculated by using the full-vehicle model described in

the section 5.1 to consider the effects of elasticity and

friction of suspension and steering.

If driving force F and DYC moment N can be

calculated by some control logic, then the target

longitudinal forces of left and right rear wheel to be

realized by TVD power unit become as follows from

equation (5) and equation (10).











r

rr
d

N
FX

2

1 (11)











r

rl
d

N
FX

2

1 (12)

3.3 Longitudinal Driving Force Controller

Let us suppose the desired value of vehicle speed,

vehicle yaw rate and vehicle slip angle as refV , ref

and ref respectively.

The desired vehicle driving force F can be

calculated as below by PI feedback control and

equation (5).

  dtVVKVVK
dt

dV
MF refIFrefPF

ref
)()(

 (13)

Here KPF is a proportional feedback gain and KIF is an

integral feedback gain.

3.4 Model Matching Controller of Lateral

Dynamics

3.4.1 Dynamic Model of Vehicle Lateral Dynamics

For the lateral dynamics, the state space form of the

vehicle dynamics with TVD control becomes as follow

from equation (6) and (7).

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

16 DOI
10.3384/ecp1612415

__

N

I
G

I

Kl
MV

K

VI

KlKl

I

KlKl
MV

KlKl

MV

KK

dt

d

z
s

s

z

ff

f

z

rrff

z

rrff

rrffrf























































































1
2

2

)(2)(2

)(2
1

)(2

0

22

2











 (14)

Here, δ𝑓 = δ𝑠/G𝑠 (δs: steering wheel input angle, Gs:

steering gear ratio).

Now the matrix form of the state space system of

equation (14) can be written as follows.

sEBuAxx  (15)

x 












, Nu











































2221

1211

22

2

)(2)(2

)(2
1

)(2

aa

aa

VI

KlKl

I

KlKl
MV

KlKl

MV

KK

A

z

rrff

z

rrff

rrffrf

 (16)



















zI

B 1
0

 (17)





















zs

ff

s

f

IG

Kl

MVG

K

E
2

2

 (18)

Please note that the elements of the matrix A of the

equation (15) as shown in the equation (16) are

dependent on the vehicle velocity V, namely time-

varying variables.

3.4.2 Desired Dynamics Model for Lateral Motion

The desired dynamics of vehicle yaw rate and

vehicle slip angle are assumed as the first order lag

function of steering wheel input as below.

s

ref

ref

d

G
s

k

G
s

k

x 





















































0

0

1

1 (19)

Here, G and G are steady state gain of slip angle

and yaw rate respectively from the steering input. k

and k are gain of desired slip angle and desired yaw

rate from the steady state gain of each state variables.

 and  are time constant of desired slip angle and

desired yaw rate as the first order lag function. Each

state variables of slip angle and yaw rate at steady state

can be calculated by solving the following equation

sEAx  00 (20)

and be obtained as follow.

sEAx 1

0



s

s

z

rfrf

z

ff

z

rfrrf

rrffrfrf

z

G

VMI

llKK

I

Kl

VMI

lllKK

KlKlMVllKK

VMI


1

)(4

2)(4

)(2)(4

2

22

2































 (21)

Thus, G and G can be calculated as follows.

s

z

rfrf

z

ff

z

rfrrf

rrffrfrf

z

G

VMI

llKK

I

Kl

VMI

lllKK

KlKlMVllKK

VMI

G

G

1

)(4

2)(4

)(2)(4

2

22

2

0

0











































 (22)

The state space form of the desired dynamics can be

written as below from the equation (19).

sdddd ExAx  (23)

Here,

Ad 























1
0

0
1









 and





















0

0

















G
k

G
k

Ed

.

3.4.3 Model Matching Control of TVD

A state equation of the error between desired values

and actual values of state variables can be obtained as

below by subtracting equation (23) from equation (15).

sddd EExAABuAee )()( (24)

e x xd 

Let’s assume the virtual control input U as below.

sddd EExAABuBU )()( (25)

Then the equation (24) can be transformed as below.

BUAee  (26)

Now we can design the feedback control gain K as

KeU  (27)

by using various linear control theories for the equation

(26). Though, as mentioned above, the matrix A is

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612415

17
__

time-varying and dependent on vehicle velocity. To

cope with this problem, an analytical solution using

pole placement technique was used. By combining

equation (26) and equation (27), the following equation

is obtained.

eBKABKeAee)( (28)

If we specify the pole of the dynamic system of the

error e of equation (28) as p1 and p2 (p1, p2 <0) and K =

[k1, k2], following equation can be derived.

))(()(21 pspsBKAsI  (29)

Here, s is the Laplace operator and I is the unit matrix.

Above equation can be rewritten as follow.

2121

2

211222112211

2

2221

1211

)(

)()()(

00

10

01

122

21

ppspps

aaaasaas

aa

aa
s

zzz

zz

I

k

I

k

I

k

I

k

I

k













































Thus, the following simultaneous equation can be

obtained.











2121122211

212211

)()(

)()(

12

2

ppaaaa

ppaa

zz

z

I

k

I

k

I

k

 (30)

By solving the equation (30) analytically, we can

obtain following solutions of k1 and k2.
















21

12

21111121
1

2122112

)(

)(

a
a

ppaapp
Ik

ppaaIk

z

z

 (31)

Please note that the above solution of K = [k1, k2] is

also dependent on vehicle velocity. (See equation

(16).)

Finally, from the equation (25), the following

solution of u (= N) can be calculated.

})()({ sddd EExAABKeBu   (32)

Here, B
+
 is a quasi-inverse matrix of B, and

consequently B
+

= [0 Iz]. (B
+
B = 1.) Finally we obtain

the following solution of u.

sddd EEBxAABKeu )()(  (33)

It is understood from equation (33) that the control

input of the model matching controller consists of a

feedback term of the error between desired value and

actual value of state variables and also feedforward

terms evoked from desired state variables and also

steering input.

Figure 2 shows a plot of the feedback gain k1 and

k2 by pole placement (p1 =-20, p2 =-21) according to

the vehicle velocity.

Though we used analytical solution using pole

placement in this paper, it is also possible to design the

feedback gain K by gain scheduling method using other

linear control techniques according to the change of

vehicle velocity.

Figure 2 Plot of feedback gain by pole placement

4 Simulation Results by Single Track

Vehicle Model

To confirm the validity of above mentioned model

matching control, simulation test based on single track

vehicle model was performed by using Modelica.

First of all, we should handle time-varying linear

state space system such as that of equation (15) to (18).

To cope with this problem, a new class of time-varying

linear state space system was defined. To achieve this,

the standard class of the state space system of

Modelica Standard Library (MSL) was modified to

release the constraint of variability of variables (i.e. by

eliminating ‘parameter’ qualifier). The definition of the

new class becomes as follow.

block StateSpace_Variable
…

extends Modelica.Blocks.Interfaces.MIMO(fi

nal nin=size(B, 2), final nout=size(C, 1));
 Real A[:, size(A, 1)];
 Real B[size(A, 1), :];
 Real C[:, size(A, 1)];
 Real D[size(C, 1), size(B, 2)]=zeros(siz

e(C, 1), size(B, 2)) ;
 output Real x[size(A, 1)](start=x_start)

 "State vector";

equation

 der(x) = A*x + B*u;
 y = C*x + D*u;
end StateSpace_Variable;

model SingleTrackModel
…

 Real c0 = 2*(kf+kr);
 Real c1 = 2*(lf*kf-lr*kr);
 Real c2 = 2*(lf*lf*kf+lr*lr*kr);
…

 StateSpace_Variable Actual_x(

 A=A,

 B=B,

 C=identity(2));

 StateSpace_Variable Desired_xd(
 A=Ad,
 B=Ed,
 C=identity(2));
…

equation

 a11=-c0/m/v;
 a12=-1-c1/m/v/v;

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

18 DOI
10.3384/ecp1612415

__

 a21=-c1/iz;
 a22=-c2/iz/v;
 A={{a11, a12},
 {a21, a22}};
 B={{cf/m/v, 0},
 {cf*lf/iz, 1/iz}};
 Gb0=-m*iz*v*v/(cf*cr*l*l-m*v*v*c1)*(-

cf*cr*lr*l/m/iz/v/v + lf*cf/iz);
 Gr0=-m*iz*v*v/(cf*cr*l*l-m*v*v*c1)*(-

cf*cr*l/m/iz/v);
 Ad={{-1/t_b, 0},
 {0, -1/t_r}};
 Ed={{k_b*Gb0/t_b},
 {k_r*Gr0/t_r}};
 …
end SingleTrackModel;

For comparison, the definition of the standard class of

the state space system in MSL is as below.
block StateSpace "Linear state space syste

m"
…

 parameter Real A[:, size(A, 1)]=[1, 0; 0

, 1];
 parameter Real B[size(A, 1), :]=[1; 1];
 parameter Real C[:, size(A, 1)]=[1, 1];
 parameter Real D[size(C, 1), size(B, 2)]

=zeros(size(C, 1), size(B, 2)) ;
…

equation

 der(x) = A*x + B*u;
 y = C*x + D*u;
 …
end StateSpace;

Also a new class of time-varying matrix gain to

express the feedback gain by the equation (31) can be

made by similar way.

Figure 3 shows a diagram of an example of a single

track vehicle model combined with the desired vehicle

dynamics model and the model matching controller.

Figure 4 shows a plot of vehicle speed and steering

angle input used in the simulation by single track

model. The vehicle accelerates from 10km /h to

100km/h between time 1 sec to 10sec. The steering

angle moves as 1Hz sinusoidal curve. For comparison,

simple PI feedback of desired yaw rate and that of

desired slip angle were also tested. The control law of

both PI controllers became as follows respectively.

PI feedback of desired yaw rate:

  dtKKN refIrefP)()( 
 (34)

PI feedback of desired slip angle:

  dtKKN refIrefP)()( 
 (35)

Desired dynamics was settled as k = 0.3, k

and  are settled as corresponding value of cut-off

frequency of 1.3 Hz as shown in the equation (19).

Figure 3. Modelica model of a single track model of

vehicle and a controller

Figure 4. Plot of vehicle velocity and steering angle input

Figure 5 shows comparison of each control. The

model matching control showed the best tracking

performance of desired slip angle and desired yaw rate.

Though, the control input N was bigger than other

controls and also the tracking error of yaw rate was

bigger especially at the low vehicle speed. Also, it was

impossible to let both of the vehicle slip angle and the

yaw rate to exactly track the desired value

simultaneously. This is because that there are two

independent state variables while there is only one

control input.

Robustness of the model matching control (MMC)

was also checked. Figure 6 shows comparison of the

simulation results of single track model when there are

perturbation for the vehicle mass M and tire cornering

power CP. For comparison, the result of yaw rate

feedback control is also overlaid. MMC showed a good

robustness against such parameter perturbations.

It is of course necessary to check the robustness of

the control when parameter error of the plant and also

other additional effects such as non-linearity and losses

exist in the actual world. To do this, simulation tests

using full vehicle model was also done as mentioned in

the following section.

DYC Torque

Velocity

Steering input angle

k=p

steering_ratio

multiplex2_1

vecAdd vecAdd
+

-1

+1 vecAdd3_1
+1
+1
+1

+

Desired_xd

A B
C D

Variable

Actual_x

A B
C D

Variable

matrixGainVariable

*K
matrixGainVariable

Variable

matrixGainVariable1

*K
matrixGainVariable1

Variable

matrixGainVariable2

*K
matrixGainVariable2

Variable

matrixGainVariable3

*K
matrixGainVariable3

Variable
delta t_DYC

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612415

19
__

Figure 5. Simulation results by single track model

5 Simulation by Full Vehicle Model

5.1 Construction of the Full-Vehicle Model

The similar full vehicle model as previous research

(Hirano, 2015) was used for full-vehicle simulation.

The model was developed based on Vehicle Dynamics

Library (Modelon, 2014) and was built as a full 3

dimensional (3D) multi-body-dynamic system (MBS)
model. Component models of control systems such as

TVD gearbox, electric motor and inverter were added

with the full vehicle model. Figure 7 shows the top

level of the model hierarchy of the full vehicle test

model and also the power train model with the

controller.

Figure 6. Robustness check by single track model

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

20 DOI
10.3384/ecp1612415

__

Figure 7. Structure of full vehicle test model

Figure 8. Torque vectoring differential (TVD) driveline

For the TVD gear train, a driveline structure

referencing the MUTE project of the Technische

Universität München (TUM) (Höhn et al., 2013) was

selected. The TVD model was constructed using Power

Train Library (DLR, 2013). Figure 8 shows the

configuration of the gear trains. Torque from the main

motor is distributed equally to the left wheel and the

right wheel through the differential gear. The torque

distribution between the left wheel and the right wheel

can be controlled by changing the torque input of the

control motor.

3D MBS model of suspension, steering and body

were installed to calculate vehicle dynamics

characteristics. Suspension model was constructed as

an assembled model of each suspension linkage, joints

and force elements such as spring, damper and bushing.

Non-linear tire model based on ‘Magic Formula’

model (Pacejka02) was used to calculate combined

lateral force and longitudinal force of each tire.

Steering model considered the characteristics of

viscous friction of steering gear box and steering shaft

as well as steering shaft stiffness. By these detailed

models, it became possible to analyze the effects of

steering angle change and camber angle change caused

by vehicle roll, side force and tire aligning torque.

Figure 9. Effect of suspension characteristics to cornering

compliance coefficient. (Normalized by the effect of tire

slip angle.)

Figure 9 shows an analysis result about the effect of

suspension characteristics to cornering compliance

coefficient for an example of front double wish-born

suspension. The coefficients are normalized by the

effect of tire slip angle change. The equivalent

cornering power coefficients were calculated by

following equation.

















































































rf

s

rfrfrf

rfrf

rf

s

rf

rf

rf

rf

rf

rf

rf

C

C

M
W

C

C

F
W

F
W

C

C

rfrf

,,,,

,,

,,

,

,

,

,

,

,

,,1

1

















Here, Cf and Cr are the cornering power of tire itself.

The terms in the curly brace of the denominator of the

above equation indicates each effect shown in Figure 9

respectively. Those are the effects by side force steer,

side force camber, aligning torque steer, roll steer and

roll camber respectively. Finally, the equivalent

cornering power coefficients of front tires and rear tires

were calculated as εf and εr respectively. These values

are used to calculate the equivalent cornering power of

each wheel shown in the equation (8) and equation (9)

as bellows.

fff CK 

rrr CK 

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612415

21
__

5.2 Results of Full Vehicle Simulation

Figure 10 shows the results of a double lane change

test by the full vehicle model. Steering angle was given

as a series of sinusoidal curves at a constant vehicle

velocity of 100[km/h]. The model matching control

showed better performance of tracking desired slip

angle than the yaw rate feedback control. On the other

hand, the yaw rate feedback control showed better

performance for tracking the desired yaw rate, though

this result can be expected naturally. Additionally, it

became clear that the result of the vehicle motion by

the model matching control was smoother than that by

the PI yaw rate feedback control of desired yaw rate.

The reason of this is assumed that feedforward part of

model matching control works to improve the response.

On the other hand, PI feedback control of the desired

slip angle became unstable.

Figure 11 shows the result of full vehicle model

simulation for the side wind test. Here, side wind of

20[m/s] blows while Time=2 [s] to 3.5 [s]. The vehicle

runs at 120[km/h] and the steering wheel angle is kept

to zero. Here, the similar result as the side wind test

was obtained. The model matching control was good at

tracking performance of the desired slip angle, and the

PI feedback control of the desired yaw rate was good at

tracking performance of the desired yaw rate. Also it is

indicated that the control ability against steady

deviation for the model matching controller is not

enough. This indicates the necessity of modifying the

model matching controller to introduce first order

servo control by considering the integral of the error.

Anyway both controls showed good performance of

vehicle stabilization against the side wind than when

no control was applied.

6 Conclusions

Model matching control of TVD was researched by

using both linear single track model of vehicle

dynamics and multi-physics large-scale full vehicle

model. The following conclusions were obtained.

(i) Proposed model matching control showed a

good performance especially for the tracking

of the desired slip angle.

(ii) On the other hand, simple PI feedback control

of desired yaw rate was good at tracking the

desired yaw rate than the model matching

control.

(iii) Improving the model matching controller to

realize servo control of steady error deviation

is necessary for future work.

Also for future work, the effect of drive shaft

stiffness for TVD control should be investigated. More

sophisticated control of tire slip and drive train

oscillation should be researched also satisfying the
requirement for the vehicle dynamics performance.

References

DLR, PowerTrain Library Users Guide (Version 2.1.0), 2013

 Y. Hirano, S. Inoue and J. Ota, Model-based Development

of Future Small EVs using Modelica, Proceedings of

Modelica Conference 2014, 2014.

Y. Hirano, S. Inoue and J. Ota, Model Based Development

of Future Small Electric Vehicle by Modelica,

Proceedings of Modelica Conference 2015, 2015.

B. Höhn et al., Torque Vectoring Driveline for Electric

Vehicle, Proceedings of the FISITA 2012 World

Automotive Congress, Vol. 191, pp. 585-593, 2013.

Modelon, A.B., Vehicle Dynamics library Users Guide

(Version 1.8), 2014.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

22 DOI
10.3384/ecp1612415

__

Figure 10. Simulation result of double lane change test by

full vehicle model

Figure 11. Simulation result of side wind test by full

vehicle model

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612415

23
__

Simulation of Complete Systems at ZF using Modelica Standards

Jochen Köhler
1
 Julian King

2
 Michael Kübler

3

1
R&D, ZF Friedrichshafen AG, Germany, jochen.koehler@zf.com

2
R&D, ZF Friedrichshafen AG, Germany, julian.king@zf.com

3
R&D, ZF Friedrichshafen AG, Germany, michael.kuebler@zf.com

Abstract

In this paper we describe how ZF is using existing and

upcoming Modelica standards for simulating a variety

of systems in automotive industry. In particular,

Modelica is employed for driveline modeling. The FMI

standard is used to transport models over tool

boundaries. The novel SSP standard will contribute

towards interconnecting FMUs and defining complete

system architectures.

Keywords: Longitudinal vehicle dynamics, FMI,
SSP, Parameterization, system architecture,

autonomous driving

1 Introduction

ZF is a major automotive supplier, with an extensive

product portfolio ranging from driveline and chassis

technologies to active and passive safety systems for

autonomous driving. In this context, detailed

simulation models mimicking vehicle dynamics and

the involved actuators/sensors are vital for developing

reliable control software as well as for supplementing

time- and cost-intensive test bed measurements.

Simultaneously, in order to optimize the interplay

between these components, the demand for holistic

simulation approaches is steadily increasing. Complete

system analysis is becoming recognized as an

important factor for fast and robust system engineering

activities as it allows for directly examining the global

system behavior and for identifying relevant feedback

loops. Modelica is especially suited to this task due to

its inherent multi-physics capabilities. Furthermore, the

associated Functional Mock-up Interface (FMI)

standard facilitates an efficient integration and

coupling of specialized sub-models (possibly

developed in other tools), thereby going beyond an

isolated analysis of single components.

2 Modeling drivelines with Modelica

Facing an enormous variety of driveline concepts and

continuously decreasing innovation cycle times,

simulation has become a backbone for developing

gearbox control software at ZF. In particular, Modelica

was introduced in our company over ten years ago and

nowadays represents a standard approach for modeling

a wide range of distinct transmission and related

actuator concepts. Building on the freely available

Modelica Standard library, more than ten context-

specific ZF Modelica libraries have been created so far.

These in-house libraries are made accessible

throughout the company and preserve corporate

modeling know-how in several highly relevant areas,

such as

 Transmission and driveline components

(Köhler, 2005)

 Extensions for hybrid and electrical

powertrains (HEV/PEV/EV), including

complete hybrid driving strategies (Köhler et.

al., 2006)

 Model parameterization tools and export

templates to other platforms (Kellner, 2006)

 Combustion engine dynamics and exhaust

after-treatment (Kuberczyk, Köhler, 2013)

 General mechatronic solutions, hydraulic and

pneumatic actuators (based on Modelica

Fluid) (King et. al., 2014)

The above-mentioned central libraries are

consequently re-used within distinct modeling projects,

thereby generating thoroughly tested component

models characterized by a high degree of reliability and

robustness. Also, many component models are

available in varying levels of detail and function, from

highly resolved descriptions encompassing all relevant

physical effects to simplified formulations optimized

for real-time use (King et. al., 2014).

A major advantage of the object-oriented modeling

approach underlying Modelica is that it allows for an

easy exchange of such component variants without

having to modify other parts of the global model,

thereby offering the possibility to quickly switch

between different model configurations. Furthermore,

Modelica models directly reflect the physical structure

of the system under scrutiny. This fact enables a rapid

transfer of system knowledge into model equations. On

the other hand, also some shortcomings have to be

mentioned. Due to the symbolic simplification of the
system equations by the Modelica front-end tool,

efficient debugging is difficult and the transparency of

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

24 DOI
10.3384/ecp1612424

__

the generated run-time C-Code is limited. This

hampers the development of complex functions as

compared to scripting languages. Moreover, to the

authors’ experience, Modelica is not yet widely known

among young engineers. For all these reasons, further

efforts are necessary to improve the interaction

between Modelica models and models/methods

originating from other tools. The Functional Mock-up

Interface (FMI) offers great promise in this regard.

3 Using FMI to modularize system

components

Modelica models can be exported to a wide range of

simulation tools – usually via C-Code. At ZF this

process has been extended to support even tools

developed internally. To enhance the flexibility for the

usage of simulation tools and to reduce the effort for

maintaining this process there is a need to use

established standards.

FMI satisfies this need since there is a broad list of

tools supporting FMI. We also enriched internally

developed tools to support FMI, which are used for

system simulations, e.g. in case of CO2 analysis or

software development and test. They are able to handle

FMI 1.0 and 2.0 both in model-exchange and co-

simulation mode. The verification of this FMI interface

is done by applying the FMI cross-check rules.

In the past mostly monolithic models have been

used as FMU, but recently the demand for a modular

setup is increasing, internally and with customers of

ZF. This is motivated by two requirements on virtual

product development: efficiency and quality. Both

requirements can be fulfilled if models, once built up

by a modeling expert reflecting all needed physical

effects, are reused and exchanged amongst different

departments or even companies.

A crucial point here is a feasible definition of the

simulation architecture for all relevant use cases.

Therefore one needs to think about a proper definition

of the interface signals, in order to

 enable an easy integration of existing models

 replace models of different levels of details

 regard existing solutions (e.g. within other

simulation tools) inside the company and with

customers.

The usability must not be neglected; therefore our

aim is to decompose the overall system to smaller, but

still reasonable sub-systems. These sub-systems mostly

represent the components developed by the

collaborating partners, e.g. in the case of analyzing

longitudinal dynamics models of a combustion engine,

a transmission system and vehicle dynamics, as shown
in Figure 1.

When cutting tightly coupled systems to modules

also numerical issues such as algebraic loops or stiff

systems must be considered. FMI for model-exchange

might be an option for such a simulation setup, but

FMI for co-simulation is in focus because it enables the

comparability of the simulation results and shows a

feasible performance in most tools.

Figure 1 shows an example of a modular setup used for

software development and test. The focus of the

modular setup currently is on physical or simplified

logical models but will also be extended on virtual

ECUs.

Figure 1. Structure of a driveline

This definition of interfaces needs discussions and it is

good to take all parties into account. Therefore parts of

those discussions are also handled in a cross-company

approach, e.g. the “Smart Systems Engineering”

project of the ProSTEP iViP Association (cf.,

http://www.prostep.org/en/projects/smart-systems-

engineering.html).

Figure 2. Model structure of the BEREIT range extender

transmission concept in Dymola

The use of FMI to exchange behavioral simulation

models has become an official standard in ZF. A

prototypic example is the joint research project

“BEREIT” (Bezahlbare Elektrische Reichweite durch

Modularität und Skalierbarkeit – Affordable Electric

Range by Modularity and Scalability), supported by

the German Federal Ministry of Economics and

Technology (cf., http://pt-em.de/de/1508.php). The

goal here was to develop gearbox control software for

a modular range extender concept for electric vehicles,

featuring three possible operation modes: a purely

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612424

25
__

http://www.prostep.org/en/projects/smart-systems-engineering.html
http://www.prostep.org/en/projects/smart-systems-engineering.html
http://pt-em.de/de/1508.php

electric mode, a hybrid mode with load point shifting,

and an “EDA” mode, which allows for charging the

battery while the vehicle is in standstill or driving at

low speeds (Roske et. al., 2006). In order to minimize

transmission losses, only dog clutches (which are

synchronized by the electric motor) are used as

switching elements for shifting gears.

Figure 2 shows the top-level model in

Modelica/Dymola, including blocks for loading ZBF

parameterization data as explained below (see chapter

5), as well as two connectors containing all input and

output signals for communicating with the control

software. This minimal interface remains the same for

all model configurations, while the driveline modules

may be freely exchanged. Typically, either the whole

model or the gearbox part is then compiled as a co-

simulation FMU to be imported into the in-house SiL-

platform SOFTCAR (see below), which has been

enabled to handle both FMI 1.0 and 2.0.

In Modelica an extensive use of expandable

connectors is used to exchange measured signals e.g.

between controller and plant model. Unfortunately this

approach analog to a CAN-Bus in real vehicles

currently cannot be obtained when switching to FMI.

Therefore wrapper models and mapping functionalities

are needed for the seamless integration of those FMUs,

which will be addressed by the Modelica SSP project,

as mentioned below.

Establishing FMI as the all-in-one solution for

model exchange in ZF is still on-going since all the

processes need to be mature enough and all issues

which arise with the use of FMI need to be solved.

One major drawback so far is the lack of proper

protection of the intellectual property within the

exported FMU. To overcome this we established a

post-procedural encryption with the following options:

 selection of signals and parameters to hide

 definition of a period of validity

 checksum usage to guard against manipulation

Another main issue is the consistent

parameterization of a system simulation setup by a

bunch of modular sub systems, which motivated the

SSP (“system structure and parameterization”) project.

4 Using “SSP” to specify system

architectures

4.1 Motivation

Same as for the products itself that ZF offers, each

simulation model has to be provided to several

customers. The goal is to reuse the same simulation

model of a certain product as a FMU. The challenge

here is the adoptions that are needed for any customer,

because there is no standard way to couple things

especially in the area of personal cars. One could think

of including the “kernel” FMU into a wrapper with all

the signal modifications but this means quite an

overhead, because usually these modifications are quite

simple (linear manipulation or mapping tables for

discrete values).

In Addition to that it has to be taken into account

that also the receiver of the simulation model (e.g. the

customer but also another department in ZF) has to

integrate this FMU into his complete system.

Assuming that the complete system is built from

several FMUs as component representation the main

additional information that defines the system

architecture is the connection of all FMUs and a

possible hierarchical arrangement. This requirement

isn’t focused by the FMI standard.

As a consequence a new Modelica Association

project called “System Structure and Parameterization”

(abbreviation SSP) was initiated after the Modelica

Conference 2014 in Lund. One main goal of this

project is to define a tool independent format to be able

to specify the structure of a simulated system. So one

has to define this structure only once in any (authoring)

tool and can transfer it to any (integration) tool to

include the system components and simulate the

system. This is especially interesting when a system is

simulated on different platforms like MIL, SIL or HIL.

First results of the project were presented 2015 at

the Modelica Conference in Paris. There is a first draft

for defining system structures. A XML schema was

developed therefore. Three prototypes of tools were

presented that are able to read and write such files.

ZF is developing its own software for integration of

physical models of driveline with ECU software code

called SOFTCAR in parallel to commercial ones. On

top of that another tool is being developed that

generates complete simulation models for the

simulation platforms SOFTCAR and dSpace® out of

selected FMUs, several (CAN-)bus specifications and

parameterization definitions. For handling all these

system architectures and parameterization data, the

SSP approach will be used.

Figure 3 Sketch of mapping tool

The element in the SSP XML schema called “signal

dictionary” is here very useful for connecting inputs

and outputs of FMUs not directly but with a separate

instance where you can define project independent

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

26 DOI
10.3384/ecp1612424

__

signal names that can be reused in many projects.

Signal dictionaries can also be thought as “special”

version of FMUs without any dynamics. Another

useful feature is that the signal dictionaries can be used

easily for visualization of these signals.

4.2 SSP for simulation of autonomous vehicles

Usage of SSP is also intended in ZF for developing

reusable system architecture for ADAS (advanced

driver assistance systems) and autonomous vehicles. In

these systems there’s a lot of feedback and

interdependencies between all involved components.

So the need of being able to simulate not only the

isolated components but also the complete system is

evident for a fast development process.

The system architecture is quite complex and the

variety of combining components is very high. ZF

offers a lot of components needed for autonomous

driving:

 Sensors

o Radar

o Cameras

 Actuators

o Steering

o Braking

o Transmission

o Electric Machines for traction

 (Active) chassis components

 High performance ECUs

 Functions for autonomous driving

There’s a little gap to end up with a complete virtual

system by adding the missing parts.

 Engine

 Car body

 Driver

 Environment

The first three parts can be modeled quite simple for

the purposes here. Having a model of the environment

is very important and this is probably provided by a

tool vendor.

4.3 Requirements

The system architecture to be defined has to fulfill the

following requirements:

 It must fit to real systems.

 Defined modules have to correspond to real

components.

 Variations of modules can be exchanged – also

by real components on HiL-platforms.

 It must be possible to include also modules from

OEM / other suppliers.

 The numeric coupling of modules must be

robust for efficient and stable simulations.

 It must be possible to both simulate the

complete systems and fragments of it.

 It must be usable on a variety of platforms

(MiL, SiL, HiL).

Having this system architecture also allows

extracting single components as empty template. You

can give this template to somebody else for

implementing. When finished, this new component

model can be easily integrated in the complete system.

Of course this work just starts now. But it gives a

good overview of the opportunities by using the SSP

approach.

5 Using SSP for parameterization

The project “System Structure and Parameterization”

also focuses to parameterization of components. In the

FMI standard, the dynamics of a component and its

parameterization is not separated. We experienced that

this approach can be inconvenient sometimes. Another

problem of this entity is our requirement to use the ZF

internal standard for parameterization called “ZBF”.

This is a simple format of ASCII files to specify

simulation parameters separately from simulation

models and tools. Already before using FMI we used it

to be able to parameterize models just during the

initialization.

The advantages are:

 A Model can be provided with multiple

parameter sets without the need to rebuild it.

 The parameter sets can be either readable or

encrypted.

 Parameter definitions can be used for multiple

components without duplication (“single

source” pattern).

 Parameters can be hided to the model user if

wanted.

 Parameters can be modified by the model user

even though the model is a black box, if wanted

(Intellectual property issues)

SSP can be used to have all these features without

being forced to give up the internal standard because

there will be a functionality to implement your own

adapters to the SSP API. The part of parameterization

of SSP is under development at the moment. As soon

as there is a first version, ZF will implement its own

adapter. So it’s possible to take benefit of the other

coming features of SSP:

 The possibility to handle parameters within any

authoring tools that support SSP seamlessly.

 Use same parameterization approach also for

entire system models with many components

(either FMUs or proprietary models)

 Enrich parameterization data by meta data

 Handle IP issues for parameterization

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612424

27
__

 Efficient handling of complex parameters

(lookup tables etc.)

SSP brings its own data format as a XML definition.

But with the possibility to implement your own adapter

it’s also possible to transfer proprietary formats to the

SSP standard format.

6 Outlook

For ZF it is important to contribute to Modelica

projects like FMI and SSP to be sure to get powerful

standards and reliable tools supporting them in order to

do the jobs that have to be done. The number of

simulation tasks will grow rapidly in future, so it’s

inevitable to be efficient in this context.

Also the cooperation of industrial users on these

projects benefits everybody; industry gets tools that fit

their needs and tool vendors can offer more attractive

software.

Especially the work on SSP is not finished yet.

Some effort has to be made to bring the upcoming

standard to a mature status so it can be used in daily

business. We try hard to make this happen quickly by

evaluating the results very early to get experience with

it. Another important point is the close cooperation

with the FMI project group.

Acknowledgements

Thanks to the Modelica Design group for being open to

suggestions and requirements of industry.

The great engagement of SSP project members helps a

lot to create and establish the new standard.

References

M. Kellner and M. Neumann and A. Banerjee and P. Doshi.

Parameterization of Modelica Models on PC and Real

Time Platforms, Proceedings of the 5th Modelica

Conference 2006, pp. 267-274, Vienna, Austria , 2006

J. King and J. Köhler and M. Kübler. Multi-platform

simulation models for the development of transmission

control software in commercial vehicles. Simulation and

testing for automotive electronics V, pp. 56-65, 2014

J. Köhler and A. Banerjee. Usage of Modelica for

transmission simulation in ZF. Proceedings of the 4th

Modelica Conference 2005, pp. 587-592, Hamburg,

Germany

J. Köhler and T. Mauz and J. Schnur. Systematische Ent-

wicklung von Simulationsmodellen und Fahrstrategien für

hybride Antriebe. VDI Berichte, pp. 473-500, 2006

J. Köhler and R. Kuberczyk. Simulationsverfahren zur

Auslegung eines PHEV-Antriebsstrangs. VDI-Tagung

Plug-In-Hybride, 2013

R. Kuberczyk and J. Köhler and S. Blattner. Benchmark of

Saving Potentials of Diesel-Hybrid Vehicles. 22. Aachener

Kolloquium, 2013

M. Roske and F.-D. Speck and S. Kerschl. Das

elektrodynamische Anfahrelement - ein Hybridantrieb mit

erweiterter Anfahrfunktionalität. VDI-Tagung Getriebe in

Fahrzeugen, 2006.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

28 DOI
10.3384/ecp1612424

__

Virtual Vehicle Kinematics and Compliance Test Rig

Peter Sundström1 Maria Henningsson1 Xabier Carrera Akutain2 Yutaka Hirano3 Alejandro Ocariz2

Hiroo Iida3 Naoki Aikawa3 Johan Andreasson4

1Modelon AB, Sweden, {peter.sundstrom,maria.henningsson}@modelon.com
2Toyota Motor Europe, Belgium, {Alejandro.Ocariz,Xabier.Carrera.Akutain}@toyota-europe.com
3Toyota Motor Corporation, Japan, {hiroo_iida,naoki_aikawa,yutaka_hirano}@mail.toyota.co.jp

Modelon KK, Japan, johan.andreasson@modelon.com

Abstract

This paper presents a virtual kinematics & compliance

(K&C) test rig, also known as a Suspension Parameter

Measurement Machine, SPMM. The focus is to explain

the requirements and implementation of the rig model is

built to be a virtual equivalent to the physical test rig,

capable of reading the same input and producing the

same output.

The virtual test rig is implemented as a Modelica

model that is plug compatible with any vehicle model

using the standard interface from the Modelica Vehicle

Dynamics Library. The operation of the virtual test rig

is done from a scripting environment that executes a co-

simulation FMU.

An example test case is also shown where results

from a virtual test is compared with the corresponding

run on the physical test rig.

Keywords: virtual testing, kinematics and compliance

(K&C), FMI, vehicle dynamics

1 Introduction

A kinematics and compliance (K&C) test rig, Figure 1,

is one of the most common way to benchmark and

fingerprint cars today. A model which can reproduce the

excitations and generate output in exactly the same

fashion as an established physical rig presents several

advantages:

The most obvious one is the time reduction in the

execution of the complex tasks of the K&C test rig,

measurable in terms of orders of magnitude. Carefully

considering the testing efficiency, the level of

confidence and relative importance of each, the K&C

test rig owner can choose to allocate the testing

resources more selectively. For instance, a batch of

lower priority tests could be skipped and replaced with

simulation, provided the data available and/or measured

from the fundamental tests is enough to generate a high

fidelity base vehicle model.

Most of the OEMs are pursuing a strategy of creating

multiple derivatives of the same vehicle platform which
in turn generate a need for extensive testing. Again,

provided a reliable base model, the K&C simulation of

these derivatives present a major time and cost saving in

terms of vehicle availability and testing resources can be

significant.

Very connected to this, the utilization of the virtual

environment makes as well possible to perform system

identification in order to achieve higher fidelity of the

model to study, especially important if there’s a

significant amount of unknown parameters on the initial

model. A more precise parametrization can be used for

the optimization of the base vehicle model and all its

derivatives according to the desired elasto-kinematic

targets. Similarly, quick and inexpensive virtual

sensitivity analysis of the model can help to quantify the

robustness of the base performance and to study

potential performance improvements instead of

replacing chassis components with limited criteria.

The ownership of complete K&C test rigs is restricted

to big or specialized corporations. On top of the reasons

exposed above, sharing a common simulation rig can

enhance the cooperation significantly between different

industry or academia partners for every effort on chassis

optimization. In this joint effort the authors have

targeted a full replication of the excitations and

Figure 1. Kinematics and Compliance (K&C) rig in

operation at Toyota. The vehicle body is clamped (1) so

that the rig can induce roll, pitch and bounce motion of

the body. Under each wheel, there is a pad (2) that can

move and rotate to induce tire forces and moments. On

each wheel, sensors (3) that measure wheel center motion

are attached.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612429

29
__

workflow of an existing K&C test rig with the highest

fidelity possible, in order to make it a useful tool in the

vehicle development cycles. Additionally, to make it

deployable throughout the organization, the following

requirements are identified:

1. The operation of the virtual test rig should mimic

the real one, especially it should be compatible

with the data formats used

2. It should be possible to operate the virtual test rig

without knowing the model and/or how to

operate the modeling environment.

Figure 2 gives an overview of the developed

toolchain and its connection to the physical test rig and

related tools. The core of the toolchain is a Modelica

model that is compiled as a co-simulation FMU that is

able to pull parameter data from a data base

(Andreasson, J. et. al., 2016). This is then executed from

the deployment environment according to the test

specification. The input to and the output from the

virtual test rig are compatible with the corresponding

real test rig signals. This allow data to be exchanged at

(1) and (2). Additionally, there is a tuner that can be used

to fit parameters to measurement (or other simulation)

data.

The deployment environment is MATLAB with FMI

support (FMI Toolbox for MATLAB, 2016) and it is

chosen since the platform is widely available for the

target engineers to meet requirement 2 listed above.

However, the deployment could just as well be carried

out in for example Python (Andersson C., 2013),

(Nilsson, T., 2013) and (pyFMI, 2016) or MS Excel

(FMI Add-in for Excel, 2016).

2 Vehicle Test Rig Model

Testing a vehicle in a test rig as opposed to on a test

track is beneficial for a number of reasons. The rig can

accurately reproduce load cases while iterating on

suspension setups or part changes which is critical when

evaluating how these changes affect vehicle

performance. Furthermore, the rig can produce load

cases which are difficult, dangerous or even impossible

to achieve in driving scenarios.

Evaluating the kinematics and compliance of vehicle

suspensions gives good insight into how the wheel and

tire will move relative to the chassis and thus also what

forces will be generated for different vehicle states.

Essentially, the K&C curves for a chassis is the

fingerprint of the suspension which can readily be

compared between different setups or competitor

vehicles to predict performance.

The results from a K&C test are usually expressed in

the form of curves or gradients. The curves describe how

for example the toe angle changes with wheel travel,

known as bump steer. These curves give vehicle

dynamics engineers a good idea of the performance of

the vehicle and are important in defining and evaluating

requirements.

The main independent quantity for K&C curves is

normally vertical wheel travel. For a non-steered,

independent suspension, the kinematics can be

completely defined as a function of wheel travel. For

steered suspensions, steering wheel angle or steering

rack displacement is normally used as the second

independent quantity. Suspension where there is a

coupling between left and right sides (dependent or

semi-dependent suspensions) need the wheel travel of

the opposite wheel as an additional independent

quantity.

Toe/steer and camber/inclination angles are key

dependent quantities to study as they greatly affect the

tire force generation. The change in lateral and

longitudinal position are also important as this gives

additional information about the momentary center of

rotation of the suspension.

The compliance properties of the suspension are key

to vehicle handling since these affect how the wheel

angles and position changes with load, e.g. during

cornering or braking. While typically measured in rigs

capable of higher frequency excitation than described

here, compliance also has large effect on how noise and

vibration is transmitted through the chassis. Details of

suspension kinematics and compliance effect on vehicle

performance can be found in standard literature, see e.g.

(Bastow, 2004) or (Milliken, 1995).

2.1 Physical Test Rig

The virtual test rig is based on an off-the-shelf physical

test rig capable of exciting the vehicle chassis as well as

the in plane motion of the wheels (Anthony Best

Dynamics Ltd, 2014).
Before a test is performed, the vehicle is driven onto

the test rig and the body is clamped to the rig table. The

Figure 2. Toolchain overview. The real test rig receives

information on execution (1) from the operator interface

and then output measurement results (2) that is used for

plotting. The virtual test rig is designed to be able to read

and write compatible data.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

30 DOI
10.3384/ecp1612429

__

table is able to move vertically as well as roll and pitch

the vehicle body relative to the ground plane. The

wheels of the vehicle are positioned on wheel pads

which can move in the ground plane and rotate around

the vertical axis to generate planar forces and torque at

ground level. By changing the wheel clamping method,

forces and moments can also be applied in all directions

at the wheel hubs.

The rig can perform many different test cases

including the basic roll, pitch and heave movements of

the chassis as well as force sweeps at the tires and/or

hubs at varying ground heights.

2.2 Virtual Test Rig

The virtual test rig is designed to mimic the functionality

of the physical test rig and to allow them to be operated

in a consistent way by sharing parameterization for

configuration as well as data formats. This has some

important implications on the test rig model

implementation. Figure 3 shows a screenshot of a

vehicle model on the virtual test rig. The large yellow

plate corresponds to the table to which the body is

clamped and the four circular pads are used to actuate

the wheels.

Figure 3. Animation screenshot of a vehicle in the virtual

test rig. The vehicle is equipped with an independent

steerable front suspension of MacPherson type and a

dependent rear suspension of twist beam type.

Since the model is deployed as FMUs in a non-Modelica

environment, care is taken to design the virtual test rig

so that it does not have to be recompiled for the different

operating modes. Additionally, since typical test

procedure contain a sequence of events, it must be

possible to chain these events together while

maintaining states and other properties of the FMU.

Figure 4 shows the diagram layer of the rig model

including the tested vehicle model. Note the inputs, both

real and Boolean signals which are used to control the
rig. The test rig model is built using the Vehicle

Dynamics Library (Andreasson et. al., 2006) and is

compatible with the corresponding interface and

template structure.

Each test starts with an initialization phase. Usually,

the table is set to be released during this phase to let the

vehicle settle. A flag coord_system_set is switched to

true at an appropriate time, usually when the vehicle has

settled, which then locks the vehicle coordinate system

relative to the chassis and the ground coordinate system

relative to ground. References for vertical load control

and wheel travel are also stored for use in the test

procedure. While the coord_system_set flag is set to

false these coordinate systems will float in the ground

plane to be centered w.r.t. to the wheelbase and track

width of the vehicle. The coordinate systems are used

for output signals and need to be stored after the vehicle

is settled to mimic the physical procedure.

The table can then move to generate bounce, roll and

pitch motion of the body relative to ground. Each of

these degrees-of-freedom can be prescribed by an input

signal or be controlled to maintain a fixed level of

vertical load or wheel travel.

To allow these different modes to be contained in one

FMU, the model is equipped with inputs that allow for

each degree-of-freedom to be set independently from

the others. By having these as inputs, the modes can be

switched during a simulation that makes it possible to

conveniently describe complex sequences as described

further in Section 3.

Controllers are built to handle several different

modes by using appropriate scaling parameters so a

single set of controller parameters can be used for both

force and position control. The control error for each

wheel (force or travel) is multiplied by a coefficient

contained in a 4x3 matrix which controls how the

control error for each wheel affects each of the 3 table

Figure 4. Diagram layer of the complete rig model.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612429

31
__

degrees-of-freedom. Figure 5 shows the controller block

for a single degree of freedom of the chassis table. The

bottom inputs are vertical load and wheel travel vectors

for the wheels, each multiplied by scaling parameters.

The Boolean input on the top left triggers storing of the

control reference on its positive flank. The bottom left

Boolean input switches between force and position

control. On the top, the left input is k, a vector

corresponding to one column of the matrix mentioned

above.

By setting the control parameters individually for

each degree-of-freedom, it is for example possible to

have a prescribed roll angle applied by the table while

adjusting table bounce and pitch motion to maintain a

constant total vertical load on each axle. Table 1 shows

how the settings required to achieve this. The roll

column has only zeroes as this is prescribed motion. The

bounce column states that if load is too high, the chassis

should be lifted. The pitch column state that the pitch

angle should be increased if the front load is too low

and/or the rear load is too high and vice versa.

The wheel pads can also be either force or position

controlled. In order for the pads to be able to generate

force in the tires, a tire model capable of windup in all

in-plane directions is required. Typically, state-of-the-

art single contact point tire models do not have this

capability. Therefore, a dedicated stand-still tire model

is provided which acts as a linear spring-damper in the

six degrees of freedom between the wheel and the pad.

The model has different operating modes depending on

how forces should be applied. For example, all forces

and torques except pure vertical force can be disabled.

There are also inputs available to change the

suspension behavior. The stabilizer and tie rods can be

individually disconnected, power steering can be switch

on or off and the steering rack motion can be locked.

Table 1. Table controller table for roll test with constant

axle load.

 Roll Pitch Bounce

Left front 0 -1 1

Right front 0 -1 1

Left rear 0 1 1

Right rear 0 1 1

3 MATLAB Environment

A user interface based on the MATLAB scripting

language has also been developed. This interface uses

functions from the FMI Toolbox for MATLAB/

Simulink to import a co-simulation FMU.

A set of standard test setups is stored in an excel

spreadsheet. This spreadsheet mimics the one used for

parameterizing tests on the physical test rig. There is a

column for each parameter that needs to be set in the rig

model and each test is defined in one row. To run a

specific test, the specification for that test is read from

the corresponding row in the spreadsheet based on a

unique test number. The test specification is then loaded

into a test object in the MATLAB environment which is

sent as an argument when running the test using the test

rig. The test specification can be modified after it is read

from the spreadsheet by changing variables in the test

Figure 5. Controller block for one degree of freedom of

the chassis table.

Figure 6. Excerpt from the spreadsheet containing test specifications. Each column corresponds to a parameter setting

for the rig model, each row corresponds to a test.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

32 DOI
10.3384/ecp1612429

__

object. shows a small section of the test specification

spreadsheet.

When comparing results from the physical rig to

simulation results for K&C correlation work, the

measurement files coming from the physical test rig can

be read in and presented on the same format as is

produced by the virtual test rig functions. This makes it

easy to compare virtual test runs to the corresponding

tests performed on the physical rig.

A typical set of commands to run a rig test from

Matlab looks like this:

test_rig = VirtualKCTestRig('FMUfile.fmu');

test_setup = CreateKCTest('3.3.1');

result = test_rig.run(test_setup);

plot(result.time,result.get_channel(57));

result.save_xml('resultfile.xml');

The first command, VirtualKCTestRig(),

initializes the test rig object, test_rig, by loading the

FMU. CreateKCTest() is then used to pull the

relevant test parameters from the excel parameter sheet

and store it in test_setup. The run() command of the

test rig object is then called with the test setup object as

an argument to run the test. The results can then be

plotted directly or stored in an xml file compatible with

the format of the real test rigs.

4 Application Example

An example of a test run in the virtual rig is shown here.

The vehicle used for the example has an elasto-

kinematic McPherson front suspension and a twist beam

rear suspension with bushing mounts. During the work

with the virtual rig, a new twist beam suspension model

was also developed. The following plots focus on the

kinematics of this rear suspension model.

Parameterization is based on hard point data and other

known quantities as far as possible, but some are

estimated.

The test shown is a roll test with constant axle load.

Figure 7 shows the roll angle measured from the

physical test rig as well as the simulated roll angle in the

virtual test rig. As the roll motion is directly prescribed

for the test, the two signals match very well.

The vertical motion of the chassis table is used to

maintain a constant total vertical load on the four wheels

during the test. Figure 8 shows the measured and

simulated values for the total vertical load.

The kinematics of the rear suspension for the roll test

are illustrated by the following plots. Magnitudes of the

signals are hidden for confidentiality reasons. Figure 9

shows the bounce motions of the two rear wheels plotted

against their respective longitudinal displacement.

Figure 10 shows the corresponding lateral displacement.

Wheel angle, toe and camber, correlation is shown in

Figures 11 and 12. The hysteresis and asymmetric

behavior in the real suspension that can be seen in the

measurements is not accounted for in the model which

limits the accuracy that can be achieved.

Compared to the real test rig, the virtual version

provides some important advantages. The user is free to

change parameters in quick iterations. Depending on

complexity level and length of test sequence, the

execution of a complete cycle on a standard laptop

normally ranges between 2 and 10s. This allow for rapid

execution of DOE, and also allow for parameter tuning

either to reach desired characteristics or to match with

measurement data from the real test rig.

Additionally, the test rig can be used to excite any

vehicle that is compatible with the standard interfaces of

the Vehicle Dynamics Library, which allow the user to

conveniently change vehicle configuration and model

fidelity level so that the K&C behavior can be predicted

at any time during the design process.

5 Conclusions

With the newly developed test rig model, it is possible

to run physical and virtual test rig experiments in

parallel. This simplifies correlation work since equal

circumstances are ensured in both environments. Also,

it facilitates moving certain tests completely to the

virtual rig since specifications and output formats are

equivalent. Finally, the virtual version allows for rapid

iterations due to the fact that simulation and setup time

is significantly less then real-time, the virtual

representation allow for changes in the model that is

very time consuming/expensive/impossible on real

prototypes, and that simulations can be distributed onto

several machines with little effort.

References

Andersson, C. (2013), A Software Framework for

Implementation and Evaluation of co-Simulation

Algorithms, ISBN 978-91-7473-671-7.

Andreasson, J. et. al (2006), The Vehicle Dynamics

Library – Overview and Applications, in

Proceedings of 5th International Modelica

Conference, Vienna, September 4-5.

Andreasson, J. et. al (2016), Deployment of high-

fidelity vehicle models for accurate real-time

simulation, in Proceedings of First Japanese

Modelica Conference, Tokyo, May 23-24.

Anthony Best Dynamics Ltd. (2014). SPMM 5000 -

Outline Specification - SP20016 issue 2. Wiltshire,

UK.

Bastow, D. H. (2004). Car Suspensions and Handling,

4th edition. SAE International.

FMI add-in for Excel (2016)

www.modelon.com/products/fmi-add-in-for-excel

Milliken, W. M. (1995). Race Car Vehicle Dynamics.
SAE International. ISBN 978-1-56091-526-3

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612429

33
__

http://www.modelon.com/products/fmi-add-in-for-excel

Nilsson, T. (2013), A simulation environment for

coupled systems of discontinuous ODE:s. Chapter

4, PyFMI2.0, ISSN: 1654-6229

pyFMI (2016) www.pyfmi.org

Figure 7. Roll angle, blue curve is from physical test rig,

red curve is from simulation.

Figure 8. Total vertical force during test, blue curve is

from physical test rig, red curve is from simulation.

Figure 9. Vertical bounce at the two rear wheels plotted

vs the corresponding longitudinal displacement, blue

curve is from physical test rig, red curve is from

simulation.

Figure 10. Vertical bounce at the two rear wheels plotted

vs the corresponding lateral displacement, blue curve is

from physical test rig, red curve is from simulation.

Figure 11. Camber angle at the two rear wheels plotted on

the x axis with bounce motion on the y axis, blue curve is

from physical test rig, red curve is from simulation.

Figure 12. Toe angle at the two rear wheels plotted on the

x axis with bounce motion on the y axis, blue curve is

from physical test rig, red curve is from simulation.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

34 DOI
10.3384/ecp1612429

__

http://www.pyfmi.org/

Modelica-Association-Project “System Structure and

Parameterization” – Early Insights

Jochen Köhler
1
 Hans-Martin Heinkel

2
 Pierre Mai

3
 Jürgen Krasser

4
 Markus Deppe

5
 Mikio

Nagasawa
6

1
ZF Friedrichshafen AG, Germany, jochen.koehler@zf.com

2
Robert Bosch GmbH, Germany, Hans-Martin.Heinkel@de.bosch.com

3
PMSF IT Consulting, Germany, pmai@pmsf.eu

4
AVL List GmbH, Austria, juergen.krasser@avl.com

5
dSPACE, Germany, MDeppe@dspace.de

6
CYBERNET SYSTEMS Co., Ltd., Japan, mikio-n@cybernet.co.jp

Abstract

Starting with the motivation to invent the new standard

SSP (“System Structure and Parameterization”) within

the Modelica Association and the need to have one

more standard beyond the mature Modelica language

and the already well established Functional Mockup

Interface (FMI) proposed in Modelica Association

(Blochwitz et al, 2011), the main use-cases are

presented were SSP can help. As SSP relies on XML,

the schemas and in consequence the main features for

defining system structures and parameterization of

models are described. The need to be able to transport

complex networks of FMUs between different

simulation platforms like MIL, SIL and HIL is

emphasized as a motivator for SSP.

A variety of prototypes are shown that support the

early version of SSP. This gives a good impression

how the standard can be used for quite different tasks

and proofs, that system structures can be exchanged

between them seamlessly.

Finally the next steps for the ongoing development

of SSP are outlined.

Keywords: FMI, System Structure, Parameterization,
Collaboration, Standardization

1 Introduction

It’s still a very big challenge for different kinds of

industry areas to build up simulation models for

behavioral simulation of complex systems consisting of

multiple domains. In the engineering process we are

used to separate a system into its components and do

all the necessary simulations for one component in a

tool that fits best to the specific problem. Good results

can be achieved in this way if the dynamic behavior of

one component has no large impact on the other parts

of the system. But as the systems to be developed

become more complex and the interaction between all
components becomes more important or is even

essential for the product value the simulation of the

connected parts is inevitable. Figure 1 shows a typical

example from the automotive industry, where

component models have to be combined for overall

simulation in different environments.

Figure 1. System simulation in automotive industry

The attempt to model all physical domains within

one tool could be a potential solution, e.g. modeling

languages like Modelica can handle this quite well.

One large benefit here is the possibility that during

the translation process of the complete system a lot of

mathematical simplification mechanisms can be used

to optimize the mathematical problem and make it

easier to solve the DAE during simulation with one

single solver. However due to the complexity of the

language and the fact, that other simulation tools are

quite more established in certain domains it is very

hard to enforce this approach in a company, or for

collaborative development across companies.

The second best approach came with FMI. The

standardized Functional-Mockup-Interface gives the

possibility to export an FMU (Functional mockup unit)

of a component from the authoring tool that was used

to build it and integrate it in another environment to

simulate it. Of course in this integration environment

other component FMUs can be integrated as well to
connect them all into a complete virtual system. But

once again this can be done only in a proprietary way

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

35
__

for this single integration tool and the built-up system

structure cannot be transferred to another environment.

However, this is a common use case when the modeled

system has to be used in different targets like MIL, SIL

or HIL.

Another issue when simulating complex systems is

parameterization. FMUs can be parameterized in an

isolated way but there is no convenient way to handle

these parameters e.g. exchanging complete parameter

sets or handling any associated intellectual property

concerns. To parameterize complete systems a “global”

instance has to exist to handle all the parameters that

are not part of a component or have to be used in

several components at the same time. These features

are quite relevant when models of components are

interchanged between different departments in one

organization or - even more important – between

different companies.

These should not be considered as disadvantages of

the FMI approach because FMI does not have these

issues in its scope.

These thoughts were presented first at the Modelica

Design Meeting in 2014 in Lund by BMW, Bosch and

ZF and there was a commitment to instantiate a new

Modelica Association project called “System Structure

and Parameterization” to develop mechanisms and

standards to enhance the existent FMI standard. It is

important to emphasize that this new standard is

developed in close cooperation with the FMI project

group to secure a perfect fit of both standards.

In the last months there was quite good progress

starting with the definition of different use-cases to

describe various scenarios handling system structures

and parameters. Derived from that a number of XML

schemas have been developed to describe both system

structures and the parameterization of complete

systems in a standardized way that can be used

independently of specific tools.

First evaluation of this could be shown at the

Modelica Conference 2015 in France where three

different tools were presented that were able to read in

the same XML representation of a simulation model

and handle it in their specific ways.

The next sections give detailed insights into the use

cases, the actual status of the XML schemas and a

short presentation of the already existing tool

prototypes that make use of this upcoming standard.

2 Use Cases

In the following chapter the basic use cases and the

principal solutions by the SSP-project are described

2.1 Parameter Exchange

In future, updates and effective variant handling for

models will be done predominantly by parameter sets.

To do this effectively in a heterogeneous environment,

we need a tool independent standard. Figure 2 and

Figure 3 show the use cases and possible solution for a

single model and for a structure of models

Figure 2. Exchange of one FMU/model with multiple

different parameter sets

Figure 3. Describing parameter sets for system

architecture

2.2 Model Structure

As shown in Figure 1 the multiple use of (sub-)

structures of models in heterogeneous environments

get more important. For the seamless and tool

independent usage of networks of components, we

need a standardized format for the connection structure,

which also support basic mathematical manipulation of

signals (for manual unit conversion or mapping of

discrete signals). Figure 4 shows the approach of the

SSP project.

Figure 4. System architectures with signal modifications

2.3 Model Structure and Parametrization

Use case 2.3 is the combination of use case 2.1 and

2.2 (Figure 5). The structure and the according

parameter sets have to be handled in a tool independent

standard.

Figure 5. System architectures with signal adoption layer

and parameter sets

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

36 DOI
10.3384/ecp1612435

__

3 XML Schemas

The file formats defined for the MAP-SSP project are

intended to provide a minimal interchange format

between different tools, not as a replacement for tool-

specific formats, and are focused on the exchange of

information on systems needed for their execution or

integration into other systems. The interchange of

architectural information between architecture tools

(e.g. SysML-based tools, for which XMI already

provides an interchange format) is out of focus of the

current efforts,

The formats try to duplicate as little information as

possible from any referenced component formats, like

FMUs, and try to be agnostic as to the detailed

semantics of the connections being described,

submitting to the semantics definitions of the relevant

standards for e.g. FMUs for actual connection

semantics. In this way the format should be useful for

many different purposes and should potentially be

compatible with currently envisaged FMI standard

developments, like e.g. structured ports.

By defining both a basic system structure file format

(SSD) and a format for packaging the SSD and its

related resources, including referenced SSDs/SSPs and

FMUs into an easily transportable archive (SSP), the

proposal tries to offer flexibility in the way system

structure is being exchanged in different contexts, e.g.

within companies using PLM systems or between

companies in a customer/supplier context.

Currently XML schemas have been defined for the

description of the system structure itself (System

Structure Definition – SSD, file extension .ssd), of

parameter sets (System Structure Parameter Values –

SSV) and their mapping to system/component

parameters (System Structure Parameter Mapping –

SSM). Additionally the System Structure Package

format (SSP, file extension .ssp) is defined, which

constitutes a ZIP-archive that packages together a set

of system structure definitions and any referenced

parameter sets, mappings, components and sub-

systems into one easily handled and transferable unit.

A SSP must contain at least one SSD file, but can

contain multiple such files at top-level, which give the

ability to package multiple variants of a system into

one SSP, allowing the importing user/tool the selection

of which variant to process. This enables the efficient

exchange of systems/sub-systems with varying system

topology, e.g. for vehicle models with different

propulsion systems and architectures, while being able

to reuse commonly shared resources like sub-systems,

FMUs, or parameter sets.

The SSD file defines the structure of a system: Its

external interface (if any), i.e. the system input, output

and parameter connectors as exposed to the outside,

and the internal structure, including instantiated
components, like FMUs or referenced external

systems, subsystems, as well as connections between

components and between components and the external

interface.

For each component any referenced inputs, outputs

and parameters are specified as connectors as well.

Connections between connectors that are physical

quantities will perform unit conversions by default.

Connections can also apply linear transformations (for

continuous quantities) or mapping transformations (for

discrete quantities) in order to adjust values between

components as needed.

 The system description also assigns parameter sets

(SSV) to components or complete (sub-)systems, either

with a natural 1:1 mapping or by specifying explicit

parameter mappings in the SSM format. See Figure 6

for a simplified overview of the data model behind the

XML schema and Figure 11 for a simple example file.

Figure 6. Simplified Class Diagram for SSD Schema.

In order to support exchange of system structure

between tools that offer a graphic view of a system,

optional geometric information for systems,

components, connectors and connections is supported.

The SSV format defines a parameter set, consisting

of a set of parameter definitions, including parameter

values and related meta-information (like data type,

physical unit), as necessary to aid in the exchange of

parameter sets and their use in parametrizing systems

and components. A core set of meta-information is

likely to be included in the final standard with

extension mechanisms to support the exchange of user-

specific meta-information as needed. Parameter sets in

the SSV format can be contained directly in the

relevant parameter binding element of the SSD file or

referenced as an external .ssv file.

The SSM format, as illustrated in Figure 7, defines a

mapping between the parameters in a parameter set and

class SSD

«interface»
System

«interface»
Element

+ name :string

«interface»
Component

+ source :URI
+ type :string

«interface»
Connector

+ name :string
+ kind :enum

«interface»
Connection

+ suppressUnitConversion :boolean

«interface»
SystemStructureDefinition

«interface»
ParameterBinding

+ source :URI
+ type :string

«interface»
ParameterMapping

+ source :URI
+ type :string0..*

ParameterMappings

0..*

ParameterBindings

0..*

end

1

1

0..*

Connections

0..*

Connectors

0..*

Elements

0..*

start

1

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

37
__

the parameters of a component or system (potentially

including subsystems and components) by mapping the

names of parameters between the two namespaces and

optionally providing further transformations on

parameter values, like mapping of enumerations or

linear transformations of continuous values. Like the

SSV format this mapping can be contained within an

SSD file or referenced as an external .ssm file.

All formats offer easy extensibility for specific tool

or user needs through optional tool- or usage-specific

annotations on all modeling elements. This also allows

the simple addition of layered standards on top of the

current formats.

References between SSD files and related resources,

like components, parameter sets or parameter

mappings are implemented as (relative) URIs. This

allows the integration of these formats into larger

resource management systems like PLM systems, so

that e.g. SSD and/or referenced parameter sets or

component FMUs can be located via HTTPS or PLM-

specific URI schemes, in addition to the default file-

based access mechanisms.

Figure 7. Simplified Class Diagram for SSM Schema.

Currently design discussions are on-going on the

support of additional connection constructs, like signal

dictionaries or bus-like connections, which aid in the

maintenance of component and system

interconnections with many, frequently changing

signals, like those employed by bus communication

mechanisms between controller models. It is expected

that the initial release of the SSP standard will include

such mechanisms.
While the work in the SSP project was initially

focused on FMU-based systems, the SSD and

SSV/SSM formats are intentionally also suitable for

describing systems containing other component types,

like models or controller code, if relevant definitions

are implemented for these component types.

4 Hardware-in-the-Loop Simulation

In order to cope with the growing complexity of

modern electronic control units (ECUs), Model-Based

Design (MBD) is used throughout the embedded

software development process. The result is an

increasing number of models designed for various

purposes. During the MBD process different methods

are applied to test the software of an ECU. In early

stages PC-based model-in-the-loop (MIL) and

software-in-the-loop (SIL) simulations are commonly

used to validate the software. Additionally hardware-

in-the-loop (HIL) simulation based testing is applied as

the tried-and-tested method for function, component,

integration and network tests of an entire system. HIL

simulation is an integral part of the development

process of many OEMs and suppliers across different

industries. Due to the inclusion of real hardware in the

test setup, HIL test systems have special requirements

that do not allow the same free choice of simulation

methods as for MIL/SIL use cases. Usually specialized

HIL simulation systems with optimized hardware and

real-time operating systems (e.g., QNX, Linux-RT) are

necessary. These systems have to meet real-time

requirements and handle the system dynamics and

timing of the ECU computation timing loops. Common

HIL applications typically require hard real-time,

fixed-step solvers with sampling times of 1ms or less.

FMUs for co-simulation are a good basis for the

tool- and platform-independent exchange of simulation

models in HIL environments. The lean co-simulation

interface reduces possible compatibility issues in a tool

chain that includes various FMI supporting tools.

Moreover, it systematically separates the FMU

functions from the tool functions. This separation

enables efficient FMU internal implementations of e.g.

tunable parameter support and internal multi-rate

subsampling. These co-simulation FMUs can transport

verified combinations of solver and model code.

Additionally the communication point concept can

separate internal solver steps from external

communication steps. FMUs may include ANSI-C

source code, which is important for platform-

independent reuse, but often conflicts with modelers’

and tool vendors’ interest in protecting their IP.

Exported FMUs therefore often only contain

precompiled binaries and are consequently limited to

specific pre-selected target platforms.

class SSM

«interface»
ParameterMapping

«interface»
MappingEntry

+ source :string
+ target :string
+ suppressUnitConversion :boolean

«interface»
Transformation

«interface»
LinearTransformation

+ factor :double
+ offset :double

«interface»
IntegerMappingTransformation

«interface»
MapEntry

+ source :int
+ target :int

«interface»
EnumerationMappingTransformation

«interface»
MapEntry

+ source :string
+ target :string

0..*

0..1

1..* 1..*

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

38 DOI
10.3384/ecp1612435

__

Figure 8. Integration of FMUs for HIL Testing.

Today single FMUs are imported into HIL

configuration tools to integrate them with other FMUs,

Simulink-based models, Virtual-ECUs or real ECUs

(Figure 8). HIL simulation tests with real-time capable

FMUs can rely on the full functionality of a tool chain

including test automation and visualization.

Additionally newer Model-Based Design Test and Data

Management environments provide capabilities for

managing model compositions, handling variants of

models and systems-under-test and managing the

parameter and signal interfaces of the different model

systems. These functions are necessary in order to

optimize the usage of models and associated data assets

throughout the lifecycle of development and validation.

Especially for managing complex simulation scenarios

resulting from the use of models from various

modeling environments such capability is crucial.

Environment models are often developed and

specially designed for certain use cases. However,

there is an increasing desire to reuse these models to

provide proven, consistent solutions for the validation

of controller models in different projects and

development stages (e.g., for virtual validation and HIL

simulations). A reuse of models increases productivity

and saves time by eliminating the duplication of design

efforts. The environment models that are exchanged –

e.g., based on FMI – need to be suitable for all the

intended MIL/SIL/HIL simulation use cases. Modular

design of models and particularly clear identification of

interfaces pertaining to real or simulated components,

are necessary to allow an exchange of simulated

components by a real hardware component at various

points in the development and testing processes. In co-

simulation scenarios, a model structure should be

chosen that separates the overall model into weakly

coupled model parts that can be computed concurrently

and are insensitive to input delays due to co-simulation

effects.

Figure 9. Potential ways to exchange the System

Structure Description.

Once a reasonable model structure is designed there

is no standardized way so far to exchange it among

tools from different vendors especially if no overall

integration model exists. The SSP approach allows to

share a standardized system structure description

between data management, integration and

configuration tools for SIL, MIL and HIL scenarios

(Figure 9). Hence, the SSP interchange format helps to

improve the consistent simulation and interchange of

complex models in the MBD process.

5 Prototypes

The specifications of SSD are investigated with some

prototype tools assuming various co-simulation

environments.

5.1 Integration Tool

Model.CONNECT
TM

, a product of AVL List GmbH, is

a tool to set up and execute system simulation models

which are composed of subsystem and component

models from multiple model authoring environments.

Models can be integrated based on standardized

interfaces (FMI) as well as based on specific interfaces

to a wide range of well-known simulation software.

In order to validate the SSP specification, we

implemented a prototype plug-in for the tool that

supports the export and import of system

configurations.

During the prototype development we particularly

explored the capabilities of SSP to pack variants of

system configurations into one archive. We found that

the very basic variant support in SSP could be mapped

to/from the sophisticated variant management

capabilities in the tool, which is designed to describe

both different configurations of the system under

investigation as well as different testing scenarios and

testing environments. It is important to mention, that

the variant handling in SSP is deliberately and by

design not expressive enough to support loss-less

export-import roundtrips (e.g. Model.CONNECT
TM→

SSP → Model.CONNECT
TM

) with respect to variant

management. We plan to address this in future by

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

39
__

enriching the export/import plug-in based on tool-

specific annotations in the SSP.

This prototype SSP export/import plug-in was also

used to test the specifications of SSP with regards to

the graphical representation (as 2D block model) of

system configurations. Also here we did not encounter

any major issues mapping between SSP and the tool-

specific geometry handling. This is again a result of

SSP design principle to keep the specification as

simple as possible: SSP allows to transfer component

and connector positions as well as connection way-

points. Thus, SSP allows to re-construct the main

aspects of a layout, but it makes no attempt towards a

pixel-by-pixel identical rendering of systems in the

exporting and importing systems.

Figure 10 eDrive example in Model.CONNECT
TM

. The

subsystem “Drivetrain” is displayed in transparent mode

to see its internal structure.

Future work on the plug-in will be focusing on the

support of parameter values and mappings. Workflow-

wise, we will explore using SSP to transfer system

information from SysML-based MBSE tools to

Model.CONNECT
TM

.

5.2 Co-Simulation Browser

FMI has become a common model exchange and co-

simulation standard. However the master-level runtime

verification and validation of the virtual system made

of many slave models are still difficult for FMI users.

The integration of multi-domain expertise is required

to analyze the multi-FMU complexity and the large

scale virtual system simulation results. In order to

facilitate the system-level FMU user collaboration, a

light weight FMI/SSP Co-Simulation browser is

prototyped. This co-simulation browser includes the

simulation player and the parser of SSP defined System

Structure XML such as in Figure 11 .

Figure 11. Example of eDrive.ssd.

This light-weight co-simulation player is easy to

extend for the pursuit of ‘X-In-the-Loop’ methodology.

The ‘X’ stands for ‘model’', ‘software’', ‘hardware’,

and ‘human’. By connecting various abstract models

and devices, our FMI/SSP virtual system would be

widely expanded. With the flash-based integration of

co-simulation browser, users can easily access mobile

simulations and visualizations of FMI models in the

cloud environment. The FMI co-simulation slaves

would be executed on network distributed servers. The

control of co-simulation master can be included

through the brand-new smart devices with some

intuitive multi-touch operations.

The co-simulation browser was applied to check the

project example of eDrive.ssd test case. The XML

parser reads the FMU connections and interprets the

FMI-compliant simulation parameters. The layout of

FMU slaves is automatically adjusted in a circular

configuration to show the complex connections as

compact as possible (see r.h.s in Figure 12). Before

starting the system-level simulation, the co-simulation

browser can run the unit tests of each FMU with

manually added test I/O functions to fit into the FMI

input ports.

The system parameter dataset/database could also be

distributed on the network servers. There is a process

integration tool Optimus® that can export a parameter

database wrapped as a portable FMU. For example, the

parameters compiled as ResponseSurfaceModel.fmu is

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

40 DOI
10.3384/ecp1612435

__

easily imported to our co-simulation test bed, namely,

‘FMI/SSP Stage’.

Figure 12. Connection UI on FMI/SSP Stage.

The FMI/SSP stage master manages the simulation

context which contains time integration scheme,

simulation clock, event handling, and parameter

input/output functionalities. In a master-slave co-

simulation, the master algorithms can define the quality

and performance of the co-simulation. The clock

functions setup the master timestep sizes to optimize

the simulation efficiency. The way how to share such

simulation parameters would be discussed further in

the ongoing SSP project.

When we complete the definition of System

Structures and System Parameters on this SSP test bed,

we can extend the co-simulation environment, to that

of ‘Co-Optimization’. A FMI co-optimization case

with the sequential tool chain process is reported

(Batteh et al, 2015). The Co-Optimization stands for

the paradigm such that every model is gathering as

FMU modules on the virtual system stage of SSP. The

simulation result could be reflected onto the system

parameter set such as Response Surface Model to

refine the next co-simulation trial in the optimization or

calibration cycle. The SSP-based environment will

enhance the co-optimization paradigm and speed up

the parameter exploration in virtual systems.

5.3 FMI Bench

FMI Bench is a product of PMSF IT Consulting that

provides a workbench for manipulating and integrating

FMUs into assembled systems which can then be

exported as new complex FMUs for use in other

simulations or complete executable simulations for

stand-alone use.

As part of the work on SSP a prototypical

implementation of the SSP drafts has been undertaken,

allowing the importation and exportation of complete

SSP packages from FMI Bench.

Special consideration was placed on the ability of

SSP to describe systems with external interfaces that

would allow exportation as complex FMUs so that

systems packaged as SSPs could be re-exported as

complex FMUs for use as subsystems in other

simulation systems while still making use of the FMI

Bench features, such as automatic multi-threading of

complex FMUs or remote FMU execution.

The experiences with the SSP drafts showed that

this usage was indeed possible, as seen in Figure 13,

showing both the imported eDrive example SSP in the

upper window and the generated native FMI Bench

project, which allows direct code-generation, in the

lower window.

Future work is intended to track the progress of the

SSP project work in the areas of parameters and

complex communication primitives, while integrating

SSP/SSD support into the core product.

Figure 13. eDrive example in the FMI Bench SSP

prototype showing imported SSP and derived native FMI

Bench project.

6 Outlook

As shown SSP is a valid approach to make the work

with FMUs and their parameterization easier especially

when complex systems with several components have

to be simulated and interchanged. The way to define

system structures is derived from daily work in

industry so it can be easily adapted to existing working

processes. The close cooperation with the FMI project

group guarantees, that both standards work well

together, even if SSP is not solely restricted to working

with FMUs as components.

In the first stage the project group concentrated on

defining system structures. That work is currently

mature enough to enable first practical evaluations of

it. Parameterization is the second stage to go into in

more detail in 2016. The overall goal is to have a first

version of the standard rather early to be able to get

experience quickly by evaluating it with running

prototypes which are developed in parallel. Therefore it

is very appreciated if many tool vendors and key users

contribute to the project. If you are interested in more

information or if you want be get involded in our work,

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

41
__

feel free to contact us: map-ssp@modelica.org

[Maybe add contact information to SSP working group

for vendors/users to join].

References

Blochwitz T., Otter M., Arnold M., Bausch C., Elmqvist H.,

Junghanns A., Mauß J., Monteiro M., Neidhold T.,

Neumerkel D., Olßon H., Peetz J.-V., Wolf S., Clauß C.

The Functional Mockup Interface for Tool independent

Exchange of Simulation Models. Proceedings of the 8th

International Modelica Conference, pp.105-114, Dresden,

Germany, 2011 doi:10.3384/ecp11063105.

Batteh J., Gohl J., Pitchaikani A., Duggan A., Fateh N.

Automated Deployment of Modelica Models in Excel via

Functional Mockup Interface and Integration with

modeFRONTIER. Proceedings of the 11th International

Modelica Conference, pp.171-180, Versailles, France,

2015 doi:10.3384/ecp15118171.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

42 DOI
10.3384/ecp1612435

__

ADAS Virtual Prototyping using Modelica and Unity Co-simulation
via OpenMETA

Masahiro Yamaura1 Nikos Arechiga1 Shinichi Shiraishi1

Scott Eisele2 Joseph Hite2 Sandeep Neema2 Jason Scott2 Theodore Bapty2

1Toyota InfoTechnology Center, U.S.A., Inc., U.S.A., {myamaura, narechiga, sshiraishi}@us.toyota-
itc.com

Institute for Software-Integrated Systems, Vanderbilt University, U.S.A., {eiseles, jhite7, sandeep,
jscott, bapty}@isis.vanderbilt.edu

Abstract
Automotive control systems, such as modern
Advanced Driver Assistance Systems (ADAS), are
becoming more complex and prevalent in the
automotive industry. Therefore, a highly-efficient
design and evaluation methodology for automotive
control system development is required. In this paper,
we propose a closed-loop simulation framework that
improves ADAS design and evaluation. The proposed
simulation framework consists of four tools: Dymola,
Simulink, OpenMETA and Unity 3D game engine.
Dymola simulates vehicle dynamics models written in
Modelica. Simulink is used for vehicle control software
modeling. OpenMETA provides horizontal integration
between design tools. OpenMETA also has the
capability to improve design efficiency through the use
of PET (Parametric Exploration Tool) and DSE
(Design Space Exploration) tools. Unity provides the
key functionality to enable interactive, or closed-loop
ADAS simulation, which contains sensor models for
ADAS, road environment models and provides
visualization.
Keywords: ADAS, Efficient Design, Game Engine,
Modelica, Simulink

1 Introduction
The number of installations of Advanced Driver
Assistance Systems (ADAS) is rapidly growing in the
automotive industry. In the case of Toyota cars, Toyota
Safety Sense, which is a type of ADAS package, will
be available in most passenger cars released by Toyota
Motor Corporation in Japan, North America, and
Europe by the end of 2017 (Toyota Motor Corporation,
2014). This emerging market of ADAS poses difficult
system design problems. That is, we cannot use a
traditional development methodology that considers
only a target vehicle. We need to derive a new
methodology which allows us to take its environment
into account, e.g., road, other vehicles, pedestrians, etc.
With the announcement that the majority of cars will
contain an ADAS, it is apparent that the design space
of future cars will be vast. Moreover, the complexity of

these systems is also increasing along with their
extended features, e.g., communication with other
vehicles, cooperation with a navigation system, etc.

The above problems imply that a highly-efficient
design and evaluation methodology for ADAS
development is required. Van Waterschoot and van der
Voort have recognized this same need for efficient
design when looking at ADAS as a human factors
problem (van Waterschoot et al, 2009). Simulation-
based verification and validation can be a key
technology in such a methodology as shown by Gruyer
et al. (Gruyer et al, 2011). More precisely, closed-loop
simulation including vehicle dynamics and road
environments is essential.

Our work addresses the need for closed-loop
simulation by using Simulink to model software
components and Modelica to model physics
components. Simulink is currently the state-of-the art
tool for developing and analyzing automotive software
models. Modelica is well suited to describe and
simulate physics which includes vehicle dynamics.
However, the task of describing complex conditions
around the vehicle, such as traffic events, pedestrian
activity and weather activity is complex and results in
simulations not amenable to interactive simulation. Our
work uses Unity to model complex environmental
conditions. Unity is a video game development tool
which is well suited to describe complex road
situations. Our proposed framework consists of a co-
simulation-based solution for ADAS development
challenges by using OpenMETA to integrate Simulink,
Modelica and Unity, and provide some features which
aid in the design of complex systems.

Generally, game engines provide sophisticated
virtual reality environments, and can be used to allow
users to collaborate. These game engine advantages
support valuable features in ADAS development such
as gamified and crowd-sourced vehicle testing, and
virtual dealership, which are described below.

 Section 2 provides a background on existing design
tools. Section 3 describes our tool framework. Section
4 describes our case study and Section 5 presents our
conclusions and possible directions for future work.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612443

43
__

2 Background

2.1 Existing Tools
Modelica is a multi-physics, multi-domain, acausal
modeling language. Dymola, developed by Dassault
Systèmes, is a powerful tool as an editor and simulator
of Modelica models (Dassault Systèmes, 2015).

Simulink is a graphical modeling tool produced by
MathWorks. It provides a graphical modeling editor, a
customizable set of block libraries, and solvers for
simulations (Mathworks, 2015). Designers can edit
models by deploying blocks from the libraries and
adding causal connections between blocks. Simulink is
widely used in the automotive industry for vehicle
control system software design, such as ADAS
systems, engine control systems, transmission control
systems, etc. This is the reason why we selected
Simulink for control system software modeling.

The OpenMETA toolchain was developed by
Vanderbilt University in conjunction with the Adaptive
Vehicle Make program of DARPA (Sztipanovits et al,
2014; Sztipanovits et al, 2015). OpenMETA is a tool
infrastructure with the goal of enabling development of
cyber-physical systems. This is accomplished by
providing horizontal integration between external
software tools. A model in OpenMETA references
component models which exist in external tools such as
Dymola, Creo, or ADAMS. In order to interface with
an external tool, an interpreter is created for
OpenMETA which transforms the model into a format
the external tool can use. Typically OpenMETA is
setting parameters which are then used to provide
inputs into a detailed model that exists in the external
tool. Once the interface is in place, then any parametric
changes made to the model in OpenMETA will also
appear in the external tool. Additionally, if the internals
of any tool specific model are changed, as long as the
interface remains, the models will function as they

would if the model had been generated entirely in the
external tool.

In the case of Simulink integration, a Simulink
model is wrapped as a C library which is referenced in
OpenMETA. The representation of this library in
OpenMETA includes the interfaces exposed in the
original Simulink model.

Additionally, OpenMETA has other features for
highly-efficient design, such as the Parametric
Exploration Tool (PET) and Design Space Exploration
(DSE). Automotive control software generally has
many parameters that should be calibrated in the
development phase. PET enables a designer to explore
the interactions between parameters in an automated
fashion and then displays the results in a way which
allows the designer to make tradeoffs and select the
parameter set which is most suited to the design
criteria. Since OpenMETA has this feature, there is
interest in applying OpenMETA to ADAS
development. In this paper, we focus more on utilizing
the PET in OpenMETA to calibrate system parameters
with the simulation models.

A growing challenge with the design of complex
systems is that each system may be designed using a
variety of architectures and each architecture is
comprised of components which also have variations
as shown in Figure 1. This information is represented
in OpenMETA through the use of design spaces. A
design space is a set of design containers which contain
a family of components which share a common
interface. Alternate design architectures are similarly
represented except rather than alternative components
there are alternative architectures where the
architecture is in turn made up of components. This
results in an explosion in the number of configurations
that could be considered. OpenMETA provides a tool,
which is called DSE, to list all of the candidate design
configurations and simulate those that meet the static

Standard architecture with
variants of components

Parallel architecture with
parametric variants of
components

Series architecture with
parametric variants of
components

Engine Generator Converter Battery

Motors Brakes

Engine Transmission Drivetrain Brakes

Engine Generator Converter Battery

Motors Brakes

Engine Generator Converter Battery

Motors Brakes

Engin
e

Transmiss
ion

Drivetr
ain

Brake
s Engine Transmission Drivetrain Brakes Engine Transmission Drivetrain Brakes

Standard architecture with
parametric components

Engine
(Hp=200,cyl=4
, .)

Transmission
(gears=4, ratio = [a,b,])

Drivetrain
(l=10, r=2.5)

Brakes

Engine Transmission

Motor Converter Battery

Drivetrain Brakes
Engine Transmission

Motor Converter Battery

Drivetrain Brakes
Engine Transmission

Motor Converter Battery

Drivetrain Brakes

Figure 1. An example of multiple architectures with component alternatives.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

44 DOI
10.3384/ecp1612443

__

constraints which are specified by the designer.
OpenMETA also provides a visualization tool that
allows a designer to compare the designs which meet
system requirements from DSE simulation results.

Although existing tools mentioned above allow us to

build a vehicle model with cyber components and
physical components, the proposed integration with
Unity allows us to provide a far richer, virtual reality
testing environment, including traffic, pedestrians,
sensor models and effects of weather and the
environment, such as those due to fog, heavy rain, and
icy road conditions. These effects are important,
because they can potentially compromise the correct
functionality of ADAS systems.

2.2 Unity
Instead of commercial tools of ADAS simulation, e.g.,
PreScan, CarMaker, etc. we use Unity (Unity
Technologies, 2015), which is a 3D game engine for
video game development, for road environment
modeling, and sensor modeling. The primary reason
that we selected a game engine was to leverage the
capability to involve users from all over the world in
our ADAS evaluation tests. This concept is referred to
as “gamified and crowd-sourced virtual testing”.
Generally, many situations would need to be
considered in order to evaluate an ADAS
implementation such as driver input, other vehicle
behaviors, road geometry and so on. By using a game
environment populated by human and virtual users, the
ADAS software can be tested more extensively than
with traditional static test scenarios.

In addition to providing a multi-user platform, Unity
has a user friendly GUI editor, 3D physics engine,
animation engine, 3D model import, and scripting in
C# or JavaScript. These features help a simulation
designer model cities which contain road models and

other dynamic objects, such as vehicles, pedestrians,
motorcycles, and bicycles. Although other 3D game
engines are available, Unity was selected because of its
large asset library, multiplatform support, and large
community support.. Many assets are available through
the Unity Asset Store which accelerates development
and would not be available in other tools. For example,
road editors, vehicle physics, and car traffic simulators
are available as ready-to-use assets with Unity.

3 Methodology

3.1 Simulation Architecture
We integrated the four tools for the simulation
framework: Dymola, Simulink, OpenMETA and
Unity. The architecture is shown in Figure 2.
OpenMETA integrates the Dymola and Simulink
models. The Dymola model has some vehicle physical
components, including the engine, transmission,
driveshaft, and differential from Vehicle Dynamics
Library. The Vehicle Dynamics Library is developed
by Modelon (Modelon, 2014). Other components, such
as wheels, are modeled in Unity. The interfaces
between Unity and Dymola are wheel torques and
wheel rotation speeds. The Dymola simulation sends
wheel torques to the Unity simulation, and the Unity
simulation sends wheel rotation speeds to Dymola.
These interfaces are implemented by UDP socket
communication. The Modelica Device Drivers
(Bernhard et al, 2015) library provides UDP
communication blocks used in Dymola.

The Unity model also has road environments, other
vehicle models, and sensor models for ADAS systems.
The sensor data in Unity is also sent to the Simulink
controller via UDP. The list of UDP interfaces is
shown in Table 1. In the Unity model, some assets
from Unity Asset Store were used for modeling. For
example, EasyRoad3D Pro is used for road building,

Figure 2. Simulation architecture

OpenMETA

Dymola Modelica model
(Library which is used)

Legends:

Simulink model

Unity

Control Software Model

Vehicle Dynamics Model
(Vehicle Dynamics Library)

•  Engine
•  Transmission
•  Drive Shaft
•  Differential

UDP Socket Communication Model
(Modelica_DeviceDrivers)

UDP
•  Vehicle Dynamics

  Tire-road Interaction
•  User Interface

  Gas Pedal
  Brake Pedal
  Steering
  Cruise Control Switches

•  Roads
•  Other Vehicles

UDP data are shown in Table 1

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612443

45
__

and the Urban Construction Pack for building city
models.

Table 1. UDP Communication data list

Direction Data

Dymola →
Unity

Wheel torques

Vehicle status (ADAS status, etc.)

Unity →
Dymola

Wheel rotation speeds

Sensor data (Millimeter wave radar, etc.)

User operation (Pedals, steering, etc.)

4 Case Study
In this paper, we show simulation results with PET in
OpenMETA to illustrate the advantages of this
simulation framework. The PET is a highly-efficient
methodology for calibrating control software
parameters.

As the first case study for this simulation toolchain
with PET, we decided to model the Adaptive Cruise
Control (ACC) system. The ACC is one of the ADAS
systems. This system helps mitigate driver fatigue by
assisting accelerator operations. Toyota’s ACC system
has 2 modes: constant speed control mode and vehicle-
to-vehicle distance control mode. Constant speed
control mode is the same as a conventional cruise
control system. While this mode is active the system
works to maintain a target velocity. Vehicle-to-vehicle
distance mode works with sensors, such as millimeter
wave radar sensor that detects the presence of lead
vehicles. Upon detecting a vehicle, the ACC adjusts the
speed in order to maintain a safe following distance.
The control flow is shown in Figure 3. The driver can
choose the following distance: Long, Middle or Short.
Actual distances are determined based on the velocity
of the vehicle.

For the ACC case study in this paper, we defined
following scenario as shown in Figure 4. There is an
ACC installed in host vehicle A, which has initial
speed of v0 and a lead vehicle B, which has constant
speed vfront. Vehicle A is initialized with the ACC
active and velocity set point vset. The initial distance
between two vehicles was set so that vehicle A
accelerates to the speed vset. After some time vehicle A
senses vehicle B and transitions to vehicle following
mode. Vehicle A decelerates to maintain the distance
between two vehicles dset. In this paper, we used values
in Table 2.

Figure 3. Adaptive cruise control diagram (Shiraishi et al,
2011)

Figure 4. Case study of ACC system

Table 2. Parameters used in the simulation

Parameters Values

v0 0 km/h

vset 70 km/h

vfront 50 km/h

d0 150 m

dset 40m

1 2 3

v0

vfront

vset

v

t

Maintain
set distance

1

2

3

Vehicle A Vehicle B

d0

vfront

vset

v0 vfront

vfront

vfront
dset

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

46 DOI
10.3384/ecp1612443

__

4.1 Controller Model
The controller1 developed for this experiment is
bimodal. The first mode utilizes vehicle-to-vehicle
distance as the desired value and the second mode uses
a velocity set point as the desired value. Both
controllers were implemented using PD controllers.
The controller behavior is to maintain a safe following
distance if there is a lead vehicle. Otherwise, it keeps
vehicle speed to the set speed. The PD gains are
calibrated by using PET which is discussed below. The
ACC is always activated during the simulations so that
the simulation does not need any driver inputs.

4.2 Unity Model
For the ACC case study, we added a long straight road,
two vehicles and a millimeter wave radar sensor
model. The sensor model obtains a distance between
two vehicles and their relative speed. These signals are
communicated to Dymola via UDP and are used as
inputs to the controller. The sensor model was built by
using “Ray” class in Unity scripting C# API which is
often used in shooting games.

4.3 Parametric Exploration Tool and Test
Bench

To run the simulation from OpenMETA with PET,
designers have to set up some Dymola parameters,
such as simulation time, solver, etc. in the OpenMETA
Test Bench as shown in Figure 5. Additionally,
metrics, which are used for evaluations of the models,
need to be described in the Test Bench. The metrics in
the ACC case study are velocity and gap distance
overshoot. Settling time and rise time are also major
metrics of this kind of system, but have not been
included in this case study.

Next step toward parameter design is building a PET
test bench. PD gains, which are speed control P, D
gains and distance control P, D gains, are target
parameters to be calibrated. In the PET test bench,

1 The ACC controller model in this paper is not a real
ACC model

designers need to assign parameters, their ranges, and
testbench outputs or metrics. The PET test bench is
also shown in Figure 5.

4.4 Simulation Results
We ran the PET of the ACC case study with
parameters which are shown in Table 2. The result of
the PET simulation results can be visualized as a
“Constraint Plot” in the OpenMETA dashboard, which
is shown in Figure 6. The horizontal axis and vertical
axis of this plot are the PD gains mentioned above. The
plots show boundaries, which represent which
combinations of parameters that meet the overshoot
requirements. Thresholds are adjustable in the
dashboard. The threshold values in Figure 6 are
overshoot < 0.

A designer can find PD gains by clicking on a point
in a plot. We picked gains which are close to the
boundary which meets both overshoot requirements.
The graphs in Figure 7 are Dymola simulation results
using gains selected by examining the constraint plot
shown in Figure 6. The upper graph in Figure 7
represents distance between two vehicles; the lower
graph in Figure 7 represents the velocity of vehicle A.
The red line represents the target value and the blue
line represents the current value. This plot shows that
there is no overshoot in either graph, demonstrating
that the PET was useful in selecting design parameters.

Figure 5. OpenMETA models for PET

PET Test Bench
•  Target parameter range
•  Metrics

Test Bench
•  Simulation settings

  Simulation Time
  Solver
  Input parameters
  Metrics

Model Integration
•  Controller model
•  Vehicle dynamics model

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612443

47
__

5 Conclusions
This paper described the methodology of integrating
OpenMETA and Unity. The foundation of an
integrated simulation framework, which includes PET
for ADAS evaluation, has been built. As a result,
designers may calibrate control software parameters
more efficiently. Next steps include developing high
quality and multi-fidelity models which would allow

for greater flexibility in the design process and
developing additional case studies including the
addition of driving scenarios such as: curves,
intersections, etc. Additionally, it is also planned to
consider driver-in-the-loop simulation which
incorporate user input from Unity clients. These
simulations would allow for some interesting
applications. One such application is developing a

Figure 6. PET result: Constraint Plot

Figure 7. Waveform results of PET

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

48 DOI
10.3384/ecp1612443

__

virtual dealership concept in which customers
participate in the design of their vehicles, and test-drive
their creations. This test environment would also be
used to crowd-source vehicle testing allowing for
improvements to systems like ADAS and resulting in
designs that have better performance and reliability.

References
Bernhard Thiele, Tobias Bellmann, tbeu,

Modelica_DeviceDrivers, 2015 URL:
https://github.com/modelica/Modelica_De
viceDrivers

Dassault Systèmes AB, Dymola 2015, 2015 URL:
http://www.3ds.com/products-
services/catia/products/dymola

D. Gruyer, S. Glaser, S. Pechbert, R. Gallen, and N.
Hautiere, Distributed Simulation Architecture for the
Design of Cooperative ADAS”, Presentation at First
International Symposium on Future Active Safety
Technology toward zerotraffic-accident, September 2011.

MathWorks, Simulink 8.6, 2015 URL:
http://jp.mathworks.com/products/simuli
nk/

Modelon, Vehicle Dynamics Library 1.9, 2014 URL:
http://www.modelon.com/products/modelic
a-libraries/vehicle-dynamics-library/

Shinichi Shiraishi and Mutsumi Abe. Automotive System
Development Based on Collaborative Modeling Using
Multiple ADLs. Presentation at ESEC/FSE 2011
Industrial Track, Sep. 2011.

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry
Howard, and Ethan Jackson. OpenMETA: A Model- and
Component-Based Design Tool Chain for Cyber-Physical
Systems. From Programs to Systems. The Systems
perspective in Computing, pp. 235-248, 2014. doi:
10.1007/978-3-642-54848-2_16

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Xenofon
Koutsoukos and Jason Scott. The META Toolchain:
Accomplishments and Open Challenges. Vanderbilt
University Institute for Software-Integrated Systems
Technical Report, 2015

Toyota Motor Corporation (2014). “2014 Toyota Safety
Technology Media Tour”, URL:
http://www.toyota-
global.com/innovation/safety_technology
/media-tour/ .

Unity Technologies, Unity 5.3.0, 2015 URL:
https://unity3d.com/unity

Boris van Waterschoot and Mascha van der Voort.
Implementing Human Factors within the Design Process
of Advanced Driver Assistance Systems (ADAS)
Engineering Psychology and Cognitive Ergonomics Vol.
5639, pp. 461-470, 2009. doi: 10.1007/978-3-642-02728-
4_49

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612443

49
__

Active Elbow Joint Model

Hyung Yun Choi1 Manyong Han1 Whe-Ro Lee1

Toru Matsui2 Hisayoshi Matsuoka2

1Mechanical System Design Engineering Dept., Hongik University, Korea, hychoi@hongik.ac.kr
2Integrated CAE and PLM Dept., Nissan Motor Co, Ltd., Japan

Abstract

Voluntary and reflexive muscle activation of human

elbow joint is investigated by both subject tests and

numerical simulations. A jerk loading is applied to

extend the elbow joint with different muscle tensing and

pre-recognition conditions. Inter- and Intra-subject

variations of hand displacement are analyzed for an

objective assessment of the active response at the elbow

joint to the external perturbation. Both Modelica and

finite element mesh models are developed using passive

kinematic joint element and active torque which has PID

close loop control. The simulation result from these two

models are compared with test results and shows a good

correlation.

Keywords: Digital human body model, Voluntary and
reflexive muscle activation

1 Introduction

Digital human body models (DHBM) have been

widely adopted in various CAE processes of vehicle

design, e.g., car crash simulation for the prediction of

injury risk and riding comfort simulation for the

assessment of occupant discomfort. For most of such

cases, the DHBM is in 3D finite element mesh shape so

that it can mechanically interact with vehicle structures

such as seat, safety belt and airbag. Thanks to efforts

from many researchers, there is a significant

advancement in human body modeling

(www.ghbmc.com), e.g., mechanical behavior of

biological tissue but the active human response with

voluntary and reflexive muscle activation that affects

occupant kinematics are still remaining as a great

challenge.

Muscle tensing of bracing occupant produces larger

axial forces, stress redistribution within bones, increase

in effective mass and stiffness, altered kinematics, and

less excursion and smaller joint rotations (Choi, 2005).

Voluntary and reflexive muscle activation of a vehicle

occupant is modeled by active joint element at each

anatomical joint position (e.g., shoulder, knee, spine,

and etc.). There are two basic elements at each joint, i.e.,

passive kinematic joint elements and torque actuators.

Assuming that a co-contraction of agonist and

antagonist muscles stiffens the joint articulation, spring

constant and damping coefficient of the passive

kinematic joint element are adjusted for the different

level of co-contraction, which is considered as a major

mechanism of voluntary muscle activation. A vestibular

reflexive muscle activation for the posture stabilization

is modeled by active torque with PID close loop control.

Active torque, the control signal is a sum of proportional,

integral, and derivative terms between current and

reference states of the joint angle.

Test of jerk loading applied to elbow joint which is

relatively simple one dimensional articulation is

performed with live human subjects to identify and

quantify the active response with different muscle

conditions. Two kinds of numerical elbow models, i.e.,

3D finite element mesh and Modelica models are built

to reproduce the active response to the jerk loading and

further to elucidate those kinesiologic behavior of

bracing human joint.

2 Jerk loading to elbow joint extension

During the vehicle driving or just riding, external

loadings are often applied to the occupant as

perturbations, e.g., vertical bumping on rough road,

lateral G force at cornering, and autonomous braking

with ADAS (Advanced Driver Assistant System). It

would be quite natural that the occupant spontaneously

brace to keep his (or her) upright sitting posture. In order

to mimic this kind of perturbation of vehicle in motion

and bracing behavior of the occupant, jerk loadings to

elbow joint extension are performed as follows.

2.1 Anthropometry of test subjects

Five male subjects are recruited and their average age

and anthropometric data are listed in Table 1.

Table 1 Average data (SD) of five test subjects

age height
Weight

(kg)
Fat Free

Mass(kg)*
forearm

weight(kg)**

28
(2.3)

172

(4.6)

72.8

(5.1)

53.9

(2.1)

1.714

(0.11)

*: from inbody analysis

**: calculated from GEBOD (Huaining Cheng, 1996)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

50 DOI
10.3384/ecp1612450

__

2.2 Jerk loading test

The elbow joint with simple 1-DOF is selected. Upper

body and upper arm of test subject are restrained and the

elbow joint angle is to maintain its initial position, i.e.,

keeping the forearm levelled before and after the jerk

loading. There are two kind of loadings, 5kgf static

loading on hand and 3kgf jerk loading on wrist which is

initially carried by a string and just becomes a jerk load

when string is cut. (See Fig. 1). The subject has two test

conditions, 1) co-contraction versus single contraction

and 2) recognition versus unrecognition of jerk loading.

Co-contraction or single contraction is respectively

attempted by contracting both agonist (e.g., biceps) and

antagonist (e.g., triceps) muscles or only agonist

muscles. Recognition of the jerk loading to test subject

is made by letting him to make his own observation of

the action of string cut, i.e., open eye condition. On the

contrary, the closed eye condition does not allow the test

subject to become aware of the precise moment string

cut. There are thus a total four cases of test conditions,

“open eye tensed” (recognized with co-contraction),

“closed eye tensed” (unrecognized with co-contraction),

“open eye relaxed” (recognized with single contraction),

and “closed eye relaxed” (unrecognized with single

contraction). All five test subjects have two trials for

each case of four test conditions.

Figure 1 Test setup for jerk loading at elbow joint

2.3 Measurement of hand motion

Hand displacements, digitized from video, are shown in

Fig. 2. Intra-subject variations are quantitatively

assessed by CORA (CORrelation and Analysis,

http://www.pdb-org.com/de/information/18-cora-

download.html) score as listed in Table 2. All five test

subjects showed high CORA scores with “open eye

relaxed” condition, i.e., good repeatability between two

trials at recognized with single contraction muscle

condition. It is speculated that the cases with low CORA

score are due to the poor coordination of muscle tensing

condition of the subject, e.g., closed eye relaxed case with

test subject #1.

(a) Open Eye Tensed

 (b) Close Eye Tensed

(c) Open Eye Relaxed

(d) Close Eye Relaxed

Figure 2 Typical hand displacements in vertical

direction (y) due to the jerk loading from subject #2 (●:

1st try, ▲: 2nd try)

Table 2 CORA score for intra-subjects variation
Sub.

Open eye

Tensed

Close eye

Tensed

Open eye

Relaxed

Close eye

Relaxed

1 0.699 0.967 0.957 0.493

2 0.746 0.732 0.948 0.768

3 0.962 0.642 0.955 0.898

4 0.365 0.828 0.720 0.851

5 0.546 0.766 0.795 0.914

Mean
(S.D.)

0.693

(0.21)

0.787

(0.11)

0.875

(0.10)

0.785

(0.15)

The inter-subject variation is also represented by test

corridors with mean hand displacements as shown in Fig.

3. The open eye tensed condition shows the least width

between upper and lower corridors while the open eye
relaxed condition has largest.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612450

51
__

(a) Open Eye Tensed

 (b) Close Eye Tensed

(c) Open Eye Relaxed

 (d) Close Eye Relaxed

Figure 3 Test corridors and mean hand displacements

of three subjects.

3 Three dimensional finite element mesh

versus Modelica models

Both FE mesh and Modelica models are shown in Fig.

4. Two rigid bodies, i.e., upper and lower arms

articulated by one dimensional kinematic joint element

that represents the elbow joint. The dynamic properties

of two rigid body are assigned from the average data of

five test subjects. It is confirmed that the outcome of

both model, i.e., elbow extension and hand displacement

from the jerk loading is identical to each other.

Figure 4 3D finite element mesh (top) and Modelica

(bottom) models of active elbow joint

3.1 Modeling of active elbow joint

The numerical modeling of elbow joint and its active

response to the jerk loading is designed by

implementing two mechanical components, a passive

1D kinematic joint element and a torque actuator. The

linear stiffness and damping coefficient of the passive

1D kinematic joint element present the level of co-

contraction that stiffens the elbow joint articulation.

Voluntary and reflexive muscle activation responding to

the jerk loading is modeled by the torque actuator with

a PID close loop feedback control. Considering that the

test subject tries to keep the initial elbow joint angle,

torque (Mz) is activated to minimize the error which is

the difference between the initial and current elbow joint

angles. Meijer et al (2013), and Brolin et al (2015)

presented successful applications of the active torque

with PID control to their active human body models.

Gain values for the PID control, i.e., Proportion, Integral,

and Derivative terms determine the rates of torque

generation. Faster torque generation with larger gain

values stands for the recognition of jerk loading, i.e.,

“open eye” condition in the subject test. On the other

hand, “closed eye” condition for unrecognized and thus

more reflexive response that is modeled by smaller gain

values. Comparison of hand displacements between

subject test and simulation for four cases are shown in

Fig. 5. The comparison of hand position at the

maximum elbow extension between subject test and

simulation is also shown in Fig. 6.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

52 DOI
10.3384/ecp1612450

__

Figure 5 Comparison of hand displacements between

subject test and simulation.

(a) Open Eye Tensed

(b) Close Eye Tensed

(c) Open Eye Relaxed

(d) Close Eye Relaxed

Figure 6. Comparison of hand position at the maximum

elbow extension between subject test (1st trial of Subject

#4) and simulation

3.2 Hypothesis on the modeling of active elbow

response

Table 3 lists modeling parameters of active elbow joint

for all four cases. The derivative term in PID close loop

control turns out to be insensitive in this simulation of

active response to the jerk loading and thus excluded.

Those parameters were estimated by heuristic method

(trial and error) and based on following hypotheses;

1. Muscle condition e.g., co-contraction (tensed

condition) vs. single contraction (relaxed condition) is

modeled by damping coefficient of K-joint as shown in

Fig. 7.

 Co-contraction Single contraction

 (Tensed condition) (Relaxed condition)

Figure 7 Damping coefficients for different muscle

tensing conditions

2. Stiffness of K-joint is dependent on inter subject

variations, e.g., muscular structure, gender, etc.

- Muscular build (stronger) arm ↑, male > female, and

so on.

3. Recognition of perturbation (Open eye vs. closed eye)

is controlled by gains of PID close loop control

- Relaxed condition (single contraction) has decreased

gains by factor of 0.35 than tensed condition (co-

contraction)

4. Muscle reflex latency (delay), 30ms is given to the

closed eye condition

Table 3 Modeling parameters and CORA score of active

elbow joint model

Modeling
parameters

Open eye

Tensed

Close eye

Tensed

Open eye

Relaxed

Close eye

Relaxed

Damping C.

(kNms/rad) -1.5/1.5 -1.5/1.5 -1.5/0.5 -1.5/0.5

Stiffness
(kNm/rad) 0.1 0.1 0.1 0.1

Kp

(kNm/rad) 80 50 80*0.35 50*0.35

Ki
(kNms/rad) 0.015 0.015 0.015*0.35 0.015*0.35

PID Control

Latency(ms) 0 30 0 30

CORA

Score* 0.916 0.897 0.950 0.892

* Calculated between test and simulation in Fig. 5

The correlation between test and simulation results

for all four cases are qualitatively analyzed by CORA

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612450

53
__

score as in Table 3. Open eye condition, i.e., recognition of

jerk loading, shows better correlation slightly for both tensed

and relaxed muscle conditions than closed eye condition.

(0.916, 0.950 > 0.897, 0.892)

4 Whole body modeling

The same modeling scheme of active response at elbow

joint is extensively applied to the whole body model.

The version of multi-body model (c.f., deformable body

model) consists of 15 rigid body segments and 14

articulated joints (Fig. 8). Each articulated joint has

either 1 DOF (e.g., elbow, knee, etc.) or 3 DOF (e.g.,

shoulder, hip, spine, etc.) depending on its

biomechanical characteristics. Same kind of passive

kinematic joint element and active torque as in the active

elbow joint model are implemented but its mechanical

characteristics, e.g., the moment-angle curve and

damping coefficient are dissimilar to each other. The

errors to be removed by active torques at articulated

joints are a composite function of joint angle changes at

every body segments. Human driver voluntarily and/or

reflexively braces to maintain upright sitting posture

against various kinds of G-forces during vehicle

maneuvering such as emergency braking, lane change,

cornering, etc. Validation of active human body model

against the test data from open literature (Huber, 2015)

is now in progress.

Figure 8 Whole body model with 15 rigid body

segments and 14 articulated joint

5 Discussion

The SISO (Single-Input Single Output) problem with

1D active elbow joint model becomes MIMO (Multiple-

Input Multiple Output) problem with the whole body

model. Human driver’s muscle recruitment strategy of

active response to brace against external perturbations

belong to the quite complicated behavioral kinesiology.

Also inter and intra subject variations make the active

human body model as one of exciting challenges.

References

Karin Brolin, et al. Development of an Active 6 Year Old

Child Human Body Model for Simulation of Emergency

Events, IRCOBI 2015.

Huaining Cheng et al. (1996) The development of the GEBOD

program, Biomedical Engineering Conference, Proceedings

of the 1996 Fifteenth Southern

Hyung Yun Choi, et al, Experimental and numerical studies

of muscular activations of bracing occupant, ESV 2005

Phillip Huber, et al, Passenger kinematics in braking, lane

change and oblique driving maneuvers, IRCOBI 2015

Riske Meijer, et al. Modelling of Bracing in a Multi‐Body

Active Human Model, IRCOBI 2013.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

54 DOI
10.3384/ecp1612450

__

Modelingandsimulationforleg-wheelmobilerobots

usingModelica

HirokiYoshikawa TakatsuguOda KenichiroNonaka KazumaSekiguchi

TokyoCityUniversity,Japan,{g1681237,g1591201,knonaka,ksekiguc}@tcu.ac.jp

Abstract

Modelingofcomplexrobotswhichconsistofmechani-
calandelectricelementshasattractedalotofattentionto
beutilizedforanalysis,simulationanddevelopment.In
thispaper,wemodelthespaceexplorationrobotwhich
hasleg-wheelmechanismsusingModelica,whichisan
equationbasedlanguageandconvenienttocopewitha
complexphysicalsystem.Inaddition,toevaluatethe
performanceofplanetaryexplorationrobots,weconduct
simulationsconsideringthespaceenvironmentusingthe
fundamentalcontrolsystemandtherobotmodel.The
simulationresultsindicatethatconsideringloadshiftdue
tocentrifugalforceisimportantunderlowgravitational
acceleration.Keywords:leg-wheelmobilerobots,mod-
eling,spacerobots,controlsystem

1 Introduction

Leg-wheelmobilerobotsdipictedinFigure1attractalot
ofattentionandarewidelydeveloped,becausetherobots
achievehighstabilityutilizinglegmechanismandhigh
mobilityusingwheelmechanism. Leg-wheelhybrid
platformQuattroped,whichhastwodegree-of-freedom
legs,isdeveloped(Shenetal.,2009).Inordertoclimb
upontothesteps,thecontrolmethodforlimbmech-
anismrobotASTERISKisstudied(Fujiietal.,2006).
Theactionplanningalgorithmforaplanetaryexplorer
robotLEONisproposed(Rohmeretal.,2010).Since
theserobotscanmoveonuneventerrain,itisexpected
toworkinplanetaryexploration.However,conducting

Figure1.Leg-wheelmobilerobots.

experimentsinspaceenvironmentrequiretoomuchcost
andtime. Therefore,simulatingtherobotbehaviorin
spaceenvironmentappearsasapracticalchoice.
EquationbasedlanguageModelicaisveryefficacious

tomodelcomplexsystemswhichhavemechanicaland
electricalelements. Severalstudieshavereportedthe
modelingandsimulationresultsofseveralindustrialap-
plicationsusing Modelica(Otteretal.,2015)(Hirano
etal.,2015).Inthispaper,wemodelandsimulatethe
behaviorofaleg-wheelmobilerobotmodeledusinggeo-
metricparametersofATHLETEwhichhastheleg-wheel
mechanismdevelopedbyNASA(Wilcoxetal.,2007)in
thespaceenvironmentusingModelica.

2 Modelingleg-wheelmobilerobot

2.1 Outline

Table1showsthecharacteristicsofthelegandthewheel
mechanism. Themovingspeedandefficiencyofthe
wheelmechanismsishigherthanthatofthelegmecha-
nisms.Therobotsequippedwiththelegmechanismscan
moveonuneventerrain.Moreover,thelegrobotswhich
havetheredundancyinlegarrangementcancontrolthe
wheelpositiontoavoidoverturn. Theleg-wheelmo-
bilerobotspossessbothcharacteristicswhichenhance
therobotmobility.Inthispaper,wefocusontheATH-
LETEasatypicalexampleofleg-wheelmobilerobot.
TheATHLETEisalunarexplorationrobotdeveloped

byNASA.Theleg-wheelmechanismswithsixdegree-
of-freedomconsistingofthewheelmechanismandthe
sixjointsaremountedoneachvertexofthehexagonal
body.TheATHLETEisabletoallocateloadsandmove
onuneventerrainwhilemaintainingthebodyhorizon-
tally.Theseleg-wheelmechanismsareutilizedinorder
toaccommodateawiderangeoftasks.

Table1.Characteristicsofleg-wheelmobilerobots

Leg Wheel leg-wheel
Climbingsteps Good NG Good
Loadsharing Good NG Good
Movingspeed OK Good Good

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612455

55
__

b

a

c

d
e

f

world

x

z

Limb a

Con

Limb b

Limb c

Limb d

Limb e

Limb f

fi
x
ed
Tr
an
sl
ati
on

r
={
-
2.
0,
0.
0,
2.
0}

a
b

a
b

fr
ee
M
oti
on

Con

Con

Con

Con

Con

scene

2

1 #

2 #

Top-End Model

Contorller

Body Limb

m=M

pointMass

fixedTranslation

r={Lb[1],Lb[2],0}

a b

fixedTranslation1

r={Lc[1],Lc[2],0}

a b fi
x
ed
Tr
ansl
ati
on2

r
={
Ld[
1],
Ld[
2],
0}

a
b

fixedTranslation3

r={Le[1],Le[2],0}

a b

fixedTranslation4

r={Lf[1],Lf[2],0}

a b

fi
x
ed
Tr
an
sl
ati
on
5

r
={
La
[
1],
La
[
2],
0}

a
b

y

x z

fixedFrame

resolve

r

Senser_CM[1]

frame_d

frame_c

frame_b

frame_a

frame_f

frame_e

frame_CM

extend_bus_model1

a b

n={0,0,1}
Hip_Yaw

a
b

n
={
0,
1,
0}

Hi
p_
Pitc
h

a b

n={0,0,1}
Ankel_Roll

a
b

n
={
0,
1,
0}

A
nk
el
_
Pitc
h

a
b

n
={
0,
1,
0}

K
nee_

Pitc
h

a b

n={0,0,1}
Knee_Roll

bodyShape

r={0,0,l1}

m1 b a

body
S
hape1

r
={
0.
0,
0,l
3}

m
3
b

a

body
S
hape2

r
={
0.
0,
0,l
5}

m
5
b

a

bodyShape3

r={0.0,0,l7}

m7 b a

body
S
hape4

r
={
0.
0,
0,l
2}

m
2
b

a

bodyShape5

r={0.0,0,l6}

m6 b a

bodyShape6

r={0.0,0,l4}

m4 b a

hub

trq

Pacejka02

{175,70,13}

frame_a5

flange_a

flange_a1

flange_a2

flange_a3

flange_a4

flange_a5

Road

Figure2.Top-endofModelicamodelinDymola.

Figure3.Leg-wheelmobilerobotmodel.

2.2 Modeling

Wemodeltheleg-wheelrobotwhichconsistsofbody
andlimb-partsusingModelicainordertosimulatethe
behaviorofthewheelmechanismandanalyzethemo-
bilityofATHLETE.TheATHLETEmodeldescribedby
ModelicaisshowninFigure2and3.Therobotmodelis
designedasarigidhexagonalbody(orangeframe)and
links(greenframe),asFigure2indicates.Thebodymass
pointwhichisthegravitycenterofthehexagonissetas
theoriginoftherobotcoordinatesystem(blackarrows
inFigure3).Aleg-wheelmechanismpartconsistsofsix
revolutejoints,sevenlinksandthewheelmechanism.
Thelimbmasspointsaresetonthecenterofthewheel
andthemiddleofeachlink.ThetiremodelofVehicle
DynamicsLibrary(VDL)ofDymolaisintroducedtore-
producetheactualwheelbehavior.

3 Structureofthecontroller

3.1 Outline

Wheels torque

Steering angle
Wheels angular velocity

Limbs joint angle

Limbs joint torque

ATHLETEmodel

Guidancecontrol

Path planning

Motioncontrol

Plant

)5~1(=jji,θ

ji,τwτ

wω 6,iθ

xu yu φu

AsFigure4indicates,thecontrollerconsistsofthreelay-
ers:pathplanninglayer,guidancecontrollayer,andmo-
tioncontrollayer.Inthispaper,thefundamentalcontrol
systemisproposedtoachievethereferencevehicleve-
locityinthemotioncontrollayer.Themotioncontrol

Figure4.Controlsystemflow.

layerconsistsoftwoparts.Firstoneisthecontrolsys-
temfordrivingandsteeringofeachwheel.Anotherpart
determinesthepostureoftherobot.Detailsofeachblock
areexplainedinthefollowingsections.

3.2 Motioncontroller

Inthissection,weexplaintheleg-wheelmobilerobot
modelandacalculationmethodofthecontroller.Fig-
ure5depictsthemodeloftheleg-wheelrobot.X0 Y0
istheinertialcoordinatesystemandx yisthecoordi-
natesystemfixedtotherobot.(Xg,Yg)isthepositionof
therobotcenterofgravity(CoG)ontheX0 Y0coordi-
natesystemandϕistheorientationoftherobot.ux,uy
arethecommandtranslationalvelocityatCoGanduϕ
isthecommandangularvelocityonthex ycoordinate
system.
Figure6showstheconfigurationoftheleg-wheel

mechanismoftheATHLETEandthedefinitionofthe
angleandtorqueofthelegjoints.θi,jaretherotationan-
gleofeachjointwheresubscripti=1 6indicatesthe
legsnumberandj=1 6indicatesjointnamesofHip
Yaw,HipPitch,KneePitch,KneeRoll,AnklePitch,and
AnkleRoll,respectively.Inthispaper,theAnkleRoll
angleθi,6iscontrolledconsideringmovingdirectionand

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

56 DOI
10.3384/ecp1612455

__

U
Wheel1

Wheel2

Wheel4

Wheel3

Wheel5

Wheel6

y

gX

gY

xu

yu φ

φu

x

0X

0Y

Figure5.

Ankle Roll

Knee Roll

HipYaw

Ankle Pitch

Knee Pitch

Wheel

1,iθ

6,iθ
5,iθ

4,iθ

3,iθ

2,iθ

1,iτ

2,iτ

3,iτ

4,iτ

5,iτ

6,iτ

iw
τ

Hip
Pitch

Top-viewofplantmodel.

Figure6.ConfigurationoflimbjointsofATHLETE.

theotheranglesθi,1•••θi,5arecontrolledtomaintainthe
referenceposture.
Figure7showsthewheelandtheAnkleRollangle

correspondingtothesteeringangle.θi,0istheanglefrom
theCoGpositiontothewheel.
Thetranslationalvelocitiesofthewheelvx,iandvy,i

arecalculatedbasedonthecommandvelocityatCoG
ux,uyanduϕasfollows:

vx,i=ux yiuϕ, (1)

vy,i=uy+xiuϕ. (2)

Referenceangleθ̂i,6andangularvelocityofwheelω̂wi
arecalculatedasfollows:

θ̂i,6 = tan1
(
vy,i
vx,i

)

θi,0, (3)

ω̂wi = Vi/Rw, (4)

Vi = vx,icoŝθi,6+vy,isin̂θi,6, (5)

whereRwisaradiusofthewheelandVi

6,iθ

xu

0,iθ

yu

φu

y

x
ix

iy

iV

xiv

yiv

Wheeli

CoG

l

istranslational
angularvelocity.Inordertoachievethereferenceangle

Figure7.Velocityvectorofwheel.

θ̂i,jandangularvelocityω̂wi,weintroducethePDandP
controlasfollows:

τi,j=Pth(̂θi,j θi,j)+Kd(̇̂θi,j θ̇i,j), (6)

τwi=Pw(̂ωwi ωwi), (7)

wherePthandPwareaproportionalgainandKdisa
derivativegain.
Zeromomentpoint(ZMP)isaoneofconceptwhichis

anindexofstability.WhentheZMPpositionoftherobot
iskeptinsidethesupportpolygon,thestabilityofthe
robotbodyisassured.Weintroducetheturninglimitra-
diusrmaxconsideringrollingmomentandZMPposition
inordertoevaluatetherelationshipbetweentheheight
ofCoGandcentrifugalforce.IftheZMPpositionco-
incideswiththetipofthewheelposition,thesituation
oftherobotisregardedasalimitationofoverturn.In
thissituation,theturninglimitradiusrmaxiscalculated
asfollows:

rmax=
ux
2zc
gl
, (8)

wherezcistheheightoftherobotCoG,l=
√
xi2+yi2is

thelengthfromCoGpositiontothewheelpositionand
gisgravitationalacceleration.

4 Simulation

4.1 Conditions

Toanalyzerobotbehaviorinthespaceenvironment,we
conductthreesimulationswiththefollowingconditions:

∼Case1:Turningunderthelunargravitywiththe
heightofCoGhigh(ZCoG=1.45m)

∼Case2:Turningunderthelunargravitywiththe
heightofCoGlow(ZCoG=0.866m)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612455

57
__

∼Case3:Turningundertheearthgravitywiththe
heightofCoGhigh(ZCoG=1.45m)

Comparingcase1with2,weanalyzetheeffectofheight
ofCoGzCoG.TheATHLETEisabletochangetheheight
ofCoGzCoGbytakingadvantageoftheredundancyof
thelegjoints.Inthesesimulations,theheightofCoGis
changedsothatthepostureoftheATHLETEismain-
tained. Comparingcase1with3,weanalyzethein-
fluenceofthegravitationalaccelerationwhileturning.
PhysicalparametersoftheATHLETEaredetermined
basedonthereferencethesis(Wilcoxetal.,2007).Com-
mandedvelocitiesarêux=2.5m/s,ûy=0.0 m/s,and

ûϕ=
√
û2x+û

2
y/R.TheturningradiusRisdesigned

tochangesmoothlyusingthird-orderpolynomialfrom
R=1000mtoR=2.5min30s.Thesecommandedve-
locitiesgenerateaspiraltrajectorythattheturningradius
isgraduallydecreased.

4.2 ResultsandDiscussion

Figure8,9,and10showsimulationresultsofcase1,2
and3,respectively.Figure8(a)and9(a)depictthetra-
jectoryoftherobot,(b)depictthetranslationalandro-
tationalvelocity,(c)depictbodysideslipangleand(d)
depictaverticalloadofeachwheelFz.Figure10(a)de-
pictstranslationalandrotationalvelocityand(b)depicts
averticalloadofeachwheelFz.
AsshowninFigure8(a),whentheheightofCoGis

high,therobotcanturnwithoutoverturn,however,the
robotvelocityhastheerrorbetweencommandedandac-
tualvelocity,asFigure8indicates.Itisreasonablethat
thesideslipangleisgenerated,asFigure8(c)indicates.
Sincethevelocityuyiscausedbycentrifugalforces,the
bodysideslipanglearises.Figure8(d)indicatesthatthe
verticalloadisdistributedtoeachwheelununiformly.
Amongthem,limb5supports70 %ofthetotalload.
Theverticalloadoflimb1and4areequaltozero.It
indicatesthattherobotisrunningusingonlyfourlimbs.
AsshowninFigure9(a),whentheheightofCoGis
lowerthanincase1,therobotalsocanturnsuccessfully.
Figure9(b)(c)indicatethatthetendencyofvelocityand
bodysideslipanglearesimilartocase1.Itisnoteworthy
thattheloadshiftduetocentrifugalforceissuppressed,
asFigure9(d)indicates.Thereasonisreducingtheef-
fectofrollingmomentcausedbythecentrifugalforces.
AsshowninFigure10(a)(b),whengravitationalacceler-
ationissmallerthanincase1and2,thevelocitiesarere-
alizedbythecommandvelocity;therobotdoesnotgen-
eratethesideslipangle.Incase3,theinfluenceofrolling
momentgeneratedbythecentrifugalforcesissmaller
thancase1and2.Itisbecausethegravitationalacceler-
ationworkstosuppresstherollrotationalmovement.
Toevaluatethesesimulationresults,wediscussthe

limitturningradiusrmax.Attheturningradiusofrmax=
3.03m,therobotwillfalldownduetocentrifugalforce
inthecase1.Therobotisnotoverturnbutsomewheels

arefloatingatthetargetturningradiusofR=2.5m
whichissmallerthanthelimitturningradiusrmaxin
case1. Ontheotherhand,whenthetargetturningra-
diusismodifiedtoR=3.1mincase1,allwheelscontact
withtheloadsurface.Thereislittleerrorbetweenthe
limitandtargetturningradiuswithin0.1minthiscase,
eventhoughEq.(8)assumessimplifiedmodel.Thus,we
obtaintheadequatesimulationresults. Wecanusethe
relationshipofbalanceofmomentforthecontrol.Itis
expectedthattheturningabilityincase2and3isbetter
thanthatofcase1byEq.(8),becausethelimitturning
radiusdecreasesasgravitationalaccelerationincreases
andtheheightofCoGdecreases.Accordingly,thesimu-
lationresultsindicatethattheZMPpositionclosetothe
CoGposition(Xg,Yg)bysuppressingtheloadshiftofthe
robot.
Therobottendstogenerateskidinlunarspacewhere

theeffectsofgravitationalaccelerationaresmallerthan
thatoftheearth.Theseresultsindicatethatinorderto
achievehighmobilityunderthelunarenvironment,con-
sideringthesideslipangleandloadshiftisimportant,
becausetherobottendstooverturnunderlowgravita-
tionalacceleration.Tosuppressloadshiftbycentrifugal
forces,leg-wheelmobilerobotscanlowertheheightof
CoGusingthelegmechanism.Inaddition,arrangingthe
wheelposition,theleg-wheelmobilerobotscanachieve
highmobilityutilizingtheredundancyofthelegmecha-
nism.

5 Conclusions

Inthispaper,wemodeltheleg-wheelmobilerobots
whichhavetheleg-wheelmechanismusing Modelica
andconductthesimulationconsideringthelunarenvi-
ronment.Thesimulationresultsindicatethattherobots
tendtogeneratethevehiclesideslipwhichisthecause
forloadshiftandoverturnbecauseoflowgravityaccel-
eration.Therefore,themotioncontroller,whichconsid-
ersvehicleslippage,isrequiredtoachievehighmobility.
Thefuturedirectionsofthisstudyaredesigningguid-

ancecontroller,modelingmotordynamics,andconsider-
ingaterramechanicswhichexpresstheeffectsbetween
wheelandsandcalledregolith.

6 Acknowledgments

TheauthorsgratefullyacknowledgethesupportofGrant
inAidforScientificResearch(C)No.15K06155of
Japan.

References

ShotaFujii,TomohitoTakubo,andTatsuoArai. Climbing
upontostepsforlimbmechanismrobot"ASTERISK".In
InternationalAssociationforAutomationandRoboticsin
Construction,pages225–230,2006.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

58 DOI
10.3384/ecp1612455

__

−1

 0

 1

 2

 3

 10 15 20 25 30 35 40u x
, u
y
[
m/
s]
 ,
 u
φ
 [
ra
d/
s]

Time [s]
uxhat
uyhat

uφhat
ux

uy
uφ

(a)Torajectory(until40s).

−1

−0.5

 0

 0.5

 1

 10 20 30 40

Si
de

Sl
ip

An
gl
e
[r
ad
]

Time [s]

(b)Transrationalandrotationalvelocity.

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

 10 20 30 40

F
z
[
N]

Time [s]
limb1
limb2

limb3
limb4

limb5
limb6

(c)Bodysideslipangle. (d)Verticalloadofeachwheel.

Figure8.Case1-HighCenterofgravitywiththelunargravitationalacceleration-(R=2.5,zCoG=1.45,g=1.65)

−1

 0

 1

 2

 3

 10 15 20 25 30 35 40u x
, u
y
[
m/
s]
 ,
u φ
 [
ra
d/
s]

Time [s]
uxhat
uyhat

uφhat
ux

uy
uφ

(a)Torajectory(until40s).

−1

−0.5

 0

 0.5

 1

 10 20 30 40

Si
de

Sl
ip

An
gl
e
[r
ad
]

Time [s]

(b)Transrationalandrotationalvelocity.

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

 10 20 30 40

F
z
[
N]

Time [s]
limb1
limb2

limb3
limb4

limb5
limb6

(c)Bodysideslipangle. (d)Verticalloadofeachwheel.

Figure9.Case2-LowCenterofgravitywiththelunargravitationalacceleration-(R=2.5,zCoG=0.886,g

−1

 0

 1

 2

 3

 10 15 20 25 30 35 40u x
, u
y
[
m/
s]
 ,
u φ
 [
ra
d/
s]

Time [s]
uxhat
uyhat

uφhat
ux

uy
uφ

=1.65)

 0
 400
 800
 1200
 1600
 2000
 2400
 2800

 10 20 30 40

F
z
[
N]

Time [s]
limb1
limb2

limb3
limb4

limb5
limb6

(a)Transrationalandrotationalvelocity. (b)Verticalloadofeachwheel.

Figure10.Case3-HighCenterofgravitywiththeearthgravitationalacceleration-(R=2.5,ZCoG=1.45,g=9.81)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612455

59
__

YutakaHirano,ShintaroInoue,andJunyaOta. Modelbased
developmentoffuturesmallelectricvehiclebymodelica.
In11thInternationalModelicaConference,pages143–150,
2015.

MartinOtter, NguyenThuy, DanielBouskela,LenaBuf-
foni,HildingElmqvist,PeterFritzson,AlfredoGarro,Au-
dreyJardin,HansOlsson,MaximePayelleville, Wladimir
Schamai,EricThomas,andAndreaTundis.Formalrequire-
mentsmodelingforsimulation-basedverification.In11th
InternationalModelicaConference,pages625–635,2015.

EricRohmer,GiulioReina,andKazuyaYoshida. Dynamic
simulation-basedactionplannerforareconfigurablehybrid
leg-wheelplanetaryexplorationrover.AdvancedRobotics,
24,2010.

Shuan-YuShen,Cheng-HsinLi,Chih-Chungcheng,Jau-
ChingLu,Shao-FanWang,andPei-ChunLin. Designof
aleg-wheelhybridmobileplatform.InIEEE/RSJInterna-
tionalConferenceonIntelligentRobotsandSystems,pages
4682–4687,2009.

Brian H. Wilcox, Todd Litwin,Jeff Biesiadecki,Jaret
Matthews, MattHeverly,JackMorrison,JulieTownsend,
NormanAhmad,AllenSirota,andBrianCooper. ATH-
LETE:Acargohandlingandmanipulationrobotforthe
moon.JournalofFieldRobotics,27(5):421–434,2007.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

60 DOI
10.3384/ecp1612455

__

System-Level Design Trade Studies by Multi Objective Decision
Analysis (MODA) utilizing Modelica

Joshua Sutherland, Kazuya Oizumi, Kazuhiro Aoyama1 Naoki Takahashi2 Takao Eguchi3
1Department of System Innovation, The University of Tokyo, Japan,
{joshua,oizumi,aoyama}@m.sys.t.u-tokyo.ac.jp

2Dassault Systèmes K.K., Tokyo, Japan naoki.takahashi@3ds.com
3Shinko Research Co. Ltd, Tokyo, Japan eguchi.takao@kobelco.com

Abstract
This paper describes an approach and tool to conduct

System-Level Design Trades Studies utilizing Modelica
by way of Multi Objective Decision Analysis (MODA).
Requirements for this being identified from the
problems experienced on student Solar-Boat project.

The proposed approach and tool utilizes Modelica to
predict performance of different competing alternative
designs and MODA as a way to consistently compare
those alternatives subject to a range of Assessment
Scenarios.

To enable alternative designs to be created with low
effort the replaceable feature of Modelica components
is used such that the alternatives can share common
architectures subject to a defined hierarchy which
includes the Assessment Scenario itself.

A tool was created to automate the placement of
alternative designs into the Assessment Scenarios, run
the simulations and consolidate the results via MODA.
Examples utilizing the approach and tool to predict
performance of competing Solar-Boat designs and
compare them is provided.

Keywords: Trade Studies, Assessing Alternative
Designs, System-Level Design

1 Introduction

System-Level Design is defined in (Ulrich et al, 2011)
to “include the definition of the product architecture and
the decomposition of the product into subsystems and
components”. Expanding to describe what an engineer
must achieve with the System-Level Design, it is
expected that there is sufficient level of detail to enable
the system being designed to be assessed from the
perspective of predicting its performance and the cost
sufficiently accurately while simultaneously informing
what is acceptable to be designed at the detailed design
stage, as such bounding the number of alternatives at the
detailed design stage to a reasonable level.

Further the development of a System-Level Design
should involve the comparison of alternative competing
designs from which one or many might be selected for
further detailed design.

As described by (Parnell et al, 2014) trade studies (or
tradeoff studies) play a central role in decision
management and can be applied throughout a systems
lifecycle. With the term “tradeoff” implying that there
may be the need to forgo one objective to obtain a
desired level in another. As such trade studies are
suitable for usage in System-Level Design which
includes the selection of a design from a set of
competing alternatives.

1.1 Solar-Boat Project Description

Every summer on Japan’s Lake Biwa multiple
university teams participate in a competition to race
fully automatous solar powered boats over a 20km
course which they have designed, manufactured and
tested over the previous year. The University of Tokyo,
Department of Systems Innovation regularly
participates in this event, where all boats are subjected
to the following rules: Maximum 2m2 solar panels,
25Wh lead based batteries and ability to carry a 64g
payload. Figure 1 shows an example from 2014 of the
hydro foiling craft constructed by University of Tokyo
students.

Figure 1. 2014 University of Tokyo Solar-Boat.

1.2 Problems with Previous Solar-Boat Projects

In (Sutherland et al. 2015) a detailed analysis of the
activities conducted on the Tokyo 2014 Solar-Boat
project was conducted, the resulting summary of
problems mapped to Lifecycle Stages (LS) is listed in
Table 1. Reviewing the listed problems, the lack of
design exploration and performance prediction at LS3:
System-Level Design focused on a design target
identified in LS2: Concept Development resulted in
further problems downstream where alternatives
generation and simulated performance prediction were

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612461

61
__

not the norm. As such much trial and error based on
physically realized components was performed wasting
resources.

Table 1. Solar-Boat Lifecycle Stages, 2014 problems and
some proposed solutions.

Given that design exploration and performance

prediction were conducted inadequately on the 2014
project it is important to survey work products generated
and used related to early lifecycle stage numerical
simulation. The work products which did exist were
numerical models in Excel and MATLAB/Simulink.
These models while somewhat useful for predicting
performance suffered from the following problems:

1. Lack of modularity, preventing: Reuse of
existing model components in new situations;
generating alternative designs out of different
module combinations; different students
developing models independently and
subsequently virtually integrate.

2. Lack of adequate libraries, resulting in:
inaccurate approximations to complex
components (e.g. a solar panel array is a “power
generator” of a particular efficiency, rather than
a component which interacts with a circuit
current and voltage).

3. Lack of holistic model resulting in subsystems
being designed in isolation (e.g. Powertrain
designed separately to the main system
structure).

4. Lack of infrastructure to assess and compare
alternative designs consistently with each other
making it unclear as to what design has been
selected for what reason.

5. Lack of access to variables which the models
were not “designed” to provide. Much
modification is required to Excel and
MATLAB/Simulink to expose a new variable of
interest.

1.3 Proposing Solutions

Based on these problems identified at the early lifecycle
stages some high level solutions were proposed in
(Sutherland, 2016) to help alleviate these problems (also
shown in Table 1) by:

1. Providing knowledge in models.

2. Completing trade-off analysis of multiple designs
using models to simulate performance.

Given the different types of knowledge required to be
stored and mechanisms to explore alternative designs it
is proposed by (Sutherland, 2016) to utilize a conceptual
modeling language (OPM, Object Process Methodology
(ISO, 2015)) for LS2: Concept Development and
numerical modeling language with subsequent
simulation (Modelica) for LS3: System-Level Design.
In this paper the proposed usage of an automation
framework for expediting the completion of trade
studies utilizing Modelica for LS3: System-Level
Design is explored.

2 Developing Requirements for the Tools
and Approach while Reviewing Existing
Literature

Table 2 details a set of requirements for a trade study
tool and approach which aims to address the issues with
the previous Solar-Boat projects approach. A brief
comparison to existing tools and methodologies is
provided in the following sections which the focuses on
an adequate numerical modeling and simulation
language (Section 2.1) and systematic approach
(Section 2.2).

2.1 Modelica

The use of Modelica subject to a logical approach can
address many of the requirements identified in Table 2.
Describing this explicitly:
1. The replaceable keyword enables subsystems and

components to be replaced subject to a defined
interface.

2. Large libraries of standard components exist and
new ones can be developed based on equations
quickly.

3. Components integrate across multiple domains.
4. Simulations provide access to all the variables of

the equations which describe the components
behavior.

Lifecycle Stage
(LS)

2014 problems
Proposed
solutions

LS1: Clarify Slow to acquire
initial
knowledge.

Provide
knowledge in
models.

LS2: Concept
Development

Unclear of the
design target.

Complete
trade-off
analysis of
multiple
designs using
models to
simulate
performance.

LS3: System-
Level Design

Little
exploration of
alternatives or
their predicted
outcomes.

LS4: Detail
Design

Little prediction
of performance.

LS5:
Production, Test
and Refinement

Based on trial
and error.

LS6: Race Lost race due to
faults which
could have been
predicted with
modeling.

LS7:
Knowledge
Transfer

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

62 DOI
10.3384/ecp1612461

__

Table 2. Solar-Boat previous numerical modeling
problems and requirements for the proposed system.

2.2 Trade Study Approaches

The International Council of Systems Engineering
(INCOSE) provides by way of description in (INCOSE,
2015) and (SEBoK, 2015) a decision management
process which is intended for trade studies. Two
implementations of this process are provided in (Cilli et
al, 2014) and (Edwards et al., 2015). In these
implementations a common architecture of subsystems
is defined for the system of interest, variation of the
subsystems within this architecture enables alternative
System-Level Designs to be generated. Each of these
alternatives are then assessed by a common set of
performance metrics which have been mapped to the
functional objectives of the system of interest. In the
case of (Cilli et al, 2014) this involved mapping the
amount of value derived for a particular functional
objective from a prediction of its performance by way
of a value function. Multiple objectives are then
combined by way of weighting to enable Multi
Objective Decision Analysis (MODA). In (Cilli et al,
2014) performance prediction is provided by subject
matter experts, while in (Edwards et al., 2015)
simulation is used, but the simulation model does not
use acausal interactions between the individual
components which make up the model. Instead subject
matter experts define the interaction between
components based on the equations and data they wish
to utilize. This process is somewhat opaque.

As such, while the approaches used by (Cilli et al,
2014) and (Edwards et al., 2015) to implement the
INCOSE decision management process can form a basis

of an approach, it is proposed for this paper and the
Solar-Boat project to utilize Modelica as the numerical
modeling tool such that the benefits described in Section
2.1 can be realized when completing a trade study.

3 Proposed Tools and Approach

A high level flow diagram of the proposed tools and
approach, developed and demonstrated is shown in
Figure 2. It is described as having three important
processing elements (in green on Figure 2) listed as:
Model Builder, Simulation Runner and Results
Processor.

The required initial inputs of the tools and approach
(in orange on Figure 2) take the form of
Comparison.xml detailing what Assessment Scenarios
and alternative System-Level Designs to consider and a
library of Modelica models which are the Assessment
Scenarios and alternative System-Level Designs
referenced by the Comparison.xml. With the
Assessment Scenario describing how to assess a design
alternative subject to a set of stated conditions.

Ultimately the aim of running through the approach
is to generate insight (in black on Figure 2) into the
performance and cost characteristics of alternative
designs, which can occur through the reviewing
consolidated Multi Objective Decision Analysis
(MODA) results or reviewing detailed raw results of
the .mat file (in blue on Figure 2) generated during the
simulation of the model associated with each design
alternative for each Assessment Scenario (blue on
Figure 2).

More detailed descriptions are provided in
subsequent sections for the items in Figure 2: Inputs to
the approach described in Section 3.1 while processing
elements and their subsequent outputs are described in
Section 3.2.

Figure 2. Proposed trade study approach utilizing
Modelica. Green: System processing elements. Orange:
Inputs. Blue: Intermediate results. Black: Final results.

2014 numerical
modelling problems

Requirement for proposed
system

1) Lack of modularity Can replace components
and subsystems with any
other which is compliant to
a defined interface.

2) Lack of adequate
libraries

Access to a range of library
components.
Can develop new library
components quickly.

3) Lack of holistic
model

Integrate multiple
engineering domains
concurrently.

4) Lack of
infrastructure to
assess and compare

Can assess and compare all
alternative designs
consistently and
automatically.

5) Lack of access to
variables which the
model was not
“designed” to provide

Can review the details of
individual components
performance.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612461

63
__

3.1 Inputs

3.1.1 Comparison.xml

Comparison.xml is an input to the approach, it is an
XML file listing and describing what Assessment
Scenarios to complete (including time to simulate and
how to processes its results, described in more detail in
Section 3.2.3) followed by a listing of alternative
System-Level Designs to assess. A code snippet is
provided below of an example file (truncated and
modified for simplicity).

3.1.2 Library – Structure and Conventions

To manage complexity the library and the models
utilized are divided into distinct hierarchy levels which
are outlined in Table 3. Figure 3 pictorially depicts how
Level 4 models ultimately combine to form a Level 1
model which can be simulated. Each level of this
hierarchy is discussed in the subsequent sections.

In addition assumptions made about the Solar-Boat
are explicitly listed to enable a consistent library to be
developed by way of setting rules for how these
assumptions are implemented in the library. To
generalize, these assumptions stem from the bottom up
approach used to develop the models, where for
example Subsystems are defined by their interface and
internal Subsystem-Components. Assumptions

associated cost are described in Table 4, assumptions
associated with mass are described in Table 5, and those
regarding fluid interaction are described in Table 6.

Table 3. Hierarchy levels utilized in the models and
libraries.

Figure 3. Representation of the different hierarchy levels
combining.

Table 4. Assumptions associated with cost and how the
assumptions are implemented in the library.

<system_name="solarBoat"/>
<scenario name="Floating">

 <variable="z_top_of_hull"/>
 <variable_units name="m"/>
 <value_func_direct name="neg"/>
 <min_accep_perform val="-0.1"/>
 <stretch_goal val="-0.4"/>
 <weight val="0.5"/>
 <sim_length val="70"/>
 <extract_data_type name="mean"/>
 </scenario>
 <scenario name="StraightLineAvSun">
 <variable="x_velocity"/>
 <variable_units name="m/s"/>
 <value_func_direct name="pos"/>
 <min_accep_perform val="1.5"/>
 <stretch_goal val="3"/>
 <weight val="0.5"/>
 <sim_length val="3"/>
 <extract_data_type name="max"/>

</scenario>
<scenario name="Cost">

<variable="cost_money"/>
<variable_units name="yen"/>
<value_func_direct name="neg"/>
<min_accep_perform val="300000"/>
<stretch_goal val="0"/>
<sim_length val="1"/>

 <extract_data_type name="max"/>
</scenario>
<design name="Ideal"/>
<design name="Boat_Alternative_01"/>
<design name="Boat_Alternative_02"/>

Hierarchy
Level

Name Example

Level 1 Assessment
Scenario

Straight line good
weather

Level 2 System of
Interest

Solar-Boat

Level 3 Subsystems Electrical to
Thrust

Level 4 Subsystem-
Components

DC Motor

Assumption /
Design process
decision

Implementation in Library

All objects of the
Solar-Boat have
cost.

All models at Level 2-4 extend
“PartialProcurementAttributes”
with the single variable
cost_money_computed. As such
they must expose/compute their
cost.

Cost properties
of the System of
Interest occur
from the sum its
Subsystem-
Components cost
properties.

Every Subsystem-Component
defines a cost parameter. The
cost of the subsystem is the sum
of the cost of its components.
The same logic follows up the
levels.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

64 DOI
10.3384/ecp1612461

__

Table 5. Assumptions associated with mass and degrees of
freedom and how the assumptions are implemented in the
library.

Table 6. Assumptions associated with fluids and their
implementation in the library.

3.1.3 Library Level 1 – Assessment Scenario

The Assessment Scenario is a Modelica model which
aims to provide the necessary infrastructure around a
replaceable partial model of the System of Interest
(Solar-Boat) the necessary inputs to represent the
scenario for simulation. Figure 4 shows an example of
one such of these for driving in a straight line subject to
average sun conditions. With Figure 4 (left) showing

prior to population with a valid alternative and Figure 4
(right) showing this after having been populated with a
valid alternative Solar-Boat design.

Figure 4. Assessment Scenario: Straight line average sun.
Left: Before being populated with a valid Solar-Boat
design alternative. Right: After being populated with a
design alternative such that it can be simulated.

3.1.4 Library Level 2 – System of Interest

This level describes the system which is being attempted
to be designed and assessed (i.e. Solar-Boat). As such
all valid alternative designs should be compliant with
the interface used for the System of Interest in the
Assessment Scenarios. In addition the variables of
interest defined in the Comparison.xml (e.g. x_velocity)
must be declared such that they can be extracted by the
Results Processor. Figure 5 shows the partial model
interface, while Figure 6 (left) shows an example
architecture created by the population with partial
replaceable Subsystems interfaces. In this case four
Subsystems are utilized: Solar to Electrical, Electrical to
Thrust, Buoyancy generation and Overhead mass
components. This architecture is then populated with
Subsystem models to generate a Solar-Boat alternative
as shown in Figure 6 (right).

Figure 5. Partial model defining the interface of the
System of Interest (Solar-Boat).

Figure 6 Left: Extending the partial model of the System
of Interest (Solar-Boat) and subsequently defining an
architecture by placing partial Subsystems on it. Right:
Populating this architecture with Subsystems.

Assumption / Design
process decision

Implementation in Library

All objects of the
Solar-Boat have
mass.

All models at Level 2-4
extend
“PartialMassAttributes”
with the single variable
mass_computed. As such
they must expose/compute
their mass. Which might be
the sum of lower level
component masses.

Mass properties of
the System of Interest
occur from the sum
its Subsystem-
Components mass
properties.

Every Subsystem-
Component attaches a mass
component from the
Mechanics.MultiBody
library to its Frame_a
connector.

System of Interest is
a single rigid body in
a 3D world.

All Subsystems and
components expose a
Modelica.Mechanics.
MultiBody.Interfaces.
Frame_a connector.

The number of
degrees of freedom in
motion required at
different times if the
lifecycle varies.

The use of
Modelica.Mechanics.
MultiBody.Joints.
Prismatic to prevent motion
on degrees of freedom
which are not going to be
considered.

Assumption / Design
process decision

Implementation in Library

All objects
immersed in a fluid
generate a
drag_force and
buoyancy_force.

Any models Level 2-4
expected to be immersed in a
fluid extend
“PartialInAFluidAttributes”
with the variables drag_force
and displaced_volume
exposed. As such these must
be computed.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612461

65
__

3.1.5 Library Level 3 – Subsystems

Subsystems have an interface to define their interaction
at the System of Interest level. An example is shown in
Figure 7 for an electrical to thrust Subsystem. A
Subsystem architecture (Figure 8 left) can then be
defined for the interface (Figure 7) by the population
with partial replaceable Subsystem-Component
interfaces. Subsequent population with Subsystem-
Components results in an alternative Subsystem being
defined (Figure 8 right).

Figure 7. Partial model defining the interface of a
Subsystem (electrical to thrust).

Figure 8. Left: Extending the Electrical to thrust partial
model and subsequently defining an architecture by
placing partial Subsystem-Components on it. Right:
Populating this architecture with Subsystem-Components.

3.1.6 Library Level 4 – Subsystem-Components

The lowest level of the defined hierarchy are
Subsystem-Components. Similar to the other levels an
interface is used to define their interaction at the higher
levels, as shown in Figure 9. However architecture
implementation takes a different form, generally being
made of additional models (custom and standard library)
which have their parameters provided by way of
redeclaring a partial record. The aim of this approach is
to create a large library of components based on the
specification sheets of commercial products which can
be transferred to a record in the Modelica language. As
per the assumptions discussed in Section 3.1.2 each
Subsystem-Component must declare a mass and cost
which can then be used to compute the mass and cost of
the Subsystem it is included in. Further as shown at the
bottom of Figure 10 each Subsystem-Component
includes a mass component from Mechanics.MultiBody
library.

Figure 9. Interface of Subsystem-Component (Electrical to
rotation).

Figure 10. Left: Implementing the Electrical to rotation
component with a partial record. Right: Populating the
partial record to create a Subsystem-Component.

3.2 Processing Elements

In this section the processing elements of the approach
proposed (shown in Figure 2) which process inputs to
generate output are discussed. This was implemented
with Python code as Dymola and OpenModelica were
unable to automate the variation of Modelica blocks or
the consolidation of multiple results.

3.2.1 Model Builder

The Model Builder processing element generates a
Modelica model for each combination of Assessment
Scenario and System of Interest (Solar-Boat) alternative
described in the Comparison.xml file. The Model
Builder requires that the Assessment Scenarios and
System of Interest (Solar-Boat) alternatives named in
the Comparison.xml are available from the library. This
is achieved programmatically by duplicating existing
model for the Assessment Scenario and manipulating
the .mo text file to change the Solar-Boat alternative to
the one for assessment.

3.2.2 Simulation Runner

Simulation Runner subsequently simulates all the
models created by Model Builder for the simulation
length specified in the Comparison.xml file. This is
achieved programmatically by utilizing Dymola’s
python interface. The subsequent results (in the .mat
file) can then be further reviewed by the engineer if they
wish.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

66 DOI
10.3384/ecp1612461

__

3.2.3 Results Processor

The results processor extracts for each model simulated
(Assessment Scenario and design alternative pair) the
time series of the raw simulation results the variable of
interest for each Assessment Scenario to measure the
System of Interest’s performance (e.g. max x_velocity).
This extraction is enabled by Dymat python package
(Dymat, 2015). For simplicity weighted sum MODA
scheme described in (Cilli et al, 2014) was used which
is explained as follows.

The extracted variable (e.g. max x_velocity) is used
to compute unweighted value by the utilization of the
value function (see Figure 11 for an example) which is
defined in Comparison.xml and maps performance on a
particular scenario to unweighted value (minimum
acceptable performance corresponding to zero value and
stretch goal corresponding to value of 1). The
unweighted value is then multiplied by the weight
assigned in Comparison.xml to create weighted value
for that scenario. Summing the for all the scenario runs
for an individual alternative design results in the total
weighted value for that particular alternative design.
With the “ideal system” having a value of 1 as its
performance is assumed to always be at the stretch goal
and the weights sum to 1.

Figure 11. Example linear value function.

These results can then be consolidated on to a single
dashboard (example shown in Figure 12). On all charts
the y-axis displays the total weighted value for the
alternative. For the top chart and middle chart the x-axis
indicates the alternatives being considered. With the
middle chart further displaying a breakdown of the
weighted value contributions from each Assessment
Scenario. For the bottom scatter chart, each point on the
bottom chart indicates a design alternative of the System
of Interest and the x-axis indicating cost in yen for that
particular design alternative.

Figure 12. Example output of the Results Processor. Top:
Total weighted value (y-axis) computed for all the
Assessment Scenarios (x-axis) for all the Alternative
System of Interests. Middle: Breakdown of the weighted
value contributions from each assessment scenario.
Bottom: Weighted value (y-axis) compared to cost in yen
(x-axis) for each alternative design. (Results are from
Section 4.3 comparison of the introduction of new solar
panels).

4 Demonstration

This section provides examples of the utilization of the
approach to demonstrate how it can rapidly enable the
fast comparison of alternative Solar-Boats. The
assessment scenarios used are described in Table 7,
which are used to define a Comparison.xml and library
of Level 1 models. For simplicity all weights were set
equally to 0.25 in all the demonstrations, the Solar-Boat
architecture of Figure 6 (left) is utilized.

4.1 Component Variation

An initial set of Solar-Boat alternative designs are
outlined in Table 8 and created as models by populating
the Solar-Boat architecture of Figure 6 (left). These
designs are identical other than the variation in the
Subsystem-Components used for a direct drive
electrical to thrust Subsystem. The Subsystem-
Component variation involves motor variation (high
mass and low mass variants) and propeller variation. By
following the flow diagram of Figure 2 for the
Assessment Scenarios of Table 7 and alternative designs
of Table 8, it is possible to generate the results as shown
in Figure 13 automatically. Reviewing these results it is
possible to see three alternatives fail to meet the
minimum acceptable performance on at least one
scenario (red ring on Figure 13). The complex
interaction between boat mass, water line, thrust, drag
and velocity has simplified into a single chart.

Stretch
goal

Minimum
acceptable

performance

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612461

67
__

Table 7. Assessment Scenarios used in the demonstration.

Table 8. Alternative Solar-Boat designs created by
electrical to thrust Subsystem variation (H = High mass
motor, L = Low mass motor).

Figure 13. Multi Objective Decision Analysis results for
Solar-Boat alternatives of Table 8.

4.2 Subsystem – Architecture Variation

Given the approach makes use of a common architecture
for the Solar-Boat it is possible to rapidly compare
alternative Solar-Boat designs utilizing different
Subsystem architectures. As such Figure 14 displays an
alternative electrical to thrust Subsystem architecture
(incorporating a gearbox) to the one used previously
(Figure 8). As such it is possible to create alternative
Solar-Boats utilizing this architecture. Creating several
alternatives by varying the Subsystem-Components in
this model and simulating results in Figure 15 (where
the designs have significant performance increase over
the results of Section 4.1).

Figure 14. Left: Extending the electrical to thrust partial
model but defining a different Subsystem architecture to
that in Figure 8 by incorporating a gearbox. Right:
Populating this architecture with Subsystem-Components.

Measure
of
interest

Scenario
conditions

Min
accep
perform

Stretch
goal

Data

type

Top of
hull z
position
(m)

Floating -0.1 -0.4 Mean

x
velocity
(m/s)

Best ever
insolation
(870
Wm2)

2 4 Max

x
velocity
(m/s)

Average
insolation
(550
Wm2)

1.5 3 Max

x
velocity
(m/s)

Worst
ever
insolation
(260
Wm2)

0.5 2.5 Max

Alternative
name

Buoyancy
Generation

Solar

To

Elec

Elec

To

Thrust

HM_160m
m

Single hull FT-
136SE

H motor:
No gearbox:
160mm
prop

HM_200m
m

Single hull FT-
136SE

H motor:
No gearbox:
200mm
prop

HM_220m
m

Single hull FT-
136SE

H motor:
No gearbox:
220mm
prop

LM_160m
m

Single hull FT-
136SE

L motor: No
gearbox:
160mm
prop

LM_200m
m

Single hull FT-
136SE

L motor: No
gearbox:
200mm
prop

LM_220m
m

Single hull FT-
136SE

L motor: No
gearbox:
220mm
prop

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

68 DOI
10.3384/ecp1612461

__

Figure 15. Multi Objective Decision Analysis results for
Solar-Boat alternatives incorporating a gearbox.

4.3 Cost Benefit of a New Component

Further component exploration of interest could involve
the performance evaluation associated with
incorporating higher efficiency, high mass and high cost
solar panels (solar to electrical Subsystem). Creating
alternatives based on these and simulating results in
Figure 12. The bottom chart clearly displays the large
cost of the new solar panels (exceeding the project
budget). While the weighted total value of alternatives
incorporating the panels is not significantly different to
those utilizing existing panels. Indicating they are not a
wise purchase.

5 Discussion

The proposed approach described in this paper has a
number of benefits when compared to other approaches.
By clearly describing each Assessment Scenario and
processing the results formally by way of Multi
Objective Decision Analysis (MODA) each alternative
design is compared consistently and decision making is
simplified. Further, the utilization of defined interfaces
and common architectures based on them enables
alternative designs compliant with the Assessment
Scenarios to be created quickly. By using Modelica as
the modeling language the engineer benefits from
accessibility to the rich simulation results of many
variables and can compose System-Level Designs using
extensive existing libraries.

However the approach and tool has further work to
be done to it to make it more useful including:
automation of the generation of alternative designs,
support for parameter variation and implementation on
a more complex design.

6 Conclusions

This paper has described an approach and tool for
performing System-Level Design trade studies using
Modelica. In the form of a Model Builder, Simulation
Runner and Results Processor which take a suitable
library and XML description file as input.

The aim of the approach was to consistently assess
multiple design alternatives and summarize their results
for fast comparison.

This was achieved by defining a common interface
for the System of Interest (Solar-Boat) and placing it in
an Assessment Scenario as a replaceable partial model
into which programmatically, different SolarBoat
alternatives were placed by the Model Builder. Each of
these was then simulated and the results processed by
Multi Objective Decision Analysis (MODA).

The rapid automated assessment of the alternatives
and processing of results by MODA enables engineers
to quickly understand the benefits of different designs,
but by retaining the rich results associated with
Modelica simulation further (manual) analysis can be
performed to gain greater insight into how individual
components are performing.

This was demonstrated for some simple examples of
several Solar-Boat alternative System-Level Designs
being subject to the same four different assessment
scenarios.

References

Cilli, M. V., & Parnell, G. S. (2014). Systems engineering
tradeoff study process framework. In 24th INCOSE Int’l
Symposium, Las Vegas, NV.

DyMat 0.7 (2015), A package for reading and processing the
result files of Dymola and OpenModelica.
https://pypi.python.org/pypi/DyMat

Edwards, S., Cilli, M. V., Peterson, T., Zabat, M., Lawton, C.,
& Shelton, L. (2015). Whole Systems Trade Analysis. In
25th INCOSE Int’l Symposium, Seattle. Seattle, WA, USA.

INCOSE. (2015). Wiley: INCOSE Systems Engineering
Handbook: A Guide for System Life Cycle Processes and
Activities, 4th Edition - INCOSE.

ISO. (2015). Automation systems and integration -- Object-
Process Methodology (No. ISO/PAS 19450:2015).

Parnell, G. S., Cilli, M. V., & Buede, D. (2014). Tradeoff
Study Cascading Mistakes of Omission and Commission.
INCOSE International Symposium, Las Vagas.

SEBoK. (2015). Guide to the Systems Engineering Body of
Knowledge (SEBoK).

Sutherland, J., Kamiyama, H., Aoyama, K., & Oizumi, K.
(2015). Systems Engineering and the V-Model: Lessons
from an Autonomous Solar Powered Hydrofoil. Presented
at the 12th International Marine Design Conference
(IMDC), Tokyo Japan.

Sutherland, J. (2016, March 4). Knowledge Management and
System-Level Design Tools utilizing OPM and Modelica
for a Student Solar-Boat Project (Master’s Thesis).
University of Tokyo, Tokyo Japan.

Ulrich, K., & Eppinger, S. (2011). Product Design and
Development (5 edition). New York: McGraw-Hill/Irwin.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612461

69
__

FMI for Co-Simulation of Embedded Control Software

Nicolai Pedersen1,2 Tom Bojsen2 Jan Madsen1 Morten Vejlgaard-Laursen2

1 Technical University of Denmark, Embedded Systems Engineering, Kgs. Lyngby DK-2800,Denmark ,
{nicp, jama}@dtu.dk

2MAN Diesel & Turbo, Teglholmsgade 41 Copenhagen DK-2450, Denmark,
{nicolai.pedersen , tom.bojsen, morten.laursen}@man.eu

Abstract

Increased complexity of cyber-physical systems within
the maritime industry demands closer cooperation be-
tween engineering disciplines. The functional mockup
interface (FMI) is an initiative aiding cross-discipline in-
teraction by providing, a widely accepted, standard for
model exchange and co-simulation. The standard is sup-
ported by a number of modelling tools. However, to im-
plement it on an existing platform requires adaptation.
This paper investigates how to adapt the software of an
embedded control system to comply with the FMI for
co-simulation standard. In particular, we suggest a way
of advancing the clock of a real time operating system
(RTOS), by overwriting the idle thread and waiting for
a signal to start execution until return to idle. This ap-
proach ensures a deterministic and temporal execution
of the simulation across multiple nodes. As proof of
concept, a co-simulation is conducted, showing that the
control system of an SCR (selective catalyst reduction)
emission reduction system can be packed in a functional
mockup unit (FMU) and co-simulated with a physical
model, built in Ptolemy II. Results show that FMI can be
used for co-simulation of an embedded SCR control soft-
ware and for control software development. Keywords:
Co-Simulation, RTOS, FMI, FMU, Embedded Systems

1 Introduction

Designing the next generation of embedded cyber-
physical systems (CPS) requires close collaboration be-
tween physical model developers and the engineers im-
plementing the computation, communication and con-
trol. The amount of sub-systems, deviation in the tool
chain and standards are often barriers between these dis-
ciplines. Teams are divided into different departments
within organisations or in cross-company collaborations,
further complicating the cooperation. One of the re-
cent initiatives to lower this barrier is the functional
mockup interface (FMI) (Blochwitz et al., 2009). It is
a tool-independent standard for model exchange and co-
simulation. FMI was initiated by the automotive industry

and released in a version 1.0 in 2010 followed by a 2.0
version in 2014. This paper does not explain the stan-
dard, but aims to show the process of adapting an embed-
ded system to comply with FMI. Implementing the FMI
standard on an existing modelling platform is straightfor-
ward, especially since many of the open-source and com-
mercial tools already support it. Forcing a specialised
embedded system to comply is, however, a demanding
task that requires adaptation.

At MAN Diesel & Turbo, legislation on pollution and
a demand for support of alternative fuel types are in-
creasing the amount of distributed sub-systems and the
complexity of the traditional two-stroke diesel engine.
The increased distributed complexity makes the coop-
eration between cyber and physical parts of the system
even more crucial. Currently, simplified physical models
are used for control algorithm development, and only es-
timations of the control system dynamics is considered
when modelling the physical behaviour. The objective
of this project is to enhance the modelling development
and distribution at MAN Diesel & Turbo by introducing
a more comprehensive system simulation. We wish to
simulate both physical behaviour and control dynamics,
combined with a model of the software. The software
model will enable us to investigate system behaviour
such as alarm handling, IO scaling and network com-
munication/protocols. The main challenge is to adapt
the embedded engine control system into a functional
mockup unit (FMU). The process of this adaptation is
what will be presented in this paper. As use case, a
simple model of the SCR (Selective Catalyst Reduction)
emission reduction system and its control software will
be co-simulated.

FMI 2.0 for co-simulation has been chosen due to its
strict type/execution structure combined with its freedom
of implementation. The standard is highly recognised
and applied within the automotive industry (Abel et al.,
2012; Stoermer and Tibba, 2014), which has many simi-
larities with the maritime. Recently, applications within
energy and grid systems (Vanfretti et al., 2014; Elsheikh
et al., 2013) and HVAC systems (Nouidui et al., 2014)
are emerging as well. FMI applications within the mar-
itime industry, like this, is limited (Pedersen et al., 2015).

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

70 DOI
10.3384/ecp1612470

__

This project uses the heterogeneous simulation software
framework Ptolemy II (Liu et al., 2001; Brooks et al.,
2010) to co-simulate a simple physical model with an im-
ported FMU. Ptolemy II has been used for various FMI
applications (Broman et al., 2013; Liu et al., 2001; Lee
et al., 2015) Much attention has been put on implement-
ing the standard, such as FMI++ (Widl et al., 2013) the
FMI Library from (Modelon) and the FMU SDK from
(QTronic). Examples of how to build an FMI master al-
gorithm has been provided as well (Bastian et al., 2011;
Broman et al., 2013). In (Bertsch et al., 2015) a pro-
totypical realisation of an FMU executing on a Bosch
electronic control unit was presented. However, the non-
trivial process of adapting the software of an embedded
system, with at real-time operating system (RTOS), into
a co-simulation FMU, has not yet been described, but
will be in this paper.

First the cyber-physical system at hand will be intro-
duced in Section 2. Section 3 shows how to move from
a target embedded application to an FMU running in a
regular Linux environment. A use-case implementation
is presented in Section 4 and conclusions are drawn in
Section 5

2 Cyber-Physical System

Cylinder Control Unit
Tacho Interface Unit

Engine Control Unit

Engine Interface Unit

SCR Control Unit

Scavenge Air Control Unit

Network

SCR Interface Unit

Figure 1. An MAN Diesel & Turbo two-stroke low-speed
diesel engine with the SCR and the engine control system il-
lustrated

MAN Diesel & Turbo designs large-bore diesel en-
gines and turbomachinery for marine propulsion systems
and stationary applications, such as power plants. With
the introduction of the electronically controlled line of
ME engines in 2002, MAN Diesel & Turbo moved into
the development of Cyber-Physical System. In recent

years, the demand for new emission reduction systems
and alternative fuel types have made the core engine
even more dependent on the surrounding control system.
This dependency demands a more advanced simulation
environment including co-simulation. The engine con-
trol system consists of numerous distributed controllers
with each their specific control objective connected by
a wired network. Figure 1 illustrates a 6-cylinder two-
stroke ME-engine with an SCR system and engine con-
trol system. The main controllers are the engine interface
units communicating with the operator, and the scavenge
air control unit ensuring that pressures are balanced be-
tween the turbocharger and scavenging. The engine con-
trol units ensure that the cylinder control units perform
the correct temporal injection ect. according to the infor-
mation about the crankshaft position from the tacho in-
terface units. Finally, if the engine is fitted with an auxil-
iary system e.g. an SCR system, it will be controlled and
monitored by its own SCR units.

3 From Embedded Target to FMU

Figure 2. A multi-purpose controller of the MAN Diesel &
Turbo engine control system

To achieve the objective of co-simulating the soft-
ware control system together with a physical model, in
a different environment(Ptolemy II), we need to make
our target application code run in a functional mockup
unit 0(FMU). It should be noted that the main objection
of this solution is to aid physical modelling and con-
trol algorithm development. The solution will therefore
demonstrate a deterministic simulation of both compu-
tational execution and network. Despite the previously
described system behaviour investigation benefits, of in-
cluding a software model in the FMU, the decision is
also based on future ambitions and the current control
system development at MAN Diesel & Turbo. Future

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

71
__

plans include a stochastic network model and HIL-nodes
combined with FMI nodes.

3.1 Configuration Abstractions

Ptolemy Envorinment

Ptolemy Envorinment

FMU_1

Node_1

Ptolemy Model

M_In_1

FMU_2

Node_2

M_Out_1
M_In_2

M_Out_2

X_1
X_2
Y_1
Y_2

FMU

Ptolemy Model

ModelDescribtion.xml

 - X_1 : Ouput
- X_2 : Input

 - Y_1 : Ouput
- Y_2 : Input

 - M_Out_1 : Ouput
- M_In_1 : Input

ModelDescribtion.xml

 - X_1 : Input
- X_2 : Ouput
 - Y_1 : Input
- Y_2 : Ouput

 - M_Out_2 : Ouput
- M_In_2 : Input

Node_1 Node_2

X_1
X_2
Y_1
Y_2

M_Out_1

M_In_1

M_In_2

M_Out_2

ModelDescribtion.xml

 - M_Out_1 : Ouput
- M_In_1 : Input

 - M_Out_2 : Ouput
- M_In_2 : Input

Figure 3. It is possible to change the level of configuration
complexity exposed to the user. The top figure shows how each
control system node can be packed in an FMU for maximal
configuration flexibility. The bottom figure shows how multi-
ple nodes can be packed and configured in a single FMU for a
simpler user configuration setup.

One of the most important concerns when introduc-
ing FMI was the configuration complexity. The system
is to be used by different disciplines, and it is impor-
tant that the configuration level can be abstracted to fit
the user objective - meaning that if a hydraulic engineer
wishes to investigate the dynamic effects of the control
system on his model, he should not have to connect all
the wires of the control system to get started, but rather
have one FMU with only relevant variables and parame-
ters exposed. We found it beneficial to maintain the pos-
sibility of interconnecting multiple nodes of the control
system before wrapping them into the functional mockup
interface. As shown in Figure 3, this allows for different
levels of configuration complexity. If we are interested
in both the interaction between two nodes and a physi-
cal model, we can provide all variables, parameters and
IOs through multiple FMUs and connect them in our en-
vironment, see top Figure 3. However, if we are only

interested in the variables interacting with our external
model, it is possible to connect the nodes internally, and
only expose the relevant variables, bottom figure 3. The
latter option provides a much simpler configuration and
"ModelDescription.xml" for the user and lets the control
system experts ensure that nodes are connected correctly.

3.2 Target to PC simulation

The target controllers used are multi-purpose, meaning
e.g. that cylinders and SCR-control units are identi-
cal. The only deviation determining the specific con-
troller objective is the software executed on the embed-
ded system. A controller interfaces with sensors and
other computational units, using the information to in-
teract with the system through actuators. A controller
contains a CPU module with an FPGA-based embedded
system utilising a real-time operating system. The strat-
egy for simulating our embedded system is to model the
entire embedded system from the operating system and
up, wrapping this into an FMU. Conclusively, our model
is not simulating the behaviour of the embedded proces-
sor, but builds the target code for an x86 architecture in
a so called PC-simulation application (PCSIM).

3.3 FMI implementation of PC simulation

To implement FMI 2.0 for co-simulation, we need fur-
ther access to some main functionality embedded in the
PCSIM. Looking at the FMI co-simulation state machine
(Blochwitz et al., 2009), we need to access relevant data
for f mi2Set() and f mi2Get() and a way of stepping
the simulation according to the f mi2DoStep() function.
Furthermore, the network communication is to be recon-
nected and the FMI functions implemented.

3.3.1 Hook to OS clock

For the co-simulation to work correctly, we need to con-
trol the execution between the discrete communication
points on each node. The approach is to access the
clock of the operating system and let a simulation man-
ager control the temporal execution. This is made possi-
ble by building the target code as a shared library and
overwriting the idle thread method of the RTOS. The
RTOS used in this project supports an x86 architecture
and provides the board support package, which includes
a bsp_idle_thread to be manipulated. The solution pro-
posed will require customisation to work with different
RTOS versions, however, the concept is generic. Be-
sides the idle thread hook, we need to be able to start and
stop the application by calling the main function through
the library. The main function is executed in a separate
thread until we force it to stop, having the main func-
tion return. The new idle thread function has an idle
callback function that implements ticking of the RTOS
clock. Each tick lasts for a simulated 1 ms, implemented

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

72 DOI
10.3384/ecp1612470

__

PCSIM.SO

Node API

RTOS

Virtual idle_thread()

&DataTree

idle_thread()

Tick on RTOS Clock Implement

Factory

_main()

Call/returnpcsim_main()Run()

set_idle_callback()

Get_factory()

Tick

Run/Return

&Network

Lists

Create Proxy()

Variables, Parameter,
IO

Implement

FMI Implementation

LINUX.SO

FMI API

DLL_EXPORT

fmi2Instantiate()

fmi2Instantiate()

PCSIM_2.SONode API

PCSIM_N.SONode API

fmi2DoStep()

fmi2DoStep()

fmi2Get()

fmi2Set()

fmi2Get()

fmi2Set()

Load Library

Create

Proxies

Proxy Data

Pointer to Proxy

Connect

Network
Tick Node

Update

Network

Start node

Tick

Run/Return

Network

lists

Pointer to Network lists

Figure 4. The implementation of FMI on the MAN engine
control system

by assuming unlimited CPU power - thus an execution
time of zero for every node, followed by a 1 ms delay. A
node will run until it returns to idle, meaning for every
tick, all task will finish and never be interrupted. This
guaranties a common perception of time across nodes.
The assumption of unlimited processing power will ob-
viously make the simulation results deviate slightly from
a real stochastic execution. However, it ensures a de-
terminism which is important during control algorithm
development and regression testing. All interrupts are
currently software simulated and scheduled as regular
tasks. Further work will aim to implement a more tem-
poral scheduling of especially high frequency interrupts.

Having a hook to the clock and a joint time perception
makes it possible for a manager to call the f mi2DoStep()
function and orchestra a correct temporal execution of
the co-simulation.

3.3.2 Connecting variables, parameters and IO
channels

On the target application all variable, parameters and
IO channels are organised in a component-oriented data
tree structure with unique IDs. Using a factory method
design, we make it possible to create proxies for both
variables, parameters and IO channels, providing a
Proxy.Get() and Proxy.Set() function that will effect the
source on the specific node. For IO channels, we com-
municate on micro-ampere level, so prober conversion is
needed.

The f mi2Set() and f mi2Get() functions will write
and return the value of the proxies. The instantiation
of proxies are done in the f mi2Instantiate() function
and is based on the ”ModelDescription.xml”. One of
the advantages of FMI is the strict data type definition.
However, the target application utilises more data types
than the ones allowed by FMI, such as fix-point and un-
signed short. As a result, a type conversion layer had to
be added.

3.3.3 Solving network communication

To simulate the network communication between nodes,
we replace the RTOS network driver with a determin-
istic input/output queue implementation. Each node is
given an address corresponding to the unique node_id
already provided by the controller. Through the factory
design from 3.3.2 input and output lists are made avail-
able across nodes. A network manager then redirects
packages from output to input queues according to net-
work address. The network manager support both uni-
cast, multicast and broadcast. Communication is done
at every discrete communication point, and the network
driver is activated every ms tick of the OS clock, if any
data is available in the input or output queue. Currently,
the network is only available with interconnected nodes
and not as an output through the FMU. However, this is
something we are working on.

3.3.4 FMI implementation

Target.cpp

PCSIM.SO

GCC–PC x86

RTOS

Cross – Compiler

GCC

Cross – Compiler

GCC

FMI.SO

GCC–LINUX

FMI_model.cpp

fmi_model.fmu

MODEL SOLVER

Dynamic Load

Figure 5. The compiling routine from target to functional
mock-up unit.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

73
__

According to the FMI standard the application should
be compiled into a shared library with the FMI functions
exported. As described, we are able to build each of
our control nodes into PC shared libraries (PCSIM.so)
including a, x86 RTOS. We now need to wrap these
into a Linux shared library (FMI.so) implementing the
FMI application interface. One or more PCSIM.so are
loaded into the FMI.so which is the main binary in the
co-simulation FMU, see figure 5. A MAN Diesel &
Turbo FMU will have the 2.0 FMI for Co-simulation
API. The f mi2Instantiate() will load the PCSIM.so’s
required for the specific scenario and create the rele-
vant parameters, inputs and outputs according to the
ModelDescription.xml and start each node executing.
The f mi2DoStep() is able to call the idle callback func-
tion on each node, signalling the idle thread to tick the
RTOS. If an FMU contains more than one node the net-
work will be updated at every communication point. The
remaining FMI functions have been implemented but not
illustrated in Figure 4.

4 Use Case: SCR Temperature Dy-
namics and Control

Figure 6. Diagram of the SCR system

As a simple use case, we look at the dynamics and
control of heating up the SCR reactor. When a vessel is
to comply with the Tier III emission limits (IMO, 2008)
for NOx reduction, a command is sent from the opera-
tor to activate the SCR control. The SCR control unit
will then redirect the exhaust gas through the reactor by
opening the reactor sealing valve (RSV) and the reac-
tor throttle valve(RTV). The controller has to balance the
RTV opening, to ensure that the flow to the turbine inlet
of the turbocharger is sufficient. As soon as the reac-
tor is properly heated, the reactor bypass valve (RBV)
can be closed; consequently, only cleaned air from the
reactor leaves the system as exhaust. A diagram of the
SCR control is illustrated in Figure 6. The SCR con-
troller uses the difference between the reactor input and

output temperature as a reference residual signal for con-
trolling the position of the RTV valve. By modelling the
time delay of heating the reactor and passing the result-
ing output temperature back to the SCR controller, we
will show that it is possible to investigate the dynamic
interaction between a physical model and the actual con-
trol software.

Many additional observations regarding the engine
physics are required for all aspects of the SCR controller
to perform correctly. An advantage of being able to con-
nect more nodes within a single FMU is that the so-called
engine simulation unit (ESU) used for hardware in the
loop test can be included. The ESU contains numer-
ous physical models executing within the embedded con-
troller environment. Model execution on the ESU must
comply with real-time requirements and should therefore
not be too complex. With FMI, it is possible to make a
hybrid simulation of the engine physics where ESU mod-
els can be combined with Ptolemy models. In this use
case, the reactor heating model provides physical insight
into the SCR controller together with the ESU.

4.1 SCR Heating Model
The reactor heating model chosen as proof of concept is
described below. The output temperature can be mod-
elled as the relationship between the RTV position, the
flow through the reactor and the input temperature, re-
sulting in two low-pass filters with a significant time con-
stant. The inputs to the model is provided by the SCR
controller and ESU.

The mass flow into the reactor Ṁ is estimated from the
engine load L.

Ṁn = Ṁn−1 +
L− Ṁn−1

1+ τScavenge ·T
(1)

where T is the sampling frequency.
The time constant of the reactor output temperature, is

estimated as the RTV valve opening with the mass flow
plus a time constant, converted into seconds.

τout = (Ṁn ·RTV + τreactor) ·3600 (2)

Finally, the output temperature is calculated as

Toutn = Toutn−1 +
Tin+Toutn−1

1+ τout ·T
(3)

This is naturally a simplified approach, however, it
goes to show, that it is possible to distribute the control
system and co-simulate with other thermodynamic mod-
els regardless of the abstraction level.

4.2 Ptolemy II as simulation framework
As simulation framework, the open-source Ptolemy II
was chosen due to its heterogeneous actor-oriented

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

74 DOI
10.3384/ecp1612470

__

Figure 7. FMU import in Ptolemy II and simple physical
model implementation

design and comprehensive support for different soft-
ware components and the FMI interface as described
in (Broman et al., 2013). The FMU is imported as
a co-simulation actor automatically configured by the
”ModelDescribtion.xml”. Using ”Vergil”, the graphical
user interface shipped with Ptolemy, the equations from
4.1 are created and connected to the FMU outputs. A
simulation scenario is likewise defined in Vergil and con-
nected to the input ports of the FMU, see Figure 7. The
scenario sets a reactor start temperature and an engine
speed set point. After 700 seconds, a simulated bridge
command is send to the SCR controller, activating the
SCR control strategy.

To execute the simulation, a synchronous dataflow
(SDF) director was chosen. The SDF director is appro-

priate because we have a predictable and regular exe-
cution (firing) of the FMU. At regular communication
points, inputs/outputs are updated in a predefined order.

4.3 Results

Figure 8. The use-case example of a functional mock-up unit
containing the MAN SCR control nodes

To run the simulation, an FMU was build as seen
in Figure 8. Here four PCSIM.so corresponding to
the code of four embedded controllers, are packet
into ”resources/lib”. The engine simulation unit
(esu_target.so) models the entire engine, except the SCR
heating model, using the target solver ect. An SCR Con-
trol Unit (scrcu_target.so) containing all the control al-
gorithms for the reactor control and two SCR interface
controllers (scri1_target.so,scri2_target.so) redirecting
all the sensor values connected as simulated cables from
the ESU to the SCRCU by network. Configuration of the
PCSIM applications are provided via the MAN parame-
ter files located at ”resources/par”

Figure 9. The in- and output temperature of the simulated SCR
heating

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

75
__

The simulation of the FMU and reactor heating model
is presented in Figure 9. Here we see that the SCR
reactor out temperature start to increase after 700 sec-
onds when the SCR start command is sent. The heating
has the expected low-pass behaviour and takes approxi-
mately 1.5 hours to heat up.

Figure 10. Valve feedback from the SCR simulation

In Figure 10, we clearly see that the SCR control
works as intended, even though we have replaced the
SCR heating model from the original ESU and replaced
it by a Ptolemy implementation. As soon as the SCR ac-
tivation occurs, the RTV and RSV valves start to open.
The RTV valve is clearly controlled to balance the flow
to the turbocharger. This actuation is filtered from the
temperature by the low-pass behaviour of the reactor, as
expected. As soon as the RTV valve is fully open the
RBV valve can be closed, and output temperature keeps
increasing until it eventually reaches the inlet tempera-
ture.

Each node in the simulation executes an application
task running on top of the RTOS, updating variables at a
specific sampling frequency. From Figure 11, we clearly
see how the SCR control unit runs at 5 Hz and the engine
control unit at 10 Hz. The SCR temperature is calcu-
lated in Ptolemy, resulting in the same frequency as the
simulation time step of 1 ms.

5 Conclusion

This paper showed the non-trivial process of implement-
ing FMI for co-simulation of an embedded system. We
proposed to compile a target platform RTOS into an x86
architecture, which most RTOS systems support. By re-
placing the idle thread of the RTOS, a hook for the sys-
tem clock can be provided and used to advance through
the application. To match the ”Get()/Set()” structure of
the standard, the same was implemented through sim-

Figure 11. Illustration of the different sub-system sampling
frequencies

ulation proxies identified by unique ID numbers of tar-
get variables. The FMI API is wrapped around the x86
RTOS by loading it as a shared library, with the FMI
step function ” f mi2DoStep()” activate the RTOS clock
through a callback function. The configuration of an en-
tire control system results in a vast amount of connec-
tions, not necessary relevant for all modelling purposes.
One of the advantages of the proposed method is that the
configuration abstraction can be varied. If relevant, each
node of the control system can be packed in individual
FMUs, or all nodes can be enclosed in a single FMU,
with all configuration and data/network exchange done
internally. We have provided a use case where part of the
engine control system is packed in an FMU and imported
into Ptolemy II. By connecting the FMU to a physical
model, we proved that the system could be co-simulated
with an external tool, resulting in correct control system
behaviour.

References
Andreas Abel, Torsten Blochwitz, Alexander Eichberger, Pe-

ter Hamann, and Udo Rein. Functional mock-up inter-
face in mechatronic gearshift simulation for commercial
vehicles. 9th Int. Model. Conf., pages 775–780, 2012.
doi:10.3384/ecp12076775.

Jens Bastian, Christoph Clauß, Susann Wolf, and Pe-
ter Schneider. Master for Co-Simulation Using FMI.
8th Int. Model. Conf. 2011, pages 115–120, 2011.
doi:10.3384/ecp11063115.

Christian Bertsch, Jonathan Neudorfer, Elmar Ahle,
Siva Sankar Arumugham, Karthikeyan Ramachandran, and
Andreas Thuy. FMI for Physical Models on Automotive
Embedded Targets. Proc. 11th Int. Model. Conf., pages
43–50, 2015. doi:10.3384/ecp1511843.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

76 DOI
10.3384/ecp1612470

__

http://dx.doi.org/10.3384/ecp12076775
http://dx.doi.org/10.3384/ecp11063115
http://dx.doi.org/10.3384/ecp1511843

T Blochwitz, M Otter, M Arnold, C Bausch, C Clauß,
H Elmqvist, A Junghanns, J Mauss, M Monteiro, T Nei-
dhold, D Neumerkel, H Olsson, J V Peetz, and S Wolf.
The Functional Mockup Interface for Tool independent Ex-
change of Simulation Models. In 8th Int. Model. Conf. 2011,
pages 173–184, 2009. doi:10.3384/ecp12076173.

David Broman, Christopher Brooks, Lev Greenberg, Ed-
ward A. Lee, Michael Masin, Stavros Tripakis, and
Michael Wetter. Determinate composition of FMUs for co-
simulation. 2013 Proc. Int. Conf. Embed. Software, EM-
SOFT 2013, 2013. doi:10.1109/EMSOFT.2013.6658580.

Christopher Brooks, Edward A Lee, and Stavros Tripakis. Ex-
ploring Models of Computation with Ptolemy II. 10 Proc.
eighth IEEE/ACM/IFIP Int. Conf. Hardware/software code-
sign Syst. Synth., pages 331–332, 2010.

Atiyah Elsheikh, Muhammed Usman Awais, Edmund Widl,
and Peter Palensky. Modelica-enabled rapid prototyp-
ing of cyber-physical energy systems via the functional
mockup interface. 2013 Work. Model. Simul. Cyber-
Physical Energy Syst. MSCPES 2013, pages 1–6, 2013.
doi:10.1109/MSCPES.2013.6623315.

IMO. MARPOL : Annex VI and NTC 2008 with guidelines
for implementation. Technical report, 2008.

Edward A. Lee, Mehrdad Niknami, Thierry S. Nouidui, and
Micheal Wetter. Modeling and Simulating Cyber-Physical
Systems. 2015 Int. Conf. Embed. Softw., pages 115–124,
2015. doi:doi: 10.1109/EMSOFT.2015.7318266.

Jie Liu, Xiaojun Liu, and Edward A Lee. Modeling Distributed
Hybrid Systems in Ptolemy II. Proc. 2001 Am. Control
Conf., 6:4984–4985, 2001. doi:10.1109/ACC.2001.945773.

Modelon. FMI Library. URL http://www.jmodelica.
org/FMILibrary.

Thierry Nouidui, Michael Wetter, and Wangda Zuo. Func-
tional mock-up unit for co-simulation import in Energy-
Plus. J. Build. Perform. Simul., 7(3):192–202, 2014.
doi:10.1080/19401493.2013.808265.

Nicolai Pedersen, Jan Madsen, and Morten Vejlgaard-Laursen.
Co-Simulation of Distributed Engine Control System and
Network Model using FMI and SCNSL. 10th IFAC Conf.
Manoeuvring Control Mar. Cr. MCMC 2015, 48(16):261–
266, 2015. doi:10.1016/j.ifacol.2015.10.290.

QTronic. FMU SDK. URL https://www.qtronic.de/
en/fmusdk.html.

Christoph Stoermer and Ghizlane Tibba. Powertrain Co-
Simulation using AUTOSAR and the Functional Mockup
Interface standard. Proc. 51st Annu. Des. Autom. Conf.
Des. Autom. Conf. - DAC ’14, (March):1–1, 2014.
doi:10.1145/2593069.2602975.

Luigi Vanfretti, Tetiana Bogodorova, and Maxime Baudette.
Power system model identification exploiting the Modelica
language and FMI technologies. 2014 IEEE Int. Conf. Intell.
Energy Power Syst. IEPS 2014 - Conf. Proc., pages 127–
132, 2014. doi:10.1109/IEPS.2014.6874164.

Edmund Widl, Wolfgang Muller, Atiyah Elsheikh,
Matthias Hortenhuber, and Peter Palensky. The
FMI++ library: A high-level utility package for FMI
for model exchange. 2013 Work. Model. Simul.
Cyber-Physical Energy Syst. MSCPES 2013, 2013.
doi:10.1109/MSCPES.2013.6623316.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612470

77
__

http://dx.doi.org/10.3384/ecp12076173
http://dx.doi.org/10.1109/EMSOFT.2013.6658580
http://dx.doi.org/10.1109/MSCPES.2013.6623315
http://dx.doi.org/doi: 10.1109/EMSOFT.2015.7318266
http://dx.doi.org/10.1109/ACC.2001.945773
http://www.jmodelica.org/FMILibrary
http://www.jmodelica.org/FMILibrary
http://dx.doi.org/10.1080/19401493.2013.808265
http://dx.doi.org/10.1016/j.ifacol.2015.10.290
https://www.qtronic.de/en/fmusdk.html
https://www.qtronic.de/en/fmusdk.html
http://dx.doi.org/10.1145/2593069.2602975
http://dx.doi.org/10.1109/IEPS.2014.6874164
http://dx.doi.org/10.1109/MSCPES.2013.6623316

Deployment of high-fidelity vehicle models for accurate real-time simulation

Johan Andreasson¹ Naoya Machida² Masashi Tsushima² John Griffin3 Peter Sundström4

¹ Modelon KK, Japan

² Nissan Motor Co., Japan
3Modelon Inc., USA

4Modelon AB, Sweden

johan.andreasson@modelon.com nao-machida@mail.nissan.co.jp

masashi-tsushima@mail.nissan.co.jp john.griffin@modelon.com peter.sundstrom@modelon.com

Abstract

In the effort to shorten development cycles and with

the reduced ability to test in real life, driver-in-the-

loop simulators are increasingly used by automotive

OEMs and in Motorsports to enable engineers and

drivers to experience a new vehicle design in a realis-

tic environment before it is built. With the right level

of accuracy, the same model can be applied in other

real-time vehicle dynamics applications to allow for

testing and verification in the development of new ve-

hicle functions.

This paper gives and overview of the requirements

for automotive real-time application and the solution

chosen. Emphasis is given on the model definition and

real-time configuration as well as parameterization

from existing data sources and integration of third

party subsystem models.

Keywords: vehicle simulators, vehicle dynamics, real-

time, hardware-in-the-loop, driver-in-the-loop

1 Introduction

Virtual representations that can predict a vehicle’s

real life behavior have become more and more im-

portant in the development process. There are some

well-known reasons for this, such as overcoming the

cost, time, safety and repeatability issues with physi-

cal prototypes (Rauh, 2003).

Recently, deployment of real-time vehicle dynam-

ics simulation for hardware-in-the-loop testing and

driving simulators has gained significant attention

(Yasuno, 2014). This trend is largely driven by the de-

mand for shorter development cycles that also should

result in better products.

Figure 1 illustrates three typical applications that

drive the use of real-time models. The ability to per-

form early assessment of drivers’ perception of the ve-

hicle being designed is one of the key driving factors

(top).

Another common use is for the integration of Elec-

tronic Control Units (ECUs) from suppliers where the

actual implementation is often hidden or partly hidden

as a so called black box (bottom left). A third case is

to include parts of the vehicle as hardware to provide

realistic boundary conditions for component testing

(bottom right).

Ultimately, all these applications can be combined,

with the virtual vehicle representation as the glue to

be able to assess the complete driver-vehicle system

at any point during the development process. Here, we

Figure 1. Applications of real-time capable models:

Driver-in-the-loop simulator, Yasuno (2014) (top), ECUs

(bottom left) and component hardware testing (bottom

right).

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

78 DOI
10.3384/ecp1612478

__

mailto:johan.andreasson@modelon.com
mailto:nao-machida@mail.nissan.co.jp
mailto:masashi-tsushima@mail.nissan.co.jp
mailto:john.griffin@modelon.com
mailto:peter.sundstrom@modelon.com

try to give a brief overview of the requirements a mod-

ern engineering tool chain should meet and pointers

to where in the paper the topics are addressed.

1.1 Accuracy and real-time capability

The late testing, tuning work and potential design it-

erations associated with physical prototypes are

known to not just be expensive, but also to extend the

development time with associated risks to delay mar-

ket introduction. To be able to reduce physical testing

further, the required simulation accuracy increases,

which in turn typically increases the computational ef-

fort which is in conflict with real-time requirements.

For vehicle dynamics, multi-body representations

of the vehicle mechanics are a standard approach in

the automotive industry as they are able to capture the

relevant phenomena for vehicle dynamics, while

providing a straight-forward parameterization.

For motorsports applications, the vehicle chassis is

traditionally close to an ideal kinematic behavior. As

such, the number of degrees-of-freedom (DOF) can be

kept to around 30-50. Such multi-body representa-

tions have been used successfully in real-time appli-

cations for a long time. Applications include driver

training, driver perception evaluation of new designs

and complete driver-vehicle systems integration, see

e.g. (Toso, 2014).

For passenger vehicles the vehicle design is gener-

ally different, especially due to the many elastic ele-

ments that are used to enhance comfort and tune vehi-

cle attributes. This leads to more complex representa-

tions with typically 150-300 DOF that traditionally

were not possible to execute in real-time. Therefore,

the current industry practice is to use a vehicle model

with significantly reduced complexity that results in a

lower computational load. Unfortunately, this means

lower accuracy, a limited valid frequency range and

additional pre-processing of the model to generate the

required parameterization, which slows down itera-

tion time.

With the introduction of new technology for paral-

lelizing vehicle models (Andreasson et al., 2014) and

(Elmqvist et al., 2014), the high model fidelity used

offline (see Section 2) is made executable in real-time

applications, as explained further in Section 5.

1.2 Inter-operability

In the context of shorter lead-times, no tool can be an

island, they must connect to form an efficient tool

chain. With the amount of legacy tools and methods

used by OEMs today, this puts some additional re-

quirements on any new model:

1. The model must be able to share data, mean-

ing reading and writing existing formats.

2. It must also be possible to plug the model into

the tool chain in such a way that it can use ex-

isting tools for pre- and post-processing.

3. Additionally, subsystem models from differ-

ent sources need to be included in the com-

plete vehicle model to allow for incremental

improvement, multi-fidelity and use of herit-

age/legacy code.

These topics are further described in Sections 3 and 4.

2 Model overview

The vehicle in this example is a production vehicle

featuring a front double wishbone suspension, a rear

multi-link suspension, front engine, rear wheel drive,

and an automatic transmission, Figure 2. The models

are based on the (Vehicle Dynamics Library, 2015)

and largely implements the template and interface

structure provided, Figure 3.

Figure 2 Vehicle model used in the presented work.

For each component or sub-system, the vehicle

model can be reconfigured by replacing subsystems

with plug-in compatible variants. This allow for

changing both configuration (e.g. from automatic to

manual transmission) and fidelity (e.g. from multi-

body to tabular suspension).

For each subsystem or component, there is a well-

defined interface that specifies the boundaries and

provides an established framework to connect pieces

from existing various simulation tools as described in

the next section.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612478

79
__

Figure 3. Architecture of the complete vehicle model. Ve-

hicle (top), brake system (second), chassis (third) and rear

suspension (bottom).

3 Deployment

To ensure convenient interoperability with subsystem

models from different sources, these models connects

either from within the Modelica framework or from

the tools originally used. This section illustrates the

two cases as well as the final integration of the com-

plete real-time model.

3.1 Multi-physics brake model

To include higher detail in the brake simulation and

get more realistic brake pedal feel, the pneumatic vac-

uum booster and the hydraulic master cylinder are

modelled as physical components (Hydraulics Li-

brary, 2015) and (Pneumatics Library, 2015). Figure

4 shows the layout of the brake system model.

Figure 4. Diagram layer of the brake system model. Com-

ponents are; pedal actuator (a), vacuum booster (b), mas-

ter cylinder (c) and brake lines and calipers (d).

The core of the booster model is a double acting

pneumatic cylinder corresponding to the booster dia-

phragm. Based on the pedal actuating the poppet

valves, vacuum and atmosphere pressure is applied to

the different sides of the diaphragm to boost the pedal

force acting on the master cylinder piston.

The force characteristics of the vacuum booster are

affected by elasticies and gaps in the mechanisms that

open and close the valves to the diaphragm. High stiff-

ness in combination with low mass in these compo-

nents can result in fast dynamics. This is typically not

relevant for the application, and may also be too fast

for the desired integrator time step. To handle this, the

spring-mass combinations are replaced with elements

where the bandwidth can be explicitly defined.

The master cylinder is a two circuit variant with a

mechanical gap connecting the two cylinders. As long

as the first circuit is pressurized, the gap is open and

the hydraulic pressure also activates the second cylin-

der. If the pressure in the first circuit is lost, the gap

will close so the pedal force is still transferred to the

second cylinder though with changed pedal travel.

a. b. c.

d.

d.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

80 DOI
10.3384/ecp1612478

__

To show the more detailed function of the booster

in combination with the hydraulic system can give a

more refined accurate prediction of the driver’s per-

ception, Figure 5 illustrates how the brake system re-

sponds to a press-and-release cycle of the pedal force.

The upper plot shows the brake line pressure which

also will affect the actual and experienced retardation

generated. The lower plot shows the pedal stroke

which provides the driver with feedback through the

foot.

Figure 5. Top plot: Brake line pressure (vertical axis) as a

function of brake pedal force (horizontal axis). This shows

the knee points where the booster engages and disengages.

Bottom plot: Corresponding pedal travel (vertical axis) for

the same pedal force excitation. For confidentiality reasons,

the numerical values have been removed.

3.2 External steering model

External subsystem models not implemented in Mod-

elica can either be imported into the Modelica frame-

work, or the vehicle model is exported without the

corresponding subsystems for integration on an exter-

nal platform.

External models are brought into the Modelica

model using external functions or objects, or to in-

clude so called Functional Mock-up Units (FMUs) ad-

hering to the Functional Mock-up Interface (FMI,

2015). In either case, these are wrapped into the sub-

system interfaces to ensure plug-in compatibility. A

variety of external models, including (OpenCRG,

2015), (DelftTyre, 2015) and (FTire, 2015) are prede-

fined and ready to use.

Correspondingly, when exporting the vehicle

model, the systems that should be external are re-

placed with models that provide no contents. Figure 6

illustrates a Modelica steering system model (top), an

external steering model included in the vehicle model

(middle) and an empty steering model with external

inputs and outputs (bottom).

Figure 6. Modelica steering model (top), steering model

imported as and FMU (middle), empty steering model re-

quiring rack motion and providing rack force.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612478

81
__

3.3 Complete real-time model integration

After configuring the vehicle model to allow for ex-

ternal subsystems, it can be exported in different for-

mats (such as FMI, C, etc.) for system integration

elsewhere. For deployment, the system integration is

currently done in SIMulationWorkbench (Concurrent,

2015).

The system architecture is shown in Figure 7. The

shaded area indicates what is handled by the real-time

host. It contains the models (2) of chassis (2a), brake

system (2b), steering (2c), power train (2d), control-

lers (2e) and I/O devices (3) for interaction with the

motion platform (3a) and driver interface (3b).

The Communications between the models (2) and

the I/O devices (3) is handled through shared memory

interconnection (1) called Real Time Data Base

(RTDB), Concurrent (2015). RTDB allows access to

any variables stored in RTDB for any of the included

models and is achieved to wrap the inputs and outputs

of each of the model with dedicated read/write func-

tionality.

The real-time host then communicates with the op-

erators through a set of clients that provides a Graph-

ical User Interface (GUI) for configuration of I/O

(5a), data recording (5b), playback (5c) and configu-

ration of RTDB (5d).

Figure7. Software architecture of the real-time simulation

host.

To allow for communication through the RTDB, each

model must contain its own numerical integrator and

can only expect to share information at each commu-

nication point. So, effectively, the real-time host

works like a co-simulation platform. A benefit with

this approach is the ability to let each model integrate

at multiples of the communication interval, so called

multi-rate integration.

Multi-rate integration is suitable as it allows for

models from tools that only supports explicit integra-

tion schemes to be executed at small enough time step

to ensure numerical stability. Correspondingly, the

method allows for plant models to be integrated at

shorter time steps than the controllers.

With co-simulation, there is also inherent support

to distribute the integration of each model to its own

set of cores. Additionally, the chassis model is paral-

lelized on multiple cores as described further in Sec-

tion 5.

4 Parameterization

For the real-time model to be an efficient tool, it is

crucial that it can access the latest state of develop-

ment. Therefore, the model is designed to read the

same data set that is used in existing offline tools, in

this case the TeimOrbit format.

4.1 Accessing data

The data management is accomplished using a gen-

eral-purpose data management method to read and

write external data called DataAccess. This method

can handle a variety of different file formats such as

.xml, .json and .mat. Since DataAccess is compiled

into the simulation code, it is well suited for model

export as it allows users to conveniently change model

parameters in a consistent way regardless of how and

to what format the model is exported, Figure 8.

For this work, the handling of the TeimOrbit for-

mat was added to allow data sharing with the offline

tools. Initially, the real-time model was parameter-

ized by manually accessing a data value required for

a particular attribute, such as the mass of a part. This

resulted in significant effort and duplication of code

to read the necessary data. As the project progressed,

it became evident that duplicate coding could be elim-

inated by creating data-aware components, Figure 9.

A data-aware component is responsible for reading

all the data that it requires from the data file. For ex-

ample, a data-aware part is responsible for reading all

of the mass and inertia data associated with it; and a

data-aware bushing is responsible for reading all the

force and torque characteristics that describe it. Data-

aware components are also easier to validate because

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

82 DOI
10.3384/ecp1612478

__

correlation occurs at the component-level and the only

configuration work is to point the component to the

right data source.

Figure 8. The data management (DataAccess) is compiled

into the executable model. This ensures that the parameters

are read from the same source regardless of the deployment

scenario.

Figure 9. Linkage topology view (left) configured with

data aware components that read TeimOrbit data and result-

ing 3D view (right).

4.2 Validation against offline tool

To ensure consistent behavior between offline tool

used in development and the new real-time model, a

validation procedure was carried out. This procedure

included comparison on different levels, from compo-

nents to chassis on road. For the suspension level, the

standard offline procedure was replicated in Model-

ica, and configured to read the test specifications pro-

duced by the offline tools. Figure 10 shows the result-

ing test model that contains three main components;

the test rig, the suspension, and the signal source.

The test rig provides a constraint between vehicle

body and ground. The wheel centers are excited

through moving the wheel pads which induces forces

through the tires. Additionally, forces and torques can

be applied either at the wheel center, or at the tire con-

tact patch. For the front suspension, either steering

wheel position or steering wheel torque is given.

The suspensions are the same suspension that is used

in the complete vehicle (Figure 3). The source block

is configured using DataAccess to read the configura-

tion information used by the off-line tool eliminate

manual reconfiguration of test scenarios. Figure 10

shows some example correlation plots from the front

suspension for parallel wheel travel.

Figure 10. Suspension test model implementation showing

the tested suspension, the boundary conditions, and the

source block that reads the test specification.

5 Realtime configuration

The Vehicle Dynamics Library have been used to

model real-time capable multi-body vehicle models

for more than a decade, (Elmqvist et al., 2004). These

models are heavily adopted in the Motorsports indus-

try for various applications, see e.g. (Toso, 2014).

With recent development (Andreasson et al., 2014), it

is now possible to execute high fidelity vehicle mod-

els with more than 150 DOF (300 states). This allows

the models used for vehicle development at CAE de-

partments to be executed directly in real-time applica-

tions. Key methods to achieve the performance is the

inlining of the real-time solver and parallelization of

the executable code.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612478

83
__

Figure 11. Comparison of results generated from offline

tool (blue) and real-time model (green) for a parallel wheel

travel. Plots show lateral (top) and camber (bottom). Each

plot shows the curves overlaid and error, respectively.

5.1 Inlining

So called inlining (Elmqvist et al., 1995), has proven

to be a successful way of achieving real-time perfor-

mance of stiff systems, (Elmqvist et al., 2004). Inlin-

ing essentially means that the discretization formulas

of the integration methods are substituted into the dif-

ferential equations of the model, and then structural

analysis and computer algebra are applied on the aug-

mented system of equations. The method can be com-

bined with both explicit and implicit discretization

schemes. The explicit scheme is straight-forward but

requires small enough steps to ensure stability. The

implicit scheme has better stability properties but typ-

ically results in non-linear system of equations that

need to be solved iteratively.

5.2 Parallelization

Solving large systems of non-linear equations is

O(n^3), meaning cost to solve the problem grows with

the third power of the number of equations. For the

model in this work, the size of the manipulated inlined

implicit integration system is 178 (n1=178), which

would be difficult to solve robustly in any real-time

application without further manipulation.

As described in (Elmqvist et al., 2014), parallel-

ized code can now be generated from Modelica mod-

els according to the (OpenMP, 2015) standard. The

real-time model takes advantage of this functionality

to distribute the workload of solving the systems of

equations across multiple cores according to the fol-

lowing principle:

After the implicit integration scheme has been in-

lined with the model, the resulting system of equa-

tions is then divided into several smaller systems cor-

responding to the dynamics of the rear and front left

and right suspension linkages, the powertrain, the

steering and the wheels. The resulting impact on the

structural side is that one large system of equations is

now reduced to several smaller systems after manipu-

lation, here n2={40, 40, 32, 32, 12, 11, 1, 1, 1, 1, 1, 1,

1, 1}.

This split gives two advantages, first several

smaller systems solve significantly faster than one big

system due to the cubic growth described above. In

this particular case the reduction corresponds roughly

to n1^3/n2^3, which is about 30 times.

The second advantage is that the parallelization of

the code allows the execution to be distributed on

multiple cores. This also means that as long as there

are cores available to distribute the calculations onto,

any added model complexity will have a limited effect

on the overall turn-around time as long as it does not

add to any of the largest systems of equations.

5.3 Simulation accuracy and performance

The real-time configuration has been validated both

with respect to accuracy and performance. To ensure

robustness to high amplitude and high frequency in-

puts, the test suite contains a broad range of excita-

tions such as jump and police turn in addition to the

more traditional simulation set-ups. Figure 12 shows

the vertical acceleration of the body while the car ac-

celerates over an uneven ground surface.

The performance of the real-time model is defined

by the time it takes to solve for each time step, so

called turn-around time. Indications of the perfor-

mance can be done directly on a desktop or laptop us-

ing timers, and on a Windows laptop (i7-3520M @

2.90 GHz) the performance is roughly real-time. In

Figure 13, the timing plot on the hardware-in-the-loop

platform (Concurrent Xeon E5-2687w v2) is shown.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

84 DOI
10.3384/ecp1612478

__

Figure 12. Time trace of vertical acceleration while accel-

erating over an uneven road. Reference trajectory generated

with Dassl solver using relative tolerance 1e-6 (blue), and

real-time solver (red). For confidentiality reasons, the nu-

merical values of vertical axis have been removed.

Figure 13. Execution time on the hardware platform. Each

time step is 1ms.

6 Conclusions

This paper presents a real-time capable, high-fidelity

model of a production vehicle. It is shown how this

model can add real-time capability to the existing

toolchain without having to replace or re-implement

existing functionality. This is achieved by combining

an open architecture with the ability to read and write

legacy data formats. It is also shown how to enable

real-time simulation of high-fidelity vehicle models

using inlining and parallelization.

All-in-all, the model presented in this paper can re-

spond accurately to inputs and realistically predict the

vehicle behavior as of the latest state of the develop-

ment process. The deployment in real-time environ-

ments such as driver-in-the-loop and hardware-in-the-

loop simulators enables both subjective and objective

evaluation. This in turn allow for early assessment of

the human-vehicle interaction and the integration of

vehicle safety systems.

7 References

Andreasson, J. et al. (2014). Realtime simulation of

detailed vehicle models using multiple cores, in

proceedings of International symposium of Ad-

vanced Vehicle Control, AVEC, Tokyo.

Concurrent (2015). www.ccur.com

DelftTyre (2015).

https://www.tassinternational.com/delft-tyre

Elmqvist, H. et. al. (1995). Inline Integration: A new

mixed symbolic/numeric approach for solving

differential-algebraic equation systems, Proceed-

ings of European Simulation Multiconference,

June, Prague, pages XXIII-XXXIV.

Elmqvist, H. et al. (2004). Realtime Simulation of

Detailed Vehicle and Powertrain Dynamics. In

Proceedings of the SAE World Congress 2004,

Paper no 2004-01-0768, Detroit, Michigan.

Elmqvist, H. et. al. (2014). Parallel Model Execution

on Many Cores, Proceedings of 10th Interna-

tional Modelica Conference, Lund, Sweden.

FMI (2015). www.fmi-standard.org

FTire (2015). www.cosin.eu

Hydraulics Library (2015).

www.modelon.com/products/modelica-librar-

ies/hydraulics-library/

Modelica (2015). www.modelica.org

OpenCRG (2015). www.opencrg.org

OpenMP (2015). openmp.org

Pneumatics Library (2015).

www.modelon.com/products/modelica-librar-

ies/pneumatics-library/

Rauh, J. (2003). Virtual development of ride and

handling characteristics for advanced passenger

cars. Vehicle System Dynamics, 40(1-3), 135-

155.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time [s]

E
la

p
se

d
 t

im
e

[m
se

c]

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612478

85
__

http://www.ccur.com/
https://www.tassinternational.com/delft-tyre
http://www.fmi-standard.org/
http://www.cosin.eu/
http://www.modelon.com/products/modelica-libraries/hydraulics-library/
http://www.modelon.com/products/modelica-libraries/hydraulics-library/
http://www.modelica.org/
http://www.opencrg.org/
http://www.openmp.org/
http://www.modelon.com/products/modelica-libraries/pneumatics-library/
http://www.modelon.com/products/modelica-libraries/pneumatics-library/

Toso, A. and Moroni, A. (2014). Professional Driv-

ing Simulator to Design First-Time-Right Race

Cars. SAE Technical Paper 2014-01-0099.

Vehicle Dynamics Library (2015).

www.modelon.com/products/modelica-librar-

ies/vehicle-dynamics-library/

Yasuno, Y. et al. (2014). Nissan’s New High Perfor-

mance Driving Simulator For Vehicle Dynamics

Performance & Man-Machine Interface Studies.

In proceedings of Driving Simulation Confer-

ence 2014 Paris, France, September 4-5, 2014

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

86 DOI
10.3384/ecp1612478

__

https://modelon-my.sharepoint.com/personal/johan_andreasson_modelon_com/Documents/Modelon%20KK/Solutions/Realtime%20Simulation%20of%20High-Fidelity%20Vehicle%20Models/Modelica2016/www.modelon.com/products/modelica-libraries/vehicle-dynamics-library/
https://modelon-my.sharepoint.com/personal/johan_andreasson_modelon_com/Documents/Modelon%20KK/Solutions/Realtime%20Simulation%20of%20High-Fidelity%20Vehicle%20Models/Modelica2016/www.modelon.com/products/modelica-libraries/vehicle-dynamics-library/

Validation of a Battery Management System based on AUTOSAR

via FMI on a HiL platform

Leonard Janczyk1 Klemens Esterle1 Stephan Diehl1

Michael Seibt1 Arthur Gauthier2 Viry Guillaume3
1Dassault Systèmes Deutschland GmbH, Munich, Germany

2Dassault Systèmes SE, Plouzané, France
3Dassault Systemes KK, Tokyo, Japan

leonard.janczyk@3ds.com, klemens.esterle@3ds.com, stephan.diehl@3ds.com,

michael.seibt@3ds.com, arthur.gauthier@3ds.com, guillaume.viry@3ds.com

Abstract

In systems which are sourcing their electric energy from

a battery system, such as electric or hybrid electric

vehicles, it is of crucial importance to monitor the

battery’s condition in order to ensure its usability and

longevity. The battery management system (BMS) is a

control unit which supervises the physical variables in

order to assess the condition of the battery.

For the development and testing of control units in

the automotive industry, such as the BMS, the

AUTOSAR standard was introduced, which separates

application code from platform-specific software. By

using AUTOSAR tools and the model exchange via the

Functional Mock-up Interface (FMI), this paper shows

how BMS algorithms can be validated and tested in

several abstraction layers. A sub-function of the

algorithm is tested first in the Modelica-based system

simulation tool Dymola on a personal computer and then

on Hardware-in-the-Loop (HiL) platform which

emulates the hardware of an automotive ECU.

In order to provide realistic inputs of the physical

variables, a battery model in Modelica is built using the

Dymola add-on Battery Library by Dassault Systèmes.

In order to run on the HiL platform the battery model is

implemented such that it is real-time compliant.

For both, the BMS algorithm and the battery model,

it is described along the process which adjustments need

to be made when switching from the simulation

framework to the HiL platform.

Keywords: battery model, battery management system,
AUTOSAR, FMI, ASim, MiL, SiL, HiL, XiL, Co-

Simulation

1 Introduction

Today’s system- and software development teams

work quite isolated from one another. Information

exchange is usually limited on written specifications.
With the example of the battery management system

(BMS) we will show a method in which information can

effectively be exchanged through a model based on the

Functional Mock-up Interface (FMI) as executable

specification. This allows both parties closed-loop

simulation at different stages of the V-Cycle. This way,

software developers can more thoroughly test their

software in a virtual environment. At the same time the

system simulation teams can simulate their whole

system without the need to manually re-implement the

software algorithms of the ECU code.

This paper illustrates how based on FMUs

(Functional Mock-up Units) source code from an

AUTOSAR Battery Management Algorithm can be

simulated on different abstraction levels in order to

verify the algorithm for a failure mode.

At first, in section 2, the physical battery model will

be introduced along with example battery module which

it represents. In a second step, the function and tasks of

a battery management system will be explained. The

focus will shift on the specific algorithm, the charging

status estimation, which is chosen as an example in

order to demonstrate the process for the overall BMS. In

section 3, the AUTOSAR standard and the used tool

chain will be described.

2 Battery Simulation and Battery

Management

Proper battery modelling plays an important role in this

context. On the one hand, the model needs to provide a

proper representation of the inner workings of the

battery so the battery management system receives a

realistic and complete set of signals.

On the other hand, the battery model needs to be

performant enough in order to be compliant with real-

time requirements. In the following two sections, the

battery model will be introduced.

2.1 Battery Simulation Model

The battery pack which is modelled is a 48 V module. It

could be deployed in micro-hybrid systems for the on-

board electric power supply or as part of a traction

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

87
__

mailto:leonard.janczyk@3ds.com
mailto:klemens.esterle@3ds.com
mailto:stephan.diehl@3ds.com
mailto:michael.seibt@3ds.com
mailto:arthur.gauthier@3ds.com
mailto:guillaume.viry@3ds.com

battery system. The module features two parallel-

connected rows of each 13 battery cells in serial electric

connection. Their combined capacity of the 26 battery

cells amounts to 140 Ampere hours.

Table 1. Battery Cell Parameters.

Parameter Unit Value

Nominal Cell Capacity Ah 2.7

Nominal Cell Voltage V 3.6

Maximum Voltage V 4.2

Minimum Voltage V 2.5

Maximum Internal Resistance mΩ 30

Shape - round

The battery module is modelled in Modelica using the

Battery Library from Dassault Systèmes (Gerl, et al.

2014). The physical battery cell models is made up of

the physical domains relevant for the batteries behavior:

electric and thermal.

The main requirement for cell models used in system

simulation is to provide accurate information on the

macroscopic characteristics (e.g. voltage, current and

state of charge) combined with reasonable computation

time. This way, the impedance characteristics of the real

cell are replicated. In many applications models using

an electrical equivalent circuit fulfill these requirements

The voltage of a battery U can be described as the

difference between the open circuit voltage UOCV and a

number of over potentials ηi caused by different

electrochemical effects:

𝑈 = 𝑈𝑂𝐶𝑉 + ∑ 𝜂𝑖 (1)

These over potential can be modelled with equivalent

electric circuit networks. In Figure 2 the voltage

characteristic for the step current discharge of a NiMH

cell is shown. The effect is similar for Lithium-Ion based

cells, such as the ones used for this example.

Figure 1 Voltage characteristic of an electrochemical cell

(NiMH) (Jossen und Weydanz 2006)

The over potential is divided into an ohmic over

potential ηohm, over potential caused by charge transfer

and the electrical double layer ηtrans and over potential

due to diffusion ηdiff. An electrical equivalent circuit
capable of reproducing the voltage characteristic from

Figure 1 is shown in Figure 2, whereas the dynamic

behavior of the over potentials are modelled using RC-

circuits.

Figure 2 Voltages in the equivalent circuit model

In order to determine the influence of varying temperatures

on electrical and aging behavior a thermal model of the cell

and its surrounding environment is required. The heat

inside the cell is generated mainly due to Joule effects,

while the chemical reactions are exothermic or even

endothermic to a minor degree. Thus the generated heat

corresponds to the calculated power losses of the resistors

of the equivalent electric circuit which are therefore

connected to the thermal model.

Figure 3 Representation of the thermal cell model

At the module level, where several cells form an

electric, geometric and thermal entity, the major

advantage in this context is that the battery pack can be

adjusted according to the performance needs. In

practical terms, this results in the question whether the

battery cells are each represented as a Modelica object.

A simplified approach would be modelling just one cell

and scaling up the results to module size by multiplying

the inputs and outputs by the cell numbers in accordance

with their electrical wiring. Also, the thermal

representation of the cells can be adjusted in the number

of discretized elements. In the case of a round cell these

elements are vertically slices which help to calculate the

cell internal flow, as sketched in Figure 3.

Of practical importance is the fact that the Hardware-

in-the-loop platform usually does not feature a data

system. Modelica models in industrial environments

might be parameterized by external parameter files.

When exporting the model for the HIL environment, the

data needs to be placed within the model without any

external dependencies.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

88 DOI
10.3384/ecp1612487

__

2.2 Battery Management System

The battery management system has to process sensor

data and on-board model simulation results in order to

obtain information about the state of the battery. Tasks

of the battery management system (BMS) include the

determination whether the monitored variables are still

within the acceptable limits. Apart from state-of-charge

(SoC) and the state-of-health (SoH) usually the cell

temperature, the cell voltage and the system voltage are

monitored. In case one of these variables appears to be

out of the operational limits, the battery management

system sends a signal to the overall power management

control unit which restricts the power usage of the

consuming components.

Especially the SoC and the SoH are variables, which

need to be monitored to ensure overall system

availability at any given moment (He, Wei and Brian

2010). When the SoC reaches a critically low level in

general in the range of 5-10%, the electrodes of the

battery take severe damage and the battery voltage

might drop below a level at which the battery system

cannot provide the required power anymore. On the

other hand, when the SoC exceeds 100% by too much,

the battery cell stores excessive amounts of energy

beyond a level which it can safely handle. In severe

cases, this might even a cause a “thermal runaway”, a

strong exothermal reaction after which the battery

system is completely dysfunctional.

Therefore in any case the battery management system

should encompass a SoC estimation algorithm. In the

following, the realization of such an algorithm will be

discussed.

2.3 Estimation of Battery State-of-Charge

In a battery simulation model the change of the SoC can

be calculated by balancing the electric charge and

discharge current such as in equation (2). The SoC is by

definition part of the overall amount of electric charge

available for discharge with Cn being the nominal

battery capacity in Ampere seconds (He, Wei and Brian

2010).

∆𝑆𝑜𝐶 =
∫ 𝐼 𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

𝐶𝑛
 (2)

 However the SoC determination is more complex when

being implemented on a battery ECU.

First, integration is a mathematical operation which

requires more resources in terms of on-board memory

and computational time compared to other mathematical

operations.

Secondly, current sensors do not necessarily deliver

a constantly precise measurement output. Calibration

errors result in constant drifts of the recorded battery

current. This drift might not significantly influence the

quality of the estimation during a short period such as a

short inner city ride. However during longer trips such

as an inter-city highway tour the drift in the charging

status estimation might accumulate to a point where the

battery is depleted while the battery management system

assumes the charging status as being sufficient.

In order to ameliorate the quality of the SoC

estimation, corrective back-up algorithms need to be

included. A viable alternative is measuring the voltage

of the battery when the battery is in electrochemical

equilibrium, meaning that no electric load or charging is

applied and excitation of previous electric load has

faded. In this state the over potentials are negligible

leaving the open circuit voltage as the dominant factor

determining the cell voltage:

As a matter of fact, the open circuit voltage is usually

measured during the initial rating of new cell type and

also typically used for the parameterization of

equivalent circuit cell models as shown in Figure 2.

Implementing the relationships presented in

equations (2) and (3) in Modelica code could be drafted

as followed:

der(SoC_count) * C_n = current + error;

SoC_est = SoC_count;

when zeroCurrentTimer > fadingTime then

 reinit(SoC_est, SoC_ocv);

end when;

In the first code line the charge counter (SoC_count) is

implemented after the fashion of equation (2) with the

error signal applied on the current signal. The output

SoC_est is directly loaded with the result of the

integration over the current and standardization with the

nominal capacity C_n.

The when-clause representing equation (3) becomes

active at the time point at which the current has been

close to zero for a time period, implementation shown

in Figure 4, with the influence of charge transfer over

potential has most likely faded, in this case more than

the time constant fadingTime. The calculated SoC will

be replaced then with a charging status which has been

extracted from a look-up-table describing SoC over

OCV.

Figure 4 Counting time with current close to zero

During the verification phase of the system

engineering process, the battery management system

needs to be verified if it lives up to battery safety

requirements, i.e. if the variables describing the battery

state are recorded properly, the operational limits are

correctly determined and their violations duly signaled.
 In context of this paper, the ability of the charging

status estimation algorithm to correct an erroneous

tableOCV

NoCurrentTimeCounter

0.1

<

absoluteCurrent

abs

socReset

in_current

in_voltage

soc_estimation

𝑆𝑜𝐶 = 𝑓(𝑈) = 𝑓(𝑈𝑂𝐶𝑉) for 𝜂𝑖 → 0 (3)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

89
__

current measurement signal will be verified. For

demonstration purposes the implementation is limited to

charge counter and correction by voltage comparison as

laid down in this chapter. A typical question answered

during this process might be whether an estimation

correction via cell voltage is sufficient to ensure that the

battery management system and the driver are provided

with the correct battery charging status.

3 Virtual Testing of AUTOSAR compliant

controller software using FMI

3.1 What is AUTOSAR?

AUTOSAR (AUTomotive Open System ARchitecture)

is a well-accepted standard for developing software for

automotive electronic control units (ECU), as

documented by (Bertsch, et al. 2015) for Bosch ECUs.

It defines a layered architecture, separating hardware,

application software and basic software through

standardized interfaces.

Figure 5 AUTOSAR Layered Architecture

As shown in Figure 5 the interface between

application software components and the interfaces

between application software and basic software (BSW)

is handled through the runtime environment (RTE),

which implements different types of communication

mechanisms (AUTOSAR 2016).

3.2 AUTOSAR Unit Test

One essential part in the AUTOSAR software

development is the testing of individual software

components and the whole software architecture (top

level composition). Ideally those tests should be

executable without any hardware-dependencies to

enable testing as soon as possible in the development

cycle. AUTOSAR addresses this through the Virtual

Function Bus (VFB) Abstraction Level. The

AUTOSAR test environment ASim from Dassault

Systèmes is also applying this concept taking a real

AUTOSAR compliant operating system (OS) and RTE

into account. This allows testing of software

components on a very granular level, also considering

effects through the OS, e.g. scheduling, or through the

RTE, e.g. synchronize queued and non-queued

communication. Even fixed-point arithmetic is taken

into account using AUTOSAR datatypes.

3.3 FMI-based Export of virtual AUTOSAR

ECUs

Unit tests are in general open-loop tests, which means

the user has to define sufficient and reasonable test-

vectors and test-constraints, which is often quiet

challenging and time-consuming. Hence integrating the

software “model” in a virtual environment which closes

the loop through a plant-model would make the

conditioning of many of the software component-ports

obsolete, as they will be fed directly through the

connected plant model. In addition to that timing effects

and delays could also be taken into account by a plant

model. ASim opens this possibility through FMU export

the extraction of a virtual AUTOSAR ECU which can

then be integrated into other simulation platforms

supporting the FMI-Standard.

3.4 FMI-based XiL Tool Methodology

The Modelica-based simulation tool Dymola supports

the import, export and simulation of FMUs (FMI for

Model Exchange and Co-Simulation, (Blochwitz, et al.

2011)). Software- and plant-models can be simulated on

different abstraction levels, which allows MiL- and SiL-

testing. FMUs can also be exported via the source-code

generation capabilities. These can then be compiled for

different HiL platforms. Based on a Battery

Management Unit it is illustrated, how XiL-tests can be

performed using the FMI-standard.

4 Results and Discussion

4.1 Model-in-the-Loop

In general, system simulation starts at an earlier stage in

product development than the software development. In

this context both battery model and BMS algorithm are

implemented as models to evaluate system behavior and

the response algorithm together in a Model-in-the-Loop

(MiL) simulation. One could argue that the BMS

algorithms could be coded from the beginning in a

software development platform for the ECU software

instead of being implemented in the same simulation

environment as the model itself. However when taking

a closer look at the model equations and the required

solvers, the advantage of this method will become

obvious:

Using an acausal object-oriented Modeling language

like Modelica for modeling physical systems often

results in a higher-order differential algebraic equation

system (DAE) with slow dynamics, looking at the

thermal behavior of the battery case and fast dynamics

caused by the electrical cell behavior. An implicit solver

like DASSL is designed to deal with those type of

systems. As only explicit fixed-step solvers can be used

in a real-time environment, numerical stability for the

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

90 DOI
10.3384/ecp1612487

__

sampling rate of the ECU has to be ensured. Testing the

battery model in the modeling environment with the

step-size matching the sampling rate reduces the use of

generally much more expensive real-time hardware.

In addition by using this approach the functionality of

the battery model can be verified in parallel to the

development of the battery management system by the

functional development engineer resulting in an

acceleration of the design phase. Moving forward in the

product development, this procedure allows early

simulation experiments.

Figure 6 Model-in-the-Loop Simulation: SoC (top) and

power load (bottom) over time in seconds. Negative power

indicates discharging of the battery module.

When coupling the Modelica implementation of the SoC

estimation algorithm with the Battery Library model and

applying a load cycle and environmental conditions, the

following results are obtained as shown in Figure 6. The

load power cycle consists of a discharge phase of 1 kW,

an immediate recharge of 500 W and a subsequent

unstressed time period at room temperature. One can

observe that due to the forced condition offset error of

+0.5 A on the current sensor, the output of the charging

status estimation drifts away from the actual SoC up to

the point where the divergence amounts to over one

percentage point. A short time period later the power

load is stopped. The cell voltage is largely no longer

influenced by the electrochemically induced

overpotentials but only by the open circuit voltage. The

corrective algorithm steps into action, looks up the SoC

value which matches the measured voltage. At second

250 the reinit command is ignited and replaces the

calculated SoC value with the one based on the

measured cell voltage.

Figure 7 Model-in-the-Loop Simulation: Different

Methods of SoC over the course of the battery load cycle

A comparison in Figure 7 between the SoC values also

shows at this early software design stage why charging

status based on the measured cell voltage cannot serve

as a lone signal source, and why a certain time period

needs to pass before the correction is applied.

As the focus is the evaluation of the concept per se,

the simulation is performed on a high-performing

workstation with characteristics described in Table 2.

Table 2 Technical Characteristics of the workstation

(Intel Corporation 2016)

Parameter Value

CPU Type i7-4810MQ

Instruction Set 64 Bit

Number of CPU Cores 4

Base Frequency 2.8 GHz

L2 Cache size 1 MB

L3 Cache size 6 MB

RAM 16 GB

With summoning such computing power while using a

language which is native for the Dymola solver shows a

satisfying result for simulation time: The 17671

equations of the Modelica are integrated in 110 seconds

while the CPU-time for one GRID interval is 0.365

milliseconds.

4.2 Software-in-the-Loop

Once the algorithms of the BMS have been drafted and

evaluated during the MiL testing, they are implemented

as software functions for the ECU. Using the ASim

plugin of the Autosar Builder, the BMS algorithm can

be exported as FMU and coupled with the physical

battery simulation model in Dymola. As the algorithm

is now in the same format as on the ECU, this stage is

called Software-in-the-Loop (SiL) simulation.

0 50 100 150 200 250 300
0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

time [s]

SoC (real)
SoC (estimated)

0 50 100 150 200 250 300
-1200
-1000

-800
-600
-400
-200

0
200
400
600

time [s]

Battery Load [W]

0 50 100 150 200 250 300
0.70

0.75

0.80

0.85

0.90

0.95

1.00

time [s]

SoC (real)
SoC (estimated)

SoC (voltage-based)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

91
__

Figure 8 AUTOSAR Software Component of BMS. The

interfaces for I/O and calibration are marked in blue, the

internal behavior is marked green (presented in Figure 9).

In this stage of the process, the stability is first

verified with the ECU code coupled with the battery

model in Modelica in Dymola and in a second step as in

FMU both again imported in Dymola. Taking into

account the sampling. time of the Hardware-in-the-Loop

platform, it is to be tested whether coupled entities are

running stable when being operated with a fixed-step

solver with a sampling time of one millisecond.

When implementing the charge status algorithm as

sketched out in Modelica for the MiL simulation, some

methods need to be altered in order to ensure a sufficient

performance on an ECU for implementing the charging

status estimation algorithm:

As mentioned before in 2.3, the integration operation

used in equation (2) would use too much on-board

memory and is not always available in the ECUs

instruction set, so it needs to be replaced by a discrete

sum operation which accumulates the measured current

with each time step.

Figure 9 AUTOSAR Builder Screenshot of the internal

behavior of BMS. The supervision algorithm for the

operational limits is in the upper block FuncBmsControl,

while the charging status estimation is in bottom block

FuncBmsSocEstimate.

As shown in Figure 10, in both cases the system of

physical model and algorithm works stable with

reasonable results similar as obtained in the Model-in-

the-Loop simulation in chapter 4.1.

Figure 10 SiL Simulation: Results AUTOSAR-FMU and

Modelica Model in Dymola.

In the SiL simulation, the Dymola solver is now slowed

down by processing the FMU. The integration time

amounts now to 187 seconds with a 0.618 milliseconds

per grid intervall.

4.3 Hardware-in-the-Loop

In the final stage of the verification of the charging

status algorithm, the battery model in Modelica and the

BMS algorithms in AUTOSAR C-code are exported as

FMUs and executed on a platform which emulates the

hardware of an ECU of the target system. This stage is

therefor called Hardware-in-the-loop. At this point, the

stability of the software in a real-time environment can

verified. Additionally, hardware specific effects, such as

the influence of signal propagation delays, limited

memory, cache and processing speed are playing out as

well.

Figure 11 Toolchain and process for creating an FMU for

a HiL platform.

The battery model FMU and the Autosar FMU are

both set on the HiL platform. For this purpose, a dSpace

DS1006 Processor Board is employed as specified in

Table 3.

For being executed on the HiL platform, the

AUTOSAR FMU had to be equipped with operating

system functionalities such as scheduling. The toolchain

is visualized in Figure 11 Toolchain and process for

creating an FMU for a HiL platform.Figure 11.

0 50 100 150 200 250 300
0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

time [s]

SOC (estimated)
SOC (real)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

92 DOI
10.3384/ecp1612487

__

Table 3 Technical Characteristic HiL platform’s CPU

(dSpace GmbH 2016)

Parameter Value

CPU Type Opteron

Instruction Set 64 Bit

Number of CPU Cores 4

Base Frequency 2.6 GHz

L2 Cache size 1 MB

L3 Cache size -

RAM 128 MB

For the virtual validation of the charging estimation

algorithm, the output signals are compared to the results

in the MiL simulation in chapter 4.1, as shown in Figure

12.

The important characteristic for ensuring real-time

requirements is the turnaround rate in percentage points.

It states which fraction or multiple of the fixed-step

sample time interval is consumed for the execution of

the software code.

The turnaround time of the combined BMS FMU

exported from AUTOSAR and battery model FMU

exported from Dymola on the HiL platform is below 0.4

milliseconds. With the HiL platform processing

according to a step time of 1.0 millisecond, the

turnaround indicating a performance fast enough in

order to be real-time capable.

Figure 13 HiL Simulation: Turnaround time when

executing the combined FMUs on the HiL platform.

5 Conclusion and Outlook

In this paper, it could be shown that the detailed battery

model based on Dassault Systèmes Battery Library can

be used for real-time applications as the derived system

could be solved using a fixed-step integration method

with a step-size of one millisecond. The BMS

functionalities developed in AUTOSAR could be

validated using the battery model as a FMU on the HiL

platform.

With the example of the charging status estimation

algorithm, it has been shown how BMS functions could

be developed from draft to real-time verification using

FMI across all stages of the process from MiL over SiL

up to HiL.

As outlook from the perspective of the tool chain it

should be noted that currently the FMU generated from

the ASim in the AUTOSAR Builder uses the VFB level,

which doesn’t take the Basic Software or Complex-

Device Drivers (CCDs) into account. In a next step,

parts of the AUTOSAR Basic Software or CDDs could

be also modelled and exported with the FMU. This

would then also allow the consideration of propagation

delays induced by the Basic Software Layer.

Acknowledgements

We would like to thank Dan Henriksson from Dassault

Systèmes AB in Lund, Sweden, for his support on the

HiL platform.

References

AUTOSAR. 2016. Technical Overview.

February 06.

http://www.autosar.org/about/technical-

overview/.

Bertsch, Christian, Jonathan Neudorfer, Elmar

Ahle, Siva Sankar Arumugham,

Karthikeyan Ramachandran, and

Andreas Thuy. 2015. "FMI for physical

models on automotive embedded

targets." 11th International Modelica

Conference. Versailles, France. 43-50.

doi:10.3384/ecp1511843.

Blochwitz, Otter, Bausch, Clauß, Elmqvist,

Junghans, Mauss, et al. 2011. "The

Functional Mockup Interface for Tool

independent Exchange of Simulation

Models." 8th International Modelica

Conference. Dresden, Germany.

dSpace GmbH. 2016. "DS1006 Processor

Board." Technical Details. February 06.

http://www.dspace.com/en/pub/home/pr

Figure 12 HiL Simulation: Results of the combined BMS

FMU exported from AUTOSAR and battery model FMU

exported from Dymola on the HiL platform.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612487

93
__

oducts/hw/modular_hardware_introducti

on/processor_boards/ds1006.cfm.

Gerl, Johannes, Leonard Janczyk, Imke Dr

Krüger, and Nils Modrow. 2014. "A

Modelica Based Lithium Ion Battery

Model." 10th International Modelica

Conference. Lund, Sweden: Linköping

University Electronic Press. 335-341.

He, Yongsheng, Liu Wei, and Koch J. Brian.

2010. "Battery algorithm verfication and

development using hardware-in-the-loop

testing." Journal of Power Sources

(195): 2969-2974.

doi:10.1016/j.powersour.2009.11.036.

Intel Corporation. 2016. "Intel® Core™ i7-

4810MQ Processor." Specifications.

February 06.

http://ark.intel.com/products/78937/Intel

-Core-i7-4810MQ-Processor-6M-Cache-

up-to-3_80-GHz.

Jossen, Andreas, and Wolfgang Weydanz. 2006.

Moderne Akkumulatoren richtig

einsetzen. Reichhardt Verlag.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

94 DOI
10.3384/ecp1612487

__

Chattering-Free Simulation of Hybrid Dynamical Systems with
the Functional Mock-Up Interface 2.0

Ayman Aljarbouh1 Benoit Caillaud1

1Centre de Recherche INRIA-IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France,
{ayman.aljarbouh,benoit.caillaud}@inria.fr

Abstract

The numerical simulation of non-smooth hybrid systems
exhibiting chattering behavior requires high computa-
tional costs. In the worst case, the simulation appears to
come to a halt, since infinitely many discrete transitions
would need to be simulated. In this paper we present an
FMI-based framework and prototypical implementation
for robust and reliable detection and elimination “On
the Fly” of chattering behavior in run-time simulation
of non-smooth hybrid systems. The main benefit of the
developed framework is that it establishes solvability
requirements and theorems for simulating hybrid sys-
tems while performing the chattering path avoidance
internally in the master algorithm of the interface.
This increases the efficiency of the chattering-free
simulation as no enumeration of modes is required
during the chattering detection and elimination process.
The developed FMI-based framework can generate
a chattering-free simulation for any generic chat-
tering Functional Mockup Unit (FMU) conforming to
the FMI standard v2.0 Specification for model exchange.

Keywords: Functional Mockup Interface (FMI), Func-
tional Mockup Unit (FMU), Non-smooth Hybrid sys-
tems, Discontinuity mappings, Chattering

1 Introduction

In the literature, the term “hybrid systems” is used to de-
scribe a very wide class of dynamical systems with in-
teracting continuous and discrete dynamics. The state
variables in such systems are capable of evolving contin-
uously (flowing) and/or evolving discontinuously (jump-
ing). That is, the presence of two different behaviors,
continuous and discrete, is the cause of heterogeneity
(Zhang et al., 2001; Cai et al., 2008). However, even
simple hybrid systems can exhibit many unique phe-
nomena, such as chattering behavior. The interaction
between time-driven continuous variable dynamics (i.e.
ODEs, DAEs) and event-driven discrete logic dynamics
(i.e. If-then-else) may lead to this non-smooth be-

havior, which can be intuitively thought of as involving
infinitely fast and continuous switching between differ-
ent control actions or modes of operation (Aljarbouh and
Caillaud, 2015b). Models of physical hybrid systems
may be chattering due to modeling over-abstraction, ac-
tuators limitations, time discretization, or unmodeled dy-
namics (usually from servomechanisms, sensors and data
processors with small time constants).

1.1 Problem Statement

As in physical hybrid systems there is no chattering, it is
not reasonable then to assume that the control signal time
evolution can chatter or switch at infinite frequency. This
undesirable significant oscillation with an infinitely fast
frequency components of the control propagate through
the system, because of chattering, affects the system out-
put. In particular, chattering control is harmful because
it leads to low control accuracy, and once applied, can
lead to high wear of moving mechanical parts, as well as
high heat losses in electrical power circuits. In addition,
the numerical simulation of hybrid systems exhibiting
chattering behavior requires high computational costs as
small step-sizes are required to maintain the numerical
precision. For both non-adaptive and adaptive time step-
ping with event localization, root finding to locate the
exact time of occurrence of the chattering event causes
continuous integration to become dramatically and ex-
cessively slow. The system converges fast to the point in
time at which infinitely many discrete transitions need to
be simulated, and the simulation then appears to come
to a halt. Chattering behavior has to be treated in an
appropriate way to ensure that the numerical integration
progress terminates in a reasonable time. This has been
investigated by means of different methods. A smooth
sliding motion can be induced on the switching mani-
fold on which the chattering occurs (Leine and Nijmei-
jer, 2004; di Bernardo et al., 2008; Biák et al., 2013;
Weiss et al., 2015). Filippov Differential inclusion ap-
proach (Filippov, 1988) can be used in this case to define
equivalent sliding dynamics on the switching manifold
on which the chattering occurs. Another approach (the
so-called equivalent control) proposed by Utkin (Utkin,

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612495

95
__

1992) can also be used. However, the computation of the
equivalent dynamics turns to be difficult whenever the
system chatters between more than two dynamics. This
arises when the chattering behavior occurs in dynami-
cal systems having multiple discontinuous control vari-
ables. In the Functional Mock-up Interface (FMI) spec-
ification, Functional Mockup Units (FMUs) should add
a small hysteresis to the event indicators to avoid chat-
tering (Blochwitz et al., 2012). This approach has the
following disadvantages: I) A Modelica tool will also
add a hysterisis when handling state events, to ensure
that the zero crossings happen with non-zero values of
the input arguments of the event functions at the integra-
tion restart. Therefore, when calling the FMI function
fmi2GetEventIndicators from the Modelica model,
it will introduce the hysteresis twice to the event indica-
tors, and as a result, the resulting event triggered by the
imported FMU is slightly inaccurate. II) Adding hys-
terisis to the event indicators does not guarantee an effi-
cient treatement of the chattering behavior, as the physics
in chattering hybrid systems make the solution xε(·) be
a saw-toothed, or zigzag function, i.e., a function that
oscillates around the switching surface, with peaks at
−ε < 0 and +ε > 0, with ti+1− ti = 2ε (see Example
1 in Section 2.3). III) The size of the small value ε shall
be related to the size of the event indicator z j. The inter-
face then would become more complicated, because, in
order to determine the size of ε in the simulation envi-
ronment which imports an FMU, the “nominal” value of
z j has to be reported by the FMU, which requires more
information from the tool that generated the FMU, but
cannot be handled efficiently in the simulation environ-
ment that calls the FMU. IV) If this would be handled in
the simulation environment, there is always the danger
that the environment does not handle it properly, but the
FMU would be blamed for a failure.

1.2 Contribution

In this paper, we present methods and techniques for
treating chattering behavior of non-smooth hybrid
dynamical systems in the context of the Functional
Mock-up Interface (FMI), and a prototypical imple-
mentation. In particular we discuss technical issues and
implementation of a generic FMI which rigorousely
detects and eliminates chattering behavior in run-time
simulation without modes enumeration, and without any
need to add a small hysteresis to the event indicators in
the FMUs. The developed chattering-free FMI localizes
the non-smooth structural changes in the system in
an accurate way and allows sliding mode simulation
when the chattering occurs. It treats the chattering
non-smoothness in the trajectory of the state variables
by a smooth correction after each integration time-step.
Furthermore, our chattering-free FMI can robustly han-
dle the case of chattering on the intersection of finitely
many switching manifolds iteratively without any need

to solve stiff nonlinear equations for the computation
of the chattering-free coefficients. In addition, this
paper provides a guidance for development of a hybrid
chattering-free version of the Functional Mockup Inter-
face (FMI) standard, giving a computational framework
for an ideal manipulation of chattering behavior.

The paper is organized as follows: Section 2 gives
a closer look into how the chattering behavior occurs
in hybrid systems, as well as the challenges when
simulating hybrid systems with chattering executions.
Afterwards, we present in Section 3 the chattering-free
semantics for reliable detection and elimination of
chattering behavior in run time simulation. In Section 4,
a prototype implementation is sketched for applying
the chattering-free computational framework from
Section 3 to the Functional Mock-Up Interface v2.0
for Model Exachange. Finally, the simulation results
and conclusions of the work are given in Section 5 and
Section 6 respectively. We illustrate the concepts with
examples throughout the paper.

2 Chattering in Hybrid Systems
Formally we define chattering executions as solutions
to hybrid systems having infinitely many discrete tran-
sitions in finite time. This happens when nearly equal
thresholds for the transitions conditions of different
modes are satisfied and the system start to oscillate
around them. Numerical errors may also be the source
of chattering as transitions conditions can be satisfied be-
cause of local errors. In chattering behavior, the system
moves back and forth between modes, that is, the gradi-
ent of continuous-time behavior in each one of two ad-
jacent modes is directed towards their common switch-
ing surface. When in either of the two adjacent modes
on the common switching surface, an infinitesimal step
causes a mode change. In the new mode, the gradient
directs behavior to the previous mode and after another
infinitesimal step a change to the previous mode occurs.

2.1 Chattering Execution
An execution χ of a hybrid system is chattering if there
exist finite constants τ∞ and C such that

lim
i→∞

τi =
∞

∑
i=0

(τi+1− τi) = τ∞ (1)

∀i≥C : τi+1− τi = 0 (2)

where {τi}i∈N is a set of strictly increasing time instants
represents discontinuity points (state events instants).

2.2 Chattering and Simulation
An essential element of numerical simulation of a hybrid
dynamical system is the generation of discrete events

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

96 DOI
10.3384/ecp1612495

__

from continuous variables that exceed thresholds. Gen-
erating these events is generally implemented using re-
lational operations (e.g. >, >=, <, <=). For an accu-
rate simulation, the point in time at which these relations
change their truth value has to be located within a small
tolerance. A zero-crossing function g(t,x) can be used
to identify the boundary at which the change takes place.
Usually state variables x are used as argument to the
event indicator g(t,x). The nature of zero-crossing detec-
tion and location is to compare the sign of the function
value g(t,x) at the beginning and the end of each time
integration step, and if it changes, declare that it crossed
zero and then bracketing the zero-crossing event (i.e. bi-
sectional search) to locate the zero-crossing. During the
search process, the values of state variables x, needed for
the computation of g(t,x), are evaluated by interpolation,
using the values x(ti) and x(ti+1). Because of the nature
of finite precision arithmetic on digital computers, the
time that the event occurred can only be located within
an interval [Tle f t ,Tright] that corresponds to machine pre-
cision. During each iteration of the zero-crossing loca-
tion, the zero-crossing function is evaluated twice: at the
left and the right side of the reducing interval. After the
event is bracketed by Tle f t and Tright , the ODE solver first
advances integration time from ti to Tle f t . The solver is
then reset before advancing to Tright followed by switch-
ing the mode. In doing so, the assumption of continu-
ity holds throughout the numerical integration. However,
this approach may fail if the system exhibits a chattering
execution. The zero crossing function g(t,x) is a func-
tion of the model state, but it does not contribute to its
continuous dynamics f (t,x). Therefore, the numerical
integration can proceed without taking the dynamics of
g(t,x) into account, and when these are faster than the
dynamics f (t,x), the chattering execution then causes
the previous Tright to become the Tle f t of the next time
step, and the integration will move with the minimum
step size allowed. In order to illustrate the simulation of
a chattering execution, a simple example shall be given.

2.3 Example 1: Relay Feedback

The relay feedback system is a good candidate to show
the chattering behavior of a hybrid dynamical sys-
tem (Aljarbouh and Caillaud, 2015a). The relay feed-
back system consists of a dynamical system and a sign
function connected in feedback. The sign function
leads to a discontinuous differential equation (Johans-
son et al., 2002). Consider the following example for
x = (x1, · · · ,xn)

T ∈ Rn:

ẋ(t) = Ax(t)+Bu(t) (3)
y(t) =Cx(t) (4)
u(t) =−sgn(y(t)) (5)

A =

 −3 1 0
−3 0 1
−1 0 0

 B =

 −1
−2β

β 2

 (6)

C = [1 0 0] (7)

The system in this example is represented as a hybrid
system with two control modes q1 and q2 where the
phase space of the system is split by a single switch-
ing manifold Γ = {x ∈ Rn : g(t,x) = 0} into two do-
main: D1 = {x ∈ Rn : g(t,x) < 0} and D2 = {x ∈ Rn :
g(t,x)> 0} so that opposed zero crossing of the switch-
ing function g(t,x) = x1(t) defines the switching from
q1 to q2 and vice-versa (e.g. a switching from D1 to D2
occurs when g(t,x) changes its domain to g(t,x) ≥ 0).
It is important to recognize that the “zero crossing” ap-
proach defined by available integrators, for detecting
state events, requires that the event function variables are
non-zero at the event instant and after initialization. So,
suppose one integrates the differential equation 3 with
some delay in the control switch between +1 and −1
because some kind of hysteresis function implemented
around the switching surface x1 = 0. In addition to use it
for handling the non-zero domain change of event func-
tions, such a procedure is sometimes used in order to
avoid too many switches. Even with adding such hys-
terisis, the physics in this system, because of chattering,
makes the solution x1ε(·) to be a saw-toothed, or zigzag
function, i.e., a function that oscillates around x1 = 0,
with peaks at −ε < 0 and +ε > 0, where ti+1− ti = 2ε .
Let the hysteresis size go to zero, i.e., ε→ 0. Then x1ε(·)
converges uniformly towards the zero function. Clearly
the number of “events” goes to infinity on any interval of
time with positive measure.
Hybrid systems simulation tools struggle even with such
naive chattering hybrid system. For example, consider
OpenModelica, and Acumen. In OpenModelica, for
a data set β = 0.5 and x0 = [0.5 3 0.1]T , the solver
gets stuck and the simulation terminates with a halt
when the execution of the hybrid system start to ex-
hibit a chattering. OpenModelica reports the follow-
ing error message: Chattering detected around time
1.88743591101..1.88743593454 (100 state events in a
row with a total time delta less than the step size).

model Example1
parameter Real x10 = 0 . 5 ;
parameter Real x20 = 3 . 0 ;
parameter Real x30 = 0 . 1 ;
Real x1 , x2 , x3 , u ;
i n i t i a l equat ion
x1 = x10 ;
x2 = x20 ;
x3 = x30 ;
equat ion
der (x1) = −3 ∗ x1 + x2 + u ;
der (x2) = −3 ∗ x1 + x3 − u ;
der (x3) = −x1 + 0 . 2 5 ∗ u ;
when x1 < 0 then
u = 1 ;

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612495

97
__

elsewhen x1 > 0 then
u = −1 ;
end when ;
end Example1 ;

Acumen language was developed as an extension of
event-driven formalisms that have a similar flavor to syn-
chronous languages. In Acumen, models are simulated
by a fixed time stepping with fine interleaving of a se-
quences that can consist of multiple discrete computa-
tions followed by a single computation updating the val-
ues that should evolve continuously (i.e. global fixed
point semantics). Thus, simulating what is happening
at any single instance in time consists of zero or more
discrete steps followed by a single continuous step. The
Acumen model of the system in Example 1 can be writ-
ten as following:

Figure 1 shows the fixed time step simulation of Exam-
ple 1 in Acumen language without events localization.
With a fixed step size of 0.0001, the solution trajectory
exhibits an undesirable oscillations around the switching
surface Γ, with high frequency components of the control
switching propagate through the system.

3 Detection and Elimination of Chat-
tering

We consider a hybrid system H with a finite set of dis-
crete states q ∈ Q with transverse invariants (Lygeros
et al., 2008), where the state space is split into differ-
ent regions (invariants) Dq ∈ Rn by the intersection of
p transversally intersected Rn−1 switching manifolds Γ j
defined as the zeros of a set of scalar functions g j(t,x)
for j = 1,2, ..., p,

Γ j = {x ∈ Rn : g j(t,x) = 0 ; j = 1,2, ..., p} (8)

All switching functions g j(t,x) are assumed to be an-

alytic in their second arguments, (i.e. ∂g j(t,x)
∂x 6= 0), so

that, for each one of the intersected switching manifolds

Γ j, the normal unit vector ⊥ j =
∂g j(t,x)

∂x

||
∂g j(t,x)

∂x ||
, orthogonal to

the tangential plane Tx(Γ j), is well defined. Moreover,
the normal unit vectors are linearly independent for all

the R(n−r) swicthing intersections where r ∈ {2,3, ...,n}.
The flow map vector field f (t,x) of the hybrid system is
discontinuous on all the switching surfaces Γ j. There-
fore, we can associate to each discontinuity surface Γ j a
discontinuous vector field of the form:

ẋ = f j(t,x) =
{

f j1(t,x) f or x ∈ D j1
f j2(t,x) f or x ∈ D j2

}
(9)

D j1 = {x ∈ Rn : g j(t,x)< 0} (10)
D j2 = {x ∈ Rn : g j(t,x)> 0} (11)

so that opposed zero crossing of g j(t,x), defines the
switching from D j1 to D j2 and vice versa. Note that,
equation 9 represents the necessary condition for the hy-
brid system to accept a chattering execution between D j1
and D j2. If this necessary condition is satisfied for all
j = {1,2, · · · ,k} with k ≤ p, then the hybrid system is
said to accept a chattering on switching intersection. As
each discontinuity surface Γ j splits the phase domain
into two different invariants D j1 ∈ Rn and D j2 ∈ Rn,
the entire continuous domain of the hybrid system H
is then partitioned into 2p open convex regions Dq ∈ Rn,
in which the solution trajectory flow is governed by the
dynamics fq(t,x), where q = 1, · · · ,2p, and p is the total
number of the intersected switching manifolds Γ j. It is
assumed that fq are smooth in the state x for all Dq. For
more details on how the chattering occurs on switching
intersection, we refer the reader to (Aljarbouh and Cail-
laud, 2015b).

3.1 Chattering Detection
Upon crossing a switching manifold Γ j, the behavior of
the solution trajectory can uniquely be characterized by
the gradients of the continuous-time behavior according
to the dynamics f j1 and f j2 in a small neighborhood on
the both sides of Γ j. This is given by the normal projec-
tions of the dynamics f j1 and f j2 onto Γ j (i.e. directional
derivatives or Lie derivatives L f g j(t,x)), given by

f
⊥ j
j1 (t,x) = L f j1g j(t,x) =

(
∂g j(t,x)

∂x

)
· f j1(t,x) (12)

f
⊥ j
j2 (t,x) = L f j2g j(t,x) =

(
∂g j(t,x)

∂x

)
· f j2(t,x) (13)

The sufficient condition for the hybrid system H to ex-
hibit a chattering back and forth between the two do-
mains D j1 and D j2 requires that the necessary condition
of chattering is satisfied (equation 9), as well as the fol-
lowing two constraints:

1. a zero crossing on Γ j (state event) is detected in the
integration time interval [ti, ti+1], that is,

g j(ti,xi) ·g j(ti+1,xi+1)< 0 (14)

2. the scalar inner porduct of the normal projections
f
⊥ j
j1 (ti,xi) and f

⊥ j
j2 (ti+1,xi+1) is strictly negative,

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

98 DOI
10.3384/ecp1612495

__

0 1 2 3 4 5 6 7 8 9 10
time

-1

-0.5

0

0.5

1

th
e

st
at

e
x1

, t
he

 c
on

tro
l i

np
ut

 u

A plot of the state x1 and control input u versus time t.

Control Input versus t
The state x1 versus t

2.6 2.8 3 3.2 3.4 3.6 3.8
time

-5

0

5

th
e

de
riv

at
iv

es
 d

er
(x

1)

×10-3 A plot of the derivatives of state x1 versus time t.

der(x1) versus t

Figure 1. Fixed time step simulation of Example 1 in Acumen without event localization for β = 0.5 and x0 = [0.5 3 0.1]T :
Up: time evolution of the event function and the control input with high chattering oscillation. Down: zoom on the first chattering
window around the switching surface x1(t) = 0.

that is, the projctions of the two different dynam-
ics (normal onto Γ j), before and after the zero-
crossing, have opposed signs (Figure 2),

f
⊥ j
j1 (ti,xi) · f

⊥ j
j2 (ti+1,xi+1)< 0 (15)

A chattering takes place on the intersection of k ∈ N
switching manifolds Γ j if the necessary condition of
chattering is satisfied, and for all j = 1,2, · · · ,k ≤ p, the
following three constraints are satisfied:

g j(ti,xi) ·g j(ti+1,xi+1)< 0 (16)
g j(ti+1(σ)) = κ; σ ∈ (0,1); κ ∈ (−ε,ε) (17)

f
⊥ j
j1 (ti,xi) · f

⊥ j
j2 (ti+1,xi+1)< 0 (18)

In this case of chattering on the intersection of finitely
many switching manifolds, the excution of the hybrid
system H chatters back and forth between all the do-
mains Dq in the neighborhood of the intersection.

3.2 Chattering Elimination
One way to prevent the chattering is to keep the solu-
tion trajectory in a sliding motion on the switching man-
ifold/intersection on which the chattering occurs. An ad-
ditional mode, sliding mode, can be inserted into the sys-
tem to represent the equivalent chattering-free dynam-
ics. For all the switching manifolds Γ j, the dynamics

Figure 2. The chattering between two dynamics along a
switching surface.

ẋ = f j(t,x) can be replaced by a differential inclusion
ẋ ∈ η(x) given as a convex set containing all the limit
values of f j(x) for small neighbor x(t,x) 6∈ Γ j approach-
ing Γ j from the both sides (Biák et al., 2013). Equation 3
can be replaced then by:

η j ∈
1−δ j(g j(t,x))

2
· f j1(t,x)+

1+δ j(g j(t,x))
2

· f j2(t,x)

(19)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612495

99
__

where δ j(·) is a multi-valued sign function given by:

δ j(g j(t,x)) =

 (−1, 1) f or g j(t,x)< 0
(−1, 1) f or g j(t,x) = 0
(−1, 1) f or g j(t,x)> 0

 (20)

Roughly speaking, when a chattering occurs on Γ j, we
seek a smooth function δ j, taking the value δ j(g j(t,x))∈
(−1,1), so that the new equivalent chattering-free dy-
namics f jCHF is given for δ j(g j(t,x)) ∈ (−1,1) by:

f jCHF =
1−δ j(g j(t,x))

2
· f j1(x)+

1+δ j(g j(t,x))
2

· f j2(x)

(21)

The idea behind forcing the solution trajectory to stay
on the swicthing manifold during chattering execution
is by forcing the normal projection of the equivalent
chattering-free dynamics onto the swicthing manifold Γ j
to be tangential to Γ j, that is,

f⊥jCHF
(t,x) =

(
∂g j(t,x)

∂x

)
· f jCHF (t,x) = 0 (22)

which implies[
1−δ j(g j(t,x))

2
1+δ j(g j(t,x))

2

]
·
[

f⊥j1(t,x)
f⊥j2(t,x)

]
= 0

(23)

and then

δ j(g j(t,x)) =
f⊥j1(t,x)+ f⊥j2(t,x)

f⊥j1(t,x)− f⊥j2(t,x)
(24)

where f⊥j1(t,x) and f⊥j2(t,x) are given in equation 12 and
equation 13, respectively.
By the substitution of equation 24 in equation 21, the
equivalent chattering-free dynamics is given then by:

f jCHF (t,x) =
f⊥j1(t,x) · f j2(t,x)− f⊥j2(t,x) · f j1(t,x)

f⊥j1(t,x)− f⊥j2(t,x)
(25)

A smooth exist from sliding takes place instantly at
the time instant at which the sufficient condition of
chattering is no longer satisfied, that is, when either
f⊥j1(t,x) or f⊥j2(t,x) starts to change its signs (i.e. when
either f⊥j1(t,x) = 0 or f⊥j2(t,x) = 0).
Once a chattering execution is detected during the sim-
ulation process, the following Algorithm 1 is employed
to generate the chattering-free dynamics internally in
the simulation loop of the simulator. The number of
iterations need to be performed by Algorithm 1 to
compute the chattering-free dynamics is equal to the
total number of the switching manifolds Γ j on which
the chattering occurs instantly. That is, when the system
chatters between two dynamics, i.e. a chattering onto

a single switching manifold (as in Example 1), the
equivalent chattering-free dynamics will be generated
by Algorithm 1 in one iteration.
The main benefit of the iterative approach of Algo-
rithm 1 is that it allows us to eliminate chattering
efficiently in run-time simulation without any need
to modes enumeration, even when the chattering is
occurring on the intersection ∆ =

⋂
j(Γ j), j = 1,2, ..., p

of a large number p of intersected switching man-
ifolds. Another benefit is that there is no need to
solve stiff nonlinear equations for the computation
of the chattering-free coefficients δ j(g j(t,x)) in case
of chattering on switching intersection with p > 1.

Data: Discontinuous dynamics f (t,x), swicthing
functions g j(t,x).

Result: f∆CHF (t,x) = f jCHF (t,x)
Initialization:
j = 1;
f (x(t)) = f j(x(t)) (equation 9);
while j ≤ p do

Use f j(x(t)) to build a differetial inclusion η j
(equation 19);
Compute f jCHF (t,x) (equations 21 to 25);
Set f j(x(t)) = f jCHF (t,x);
j = j+1;
Repeat;

end
Algorithm 1: How to generate the equivalent
chattering-free dynamics f∆CHF (t,x).

In the following two simple examples we illustrate the
functionality of Algorithm 1 in case of chattering on
switching intersection.

Example 2:
Consider the simplest case of chattering onto the inter-
section of two switching manifolds, Γ1 and Γ2, defined
as the zeros of a set of scalar functions g1(t,x) = x1(t)
and g2(t,x) = x2(t), respectively.
ẋ1 = 0 init -sgn(g10) reset [-1;1] every up[g1;-g1]
ẋ2 = 0 init -sgn(g20) reset [-1;1] every up[g2;-g2]
g1 = x1 init g10; g2 = x2 init g20
where the zero-crossing is described as an expression
of the form up(z) that becomes true when the sign of
the event function z(t,x) switches from negative to
positive during an execution, that is, up(z)= True if
z(ti−1,xi−1) ≤ 0 ∧ z(ti,xi) > 0 (Schrammel, 2012). In
this example, the trajectories initialized outside the
origin reach the origin in finite time and with an infinite
number of crossings of the switching surfaces x1(t) = 0
and x2(t) = 0. The finite time convergence is easy to
establish as the time intervals between two switches
satisfy a geometric series and consequently have a finite
sum. This system has also an infinity of spontaneous
switches from the origin, that is, there is an infinity of
trajectories which start with the initial data (0,0), and
except for the trivial solution that stays at the origin,
they all cross the switching surfaces an infinity of times.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

100 DOI
10.3384/ecp1612495

__

To generate the intersection chattering-free dynamics
f∆CHF (t,x) on the intersection (the origin) ∆ = Γ1 ∩Γ2,
Algorithm 1 performs two iterations:

• In Iteration1, the algorithm computes the equiva-
lent chattering-free dynamics on Γ1 (equation 26).

• In Iteration2, the algorithm computes the equiv-
alent chattering-free dynamics on the intersection
∆ = Γ1∩Γ2 (equation 27).

f1CHF (t,x) =

 0{
−1 f or x2(t)> 0}
−1 f or x2(t)< 0}

}  (26)

f∆CHF (t,x) =
[

0
0

]
(27)

Example 3: Stick-Slip Frictional System
Consider the following non-smooth mechanical system
with friction elements.

f (x) =



ẋm1 = vm1

v̇m1 =
1

m1
F1

ẋm2 = vm2

v̇m2 =
1

m2
(u− kxm2 −F1−F2)

ẋm3 = vm3

v̇m3 =
1

m3
F2


(28)

In this example, the entire disontinuity region is given
as the union of two transversally intersected swicthing
manifolds Γ1 and Γ2 defined as the zeros of a set
of the scalar functions g1(t,x) = vm2(t)− vm1(t) and
g2(t,x) = vm2(t)− vm3(t), respectively.

F1 = 0 init Fc1sgn(g10) reset [Fc1 ;-Fc1] every up[g1;-g1]
F2 = 0 init Fc2sgn(g20) reset [Fc2 ;-Fc2] every up[g2;-g2]
g1(t,x) = vm2(t)− vm1(t) init g10
g2(t,x) = vm2(t)− vm3(t) init g20

We have p = 2 intersected swicthing manifolds.
The algorithm, then, performs two iterations to generate
f∆CHF (t,x).

The output of Iteration1:

f1CHF (t,x) =



ẋm1 = vm1

v̇m1 =
1

m1+m2
(u− kxm2 −F2)

ẋm2 = vm2

v̇m2 =
1

m1+m2
(u− kxm2 −F2)

ẋm3 = vm3

v̇m3 =
1

m3
F2


(29)

The output of Iteration2:

f∆CHF (t,x) =



ẋm1 = vm1

v̇m1 =
1

m1+m2+m3
(u− kxm2)

ẋm2 = vm2

v̇m2 =
1

m1+m2+m3
(u− kxm2)

ẋm3 = vm3

v̇m3 =
1

m1+m2+m3
(u− kxm2)


(30)

4 Generic Implementation Scheme in
FMI 2.0

In this section, a prototype implementation is sketched
for applying the chattering-free computational frame-
work from the previous section to Functional Mock-Up
Interface v2.0 for Model Exachange. The goal is to pro-
vide in FMI, a rigorous chattering-free simulation, in
run-time, without modes enumeration, for any chattering
FMU which may be either generic or generated from a
modeling environment in which chattering models can
not be simulated rigorously, whenever the compliance
with FMI specification for model exchange is fulfilled.
The FMI chattering-free implementation has been per-
formed by embeding the chattering detection and elimi-
nation algorithm in the Event Mode of the FMI.

4.1 The Functional Mock-Up Interface FMI

FMI is an open standard for model exchange and co-
simulation between multiple software systems. This
new standard, resulting from the ITEA2 project MOD-
ELISAR, in 2010, is a response to the industrial need to
connect different environments for modeling, simulation
and control system design. It is used to create an instance
of a model which can be loaded into any simulator pro-
viding an import function for FMI. A software instance
compatible to the FMI is called an FMU. An FMU is
distributed as a compressed archive with a .fmu file ex-
tension. It contains a concrete mathematical model de-
scribed by differential, algebraic and discrete equations
with possible events of a dynamic physical system. An
FMU consists basically of two parts:

• an XML format for model interface information,

• C API model interface functions according to the
FMI specification, for model execution.

The XML format, specified by an XML schema con-
forming to the FMI specification, contains all static in-
formation about model variables, including names, units
and types, as well as model meta data. The C API, on the
other hand, contains C functions for data management, as
setting and retrieving parameter values, and evaluation of
the model equations. The implementation of the C API
may be provided either in C source code format or in bi-
nary forms (e.g. in the form of Windows dynamic link li-
brary .dll or a Linux shared object library .so files) to pro-
tect the model developer’s intellectual property. Addi-
tional parts can be added and compressed into the FMU,
as the documentation and the icon of the model. FMUs
can be written manually or can be generated automati-
cally from a modelling environment.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612495

101
__

4.2 Chattering-Free Support in FMI

In this section we explain the functionality of our
chattering-free FMI framework as well as how the
chattering behavior is treated internally in the main
simulation loop of interface without any need to add
hysterisis to the event indicators in the FMU.
Prior to a simulation experiment, the model has to be
instantiated. This includes extracting the files in the
FMU, loading the DLL and XML files and calling the
instantiation function available in the DLL. A model
can be instantiated multiple times for which the function
fmi2SetupExperiment is provided.
Simulating an FMI model means to split the solution
computation process in three different phases, catego-
rized according to three modes: Initialization Mode,
Continuous-Time Mode, and Event Mode.
In the Initialization Mode, the model is initial-
ized with finit(· · ·) by calling the FMI function
fmi2EnterInitializationMode in order to com-
pute the continuous-time states and the output variables
at the initial time t0. There are FMI functions used in
this Mode as fmi2GetContinuousStates as well as
functions for setting and getting values for Type Real,
Integer, String, and Boolean values, of the form
fmi2(Get/Set)(Type). The input arguments to the
Initialization Mode functions consist of the all variables
that are declared with "input" and "independent" causal-
ity in the FMU XML files, as well as all variables that
have a start value with initial = "exact". Once the model
is instantiated and initialized it can be simulated.
The main simulation loop starts once the FMI function
fmi2ExitInitializationMode is called. The
simulation is performed by calculating the deriva-
tives and updating time and states in the model via
the FMI functions fmi2SetContinuousStates,
fmi2SetTime, fmi2GetContinuousStates,
fmi2GetDerivatives, as well as the four
fmi2(Get/Set)(Type) functions mentioned above.
To retrieve or set variable data during a simulation,
value-references are used as keys. All variables are
connected to a unique number defined and provided in
the FMU XML-file. This number can then be used to
retrieve information about variables via functions in the
interface or can be used to set input values during a
simulation. During the simulation, events are monitored
via the functions fmi2GetEventIndicators and
fmi2CompletedIntegratorStep. Events are always
triggered from the environment in which the FMU
is called, so they are not triggered inside the FMU
(Blochwitz et al., 2012). Step-events are checked in
the model after calling the completed step function
fmi2CompletedIntegratorStep when an integra-
tion step was sucessfully completed. A step event occurs
if indicated by the return argument nextMode = Event-
Mode. For capturing state events during continuous
integration, the algorithm monitors, at every completed

integrator step, the set of event indicator functions z j(t,x)
provided in the function fmi2GetEventIndicators.
All event indicators z j(t,x) are piecewise continuous
and are collected together in one vector of real numbers
(Blochwitz et al., 2012). A state event occurs when the
event indicator changes its domain from z j(t,x) > 0
to z j(t,x) ≤ 0 or from z j(t,x) ≥ 0 to z j(t,x) < 0. If
a domain change of one of the indicator functions is
detected, a state event has occurred and the simulation
environment then informs the FMU by calling the
function fmi2NewDiscreteStates.
During the continuous integration, we distinuiush, for
each time integration step, the following cases:

1. If z j(ti,xi) · z j(ti+1,xi+1) > 0 for all j = 1,2, ..., p
where p is the total number of the event indicators,
then we continue integrating the system with the
same dynamics.

2. If there exist j ∈ {1,2, ..., p} for which: ∀τ ∈
[ti, ti+1[: z j(τ,x) < 0 ∧ ∃ m ≤ margin : ∀τ ∈
[ti+1, ti+1 + m] : z j(τ,x) ≥ 0, or ∀τ ∈ [ti, ti+1[:
z j(τ,x)> 0 ∧ ∃m≤margin : ∀τ ∈ [ti+1, ti+1+m] :
z j(τ,x) ≤ 0, a zero crossing in the time interval
[ti, ti + 1] is then detected. The algorithm performs
an iteration over time between the previous and the
actual completed integrator step, in order to deter-
mine the time instant of the switching point up to
a certain precision. In this case we have a contin-
uous smooth switching function z j(ti+1(σ)) taking
opposed signs at σ = 0 and σ = 1 and therefore
there exist a zero at σe ∈ (0,1) which defines the
state event xe = xi+1(σe) ∈ Γ j, where Γ j = {x ∈
Rn| z j(t,x) = 0} is the switching surface.

3. The case in which there exist finitely many event
indicator functions z j(t,x), j ∈ {1,2, ..., p}, all sat-
isfy: ∀τ ∈ [ti, ti+1[: z j(τ,x)< 0 ∧ ∃ m≤ margin :
∀τ ∈ [ti+1, ti+1 +m] : z j(τ,x) ≥ 0, or ∀τ ∈ [ti, ti+1[:
z j(τ,x)> 0 ∧ ∃m≤margin : ∀τ ∈ [ti+1, ti+1+m] :
z j(τ,x) ≤ 0, and z j(σe) = 0 for all j = 1,2, ...,k
where k≤ p and σe ∈ (0,1), indicates that the solu-
tion trajectory has reached the intersection of k≤ p
of transvrsally intersected R(n−1) switching mani-
folds Γ j.

At an event, the function fmi2NewDiscreteStates
has to be called. This function updates and re-initializes
the model in order for the simulation to be continued. In-
formation is also given about if the states have changed
values, if new state variables have been selected and in-
formation about upcoming time events.
In our chattering-free semantics, the master algorithm
has to decide, at the state event, whether the solution tra-
jctory should cross the switching surface transversally or
slide on it (to eliminate chattering). The computation of
the chattering-free solution is split in two phases: i) chat-
tering detection, and ii) chattering elimination.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

102 DOI
10.3384/ecp1612495

__

The chattering detection phase starts once a state event
is detected and located. The algorithm inspects whether
the state event is a chattering event or not. This implies
checking, at the state event, whether or not the sufficient
condition of chattering is satisfied, by analyzing the gra-
dients of the continuous time behavior before and after
the state event. For doing so, the directional derivatives
of the dynamics (the normal projection of dynamics onto
the switching surface) should be computed and evalu-
ated at the beginning and at the end of the completed
integration step at which the state event has been de-
tected. A state event xe ∈ Γ j detected in the time inter-
val [ti, ti+1] is said to be a chattering event if the condi-
tion: NPj(ti,xi) ·NPj(ti+1,xi+1) < 0 is satisfied, where

NPj(ti,xi) = f
⊥ j
j1 (ti,xi), respectively NPj(ti+1,xi+1) =

f
⊥ j
j2 (ti+1,xi+1), is the normal projection of the dynam-

ics f j1 (before the state event), respectively f j2 (after
the state event), onto the switching manifold Γ j = {x ∈
Rn| z j(t,x) = 0}, at ti, respectively ti+1. A chattering
occurs on a switching intersection ∆ =

⋂
j Γ j (i.e. inter-

section state event), detected in the time interval [ti, ti+1],
if for all j = 1,2, ...,k: NPj(ti,xi) ·NPj(ti+1,xi+1) < 0,
where as mentioned in Section 4 (equation 12 and equa-
tion 13), the normal projection NPj(ti,xi), respectively
NPj(ti+1,xi+1), is computed as a scalar product of the dy-
namics f (ti,xi), respectively f (ti+1,xi+1), with the par-
tial derivatives the event indicator function z j. The par-
tial derivatives of z j are computed numerically in the
integration step [ti, ti+1] at which the state event is de-
tected. As the nature of our chattering detection seman-
tics is to compare the sign of the directional derivatives
(normal projections) at the beginning and the end of the
time integration step [ti, ti+1] in which a state event is
occurred, and if it changes, declare a chattering event,
the environment then should be able to have an access
to the dynamics at ti (i.e. in the previous domain before
the event) and at ti+1 (i.e. in the next domain after the
event). For doing so, we use two arrays, xdotpre and
xdotpost , where during the continuous integration, and
for each time step [ti, ti+1] in which a state event has
been detected, the dynamics f (ti,xi), and f (ti+1,xi+1)
are computed and evaluated via fmi2GetDerivatives
and then stored in xdotpre, and xdotpost , respectively. In
the chattering elimination phase, Algorithm 1 (Section 3)
is employed in the environment’s master algorithm in or-
der to compute the smooth equivalent chattering-free dy-
namics internally giving the dynamics before and after
the state event, f j1 and f j2, repectively, as well as the
event indicators z j(t,x). Once the solution is at the fi-
nal time of a simulation, the function fmi2Terminate
is called to terminate the simulation. After a simulation
is terminated, memory has to be deallocated. The func-
tion fmi2FreeInstance is then called to deallocate all
memory that have been allocated since the initialization.

5 Simulation Results
Figure 3 shows the chattering-free simulation of the
system in Example 1 for the data set: β = 0.5, x0 =
[0.5,3,1]T . During a simulation time t = 10, 241685
chattering events have been detected and replaced by
two sliding windows. The first chattering event is de-
tected at t = 2.649 (Figure 4), the algorithm switches
to integrate the the system with the chattering-free dy-
namics generated internally. In Figure 5 and Fig-
ure 6, the Stick-Slip frictional systm in Example 3
was simulated for m1 = m2 = m3 = 1[kg], k = 0.88[N ·
m−1], Fc1 = 0.01996[N] Fc2 = 0.062[N], and x0 =
[0.8295 0.8491 0.3725 0.5932 0.8726 0.9335]T . The
external force u was simulated as a sine wave of fre-
quency of ω = 0.073[rad/sec]. The sliding bifurcations
depend on the effect of the external force u and the level
of Coulomb frictions Fc1 and Fc2 . At the time instant t =
32.69 sec, two masses m2 and m3 stick together and the
solution trajectory start a sliding motion on the switch-
ing manifold Γ2 = {x∈Rn : (vm2(t)−vm3(t) = 0)} (Fig-
ure 5). A smooth exit from sliding on Γ2 to evolve into q3
was detected at the time instant t = 77.23 sec. A transver-
sality switching from the discrete state q3 to the discrete
state q1 = {x ∈ Rn : (vm2(t)− vm1(t) > 0) ∧ (vm2(t)−
vm3(t)> 0)} at the intersection ∆ = Γ1∩Γ2 was detected
at t = 92.04 sec.

0 1 2 3 4 5 6 7 8 9 10
time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

th
e

st
at

e
x1

A plot of x1 versus time t.

x1 versus t

Figure 3. The time evolution of the continuous state x1 with
chattering-free simulation.

6 Conclusions
In this paper we presented an FMI-based computa-
tional framework, and a prototypical implementation of
a generic chattering-free FMI for robust and reliable de-
tection and elimination "On the Fly" of chattering behav-
ior in run-time simulation of non-smooth hybrid systems,
without modes enumeration, and without any need to add
a small hysteresis to the event indicators in the FMUs.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612495

103
__

2.648988 2.648992 2.648996 2.649 2.649004
time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

th
e

st
at

e
x1

×10-6 A plot of x1 versus time t.

x1 versus t

X: 2.649
Y: -5.373e-15

Figure 4. A smooth entering to sliding: First chattering state
event detected at t = 2.649.

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1
A plot of the relative velocity vr2 versus time t.

time (t): [sec]

Th
e

re
la

tiv
e

ve
lo

ci
ty

 v
r2

: [
m

/s
ec

]

vm3 versus t
vm2 versus t
vr2 versus t
events

Figure 5. A chattering-free simulation of Example 3: The time
evolution of the relative velocity vm2(t)− vm3(t).

The developed chattering-free FMI switches between the
transversality modes and the sliding modes simulation
automatically, integrates each particular state appropri-
ately, and localizes the non-smooth structural changes in
the system in an accurate way. It treats the chattering
non-smoothness in the trajectory of the state variables
by a smooth correction after each integration time-step.
Our chattering-free FMI can robustly handle the case of
chattering on switching intercsetion without any need to
solve stiff nonlinear equations for the computation of the
chattering-free coefficients. Furthermore, a guidance for
development of a hybrid chattering-free version of the
FMI standard, was provided in this paper. Finally, the
simulation results on a set of representative examples
have demonstrated that our FMI-based chattering-free
framework is efficient and precise enough to provide a

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1
A plot of the relative velocity vr1 versus time t.

time (t): [sec]

Th
e

re
la

tiv
e

ve
lo

ci
ty

 v
r1

: [
m

/s
ec

]

vm1 versus t
vm2 versus t
vr1 versus t
events

Figure 6. A chattering-free simulation of Example 3: The time
evolution of the relative velocity vm2(t)− vm1(t).

rigorous chattering-free simulation for any generic chat-
tering Functional Mockup Unit (FMU) conforming to the
FMI standard v2.0 Specification for model exchange.

Acknowledgements
This work was supported by the ITEA2 MODRIO
project under contract No 6892, and the ARED grant of
the Conseil Régional de Bretagne.

References
Ayman Aljarbouh and Benoit Caillaud. On the regulariza-

tion of chattering executions in real time simulation of
hybrid systems. Baltic Young Scientists Conference Pro-
ceedings, pages 49–66, 2015a. URL https://hal.
archives-ouvertes.fr/hal-01246853v2.

Ayman Aljarbouh and Benoit Caillaud. Robust simulation
for hybrid systems: Chattering path avoidance. Linköping
Electronic Conference Proceedings, 119(018):175–185,
2015b. ISSN 1650-3686. doi:10.3384/ecp15119175.
URL http://www.ep.liu.se/ecp/119/018/
ecp15119018.pdf.

Martin Biák, Tomáš Hanus, and Drahoslava Janovská.
Some applications of filippov’s dynamical sys-
tems. Journal of Computational and Applied Math-
ematics, 254:132–143, 2013. ISSN 0377-0427.
doi:http://dx.doi.org/10.1016/j.cam.2013.03.034. URL
http://www.sciencedirect.com/science/
article/pii/S0377042713001428.

Torsten Blochwitz, Martin Otter, Johan Akesson, Mar-
tin Arnold, Christoph ClauB, Hilding Elmqvist, Markus
Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. Func-
tional mockup interface 2.0: The standard for tool in-
dependent exchange of simulation models. In Pro-

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

104 DOI
10.3384/ecp1612495

__

https://hal.archives-ouvertes.fr/hal-01246853v2
https://hal.archives-ouvertes.fr/hal-01246853v2
http://dx.doi.org/10.3384/ecp15119175
http://www.ep.liu.se/ecp/119/018/ecp15119018.pdf
http://www.ep.liu.se/ecp/119/018/ecp15119018.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.cam.2013.03.034
http://www.sciencedirect.com/science/article/pii/S0377042713001428
http://www.sciencedirect.com/science/article/pii/S0377042713001428

ceedings of 9th International Modelica Conference, Mu-
nich, Germany, 076(017):173–184, 2012. ISSN 1650-
3686. doi:10.3384/ecp12076173. URL http://www.
ep.liu.se/ecp/076/017/ecp12076017.pdf.

Chaohong Cai, Rafal Goebel, Ricardo Sanfelice, and An-
drew Teel. Hybrid systems: limit sets and zero dy-
namics with a view toward output regulation. Springer-
Verlag, 2008. URL https://hybrid.soe.ucsc.
edu/files/preprints/21.pdf.

Mario di Bernardo, Chris J. Budd, Alan R. Champneys, Pi-
otr Kowalczyk, Arne B. Nordmark, Gerard Olivar Tost,
and Petri T. Piiroinen. Bifurcations in nonsmooth dy-
namical systems. SIAM Review, 50(4):629–701, 2008.
doi:10.1137/050625060. URL http://dx.doi.org/
10.1137/050625060.

A.F. Filippov. Differential Equations with Discontinuous
Righthand Sides. Springer Netherlands, 1988. ISBN 978-
94-015-7793-9.

K.H. Johansson, A.E. Barabanov, and K.J. Astrom. Limit
cycles with chattering in relay feedback systems. Auto-
matic Control, IEEE Transactions on, 9(018):1414–1423,
2002. ISSN 0018-9286. doi:10.1109/TAC.2002.802770.
URL http://www.ep.liu.se/ecp/119/018/
ecp15119018.pdf.

Remco I. Leine and Henk Nijmeijer. Dynamics and Bifurca-
tions of Non-Smooth Mechanical Systems. Springer Berlin
Heidelberg, 2004. ISBN 978-3-642-06029-8.

John Lygeros, Claire Tomlin, and Shankar Sastry. Hy-
brid Systems: Modeling, Analysis and Control.
Lecture Notes on Hybrid Systems, 2008. URL
http://inst.cs.berkeley.edu/~ee291e/
sp09/handouts/book.pdf.

Peter Schrammel. Logico-Numerical Verification Methods for
Discrete and Hybrid Systems. PhD dissertation, 2012.

Vadim I. Utkin. Sliding Mode in Control and Optimization.
Springer Berlin Heidelberg, 1992. ISBN 978-3-642-84379-
2.

D. Weiss, T. Küpper, and H.A. Hosham. Invariant manifolds
for nonsmooth systems with sliding mode. Mathemat-
ics and Computers in Simulation, 110:15–32, 2015.
doi:http://dx.doi.org/10.1016/j.matcom.2014.02.004. URL
http://www.sciencedirect.com/science/
article/pii/S037847541400041X.

Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar
Sastry. Zeno hybrid systems. International Journal of Ro-
bust and Nonlinear Control, 11(5):435–451, 2001. ISSN
1099-1239. doi:10.1002/rnc.592. URL http://dx.
doi.org/10.1002/rnc.592.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612495

105
__

http://dx.doi.org/10.3384/ecp12076173
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf
https://hybrid.soe.ucsc.edu/files/preprints/21.pdf
https://hybrid.soe.ucsc.edu/files/preprints/21.pdf
http://dx.doi.org/10.1137/050625060
http://dx.doi.org/10.1137/050625060
http://dx.doi.org/10.1137/050625060
http://dx.doi.org/10.1109/TAC.2002.802770
http://www.ep.liu.se/ecp/119/018/ecp15119018.pdf
http://www.ep.liu.se/ecp/119/018/ecp15119018.pdf
http://inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf
http://inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.matcom.2014.02.004
http://www.sciencedirect.com/science/article/pii/S037847541400041X
http://www.sciencedirect.com/science/article/pii/S037847541400041X
http://dx.doi.org/10.1002/rnc.592
http://dx.doi.org/10.1002/rnc.592
http://dx.doi.org/10.1002/rnc.592

Acceleration of FMU Co-Simulation On Multi-core Architectures

Salah Eddine Saidi1 Nicolas Pernet1 Yves Sorel2 Abir Ben Khaled1

1IFP Energies nouvelles, Rueil-Malmaison, France,
{salah-eddine.saidi,nicolas.pernet,abir.ben-khaled}@ifpen.fr

2INRIA, Paris, France, yves.sorel@inria.fr

Abstract

The design of cyber-physical systems is a complex pro-
cess and relies on the simulation of the system behavior
before its deployment. Co-simulation allows system de-
signers to simulate a whole system composed of a num-
ber of interconnected subsystems. Traditionally, these
models are modeled by experts of different fields using
different tools, and then integrated into one environment
to perform simulation at the system-level. This results
in complex and heavy co-simulations and requires ade-
quate solutions and tools in order to reduce the execu-
tion time. Unfortunately, most modeling tools perform
only mono-core simulations and do not take advantage
of the omnipresent multi-core processors. This paper
addresses the problem of efficient parallelization of co-
simulations. It presents a multi-core scheduling heuris-
tic for parallelizing FMI-compliant models on multi-core
processors. The limitations of this heuristic are high-
lighted and two solutions for dealing with them are pre-
sented. The obtained speed-up using each of these so-
lutions is illustrated and discussed for further improve-
ments.
Keywords: FMI, co-simulation, multi-core, scheduling,
heuristic

1 Introduction

Cyber-physical systems incorporate a combination of
computational elements which collaborate in order to
control physical processes. The complex nature of such
systems requires cost, time and effort-effective design
methodologies; therefore predicting their behavior and
functioning scenarios before testing the real system is
becoming more and more an indisputable step. Co-
simulation aids in achieving these requirements as it al-
lows the assessment of the design of the system by imi-
tating its behavior. It consists mainly in simulating, on a
computer, the global behavior of a multi-physics system
composed of a number of interconnected subsystems.
System designers can then identify potential design flaws
and correct them before deploying the system.

Co-simulation faces however a number of challenges.

Actually, the simulated system is described by several in-
teracting models which are often developed by experts of
different fields using different tools and following differ-
ent design approaches. The diversity of modeling tools
and involved teams makes the coupling of the models
a complex task. In fact, co-simulation necessitates effi-
cient synchronized communications between the models
where each model must be able to detect and respond to
events of other models. Thanks to the FMI (Functional
Mock-up Interface) standard (Blochwitz et al., 2011), it
is now possible to easily couple diverse models origi-
nating from different developers and tools. Neverthe-
less, executing FMI-compliant models raises some is-
sues, which unless well handled, may reduce the co-
simulation performance and limit the benefits of FMI.

One major issue is the question of how to reduce the
co-simulation execution time. Integrating heterogeneous
models into one environment usually results in a com-
plex and heavy to execute co-simulation which increases
the demand of processing power.

As is well-known, increasing CPU frequency by
means of silicon integration has reached its possible lim-
its and semiconductor manufacturers switched in last
years to building multi-core processors, i.e. integrating
multiple processors into one chip allowing parallel pro-
cessing on a single computer. Multi-core processors can
reduce the execution time of a computational task by di-
viding it into several subtasks and assigning a subset of
subtasks to each core to be processed in parallel. Most
simulators, however, have mono-core simulation kernels
and do not take advantage of the computation power
brought by multi-core architectures. Therefore, enabling
parallel execution of heavy co-simulations on multi-core
processors is keenly sought by the developers and the
users of simulation tools. However, fulfilling this objec-
tive is not trivial and appropriate parallelization schemes
need to be applied on co-simulation models in order to
accelerate their execution on multi-core processors. It is
worth noting that in this paper the term co-simulation is
generic and is used to refer to the simulation of FMUs
generated from FMI for Co-Simulation as well as FMI
for Model Exchange.

FMI gives information about inputs and outputs re-
lationships inside a model that is exported as an FMU

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

106 DOI
10.3384/ecp16124106

__

(Functional Mock-up Unit). An FMU is a package that
encapsulates an XML file containing among other data
the definitions of the model’s variables, and a library
defining the equations of the model as C functions. Input,
output and state variables are updated by what we name
"operations" which may call different functions provided
by the FMU.

Given these features, various execution possibilities
can be realized and the parallelization of co-simulation
models on a multi-core processor can be seen as the fol-
lowing problem: Find an allocation of the different oper-
ations to the different cores and define an execution or-
der, i.e. schedule the operations that are allocated to each
core. When solving this problem, the utilization of the
available cores has to be optimized in order to achieve the
best acceleration. Using parallel computing terminology,
the problem consists in finding a schedule for all the op-
erations of the co-simulation on a multi-core processor.
This paper deals with the problem of scheduling opera-
tions of heavy complex co-simulation models on multi-
core processors in order to accelerate the simulation exe-
cution. It follows the approach presented in (Ben Khaled
et al., 2014) by addressing two limitations of the previ-
ous work. First, an efficient multi-core scheduling can
not be obtained without taking into account a good esti-
mation of each operation’s execution time. Second, the
non-thread-safe implementation of FMUs prevent full
exploitation of the potential parallelism of co-simulation
graphs. Techniques for dealing with these limitations are
here compared.

The rest of the paper is organized as follows. Next
section presents related work on multi-core execution of
simulations. Then our parallelization approach, firstly
presented in (Ben Khaled et al., 2014), is described
in section 3, including a discussion about its present
limitations. The fourth section presents our contribu-
tion, including the use of a toolchain for profiling co-
simulation graph parallelism and explores the theoreti-
cal gain in execution speed-up over different architec-
tures. Theoretical results are discussed and compared
to real co-simulation executions in xMOD1. xMOD is
a co-simulation and a virtual experimentation platform,
which allows mixing stand-alone and tool coupling co-
simulations and the optimization of complex models ex-
ecution. It provides a user-friendly interface in order to
extend the simulation use to non-experts and ensure the
continuity from Model-in-the-Loop to Hardware-in-the-
Loop simulations. The last section concludes the paper
and gives an outlook into our ongoing and future work.

2 Related Work
In order to achieve simulation acceleration using multi-
core execution, different approaches are possible and
were already explored. From a user point of view, it is

1http://www.xmodsoftware.com/

possible to modify the model design in order to prepare
its multi-core execution, for example by using marked
functions or Modelica extensions as in (Elmqvist et al.,
2015; Gebremedhin et al., 2012). From a modeling tool
provider point of view, if providing OpenMP ready li-
braries is possible, the key feature for simulation ac-
celeration is to provide techniques which offer speed-
up whatever the model is. Proposing parallel solvers or
automatic parallel executions of model equations as in
(Elmqvist et al., 2014; Sjölund et al., 2010) is also an ef-
ficient way. In this paper, we address the problem from a
co-simulation tool provider point of view. In such a tool,
the user connects different FMUs, embedding solvers or
not. In this case, it is not possible to change the mod-
els, the solvers, or the modeling tools. Such FMU as-
sembly defines a graph of operations and the main op-
portunity to improve the co-simulation execution is con-
sequently to accomplish an automatic parallelization of
this graph. As shown in (Ben Khaled et al., 2012), split-
ting a model into several FMUs, by isolating discontinu-
ities, may reduce the simulation time, even in the case
of a mono-core execution. (Ben Khaled et al., 2014)
presented the RCOSIM approach. It consists in using
each FMU information on input/output causality to build
a graph, with an increased granularity and then exploit-
ing the potential parallelism by using a heuristic to build
an off-line multi-core schedule. This method has been
tested on a real industrial model and significant speed-
up was obtained. This approach was implemented in the
co-simulation tool xMOD and is available in its 2015 re-
lease.

3 Parallelization approach

3.1 Principle

The parallelization concept of xMOD is based on a task
DAG (Directed Acyclic Graph) scheduling approach.
Thanks to FMI, it is possible to access information about
the internal structure of a model encapsulated in an
FMU. In particular, FMI allows the identification of Di-
rect Feedthrough and Non Direct Feedhrough outputs of
a model. Since connections between different models of
the co-simulation are also known, all data dependencies
between the operations are known. Figure 1 shows an
example of two models and their inter and intra-model
dependencies.

The co-simulation can be described by a DAG where
each vertex represents one operation and each edge de-
scribes a precedence constraint between two operations.
The approach proceeds in two steps: First, the co-
simulation DAG is constructed and then, the operations
are allocated to the available cores in such a way to min-
imize the makespan of the graph. The makespan corre-
sponds the execution time of the whole DAG.

The transformation of each model into an operation

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124106

107
__

graph allows the parallelization of the model instead of
considering it as an atomic block. Consequently the po-
tential parallelism of the entire co-simulation is increased
and can be better adapted to the hardware parallelism
(number of cores in the case of a multi-core processor).
The potential parallelism of a graph corresponds to ver-
tices that are not dependent which characterize the partial
order of the graph.

Model B

YA1

UB1

YB2

UA1

Model A

UA2
YA2
YA3

YB1

UB3

UB2

Figure 1. Inter and intra-model dependencies of two models.

3.2 Multi-core scheduling heuristic
The co-simulation DAG is built by exploring the rela-
tions between the models and between the operations of
the same model. The operations are either updateout put ,
updateinput or updatestate. An updateout put operation
corresponds to an FMI Get function that allows get-
ting the value of an FMU output and an updateinput op-
eration corresponds to an FMI Set function which al-
lows setting the value of an input. An updatestate op-
eration corresponds to calling FMI functions needed to
perform an integration step (SetTime, GetDerivatives,
and SetContinuousStates, etc., in the case of Model Ex-
change or DoStep in the case of Co-Simulation) (FMI
development group, 2014). A vertex is created for each
operation and edges are then added between vertices if a
data dependency exists between the corresponding op-
erations. This information can be extracted from the
model’s FMU. When using FMI 1.0 which does not give
information about the dependencies between the state
variables computation and the input and output vari-
ables computations, it is necessary that edges connect
all updateinput operations and the updatestate operation
of the same model, since all inputs at instant k need to
be updated before updating the state to Xk+1. Further-
more, edges are placed between all updateout put oper-
ations and the updatestate operation of the same model,
because the computation at instant k of an output Yk must
be performed with the same value of the state as for all
the outputs belonging to the same model. Running the
co-simulation consists in executing the graph repeatedly.

At each co-simulation step the whole graph is executed
and a new execution of the graph cannot be started unless
the previous one was totally finished. Figure 2 illustrates
the graph constructed from the two models of Figure 1.

In order to achieve fast execution of the co-simulation
on a multi-core processor, an efficient allocation and
scheduling of the DAG vertices has to be performed.
xMOD uses an off-line scheduling heuristic similar to the
one proposed in (Grandpierre et al., 1999). (Ben Khaled
et al., 2014) presented the use of this heuristic and the
speed-up obtained by applying it on an industrial com-
bustion engine model. The heuristic considers the exe-
cution time of each operation and aims at computing a
schedule that minimizes the makespan of the graph.

Using the execution time Ci of each operation OPi, the
heuristic computes first the earliest start and end dates
from the graph start denoted Si and Ei, then the critical
path CP := maxEi (Algorithm 1). After that, the latest
start and end dates from the graph end denoted Si

∗ and
Ei
∗ and then the flexibility Fi = CP−Ei−Ei

∗ are com-
puted (Algorithm 2).

Initialization;
Set Ω the set of all the operations;
Set O the set of operations without predecessors;
foreach OPi ∈ O do

Si := 0; Ei := Si +Ci;
end
Set O′ the set of operations whose all immediate predecessors

were treated;
while O′ 6= /0 do

foreach OPi ∈ O′ do
Si := max(Eh : OPh→ OPi);
(OPh are the immediate predecessors of OPi);
Ei := Si +Ci; Remove OPi from the set O′;
Add to the set O′ all successors of OPi for which all

predecessors were already scheduled;
end

end
CP := 0;
foreach OPi ∈Ω do

if CP < Ei then
CP := Ei;

end
end

Algorithm 1: Computation of Si, Ei and CP

At each step, the heuristic computes for a given opera-
tion the schedule pressure on a specific core. The sched-
ule pressure is the difference between the makespan in-
crease, by allocating this operation to this core, and the
operation’s flexibility. The heuristic updates the set of
candidate operations to be scheduled at each step. An
operation is added to the set of candidate operations if it
has no predecessor or if all of its predecessors have al-
ready been scheduled. The set of candidate operations
holds the partial order associated to the graph. Then, for
each candidate operation, the schedule pressure is com-
puted on each core in order to find its best core, the one
that minimizes the pressure. After this step, a list of can-
didate operation-best core pairs is obtained. Finally, the

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

108 DOI
10.3384/ecp16124106

__

YA1 UB1

YB2 UA1

UA2

YA2

YA3YB1UB3

UB2

XB

XA
.

.

Figure 2. Dependency graph of the models of Figure 1.

Initialization;
Set Ω the set of all the operations;
Set O the set of operations without successors;
foreach OPi ∈ O′ do

E∗i := 0; S∗i := E∗i +Ci;
end
Set O′ the set of operations whose all immediate successors were

treated;
while O′ 6= /0 do

foreach OPi ∈ O do
E∗i := max(S∗h : OPi→ OPh);
(OPh are the immediate successors of OPi);
S∗i := E∗i +Ci; Remove OPi from the set O′;
Add to the set O′ all predecessors of OPi for which all

successors were already scheduled;
end

end
foreach OPi ∈Ω do

Fi :=CP−Ei−E∗i ;
end

Algorithm 2: Computation of S∗i , E∗i and Fi

operation with the largest pressure on its best core is se-
lected and scheduled. The heuristic repeats this proce-
dure until all operations are scheduled (Algorithm 3).

This heuristic has originally been used to implement
critical hard real-time applications where the execution
times are usually estimated as the WCET (Worst Case
Execution Time). On the contrary, co-simulation is not
safety critical and the main goal here is to achieve fast
execution, so average computation times can be used. So
far, execution times in xMOD are estimated based on the
observation of practical examples as follows: updatestate
operations are by far more costly so they are assigned
significantly higher execution times then updateout put
operations, whereas updateinput operations are just data
copy whose cost is negligible.

3.3 Limitations of the approach

Although the presented scheduling heuristic resulted in
interesting co-simulation speed-ups, it has some lim-
itations that have to be considered in the multi-core

Initialization;
Set Ω the set of all the operations;
Set Γ the set of all the available cores;
Set O the set of operations without predecessors;
while O 6= /0 do

foreach OPi ∈ O do
Set costi to ∞; (cost of OPi is set to the maximum

value);
foreach Core j ∈ Γ do

S′i := max(Si,TCore j); (new start date of OPi when
executed on Core j);

costi, j := S′i +Ci +E∗i −CP; (cost of OPi when
executed on Core j);

if costi, j < costi then
Set costi := costi, j;
Set BestCorei := Core j;

end
end

end
Find OPi with maximal costi in O;
Schedule OPi on its core BestCorei;
Set k := BestCorei;
TCorek := TCorek +Ci; (Advance the time of Corek);
Remove OPi from the set O;
Add to the set O all successors of OPi for which all

predecessors are already scheduled;
end

Algorithm 3: Multi-core scheduling heuristic

scheduling problem in order to obtain better perfor-
mances. First, so far, the multiprocessor scheduling
heuristic uses empiric operations execution times. By
using realistic execution times for each operation, the
multi-core execution of the simulation should be im-
proved. In this paper, we present some results, based
on a profiling technique.

Second, FMI standard does not presently require that
FMU functions have to be thread-safe, i.e. they cannot
be executed simultaneously as they may share some re-
source (variables for example) that might be corrupted
if two operations try to use it at the same time. This
implies that at any instant during the execution of the
co-simulation, one and only one operation of the same
FMU can be executed. Consequently, if the scheduling

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124106

109
__

heuristic allocates two or more operations belonging to
the same FMU to different cores, a mechanism that en-
sures these operations are executed in strictly different
time intervals must be set up.

4 Proposed solutions

This section presents a theoretical study of the achiev-
able speed-up on a use-case, using the SynDEx2 soft-
ware (Sorel, 2004, 2005). Then, these theoretical results
are compared with xMOD co-simulation runs, with two
different implementations for guaranteeing a mutual ex-
clusion between different operations of the same FMU.

4.1 Toolchain

A toolchain is proposed to assist the developer in paral-
lelizing co-simulations. Using this toolchain, it is pos-
sible to assess new solutions before implementing them
in xMOD thanks to the SynDEx software. SynDEx is
a system level CAD software based on the Algorithm-
Architecture Adequation (AAA) methodology (Sorel,
1996). It was developed to optimize the implementation
of real-time distributed applications onto multicompo-
nent architectures. The workflow is illustrated in Figure
3. When different FMUs are imported into xMOD and
connected together, a file which describes inter-model
connections is generated. This file and the XML files
of the different FMUs of the co-simulation are passed to
a converter which parses the files and produces equiva-
lent files (.sdx) compliant to the SynDEx format. The
co-simulation code is profiled in order to obtain the exe-
cution times of the different operations which are intro-
duced in SynDEx. SynDEx offers the possibility to use
the multi-core scheduling heuristic outlined in this pa-
per , as well as other kinds of heuristics, and therefore
makes it possible to study the achievable co-simulation
speed-up before implementing the heuristic in xMOD.

4.2 Use-case description

In this work, experiments have been carried out on
a Spark Ignition (SI) RENAULT F4RT engine co-
simulation using 5 FMUs. It is a four-cylinder in line
Port Fuel Injector (PFI) engine in which the engine dis-
placement is 2000 cm3. The air path is composed of
a turbocharger with a mono-scroll turbine controlled
by a waste-gate, an intake throttle and a downstream-
compressor heat exchanger (Figure 4). The engine model
was developed using ModEngine library (Benjelloun-
Touimi et al., 2011). ModEngine is a Modelica library
that allows for the modeling of a complete engine with
diesel and gasoline combustion models. The engine
model was imported into xMOD using the FMI export

2http://www.syndex.org/

features of the Dymola3 tool. This use-case has over
100 operations which are scheduled by the multi-core
scheduling heuristic.

AirPath

Cylinders

Figure 4. Spark Ignition (SI) RENAULT F4RT engine model.

4.3 Results and Discussions

Using the toolchain, a .sdx file of the use-case was gen-
erated in order to evaluate, in SynDEx, the theoretical
speed-up obtained by parallelizing the model on differ-
ent numbers of cores, using the multi-core scheduling
heuristic of section 3.2. For each schedule the speed-
up is computed by dividing the mono-core schedule
makespan by the schedule makespan. Figure 5 gives
the different theoretical speed-ups. The best speed-up
is close to 3,6 and is reached with 6 cores. Finding
the minimal number of cores which offers the maximum
speed-up is interesting if a large number of simulation
runs (possibly with different parameters) have to be per-
formed: If a large number of cores is available, multi-
ple runs could be launched in parallel with the adequate
number of cores dedicated to each run. This research
of the minimal number of necessary cores to reach the
maximum speed-up could be scripted and automatically
performed before the simulation.

In order to tackle the constraint of non thread-safe
FMU functions, two mutual exclusion strategies have
been implemented in xMOD and the performance ob-
tained using each of them has been evaluated. The first
one does not modify the multi-core scheduling heuris-
tic result and uses a dedicated mutex (system object that
guarantees mutual exclusion) for each FMU: Every time
an FMU function call is made at runtime, the associ-
ated mutex have to be acquired before the execution of

3http://www.3ds.com/products-services/catia/products/dymola

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

110 DOI
10.3384/ecp16124106

__

Co-simulation FMUs

DLL files

xMod file

Durations file

SDX

file

Parser/Converter

XML files

SynDEx

xMOD/Profiler

Figure 3. Proposed toolchain to assist in the development and assessment of scheduling heuristics.

0

0,5

1

1,5

2

2,5

3

3,5

4

2 3 4 5 6 7 8

S
p

ee
d

-u
p

Number of cores

Speed-up with constrained allocation of operations

Speed-up with unconstrained allocation of operations

Figure 5. Theoretical speed-up.

the function code can be started. The second solution
is explained in (Ben Khaled et al., 2014) and consists
in modifying the multi-core scheduling heuristic to al-
ways allocate the operations of a same FMU to the same
core (constrained allocation). If constrained allocation is
used, the search space of the scheduling heuristic is re-
duced, i.e. at each step, for a given candidate operation,
if there is another operation of the same FMU that has
already been allocated to a specific core, the candidate
operation is allocated to this same core without the need
to test it on the other cores. Thanks to SynDEx, it is eas-
ily possible to theoretically estimate the impact of using
the constrained allocation in the multi-core scheduling
heuristic. Results are given in Figure 5. It shows that
the expected speed-up in the case of constrained alloca-
tion is less than the one using unconstrained allocation,
when the number of cores is less than 5, but similar when
5 cores or more are available. When using less than 5
cores, the large number of updateout put operations can
be efficiently allocated only if the unconstrained alloca-
tion is used: The speed-up difference between the con-
strained and unconstrained allocation cases is due to this
restriction on the allocation. Five is the minimal number
of cores for enabling the execution of each updatestate
operation on a different core. Due to the predominant ex-
ecution times of the updatestate operations, their impact
on the speed-up overrides the possibility of optimizing

the allocation of the other operations. This explains why
the speed-up difference between the unconstrained and
the constrained allocation cases becomes very small with
5 cores or more.

In order to compare the two mutual exclusion strate-
gies, we implemented them in xMOD. Execution times
measurements were performed by getting the system
time stamp at the beginning of the simulation and af-
ter 30 seconds of the simulated time. As previously, we
compare the speed-up by dividing the mono-core simu-
lation execution time by the simulation execution time
on a fixed number of cores. Figure 6 sums up the re-
sults, where unconstrained allocation corresponds to the
use of mutex objects. It shows the impact of mutex
overhead on the speed-up. Whatever the number of the
available cores, the speed-up remains close to 1,3. On
the contrary, the implementation in xMOD of the con-
strained allocation gives similar results in terms of speed-
up improvement when increasing the number of cores
until 5. Nevertheless, the maximum measured speed-up
(2,4) remains smaller than the theoretical one (3,5). In
fact, the theoretical speed-up computation considers the
makespan ratio without estimating any synchronization
cost between cores. The real implementation in xMOD
contains synchronization objects between operations to
ensure the consistency of data dependencies which cer-
tainly have an important impact on the speed-up.

0

0,5

1

1,5

2

2,5

2 3 4 5 6 7 8

S
p

ee
d

-u
p

Number of cores

Speed-up with constrained allocation

Speed-up with unconstrained allocation

Figure 6. Measured speed-up.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124106

111
__

5 Conclusion and Future Work
The work presented in this paper dealt with the problem
of co-simulations acceleration by means of paralleliza-
tion on multi-core processors. We proposed to extend
our previous work by taking into account operations exe-
cution times in the multi-core scheduling heuristic. This
allows the optimization of the number of the dedicated
cores to the simulation, by performing architecture ex-
ploration with SynDEx. Our experiments in xMOD on
an industrial use-case, gave important speed-up results
(2,4). Nevertheless, it also shows the impact of the mu-
tual exclusion constraint on the co-simulation accelera-
tion. Providing thread-safe FMU implementation could
offer important simulation acceleration opportunities. In
our ongoing work, we are exploring graph transforma-
tion techniques to improve the handling of the mutual
exclusion problem of FMUs. We also envision to extend
these results to the multi-rate co-simulation of FMUs by
developing an efficient multi-core scheduling heuristic to
handle it.

References
A. Ben Khaled, M. Ben Gaïd, D. Simon, and G. Font. Mul-

ticore simulation of powertrains using weakly synchro-
nized model partitioning. In IFAC Workshop on En-
gine and Powertrain Control Simulation and Modeling
ECOSM, pages 448–455, Rueil-Malmaison, France, 2012.
doi:10.3182/20121023-3-FR-4025.00018.

A. Ben Khaled, M. Ben Gaid, N. Pernet, and D. Simon. Fast
multi-core co-simulation of cyber-physical systems: Ap-
plication to internal combustion engines. Simulation Mod-
elling Practice and Theory, 47:79 – 91, 2014. ISSN 1569-
190X. doi:http://dx.doi.org/10.1016/j.simpat.2014.05.002.
URL http://www.sciencedirect.com/
science/article/pii/S1569190X14000665.

Z. Benjelloun-Touimi, M. Ben Gaïd, J. Bohbot, A. Dutoya,
H. Hadj-Amor, P. Moulin, H. Saafi, and N. Pernet. From
physical modeling to real-time simulation: Feedback on
the use of Modelica in the engine control development
toolchain. In 8th Int. Modelica Conf., Dresden, Germany,
Mar 2011. Linköping Univ. Electronic Press.

T. Blochwitz, T. Neidhold, M. Otter, M. Arnold, C. Bausch,
M. Monteiro, C. Clauß, S. Wolf, H. Elmqvist, H. Olsson,
A. Junghanns, J. Mauss, D. Neumerkel, and J.-V. Peetz. The
Functional Mockup Interface for tool independent exchange
of simulation models. In 8th Int. Modelica Conf., Dres-
den, Germany, Mar 2011. Linköping Univ. Electronic Press.
ISBN 978-91-7393-096-3. doi:10.3384/ecp11063105.

H. Elmqvist, S.E. Mattsson, and H. Olsson. Parallel model
execution on many cores. In 10th Int. Modelica Conf., Lund,
Sweden, 2014.

H. Elmqvist, H. Olsson, A. Goteman, V. Roxling, D. Zimmer,
and A. Pollok. Automatic gpu code generation of modelica
functions. In 11th Int. Modelica Conf., Versailles, France,
2015.

FMI development group. Functional mock-up interface for
model exchange and co-simulation, July 2014. URL
https://www.fmi-standard.org/.

M. Gebremedhin, A. Hemmati Moghadam, F. Fritzson, and
K. Stavaker. A data-parallel algorithmic modelica extension
for efficient execution on multi-core platforms. In 9th Int.
Modelica Conf., Munich, Germany, 2012.

T. Grandpierre, C. Lavarenne, and Y. Sorel. Opti-
mized rapid prototyping for real-time embedded
heterogeneous multiprocessors. In Proceedings of
7th International Workshop on Hardware/Software
Co-Design, CODES’99, Rome, Italy, May 1999.
URL http://www-rocq.inria.fr/syndex/
publications/pubs/codes99/codes99.pdf.

M. Sjölund, R. Braun, P. Fritzson, and P. Krus. Towards effi-
cient distributed simulation in modelica using transmission
line modeling. In Linköping Univ. Electronic Press, edi-
tor, 3rd Int. Workshop on Equation- Based Object-Oriented
Languages and Tools EOOLT, page 71–80, Oslo, Norway,
2010.

Y. Sorel. Real-time embedded image processing ap-
plications using the algorithm architecture ade-
quation methodology. In Proceedings of IEEE
International Conference on Image Processing,
ICIP’96, Lausanne, Switzerland, September 1996.
URL http://www-rocq.inria.fr/syndex/
publications/pubs/icip96/icip96.pdf.

Y. Sorel. Syndex: System-level cad software for op-
timizing distributed real-time embedded systems.
Journal ERCIM News, 59:68–69, October 2004.
URL http://www-rocq.inria.fr/syndex/
publications/pubs/ercim04/ercim04.pdf.

Y. Sorel. From modeling/simulation with scilab/scicos to
optimized distributed embedded real-time implementa-
tion with syndex. In Proceedings of the International
Workshop On Scilab and Open Source Software En-
gineering, SOSSE’05, Wuhan, China, October 2005.
URL http://www-rocq.inria.fr/syndex/
publications/pubs/sosse05/sosse05.pdf.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

112 DOI
10.3384/ecp16124106

__

http://dx.doi.org/10.3182/20121023-3-FR-4025.00018
http://dx.doi.org/http://dx.doi.org/10.1016/j.simpat.2014.05.002
http://www.sciencedirect.com/science/article/pii/S1569190X14000665
http://www.sciencedirect.com/science/article/pii/S1569190X14000665
http://dx.doi.org/10.3384/ecp11063105
https://www.fmi-standard.org/
http://www-rocq.inria.fr/syndex/publications/pubs/codes99/codes99.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/codes99/codes99.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/icip96/icip96.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/icip96/icip96.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/ercim04/ercim04.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/ercim04/ercim04.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/sosse05/sosse05.pdf
http://www-rocq.inria.fr/syndex/publications/pubs/sosse05/sosse05.pdf

Rankine Cycles, Modeling and Control

Ylva Teleman1 Pieter Dermont2 Hak Jun Kim3 Kil Sang Jang3

1Faculty of Engineering (LTH), Lund University, Sweden, ylva.teleman@gmail.com
2Modelon AB, Sweden, pieter.dermont@modelon.com

3Hanon Systems, South Korea, {hkim18,kjang1}@hanonsystems.com

Abstract

As the need for increased energy efficiency grows, the
use of new energy sources is a topic of investigation for
research and industrial applications. The ability to use
low temperature heat sources via a Rankine or organic
Rankine cycle is one of the options. In this paper such a
cycle is modelled and simulated using a Modelica based
thermal management library suite as well as the simula-
tion tool Dymola. Experimental test bench data provided
by Hanon Systems allowed calibration and verification
of the simulation results. Simulation results shows good
agreement with experimental data. Additional dynamic
simulations are performed to illustrate potential applica-
tions of the model for system optimization and control
development.
Keywords: Rankine cycles, organic Rankine cycles, mod-
eling, dynamic simulations, Modelica, Dymola, ther-
mofluid

1 Introduction

1.1 Rankine Cycle

A Rankine cycle is a thermodynamic cycle which uti-
lizes heat to create mechanical power, harvested by an
expander that can drive a generator. The medium of the
Rankine cycle, usually water, is pressurized in a pump,
evaporated in a heat exchanger, subsequently passed
through an expander and finally condensed in condenser.
The process and essential components in the cycle can
be seen in Figure 1. By choosing a medium with appro-
priate properties, different heat source temperatures can
be used.

1.2 Purpose

This paper is a result of an academic collaboration with
the Faculty of Engineering (LTH) of Lund University.
The purpose of the project was to model and simulate an
industrial use-case: a Rankine cycle that utilizes waste
heat from a combustion engine vehicle to generate me-
chanical power. The project scope was defined by Mod-

Figure 1. Essential components in a Rankine cycle.

elon, a company specialized in simulation and optimiza-
tion using open standard technology. The aim of the
project was to model or use existing models of compo-
nents, parameterize the components, build the complete
cycle, implement appropriate control and gain knowl-
edge of the cycle’s behavior.

1.3 Thermofluid Modeling

The models were implemented in Modelica, an
open standard modeling language (ModelicaAssocia-
tion, 2015), using a 1-D thermofluid approach. The prin-
ciples of thermofluid modeling using Modelica are laid
out in (Tummescheit, 2002; Eborn, 2001).

The different components were either selected from
preexisting model libraries or modeled. A specialized
thermal management suite was used, based on three com-
patible model libraries: Vapor Cycle library (Modelon,
2015c), Heat Exchanger Library (Modelon, 2015a; Bat-
teh et al., 2014) and Liquid Cooling Library (Modelon,
2015b; Batteh et al., 2014).

The modeling was performed in the simulation envi-
ronment Dymola 2016 FD01(DassaultSystèmes, 2015).

1.4 Method

After the physical components were either selected or
modeled and calibrated, they are connected to create
the complete cycle. Simulations with different control

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124113

113
__

strategies and conditions were tested. In order to ver-
ify results, data received from Hanon Systems was used.
Hanon Systems is formerly known as Halla Visteon Cli-
mate Control and specializes in thermal management so-
lutions for automotive applications. The components and
cycle were parameterized according to 11 experimental
data sets.

2 System Presentation

2.1 Refrigerant

A refrigerant called R134a, also known as 1,1,1,2-
tetrafluoroethane, is the working fluid of the cycle. While
utilizing low grade waste heat is most commonly done
using an organic refrigerant, the waste heat temperature
is sufficiently high in Hanon System’s test setup to use a
conventional refrigerant.

Results are repeatedly represented in the specific en-
thalpy - pressure diagram of the working fluid. The di-
agram for R134a can be seen in Figure 2. Within the
thumb-like shape, the refrigerant is a two-phase fluid,
a mixture of both liquid and gas. To the left and right
of the dome, only liquid respectively vapor exists. The
isotherms transverse the two-phase dome horizontally.

Figure 2. Pressure/enthalpy diagram for R134a.

2.2 Components

All but one component used for the Rankine cycle were
readily contained in one of Modelon’s thermal manage-
ment libraries suite. Hanon Systems’ test bench utilizes
a positive displacement machine, more specifically a di-
aphragm pump that was implemented as a custom com-
ponent.

A diaphragm pump operates conceptually similar to a
human diaphragm does - a chamber and a membrane that
moves outward sucking working fluid into the space or
move inwards in order to push out the working fluid. The
pump has a 4.46 kW power output at 1750 rpm. Its losses

can be described through three distinct efficiencies; vol-
umetric, isentropic and mechanical. The volumetric ef-
ficiency describes ratio of the volume in the pump that
is displaced to the geometric volume. The isentropic ef-
ficiency describes how much energy is lost during the
process of pressuring, and the mechanical efficiency de-
scribes losses in shaft and other components of the pump.
The efficiencies of the pump were estimated with the ex-
perimental data, partly relying on assumptions since data
for the fluid at the outlet of the pump was missing.

The expander used in Hanon Systems’ cycle is a posi-
tive displacement machine: a scroll turbine. It has two
intertwined spirals, one stator and one rotor. The hot
high pressured gas enters in the middle, pushing the rotor
around as it makes its journey between the spirals until it
at last exits the positive displacement machine. Similar
to the pump, the expander is subject to losses and they are
described using equivalent efficiencies; volumetric, isen-
tropic and mechanical. Again, these efficiencies were
calculated from the data provided by Hanon Systems.

The cycle includes a plate heat exchanger which acts
as evaporator, using glycol on the secondary side. Not
all geometry parameter data was available, and the miss-
ing parameters were estimated or set to typical values. A
detailed geometry-based plate heat exchanger model ex-
ists in the model libraries, with a higher number of states
due to its flow configuration. A less complex counter-
flow heat exchanger model with equivalent parameteri-
zation was used assuring fast solver convergence but less
accurate behavior representation. In Table 1 some geom-
etry data provided by Hanon Systems for the plate heat
exchanger can be seen.

Item Value
Type MCV Plate

plates 36 rows
Fin N.A.
Path 6-12-18

Effective size mm 93.1*170.5*70.4

Table 1. Plate heat exchanger data

The condenser of the cycle is a flat tube heat ex-
changer using ambient air to cool down the working
fluid. A detailed geometry-based heat exchanger model
was used, parameterized with both available geometry
data and typical geometry data. In Table 2 some geome-
try data provided by Hanon Systems for the flat tube heat
exchanger can be seen.

A tank is integrated in the cycle between condenser
and pump. The purpose of the tank is twofold: (1) ensure
only liquid entered the pump as gas would damage it and
(2) balance the amount of working fluid in the cycle. A
static head of 1 m was introduced between condenser and
pump to confirm that the dynamic pressure at the inlet of
the pump was sufficiently high to avoid the creation of
bubbles in the fluid. The tank has a 8 L volume.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

114 DOI
10.3384/ecp16124113

__

Item Value
Type SC 20t

tubes 54 rows
Fin 80 fpdm
Path 44-10

Effective size mm 570*383

Table 2. Flat tube heat exchanger data

2.3 Control
Based on the cycle configuration different control strate-
gies are relevant. The following strategies were consid-
ered:

• Adequate super heating to let only gas into the tur-
bine

• Adequate sub cooling or other measure to avoid gas
entering the pump

• Preferred power or torque from the turbine

• Optimal evaporation temperature

• Low condenser pressure

• Appropriate amount of refrigerant in the cycle

Except for choosing appropriate components that will
match the requirements, it is possible to change the fol-
lowing variables (Quoilin et al., 2011):

• The speed of the turbine

• The speed of the pump

• Add tanks after condenser/evaporator

• Drain or charge the cycle with WF

• Change the temperature of the heat source for the
evaporator

• Change the temperature of the cooling air in the
condenser

The temperature of the heat source in the evaporator as
well as the cooling air in the condenser are typically not
entities that can be controlled in automotive applications
as the heat source typically is the heat from the engine
and the temperature of the air is dependent on ambient
conditions. It is however of interest to gain knowledge
about the behavior of the cycle under different condi-
tions.

The speed of the pump has a direct consequence on
the amount of superheat of the working fluid leaving
the evaporator. Decreasing the speed of the pump, the

amount of superheating is increased. Effective superheat
control is important to ensure no two-phase fluid enters
and potentially damages the expander. The speed of the
expander was varied in order to achieve desired power or
torque as they are correlated according to Equation 1.

Torque(Nm) =
Power(W)

Speed(rad/s)
(1)

For both superheat and torque control PI-controllers
were used.

In this project the heat source and temperature of cool-
ing air were kept constant. The overall efficiency is cal-
culated according to Equation 2.

ηoverall =
Wturbine −Wpump

Qevaporator
(2)

2.4 Initialization
Initialization is important to ensure a fast solver conver-
gence. In this cycle, the most complex components are
the heat exchangers. Since the heat exchangers contain
the majority of continuous time states, their initializa-
tion is key. Additionally, it is necessary to set the PI-
controller parameters correctly in order to achieve robust
control.

The amount of working fluid in the cycle can be
changed either by:

• Changing the initialization of the cycle, i.e. the
continuous times states of the thermofluid model,
which results in a refrigerant mass.

• Directly setting the tank level.

• Adding a charge component that can either charge
or drain the cycle to a desired amount of working
fluid during simulation.

2.5 Data
Hanon Systems provided 11 data sets that varied in the
amount of working fluid and super heating. For every
data set the speed, power and torque were measured for
pump and turbine, and inlet and outlet pressure and tem-
perature were measured for all the components (with ex-
ception of outlet of pump).

On the test bench test conditions such as speed of the
pump, ambient temperature, air velocity, mass flow and
boiler coolant temperature were controlled. The speed
of the expander was controlled such that the torque re-
mained constant at 9 Nm, and a tank was placed between
the condenser and the pump. Controls for dynamic op-
eration of the cycle weren’t implemented at the time of
the measurements. However, the maximum power of the
expander was determined by changing expander brake
torque for different pump speeds and air temperatures in
the condenser.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124113

115
__

2.6 Test Scenarios

The following control strategies or conditions were
tested for the cycle:

• The different data sets were simulated.

• The cycle was tested with different torques on the
turbine to match the maximum power point tracking
diagram Hanon Systems had implemented. Hanon
Systems concluded from experimental data that
maximum power is achieved at 9 Nm brake torque.

• Superheat control was tested.

• The cycle was tested with varying amounts of re-
frigerant.

3 Creating the Model

3.1 Expander

The isentropic efficiency for the expander was calculated
using the data. For all the data sets it varied between 43-
55% depending on pressure ratio and speed. No correla-
tion could however be demonstrated, likely due to mea-
surement errors and thus a mean value was used. When
calculating the mechanical efficiency, only 3 of the 11
data sets give values under 100%. For 9 of the data sets
the mass flow was too low, and it was assumed that an
error in either the data or the measuring of data had oc-
curred. Consequently a mean value of the mechanical
efficiency from the three good data sets was used and re-
sulted in a base value of 87%.

3.2 Pump

Unlike the expander, the pump’s efficiencies were
mapped in a grid depending on speed and pressure ratio.
Since it was known that the mass flow was inconsistent
for 9 of the data sets, only the three data sets with con-
sistent data were used to calculate the efficiencies. The
mechanical efficiency was set to 73%, and the isentropic
ranged between 58% and 70% depending on speed and
pressure ratio over the pump.

Figure 3. The model of the pump as seen in Dymola.

The top level class of the pump in the Dymola di-
agram layer is illustrated in Figure 3. The model is
based on a generic pump model from the Liquid Cool-
ing Library, in which a function prescribes the pump’s
behavior. Through an interface, this function can be ex-
changed. The speed of the shaft, density at the inlet and
pressure at the inlet, and at the outlet are inputs to the
interface. Outputs of the interface are isentropic and me-
chanical efficiencies, as well as mass flow. To create a di-
aphragm pump, appropriate behavior-prescribing tables
dependent on speed and pressure ratio were inserted in
the interface, and the efficiencies are then extrapolated
from the tables. The interface additionally calculates the
mass flow based on the density at the inlet, speed, maxi-
mum displacement volume, and volumetric efficiency.

3.3 Heat Exchangers

In order to calibrate the heat exchangers, virtual test
benches were set up. In these virtual test benches, the
heat exchanger was connected to mass flow and pressure
source components (Figure 4). After setting geometry
parameters, applying correct boundary conditions, and
selecting appropriate heat transfer and pressure drop cor-
relations, the calibration factors were used to calibrate
the heat exchanger model. The calibration factors tune
the pressure drop as well as the heat transfer coefficients.

3.4 Complete Cycle

The complete assembled cycle in the Dymola diagram
layer is illustrated in Figure 5. The cycle contains a sim-
ple evaporator, a tank between the condenser and pump,
and includes all necessary control for dynamic simula-
tion.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

116 DOI
10.3384/ecp16124113

__

Figure 4. Virtual testbench for the condenser. It was
based on a template with a default heat exchanger
and boundary condition parameterization (HeatEx-
changer.HeatExchangers.FlatTube.Experiments. Test-
Benches.AirTwoPhaseHomogeneous).

4 Results

The result section is composed of two parts. The first
part validates the model by comparison with the experi-
mental data and demonstrates that the model can mimic
its physical counterpart under static conditions. A com-
parison of a relevant cycle metric is performed: a power
tracking diagram is plotted. Secondly, the dynamic ca-
pabilities of the model are shown through a set of simu-
lation experiments. Simulations took between 2 and 10
min for a cycle with the simple evaporator, and 0.5-1.5 h
with the complex one.

4.1 Simulation of Different Data Sets

All 11 data sets, each with different boundary conditions,
matched the simulation results well. The sets with coher-
ent data resulted in the best match as expected. In Figure
6 two specific enthalpy - pressure diagrams with ther-
modynamic cycle are depicted; on the left is the cycle
constructed with experimental data of data set 10 and on
the right the cycle as obtained from the simulation using
data set 10 boundary conditions.

In Table 3 and 4 simulation results as well as experi-
mental data are compared. The simulation of data set 10
is more accurate than the one of set 9; data set 10 had
coherent data and set 9 did not.

Data set 9 Simulation
Power W 834 836

Overall efficiency % 2.2 1
Mass flow kg/s 0.12 0.12

SH ◦C 2.5 2.5
Speed of turbine rpm 885 886
Speed of pump rpm 350 343

Torque of turbine Nm 9 9
Turbine pressure ratio 1.87 2.03
Pressure ratio error % - 8.6

Isentropic efficiency turbine - 61

Table 3. Simulation results for data set 9.

Data set 10 Simulation
Power W 820 827

Overall efficiency % 1.7 1.8
Mass flow kg/s 0.138 0.138

SH ◦C 0.5 0.5
Speed of turbine rpm 870 879
Speed of pump rpm 400 406

Torque of turbine Nm 9 9
Turbine pressure ratio 1.89 1.84
Pressure ratio error % - 2.6

Isentropic efficiency turbine - 60

Table 4. Simulation results for data set 10.

4.2 Maximum Power Tracking Diagram

The graph in Figure 7 illustrates the behavior of the
power harvested by the expander as a function of the
torque applied to the expander. Experimental and simu-
lation data match well. The largest difference is approx-
imately 3%.

4.3 Superheat Control

Dynamic superheat control setpoint control response is
plotted in Figure 8. The super heating was measured by
the sensor component in Figure 5. The output was then
sent to the PI-controller which compares the measured
value with the desired value and subsequently adjusted
the pump speed.

4.4 Refrigerant charge

The refrigerant source components allows charging or
draining the cycle during the simulation. It was demon-
strated that overcharging the cycle results in any increase
of pressure in all components with a ultimately a loss of
pressure difference between evaporator and condenser.
Similar observations could be made for a starved cy-
cle where the pressure in components decreases as illus-
trated in Figure 9. Expander power loss was significant,
ranging from approximately 850 W with sufficient re-
frigerant charge, to 137 W for a starved cycle.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124113

117
__

Figure 5. The whole Rankine cycle as seen in Dymola.

Figure 6. Simulation result for data set 10, on a pressure/enthalpy diagram to the left, data to the right.

5 Discussion and Conclusion

A Rankine cycle was modeled and parameterized ac-
cording to data from Hanon Systems, and control strate-
gies were implemented to gain insight into the behavior
of the cycle and for controls virtual prototyping. Some

variables had to be estimated since data was missing or
inaccurate.

Steady state simulation results matched experimental
data well. Additional geometrical information on indi-
vidual components as well as the piping between com-
ponents would allow to create a more trustworthy model,

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

118 DOI
10.3384/ecp16124113

__

Figure 7. Maximum power point diagram, comparison of ex-
perimental and simulation data

Figure 8. Superheat control. Setpoint and system response.

with an accurate total volume and all pressure drops in-
cluded. The power point tracking diagram measured out
by Hanon Systems is created with the model with only
small deviations of the expander power output.

The control strategies that were implemented and the
initialization worked effectively. At the point of comple-
tion of the model, no control was specified for the system
test bench. Dynamic simulations were carried out based
on typical control mechanisms for Rankine cycles.

The cycle created in this project was a generic and
simple one intended for automotive applications. In or-
der to gain more knowledge about industrial Rankine cy-
cles different setups should be modeled and simulated.
The overall efficiency of the cycle varied between ap-
proximately 1.7 and 2.2 %. Hanon Systems’ primary in-

Figure 9. Thermodynamic cycle after drain to a specific charge
of 300kg/m3 - turbine power output is at 137 W.

tention with the test bench was to focused on the devel-
opment and testing of an expander. Higher efficiencies
can be achieved with state-of-the-art Rankine cycles.

References
John Batteh, Jesse Gohl, and Sureshkumar Chandrasekar. Inte-

grated vehicle thermal management in modelica: Overview
and applications. In Proceedings of the 10th International
Modelica Conference, 2014.

DassaultSystèmes. Dymola 2016 fd01, 2015. URL
http://www.3ds.com/products-services/
catia/products/dymola.

Jonas Eborn. On model libraries for thermo-hydraulic appli-
cations. PhD thesis, Lund University, 2001.

ModelicaAssociation, 2015. URL www.modelica.org.

Modelon. Heat exchanger library,
2015a. URL www.modelon.com/
products/modelica-libraries/
heat-exchanger-library/.

Modelon. Liquid cooling library,
2015b. URL www.modelon.com/
products/modelica-libraries/
liquid-cooling-library/.

Modelon. Vapor cycle library, 2015c. URL www.modelon.
com/products/modelica-libraries/
vapor-cycle-library/.

Sylvain Quoilin, Richard Aumann, Andreas Grill, Andreas
Schuster, Vincent Lemort, and Hartmut Spliethoff. Dy-
namic modeling and optimal control strategy of waste heat
recovery organic rankine cycles. Applied Energy, 88(6):
2183–2190, 2011.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124113

119
__

http://www.3ds.com/products-services/catia/products/dymola
http://www.3ds.com/products-services/catia/products/dymola
www.modelica.org
www.modelon.com/products/modelica-libraries/heat-exchanger-library/
www.modelon.com/products/modelica-libraries/heat-exchanger-library/
www.modelon.com/products/modelica-libraries/heat-exchanger-library/
www.modelon.com/products/modelica-libraries/liquid-cooling-library/
www.modelon.com/products/modelica-libraries/liquid-cooling-library/
www.modelon.com/products/modelica-libraries/liquid-cooling-library/
www.modelon.com/products/modelica-libraries/vapor-cycle-library/
www.modelon.com/products/modelica-libraries/vapor-cycle-library/
www.modelon.com/products/modelica-libraries/vapor-cycle-library/

Hubertus Tummescheit. Design and implementation of object-
oriented model libraries using modelica. PhD thesis, Lund
University, 2002.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

120 DOI
10.3384/ecp16124113

__

Thermal Deformation Analysis Using Modelica

Eunkyeong Kim1 Tatsurou Yashiki1 Fumiyuki Suzuki2 Yukinori Katagiri1 Takuya Yoshida1
1Hitachi, Ltd., Research & Development Group, Japan,

 {eunkyeong.kim.mn, tatsuro.yashiki.zn, yukinori.katagiri.gf,
takuya.yoshida.ru}@hitachi.com

2Mitsubishi Hitachi Power Systems, Ltd., Japan,
fumiyuki_suzuki@mhps.com

Abstract
This paper presents a thermal deformation analysis
method fully utilizing the non-causality of the
Modelica language as a means of solving large scale
simultaneous equations including equilibrium
equations related to stresses, stress-strain relations and
strain-displacement relations. As an illustrative
example, a model for thermal deformation analysis of a
cylindrical object in the two-dimensional circular polar
coordinate system is described. Simulations are
performed for a cylindrically shaped object under a
uniform temperature distribution and a radial
temperature distribution. The results of the simulations
show that the differences in displacements between the
proposed model and a model based on finite element
(FE) methods are less than 9% while the number of
elements that compose the proposed model is about 1/8
compared to that of the FE model.

Keywords: thermal deformation, stress-strain
relation, strain-displacement relation, equilibrium
equations, displacement gradient, physical modeling,
finite volume method, non-causality, Modelica, Dymola

1 Introduction
Thermal deformation is conventionally analyzed by FE
methods. Conventional FE methods supply highly
precise outputs; however they require a lot of work and
time. In order to conveniently analyze thermal
deformation without using FE methods, analytical
solutions have been extensively reported in the
literature (see for example, Gere, 2006). These
analytical solutions can only be used for simple
geometries such as blocks and round bars and simple
temperature distributions such as steady-state
conditions. This is because it is difficult to analytically
solve large scale simultaneous equations including
equilibrium equations related to stresses, stress-strain
relations and strain-displacement relations.
 In this paper, a method to loosen these restrictions of
simple geometries and simple temperature distributions
is presented. The non-causality of the Modelica
language (Elmqvist and Mattsson, 1997a, 1997b;
Elmqvist et al, 1998a, 1998b; Fritzson and Engelson,

1998; Fritzson, 2003, 2011) is fully utilized as a means
of formulating and solving the large scale simultaneous
equations of thermal deformation analysis. The main
feature of the proposed method is that the positions of
displacements and forces are defined based on a finite
volume method (Ferziger and Peric, 2002; Voller,
2009) to effectively describe these complex physical
phenomena in non-causal manner and also to
implement them as a network of Modelica component
models.

2 Thermal deformation model
Here a model for the thermal deformation analysis of a
cylindrical object in the two-dimensional circular polar
coordinate system is described.
 A cylindrical object represented by one quarter as
illustrated in Figure 1 is discretized the 9 control
volumes (referred to as elements in this paper) by
dividing the object in the r and  directions into 3×3
elements. A graphical image of the Modelica
component models interacting with each other for
analyzing thermal deformation of the cylindrical object
is shown in Figure 2. There are 3 types of component
models; a model for calculating the force balances
inside the element (element model), a model for
calculating the interactions of forces and deformations
between elements (linkage model), and a model for
calculating the boundary conditions (BC model). There
are also connectors designed to connect these
component models so that structural analysis of the
entire object is performed (SA connector).
 In the following, the SA connector (Sec. 2.1), the
element model (Sec. 2.2), the linkage model (Sec. 2.3)
and the BC model (Sec. 2.4) are described, and then
the method to calculate the displacements at the
vertices of the elements (Sec. 2.5) is given.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124121

121
__

Figure 1. A cylindrical object and its discretization.

Figure 2. A graphical image of the Modelica component
models for analyzing thermal deformations of the
cylindrical object in Figure 1.

 
Table 1. Declarations of variables in the SA connector

Type Name Description
Length ur displacement in the r direction
Length ut displacement in the  direction
Real durdr displacement gradient ∂ur/∂r
Real dutdr displacement gradient ∂u/∂r
Real durdt displacement gradient ∂ur/∂
Real dutdt displacement gradient ∂u/∂
flow Force Fr force acting in the r direction
flow Force Ft force acting in the  direction

2.1 SA connector

The SA connector passes the information of forces,
displacements, and displacement gradients between the
component models. Each SA connector has 6 variables
as shown in Table 1: 2 variables representing
displacements at the center position of the element; 4
variables representing displacement gradients; and 2
variables representing forces acting on a boundary
surface of the element which are the flow variables.

2.2 Element model

In this model, (1) the balance of the forces acting on
the boundary surfaces of an element is calculated, and
also (2) the displacement gradients at the center
position of the element are calculated and passed to the
SA connectors, then (3) the information of the
displacements at the center position is passed to the SA
connectors.
 Each element model has 6 dynamic variables as
shown in Table 2: 2 variables representing
displacements at the center position of the element; and
4 variables representing displacements gradients at the
center position of the element. The information of
displacements and displacement gradients are passed to
the linkage models located on the boundary surfaces of
the element via the 4 SA connectors Crb, Cra, Ctb
and Cta for interacting with neighbor elements (The
connections between the element model and the
linkage models via the SA connectors are shown in
Figure 3).

(1) The balance of the forces acting on the boundary
surfaces of an element is calculated by

0FFFF )4()3()2()1((1)

where F(1), F(2), F(3) and F(4) are representing the forces
acting on boundary surfaces 1, 2, 3 and 4 (Figure 1).
This equation is described by the following Modelica
code.
Crb.Fr+Cra.Fr+Ctb.Fr+Cta.Fr=0;
Crb.Ft+Cra.Ft+Ctb.Ft+Cta.Ft=0;

(2) The displacement gradients at the center position of
the element are calculated by
















































)2((1)

2

1

r

u

r

u

r

u 
 (2)
















































)4()3(

2

1


 uuu

 (3)

where u denotes the displacements ur and u. The
displacement gradients in the r direction (∂u/∂r) are
calculated as the averages of (∂u/∂r) on boundary
surfaces 1 and 2. The displacement gradients in the 
direction (∂u/∂) are calculated as the averages of

y

x

r



u(i,j)

Control volume

u(i+1,j)u(i,j+1)

u(i-1,j)

u(i,j-1)

F (1)

F (4)
F (2)

F (3)

r (i,j)

(i,j)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

122 DOI
10.3384/ecp16124121

__

(∂u/∂) on boundary surfaces 3 and 4. These equations
are described by the following Modelica code.
durdr=(Crb.durdr+Cra.durdr)/2;
dutdr=(Crb.dutdr+Cra.dutdr)/2;
durdt=(Ctb.durdt+Cta.durdt)/2;
dutdt=(Ctb.dutdt+Cta.dutdt)/2;
 The displacement gradients with respect to r or  axis
are passed to the linkage models located on the
boundary surfaces along the other axis via the SA
connectors. The Modelica code to form these
information flows is as follows.
Ctb.durdr=durdr;
Ctb.dutdr=dutdr;
Cta.durdr=durdr;
Cta.dutdr=dutdr;
Crb.durdt=durdt;
Crb.dutdt=dutdt;
Cra.durdt=durdt;
Cra.dutdt=dutdt;

(3) The displacements at the center position of the
element are determined by the interactions of forces
and displacements between the neighbor elements
calculated by the linkage models mentioned in section
2.3. The Modelica code to share the information of the
displacements among the surrounding linkage models
is as follows.
Crb.ur=ur;
Cra.ur=ur;
Ctb.ur=ur;
Cta.ur=ur;
Crb.ut=ut;
Cra.ut=ut;
Ctb.ut=ut;
Cta.ut=ut;

Table 2. Declarations of variables in the element model

Type Name Description
Length ur displacement in the r direction
Length ut displacement in the  direction
Real durdr displacement gradient ∂ur/∂r
Real dutdr displacement gradient ∂u/∂r
Real durdt displacement gradient ∂ur/∂
Real dutdt displacement gradient ∂u/∂

Table 3. Declarations of variables in the linkage model
and the BC model

Type Name Description
Stress tau rr stress in the r direction
Stress tau rt stress in the  direction
Real epsilon rr strain in the r direction
Real epsilon rt shear strain
Real epsilon tt strain in the  direction
Real durdr displacement gradient ∂ur/∂r
Real dutdr displacement gradient ∂u/∂r
Real durdt displacement gradient ∂ur/∂
Real dutdt displacement gradient ∂u/∂

Figure 3. Enlarged illustration of Figure 2.

2.3 Linkage model

In this model, (1) the forces acting on the boundary
surfaces, (2) the stress-strain relations, (3) the strain-
displacement relations, and (4) the displacement
gradients on the boundary surfaces between the
elements are calculated, and then the resulting
displacement gradients are passed to the SA connectors.
 There are several types of linkage model according to
the number of coordinates: in this paper, the first is for
dealing with the relations between the adjacent
elements in the r direction and the second is for dealing
with those in the  direction. Here the model
concerning boundary surface 1 located in the r
direction (Figure 3) is described as an example.
 The linkage model has 9 dynamic variables as shown
in Table 3: 2 variables representing stresses acting on
boundary surface 1; 3 variables representing strains on
boundary surface 1; and 4 variables representing
displacement gradients on boundary surface 1. This
information on displacement gradients is passed to the
element models adjacent to the linkage model via the 2
SA connectors Crb and Cra.

(1) The force acting on boundary surface 1 is
calculated by

z
r

rr Lr 





)1(
)1(

)1(
)1(












F (4)

This equation is described by the following Modelica
code.
Crb.Fr=tau_rr*r*omega*Lz;
Crb.Ft=tau_rt*r*omega*Lz;
Cra.Fr=-Crb.Fr;
Cra.Ft=-Crb.Ft;
where r is the radius at this boundary surface, omega
is the angle of the element, and Lz is the axial length
of the element.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124121

123
__

(2) The stress-strain relations on boundary surface 1
are calculated by the following equations.

   0
)1()1()1(

2
)1(1

1
TT

E
rrrr 


 


  (5)

  
    0

)1()1()1(

)1(

11

211

TTv

E

rr

rr













 (6)

 
)1()1(

12  


 rr
E


 (7)

Equation (5) is used for the plane stress problem in
which the whole vertical stress on the r- plane is zero,
and equation (6) is used for the plane strain problem in
which the whole vertical strain on the r- plane is zero
(Voller, 2009). For example, the Modelica code to deal
with the plane stress problem is as follows.
tau_rr=E/(1-nu^2)*(epsilon_rr+
nu*epsilon_tt-(1+nu)*alpha*(Temp-Temp0));
tau_rt=E/2/(1+nu)*epsilon_rt;
where E is Young’s modulus, nu is the Poisson ratio,
alpha is the coefficient of thermal expansion, Temp0
is the initial temperature, and Temp is the temperature.

(3) The strain-displacement relations on the boundary
surface 1 are calculated by

)1(
)1(











r

ur
rr (8)

)1(

)1()1(

)1(
)1(1















 


u

rr

ur (9)

)1(

)1()1()1(

)1(
)1(1

r

u

r

uu

r
r

r


 
 





















 (10)

where ur
(1) and u

(1) denote the displacements on
boundary surface 1 and they are approximated by the
averages of the displacements of the adjacent elements.

   
2

,,1)1(jiji
uu

u





  (11)

Here u means the displacements ur and u. These
relations are described by the following Modelica code.
epsilon_rr=durdr;
epsilon_tt=(Crb.ur+Cra.ur)/2/r + dutdt/r;
epsilon_rt=durdt/r+dutdr-
(Crb.ut+Cra.ut)/2/r;

(4) The displacement gradients perpendicular to
boundary surface 1 are approximated from the
displacements of the adjacent elements.

   

   jiji

jiji

rr

uu

r

u

,,1

,,1
)1(



















  (12)

This equation is described by the following Modelica
code.
durdr=(Crb.ur-Cra.ur)/(r_b-r_a);
dutdr=(Crb.ut-Cra.ut)/(r_b-r_a);
where r_b and r_a are the radii at the center positions
of the adjacent elements.

 The displacement gradients are passed to the element
models adjacent to boundary surface 1 via the SA
connectors. The Modelica code to form these
information flows is as follows.
Crb.durdr=durdr;
Cra.durdr=durdr;
Crb.dutdr=dutdr;
Cra.dutdr=dutdr;
 The displacement gradients tangential to boundary
surface 1 are interpolated using the values at the center
positions of the adjacent elements.

    














































 jiji

uuu

,,1

)1(

2

1




 (13)

This equation is described by the following Modelica
code.
durdt=(Crb.durdt+Cra.durdt)/2;
dutdt=(Crb.dutdt+Cra.dutdt)/2;

2.4 BC model

This model is located on the boundaries of the entire
object (Figure 2). The BC model is similar to the
linkage model; however it is different in that it deals
with either a restraint or a loading condition that has to
set the boundaries of the entire object.
 Here the model concerning boundary surface 5
located in the r direction (Figure 3) is described as an
example.
 The BC model has 9 dynamic variables as shown in
Table 3, and the information of displacement gradients
is passed to the element model adjacent to boundary
surface 5 via the SA connector Cra.

(1) The restraint condition is represented using the
displacement gradients.

 

 ji

ji

rr

uu

r

u

,1
BC

,1
BC)5(



















  (14)

 ji

uu

,1

)5(



























 (15)

Here u denotes the displacements ur and u, u
BC is the

displacements of boundary surface 5, and rBC is the
radius on boundary surface 5. These equations are
described by the following Modelica code.
durdr=(ur_bc-Cra.ur)/(r_bc-r);
dutdr=(ut_bc-Cra.ut)/(r_bc-r);
durdt=Cra.durdt;
dutdt=Cra.dutdt;

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

124 DOI
10.3384/ecp16124121

__

(2) The loading condition is represented by

Lr
r

rr 





BC
)5(

)5(
BC












F (16)

 ji

uu

,1

)5(



























 (17)

where FBC is the force acting on boundary surface 5.
This equation is described by the following Modelica
code.
Fr_bc=tau_rr*r_bc*omega*Lz;
Ft_bc=tau_rq*r_bc*omega*Lz;
durdt=Cra.durdt;
dutdt=Cra.dutdt;

2.5 Calculation of the displacement at the
vertices of the elements

In this section, a method for calculating the
displacements at the vertices of the elements (○ marks
in Figure 4) is described using an example illustrated in
Figure 4. Here the displacements at the center positions
(◇ marks in Figure 4) have already been obtained by
the models described in the previous sections.

 The displacements at the vertices are calculated using
the positons, the displacements and the displacement
gradients of the surrounding elements. First, the
displacement of the position r1 is obtained using the
information of the position r2 as follows.

    21221 2
rruuu r  gradf (18)

Also the same displacement of the position r1 is
obtained using the information of the other positions r3,
r4, and r5, in the same manner. The displacement of
this point is defined as the average of these values
obtained using the information of the surrounding
elements.

        
5432 11111 4

1
rrrr uuuuu ffff  (19)

Figure 4. Vertices and center positions of the elements.

3 Simulation examples
The simulations were performed for a cylindrically
shaped object using Dymola and the results were
compared with those obtained by FE analyses.

3.1 Simulation target and conditions

Figure 5 shows the simulation target and examples of
its FE analyses. The object consisted of the separate
upper and lower halves of cylindrically shaped parts,
and the upper half was placed on the lower half. Since
this object was symmetrical between the left and right
sides, the left half was analyzed. The analyses were
performed for two cases of temperature conditions: a
uniform temperature under which the object was
thermally expanded in a uniform manner (Figure 5 (a),
Case 1), and a radial temperature distribution under
which both the upper and lower halves were deformed
(Figure 5 (b), Case 2). To deal with the original three
dimensional deformation by the two dimensional
model, the deformation was analyzed in several r-
planes on which the plane stress problem was applied.
 Figure 6 (a) shows the discretization of the
simulation target for the proposed method. A quarter
was analyzed assuming that the upper and lower halves
having the same geometries deformed symmetrically.
The original shape (not exactly a cylinder) used in the
above FE analyses was simplified into an exact quarter
cylinder; the inner and outer radii were determined so
that the volume was kept equal to the original. The
object was discretized into 60 elements (4×15 in the r
and  directions). For the boundary conditions, the
circumferential displacements on one side of the
circumferential boundary surfaces were restrained. The
length Ly in the y direction between the positions A and
B was used to evaluate the accuracy of the proposed
method.
 Figure 6 (b) shows the temperature conditions for
Case 1 and 2. In Case 1, the object was maintained at a
uniform temperature of 486°C. In Case 2, the inner
surface of the object was maintained at 486°C and the
outer surface at 342°C. The initial temperature before
the occurrences of the thermal deformations was
determined to be 15°C.

y

x

r



r2

Ｖ

r1

r3

r4

r5

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124121

125
__

(a) A uniform temperature distribution (Case 1) (b) A radial temperature distribution (Case 2)

Figure 5. Simulation target.

(a) Discretization of the simulation target
 for evaluating the proposed model

(b) Temperature conditions

Figure 6. Simulation conditions.

(a) A uniform temperature distribution (Case 1) (b) A radial temperature distribution (Case 2)

Figure 7. Simulation results. The displacements were magnified 20 times.

◇center position of element
○vertex of element

Ly

x

y

A(xA,yA)

B(xB,yB)

Circumferential displacement
constraint

Te
m

pe
ra

tu
re

 (℃
)

Radius(mm)

inner radius outer radius

○ proposed model
― FE model

Case 1

Case 2

486

342

Ly1

The position after thermal deformation (proposed model)
The position after thermal deformation (FE model)
The initial position

A

B

x

y

Ly2

x

y

A

B

The position after thermal deformation (proposed model)
The position after thermal deformation (FE model)
The initial position

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

126 DOI
10.3384/ecp16124121

__

Table 4. Differences in the number of elements and the simulation results between the proposed model and the FE model.

 Proposed model FE model Difference
Number of elements in the x-y plane 60 500 ―
Length of initial condition (Ly0) 1(-)*1 1(-)*1 ―
Displacment of Case 1 (Ly1= Ly1－Ly0) 6.0×10-3(-)*1 6.5×10-3(-)*1 -7.6(%)*2

Displacment of Case 2 (Ly2= Ly2－Ly0) 3.1×10-3(-)*1 3.7×10-3(-)*1 -9.0(%)*2

*1: Dimensionless value using the length of the initial condition Ly0
*2: Difference(%) = (Ly_Proposed – Ly_FE)/Ly_FE×100

3.2 Simulation results

Figure 7 (a) and (b) show the initial positon and the
positions after thermal deformations in Case 1 and 2,
respectively. The positions after thermal deformations
were compared those calculated by an FE model. The
number of elements in the x-y plane of the FE model
was about 500 (The total number of elements in three
dimensions was 26335). The simulation results
obtained by the proposed model were in good
agreement with those obtained by the FE model in both
Cases 1 and 2.
 The differences in the number of elements and the
simulation results between the proposed model and the
FE model in both Cases 1 and 2 are summarized in
Table 4. The differences in simulated displacements
were less than 9% while the number of elements that
compose the proposed model was about 1/8 (≈60/500)
compared to that of the FE model.

4 Summary and discussion
A thermal deformation analysis method was proposed
that fully utilizes the non-causality of the Modelica
language as a means of formulating and solving large
scale simultaneous equations including equilibrium
equations related to stresses, stress-strain relations and
strain-displacement relations. The main feature of the
proposed method is that the positions of displacements
and forces are defined based on a finite volume method
to effectively describe these complex physical
phenomena in a non-causal manner and also to
implement them as a network of Modelica component
models.
 As an illustrative example, a Modelica model for
thermal deformation analysis of a cylindrical object in
a two-dimensional circular polar coordinate system
was presented. Simulations were performed for a
cylindrically shaped object under a uniform
temperature distribution and a radial temperature
distribution. The results of simulations showed that the
differences in the displacements between the proposed
model and the FE model were less than 9% while the
number of elements that compose the proposed model
was about 1/8 compared to that of the FE model.

 The proposed method can deal with more complex
thermal deformation analyses than presently used
analytical solutions and can obtain precise outputs
comparable to that of FE methods with a fewer number
of elements. These advantages make it possible to
perform thermal deformation analyses in system level
Modelica simulations containing structural objects and
control devices. Furthermore, the method should be
applicable to optimizations of geometries of such
objects or control systems.

Nomenclature
A position [-]
B position [-]
E Young‘s modulus [Pa]
F force vector [N]
G shear modulus(=E/2/(1+)) [Pa]

Ly length between positions A and B [m]
Ly0 length of Ly in the initial condition [m]
Ly1 length of Ly in case 1 [m]
Ly2 length of Ly in case 2 [m]
Lz axial length of an element [m]
r position vector [m]
r radius [m]
T temperature [°C]
T0 temperature at the initial condition [°C]
u displacement vector [m]
ur displacement in the radial direction [m]

u displacement in the circumferential
direction

[m]

 coefficient of linear expansion [1/°C]

rr strain in the radial direction [-]

r shear strain [-]

 strain in the circumferential
direction

[-]

rr stress in the radial direction [Pa]

r shear stress [Pa]

 Poisson‘s ratio [-]

 angle of an element [rad]

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124121

127
__

Subcripts
f(r) calculated using the positions, displacements

and displacement gradients of position r
i number of elements in the radial direction
j number of elements in the circumferential

direction

 in the radial and circumferential directions
Supercripts
BC boundary surface of simulation target
(1)-(4) boundary surface of element
(5) between boundary surface 5 and center

position

References
Elmqvist H., Mattsson S.E. (1997a): Modelica - The next

generation modeling language an international design
effort, Proceedings of the 1st World Congress on System
Simulation

Elmqvist H., Mattsson S.E. (1997b): An introduction to the
physical modeling language Modelica, Proceedings of the
9th European Simulation Symposium

Elmqvist H, Mattsson S.E., Otter M. (1998a): Modelica -
The new object-oriented modeling language, 12th
European Simulation Multiconference

Elmqvist H., Mattsson S.E., Otter M. (1998b): Modelica -
An international effort to design an object-oriented
modeling language, Summer Computer Simulation
Conference

Ferziger J.H., Peric M. (2002): Computational Methods for
Fluid Dynamics, Springer-Verlag, pp.21-37

Fritzson P. (2003): Principles of object-oriented Modeling
and Simulation with Modelica 2.1, John Wiley & Sons,
Inc., pp.19-25

Fritzson P. (2011): Introduction to Modeling and Simulation
of Technical and Physical Systems with Modelica, John
Wiley & Sons, Inc., pp.29-39

Fritzson P., Engelson V. (1998): Modelica—A unified
object-oriented language for system modeling and
simulation, ECOOP'98, LNCS 1445, pp. 67-90

Gere J.M. (2006), Mechanics of meterials, Thomson learning,
pp.93-104

Voller V.R. (2009): Basic control volume finite element
methods for fluids and solids, World Scientific Publishing
Co. Pte. Ltd., pp.10-20

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

128 DOI
10.3384/ecp16124121

__

Validated Modelica Building Package for Energy Performance
Simulation for Educational and Teaching Purposes

Shan Hua1 Fabian Reuß2 Manuel Lindauer1 Jochen Stopper1 Christoph van Treeck3

1Centre for Sustainable Building, TU München, Germany, {shan.hua, manuel.lindauer,
jochen.stopper}@tum.de

2Institute of Energy Efficient and Sustainable Design and Building, TU München, Germany,
fabian.reuss@tum.de

3Chair of Energy Efficiency and Sustainable Building E3D, RWTH Aachen University, Germany,
treeck@e3d.rwth-aachen.de

Abstract

This paper introduces the work and application of the
Modelica IBPSBuilding package which has been devel-
oped at TU München. The aim of the package is to sim-
ulate building energy performance, especially the ther-
mal behaviour of buildings. Its application is focused
on research and education in order to help application-
oriented researchers and students to understand the phys-
ical processes of a building performance simulation and
gain persuassive simulation results. The package de-
scribes all basic processes including conduction, convec-
tion, radiation and ventilation, and it is validated with
German VDI-Guidelines.
Keywords: building modeling, energy simulation, adap-
tive façade

1 Introduction

The teaching module “Building Performance Modeling
and Simulation” was established at TU München in 2006
which is based on a formerly created block course about
simulation modeling using Maple. It consists of a lec-
ture with the same name as the module and the practical
exercise “Implementing a Building Performance Simula-
tion”. The lecture explains the physical basics of thermal
building simulation including heat conduction, convec-
tion, short- and longwave radiation processes, but also
introduces mathematical and numerical aspects of simu-
lation.

Theories explained in the lectures are applied in the
exercise, in which Modelica is used to create models of
all the involved processes (van Treeck, 2010). These
models evolved over the years and new ideas with a
whole building model that had been developed in master
theses and exercises were implemented. The develop-
ment was conducted with OpenModelica since 2012 and
then several functional enhancements and adaptations to

research projects were conducted with ITI SimulationX.
The actual state of the model package and the relative
development is shown in this paper. Additionally, the
methodology and results of a validation of the model
package according the a German technical guideline is
presented.

2 The Library IBPSBuilding

The aim of the IBPSBuilding library is to have a ther-
mal simulation tool, in which every single process re-
lated to building thermal performance is fully understood
and can be modified in any desired way in order to have
maximal flexibility. Especially for the aspect of under-
standing every detail, it is necessary to create a library
from scratch and not to use existing libraries.

The main structure (in Figure 1) of this model li-
brary meets the lecture syllabus, and contents are com-
plemented and explained to students step by step along
the pace of the lecture. Taking advantage of the polymor-
phism in Modelica language, complicated physical pro-
cesses and building elements are designed to be based
on abstract concepts and structures. Base classes for
interfaces, functions and records for materials are ar-
ranged into sub-packages, which are provided as mod-
ules that students can use to create their own elements
for heat transfer processes and construction elements.
The methodology of development of the standard com-
ponents of heat transfer processes provided in this library
is introduced in section 2.1. At the end of each semester,
typical rooms should have been created and simulated by
the students with support of the lecturers. The simulation
results of these test cases can be used to get insights on
the most responsive proccesses and indicators of thermal
building performance.

In order to let the library structure be commensurate
to the domain structure of a BIM data format like IFC, a
skeletal framework is provided by a master thesis for de-

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124129

129
__

Figure 1. main structure of IBPSBuilding-package

velopment of appropriate interfaces in research accord-
ing to this library (Hua, 2014).

2.1 Implementation of heat transfer pro-
cesses

The heat transfer processes described in this library can
be classified into two groups: the heat transfer processes
determined by temperature difference, and the shortwave
radiation unrelated to temperature. All the building el-
ements are simplified into one-node thermal mass with
capacity models of the material and the key positions,
e.g. surfaces. Each building element is integrated into a
chain of connections of various physical processes (Fig-
ure 2). Coefficients and properties for concretization
of those physical processes are given as parameters or
calculated dynamically in the construction component
model.

In order to reduce the complexity of modeling and to
increase the simulation efficiency on the building level,
several restrictions are contained in the development and
modeling:

1. Currently, thermo fluid processes are not consid-
ered in the teaching version. For any adoption with
fluid materials, simulations are conducted under
ideal conditions with a single heat capacity, convec-
tion and steady state mass transfer - pressure losses,
change of density and enthalpy are disregarded in
the current phase of development. So no interac-
tion with elements in the ‘Modelica.Fluid’ library
is adopted.

2. The discretization follows a nodal approach for cal-
culating heat transfer through the building fabric in
a one-dimensional manner, i.e. where heat transfer
perpendicular to the main direction of heat flow is
neglected. Multi-dimensional effects such as cold
bridges are accordingly disregarded.

2.1.1 Conduction and convection

The modules for conduction and convection process are
based on the same abstract partial model:

Q̇ =C · (Ti −Te)

Basic properties like the temperature difference between
the two sides of a layer, the inlet / outlet heat flow etc. are
declared as prescribed in the abstract model, so that pro-
gramming effort can be minimized, especially if the con-
cretized modules would be coded by students in practical
fields, who are less familiar with programming. The co-
efficient C is first specialized in different successors from
the abstract model, e.g. in a conduction module for half
of a solid material layer, C = A*lambda/d/2, here A
is the net area of a material layer, lamda is the material
conductance, and d is the layer thickness.

Concretization of values of heat transfer coefficients
for convection depends on the boundary condition of the
building element very much. Within the concept of flex-
ibility and full controllability, a bunch of parameters are
added, so that it can be chosen if fixed values for the heat
transfer coefficients should be assigned for validation or
conceptual design phases, or the values should be calcu-
lated dynamically and internally according to geometry,
wind velocity, temperature differences etc. A theoreti-
cal reference of most of the physical processes described
in this package is from Clarke (2001). Chances are
given to students who are taking part into the seminar to
create new functions and codes to implement other theo-
retical methods. An example is to calculate the convec-
tion coefficients according to boundary conditions and
tilt angle. A function calConvectionCoeff is im-
plemented like this:

i f u s e F i x C o n v e c t i o n C o e f f then
a lphaC_e : = f ixAlphaC_e ;
a l p h a C _ i : = f i x A l p h a C _ i ;

e l s e
i f t i l t >=−p i / 4 and t i l t <= p i / 4 then

a l p h a C _ i : =1 . 6 3 ∗ abs (dT_i) ^ (1 / 3) ;
a lphaC_e : = i f c o n n e c t T o A d i a b a t then

9999 . 9 e l s e i f i s E x t e r n a l then
1 . 8 + 4 . 8 ∗ windSpeed e l s e
0 . 6 ∗ (abs (dT_e) / L^2) ^ (1 / 5) ;

e l s e i f t i l t > p i / 4 and t i l t < p i ∗ 3 / 4 then
. . .

where the values of Boolean parame-
ters such as useFixConvectionCoeff,
connectToAdiabat and isExternal are as-
signed by high-level modelers from input-windows.
The variable tilt is transmitted from the geometric
parameter-set of the building element, and serves as
the arbiter of which formula should be taken into
consideration.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

130 DOI
10.3384/ecp16124129

__

Figure 2. An opaque building element and its accessible connectors

2.1.2 Radiation and window modeling

By contrast with heat transfer models like conduction
and convection, a shortwave radiation process is not
based on HeatPorts1 with temperature as the poten-
tial variable because of its independence of the temper-
ature difference, therefore the direction of the heat flow
by radiation is given explicitly. Besides the heat flow
variable, a factor is stored in a connector SwPort for
distributions of radiation to its parent model. A short-
wave radiation module has four SwPorts: one as input
to receive incoming radiation, and the other three stand
for the outputs through transmission, reflection and ab-
sorption processes. Calculation methods of the factors
are first assigned either in inheritance or in instantiation
process.

A transparent construction element should have four
shortwave radiation modules because shortwave radia-
tion takes place on a plane between two mediums (in case
of window are glass and gas). Moreover, each glass pane
includes two surfaces, and each of them conducts radia-
tion from both sides, that is to say, from glass to gas, and
from gas to glass. Intermediate connections are shown in
the following figure 3.

Within this structure, radiation inside a glass plane
between the two surfaces are taken into account in nu-
merical handling process by simulation solver. It can
be solved less efficiently than an analytical method, but
more clearly represented for non-programmers to help
them understand actual physics behind the model. Ab-
sorbed energy is summed up into a hub, and converted
into a thematic adaptable format into HeatPort, which
can be connected to the layer heat capacitor. (connected
with P_a, Figure 2)

1The connector HeatPort is inherited from the Modelica stan-
dard library - Modelica.HeatTransfer.Interfaces. It con-
sists of a potential variable temperature and a flow variable heat flow
rate.

Figure 3. Connections between radiation inside a glass pane
and between glass panes and gaps

2.2 Room-modeling

Thermal space or room is considered to be the basic unit
of building energy performance simulation. Different
rooms can be connected by using shared building ele-
ments, general boundary conditions and central service
systems. Connections inside one room between building
elements and other components such as internal loads
could be more complicated, and require special atten-
tions. Therefore, a template RoomEmpty is available
to help students and engineers build a simulative room
model by using “drag-and-drop”. In this template, indoor
air mass, internal load, radiation distributors and hub-
connectors are given. This structure can also provide

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124129

131
__

support for automatic generation of a Modelica room
model from building information models.

Figure 4. An example room model with six walls (1 of these
is an external wall) and a window

2.3 Heating system
As part of a master thesis, the existing IBPBuilding li-
brary was extended by components for simulation of hot
water central heating systems, which are the most im-
portant plant types in Germany. The implemented com-
ponent models are widely accepted best practice mod-
els and are primarily taken from existing Modelica li-
braries, such as the Annex60 library (Wetter and van
Treeck, 2016) and the Modelica Buildings Library 2.0
from Lawrence Berkeley National Laboratory (Wetter
et al., 2013). The library contains all essential compo-
nents of pipes, fittings, pumps, heat generators, storages,
expansion tanks, transfer systems, control strategies and
domestic hot water (DHW) systems to simulate a wide
range of complex heating and DHW systems. The newly
implemented heating system models of IBPSBuilding li-
brary should therefore be seen as a basis for further de-
velopments.

2.4 Compatibility and external connections
In the framework of a public license, the library is con-
sidered to be compatible with the Modelica standard li-
brary:

1. The heatports of the sub-package Interface
are inherited from the HeatPort of the stan-
dard Modelica library. Connectors in the mod-
els of IBPSBuilding can be connected directly
with standard modules such as with heat sources
in Modelica.HeatTransfer package or indi-
rectly through converter-modules.

2. Variables are defined using Modelica.SIunits
types.

3. Use of external functions are minimized. Models
and functions are verified with test rooms in the en-
vironment of OpenModelica and ITI SimulationX.

2.4.1 Compatibility by encapsulating the parameter
sets

To enhance the compatibility and adaptability of this li-
brary, instantiation of room or building models should be
conducted automatically by using interfaces or under co-
ordination by platform-software. Automated Modelica-
code generation has restrictions such as that no new vari-
ables and equations should be constructed, so that the
generated graphical representation of models should be
readable for engineers. Furthermore, it should be proved
that the generated model can be simulated without errors
which could be produced by incomplete interpretation
and partly combination with manually inserted compo-
nents.

For this purpose, parameters that essentially can come
from an exchangeable data format are encapsulated into
records as a property of appropriate building element.
The following example shows the instantiated and con-
cretized parameter-set in a concrete wall:

C o n s t r u c t i o n s . C o n s t r u c t i o n C o m p o n e n t e x t W a l l (
p a r c (

az imu th = 0 , h e i g h t = 3 , l e n g t h = 5 ,
nLaye r s = 2 , nWindows=1) ,

p a r L a y e r 1 (
r e d e c l a r e r e p l a c e a b l e

M a t e r i a l L i b r a r y . B u i l d i n g M a t e r i a l s .
P l a s t e r _ g i p s mat ,

t h i c k n e s s =0 . 0 2) ,
p a r L a y e r 2 (

r e d e c l a r e r e p l a c e a b l e
M a t e r i a l L i b r a r y . B u i l d i n g M a t e r i a l s .

C o n c r e t e mat ,
t h i c k n e s s =0 . 2) , . . .)

2.4.2 Weather reader and external CombiTables

The IBPSBuilding-package uses CombiTable(e.g.
Modelica.Blocks.Tables.CombiTable1D)
for indicator-related properties of components
(e.g. temperature-related fluid density, wavelength-
related refractive index or spectral sensitivity) and
schedules. An Excel-Macro is developed to convert
any data-sheets into Modelica-readable format or time
table. A reader of weather data based on the appropriate
component in ITI GreenBuilding-package of Simu-
lationX (Unger et al., 2012) is implemented for semantic
analysis of CombiTables of weather data according
to date and site location, and provides connectors for
other components. It is designed to be compatible

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

132 DOI
10.3384/ecp16124129

__

with components of GreenBuilding-package and
standard Modelica libraries.

2.5 Collaboration with students

Since 2015, for version management the software re-
vision system Git was applied for code organization in
teaching activities. Creating modules in different student
groups and merging these development trees was the
main motivation. In the exercise of the winter semester
2015/16 this idea was realized by creating a Github
repository with a basic version of the source code of the
IBPSBuilding library and establishing student develop-
ment groups for the topics convection and longwave ra-
diation processes. This repository is created under the
Github-Education program2, which is held in private use,
and can at the moment only be published with the scope
of a virtual ‘classroom’ with access control of tutors in
the lecture. As most of the students with background of
architecture and civil engineering had never been work-
ing before with software development environments, a
lot of technical problems arouse. One of the biggest chal-
lenges was to motivate the use of Github, which in the
end was only used by the students for downloading the
basic version of the library. Pushing new source code
versions created by the student groups and merging the
development trees had to be done by the supervisors. In
the next course Github will be used again, but with more
introduction examples to increase the usage of Git as a
collaboration platform in and between the groups. Ad-
ditionally Git will be used in future Master’s theses on
the library, as in such a thesis more time can be spend on
clarifying technical problems. The repository is under
GNU GPL license.

3 Validation

Thermal building simulation models should be tested to
eliminate model errors and to state the quality of the
results in relation to calculation accuracy and reality.
Quantitative testing can be done with a relative or a phys-
ical validation. By a physical validation the simulation
model is tested with measured values from a real sys-
tem, e.g. a well-documented real experiment. In prac-
tice, however, a relative validation often is the more con-
venient choice. In the case of a relative validation a
new simulation model is compared to existing simulation
models, e.g. by evaluation parameters of national and
international validation standards or guidelines. They
usually provide different test cases to verify the imple-
mented algorithms and models of certain areas of the
program. To evaluate the calculated results comparison
values are specified. In this paper, the German guideline

2More information: https://education.github.com/.

VDI 20783 from the German Association of Engineers
(VDI) has been used.

3.1 Selection of the validation case
The thermal solver of the IBPS Building library is not
based on the 2-capacity (2-K) model by Rouvel and Zim-
mermann (Rouvel, 2015) as described in the VDI 6007-
1. For simulation programs with another thermal solver
than described in VDI 6007-1 and / or radiation model
as in VDI 6007-3 the VDI 2078 prescribes a validation
according to “Case B”(VDI 2078). This validation case
includes:

1. Validation according to test examples 1 to 16 (ex-
cept 11) of VDI 6020-1 (implicitly included in the
test examples of VDI 6007-1 and VDI 2078)

2. Validation of test examples of VDI 6007-1 (Test
Example 1-12)

3. Validation of test examples of VDI 2078 (Test Ex-
ample 1-16)

For this validation case the guideline specifies limit-
ing values for the mean values of the hourly and standard
deviation from the reference results of VDI 6020-1. The
reference results are based on the n-K model by Rouvel
and were calculated using the building simulation pro-
gram GEBSIMU (Rouvel, 2015). The simulation pro-
gram results must lie in these limits.

Though, a complete validation of the IBPSBuilding
library according to VDI 2078 is not expedient. Part of
the test examples of VDI 6020-1 and VDI 2078 require
expensive whole-year simulations which clearly compli-
cate the assessment and analysis of test results. Further-
more, features such as window ventilation and daylight
calculation, are required in these test examples which are
not yet included in the existing library. Therefore, a vali-
dation with the test examples of VDI 6007-1 and limiting
values according to VDI 2078 is of primary importance
for an evaluation of the thermal solver.

3.2 Type rooms
For the calculation of the test examples, a simple test
room (type room) is defined in the guideline VDI 6007-
1. The construction of the room corresponds, depending
on the test example, either to a lightweight construction

3The guideline VDI 2078 “Calculation of cooling load and room
temperatures of rooms and buildings (VDI Cooling Load Code of
Practice)” is used to determine the cooling load, the ambient air tem-
perature and the operative room temperature for rooms of all kinds,
with and without air conditioning(VDI 2078). The guideline summa-
rizes selected test examples of VDI 6007-1 (“Calculation of transient
thermal response of rooms and buildings - Modeling of rooms”) and
VDI 6020-1 (“Requirements on methods of calculation to thermal and
energy simulation of buildings and plants - Buildings”). These should
serve both the validation as well as support for programming.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124129

133
__

(room type L) or a massive construction (room type S).
The resulting two different amounts of thermal mass al-
low to examine the corresponding reactions of the room
to these differences. The test room is defined as part of
a building and therefore has adiabatic boundaries. From
case to case, the outer wall is adjacent to different exter-
nal climate.

3.3 Test cases

The guideline VDI 6007-1 comprises a total of twelve
test examples (VDI 6007). The test examples 1 to 7 cor-
respond to the guideline VDI 6020-1 and examine reac-
tions of the room to internal loads and setpoint changes.
The test examples 8 to 12 contain important functions
of the extended 2-K model by Rouvel, e.g. surface heat-
ing or cooling, non-adiabatic internal components, air
exchange and several external components.

The thermal reaction of the test room is calculated
over a period of 60 days in hourly increments. The pre-
determined external and internal heat sources and sinks
are in temporal pattern of a day the same for the whole
period of 60 days. Thus, the transient and the steady state
can be compared to the reference results in the guideline.

The kernel of VDI 6007-1 is based on the 2-K model
by Rouvel and Zimmermann (Rouvel, 2015). Since the
IBPS Building library is designed for the simulation of
detailed room models, as suggested by Clarke (Clarke,
2001), the test examples are created accordingly. The
basic structure corresponds more to the n-capacity (n-K)
model of VDI 6020-1. However, there are some basic
differences to the reference n-K model of the building
simulation program GEBSIMU, as described below.

With the existing components of the IBPS Building
library it is not possible to calculate all of the test ex-
amples of the VDI 6007-1. It is therefore necessary to
implement some additional components or extend exist-
ing components that are comprised in the kernel of VDI
6007-1.

3.4 Component model

The n-K model (of the building simulation program
GEBSIMU) uses a simplified model suggested in VDI
6020-1 for capacitance and resistance of the individual
components of a room (VDI 6020). For each single or
multilayer component a substitute model is calculated
using a chain matrix from concentrated thermal resis-
tances and capacitances. These capacitances and resis-
tances reflect the thermal mass of room components that
can be activated. By this, the common solution meth-
ods such as Fourier or Laplace transformation can be
avoided. The active thermal mass is described by the
aperiodic depth of penetration and is calculated regard-
ing the considered period duration.

A substitute model for a wall with any number of dif-
ferent layers can be combined into an equivalent resistor–

capacitor (RC) circuit with a maximum of three resistors
and two capacitors. Asymmetric thermally loaded com-
ponents, such as external components or internal com-
ponents to different tempered neighboring spaces are de-
scribed by two resistors and one capacitor. Symmetri-
cal thermally loaded components, i.e. adiabatic internal
components are modeled as a damped heat storage with
one resistor and one capacitor (see Figure 5).

Figure 5. Equivalent circuit for a symmetrical (left) and asym-
metrical (right) loaded component (Rouvel, 2015)

The IBPS Building library’s equivalent models for
single- or multi-layer components are based on the
Beuken model. The Beuken model is based on the agree-
ment between the differential equation of the thermal
conduction and the processes in an idealized electrical
cable (VDI 6020), as shown in Figure 6.

Figure 6. Component as Beuken model (VDI 6020)

In the Beuken model any wall layer is represented by
an RC circuit with two resistors and one capacitor. A
component (e.g. a wall) can basically be divided into
any number of layers with an equivalent circuit. The de-
gree of subdivision of the wall layers is normally chosen
based on the required calculation accuracy but in prin-
cipal any required calculation accuracy is possible. No
requirements are stipulated regarding the boundary con-
ditions (such as linearity etc.). In the IBPS Building li-
brary the spatial discretization of component models is
limited to one RC circuit per component layer, i.e. per
material layer. This allows a significantly faster compu-
tation time.

In the IBPSBuilding library based detailed models
components to adiabatic boundaries, that is, interior
walls, door, floor and ceiling, are approximated by only
half of the input thickness. In VDI 6020-1, the “cor-
rected heat storage capacity” of the symmetrically loaded
components, i.e. those to adiabatic boundaries, are cal-

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

134 DOI
10.3384/ecp16124129

__

culated in dependence of the aperiodic depth of penetra-
tion. The simplified assumption in the detailed model
leads to overall smaller heat capacities, whose impacts
can be observed in the simulation results. The windows
are modeled in accordance with VDI 6020-1 as opaque
component with thermal resistance but without heat stor-
age.

3.5 Longwave radiation

Longwave radiation exchange between different sur-
faces in the building simulation program GEBSIMU is
assumed to be calculated by the approach for “more
complicated” geometrical conditions of the VDI 6020-
1 (VDI 6020). This simplified linear approach assumes
that all surfaces of the room are involved in the radiation
exchange relative to their size:

Q̇ = A ·αstr · (T1 −T2)

In VDI 6007-1 the heat transfer coefficient is defined
as αstr = 5 W/(mK) (VDI 6007). According to ISO
6946:2007 “Building components and building elements
- Thermal resistance and thermal transmittance - Calcu-
lation method“ this value corresponds to a temperature
of Tm = 10◦C. Thus, it is assumed that this value is also
used in the GEBSIMU model. The IBPS Building library
uses an approach based on the Stefan-Boltzmann law:

Q̇ = A ·σ · ε · (T 4
1 −T 4

2)

This leads to higher radiative heat flows between the
walls for temperatures over 10◦C. Therefore, the indoor
air temperature on day 60 in the guideline is higher than
in our model. This originates in the radiative heat flow
from the inner to the outer wall, which is underestimated
in the guideline and leads to lower heat losses to the out-
side.

3.6 Simulation

After entering all data the test cases are simulated over
the base period of 60 days. The output is given in hourly
steps as specified in the directive. By evaluating the re-
sults, programming errors in the IBPSBuilding library
could be detected and eliminated.

The reference results of validation “Case B” are based
on the n-K model by Rouvel which is included in
VDI 6020-1 (VDI 6020). These were calculated us-
ing the building simulation program GEBSIMU version
7.30.0011. The basics of the n-K model were outlined
by Rouvel in 1972 based on the detailed Beuken model.
The compliance of both models calculation results has
been proved by Rouvel (Rouvel, 2015).

3.7 Results analysis and discussion

The simulation results of the test cases of VDI 6007-1
are compared to the reference results of validation “Case
B” according to the specifications of VDI 2078. The ref-
erence results are in this case based on the n-K model as
included in VDI 6020-1.

For analysis of the test examples, day 1, 10 and 60 of
the base period are compared in respect to room air tem-
perature, operative temperature, and for test examples 6,
7 and 11, to heating and/or cooling load. By this, ini-
tial values, transient response and consistency in steady
state can be examined. Figure 7 exemplarily shows the
transient response of Test Example 1 over the whole base
period of 60 days.

Figure 7. Development of the room air temperature over the
simulation period

Figure 8 exemplifies the diurnal variations of the in-
door temperatures of Test Example 1. The increase in air
temperature due to the internal loads in office hours (6.00
- 18.00 o’clock) can be clearly seen. Compared are the
reference results of the 2-K model of VDI 6007-1 and the
reference results of the n-K model of VDI 6020-1 with
the simulation results of the IBPS Building Library. The
maximum standard deviation of the hourly variations of
the simulation results from the reference results occurs
for the room air temperature and the operative tempera-
ture on day 1 with 0.28 K. The maximum absolute de-
viation is about 1.0 K and occurs on day 60. The test
example shows an overall good compliance with the ref-
erence results. However, differences in the calculation
engine between the n-K model and the IBPS Building
library’s model result in significant variations in all test
examples.

It is apparent that the indoor air temperature shows
a wider fluctuation range on all days than the reference
results. This can be justified by the smaller overall ef-
fective heat capacity of the zone. As described before,
the heat capacity of the reference model is calculated
in accordance with VDI 6007-1, i.e. in dependence of
the aperiodic depth of penetration. The heat capacity to
adiabatic boudaries of the IBPSBuilding library model
is simply estimated by half the wall thickness. In this
way the total heat capacity of the IBPS Building model
is smaller and the room air temperature is responding

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124129

135
__

Figure 8. Results of test example 1

faster to heat sources and heat sinks on every day, un-
til it reaches the upper limit in steady state.

Furthermore, the room air temperature of the IBPS-
Building model increases slower during the simulation
period than in the reference model. This is attributable
to the heat flow from the inner to the outer wall by long-
wave radiation, which is considered too small in the ref-
erence model. As described before, in contrast to the
n-K model, the IBPSBuilding library does not use the
simplified linear approach for the long-wave radiation
exchange, but a model based on the Stefan-Boltzmann
law. This leads to higher radiative heat flows between
the walls at temperatures above 10◦C and thus to higher
thermal losses through the exterior walls. The room air
temperature is therefore, on day 60 lower than in the ref-
erence results. The two behaviors described above occur
in all test examples.

Minor discrepancies at all considered days can be at-

tributed to slight differences in the calculation results by
using different calculation programs (VDI 6007). De-
pending on the programming, programming language,
compiling, etc. slight differences are inevitable.

In heating and cooling load significantly higher devia-
tions from the reference results are conveyed. In Test Ex-
ample 11 the room air temperature is in good consistence
with the reference results with a maximum standard de-
viation of 0.47 K on the 1st day. Though the system load
has high standard deviations from the reference results
of 65.6 W on day 1 and approximately 56.4 W on day 10
and 60. The maximum absolute deviation occurs on day
1 with about 190 W.

This is primarily due to the low spatial discretiza-
tion which aggravates the correct identification of the
activated thermal mass. Another factor is the use of a
PID (proportional-integral-derivative) controller to de-
termine the required heating and cooling load. Here,
the n-K model of GEBSIMU according to VDI 6020-
1 uses a discrete analytical approach to determine sys-
tem loads, which leads to fundamentally different results
(VDI 6020).

Evaluation is performed as a statistical analysis by
mean value and standard deviation corresponding to VDI
6007-1 (VDI 2078). The mean value is the mean of
the hourly variation, i.e. simulation result minus refer-
ence result, in the evaluation period. The evaluation pe-
riod includes day 1, 10 and 60 of the simulation period.
The standard deviation is the standard deviation of the
hourly variation in the evaluation period. The discrep-
ancies between the program to be validated and the ref-
erence results are also compared to the deviations of the
2-K model of VDI 6007-1 to the reference results (see
Table 1 4).

A successful validation requires the maximum values
of the mean values and the standard deviation of the eval-
uation period to be within the applicable limiting values.
The limiting values are 1.0 K for the mean value and 1.5
K for the standard deviation of the room air temperature
and the operative temperature and 50 W for the mean
value and 60 W for the standard deviation of the heating
or cooling load.

The overall results for room air temperature and oper-
ative temperature of the test examples are continuously
within the limiting values. However, with heating and
cooling load calculation limiting values are not always
respected. Although the mean value of the hourly devia-
tion is within the limiting value of 50 W in all test exam-
ples, the standard deviation exceeds the limiting values
of 60 W in Test Example 6 with 60.0 W and significantly
in Test Example 11 with 65.6 W. This can primarily be
refered to the low spatial discretization of building com-
ponents which aggravates the correct identification of the
activated thermal mass. Thereby, this problem can be

4The table includes only the maximum values of the evaluation pe-
riod. The respective higher values are underlined and are those which
apply for validation according to VDI 2078.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

136 DOI
10.3384/ecp16124129

__

easily remedied by expanding the number of RC circuits
per component layer of the IBPS Building library’s com-
ponent model.

Table 1. Maximum values of validation results

4 Conclusion and outlook

4.1 Adoption to IEA EBC Annex 60 frame-
work

As a complement of other Modelica libraries for build-
ing energy performance simulation, the development of
the IBPSBuilding library is focused on building model-
ing and simulation with Modelica mainly for educational
and teaching purposes. The main structure of this model
library and its compatibility is emphasized in this work,
so that it can be easily adopted into learning work and
used by non-programmers.

Further activities shall link the activities on hand with
the ongoing work of the international IEA EBC An-
nex 60 project. The Annex within the International En-
ergy Agency (IEA) in Buildings and Communities pro-
gramme (EBC) is a project to promote research and de-
velopment of new computational methods for energy
efficient buildings and communities. The focus is to
develop and demonstrate next-generation computational
tools for buildings and energy systems within buildings
based on Modelica and the Functional Mockup Interface
standards (Wetter and van Treeck, 2016).

One of the subtasks of the Annex framework fo-
cuses on harmonizing and unifying model development
in Modelica. As a result of the Annex work, fragmented
developments were merged into a common and open set
of Modelica base classes for the various libraries such
as the AixLib from RWTH Aachen University, see e.g.

(Remmen et al., 2015), (Fuchs et al., 2015) and the refer-
ences therein, or the Building library from LBNL Berke-
ley (Wetter et al., 2013) and others. It is therefore the
intention to merge the developments on hand which pri-
marily focus on educational issues with the research- and
application-oriented models of the Annex.

4.2 Validation

The validation of the IBPSBuilding Library on the basis
of VDI Directive 6007-1 with the limit values according
to VDI 2078 shows overall good results. Thus demon-
strating the resilience of the thermal calculation kernel.
By evaluating the results programming errors were de-
tected and remedied, e.g. the incorrect definition of the
heat transfer coefficient. In addition, existing compo-
nents were expanded to include useful additional func-
tions. With the successful validation, the basis for the fu-
ture development of requested complementary functions
has been made, e.g. moisture transport processes, multi-
zone modeling, detailed window models, etc..

4.3 FLUIDGLASS

The IBPSBuilding-Package is adopted in the EU-project
FLUIDGLASS to support validations of the new façade
construction and the integrated control system for fluid
and its technical systems. It is a research project co-
ordinated by University of Liechtenstein and funded by
European Commission with the seventh Framework Pro-
gram (EU-FP7 Grant Agreement No. 608509).5 In this
new façade system in development, two fluidized layers
are implemented and proposed to be regulated by an in-
telligent control system, in order to improve the build-
ing energy efficiency by acting as a replacement to cover
the functions of shading device, solar thermal collector,
heating and cooling elements (Stopper et al., 2013).

In order to accomplish the detailed validation process
for the performance of various construction configura-
tions of FLUIDGLASS, an extended version of IBPS-
Building is implemented, which includes:

1. consideration of glass coating and its different op-
tical performances according to direction of irradi-
ation and incident angles;

2. consideration of different behavior with light in dif-
ferent wavelengths;

3. free or enforced convection in a gap between
glass panes with detailed calculation method and
temperature-related material properties;

4. shading of reveal and its geometric interpretation
according to incident solar angles;

5More information: http://www.fluidglass.eu/

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124129

137
__

5. visual indicators such as illuminance and lumi-
nance;

6. improvement of interactions with 3rd-party li-
braries, MEP-models and modeling optimization

Additionally, a group of modules are created to help
building a detailed FLUIDGLASS model in Modelica,
which is compatible with the IBPSBuilding-Package and
most of the standard Modelica libraries (mainly SIunits
and HeatTransfer). The theoretical numerical parts, es-
pecially the behavior according to wavelengths, refer to
the former research works and their equation system in
the equation solver program EES from F-Chart Software
(Gstoehl et al., 2011). The FLUIDGLASS components
with IBPSBuilding modules are tested in ITI Simula-
tionX, and are also validated with the EES model and
sample measurements.

The extended version of the library is planned to be
adopted in network simulations on district level in fur-
ther steps of FLUIDGLASS project. Approaches of co-
simulation are in research. It can collaborate with Mat-
lab and Simulink at the moment in practice by using the
COM-interface of SimulationX. Furthermore, the library
is adopted in Hardware-in-Loop simulations by interact-
ing with LabVIEW to improve the smart controlling of
mechanical systems with FLUIDGLASS. The compati-
bility of the FLUIDGLASS add-on is also going to be
tested with the standard Annex60 Buildings Library.

5 Acknowledgements

The authors acknowledge the financial support by
the European Commission within the FLUIDGLASS-
project (EU-FP7 Grant Agreement No. 608509).

References
VDI 6020 Blatt 1: Anforderungen an Rechenverfahren zur

Gebäude- und Anlagensimulation, 2001-05.

VDI 2078: Berechnung der Kühllast und Raumtemperaturen
von Räumen und Gebäuden (VDI-Kühllastregeln), 2012.

VDI 6007 Blatt 1: Berechnung des instationären thermis-
chen Verhaltens von Räumen und Gebäuden - Raummodell,
2012-03.

J Clarke. Energy Simulation in Building Design. Taylor
& Francis, 2001. ISBN 9780750650823. URL http:
//books.google.de/books?id=ksNIQ4kx6UIC.

Marcus Fuchs, Ana Constantin, Moritz Lauster, Peter Rem-
men, Rita Streblow, and Dirk Müller. Structuring the build-
ing performance Modelica model library AixLib for open
collaborative development. In Proceedings of 14th IBPSA
Conf. Building Simulation 2015, pages 331–338, Hyder-
abad, 2015.

Daniel Gstoehl, Jochen Stopper, Stefan Bertsch, and Dietrich
Schwarz. Fluidised glass façade elements for an active en-
ergy transmission control. In World Engineers’ Convention,
Geneva, 2011.

Shan Hua. Entwicklung einer Schnittstelle zwischen IFC-
Gebäudemodellen und Modelica. 2014.

Peter Remmen, Jun Cao, S. Ebertshäuser, J. Frisch, Moritz
Lauster, Tobias Maile, J. O’Donnell, S. Pinheiro, J. Rädler,
R. Streblow, M. Thorade, R. Wimmer, Dirk Müller,
C. Nytsch-Geusen, and Christoph van Treeck. An open
framework for integrated BIM-based building performance
simulation using Modelica. In Proceedings of 14th IBPSA
Conf. Building Simulation 2015, pages 379–386, Hyder-
abad, 2015.

Lothar Rouvel. Thermische Gebäudesimulation GEBSIMU
- Berechnungsverfahren zum instationären thermischen
Gebäudeverhalten, 2015. URL http://www.gebsimu.
de.

Jochen Stopper, Felix Boeing, and Daniel Gstoehl. Fluid Glass
Façade Elements : Influences of dyeable Liquids within the
Fluid Glass Façade . In Energy Forum on Solar Building
Skins, Bressanone, 2013.

Matthis Thorade, Jörg Rädler, Peter Remmen, Tobias
Maile, Reinhard Wimmer, Jun Cao, Moritz Lauster,
Christoph Nytsch-Geusen, Dirk Müller, and Christoph
van Treeck. An Open Toolchain for Generating
Modelica Code from Building Information Models.
pages 383–391, sep 2015. doi:10.3384/ecp15118383.
URL http://www.ep.liu.se/ecp{_}article/
index.en.aspx?issue=118;article=41.

René Unger, Torsten Schwan, Beate Mikoleit, Bernard
Bäker, Christian Kehrer, and Tobias Rodemann. "Green
Building" - Modelling renewable building energy sys-
tems and electric mobility concepts using Modelica.
Proceedings of the 9th International Modelica Confer-
ence, pages 897–906, 2012. doi:10.3384/ecp12076897.
URL http://www.ep.liu.se/ecp{_}article/
index.en.aspx?issue=76;article=93.

Christoph van Treeck. Introduction to Building Performance
Modeling and Simulation. Habilitation thesis, Technische
Universität München, 2010.

Michael Wetter and Christoph van Treeck. IEA EBC Annex
60 Website, 2016. URL http://www.iea-annex60.
org/. Accessed: 2016-04-04.

Michael Wetter, Wangda Zuo, Thierry S Nouidui, and Xi-
ufeng Pang. Modelica Buildings library. Journal of
Building Performance Simulation, pages 1–18, mar 2013.
ISSN 1940-1493. doi:10.1080/19401493.2013.765506.
URL http://dx.doi.org/10.1080/19401493.
2013.765506.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

138 DOI
10.3384/ecp16124129

__

http://books.google.de/books?id=ksNIQ4kx6UIC
http://books.google.de/books?id=ksNIQ4kx6UIC
http://www.gebsimu.de
http://www.gebsimu.de
http://dx.doi.org/10.3384/ecp15118383
http://www.ep.liu.se/ecp{_}article/index.en.aspx?issue=118;article=41
http://www.ep.liu.se/ecp{_}article/index.en.aspx?issue=118;article=41
http://dx.doi.org/10.3384/ecp12076897
http://www.ep.liu.se/ecp{_}article/index.en.aspx?issue=76;article=93
http://www.ep.liu.se/ecp{_}article/index.en.aspx?issue=76;article=93
http://www.iea-annex60.org/
http://www.iea-annex60.org/
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2013.765506
http://dx.doi.org/10.1080/19401493.2013.765506

Advances of Zero Flow Simulation of Air Conditioning Systems
using Modelica

Pieter Dermont1 Dirk Limperich2 Johan Windahl1 Katrin Prölss1 Carsten Kübler3

1Modelon AB, Sweden, {pieter.dermont,johan.windahl, katrin.prolss}@modelon.com
2Daimler AG, Germany, {dirk.limperich}@daimler.com

3TWT GmbH, Germany, {carsten.kuebler}@twt-gmbh.de

Abstract

This paper describes recent advances in simulation of
zero flow conditions based on work with Daimler using
the Air Conditioning Library from Modelon. The Air
Conditioning Library is based on the open standard mod-
elling language Modelica. Simulating refrigerant loops
at (near) zero flow for large vapor compression cycles is
challenging, due to the fast dynamics in the model un-
der those conditions that drastically reduce the step size
of the solver. Findings on solver selection and pressure
drop correlations are presented. An approach to improve
zero flow simulation based on a systematic analysis of
heat transfer coefficients is suggested and demonstrated
to increase simulation robustness under (near) zero flow
conditions.
Keywords: air conditioning systems, zero flow, 1-D fluid
modelling, dynamic simulation, numerical issues

1 Introduction

Operating modes with low and zero refrigerant mass
flow rates in air-conditioning refrigeration systems have
gained significance in the past years. Additional con-
sumers of cooling power, such as batteries, evaporators
for multi-zone air cooling or other integrated parts of the
thermal management system have become more com-
mon.

Naturally, not all branches of the refrigeration cycle
are active at all times but may be switched off during
given operation modes. In addition, for the purpose of
complete vehicle simulation, the entire cycle may be
switched off at any time. The refrigeration system model
is expected to handle these conditions smoothly and effi-
ciently.

Characteristic for air conditioning cycles is the small
total volume, often less than 1 [l]. In addition, the cycle
traverses the two-phase dome, and as a consequence a
wide and rapidly varying set of fluid properties.

1.1 Thermofluid Modelling and the Air Con-
ditioning Library

Thermofluid models in Modelica are 1-D models which
are effectively a string of control volumes and control
surfaces (referred to as volume and flow components re-
spectively in the Modelica community). Control vol-
umes account for the conservation of energy and con-
servation, whereas the control surfaces incorporate the
conservation of momentum (Figure 1). (Tummescheit,
2002) explains this concept in detail.

Figure 1. The balance equations. Conservation of mass (1)
and energy (2) occurring in the control volume and the conser-
vation of momentum (3) defined across an control surface.

In the Air Conditioning Library the models are dis-
cretized using an upwind discretization scheme, intended
for (strong) convective flows with suppressed diffusion
effects.

Both the above concepts are essential in this article
and will be referred to at a later stage.

The Air Conditioning Library contains a set of pre-
defined components focused on air conditioning appli-
cations and is developed by Modelon AB. It is cur-
rently mostly used by automotive OEM’s and suppliers
(Tummescheit et al., 2005).

1.2 Test Models

All investigations in the paper are based on a large sys-
tem model, provided by Daimler. The system uses

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124139

139
__

R134a refrigerant and contains 2 evaporator branches as
depicted in Figure 2. Five use cases of the system model
were described by Daimler:

1. Normal operation

2. Evaporator branch #1 shutdown

3. Evaporator branch #2 shutdown

4. Compressor shutdown through reduction of posi-
tive displacement volume. A complete simulation
contains three shut-down - start-up cycles.

5. Compressor shutdown through reduction of shaft
speed. Only one shut-down is performed and the
system remains at rest for the rest of the simulation.

At the beginning of the investigation use cases 4-5
experienced significant increase in CPU time right after
compressor shut-down, which prevented the simulation
to complete within a reasonable time frame.

Figure 2. Schematic representation of the refrigeration system

1.3 The Zero Flow Problem

Close to zero flow, some oscillations appear due to the
fast dynamics in the model. These dynamics are caused
by the mathematical description that at nominal flow
rates has reasonable time constants, but at low flow rates
become very small. Hence, the solver reduces drastically
its step size. A reduced solver step size during a pro-
longed period results in a dramatic increase in CPU time
which makes it infeasible to compute the model within a
reasonable time.

The fast dynamics can be observed in the simulation
results by oscillations of a given set of variables, in par-
ticular the mass flow as is illustrated in Figure 3.

Figure 3. Oscillations in mass flow are a typical symptom of
the zero flow problem.

The (simulation time, CPU time) graph is used repeat-
edly throughout this paper, as an illustration the progress
the solver is making. The gradient of the graphs is an
indication of the progress of the solver. Figure 4 shows
the the graph for use case 4 before any improvements to
the model, where the vertical graph gives a clear indi-
cation of the zero-flow problem. 3600 [s] is considered
the limit of a reasonable simulation time. All simula-
tions are automatically stopped at 3600[s] - a reasonable
computation time for a system with approximately 270
continuous time states and many transients.

Figure 4. This graphs shows CPU time as a function of sim-
ulation time for use case 4. The vertical line at t = 500 [s]
indicates the zero flow problem.

2 Pressure Drop Correlation Regu-
larization

The pressure drop correlation presents in essence the re-
lationship between pressure drop and mass flow, which
is approximately a quadratic function (1) :

ṁ = f (4P)∼
√
4P (1)

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

140 DOI
10.3384/ecp16124139

__

Figure 5. A regularized pressure drop

Note that the derivative of this function approaches
zero when approaching a zero mass flow. This will dis-
rupt the search algorithm as very small pressure differ-
ences correspond to very large variations in mass flow,
causing the solver to jump between different solutions
which are beyond solver tolerance. Regularized pres-
sure drop correlations address this issue by increasing
the derivative within a user specified region (Figure 5)
(Tummescheit, 2002) . All pressure drop correlations in
the Air Conditioning Library can be regularized with a
parameter.

Operation point based pressure drop correlations, as
opposed to geometry based pressure drop correlations
where the pressure drop is specified by thermodynamic
properties and the pipe geometry, allow the user to spec-
ify the nominal mass flow and pressure drop to define the
pipe’s behaviour. Note that depending on how the user
sets the nominal mass flow and pressure drop, the corre-
lation will be less or more sensitive to zero flow issues.
A small pressure drop for a large mass flow will increase
the region in which the derivative of the pressure drop -
mass flow function is beyond solver tolerance. It is thus
beneficial to lump small pressure drops into one larger
pressure loss.

A regularized pressure drop correlation is a necessary
requirement for a complex thermo-fluid model to com-
pute under zero flow conditions.

3 Solver selection

Using an appropriate solver is critical to ensure fast con-
vergence of models that experience (near) zero flow op-
eration. Three popular solvers are integrated in the sim-
ulation environment Dymola: Dassl, Lsodar, RadauII.

The former two are multi-step algorithms whereas the
latter one is a one-step algorithm. One-step algorithms
are more efficient at handling stiff problem formulations,
which is the case for a (near) zero flow simulation, there-
fore RaduaII is the preferred solver.

A solver tolerance of 10e-6 was used in Dymola
2016FD01.

4 Heat Transfer To Control Volumes
at Zero Flow

As explained in Section 1.1, each control volume has an
associated energy balance. For heat exchangers, a large
contributor to the overall energy balance of the two phase
channel is the heat transfer from or to the secondary
channel governed by the heat transfer coefficient corre-
lation.

4.1 Observations
In use case 4, oscillations are localised in an evaporator
component. One can observe significant oscillations in
mass flow and large oscillations in two phase fractions,
in the control volumes located within the heat exchanger
model. To address the problem, all heat transfer corre-
lations are replaced by a constant (α = 1500

[
W/m2K

]
)

to investigate a potential improvement in the simulation
progress. The result is remarkable; it does not improve
the simulation at zero-flow, on the contrary, it reduces
its robustness. The oscillations for this case occur for
the control volumes located at the boundaries of the heat
exchanger models.

Based on these observations, the fast dynamics are at-
tributed to the (large) difference in heat transfer coeffi-
cients between adjacent control volumes:

1. Caused by to the difference in heat transfer between
one-phase and two-phase flow, as is observed for
use case 4.

2. Caused by the difference in heat transfer between
heat exchangers and adiabatic pipe, as is observed
when the heat transfer coefficient is set constant, i.e.
without any mass flow dependency.

These hypotheses are strengthened by the result of a
simulation run where all heat transfer coefficient cor-
relations are replaced by a function for which the heat
transfer coefficient is linearly dependent of the mass
flow. The heat transfer coefficient is zero for zero mass
flow and takes a given value at nominal flow rate (e.g.
α = 1500

[
W/m2K

]
). Consequently, at zero-flow con-

ditions no difference in heat transfer coefficient between
adjacent control volumes exists, neither due to differ-
ent phases nor at the interface heat exchanger - adiabatic
pipe. Using this substitute correlation, all use cases com-
pute effortlessly to the end.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124139

141
__

4.2 Reduce the Difference in Heat Transfer
Coefficient Between One-Phase and Two-
Phase at Zero-Flow

To accommodate for observation 1, heat transfer coef-
ficients of one-phase and two-phase should converge to
identical values at zero flow (Figure 6). Key points that
were considered are:

• What value should the heat transfer coefficient con-
verge to for zero flow? Since all two-phase heat
transfer coefficient correlations that are used in this
context are not valid at low flow rates but the one-
phase heat transfer coefficient correlations is, it is
judicious to let the former converge towards the lat-
ter. However, its actual value is likely influenced by
the droplets and bubbles.

• At what mass flow should such an transition be-
gin? Two options are considered to set the transi-
tion threshold. In this section, (a fraction) of the
nominal mass flow rate is used as limit. In the
next section we explore the possibilities of using
the Reynolds number instead.

Figure 6. The heat transfer coefficient for one- and two-phase
flow in function of the mass flow. To address the zero flow
problem, the coefficient is smoothly interpolated between dif-
ferent phases

Note that this effectively not only addresses observa-
tion 1 but also applies to observation 2, since the heat
transfer coefficient for one-phase flow is generally lower
than for two-phase flow. This in turn decreases the differ-
ence between the heat transfer coefficients between con-
trol volumes located at the border of a heat exchanger
and an adiabatic pipe.

Figure 7. This graphs shows CPU time as a function of simu-
lation time for use case 4, with smoothing based on mass flow.
At 500 [s] the first compressor shut-down occurs. The simula-
tion is stopped after 3600[s] CPU time, which allows for one
complete compressor restart and another shut-down.

Performing this change proved to be highly beneficial
to improve zero-flow behaviour. The simulation contin-
ues to make progress where it previously got stuck, as
is demonstrated in Figure 7. The initial transients take
approximately 800 [s] CPU time. Subsequently there a
is plateau up to 500 [s] simulation time, where the cycle
reaches steady state operation and the solver makes fast
progress. The transients for cycle shut-down and restart
are located between 500 - 600 [s] simulation time and
take approximately 1600 [s] CPU time, which is consid-
ered reasonable given the cost of the initial transient. The
plateau located at approximately 600-700 [s] simulation
time indicates a fast solver progress and coincides with
normal refrigerant cycle operation.

4.3 Filtering the Heat Transfer Coefficient

While complete compressor shut-down and restart can be
achieved without stalling the simulation, distinct steps in
the (simulation time, CPU time) graph can still be ob-
served (see Figure 7). These steps are caused by small
variations of the two-phase fraction in a control volume,
in its turn causing large variation in heat transfer coeffi-
cient between adjacent control volumes. The two-phase
fraction indicates what the ratio of one-phase and two-
phase within a control volume is. The fast and local vari-
ations of heat transfer coefficient contribute to density

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

142 DOI
10.3384/ecp16124139

__

variations and thus oscillating flow. A first order filter is
applied to the heat transfer coefficient, with time constant
τ , as illustrated in Equation (2). Note that Fuser and y are
a calibration factor and the interpolation factor described
in Section 4.2 respectively. This introduces an additional
state in each control volume, which in principle will in-
crease simulation time.

dαi

dt
=
−αi +Fuser

[
yiα

2ph
i +(1.0− yi)α

1ph
i

]
τ

(2)

Figure 8. This graphs shows CPU time as a function of simu-
lation time in compressor shut-down (case 4) using mass flow
smoothing and a filter in heat transfer correlation. At 500 [s]
the first compressor shut-down occurs. In this image, one can
clearly see the different consecutive compressor shut-downs,
2-3 are achieved within 3600 [s] simulation time. The blue
line corresponds to τ = 0.01, and the red τ = 0.001.

Applying the filter has a recognizable effect on the
simulation robustness. In Figure 8, within 3600[s]
of CPU time, between 1-2 compressor shut-downs are
achieved. The value of the time constant was varied
τ = 10−2− 10−6[1/s]; the concept was beneficial in all
cases but no universally optimal value could be deter-
mined.

4.4 Reynolds Number Smoothing

In order to achieve a more physically correct result,
it was suggested to set a Reynolds number as thresh-
old value for the two-phase heat transfer coefficient to
converge towards the one-phase heat transfer coefficient
when approaching zero mass flow. The Reynolds num-
ber is a more meaningful measurement, independent of
the pipe geometry and as it is an indication of the flow
regime, a metric often used to describe the validity of
heat transfer correlations.

Figure 9. This graphs shows CPU time as a function of sim-
ulation time in compressor shut-down (case 1) using Reynolds
based smoothing and a filter in heat transfer correlation. At 500
[s] the first compressor shut-down occurs. A complete com-
pressor shut-down and restart cycle is completed within 3600
[s] CPU time.

As default value, Re = 3000[−] is used, located in the
transition between laminar (Re < 2300[−]) and turbulent
flow (Re > 4000[−]). Using this threshold the simula-
tion proceeds steadily, however at a slower rate as the
previously used nominal mass flow threshold (Figure 9).

4.5 Physical Behaviour at Zero Flow

The suggestions for improved zero flow robustness de-
scribed above rely on altering the heat transfer coeffi-
cients from existing heat transfer coefficient correlations
when approaching zero flow. This has consequences on
the model behaviour at zero flow but not in the nominal
operation range, provided the threshold value of the mass
flow or Re is correctly set. If the time constant τ is set
sufficiently low, it has no significant impact on the result
in nominal operation mode.

Topics for future consideration are:

1. What is the value of the heat transfer coefficient at
zero flow? All two-phase correlations implemented
in the Air Conditioning Library cease to be valid at
Re = 3000[−]. One-phase correlations however, re-
main valid to a much lower Reynolds number well
into the laminar region. It appears therefore justi-
fied to converge towards the one-phase heat transfer
coefficient correlation. However, for a more accu-
rate value an advection correlation would need to
be included in the overall heat transfer coefficient
calculation.

2. What is the effect of gravity on the system? The
models in the Air Conditioning Library do not take
into account the effect of gravity nor introduce a
slip factor between phases. At low flow rates, phase
separation will occur.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp16124139

143
__

3. How do these two items above interact? If we as-
sume that at zero flow, after the system has come
to rest, the channels are filled up with either liquid
or vapour only, the one-phase correlation is more
likely to mimic the physics better. However, boil-
ing is likely to occur in given sections of the cycle.

5 Considerations for Future Work

The discretization scheme currently implemented only
accounts for convective flow as previously specified. At
zero flow, the energy balances of adjacent control vol-
umes are not linked and the only relationship between
adjacent control volumes is the momentum balance. By
altering the heat transfer coefficient, the need for linking
the energy balances is reduced, as the the energy accu-
mulation/dissipation is more uniform.

Instead, one could imagine creating a thermal link
between adjacent control volumes. Diffusion-like dis-
cretization schemes can be included in the energy conser-
vation equations of each control volume. This has been
done previously however did not yield satisfactory re-
sults. While diffusion is beneficial to the zero flow prob-
lems, it cannot offset the very large energy accumulation
differences between adjacent control volumes that have
very different heat transfer coefficients, unless the diffu-
sion factors are unreasonably high.

And alternative method to link the energy balances of
the control volumes is to define a discretized (metal) wall
along side the thermo-fluid model, through which the
control volumes can indirectly interact. The additional
states will increase simulation time under nominal con-
ditions but may likely improve model robustness under
zero flow conditions.

6 Conclusion

The approach for improved zero flow behaviour of de-
tailed air conditioning system models uses the heat
transfer coefficient correlations which prescribe the heat
transfer from the refrigerant control volumes to the sec-
ondary side. The implementation requires that the value
of these coefficients for adjacent control volumes ap-
proach each one another for (near) zero flow simulation.
In refrigeration simulation, the two natural occurrences
of large variations of heat transfer coefficients exist be-
tween adiabatic pipes and heat exchangers and between
one- and two-phase coefficients within heat exchang-
ers. An approach to numerically smooth these transitions
based on nominal mass flow and Reynolds number for
the latter suggested. The approach is tested with large
system models and demonstrated to increase simulation
robustness under (near) zero flow conditions. Systems
simulations during which the compressor is repeatedly
shut-down previously got stuck but now run to the end.

References
Hubertus Tummescheit. Design and implementation of object-

oriented model libraries using modelica. PhD thesis, Lund
University, 2002.

Hubertus Tummescheit, Jonas Eborn, and Katrin Prolss.
Airconditioning–a modelica library for dynamic simulation
of ac systems. In 4th International Modelica Conference,
2005.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

144 DOI
10.3384/ecp16124139

__

	Proceedings of the 1st Japanese Modelica Conference_Intro.pdf
	001_yamakaji_no_password
	Dynamics Modeling of the Arc Spring for Powertrain NVH Prediction
	1 Introduction
	2 Description of Target Systems
	2.1 Functions of Launch Devices
	2.2 Torsional Damper
	2.3 Characteristics of Arc Springs

	3 Modeling Arc Springs
	3.1 Mechanism Identification
	3.2 Study of Discretization Level

	4 Modeling & Verification
	4.1 Modeling Arc Spring Components
	4.2 Component Level Verification

	5 Physical model deployment
	6 Conclusion

	002_hirano-test
	003_Koehler_ZF
	004_Sundstrom
	005_Koehler_SSP
	006_yamaura
	007_choi v1.1
	009_sutherland
	011_Andreasson
	012_janczyk
	016_kim

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

